1 /* 2 * 3 * keyboard input driver for i2c IR remote controls 4 * 5 * Copyright (c) 2000-2003 Gerd Knorr <kraxel@bytesex.org> 6 * modified for PixelView (BT878P+W/FM) by 7 * Michal Kochanowicz <mkochano@pld.org.pl> 8 * Christoph Bartelmus <lirc@bartelmus.de> 9 * modified for KNC ONE TV Station/Anubis Typhoon TView Tuner by 10 * Ulrich Mueller <ulrich.mueller42@web.de> 11 * modified for em2820 based USB TV tuners by 12 * Markus Rechberger <mrechberger@gmail.com> 13 * modified for DViCO Fusion HDTV 5 RT GOLD by 14 * Chaogui Zhang <czhang1974@gmail.com> 15 * modified for MSI TV@nywhere Plus by 16 * Henry Wong <henry@stuffedcow.net> 17 * Mark Schultz <n9xmj@yahoo.com> 18 * Brian Rogers <brian_rogers@comcast.net> 19 * modified for AVerMedia Cardbus by 20 * Oldrich Jedlicka <oldium.pro@seznam.cz> 21 * Zilog Transmitter portions/ideas were derived from GPLv2+ sources: 22 * - drivers/char/pctv_zilogir.[ch] from Hauppauge Broadway product 23 * Copyright 2011 Hauppauge Computer works 24 * - drivers/staging/media/lirc/lirc_zilog.c 25 * Copyright (c) 2000 Gerd Knorr <kraxel@goldbach.in-berlin.de> 26 * Michal Kochanowicz <mkochano@pld.org.pl> 27 * Christoph Bartelmus <lirc@bartelmus.de> 28 * Ulrich Mueller <ulrich.mueller42@web.de> 29 * Stefan Jahn <stefan@lkcc.org> 30 * Jerome Brock <jbrock@users.sourceforge.net> 31 * Thomas Reitmayr (treitmayr@yahoo.com) 32 * Mark Weaver <mark@npsl.co.uk> 33 * Jarod Wilson <jarod@redhat.com> 34 * Copyright (C) 2011 Andy Walls <awalls@md.metrocast.net> 35 * 36 * This program is free software; you can redistribute it and/or modify 37 * it under the terms of the GNU General Public License as published by 38 * the Free Software Foundation; either version 2 of the License, or 39 * (at your option) any later version. 40 * 41 * This program is distributed in the hope that it will be useful, 42 * but WITHOUT ANY WARRANTY; without even the implied warranty of 43 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 44 * GNU General Public License for more details. 45 * 46 */ 47 48 #include <asm/unaligned.h> 49 #include <linux/module.h> 50 #include <linux/init.h> 51 #include <linux/kernel.h> 52 #include <linux/string.h> 53 #include <linux/timer.h> 54 #include <linux/delay.h> 55 #include <linux/errno.h> 56 #include <linux/slab.h> 57 #include <linux/i2c.h> 58 #include <linux/workqueue.h> 59 60 #include <media/rc-core.h> 61 #include <media/i2c/ir-kbd-i2c.h> 62 63 #define FLAG_TX 1 64 #define FLAG_HDPVR 2 65 66 static bool enable_hdpvr; 67 module_param(enable_hdpvr, bool, 0644); 68 69 static int get_key_haup_common(struct IR_i2c *ir, enum rc_proto *protocol, 70 u32 *scancode, u8 *ptoggle, int size) 71 { 72 unsigned char buf[6]; 73 int start, range, toggle, dev, code, ircode, vendor; 74 75 /* poll IR chip */ 76 if (size != i2c_master_recv(ir->c, buf, size)) 77 return -EIO; 78 79 if (buf[0] & 0x80) { 80 int offset = (size == 6) ? 