1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * V4L2 sensor driver for Aptina MT9V111 image sensor 4 * Copyright (C) 2018 Jacopo Mondi <jacopo@jmondi.org> 5 * 6 * Based on mt9v032 driver 7 * Copyright (C) 2010, Laurent Pinchart <laurent.pinchart@ideasonboard.com> 8 * Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de> 9 * 10 * Based on mt9v011 driver 11 * Copyright (c) 2009 Mauro Carvalho Chehab <mchehab@kernel.org> 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/delay.h> 16 #include <linux/gpio/consumer.h> 17 #include <linux/i2c.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/videodev2.h> 21 #include <linux/v4l2-mediabus.h> 22 #include <linux/module.h> 23 24 #include <media/v4l2-ctrls.h> 25 #include <media/v4l2-device.h> 26 #include <media/v4l2-fwnode.h> 27 #include <media/v4l2-image-sizes.h> 28 #include <media/v4l2-subdev.h> 29 30 /* 31 * MT9V111 is a 1/4-Inch CMOS digital image sensor with an integrated 32 * Image Flow Processing (IFP) engine and a sensor core loosely based on 33 * MT9V011. 34 * 35 * The IFP can produce several output image formats from the sensor core 36 * output. This driver currently supports only YUYV format permutations. 37 * 38 * The driver allows manual frame rate control through set_frame_interval subdev 39 * operation or V4L2_CID_V/HBLANK controls, but it is known that the 40 * auto-exposure algorithm might modify the programmed frame rate. While the 41 * driver initially programs the sensor with auto-exposure and 42 * auto-white-balancing enabled, it is possible to disable them and more 43 * precisely control the frame rate. 44 * 45 * While it seems possible to instruct the auto-exposure control algorithm to 46 * respect a programmed frame rate when adjusting the pixel integration time, 47 * registers controlling this feature are not documented in the public 48 * available sensor manual used to develop this driver (09005aef80e90084, 49 * MT9V111_1.fm - Rev. G 1/05 EN). 50 */ 51 52 #define MT9V111_CHIP_ID_HIGH 0x82 53 #define MT9V111_CHIP_ID_LOW 0x3a 54 55 #define MT9V111_R01_ADDR_SPACE 0x01 56 #define MT9V111_R01_IFP 0x01 57 #define MT9V111_R01_CORE 0x04 58 59 #define MT9V111_IFP_R06_OPMODE_CTRL 0x06 60 #define MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN BIT(1) 61 #define MT9V111_IFP_R06_OPMODE_CTRL_AE_EN BIT(14) 62 #define MT9V111_IFP_R07_IFP_RESET 0x07 63 #define MT9V111_IFP_R07_IFP_RESET_MASK BIT(0) 64 #define MT9V111_IFP_R08_OUTFMT_CTRL 0x08 65 #define MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER BIT(11) 66 #define MT9V111_IFP_R08_OUTFMT_CTRL_PCLK BIT(5) 67 #define MT9V111_IFP_R3A_OUTFMT_CTRL2 0x3a 68 #define MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR BIT(0) 69 #define MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC BIT(1) 70 #define MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK GENMASK(2, 0) 71 #define MT9V111_IFP_RA5_HPAN 0xa5 72 #define MT9V111_IFP_RA6_HZOOM 0xa6 73 #define MT9V111_IFP_RA7_HOUT 0xa7 74 #define MT9V111_IFP_RA8_VPAN 0xa8 75 #define MT9V111_IFP_RA9_VZOOM 0xa9 76 #define MT9V111_IFP_RAA_VOUT 0xaa 77 #define MT9V111_IFP_DECIMATION_MASK GENMASK(9, 0) 78 #define MT9V111_IFP_DECIMATION_FREEZE BIT(15) 79 80 #define MT9V111_CORE_R03_WIN_HEIGHT 0x03 81 #define MT9V111_CORE_R03_WIN_V_OFFS 2 82 #define MT9V111_CORE_R04_WIN_WIDTH 0x04 83 #define MT9V111_CORE_R04_WIN_H_OFFS 114 84 #define MT9V111_CORE_R05_HBLANK 0x05 85 #define MT9V111_CORE_R05_MIN_HBLANK 0x09 86 #define MT9V111_CORE_R05_MAX_HBLANK GENMASK(9, 0) 87 #define MT9V111_CORE_R05_DEF_HBLANK 0x26 88 #define MT9V111_CORE_R06_VBLANK 0x06 89 #define MT9V111_CORE_R06_MIN_VBLANK 0x03 90 #define MT9V111_CORE_R06_MAX_VBLANK GENMASK(11, 0) 91 #define MT9V111_CORE_R06_DEF_VBLANK 0x04 92 #define MT9V111_CORE_R07_OUT_CTRL 0x07 93 #define MT9V111_CORE_R07_OUT_CTRL_SAMPLE BIT(4) 94 #define MT9V111_CORE_R09_PIXEL_INT 0x09 95 #define MT9V111_CORE_R09_PIXEL_INT_MASK GENMASK(11, 0) 96 #define MT9V111_CORE_R0D_CORE_RESET 0x0d 97 #define MT9V111_CORE_R0D_CORE_RESET_MASK BIT(0) 98 #define MT9V111_CORE_RFF_CHIP_VER 0xff 99 100 #define MT9V111_PIXEL_ARRAY_WIDTH 640 101 #define MT9V111_PIXEL_ARRAY_HEIGHT 480 102 103 #define MT9V111_MAX_CLKIN 27000000 104 105 /* The default sensor configuration at startup time. */ 106 static const struct v4l2_mbus_framefmt mt9v111_def_fmt = { 107 .width = 640, 108 .height = 480, 109 .code = MEDIA_BUS_FMT_UYVY8_2X8, 110 .field = V4L2_FIELD_NONE, 111 .colorspace = V4L2_COLORSPACE_SRGB, 112 .ycbcr_enc = V4L2_YCBCR_ENC_601, 113 .quantization = V4L2_QUANTIZATION_LIM_RANGE, 114 .xfer_func = V4L2_XFER_FUNC_SRGB, 115 }; 116 117 struct mt9v111_dev { 118 struct device *dev; 119 struct i2c_client *client; 120 121 u8 addr_space; 122 123 struct v4l2_subdev sd; 124 struct media_pad pad; 125 126 struct v4l2_ctrl *auto_awb; 127 struct v4l2_ctrl *auto_exp; 128 struct v4l2_ctrl *hblank; 129 struct v4l2_ctrl *vblank; 130 struct v4l2_ctrl_handler ctrls; 131 132 /* Output image format and sizes. */ 133 struct v4l2_mbus_framefmt fmt; 134 unsigned int fps; 135 136 /* Protects power up/down sequences. */ 137 struct mutex pwr_mutex; 138 int pwr_count; 139 140 /* Protects stream on/off sequences. */ 141 struct mutex stream_mutex; 142 bool streaming; 143 144 /* Flags to mark HW settings as not yet applied. */ 145 bool pending; 146 147 /* Clock provider and system clock frequency. */ 148 struct clk *clk; 149 u32 sysclk; 150 151 struct gpio_desc *oe; 152 struct gpio_desc *standby; 153 struct gpio_desc *reset; 154 }; 155 156 #define sd_to_mt9v111(__sd) container_of((__sd), struct mt9v111_dev, sd) 157 158 /* 159 * mt9v111_mbus_fmt - List all media bus formats supported by the driver. 160 * 161 * Only list the media bus code here. The image sizes are freely configurable 162 * in the pixel array sizes range. 163 * 164 * The desired frame interval, in the supported frame interval range, is 165 * obtained by configuring blanking as the sensor does not have a PLL but 166 * only a fixed clock divider that generates the output pixel clock. 167 */ 168 static struct mt9v111_mbus_fmt { 169 u32 code; 170 } mt9v111_formats[] = { 171 { 172 .code = MEDIA_BUS_FMT_UYVY8_2X8, 173 }, 174 { 175 .code = MEDIA_BUS_FMT_YUYV8_2X8, 176 }, 177 { 178 .code = MEDIA_BUS_FMT_VYUY8_2X8, 179 }, 180 { 181 .code = MEDIA_BUS_FMT_YVYU8_2X8, 182 }, 183 }; 184 185 static u32 mt9v111_frame_intervals[] = {5, 10, 15, 20, 30}; 186 187 /* 188 * mt9v111_frame_sizes - List sensor's supported resolutions. 189 * 190 * Resolution generated through decimation in the IFP block from the 191 * full VGA pixel array. 192 */ 193 static struct v4l2_rect mt9v111_frame_sizes[] = { 194 { 195 .width = 640, 196 .height = 480, 197 }, 198 { 199 .width = 352, 200 .height = 288 201 }, 202 { 203 .width = 320, 204 .height = 240, 205 }, 206 { 207 .width = 176, 208 .height = 144, 209 }, 210 { 211 .width = 160, 212 .height = 120, 213 }, 214 }; 215 216 /* --- Device I/O access --- */ 217 218 static int __mt9v111_read(struct i2c_client *c, u8 reg, u16 *val) 219 { 220 struct i2c_msg msg[2]; 221 __be16 buf; 222 int ret; 223 224 msg[0].addr = c->addr; 225 msg[0].flags = 0; 226 msg[0].len = 1; 227 msg[0].buf = ® 228 229 msg[1].addr = c->addr; 230 msg[1].flags = I2C_M_RD; 231 msg[1].len = 2; 232 msg[1].buf = (char *)&buf; 233 234 ret = i2c_transfer(c->adapter, msg, 2); 235 if (ret < 0) { 236 dev_err(&c->dev, "i2c read transfer error: %d\n", ret); 237 return ret; 238 } 239 240 *val = be16_to_cpu(buf); 241 242 dev_dbg(&c->dev, "%s: %x=%x\n", __func__, reg, *val); 243 244 return 0; 245 } 246 247 static int __mt9v111_write(struct i2c_client *c, u8 reg, u16 val) 248 { 249 struct i2c_msg msg; 250 u8 buf[3] = { 0 }; 251 int ret; 252 253 buf[0] = reg; 254 buf[1] = val >> 8; 255 buf[2] = val & 0xff; 256 257 msg.addr = c->addr; 258 msg.flags = 0; 259 msg.len = 3; 260 msg.buf = (char *)buf; 261 262 dev_dbg(&c->dev, "%s: %x = %x%x\n", __func__, reg, buf[1], buf[2]); 263 264 ret = i2c_transfer(c->adapter, &msg, 1); 265 if (ret < 0) { 266 dev_err(&c->dev, "i2c write transfer error: %d\n", ret); 267 return ret; 268 } 269 270 return 0; 271 } 272 273 static int __mt9v111_addr_space_select(struct i2c_client *c, u16 addr_space) 274 { 275 struct v4l2_subdev *sd = i2c_get_clientdata(c); 276 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd); 277 u16 val; 278 int ret; 279 280 if (mt9v111->addr_space == addr_space) 281 return 0; 282 283 ret = __mt9v111_write(c, MT9V111_R01_ADDR_SPACE, addr_space); 284 if (ret) 285 return ret; 286 287 /* Verify address space has been updated */ 288 ret = __mt9v111_read(c, MT9V111_R01_ADDR_SPACE, &val); 289 if (ret) 290 return ret; 291 292 if (val != addr_space) 293 return -EINVAL; 294 295 mt9v111->addr_space = addr_space; 296 297 return 0; 298 } 299 300 static int mt9v111_read(struct i2c_client *c, u8 addr_space, u8 reg, u16 *val) 301 { 302 int ret; 303 304 /* Select register address space first. */ 305 ret = __mt9v111_addr_space_select(c, addr_space); 306 if (ret) 307 return ret; 308 309 ret = __mt9v111_read(c, reg, val); 