1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Video Capture Driver (Video for Linux 1/2) 4 * for the Matrox Marvel G200,G400 and Rainbow Runner-G series 5 * 6 * This module is an interface to the KS0127 video decoder chip. 7 * 8 * Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net> 9 * 10 ***************************************************************************** 11 * 12 * Modified and extended by 13 * Mike Bernson <mike@mlb.org> 14 * Gerard v.d. Horst 15 * Leon van Stuivenberg <l.vanstuivenberg@chello.nl> 16 * Gernot Ziegler <gz@lysator.liu.se> 17 * 18 * Version History: 19 * V1.0 Ryan Drake Initial version by Ryan Drake 20 * V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard 21 */ 22 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/delay.h> 26 #include <linux/errno.h> 27 #include <linux/kernel.h> 28 #include <linux/i2c.h> 29 #include <linux/videodev2.h> 30 #include <linux/slab.h> 31 #include <media/v4l2-device.h> 32 #include "ks0127.h" 33 34 MODULE_DESCRIPTION("KS0127 video decoder driver"); 35 MODULE_AUTHOR("Ryan Drake"); 36 MODULE_LICENSE("GPL"); 37 38 /* Addresses */ 39 #define I2C_KS0127_ADDON 0xD8 40 #define I2C_KS0127_ONBOARD 0xDA 41 42 43 /* ks0127 control registers */ 44 #define KS_STAT 0x00 45 #define KS_CMDA 0x01 46 #define KS_CMDB 0x02 47 #define KS_CMDC 0x03 48 #define KS_CMDD 0x04 49 #define KS_HAVB 0x05 50 #define KS_HAVE 0x06 51 #define KS_HS1B 0x07 52 #define KS_HS1E 0x08 53 #define KS_HS2B 0x09 54 #define KS_HS2E 0x0a 55 #define KS_AGC 0x0b 56 #define KS_HXTRA 0x0c 57 #define KS_CDEM 0x0d 58 #define KS_PORTAB 0x0e 59 #define KS_LUMA 0x0f 60 #define KS_CON 0x10 61 #define KS_BRT 0x11 62 #define KS_CHROMA 0x12 63 #define KS_CHROMB 0x13 64 #define KS_DEMOD 0x14 65 #define KS_SAT 0x15 66 #define KS_HUE 0x16 67 #define KS_VERTIA 0x17 68 #define KS_VERTIB 0x18 69 #define KS_VERTIC 0x19 70 #define KS_HSCLL 0x1a 71 #define KS_HSCLH 0x1b 72 #define KS_VSCLL 0x1c 73 #define KS_VSCLH 0x1d 74 #define KS_OFMTA 0x1e 75 #define KS_OFMTB 0x1f 76 #define KS_VBICTL 0x20 77 #define KS_CCDAT2 0x21 78 #define KS_CCDAT1 0x22 79 #define KS_VBIL30 0x23 80 #define KS_VBIL74 0x24 81 #define KS_VBIL118 0x25 82 #define KS_VBIL1512 0x26 83 #define KS_TTFRAM 0x27 84 #define KS_TESTA 0x28 85 #define KS_UVOFFH 0x29 86 #define KS_UVOFFL 0x2a 87 #define KS_UGAIN 0x2b 88 #define KS_VGAIN 0x2c 89 #define KS_VAVB 0x2d 90 #define KS_VAVE 0x2e 91 #define KS_CTRACK 0x2f 92 #define KS_POLCTL 0x30 93 #define KS_REFCOD 0x31 94 #define KS_INVALY 0x32 95 #define KS_INVALU 0x33 96 #define KS_INVALV 0x34 97 #define KS_UNUSEY 0x35 98 #define KS_UNUSEU 0x36 99 #define KS_UNUSEV 0x37 100 #define KS_USRSAV 0x38 101 #define KS_USREAV 0x39 102 #define KS_SHS1A 0x3a 103 #define KS_SHS1B 0x3b 104 #define KS_SHS1C 0x3c 105 #define KS_CMDE 0x3d 106 #define KS_VSDEL 0x3e 107 #define KS_CMDF 0x3f 108 #define KS_GAMMA0 0x40 109 #define KS_GAMMA1 0x41 110 #define KS_GAMMA2 0x42 111 #define KS_GAMMA3 0x43 112 #define KS_GAMMA4 0x44 113 #define KS_GAMMA5 0x45 114 #define KS_GAMMA6 0x46 115 #define KS_GAMMA7 0x47 116 #define KS_GAMMA8 0x48 117 #define KS_GAMMA9 0x49 118 #define KS_GAMMA10 0x4a 119 #define KS_GAMMA11 0x4b 120 #define KS_GAMMA12 0x4c 121 #define KS_GAMMA13 0x4d 122 #define KS_GAMMA14 0x4e 123 #define KS_GAMMA15 0x4f 124 #define KS_GAMMA16 0x50 125 #define KS_GAMMA17 0x51 126 #define KS_GAMMA18 0x52 127 #define KS_GAMMA19 0x53 128 #define KS_GAMMA20 0x54 129 #define KS_GAMMA21 0x55 130 #define KS_GAMMA22 0x56 131 #define KS_GAMMA23 0x57 132 #define KS_GAMMA24 0x58 133 #define KS_GAMMA25 0x59 134 #define KS_GAMMA26 0x5a 135 #define KS_GAMMA27 0x5b 136 #define KS_GAMMA28 0x5c 137 #define