3 : 0; 81 82 /* split rc5 data block ... */ 83 start = (buf[offset] >> 7) & 1; 84 range = (buf[offset] >> 6) & 1; 85 toggle = (buf[offset] >> 5) & 1; 86 dev = buf[offset] & 0x1f; 87 code = (buf[offset+1] >> 2) & 0x3f; 88 89 /* rc5 has two start bits 90 * the first bit must be one 91 * the second bit defines the command range: 92 * 1 = 0-63, 0 = 64 - 127 93 */ 94 if (!start) 95 /* no key pressed */ 96 return 0; 97 98 /* filter out invalid key presses */ 99 ircode = (start << 12) | (toggle << 11) | (dev << 6) | code; 100 if ((ircode & 0x1fff) == 0x1fff) 101 return 0; 102 103 if (!range) 104 code += 64; 105 106 dev_dbg(&ir->rc->dev, 107 "ir hauppauge (rc5): s%d r%d t%d dev=%d code=%d\n", 108 start, range, toggle, dev, code); 109 110 *protocol = RC_PROTO_RC5; 111 *scancode = RC_SCANCODE_RC5(dev, code); 112 *ptoggle = toggle; 113 114 return 1; 115 } else if (size == 6 && (buf[0] & 0x40)) { 116 code = buf[4]; 117 dev = buf[3]; 118 vendor = get_unaligned_be16(buf + 1); 119 120 if (vendor == 0x800f) { 121 *ptoggle = (dev & 0x80) != 0; 122 *protocol = RC_PROTO_RC6_MCE; 123 dev &= 0x7f; 124 dev_dbg(&ir->rc->dev, 125 "ir hauppauge (rc6-mce): t%d vendor=%d dev=%d code=%d\n", 126 *ptoggle, vendor, dev, code); 127 } else { 128 *ptoggle = 0; 129 *protocol = RC_PROTO_RC6_6A_32; 130 dev_dbg(&ir->rc->dev, 131 "ir hauppauge (rc6-6a-32): vendor=%d dev=%d code=%d\n", 132 vendor, dev, code); 133 } 134 135 *scancode = RC_SCANCODE_RC6_6A(vendor, dev, code); 136 137 return 1; 138 } 139 140 return 0; 141 } 142 143 static int get_key_haup(struct IR_i2c *ir, enum rc_proto *protocol, 144 u32 *scancode, u8 *toggle) 145 { 146 return get_key_haup_common(ir, protocol, scancode, toggle, 3); 147 } 148 149 static int get_key_haup_xvr(struct IR_i2c *ir, enum rc_proto *protocol, 150 u32 *scancode, u8 *toggle) 151 { 152 int ret; 153 unsigned char buf[1] = { 0 }; 154 155 /* 156 * This is the same apparent "are you ready?" poll command observed 157 * watching Windows driver traffic and implemented in lirc_zilog. With 158 * this added, we get far saner remote behavior with z8 chips on usb 159 * connected devices, even with the default polling interval of 100ms. 160 */ 161 ret = i2c_master_send(ir->c, buf, 1); 162 if (ret != 1) 163 return (ret < 0) ? ret : -EINVAL; 164 165 return get_key_haup_common(ir, protocol, scancode, toggle, 6); 166 } 167 168 static int get_key_pixelview(struct IR_i2c *ir, enum rc_proto *protocol, 169 u32 *scancode, u8 *toggle) 170 { 171 int rc; 172 unsigned char b; 173 174 /* poll IR chip */ 175 rc = i2c_master_recv(ir->c, &b, 1); 176 if (rc != 1) { 177 dev_dbg(&ir->rc->dev, "read error\n"); 178 if (rc < 0) 179 return rc; 180 return -EIO; 181 } 182 183 *protocol = RC_PROTO_OTHER; 184 *scancode = b; 185 *toggle = 0; 186 return 1; 187 } 188 189 static int get_key_fusionhdtv(struct IR_i2c *ir, enum rc_proto *protocol, 190 u32 *scancode, u8 *toggle) 191 { 192 int rc; 193 unsigned char buf[4]; 194 195 /* poll IR chip */ 196 rc = i2c_master_recv(ir->c, buf, 4); 197 if (rc != 4) { 198 dev_dbg(&ir->rc->dev, "read error\n"); 199 if (rc < 0) 200 return rc; 201 return -EIO; 202 } 203 204 if (buf[0] != 0 || buf[1] != 0 || buf[2] != 0 || buf[3] != 0) 205 dev_dbg(&ir->rc->dev, "%s: %*ph\n", __func__, 4, buf); 206 207 /* no key pressed or signal from other ir remote */ 208 if(buf[0] != 0x1 || buf[1] != 0xfe) 209 return 0; 210 211 *protocol = RC_PROTO_UNKNOWN; 212 *scancode = buf[2]; 213 *toggle = 0; 214 return 1; 215 } 216 217 static int get_key_knc1(struct IR_i2c *ir, enum