310 if (ret) 311 return ret; 312 313 return 0; 314 } 315 316 static int mt9v111_write(struct i2c_client *c, u8 addr_space, u8 reg, u16 val) 317 { 318 int ret; 319 320 /* Select register address space first. */ 321 ret = __mt9v111_addr_space_select(c, addr_space); 322 if (ret) 323 return ret; 324 325 ret = __mt9v111_write(c, reg, val); 326 if (ret) 327 return ret; 328 329 return 0; 330 } 331 332 static int mt9v111_update(struct i2c_client *c, u8 addr_space, u8 reg, 333 u16 mask, u16 val) 334 { 335 u16 current_val; 336 int ret; 337 338 /* Select register address space first. */ 339 ret = __mt9v111_addr_space_select(c, addr_space); 340 if (ret) 341 return ret; 342 343 /* Read the current register value, then update it. */ 344 ret = __mt9v111_read(c, reg, ¤t_val); 345 if (ret) 346 return ret; 347 348 current_val &= ~mask; 349 current_val |= (val & mask); 350 ret = __mt9v111_write(c, reg, current_val); 351 if (ret) 352 return ret; 353 354 return 0; 355 } 356 357 /* --- Sensor HW operations --- */ 358 359 static int __mt9v111_power_on(struct v4l2_subdev *sd) 360 { 361 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd); 362 int ret; 363 364 ret = clk_prepare_enable(mt9v111->clk); 365 if (ret) 366 return ret; 367 368 clk_set_rate(mt9v111->clk, mt9v111->sysclk); 369 370 gpiod_set_value(mt9v111->standby, 0); 371 usleep_range(500, 1000); 372 373 gpiod_set_value(mt9v111->oe, 1); 374 usleep_range(500, 1000); 375 376 return 0; 377 } 378 379 static int __mt9v111_power_off(struct v4l2_subdev *sd) 380 { 381 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd); 382 383 gpiod_set_value(mt9v111->oe, 0); 384 usleep_range(500, 1000); 385 386 gpiod_set_value(mt9v111->standby, 1); 387 usleep_range(500, 1000); 388 389 clk_disable_unprepare(mt9v111->clk); 390 391 return 0; 392 } 393 394 static int __mt9v111_hw_reset(struct mt9v111_dev *mt9v111) 395 { 396 if (!mt9v111->reset) 397 return -EINVAL; 398 399 gpiod_set_value(mt9v111->reset, 1); 400 usleep_range(500, 1000); 401 402 gpiod_set_value(mt9v111->reset, 0); 403 usleep_range(500, 1000); 404 405 return 0; 406 } 407 408 static int __mt9v111_sw_reset(struct mt9v111_dev *mt9v111) 409 { 410 struct i2c_client *c = mt9v111->client; 411 int ret; 412 413 /* Software reset core and IFP blocks. */ 414 415 ret = mt9v111_update(c, MT9V111_R01_CORE, 416 MT9V111_CORE_R0D_CORE_RESET, 417 MT9V111_CORE_R0D_CORE_RESET_MASK, 1); 418 if (ret) 419 return ret; 420 usleep_range(500, 1000); 421 422 ret = mt9v111_update(c, MT9V111_R01_CORE, 423 MT9V111_CORE_R0D_CORE_RESET, 424 MT9V111_CORE_R0D_CORE_RESET_MASK, 0); 425 if (ret) 426 return ret; 427 usleep_range(500, 1000); 428 429 ret = mt9v111_update(c, MT9V111_R01_IFP, 430 MT9V111_IFP_R07_IFP_RESET, 431 MT9V111_IFP_R07_IFP_RESET_MASK, 1); 432 if (ret) 433 return ret; 434 usleep_range(500, 1000); 435 436 ret = mt9v111_update(c, MT9V111_R01_IFP, 437 MT9V111_IFP_R07_IFP_RESET, 438 MT9V111_IFP_R07_IFP_RESET_MASK, 0); 439 if (ret) 440 return ret; 441 usleep_range(500, 1000); 442 443 return 0; 444 } 445 446 static int mt9v111_calc_frame_rate(struct mt9v111_dev *mt9v111, 447 struct v4l2_fract *tpf) 448 { 449 unsigned int fps = tpf->numerator ? 450 tpf->denominator / tpf->numerator : 451 tpf->denominator; 452 unsigned int best_diff; 453 unsigned int frm_cols; 454 unsigned int row_pclk; 455 unsigned int best_fps; 456 unsigned int pclk; 457 unsigned int diff; 458 unsigned int idx; 459 unsigned int hb; 460 unsigned int vb; 461 unsigned int i; 462 int ret; 463 464 /* Approximate to the closest supported frame interval. */ 465 best_diff = ~0L; 466 for (i = 0, idx = 0; i < ARRAY_SIZE(mt9v111_frame_intervals); i++) { 467 diff = abs(fps - mt9v111_frame_intervals[i]); 468 if (diff < best_diff) { 469 idx = i; 470 best_diff = diff; 471 } 472 } 473 fps = mt9v111_frame_intervals[idx]; 474 475 /* 476 * The sensor does not provide a PLL circuitry and pixel clock is 477 * generated dividing the master clock source by two. 478 * 479 * Trow = (W + Hblank + 114) * 2 * (1 / SYSCLK) 480 * TFrame = Trow * (H + Vblank + 2) 481 * 482 * FPS = (SYSCLK / 2) / (Trow * (H + Vblank + 2)) 483 * 484 * This boils down to tune H and V blanks to best approximate the 485 * above equation. 