KS_GAMMA29 0x5d 138 #define KS_GAMMA30 0x5e 139 #define KS_GAMMA31 0x5f 140 #define KS_GAMMAD0 0x60 141 #define KS_GAMMAD1 0x61 142 #define KS_GAMMAD2 0x62 143 #define KS_GAMMAD3 0x63 144 #define KS_GAMMAD4 0x64 145 #define KS_GAMMAD5 0x65 146 #define KS_GAMMAD6 0x66 147 #define KS_GAMMAD7 0x67 148 #define KS_GAMMAD8 0x68 149 #define KS_GAMMAD9 0x69 150 #define KS_GAMMAD10 0x6a 151 #define KS_GAMMAD11 0x6b 152 #define KS_GAMMAD12 0x6c 153 #define KS_GAMMAD13 0x6d 154 #define KS_GAMMAD14 0x6e 155 #define KS_GAMMAD15 0x6f 156 #define KS_GAMMAD16 0x70 157 #define KS_GAMMAD17 0x71 158 #define KS_GAMMAD18 0x72 159 #define KS_GAMMAD19 0x73 160 #define KS_GAMMAD20 0x74 161 #define KS_GAMMAD21 0x75 162 #define KS_GAMMAD22 0x76 163 #define KS_GAMMAD23 0x77 164 #define KS_GAMMAD24 0x78 165 #define KS_GAMMAD25 0x79 166 #define KS_GAMMAD26 0x7a 167 #define KS_GAMMAD27 0x7b 168 #define KS_GAMMAD28 0x7c 169 #define KS_GAMMAD29 0x7d 170 #define KS_GAMMAD30 0x7e 171 #define KS_GAMMAD31 0x7f 172 173 174 /**************************************************************************** 175 * mga_dev : represents one ks0127 chip. 176 ****************************************************************************/ 177 178 struct ks0127 { 179 struct v4l2_subdev sd; 180 v4l2_std_id norm; 181 u8 regs[256]; 182 }; 183 184 static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd) 185 { 186 return container_of(sd, struct ks0127, sd); 187 } 188 189 190 static int debug; /* insmod parameter */ 191 192 module_param(debug, int, 0); 193 MODULE_PARM_DESC(debug, "Debug output"); 194 195 static u8 reg_defaults[64]; 196 197 static void init_reg_defaults(void) 198 { 199 static int initialized; 200 u8 *table = reg_defaults; 201 202 if (initialized) 203 return; 204 initialized = 1; 205 206 table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */ 207 table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */ 208 table[KS_CMDC] = 0x00; /* Test options */ 209 /* clock & input select, write 1 to PORTA */ 210 table[KS_CMDD] = 0x01; 211 table[KS_HAVB] = 0x00; /* HAV Start Control */ 212 table[KS_HAVE] = 0x00; /* HAV End Control */ 213 table[KS_HS1B] = 0x10; /* HS1 Start Control */ 214 table[KS_HS1E] = 0x00; /* HS1 End Control */ 215 table[KS_HS2B] = 0x00; /* HS2 Start Control */ 216 table[KS_HS2E] = 0x00; /* HS2 End Control */ 217 table[KS_AGC] = 0x53; /* Manual setting for AGC */ 218 table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */ 219 table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */ 220 table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */ 221 table[KS_LUMA] = 0x01; /* Luma control */ 222 table[KS_CON] = 0x00; /* Contrast Control */ 223 table[KS_BRT] = 0x00; /* Brightness Control */ 224 table[KS_CHROMA] = 0x2a; /* Chroma control A */ 225 table[KS_CHROMB] = 0x90; /* Chroma control B */ 226 table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */ 227 table[KS_SAT] = 0x00; /* Color Saturation Control*/ 228 table[KS_HUE] = 0x00; /* Hue Control */ 229 table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */ 230 /* Vertical Processing Control B, luma 1 line delayed */ 231 table[KS_VERTIB] = 0x12; 232 table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */ 233 table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */ 234 table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */ 235 table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */ 236 table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */ 237 /* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */ 238 table[KS_OFMTA] = 0x30; 239 table[KS_OFMTB] = 0x00; /* Output Control B */ 240 /* VBI Decoder Control; 