xref: /linux/drivers/media/i2c/ks0127.c (revision 132db93572821ec2fdf81e354cc40f558faf7e4f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Video Capture Driver (Video for Linux 1/2)
4  * for the Matrox Marvel G200,G400 and Rainbow Runner-G series
5  *
6  * This module is an interface to the KS0127 video decoder chip.
7  *
8  * Copyright (C) 1999  Ryan Drake <stiletto@mediaone.net>
9  *
10  *****************************************************************************
11  *
12  * Modified and extended by
13  *	Mike Bernson <mike@mlb.org>
14  *	Gerard v.d. Horst
15  *	Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
16  *	Gernot Ziegler <gz@lysator.liu.se>
17  *
18  * Version History:
19  * V1.0 Ryan Drake	   Initial version by Ryan Drake
20  * V1.1 Gerard v.d. Horst  Added some debugoutput, reset the video-standard
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/delay.h>
26 #include <linux/errno.h>
27 #include <linux/kernel.h>
28 #include <linux/i2c.h>
29 #include <linux/videodev2.h>
30 #include <linux/slab.h>
31 #include <media/v4l2-device.h>
32 #include "ks0127.h"
33 
34 MODULE_DESCRIPTION("KS0127 video decoder driver");
35 MODULE_AUTHOR("Ryan Drake");
36 MODULE_LICENSE("GPL");
37 
38 /* Addresses */
39 #define I2C_KS0127_ADDON   0xD8
40 #define I2C_KS0127_ONBOARD 0xDA
41 
42 
43 /* ks0127 control registers */
44 #define KS_STAT     0x00
45 #define KS_CMDA     0x01
46 #define KS_CMDB     0x02
47 #define KS_CMDC     0x03
48 #define KS_CMDD     0x04
49 #define KS_HAVB     0x05
50 #define KS_HAVE     0x06
51 #define KS_HS1B     0x07
52 #define KS_HS1E     0x08
53 #define KS_HS2B     0x09
54 #define KS_HS2E     0x0a
55 #define KS_AGC      0x0b
56 #define KS_HXTRA    0x0c
57 #define KS_CDEM     0x0d
58 #define KS_PORTAB   0x0e
59 #define KS_LUMA     0x0f
60 #define KS_CON      0x10
61 #define KS_BRT      0x11
62 #define KS_CHROMA   0x12
63 #define KS_CHROMB   0x13
64 #define KS_DEMOD    0x14
65 #define KS_SAT      0x15
66 #define KS_HUE      0x16
67 #define KS_VERTIA   0x17
68 #define KS_VERTIB   0x18
69 #define KS_VERTIC   0x19
70 #define KS_HSCLL    0x1a
71 #define KS_HSCLH    0x1b
72 #define KS_VSCLL    0x1c
73 #define KS_VSCLH    0x1d
74 #define KS_OFMTA    0x1e
75 #define KS_OFMTB    0x1f
76 #define KS_VBICTL   0x20
77 #define KS_CCDAT2   0x21
78 #define KS_CCDAT1   0x22
79 #define KS_VBIL30   0x23
80 #define KS_VBIL74   0x24
81 #define KS_VBIL118  0x25
82 #define KS_VBIL1512 0x26
83 #define KS_TTFRAM   0x27
84 #define KS_TESTA    0x28
85 #define KS_UVOFFH   0x29
86 #define KS_UVOFFL   0x2a
87 #define KS_UGAIN    0x2b