486 * 487 * Test all available H/V blank values, until we reach the 488 * desired frame rate. 489 */ 490 best_fps = vb = hb = 0; 491 pclk = DIV_ROUND_CLOSEST(mt9v111->sysclk, 2); 492 row_pclk = MT9V111_PIXEL_ARRAY_WIDTH + 7 + MT9V111_CORE_R04_WIN_H_OFFS; 493 frm_cols = MT9V111_PIXEL_ARRAY_HEIGHT + 7 + MT9V111_CORE_R03_WIN_V_OFFS; 494 495 best_diff = ~0L; 496 for (vb = MT9V111_CORE_R06_MIN_VBLANK; 497 vb < MT9V111_CORE_R06_MAX_VBLANK; vb++) { 498 for (hb = MT9V111_CORE_R05_MIN_HBLANK; 499 hb < MT9V111_CORE_R05_MAX_HBLANK; hb += 10) { 500 unsigned int t_frame = (row_pclk + hb) * 501 (frm_cols + vb); 502 unsigned int t_fps = DIV_ROUND_CLOSEST(pclk, t_frame); 503 504 diff = abs(fps - t_fps); 505 if (diff < best_diff) { 506 best_diff = diff; 507 best_fps = t_fps; 508 509 if (diff == 0) 510 break; 511 } 512 } 513 514 if (diff == 0) 515 break; 516 } 517 518 ret = v4l2_ctrl_s_ctrl_int64(mt9v111->hblank, hb); 519 if (ret) 520 return ret; 521 522 ret = v4l2_ctrl_s_ctrl_int64(mt9v111->vblank, vb); 523 if (ret) 524 return ret; 525 526 tpf->numerator = 1; 527 tpf->denominator = best_fps; 528 529 return 0; 530 } 531 532 static int mt9v111_hw_config(struct mt9v111_dev *mt9v111) 533 { 534 struct i2c_client *c = mt9v111->client; 535 unsigned int ret; 536 u16 outfmtctrl2; 537 538 /* Force device reset. */ 539 ret = __mt9v111_hw_reset(mt9v111); 540 if (ret == -EINVAL) 541 ret = __mt9v111_sw_reset(mt9v111); 542 if (ret) 543 return ret; 544 545 /* Configure internal clock sample rate. */ 546 ret = mt9v111->sysclk < DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ? 547 mt9v111_update(c, MT9V111_R01_CORE, 548 MT9V111_CORE_R07_OUT_CTRL, 549 MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 1) : 550 mt9v111_update(c, MT9V111_R01_CORE, 551 MT9V111_CORE_R07_OUT_CTRL, 552 MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 0); 553 if (ret) 554 return ret; 555 556 /* 557 * Configure output image format components ordering. 558 * 559 * TODO: IFP block can also output several RGB permutations, we only 560 * support YUYV permutations at the moment. 561 */ 562 switch (mt9v111->fmt.code) { 563 case MEDIA_BUS_FMT_YUYV8_2X8: 564 outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC; 565 break; 566 case MEDIA_BUS_FMT_VYUY8_2X8: 567 outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR; 568 break; 569 case MEDIA_BUS_FMT_YVYU8_2X8: 570 outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC | 571 MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR; 572 break; 573 case MEDIA_BUS_FMT_UYVY8_2X8: 574 default: 575 outfmtctrl2 = 0; 576 break; 577 } 578 579 ret = mt9v111_update(c, MT9V111_R01_IFP, MT9V111_IFP_R3A_OUTFMT_CTRL2, 580 MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK, 581 outfmtctrl2); 582 if (ret) 583 return ret; 584 585 /* 586 * Do not change default sensor's core configuration: 587 * output the whole 640x480 pixel array, skip 18 columns and 6 rows. 588 * 589 * Instead, control the output image size through IFP block. 590 * 591 * TODO: No zoom&pan support. Currently we control the output image 592 * size only through decimation, with no zoom support. 593 */ 594 ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA5_HPAN, 595 MT9V111_IFP_DECIMATION_FREEZE); 596 if (ret) 597 return ret; 598 599 ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA8_VPAN, 600 MT9V111_IFP_DECIMATION_FREEZE); 601 if (ret) 602 return ret; 603 604 ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA6_HZOOM, 605 MT9V111_IFP_DECIMATION_FREEZE | 606 MT9V111_PIXEL_ARRAY_WIDTH); 607 if (ret) 608 return ret; 609 610 ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA9_VZOOM, 611 MT9V111_IFP_DECIMATION_FREEZE | 612 MT9V111_PIXEL_ARRAY_HEIGHT); 613 if (ret) 614 return ret; 615 616 ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA7_HOUT, 617 MT9V111_IFP_DECIMATION_FREEZE | 618 mt9v111->fmt.width); 619 if (ret) 620 return ret; 621 622 ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RAA_VOUT, 623 mt9v111->fmt.height); 624 if (ret) 625 return ret; 626 627 /* Apply controls to set auto exp, auto awb and timings */ 628 ret = v4l2_ctrl_handler_setup(&mt9v111->ctrls); 629 if (ret) 630 return ret; 631 632 /* 633 * Set pixel integration time to the whole frame time. 634 * This value controls the shutter delay when running with AE 635 * disabled. If longer than frame time, it affects the output 636 * frame rate. 637 */ 638 return mt9v111_write(c, MT9V111_R01_CORE, MT9V111_CORE_R09_PIXEL_INT, 639 MT9V111_PIXEL_ARRAY_HEIGHT); 640 } 641 642 /* --- V4L2 subdev operations --- */ 643 644 static int mt9v111_s_power(struct v4l2_subdev *sd, int on) 645 { 646 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd); 647 int pwr_count; 648 int ret = 0; 649 650 mutex_lock(&mt9v111->pwr_mutex); 651 652 /* 653 * Make sure we're transitioning from 0 to 1, or viceversa, 654 * before actually changing the power state. 