4bit fmt: avoid Y overflow */ 241 table[KS_VBICTL] = 0x5d; 242 table[KS_CCDAT2] = 0x00; /* Read Only register */ 243 table[KS_CCDAT1] = 0x00; /* Read Only register */ 244 table[KS_VBIL30] = 0xa8; /* VBI data decoding options */ 245 table[KS_VBIL74] = 0xaa; /* VBI data decoding options */ 246 table[KS_VBIL118] = 0x2a; /* VBI data decoding options */ 247 table[KS_VBIL1512] = 0x00; /* VBI data decoding options */ 248 table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */ 249 table[KS_TESTA] = 0x00; /* test register, shouldn't be written */ 250 table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */ 251 table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */ 252 table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */ 253 table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */ 254 table[KS_VAVB] = 0x07; /* VAV Begin */ 255 table[KS_VAVE] = 0x00; /* VAV End */ 256 table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */ 257 table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */ 258 table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */ 259 table[KS_INVALY] = 0x10; /* Invalid Y Code */ 260 table[KS_INVALU] = 0x80; /* Invalid U Code */ 261 table[KS_INVALV] = 0x80; /* Invalid V Code */ 262 table[KS_UNUSEY] = 0x10; /* Unused Y Code */ 263 table[KS_UNUSEU] = 0x80; /* Unused U Code */ 264 table[KS_UNUSEV] = 0x80; /* Unused V Code */ 265 table[KS_USRSAV] = 0x00; /* reserved */ 266 table[KS_USREAV] = 0x00; /* reserved */ 267 table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */ 268 /* User Defined SHS1 B, ALT656=1 on 0127B */ 269 table[KS_SHS1B] = 0x80; 270 table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */ 271 table[KS_CMDE] = 0x00; /* Command Register E */ 272 table[KS_VSDEL] = 0x00; /* VS Delay Control */ 273 /* Command Register F, update -immediately- */ 274 /* (there might come no vsync)*/ 275 table[KS_CMDF] = 0x02; 276 } 277 278 279 /* We need to manually read because of a bug in the KS0127 chip. 280 * 281 * An explanation from kayork@mail.utexas.edu: 282 * 283 * During I2C reads, the KS0127 only samples for a stop condition 284 * during the place where the acknowledge bit should be. Any standard 285 * I2C implementation (correctly) throws in another clock transition 286 * at the 9th bit, and the KS0127 will not recognize the stop condition 287 * and will continue to clock out data. 288 * 289 * So we have to do the read ourself. Big deal. 290 * workaround in i2c-algo-bit 291 */ 292 293 294 static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg) 295 { 296 struct i2c_client *client = v4l2_get_subdevdata(sd); 297 char val = 0; 298 struct i2c_msg msgs[] = { 299 { 300 .addr = client->addr, 301 .len = sizeof(reg), 302 .buf = ® 303 }, 304 { 305 .addr = client->addr, 306 .flags = I2C_M_RD | I2C_M_NO_RD_ACK, 307 .len = sizeof(val), 308 .buf = &val 309 } 310 }; 311 int ret; 312 313 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); 314 if (ret != ARRAY_SIZE(msgs)) 315 v4l2_dbg(1, debug, sd, "read error\n"); 316 317 return val; 318 } 319 320 321 static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val) 322 { 323 struct i2c_client *client = v4l2_get_subdevdata(sd); 324 struct ks0127 *ks = to_ks0127(sd); 325 char msg[] = { reg, val }; 326 327 if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg)) 328 v4l2_dbg(1, debug, sd, "write error\n"); 329 330 ks->regs[reg] = val; 331 } 332 333 334 /* generic bit-twiddling */ 335 static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v) 336 { 337 struct ks0127 *ks = to_ks0127(sd); 338 339 u8 val = ks->regs[reg]; 340 val = (val & and_v) | or_v; 341 ks0127_write(sd, reg, val); 342 } 