88 #define KS_VGAIN    0x2c
89 #define KS_VAVB     0x2d
90 #define KS_VAVE     0x2e
91 #define KS_CTRACK   0x2f
92 #define KS_POLCTL   0x30
93 #define KS_REFCOD   0x31
94 #define KS_INVALY   0x32
95 #define KS_INVALU   0x33
96 #define KS_INVALV   0x34
97 #define KS_UNUSEY   0x35
98 #define KS_UNUSEU   0x36
99 #define KS_UNUSEV   0x37
100 #define KS_USRSAV   0x38
101 #define KS_USREAV   0x39
102 #define KS_SHS1A    0x3a
103 #define KS_SHS1B    0x3b
104 #define KS_SHS1C    0x3c
105 #define KS_CMDE     0x3d
106 #define KS_VSDEL    0x3e
107 #define KS_CMDF     0x3f
108 #define KS_GAMMA0   0x40
109 #define KS_GAMMA1   0x41
110 #define KS_GAMMA2   0x42
111 #define KS_GAMMA3   0x43
112 #define KS_GAMMA4   0x44
113 #define KS_GAMMA5   0x45
114 #define KS_GAMMA6   0x46
115 #define KS_GAMMA7   0x47
116 #define KS_GAMMA8   0x48
117 #define KS_GAMMA9   0x49
118 #define KS_GAMMA10  0x4a
119 #define KS_GAMMA11  0x4b
120 #define KS_GAMMA12  0x4c
121 #define KS_GAMMA13  0x4d
122 #define KS_GAMMA14  0x4e
123 #define KS_GAMMA15  0x4f
124 #define KS_GAMMA16  0x50
125 #define KS_GAMMA17  0x51
126 #define KS_GAMMA18  0x52
127 #define KS_GAMMA19  0x53
128 #define KS_GAMMA20  0x54
129 #define KS_GAMMA21  0x55
130 #define KS_GAMMA22  0x56
131 #define KS_GAMMA23  0x57
132 #define KS_GAMMA24  0x58
133 #define KS_GAMMA25  0x59
134 #define KS_GAMMA26  0x5a
135 #define KS_GAMMA27  0x5b
136 #define KS_GAMMA28  0x5c
137 #define KS_GAMMA29  0x5d
138 #define KS_GAMMA30  0x5e
139 #define KS_GAMMA31  0x5f
140 #define KS_GAMMAD0  0x60
141 #define KS_GAMMAD1  0x61
142 #define KS_GAMMAD2  0x62
143 #define KS_GAMMAD3  0x63
144 #define KS_GAMMAD4  0x64
145 #define KS_GAMMAD5  0x65
146 #define KS_GAMMAD6  0x66
147 #define KS_GAMMAD7  0x67
148 #define KS_GAMMAD8  0x68
149 #define KS_GAMMAD9  0x69
150 #define KS_GAMMAD10 0x6a
151 #define KS_GAMMAD11 0x6b
152 #define KS_GAMMAD12 0x6c
153 #define KS_GAMMAD13 0x6d
154 #define KS_GAMMAD14 0x6e
155 #define KS_GAMMAD15 0x6f
156 #define KS_GAMMAD16 0x70
157 #define KS_GAMMAD17 0x71
158 #define KS_GAMMAD18 0x72
159 #define KS_GAMMAD19 0x73
160 #define KS_GAMMAD20 0x74
161 #define KS_GAMMAD21 0x75
162 #define KS_GAMMAD22 0x76
163 #define KS_GAMMAD23 0x77
164 #define KS_GAMMAD24 0x78
165 #define KS_GAMMAD25 0x79
166 #define KS_GAMMAD26 0x7a
167 #define KS_GAMMAD27 0x7b
168 #define KS_GAMMAD28 0x7c
169 #define KS_GAMMAD29 0x7d
170 #define KS_GAMMAD30 0x7e
171 #define KS_GAMMAD31 0x7f
172 
173 
174 /****************************************************************************
175 * mga_dev : represents one ks0127 chip.