rc_proto *protocol, 218 u32 *scancode, u8 *toggle) 219 { 220 int rc; 221 unsigned char b; 222 223 /* poll IR chip */ 224 rc = i2c_master_recv(ir->c, &b, 1); 225 if (rc != 1) { 226 dev_dbg(&ir->rc->dev, "read error\n"); 227 if (rc < 0) 228 return rc; 229 return -EIO; 230 } 231 232 /* it seems that 0xFE indicates that a button is still hold 233 down, while 0xff indicates that no button is hold 234 down. 0xfe sequences are sometimes interrupted by 0xFF */ 235 236 dev_dbg(&ir->rc->dev, "key %02x\n", b); 237 238 if (b == 0xff) 239 return 0; 240 241 if (b == 0xfe) 242 /* keep old data */ 243 return 1; 244 245 *protocol = RC_PROTO_UNKNOWN; 246 *scancode = b; 247 *toggle = 0; 248 return 1; 249 } 250 251 static int get_key_avermedia_cardbus(struct IR_i2c *ir, enum rc_proto *protocol, 252 u32 *scancode, u8 *toggle) 253 { 254 unsigned char subaddr, key, keygroup; 255 struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0, 256 .buf = &subaddr, .len = 1}, 257 { .addr = ir->c->addr, .flags = I2C_M_RD, 258 .buf = &key, .len = 1} }; 259 subaddr = 0x0d; 260 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) { 261 dev_dbg(&ir->rc->dev, "read error\n"); 262 return -EIO; 263 } 264 265 if (key == 0xff) 266 return 0; 267 268 subaddr = 0x0b; 269 msg[1].buf = &keygroup; 270 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) { 271 dev_dbg(&ir->rc->dev, "read error\n"); 272 return -EIO; 273 } 274 275 if (keygroup == 0xff) 276 return 0; 277 278 dev_dbg(&ir->rc->dev, "read key 0x%02x/0x%02x\n", key, keygroup); 279 if (keygroup < 2 || keygroup > 4) { 280 dev_warn(&ir->rc->dev, "warning: invalid key group 0x%02x for key 0x%02x\n", 281 keygroup, key); 282 } 283 key |= (keygroup & 1) << 6; 284 285 *protocol = RC_PROTO_UNKNOWN; 286 *scancode = key; 287 if (ir->c->addr == 0x41) /* AVerMedia EM78P153 */ 288 *scancode |= keygroup << 8; 289 *toggle = 0; 290 return 1; 291 } 292 293 /* ----------------------------------------------------------------------- */ 294 295 static int ir_key_poll(struct IR_i2c *ir) 296 { 297 enum rc_proto protocol; 298 u32 scancode; 299 u8 toggle; 300 int rc; 301 302 dev_dbg(&ir->rc->dev, "%s\n", __func__); 303 rc = ir->get_key(ir, &protocol, &scancode, &toggle); 304 if (rc < 0) { 305 dev_warn(&ir->rc->dev, "error %d\n", rc); 306 return rc; 307 } 308 309 if (rc) { 310 dev_dbg(&ir->rc->dev, "%s: proto = 0x%04x, scancode = 0x%08x\n", 311 __func__, protocol, scancode); 312 rc_keydown(ir->rc, protocol, scancode, toggle); 313 } 314 return 0; 315 } 316 317 static void ir_work(struct work_struct *work) 318 { 319 int rc; 320 struct IR_i2c *ir = container_of(work, struct IR_i2c, work.work); 321 322 /* 323 * If the transmit code is holding the lock, skip polling for 324 * IR, we'll get it to it next time round 325 */ 326 if (mutex_trylock(&ir->lock)) { 327 rc = ir_key_poll(ir); 328 mutex_unlock(&ir->lock); 329 if (rc == -ENODEV) { 330 rc_unregister_device(ir->rc); 331 ir->rc = NULL; 332 return; 333 } 334 } 335 336 schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling_interval)); 337 } 338 339 static int ir_open(struct rc_dev *dev) 340 { 341 struct IR_i2c *ir = dev->priv; 342 343 schedule_delayed_work(&ir->work, 0); 344 345 return 0; 346 } 347 