655 */ 656 pwr_count = mt9v111->pwr_count; 657 pwr_count += on ? 1 : -1; 658 if (pwr_count == !!on) { 659 ret = on ? __mt9v111_power_on(sd) : 660 __mt9v111_power_off(sd); 661 if (!ret) 662 /* All went well, updated power counter. */ 663 mt9v111->pwr_count = pwr_count; 664 665 mutex_unlock(&mt9v111->pwr_mutex); 666 667 return ret; 668 } 669 670 /* 671 * Update power counter to keep track of how many nested calls we 672 * received. 673 */ 674 WARN_ON(pwr_count < 0 || pwr_count > 1); 675 mt9v111->pwr_count = pwr_count; 676 677 mutex_unlock(&mt9v111->pwr_mutex); 678 679 return ret; 680 } 681 682 static int mt9v111_s_stream(struct v4l2_subdev *subdev, int enable) 683 { 684 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev); 685 int ret; 686 687 mutex_lock(&mt9v111->stream_mutex); 688 689 if (mt9v111->streaming == enable) { 690 mutex_unlock(&mt9v111->stream_mutex); 691 return 0; 692 } 693 694 ret = mt9v111_s_power(subdev, enable); 695 if (ret) 696 goto error_unlock; 697 698 if (enable && mt9v111->pending) { 699 ret = mt9v111_hw_config(mt9v111); 700 if (ret) 701 goto error_unlock; 702 703 /* 704 * No need to update control here as far as only H/VBLANK are 705 * supported and immediately programmed to registers in .s_ctrl 706 */ 707 708 mt9v111->pending = false; 709 } 710 711 mt9v111->streaming = enable ? true : false; 712 mutex_unlock(&mt9v111->stream_mutex); 713 714 return 0; 715 716 error_unlock: 717 mutex_unlock(&mt9v111->stream_mutex); 718 719 return ret; 720 } 721 722 static int mt9v111_set_frame_interval(struct v4l2_subdev *sd, 723 struct v4l2_subdev_state *sd_state, 724 struct v4l2_subdev_frame_interval *ival) 725 { 726 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd); 727 struct v4l2_fract *tpf = &ival->interval; 728 unsigned int fps = tpf->numerator ? 729 tpf->denominator / tpf->numerator : 730 tpf->denominator; 731 unsigned int max_fps; 732 733 /* 734 * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2 735 * subdev active state API. 736 */ 737 if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE) 738 return -EINVAL; 739 740 if (!tpf->numerator) 741 tpf->numerator = 1; 742 743 mutex_lock(&mt9v111->stream_mutex); 744 745 if (mt9v111->streaming) { 746 mutex_unlock(&mt9v111->stream_mutex); 747 return -EBUSY; 748 } 749 750 if (mt9v111->fps == fps) { 751 mutex_unlock(&mt9v111->stream_mutex); 752 return 0; 753 } 754 755 /* Make sure frame rate/image sizes constraints are respected. */ 756 if (mt9v111->fmt.width < QVGA_WIDTH && 757 mt9v111->fmt.height < QVGA_HEIGHT) 758 max_fps = 90; 759 else if (mt9v111->fmt.width < CIF_WIDTH && 760 mt9v111->fmt.height < CIF_HEIGHT) 761 max_fps = 60; 762 else 763 max_fps = mt9v111->sysclk < 764 DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ? 15 : 765 30; 766 767 if (fps > max_fps) { 768 mutex_unlock(&mt9v111->stream_mutex); 769 return -EINVAL; 770 } 771 772 mt9v111_calc_frame_rate(mt9v111, tpf); 773 774 mt9v111->fps = fps; 775 mt9v111->pending = true; 776 777 mutex_unlock(&mt9v111->stream_mutex); 778 779 return 0; 780 } 781 782 static int mt9v111_get_frame_interval(struct v4l2_subdev *sd, 783 struct v4l2_subdev_state *sd_state, 784 struct v4l2_subdev_frame_interval *ival) 785 { 786 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd); 787 struct v4l2_fract *tpf = &ival->interval; 788 789 /* 790 * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2 791 * subdev active state API. 792 */ 793 if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE) 794 return -EINVAL; 795 796 mutex_lock(&mt9v111->stream_mutex); 797 798 tpf->numerator = 1; 799 tpf->denominator = mt9v111->fps; 800 801 mutex_unlock(&mt9v111->stream_mutex); 802 803 return 0; 804 } 805 806 static struct v4l2_mbus_framefmt *__mt9v111_get_pad_format( 807 struct mt9v111_dev *mt9v111, 808 struct v4l2_subdev_state *sd_state, 809 unsigned int pad, 810 enum v4l2_subdev_format_whence which) 811 { 812 switch (which) { 813 case V4L2_SUBDEV_FORMAT_TRY: 814 return v4l2_subdev_state_get_format(sd_state, pad); 815 case V4L2_SUBDEV_FORMAT_ACTIVE: 816 return &mt9v111->fmt; 817 default: 818 return NULL; 819 } 820 } 821 822 static int mt9v111_enum_mbus_code(struct v4l2_subdev *subdev, 823 struct v4l2_subdev_state *sd_state, 824 struct v4l2_subdev_mbus_code_enum *code) 825 { 826 if (code->pad || code->index > ARRAY_SIZE(mt9v111_formats) - 1) 827 return -EINVAL; 828 829 code->code = mt9v111_formats[code->index].code; 830 831 return 0; 832 } 833 