176 ****************************************************************************/
177 
178 struct adjust {
179 	int	contrast;
180 	int	bright;
181 	int	hue;
182 	int	ugain;
183 	int	vgain;
184 };
185 
186 struct ks0127 {
187 	struct v4l2_subdev sd;
188 	v4l2_std_id	norm;
189 	u8		regs[256];
190 };
191 
192 static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
193 {
194 	return container_of(sd, struct ks0127, sd);
195 }
196 
197 
198 static int debug; /* insmod parameter */
199 
200 module_param(debug, int, 0);
201 MODULE_PARM_DESC(debug, "Debug output");
202 
203 static u8 reg_defaults[64];
204 
205 static void init_reg_defaults(void)
206 {
207 	static int initialized;
208 	u8 *table = reg_defaults;
209 
210 	if (initialized)
211 		return;
212 	initialized = 1;
213 
214 	table[KS_CMDA]     = 0x2c;  /* VSE=0, CCIR 601, autodetect standard */
215 	table[KS_CMDB]     = 0x12;  /* VALIGN=0, AGC control and input */
216 	table[KS_CMDC]     = 0x00;  /* Test options */
217 	/* clock & input select, write 1 to PORTA */
218 	table[KS_CMDD]     = 0x01;
219 	table[KS_HAVB]     = 0x00;  /* HAV Start Control */
220 	table[KS_HAVE]     = 0x00;  /* HAV End Control */
221 	table[KS_HS1B]     = 0x10;  /* HS1 Start Control */
222 	table[KS_HS1E]     = 0x00;  /* HS1 End Control */
223 	table[KS_HS2B]     = 0x00;  /* HS2 Start Control */
224 	table[KS_HS2E]     = 0x00;  /* HS2 End Control */
225 	table[KS_AGC]      = 0x53;  /* Manual setting for AGC */
226 	table[KS_HXTRA]    = 0x00;  /* Extra Bits for HAV and HS1/2 */
227 	table[KS_CDEM]     = 0x00;  /* Chroma Demodulation Control */
228 	table[KS_PORTAB]   = 0x0f;  /* port B is input, port A output GPPORT */
229 	table[KS_LUMA]     = 0x01;  /* Luma control */
230 	table[KS_CON]      = 0x00;  /* Contrast Control */
231 	table[KS_BRT]      = 0x00;  /* Brightness Control */
232 	table[KS_CHROMA]   = 0x2a;  /* Chroma control A */
233 	table[KS_CHROMB]   = 0x90;  /* Chroma control B */
234 	table[KS_DEMOD]    = 0x00;  /* Chroma Demodulation Control & Status */
235 	table[KS_SAT]      = 0x00;  /* Color Saturation Control*/
236 	table[KS_HUE]      = 0x00;  /* Hue Control */
237 	table[KS_VERTIA]   = 0x00;  /* Vertical Processing Control A */
238 	/* Vertical Processing Control B, luma 1 line delayed */
239 	table[KS_VERTIB]   = 0x12;
240 	table[KS_VERTIC]   = 0x0b;  /* Vertical Processing Control C */
241 	table[KS_HSCLL]    = 0x00;  /* Horizontal Scaling Ratio Low */
242 	table[KS_HSCLH]    = 0x00;  /* Horizontal Scaling Ratio High */
243 	table[KS_VSCLL]    = 0x00;  /* Vertical Scaling Ratio Low */
244 	table[KS_VSCLH]    = 0x00;  /* Vertical Scaling Ratio High */
245 	/* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
246 	table[KS_OFMTA]    = 0x30;
247 	table[KS_OFMTB]    = 0x00;  /* Output Control B */
248 	/* VBI Decoder Control; 4bit fmt: avoid Y overflow */
249 	table[KS_VBICTL]   = 0x5d;
250 	table[KS_CCDAT2]   = 0x00;  /* Read Only register */
251 	table[KS_CCDAT1]   = 0x00;  /* Read Only register */
252 	table[KS_VBIL30]   = 0xa8;  /* VBI data decoding options */
253 	table[KS_VBIL74]   = 0xaa;  /* VBI data decoding options */
254 	table[KS_VBIL118]  = 0x2a;  /* VBI data decoding options */
255 	table[KS_VBIL1512] = 0x00;  /* VBI data decoding options */
256 	table[KS_TTFRAM]   = 0x00;  /* Teletext frame alignment pattern */
257 	table[KS_TESTA]    = 0x00;  /* test register, shouldn't be written */
258 	table[KS_UVOFFH]   = 0x00;  /* UV Offset Adjustment High */
259 	table[KS_UVOFFL]   = 0x00;  /* UV Offset Adjustment Low */
260 	table[KS_UGAIN]    = 0x00;  /* U Component Gain Adjustment */