343 344 345 346 /**************************************************************************** 347 * ks0127 private api 348 ****************************************************************************/ 349 static void ks0127_init(struct v4l2_subdev *sd) 350 { 351 u8 *table = reg_defaults; 352 int i; 353 354 v4l2_dbg(1, debug, sd, "reset\n"); 355 msleep(1); 356 357 /* initialize all registers to known values */ 358 /* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */ 359 360 for (i = 1; i < 33; i++) 361 ks0127_write(sd, i, table[i]); 362 363 for (i = 35; i < 40; i++) 364 ks0127_write(sd, i, table[i]); 365 366 for (i = 41; i < 56; i++) 367 ks0127_write(sd, i, table[i]); 368 369 for (i = 58; i < 64; i++) 370 ks0127_write(sd, i, table[i]); 371 372 373 if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) { 374 v4l2_dbg(1, debug, sd, "ks0122s found\n"); 375 return; 376 } 377 378 switch (ks0127_read(sd, KS_CMDE) & 0x0f) { 379 case 0: 380 v4l2_dbg(1, debug, sd, "ks0127 found\n"); 381 break; 382 383 case 9: 384 v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n"); 385 break; 386 387 default: 388 v4l2_dbg(1, debug, sd, "unknown revision\n"); 389 break; 390 } 391 } 392 393 static int ks0127_s_routing(struct v4l2_subdev *sd, 394 u32 input, u32 output, u32 config) 395 { 396 struct ks0127 *ks = to_ks0127(sd); 397 398 switch (input) { 399 case KS_INPUT_COMPOSITE_1: 400 case KS_INPUT_COMPOSITE_2: 401 case KS_INPUT_COMPOSITE_3: 402 case KS_INPUT_COMPOSITE_4: 403 case KS_INPUT_COMPOSITE_5: 404 case KS_INPUT_COMPOSITE_6: 405 v4l2_dbg(1, debug, sd, 406 "s_routing %d: Composite\n", input); 407 /* autodetect 50/60 Hz */ 408 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00); 409 /* VSE=0 */ 410 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00); 411 /* set input line */ 412 ks0127_and_or(sd, KS_CMDB, 0xb0, input); 413 /* non-freerunning mode */ 414 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a); 415 /* analog input */ 416 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00); 417 /* enable chroma demodulation */ 418 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00); 419 /* chroma trap, HYBWR=1 */ 420 ks0127_and_or(sd, KS_LUMA, 0x00, 421 (reg_defaults[KS_LUMA])|0x0c); 422 /* scaler fullbw, luma comb off */ 423 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81); 424 /* manual chroma comb .25 .5 .25 */ 425 ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90); 426 427 /* chroma path delay */ 428 ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90); 429 430 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]); 431 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]); 432 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]); 433 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]); 434 break; 435 436 case KS_INPUT_SVIDEO_1: 437 case KS_INPUT_SVIDEO_2: 438 case KS_INPUT_SVIDEO_3: 439 v4l2_dbg(1, debug, sd, 440 "s_routing %d: S-Video\n", input); 441 /* autodetect 50/60 Hz */ 442 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00); 443 /* VSE=0 */ 444 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00); 445 /* set input line */ 446 ks0127_and_or(sd, KS_CMDB, 0xb0, input); 447 /* non-freerunning mode */ 448 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a); 449 /* analog input */ 450 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00); 451 /* enable chroma demodulation */ 452 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00); 453 ks0127_and_or(sd, KS_LUMA, 0x00, 454 reg_defaults[KS_LUMA]); 455 /* disable luma comb */ 456 ks0127_and_or(sd, KS_VERTIA, 0x08, 457 (reg_defaults[KS_VERTIA]&0xf0)|0x01); 458 