348 static void ir_close(struct rc_dev *dev) 349 { 350 struct IR_i2c *ir = dev->priv; 351 352 cancel_delayed_work_sync(&ir->work); 353 } 354 355 /* Zilog Transmit Interface */ 356 #define XTAL_FREQ 18432000 357 358 #define ZILOG_SEND 0x80 359 #define ZILOG_UIR_END 0x40 360 #define ZILOG_INIT_END 0x20 361 #define ZILOG_LIR_END 0x10 362 363 #define ZILOG_STATUS_OK 0x80 364 #define ZILOG_STATUS_TX 0x40 365 #define ZILOG_STATUS_SET 0x20 366 367 /* 368 * As you can see here, very few different lengths of pulse and space 369 * can be encoded. This means that the hardware does not work well with 370 * recorded IR. It's best to work with generated IR, like from ir-ctl or 371 * the in-kernel encoders. 372 */ 373 struct code_block { 374 u8 length; 375 u16 pulse[7]; /* not aligned */ 376 u8 carrier_pulse; 377 u8 carrier_space; 378 u16 space[8]; /* not aligned */ 379 u8 codes[61]; 380 u8 csum[2]; 381 } __packed; 382 383 static int send_data_block(struct IR_i2c *ir, int cmd, 384 struct code_block *code_block) 385 { 386 int i, j, ret; 387 u8 buf[5], *p; 388 389 p = &code_block->length; 390 for (i = 0; p < code_block->csum; i++) 391 code_block->csum[i & 1] ^= *p++; 392 393 p = &code_block->length; 394 395 for (i = 0; i < sizeof(*code_block);) { 396 int tosend = sizeof(*code_block) - i; 397 398 if (tosend > 4) 399 tosend = 4; 400 buf[0] = i + 1; 401 for (j = 0; j < tosend; ++j) 402 buf[1 + j] = p[i + j]; 403 dev_dbg(&ir->rc->dev, "%*ph", tosend + 1, buf); 404 ret = i2c_master_send(ir->tx_c, buf, tosend + 1); 405 if (ret != tosend + 1) { 406 dev_dbg(&ir->rc->dev, 407 "i2c_master_send failed with %d\n", ret); 408 return ret < 0 ? ret : -EIO; 409 } 410 i += tosend; 411 } 412 413 buf[0] = 0; 414 buf[1] = cmd; 415 ret = i2c_master_send(ir->tx_c, buf, 2); 416 if (ret != 2) { 417 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret); 418 return ret < 0 ? ret : -EIO; 419 } 420 421 usleep_range(2000, 5000); 422 423 ret = i2c_master_send(ir->tx_c, buf, 1); 424 if (ret != 1) { 425 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret); 426 return ret < 0 ? ret : -EIO; 427 } 428 429 return 0; 430 } 431 432 static int zilog_init(struct IR_i2c *ir) 433 { 434 struct code_block code_block = { .length = sizeof(code_block) }; 435 u8 buf[4]; 436 int ret; 437 438 put_unaligned_be16(0x1000, &code_block.pulse[3]); 439 440 ret = send_data_block(ir, ZILOG_INIT_END, &code_block); 441 if (ret) 442 return ret; 443 444 ret = i2c_master_recv(ir->tx_c, buf, 4); 445 if (ret != 4) { 446 dev_err(&ir->c->dev, "failed to retrieve firmware version: %d\n", 447 ret); 448 return ret < 0 ? ret : -EIO; 449 } 450 451 dev_info(&ir->c->dev, "Zilog/Hauppauge IR blaster firmware version %d.%d.%d\n", 452 buf[1], buf[2], buf[3]); 453 454 return 0; 455 } 456 457 /* 458 * If the last slot for pulse is the same as the current slot for pulse, 459 * then use slot no 7. 460 */ 461 static void copy_codes(u8 *dst, u8 *src, unsigned int count) 462 { 463 u8 c, last = 0xff; 464 465 while (count--) { 466 c = *src++; 467 if ((c & 0xf0) == last) { 468 *dst++ = 0x70 | (c & 0xf); 469 } else { 470 *dst++ = c; 471 last = c & 0xf0; 472 } 473 } 474 } 475 476 /* 477 * When looking for repeats, we don't care about the trailing space. This 478 * is set to the shortest possible anyway. 