261 	table[KS_VGAIN]    = 0x00;  /* V Component Gain Adjustment */
262 	table[KS_VAVB]     = 0x07;  /* VAV Begin */
263 	table[KS_VAVE]     = 0x00;  /* VAV End */
264 	table[KS_CTRACK]   = 0x00;  /* Chroma Tracking Control */
265 	table[KS_POLCTL]   = 0x41;  /* Timing Signal Polarity Control */
266 	table[KS_REFCOD]   = 0x80;  /* Reference Code Insertion Control */
267 	table[KS_INVALY]   = 0x10;  /* Invalid Y Code */
268 	table[KS_INVALU]   = 0x80;  /* Invalid U Code */
269 	table[KS_INVALV]   = 0x80;  /* Invalid V Code */
270 	table[KS_UNUSEY]   = 0x10;  /* Unused Y Code */
271 	table[KS_UNUSEU]   = 0x80;  /* Unused U Code */
272 	table[KS_UNUSEV]   = 0x80;  /* Unused V Code */
273 	table[KS_USRSAV]   = 0x00;  /* reserved */
274 	table[KS_USREAV]   = 0x00;  /* reserved */
275 	table[KS_SHS1A]    = 0x00;  /* User Defined SHS1 A */
276 	/* User Defined SHS1 B, ALT656=1 on 0127B */
277 	table[KS_SHS1B]    = 0x80;
278 	table[KS_SHS1C]    = 0x00;  /* User Defined SHS1 C */
279 	table[KS_CMDE]     = 0x00;  /* Command Register E */
280 	table[KS_VSDEL]    = 0x00;  /* VS Delay Control */
281 	/* Command Register F, update -immediately- */
282 	/* (there might come no vsync)*/
283 	table[KS_CMDF]     = 0x02;
284 }
285 
286 
287 /* We need to manually read because of a bug in the KS0127 chip.
288  *
289  * An explanation from kayork@mail.utexas.edu:
290  *
291  * During I2C reads, the KS0127 only samples for a stop condition
292  * during the place where the acknowledge bit should be. Any standard
293  * I2C implementation (correctly) throws in another clock transition
294  * at the 9th bit, and the KS0127 will not recognize the stop condition
295  * and will continue to clock out data.
296  *
297  * So we have to do the read ourself.  Big deal.
298  *	   workaround in i2c-algo-bit
299  */
300 
301 
302 static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
303 {
304 	struct i2c_client *client = v4l2_get_subdevdata(sd);
305 	char val = 0;
306 	struct i2c_msg msgs[] = {
307 		{
308 			.addr = client->addr,
309 			.len = sizeof(reg),
310 			.buf = &reg
311 		},
312 		{
313 			.addr = client->addr,
314 			.flags = I2C_M_RD | I2C_M_NO_RD_ACK,
315 			.len = sizeof(val),
316 			.buf = &val
317 		}
318 	};
319 	int ret;
320 
321 	ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
322 	if (ret != ARRAY_SIZE(msgs))
323 		v4l2_dbg(1, debug, sd, "read error\n");
324 
325 	return val;
326 }
327 
328 
329 static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
330 {
331 	struct i2c_client *client = v4l2_get_subdevdata(sd);
332 	struct ks0127 *ks = to_ks0127(sd);
333 	char msg[] = { reg, val };
334 
335 	if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
336 		v4l2_dbg(1, debug, sd, "write error\n");
337 
338 	ks->regs[reg] = val;
339 }
340 
341 
342 /* generic bit-twiddling */
343 static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
344 {
345 	struct ks0127 *ks = to_ks0127(sd);
346 
347 	u8 val = ks->regs[reg];
348 	val = (val & and_v) | or_v;
349 	ks0127_write(sd, reg, val);
350 }
351 
352 
353 
354 /****************************************************************************
355 * ks0127 private api
356 ****************************************************************************/
357 static void ks0127_init(struct v4l2_subdev *sd)
358 {
359 	u8 *table = reg_defaults;
360 	int i;
361 
362 	v4l2_dbg(1, debug, sd, "reset\n");
363 	msleep(1);
364 
365 	/* initialize all registers to known values */
366 	/* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
367 
368 	for (i = 1; i < 33; i++)