ks0127_and_or(sd, KS_VERTIC, 0x0f, 459 reg_defaults[KS_VERTIC]&0xf0); 460 461 ks0127_and_or(sd, KS_CHROMB, 0x0f, 462 reg_defaults[KS_CHROMB]&0xf0); 463 464 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]); 465 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]); 466 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]); 467 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]); 468 break; 469 470 case KS_INPUT_YUV656: 471 v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n"); 472 if (ks->norm & V4L2_STD_525_60) 473 /* force 60 Hz */ 474 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03); 475 else 476 /* force 50 Hz */ 477 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02); 478 479 ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */ 480 /* set input line and VALIGN */ 481 ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40)); 482 /* freerunning mode, */ 483 /* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/ 484 ks0127_and_or(sd, KS_CMDC, 0x70, 0x87); 485 /* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */ 486 ks0127_and_or(sd, KS_CMDD, 0x03, 0x08); 487 /* disable chroma demodulation */ 488 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30); 489 /* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */ 490 ks0127_and_or(sd, KS_LUMA, 0x00, 0x71); 491 ks0127_and_or(sd, KS_VERTIC, 0x0f, 492 reg_defaults[KS_VERTIC]&0xf0); 493 494 /* scaler fullbw, luma comb off */ 495 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81); 496 497 ks0127_and_or(sd, KS_CHROMB, 0x0f, 498 reg_defaults[KS_CHROMB]&0xf0); 499 500 ks0127_and_or(sd, KS_CON, 0x00, 0x00); 501 ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */ 502 /* spec: 229 (e5) */ 503 ks0127_and_or(sd, KS_SAT, 0x00, 0xe8); 504 ks0127_and_or(sd, KS_HUE, 0x00, 0); 505 506 ks0127_and_or(sd, KS_UGAIN, 0x00, 238); 507 ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00); 508 509 /*UOFF:0x30, VOFF:0x30, TSTCGN=1 */ 510 ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f); 511 ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00); 512 break; 513 514 default: 515 v4l2_dbg(1, debug, sd, 516 "s_routing: Unknown input %d\n", input); 517 break; 518 } 519 520 /* hack: CDMLPF sometimes spontaneously switches on; */ 521 /* force back off */ 522 ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]); 523 return 0; 524 } 525 526 static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std) 527 { 528 struct ks0127 *ks = to_ks0127(sd); 529 530 /* Set to automatic SECAM/Fsc mode */ 531 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00); 532 533 ks->norm = std; 534 if (std & V4L2_STD_NTSC) { 535 v4l2_dbg(1, debug, sd, 536 "s_std: NTSC_M\n"); 537 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20); 538 } else if (std & V4L2_STD_PAL_N) { 539 v4l2_dbg(1, debug, sd, 540 "s_std: NTSC_N (fixme)\n"); 541 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40); 542 } else if (std & V4L2_STD_PAL) { 543 v4l2_dbg(1, debug, sd, 544 "s_std: PAL_N\n"); 545 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20); 546 } else if (std & V4L2_STD_PAL_M) { 547 v4l2_dbg(1, debug, sd, 548 "s_std: PAL_M (fixme)\n"); 549 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40); 550 } else if (std & V4L2_STD_SECAM) { 551 v4l2_dbg(1, debug, sd, 552 "s_std: SECAM\n"); 553 554 /* set to secam autodetection */ 555 ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20); 556 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00); 557 schedule_timeout_interruptible(HZ/10+1); 558 559 /* did it autodetect? */ 560 if (!