479 */ 480 static int cmp_no_trail(u8 *a, u8 *b, unsigned int count) 481 { 482 while (--count) { 483 if (*a++ != *b++) 484 return 1; 485 } 486 487 return (*a & 0xf0) - (*b & 0xf0); 488 } 489 490 static int find_slot(u16 *array, unsigned int size, u16 val) 491 { 492 int i; 493 494 for (i = 0; i < size; i++) { 495 if (get_unaligned_be16(&array[i]) == val) { 496 return i; 497 } else if (!array[i]) { 498 put_unaligned_be16(val, &array[i]); 499 return i; 500 } 501 } 502 503 return -1; 504 } 505 506 static int zilog_ir_format(struct rc_dev *rcdev, unsigned int *txbuf, 507 unsigned int count, struct code_block *code_block) 508 { 509 struct IR_i2c *ir = rcdev->priv; 510 int rep, i, l, p = 0, s, c = 0; 511 bool repeating; 512 u8 codes[174]; 513 514 code_block->carrier_pulse = DIV_ROUND_CLOSEST( 515 ir->duty_cycle * XTAL_FREQ / 1000, ir->carrier); 516 code_block->carrier_space = DIV_ROUND_CLOSEST( 517 (100 - ir->duty_cycle) * XTAL_FREQ / 1000, ir->carrier); 518 519 for (i = 0; i < count; i++) { 520 if (c >= ARRAY_SIZE(codes) - 1) { 521 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n"); 522 return -EINVAL; 523 } 524 525 /* 526 * Lengths more than 142220us cannot be encoded; also 527 * this checks for multiply overflow 528 */ 529 if (txbuf[i] > 142220) 530 return -EINVAL; 531 532 l = DIV_ROUND_CLOSEST((XTAL_FREQ / 1000) * txbuf[i], 40000); 533 534 if (i & 1) { 535 s = find_slot(code_block->space, 536 ARRAY_SIZE(code_block->space), l); 537 if (s == -1) { 538 dev_warn(&rcdev->dev, "Too many different lengths spaces, cannot transmit"); 539 return -EINVAL; 540 } 541 542 /* We have a pulse and space */ 543 codes[c++] = (p << 4) | s; 544 } else { 545 p = find_slot(code_block->pulse, 546 ARRAY_SIZE(code_block->pulse), l); 547 if (p == -1) { 548 dev_warn(&rcdev->dev, "Too many different lengths pulses, cannot transmit"); 549 return -EINVAL; 550 } 551 } 552 } 553 554 /* We have to encode the trailing pulse. Find the shortest space */ 555 s = 0; 556 for (i = 1; i < ARRAY_SIZE(code_block->space); i++) { 557 u16 d = get_unaligned_be16(&code_block->space[i]); 558 559 if (get_unaligned_be16(&code_block->space[s]) > d) 560 s = i; 561 } 562 563 codes[c++] = (p << 4) | s; 564 565 dev_dbg(&rcdev->dev, "generated %d codes\n", c); 566 567 /* 568 * Are the last N codes (so pulse + space) repeating 3 times? 569 * if so we can shorten the codes list and use code 0xc0 to repeat 570 * them. 571 */ 572 repeating = false; 573 574 for (rep = c / 3; rep >= 1; rep--) { 575 if (!memcmp(&codes[c - rep * 3], &codes[c - rep * 2], rep) && 576 !cmp_no_trail(&codes[c - rep], &codes[c - rep * 2], rep)) { 577 repeating = true; 578 break; 579 } 580 } 581 582 if (repeating) { 583 /* first copy any leading non-repeating */ 584 int leading = c - rep * 3; 585 586 if (leading >= ARRAY_SIZE(code_block->codes) - 3 - rep) { 587 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n"); 588 return -EINVAL; 589 } 590 591 dev_dbg(&rcdev->dev, "found trailing %d repeat\n", rep); 592 copy_codes(code_block->codes, codes, leading); 593 code_block->codes[leading] = 0x82; 594 copy_codes(code_block->codes + leading + 1, codes + leading, 