369 		ks0127_write(sd, i, table[i]);
370 
371 	for (i = 35; i < 40; i++)
372 		ks0127_write(sd, i, table[i]);
373 
374 	for (i = 41; i < 56; i++)
375 		ks0127_write(sd, i, table[i]);
376 
377 	for (i = 58; i < 64; i++)
378 		ks0127_write(sd, i, table[i]);
379 
380 
381 	if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
382 		v4l2_dbg(1, debug, sd, "ks0122s found\n");
383 		return;
384 	}
385 
386 	switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
387 	case 0:
388 		v4l2_dbg(1, debug, sd, "ks0127 found\n");
389 		break;
390 
391 	case 9:
392 		v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
393 		break;
394 
395 	default:
396 		v4l2_dbg(1, debug, sd, "unknown revision\n");
397 		break;
398 	}
399 }
400 
401 static int ks0127_s_routing(struct v4l2_subdev *sd,
402 			    u32 input, u32 output, u32 config)
403 {
404 	struct ks0127 *ks = to_ks0127(sd);
405 
406 	switch (input) {
407 	case KS_INPUT_COMPOSITE_1:
408 	case KS_INPUT_COMPOSITE_2:
409 	case KS_INPUT_COMPOSITE_3:
410 	case KS_INPUT_COMPOSITE_4:
411 	case KS_INPUT_COMPOSITE_5:
412 	case KS_INPUT_COMPOSITE_6:
413 		v4l2_dbg(1, debug, sd,
414 			"s_routing %d: Composite\n", input);
415 		/* autodetect 50/60 Hz */
416 		ks0127_and_or(sd, KS_CMDA,   0xfc, 0x00);
417 		/* VSE=0 */
418 		ks0127_and_or(sd, KS_CMDA,   ~0x40, 0x00);
419 		/* set input line */
420 		ks0127_and_or(sd, KS_CMDB,   0xb0, input);
421 		/* non-freerunning mode */
422 		ks0127_and_or(sd, KS_CMDC,   0x70, 0x0a);
423 		/* analog input */
424 		ks0127_and_or(sd, KS_CMDD,   0x03, 0x00);
425 		/* enable chroma demodulation */
426 		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
427 		/* chroma trap, HYBWR=1 */
428 		ks0127_and_or(sd, KS_LUMA,   0x00,
429 			       (reg_defaults[KS_LUMA])|0x0c);
430 		/* scaler fullbw, luma comb off */
431 		ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
432 		/* manual chroma comb .25 .5 .25 */
433 		ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
434 
435 		/* chroma path delay */
436 		ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
437 
438 		ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
439 		ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
440 		ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
441 		ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
442 		break;
443 
444 	case KS_INPUT_SVIDEO_1:
445 	case KS_INPUT_SVIDEO_2:
446 	case KS_INPUT_SVIDEO_3:
447 		v4l2_dbg(1, debug, sd,
448 			"s_routing %d: S-Video\n", input);
449 		/* autodetect 50/60 Hz */
450 		ks0127_and_or(sd, KS_CMDA,   0xfc, 0x00);
451 		/* VSE=0 */
452 		ks0127_and_or(sd, KS_CMDA,   ~0x40, 0x00);
453 		/* set input line */
454 		ks0127_and_or(sd, KS_CMDB,   0xb0, input);
455 		/* non-freerunning mode */
456 		ks0127_and_or(sd, KS_CMDC,   0x70, 0x0a);
457 		/* analog input */
458 		ks0127_and_or(sd, KS_CMDD,   0x03, 0x00);
459 		/* enable chroma demodulation */
460 		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
461 		ks0127_and_or(sd, KS_LUMA, 0x00,
462 			       reg_defaults[KS_LUMA]);
463 		/* disable luma comb */
464 		ks0127_and_or(sd, KS_VERTIA, 0x08,
465 			       (reg_defaults[KS_VERTIA]&0xf0)|0x01);
466 		ks0127_and_or(sd, KS_VERTIC, 0x0f,
467 			       reg_defaults[KS_VERTIC]&0xf0);
468 
469 		ks0127_and_or(sd, KS_CHROMB, 0x0f,
470 			       reg_defaults[KS_CHROMB]&0xf0);
471 
472 		ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
473 		ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
474 		ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
475 		ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
476 		break;
477 