(ks0127_read(sd, KS_DEMOD) & 0x40)) 561 /* force to secam mode */ 562 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f); 563 } else { 564 v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n", 565 (unsigned long long)std); 566 } 567 return 0; 568 } 569 570 static int ks0127_s_stream(struct v4l2_subdev *sd, int enable) 571 { 572 v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable); 573 if (enable) { 574 /* All output pins on */ 575 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30); 576 /* Obey the OEN pin */ 577 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00); 578 } else { 579 /* Video output pins off */ 580 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00); 581 /* Ignore the OEN pin */ 582 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80); 583 } 584 return 0; 585 } 586 587 static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd) 588 { 589 int stat = V4L2_IN_ST_NO_SIGNAL; 590 u8 status; 591 v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL; 592 593 status = ks0127_read(sd, KS_STAT); 594 if (!(status & 0x20)) /* NOVID not set */ 595 stat = 0; 596 if (!(status & 0x01)) { /* CLOCK set */ 597 stat |= V4L2_IN_ST_NO_COLOR; 598 std = V4L2_STD_UNKNOWN; 599 } else { 600 if ((status & 0x08)) /* PALDET set */ 601 std &= V4L2_STD_PAL; 602 else 603 std &= V4L2_STD_NTSC; 604 } 605 if ((status & 0x10)) /* PALDET set */ 606 std &= V4L2_STD_525_60; 607 else 608 std &= V4L2_STD_625_50; 609 if (pstd) 610 *pstd = std; 611 if (pstatus) 612 *pstatus = stat; 613 return 0; 614 } 615 616 static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std) 617 { 618 v4l2_dbg(1, debug, sd, "querystd\n"); 619 return ks0127_status(sd, NULL, std); 620 } 621 622 static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status) 623 { 624 v4l2_dbg(1, debug, sd, "g_input_status\n"); 625 return ks0127_status(sd, status, NULL); 626 } 627 628 /* ----------------------------------------------------------------------- */ 629 630 static const struct v4l2_subdev_video_ops ks0127_video_ops = { 631 .s_std = ks0127_s_std, 632 .s_routing = ks0127_s_routing, 633 .s_stream = ks0127_s_stream, 634 .querystd = ks0127_querystd, 635 .g_input_status = ks0127_g_input_status, 636 }; 637 638 static const struct v4l2_subdev_ops ks0127_ops = { 639 .video = &ks0127_video_ops, 640 }; 641 642 /* ----------------------------------------------------------------------- */ 643 644 645 static int ks0127_probe(struct i2c_client *client) 646 { 647 struct ks0127 *ks; 648 struct v4l2_subdev *sd; 649 650 v4l_info(client, "%s chip found @ 0x%x (%s)\n", 651 client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board", 652 client->addr << 1, client->adapter->name); 653 654 ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL); 655 if (ks == NULL) 656 return -ENOMEM; 657 sd = &ks->sd; 658 v4l2_i2c_subdev_init(sd, client, &ks0127_ops); 659 660 /* power up */ 661 init_reg_defaults(); 662 ks0127_write(sd, KS_CMDA, 0x2c); 663 mdelay(10); 664 665 /* reset the device */ 666 ks0127_init(sd); 667 return 0; 668 } 669 670 static void ks0127_remove(struct i2c_client *client) 671 { 672 struct v4l2_subdev *sd = i2c_get_clientdata(client); 673 674 v4l2_device_unregister_subdev(sd); 675 ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */ 676 ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */ 677 } 678 679 static const struct i2c_device_id ks0127_id[] = { 680 { "ks0127", 0 }, 681 { "ks0127b", 0 }, 682 { "ks0122s", 0 }, 683 { } 684 }; 685 MODULE_DEVICE_TABLE(i2c, ks0127_id); 686 687 static struct i2c_driver ks0127_driver = { 688 .driver = { 689 .name = "ks0127", 690 }, 691 .probe = ks0127_probe, 692 .remove = ks0127_remove, 693 .id_table = ks0127_id, 694 }; 695 696 module_i2c_driver(ks0127_driver); 697