834 static int mt9v111_enum_frame_interval(struct v4l2_subdev *sd, 835 struct v4l2_subdev_state *sd_state, 836 struct v4l2_subdev_frame_interval_enum *fie) 837 { 838 unsigned int i; 839 840 if (fie->pad || fie->index >= ARRAY_SIZE(mt9v111_frame_intervals)) 841 return -EINVAL; 842 843 for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++) 844 if (fie->width == mt9v111_frame_sizes[i].width && 845 fie->height == mt9v111_frame_sizes[i].height) 846 break; 847 848 if (i == ARRAY_SIZE(mt9v111_frame_sizes)) 849 return -EINVAL; 850 851 fie->interval.numerator = 1; 852 fie->interval.denominator = mt9v111_frame_intervals[fie->index]; 853 854 return 0; 855 } 856 857 static int mt9v111_enum_frame_size(struct v4l2_subdev *subdev, 858 struct v4l2_subdev_state *sd_state, 859 struct v4l2_subdev_frame_size_enum *fse) 860 { 861 if (fse->pad || fse->index >= ARRAY_SIZE(mt9v111_frame_sizes)) 862 return -EINVAL; 863 864 fse->min_width = mt9v111_frame_sizes[fse->index].width; 865 fse->max_width = mt9v111_frame_sizes[fse->index].width; 866 fse->min_height = mt9v111_frame_sizes[fse->index].height; 867 fse->max_height = mt9v111_frame_sizes[fse->index].height; 868 869 return 0; 870 } 871 872 static int mt9v111_get_format(struct v4l2_subdev *subdev, 873 struct v4l2_subdev_state *sd_state, 874 struct v4l2_subdev_format *format) 875 { 876 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev); 877 878 if (format->pad) 879 return -EINVAL; 880 881 mutex_lock(&mt9v111->stream_mutex); 882 format->format = *__mt9v111_get_pad_format(mt9v111, sd_state, 883 format->pad, 884 format->which); 885 mutex_unlock(&mt9v111->stream_mutex); 886 887 return 0; 888 } 889 890 static int mt9v111_set_format(struct v4l2_subdev *subdev, 891 struct v4l2_subdev_state *sd_state, 892 struct v4l2_subdev_format *format) 893 { 894 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev); 895 struct v4l2_mbus_framefmt new_fmt; 896 struct v4l2_mbus_framefmt *__fmt; 897 unsigned int best_fit = ~0L; 898 unsigned int idx = 0; 899 unsigned int i; 900 901 mutex_lock(&mt9v111->stream_mutex); 902 if (mt9v111->streaming) { 903 mutex_unlock(&mt9v111->stream_mutex); 904 return -EBUSY; 905 } 906 907 if (format->pad) { 908 mutex_unlock(&mt9v111->stream_mutex); 909 return -EINVAL; 910 } 911 912 /* Update mbus format code and sizes. */ 913 for (i = 0; i < ARRAY_SIZE(mt9v111_formats); i++) { 914 if (format->format.code == mt9v111_formats[i].code) { 915 new_fmt.code = mt9v111_formats[i].code; 916 break; 917 } 918 } 919 if (i == ARRAY_SIZE(mt9v111_formats)) 920 new_fmt.code = mt9v111_formats[0].code; 921 922 for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++) { 923 unsigned int fit = abs(mt9v111_frame_sizes[i].width - 924 format->format.width) + 925 abs(mt9v111_frame_sizes[i].height - 926 format->format.height); 927 if (fit < best_fit) { 928 best_fit = fit; 929 idx = i; 930 931 if (fit == 0) 932 break; 933 } 934 } 935 new_fmt.width = mt9v111_frame_sizes[idx].width; 936 new_fmt.height = mt9v111_frame_sizes[idx].height; 937 938 /* Update the device (or pad) format if it has changed. */ 939 __fmt = __mt9v111_get_pad_format(mt9v111, sd_state, format->pad, 940 format->which); 941 942 /* Format hasn't changed, stop here. */ 943 if (__fmt->code == new_fmt.code && 944 __fmt->width == new_fmt.width && 945 __fmt->height == new_fmt.height) 946 goto done; 947 948 /* Update the format and sizes, then mark changes as pending. */ 949 __fmt->code = new_fmt.code; 950 __fmt->width = new_fmt.width; 951 __fmt->height = new_fmt.height; 952 953 if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) 954 mt9v111->pending = true; 955 956 dev_dbg(mt9v111->dev, "%s: mbus_code: %x - (%ux%u)\n", 957 __func__, __fmt->code, __fmt->width, __fmt->height); 958 959 done: 960 format->format = *__fmt; 961 962 mutex_unlock(&mt9v111->stream_mutex); 963 964 return 0; 965 } 966 967 static int mt9v111_init_state(struct v4l2_subdev *subdev, 968 struct v4l2_subdev_state *sd_state) 969 { 970 *v4l2_subdev_state_get_format(sd_state, 0) = mt9v111_def_fmt; 971 972 return 0; 973 } 974 975 static const struct v4l2_subdev_core_ops mt9v111_core_ops = { 976 .s_power = mt9v111_s_power, 977 }; 978 979 static const struct v4l2_subdev_video_ops mt9v111_video_ops = { 980 .s_stream = mt9v111_s_stream, 981 }; 982 983 static const struct v4l2_subdev_pad_ops mt9v111_pad_ops = { 984 .enum_mbus_code = mt9v111_enum_mbus_code, 985 .enum_frame_size = mt9v111_enum_frame_size, 986 .enum_frame_interval = mt9v111_enum_frame_interval, 987 .get_fmt = mt9v111_get_format, 988 .set_fmt = mt9v111_set_format, 989 .get_frame_interval = mt9v111_get_frame_interval, 990 .set_frame_interval = mt9v111_set_frame_interval, 991 }; 992 993 static const struct v4l2_subdev_ops mt9v111_ops = { 994 .core = &mt9v111_core_ops, 995 .video = &mt9v111_video_ops, 996 .pad = &mt9v111_pad_ops, 997 }; 998 999 static const struct v4l2_subdev_internal_ops mt9v111_internal_ops = { 1000 .init_state = mt9v111_init_state, 1001 }; 1002 1003 static const struct media_entity_operations mt9v111_subdev_entity_ops = { 1004 .link_validate = v4l2_subdev_link_validate, 1005 }; 1006 1007 /* --- V4L2 ctrl --- */ 1008 static int mt9v111_s_ctrl(struct v4l2_ctrl *ctrl) 1009 { 1010 struct mt9v111_dev *mt9v111 = container_of(ctrl->handler, 1011 struct mt9v111_dev, 1012 ctrls); 1013 int ret; 1014 1015 mutex_lock(&mt9v111->pwr_mutex); 1016 /* 1017 * If sensor is powered down, just cache new control values, 1018 * no actual register access. 1019 */ 1020 if (!mt9v111->pwr_count) { 1021 mt9v111->pending = true; 1022 mutex_unlock(&mt9v111->pwr_mutex); 1023 return 0; 1024 } 1025 mutex_unlock(&mt9v111->pwr_mutex); 1026 1027 /* 1028 * Flickering control gets disabled if both auto exp and auto awb 1029 * are disabled too. If any of the two is enabled, enable it. 1030 * 1031 * Disabling flickering when ae and awb are off allows a more precise 1032 * control of the programmed frame rate. 1033 */ 1034 if (mt9v111->auto_exp->is_new || mt9v111->auto_awb->is_new) { 1035 if (mt9v111->auto_exp->val == V4L2_EXPOSURE_MANUAL && 1036 mt9v111->auto_awb->val == V4L2_WHITE_BALANCE_MANUAL) 1037 ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP, 1038 MT9V111_IFP_R08_OUTFMT_CTRL, 1039 MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER, 1040 0); 1041 else 1042 ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP, 1043 MT9V111_IFP_R08_OUTFMT_CTRL, 1044 MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER, 1045 1); 1046 if (ret) 1047 return ret; 1048 } 1049 1050 ret = -EINVAL; 1051 switch (ctrl->id) { 1052 case V4L2_CID_AUTO_WHITE_BALANCE: 1053 ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP, 1054 MT9V111_IFP_R06_OPMODE_CTRL, 1055 MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN, 1056 ctrl->val == V4L2_WHITE_BALANCE_AUTO ? 1057 MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN : 0); 1058 break; 1059 case V4L2_CID_EXPOSURE_AUTO: 1060 ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP, 1061 MT9V111_IFP_R06_OPMODE_CTRL, 1062 MT9V111_IFP_R06_OPMODE_CTRL_AE_EN, 1063 ctrl->val == V4L2_EXPOSURE_AUTO ? 1064 MT9V111_IFP_R06_OPMODE_CTRL_AE_EN : 0); 1065 break; 1066 case V4L2_CID_HBLANK: 1067 ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE, 1068 MT9V111_CORE_R05_HBLANK, 1069 MT9V111_CORE_R05_MAX_HBLANK, 1070 mt9v111->hblank->val); 1071 break; 1072 case V4L2_CID_VBLANK: 1073 ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE, 1074 MT9V111_CORE_R06_VBLANK, 1075 MT9V111_CORE_R06_MAX_VBLANK, 1076 mt9v111->vblank->val); 1077 break; 1078 } 1079 1080 return ret; 1081 } 1082 1083 static const struct v4l2_ctrl_ops mt9v111_ctrl_ops = { 1084 .s_ctrl = mt9v111_s_ctrl, 1085 }; 1086 1087 static int mt9v111_chip_probe(struct mt9v111_dev *mt9v111) 1088 { 1089 int ret; 1090 u16 val; 1091 1092 ret = __mt9v111_power_on(&mt9v111->sd); 1093 if (ret) 1094 return ret; 1095 1096 ret = mt9v111_read(mt9v111->client, MT9V111_R01_CORE, 1097 MT9V111_CORE_RFF_CHIP_VER, &val); 1098 if (ret) 1099 goto power_off; 1100 1101 if ((val >> 8) != MT9V111_CHIP_ID_HIGH && 1102 (val & 0xff) != MT9V111_CHIP_ID_LOW) { 1103 dev_err(mt9v111->dev, 1104 "Unable to identify MT9V111 chip: 0x%2x%2x\n", 1105 val >> 8, val & 0xff); 1106 ret = -EIO; 1107 goto power_off; 1108 } 1109 1110 dev_dbg(mt9v111->dev, "Chip identified: 0x%2x%2x\n", 1111 val >> 8, val & 0xff); 1112 1113 power_off: 1114 __mt9v111_power_off(&mt9v111->sd); 1115 1116 return ret; 1117 } 1118 1119 static int mt9v111_probe(struct i2c_client *client) 1120 { 1121 struct mt9v111_dev *mt9v111; 1122 struct v4l2_fract tpf; 1123 int ret; 1124 1125 mt9v111 = devm_kzalloc(&client->dev, sizeof(*mt9v111), GFP_KERNEL); 1126 if (!mt9v111) 1127 return -ENOMEM; 1128 1129 mt9v111->dev = &client->dev; 1130 mt9v111->client = client; 1131 1132 mt9v111->clk = devm_clk_get(&client->dev, NULL); 1133 if (IS_ERR(mt9v111->clk)) 1134 return PTR_ERR(mt9v111->clk); 1135 1136 mt9v111->sysclk = clk_get_rate(mt9v111->clk); 1137 if (mt9v111->sysclk > MT9V111_MAX_CLKIN) 1138 return -EINVAL; 1139 1140 mt9v111->oe = devm_gpiod_get_optional(&client->dev, "enable", 1141 GPIOD_OUT_LOW); 1142 if (IS_ERR(mt9v111->oe)) { 1143 dev_err(&client->dev, "Unable to get GPIO \"enable\": %ld\n", 1144 PTR_ERR(mt9v111->oe)); 1145 return PTR_ERR(mt9v111->oe); 1146 } 1147 1148 mt9v111->standby = devm_gpiod_get_optional(&client->dev, "standby", 1149 GPIOD_OUT_HIGH); 1150 if (IS_ERR(mt9v111->standby)) { 1151 dev_err(&client->dev, "Unable to get GPIO \"standby\": %ld\n", 1152 PTR_ERR(mt9v111->standby)); 1153 return PTR_ERR(mt9v111->standby); 1154 } 1155 1156 mt9v111->reset = devm_gpiod_get_optional(&client->dev, "reset", 1157 GPIOD_OUT_LOW); 1158 if (IS_ERR(mt9v111->reset)) { 1159 dev_err(&client->dev, "Unable to get GPIO \"reset\": %ld\n", 1160 PTR_ERR(mt9v111->reset)); 1161 return PTR_ERR(mt9v111->reset); 1162 } 1163 1164 mutex_init(&mt9v111->pwr_mutex); 1165 mutex_init(&mt9v111->stream_mutex); 1166 1167 v4l2_ctrl_handler_init(&mt9v111->ctrls, 5); 1168 1169 mt9v111->auto_awb = v4l2_ctrl_new_std(&mt9v111->ctrls, 1170 &mt9v111_ctrl_ops, 1171 V4L2_CID_AUTO_WHITE_BALANCE, 1172 0, 1, 1, 1173 V4L2_WHITE_BALANCE_AUTO); 1174 mt9v111->auto_exp = v4l2_ctrl_new_std_menu(&mt9v111->ctrls, 1175 &mt9v111_ctrl_ops, 1176 V4L2_CID_EXPOSURE_AUTO, 1177 V4L2_EXPOSURE_MANUAL, 1178 0, V4L2_EXPOSURE_AUTO); 1179 mt9v111->hblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops, 1180 V4L2_CID_HBLANK, 1181 MT9V111_CORE_R05_MIN_HBLANK, 1182 MT9V111_CORE_R05_MAX_HBLANK, 1, 1183 MT9V111_CORE_R05_DEF_HBLANK); 1184 mt9v111->vblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops, 1185 V4L2_CID_VBLANK, 1186 MT9V111_CORE_R06_MIN_VBLANK, 1187 MT9V111_CORE_R06_MAX_VBLANK, 1, 1188 MT9V111_CORE_R06_DEF_VBLANK); 1189 1190 /* PIXEL_RATE is fixed: just expose it to user space. */ 1191 v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops, 1192 V4L2_CID_PIXEL_RATE, 0, 1193 DIV_ROUND_CLOSEST(mt9v111->sysclk, 2), 1, 1194 DIV_ROUND_CLOSEST(mt9v111->sysclk, 2)); 1195 1196 if (mt9v111->ctrls.error) { 1197 ret = mt9v111->ctrls.error; 1198 goto error_free_ctrls; 1199 } 1200 mt9v111->sd.ctrl_handler = &mt9v111->ctrls; 1201 1202 /* Start with default configuration: 640x480 UYVY. */ 1203 mt9v111->fmt = mt9v111_def_fmt; 1204 1205 /* Re-calculate blankings for 640x480@15fps. */ 1206 mt9v111->fps = 15; 1207 tpf.numerator = 1; 1208 tpf.denominator = mt9v111->fps; 1209 mt9v111_calc_frame_rate(mt9v111, &tpf); 1210 1211 mt9v111->pwr_count = 0; 1212 mt9v111->addr_space = MT9V111_R01_IFP; 1213 mt9v111->pending = true; 1214 1215 v4l2_i2c_subdev_init(&mt9v111->sd, client, &mt9v111_ops); 1216 mt9v111->sd.internal_ops = &mt9v111_internal_ops; 1217 1218 mt9v111->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; 1219 mt9v111->sd.entity.ops = &mt9v111_subdev_entity_ops; 1220 mt9v111->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; 1221 1222 mt9v111->pad.flags = MEDIA_PAD_FL_SOURCE; 1223 ret = media_entity_pads_init(&mt9v111->sd.entity, 1, &mt9v111->pad); 1224 if (ret) 1225 goto error_free_entity; 1226 1227 ret = mt9v111_chip_probe(mt9v111); 1228 if (ret) 1229 goto error_free_entity; 1230 1231 ret = v4l2_async_register_subdev(&mt9v111->sd); 1232 if (ret) 1233 goto error_free_entity; 1234 1235 return 0; 1236 1237 error_free_entity: 1238 media_entity_cleanup(&mt9v111->sd.entity); 1239 1240 error_free_ctrls: 1241 v4l2_ctrl_handler_free(&mt9v111->ctrls); 1242 1243 mutex_destroy(&mt9v111->pwr_mutex); 1244 mutex_destroy(&mt9v111->stream_mutex); 1245 1246 return ret; 1247 } 1248 1249 static void mt9v111_remove(struct i2c_client *client) 1250 { 1251 struct v4l2_subdev *sd = i2c_get_clientdata(client); 1252 struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd); 1253 1254 v4l2_async_unregister_subdev(sd); 1255 1256 media_entity_cleanup(&sd->entity); 1257 1258 v4l2_ctrl_handler_free(&mt9v111->ctrls); 1259 1260 mutex_destroy(&mt9v111->pwr_mutex); 1261 mutex_destroy(&mt9v111->stream_mutex); 1262 } 1263 1264 static const struct of_device_id mt9v111_of_match[] = { 1265 { .compatible = "aptina,mt9v111", }, 1266 { /* sentinel */ } 1267 }; 1268 MODULE_DEVICE_TABLE(of, mt9v111_of_match); 1269 1270 static struct i2c_driver mt9v111_driver = { 1271 .driver = { 1272 .name = "mt9v111", 1273 .of_match_table = mt9v111_of_match, 1274 }, 1275 .probe = mt9v111_probe, 1276 .remove = mt9v111_remove, 1277 }; 1278 1279 module_i2c_driver(mt9v111_driver); 1280 1281 MODULE_DESCRIPTION("V4L2 sensor driver for Aptina MT9V111"); 1282 MODULE_AUTHOR("Jacopo Mondi <jacopo@jmondi.org>"); 1283 MODULE_LICENSE("GPL v2"); 1284