478 	case KS_INPUT_YUV656:
479 		v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
480 		if (ks->norm & V4L2_STD_525_60)
481 			/* force 60 Hz */
482 			ks0127_and_or(sd, KS_CMDA,   0xfc, 0x03);
483 		else
484 			/* force 50 Hz */
485 			ks0127_and_or(sd, KS_CMDA,   0xfc, 0x02);
486 
487 		ks0127_and_or(sd, KS_CMDA,   0xff, 0x40); /* VSE=1 */
488 		/* set input line and VALIGN */
489 		ks0127_and_or(sd, KS_CMDB,   0xb0, (input | 0x40));
490 		/* freerunning mode, */
491 		/* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0  VMEM=1*/
492 		ks0127_and_or(sd, KS_CMDC,   0x70, 0x87);
493 		/* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
494 		ks0127_and_or(sd, KS_CMDD,   0x03, 0x08);
495 		/* disable chroma demodulation */
496 		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
497 		/* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
498 		ks0127_and_or(sd, KS_LUMA,   0x00, 0x71);
499 		ks0127_and_or(sd, KS_VERTIC, 0x0f,
500 			       reg_defaults[KS_VERTIC]&0xf0);
501 
502 		/* scaler fullbw, luma comb off */
503 		ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
504 
505 		ks0127_and_or(sd, KS_CHROMB, 0x0f,
506 			       reg_defaults[KS_CHROMB]&0xf0);
507 
508 		ks0127_and_or(sd, KS_CON, 0x00, 0x00);
509 		ks0127_and_or(sd, KS_BRT, 0x00, 32);	/* spec: 34 */
510 			/* spec: 229 (e5) */
511 		ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
512 		ks0127_and_or(sd, KS_HUE, 0x00, 0);
513 
514 		ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
515 		ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
516 
517 		/*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
518 		ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
519 		ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
520 		break;
521 
522 	default:
523 		v4l2_dbg(1, debug, sd,
524 			"s_routing: Unknown input %d\n", input);
525 		break;
526 	}
527 
528 	/* hack: CDMLPF sometimes spontaneously switches on; */
529 	/* force back off */
530 	ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
531 	return 0;
532 }
533 
534 static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
535 {
536 	struct ks0127 *ks = to_ks0127(sd);
537 
538 	/* Set to automatic SECAM/Fsc mode */
539 	ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
540 
541 	ks->norm = std;
542 	if (std & V4L2_STD_NTSC) {
543 		v4l2_dbg(1, debug, sd,
544 			"s_std: NTSC_M\n");
545 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
546 	} else if (std & V4L2_STD_PAL_N) {
547 		v4l2_dbg(1, debug, sd,
548 			"s_std: NTSC_N (fixme)\n");
549 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
550 	} else if (std & V4L2_STD_PAL) {
551 		v4l2_dbg(1, debug, sd,
552 			"s_std: PAL_N\n");
553 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
554 	} else if (std & V4L2_STD_PAL_M) {
555 		v4l2_dbg(1, debug, sd,
556 			"s_std: PAL_M (fixme)\n");
557 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
558 	} else if (std & V4L2_STD_SECAM) {
559 		v4l2_dbg(1, debug, sd,
560 			"s_std: SECAM\n");
561 
562 		/* set to secam autodetection */
563 		ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
564 		ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
565 		schedule_timeout_interruptible(HZ/10+1);
566 
567 		/* did it autodetect? */
568 		if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
569 			/* force to secam mode */
570 			ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
571 	} else {
572 		v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
573 			       (unsigned long long)std);
574 	}
575 	return 0;
576 }
577 