595 rep); 596 c = leading + 1 + rep; 597 code_block->codes[c++] = 0xc0; 598 } else { 599 if (c >= ARRAY_SIZE(code_block->codes) - 3) { 600 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n"); 601 return -EINVAL; 602 } 603 604 dev_dbg(&rcdev->dev, "found no trailing repeat\n"); 605 code_block->codes[0] = 0x82; 606 copy_codes(code_block->codes + 1, codes, c); 607 c++; 608 code_block->codes[c++] = 0xc4; 609 } 610 611 while (c < ARRAY_SIZE(code_block->codes)) 612 code_block->codes[c++] = 0x83; 613 614 return 0; 615 } 616 617 static int zilog_tx(struct rc_dev *rcdev, unsigned int *txbuf, 618 unsigned int count) 619 { 620 struct IR_i2c *ir = rcdev->priv; 621 struct code_block code_block = { .length = sizeof(code_block) }; 622 u8 buf[2]; 623 int ret, i; 624 625 ret = zilog_ir_format(rcdev, txbuf, count, &code_block); 626 if (ret) 627 return ret; 628 629 ret = mutex_lock_interruptible(&ir->lock); 630 if (ret) 631 return ret; 632 633 ret = send_data_block(ir, ZILOG_UIR_END, &code_block); 634 if (ret) 635 goto out_unlock; 636 637 ret = i2c_master_recv(ir->tx_c, buf, 1); 638 if (ret != 1) { 639 dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret); 640 goto out_unlock; 641 } 642 643 dev_dbg(&ir->rc->dev, "code set status: %02x\n", buf[0]); 644 645 if (buf[0] != (ZILOG_STATUS_OK | ZILOG_STATUS_SET)) { 646 dev_err(&ir->rc->dev, "unexpected IR TX response %02x\n", 647 buf[0]); 648 ret = -EIO; 649 goto out_unlock; 650 } 651 652 buf[0] = 0x00; 653 buf[1] = ZILOG_SEND; 654 655 ret = i2c_master_send(ir->tx_c, buf, 2); 656 if (ret != 2) { 657 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret); 658 if (ret >= 0) 659 ret = -EIO; 660 goto out_unlock; 661 } 662 663 dev_dbg(&ir->rc->dev, "send command sent\n"); 664 665 /* 666 * This bit NAKs until the device is ready, so we retry it 667 * sleeping a bit each time. This seems to be what the windows 668 * driver does, approximately. 669 * Try for up to 1s. 670 */ 671 for (i = 0; i < 20; ++i) { 672 set_current_state(TASK_UNINTERRUPTIBLE); 673 schedule_timeout(msecs_to_jiffies(50)); 674 ret = i2c_master_send(ir->tx_c, buf, 1); 675 if (ret == 1) 676 break; 677 dev_dbg(&ir->rc->dev, 678 "NAK expected: i2c_master_send failed with %d (try %d)\n", 679 ret, i + 1); 680 } 681 682 if (ret != 1) { 683 dev_err(&ir->rc->dev, 684 "IR TX chip never got ready: last i2c_master_send failed with %d\n", 685 ret); 686 if (ret >= 0) 687 ret = -EIO; 688 goto out_unlock; 689 } 690 691 i = i2c_master_recv(ir->tx_c, buf, 1); 692 if (i != 1) { 693 dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret); 694 ret = -EIO; 695 goto out_unlock; 696 } else if (buf[0] != ZILOG_STATUS_OK) { 697 dev_err(&ir->rc->dev, "unexpected IR TX response #2: %02x\n", 698 buf[0]); 699 ret = -EIO; 700 goto out_unlock; 701 } 702 dev_dbg(&ir->rc->dev, "transmit complete\n"); 703 704 /* Oh good, it worked */ 705 ret = count; 706 out_unlock: 707 mutex_unlock(&ir->lock); 708 709 return ret; 710 } 711 712 static int zilog_tx_carrier(struct rc_dev *dev, u32 carrier) 713 { 714 struct IR_i2c *ir = dev->priv; 715 716 if (carrier > 500000 || carrier < 20000) 717 return -EINVAL; 718 719 ir->carrier = carrier; 720 721 return 0; 722 } 723 724 static int