578 static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
579 {
580 	v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
581 	if (enable) {
582 		/* All output pins on */
583 		ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
584 		/* Obey the OEN pin */
585 		ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
586 	} else {
587 		/* Video output pins off */
588 		ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
589 		/* Ignore the OEN pin */
590 		ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
591 	}
592 	return 0;
593 }
594 
595 static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
596 {
597 	int stat = V4L2_IN_ST_NO_SIGNAL;
598 	u8 status;
599 	v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL;
600 
601 	status = ks0127_read(sd, KS_STAT);
602 	if (!(status & 0x20))		 /* NOVID not set */
603 		stat = 0;
604 	if (!(status & 0x01)) {		      /* CLOCK set */
605 		stat |= V4L2_IN_ST_NO_COLOR;
606 		std = V4L2_STD_UNKNOWN;
607 	} else {
608 		if ((status & 0x08))		   /* PALDET set */
609 			std &= V4L2_STD_PAL;
610 		else
611 			std &= V4L2_STD_NTSC;
612 	}
613 	if ((status & 0x10))		   /* PALDET set */
614 		std &= V4L2_STD_525_60;
615 	else
616 		std &= V4L2_STD_625_50;
617 	if (pstd)
618 		*pstd = std;
619 	if (pstatus)
620 		*pstatus = stat;
621 	return 0;
622 }
623 
624 static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
625 {
626 	v4l2_dbg(1, debug, sd, "querystd\n");
627 	return ks0127_status(sd, NULL, std);
628 }
629 
630 static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
631 {
632 	v4l2_dbg(1, debug, sd, "g_input_status\n");
633 	return ks0127_status(sd, status, NULL);
634 }
635 
636 /* ----------------------------------------------------------------------- */
637 
638 static const struct v4l2_subdev_video_ops ks0127_video_ops = {
639 	.s_std = ks0127_s_std,
640 	.s_routing = ks0127_s_routing,
641 	.s_stream = ks0127_s_stream,
642 	.querystd = ks0127_querystd,
643 	.g_input_status = ks0127_g_input_status,
644 };
645 
646 static const struct v4l2_subdev_ops ks0127_ops = {
647 	.video = &ks0127_video_ops,
648 };
649 
650 /* ----------------------------------------------------------------------- */
651 
652 
653 static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id)
654 {
655 	struct ks0127 *ks;
656 	struct v4l2_subdev *sd;
657 
658 	v4l_info(client, "%s chip found @ 0x%x (%s)\n",
659 		client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
660 		client->addr << 1, client->adapter->name);
661 
662 	ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL);
663 	if (ks == NULL)
664 		return -ENOMEM;
665 	sd = &ks->sd;
666 	v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
667 
668 	/* power up */
669 	init_reg_defaults();
670 	ks0127_write(sd, KS_CMDA, 0x2c);
671 	mdelay(10);
672 
673 	/* reset the device */
674 	ks0127_init(sd);
675 	return 0;
676 }
677 
678 static int ks0127_remove(struct i2c_client *client)
679 {
680 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
681 
682 	v4l2_device_unregister_subdev(sd);
683 	ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
684 	ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
685 	return 0;
686 }
687 
688 static const struct i2c_device_id ks0127_id[] = {
689 	{ "ks0127", 0 },
690 	{ "ks0127b", 0 },
691 	{ "ks0122s", 0 },
692 	{ }
693 };
694 MODULE_DEVICE_TABLE(i2c, ks0127_id);
695 
696 static struct i2c_driver ks0127_driver = {
697 	.driver = {
698 		.name	= "ks0127",
699 	},
700 	.probe		= ks0127_probe,
701 	.remove		= ks0127_remove,
702 	.id_table	= ks0127_id,
703 };
704 
705 module_i2c_driver(ks0127_driver);
706