zilog_tx_duty_cycle(struct rc_dev *dev, u32 duty_cycle) 725 { 726 struct IR_i2c *ir = dev->priv; 727 728 ir->duty_cycle = duty_cycle; 729 730 return 0; 731 } 732 733 static int ir_probe(struct i2c_client *client, const struct i2c_device_id *id) 734 { 735 char *ir_codes = NULL; 736 const char *name = NULL; 737 u64 rc_proto = RC_PROTO_BIT_UNKNOWN; 738 struct IR_i2c *ir; 739 struct rc_dev *rc = NULL; 740 struct i2c_adapter *adap = client->adapter; 741 unsigned short addr = client->addr; 742 int err; 743 744 if ((id->driver_data & FLAG_HDPVR) && !enable_hdpvr) { 745 dev_err(&client->dev, "IR for HDPVR is known to cause problems during recording, use enable_hdpvr modparam to enable\n"); 746 return -ENODEV; 747 } 748 749 ir = devm_kzalloc(&client->dev, sizeof(*ir), GFP_KERNEL); 750 if (!ir) 751 return -ENOMEM; 752 753 ir->c = client; 754 ir->polling_interval = DEFAULT_POLLING_INTERVAL; 755 i2c_set_clientdata(client, ir); 756 757 switch(addr) { 758 case 0x64: 759 name = "Pixelview"; 760 ir->get_key = get_key_pixelview; 761 rc_proto = RC_PROTO_BIT_OTHER; 762 ir_codes = RC_MAP_EMPTY; 763 break; 764 case 0x18: 765 case 0x1f: 766 case 0x1a: 767 name = "Hauppauge"; 768 ir->get_key = get_key_haup; 769 rc_proto = RC_PROTO_BIT_RC5; 770 ir_codes = RC_MAP_HAUPPAUGE; 771 break; 772 case 0x30: 773 name = "KNC One"; 774 ir->get_key = get_key_knc1; 775 rc_proto = RC_PROTO_BIT_OTHER; 776 ir_codes = RC_MAP_EMPTY; 777 break; 778 case 0x6b: 779 name = "FusionHDTV"; 780 ir->get_key = get_key_fusionhdtv; 781 rc_proto = RC_PROTO_BIT_UNKNOWN; 782 ir_codes = RC_MAP_FUSIONHDTV_MCE; 783 break; 784 case 0x40: 785 name = "AVerMedia Cardbus remote"; 786 ir->get_key = get_key_avermedia_cardbus; 787 rc_proto = RC_PROTO_BIT_OTHER; 788 ir_codes = RC_MAP_AVERMEDIA_CARDBUS; 789 break; 790 case 0x41: 791 name = "AVerMedia EM78P153"; 792 ir->get_key = get_key_avermedia_cardbus; 793 rc_proto = RC_PROTO_BIT_OTHER; 794 /* RM-KV remote, seems to be same as RM-K6 */ 795 ir_codes = RC_MAP_AVERMEDIA_M733A_RM_K6; 796 break; 797 case 0x71: 798 name = "Hauppauge/Zilog Z8"; 799 ir->get_key = get_key_haup_xvr; 800 rc_proto = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE | 801 RC_PROTO_BIT_RC6_6A_32; 802 ir_codes = RC_MAP_HAUPPAUGE; 803 break; 804 } 805 806 /* Let the caller override settings */ 807 if (client->dev.platform_data) { 808 const struct IR_i2c_init_data *init_data = 809 client->dev.platform_data; 810 811 ir_codes = init_data->ir_codes; 812 rc = init_data->rc_dev; 813 814 name = init_data->name; 815 if (init_data->type) 816 rc_proto = init_data->type; 817 818 if (init_data->polling_interval) 819 ir->polling_interval = init_data->polling_interval; 820 821 switch (init_data->internal_get_key_func) { 822 case IR_KBD_GET_KEY_CUSTOM: 823 /* The bridge driver provided us its own function */ 824 ir->get_key = init_data->get_key; 825 break; 826 case IR_KBD_GET_KEY_PIXELVIEW: 827 ir->get_key = get_key_pixelview; 828 break; 829 case IR_KBD_GET_KEY_HAUP: 830 ir->get_key = get_key_haup; 831 break; 832 case IR_KBD_GET_KEY_KNC1: 833 ir->get_key = get_key_knc1; 834 break; 835 case IR_KBD_GET_KEY_FUSIONHDTV: 836 ir->get_key = get_key_fusionhdtv; 837 break; 838 case IR_KBD_GET_KEY_HAUP_XVR: 839 ir->get_key = get_key_haup_xvr; 840 break; 841 case IR_KBD_GET_KEY_AVERMEDIA_CARDBUS: 842 ir->get_key = get_key_avermedia_cardbus; 843 break; 844 } 845 } 846 847 if (!rc) { 848 /* 849 * If platform_data doesn't specify rc_dev, initialize it 850 * internally 851 */ 852 rc = rc_allocate_device(RC_DRIVER_SCANCODE); 853 if (!rc) 854 return -ENOMEM; 855 } 856 ir->rc = rc; 857 858 /* Make sure we are all setup before going on */ 859 if (!name || !ir->get_key || !rc_proto || !ir_codes) { 860 dev_warn(&client->dev, "Unsupported device at address 0x%02x\n", 861 addr); 862 err = -ENODEV; 863 goto err_out_free; 864 } 865 866 ir->ir_codes = ir_codes; 867 868 snprintf(ir->phys, sizeof(ir->phys), "%s/%s", dev_name(&adap->dev), 869 dev_name(&client->dev)); 870 871 /* 872 * Initialize input_dev fields 873 * It doesn't make sense to allow overriding them via platform_data 874 */ 875 rc->input_id.bustype = BUS_I2C; 876 rc->input_phys = ir->phys; 877 rc->device_name = name; 878 rc->dev.parent = &client->dev; 879 rc->priv = ir; 880 rc->open = ir_open; 881 rc->close = ir_close; 882 883 /* 884 * Initialize the other fields of rc_dev 885 */ 886 rc->map_name = ir->ir_codes; 887 rc->allowed_protocols = rc_proto; 888 if (!rc->driver_name) 889 rc->driver_name = KBUILD_MODNAME; 890 891 mutex_init(&ir->lock); 892 893 INIT_DELAYED_WORK(&ir->work, ir_work); 894 895 if (id->driver_data & FLAG_TX) { 896 ir->tx_c = i2c_new_dummy(client->adapter, 0x70); 897 if (!ir->tx_c) { 898 dev_err(&client->dev, "failed to setup tx i2c address"); 899 } else if (!zilog_init(ir)) { 900 ir->carrier = 38000; 901 ir->duty_cycle = 40; 902 rc->tx_ir = zilog_tx; 903 rc->s_tx_carrier = zilog_tx_carrier; 904 rc->s_tx_duty_cycle = zilog_tx_duty_cycle; 905 } 906 } 907 908 err = rc_register_device(rc); 909 if (err) 910 goto err_out_free; 911 912 return 0; 913 914 err_out_free: 915 if (ir->tx_c) 916 i2c_unregister_device(ir->tx_c); 917 918 /* Only frees rc if it were allocated internally */ 919 rc_free_device(rc); 920 return err; 921 } 922 923 static int ir_remove(struct i2c_client *client) 924 { 925 struct IR_i2c *ir = i2c_get_clientdata(client); 926 927 /* kill outstanding polls */ 928 cancel_delayed_work_sync(&ir->work); 929 930 if (ir->tx_c) 931 i2c_unregister_device(ir->tx_c); 932 933 /* unregister device */ 934 rc_unregister_device(ir->rc); 935 936 /* free memory */ 937 return 0; 938 } 939 940 static const struct i2c_device_id ir_kbd_id[] = { 941 /* Generic entry for any IR receiver */ 942 { "ir_video", 0 }, 943 /* IR device specific entries should be added here */ 944 { "ir_z8f0811_haup", FLAG_TX }, 945 { "ir_z8f0811_hdpvr", FLAG_TX | FLAG_HDPVR }, 946 { } 947 }; 948 MODULE_DEVICE_TABLE(i2c, ir_kbd_id); 949 950 static struct i2c_driver ir_kbd_driver = { 951 .driver = { 952 .name = "ir-kbd-i2c", 953 }, 954 .probe = ir_probe, 955 .remove = ir_remove, 956 .id_table = ir_kbd_id, 957 }; 958 959 module_i2c_driver(ir_kbd_driver); 960 961 /* ----------------------------------------------------------------------- */ 962 963 MODULE_AUTHOR("Gerd Knorr, Michal Kochanowicz, Christoph Bartelmus, Ulrich Mueller"); 964 MODULE_DESCRIPTION("input driver for i2c IR remote controls"); 965 MODULE_LICENSE("GPL"); 966