xref: /linux/drivers/media/i2c/ccs/ccs-core.c (revision f6154d8babbb8a98f0d3ea325aafae2e33bfd8be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/media/i2c/ccs/ccs-core.c
4  *
5  * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6  *
7  * Copyright (C) 2020 Intel Corporation
8  * Copyright (C) 2010--2012 Nokia Corporation
9  * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10  *
11  * Based on smiapp driver by Vimarsh Zutshi
12  * Based on jt8ev1.c by Vimarsh Zutshi
13  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/module.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/property.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/slab.h>
26 #include <linux/smiapp.h>
27 #include <linux/v4l2-mediabus.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-device.h>
30 #include <uapi/linux/ccs.h>
31 
32 #include "ccs.h"
33 
34 #define CCS_ALIGN_DIM(dim, flags)	\
35 	((flags) & V4L2_SEL_FLAG_GE	\
36 	 ? ALIGN((dim), 2)		\
37 	 : (dim) & ~1)
38 
39 static struct ccs_limit_offset {
40 	u16	lim;
41 	u16	info;
42 } ccs_limit_offsets[CCS_L_LAST + 1];
43 
44 /*
45  * ccs_module_idents - supported camera modules
46  */
47 static const struct ccs_module_ident ccs_module_idents[] = {
48 	CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
49 	CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
50 	CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
51 	CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
52 	CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
53 	CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
54 	CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
55 	CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
56 	CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
57 	CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
58 	CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
59 };
60 
61 #define CCS_DEVICE_FLAG_IS_SMIA		BIT(0)
62 
63 struct ccs_device {
64 	unsigned char flags;
65 };
66 
67 static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
68 
69 /*
70  *
71  * Dynamic Capability Identification
72  *
73  */
74 
75 static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
76 {
77 	switch (width) {
78 	case sizeof(u8):
79 		*(u8 *)ptr = val;
80 		break;
81 	case sizeof(u16):
82 		*(u16 *)ptr = val;
83 		break;
84 	case sizeof(u32):
85 		*(u32 *)ptr = val;
86 		break;
87 	}
88 }
89 
90 static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
91 			 unsigned int offset, void **__ptr)
92 {
93 	const struct ccs_limit *linfo;
94 
95 	if (WARN_ON(limit >= CCS_L_LAST))
96 		return -EINVAL;
97 
98 	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
99 
100 	if (WARN_ON(!sensor->ccs_limits) ||
101 	    WARN_ON(offset + ccs_reg_width(linfo->reg) >
102 		    ccs_limit_offsets[limit + 1].lim))
103 		return -EINVAL;
104 
105 	*__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
106 
107 	return 0;
108 }
109 
110 void ccs_replace_limit(struct ccs_sensor *sensor,
111 		       unsigned int limit, unsigned int offset, u32 val)
112 {
113 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
114 	const struct ccs_limit *linfo;
115 	void *ptr;
116 	int ret;
117 
118 	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
119 	if (ret)
120 		return;
121 
122 	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
123 
124 	dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %u, 0x%x\n",
125 		linfo->reg, linfo->name, offset, val, val);
126 
127 	ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val);
128 }
129 
130 u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
131 		  unsigned int offset)
132 {
133 	void *ptr;
134 	u32 val;
135 	int ret;
136 
137 	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
138 	if (ret)
139 		return 0;
140 
141 	switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
142 	case sizeof(u8):
143 		val = *(u8 *)ptr;
144 		break;
145 	case sizeof(u16):
146 		val = *(u16 *)ptr;
147 		break;
148 	case sizeof(u32):
149 		val = *(u32 *)ptr;
150 		break;
151 	default:
152 		WARN_ON(1);
153 		return 0;
154 	}
155 
156 	return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
157 }
158 
159 static int ccs_read_all_limits(struct ccs_sensor *sensor)
160 {
161 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
162 	void *ptr, *alloc, *end;
163 	unsigned int i, l;
164 	int ret;
165 
166 	kfree(sensor->ccs_limits);
167 	sensor->ccs_limits = NULL;
168 
169 	alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
170 	if (!alloc)
171 		return -ENOMEM;
172 
173 	end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
174 
175 	for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
176 		u32 reg = ccs_limits[i].reg;
177 		unsigned int width = ccs_reg_width(reg);
178 		unsigned int j;
179 
180 		if (l == CCS_L_LAST) {
181 			dev_err(&client->dev,
182 				"internal error --- end of limit array\n");
183 			ret = -EINVAL;
184 			goto out_err;
185 		}
186 
187 		for (j = 0; j < ccs_limits[i].size / width;
188 		     j++, reg += width, ptr += width) {
189 			u32 val;
190 
191 			ret = ccs_read_addr_noconv(sensor, reg, &val);
192 			if (ret)
193 				goto out_err;
194 
195 			if (ptr + width > end) {
196 				dev_err(&client->dev,
197 					"internal error --- no room for regs\n");
198 				ret = -EINVAL;
199 				goto out_err;
200 			}
201 
202 			if (!val && j)
203 				break;
204 
205 			ccs_assign_limit(ptr, width, val);
206 
207 			dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
208 				reg, ccs_limits[i].name, val, val);
209 		}
210 
211 		if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
212 			continue;
213 
214 		l++;
215 		ptr = alloc + ccs_limit_offsets[l].lim;
216 	}
217 
218 	if (l != CCS_L_LAST) {
219 		dev_err(&client->dev,
220 			"internal error --- insufficient limits\n");
221 		ret = -EINVAL;
222 		goto out_err;
223 	}
224 
225 	sensor->ccs_limits = alloc;
226 
227 	if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
228 		ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
229 
230 	return 0;
231 
232 out_err:
233 	kfree(alloc);
234 
235 	return ret;
236 }
237 
238 static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
239 {
240 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
241 	u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
242 	unsigned int i;
243 	int pixel_count = 0;
244 	int line_count = 0;
245 
246 	fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
247 	fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
248 
249 	ncol_desc = (fmt_model_subtype
250 		     & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
251 		>> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
252 	nrow_desc = fmt_model_subtype
253 		& CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
254 
255 	dev_dbg(&client->dev, "format_model_type %s\n",
256 		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
257 		? "2 byte" :
258 		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
259 		? "4 byte" : "is simply bad");
260 
261 	dev_dbg(&client->dev, "%u column and %u row descriptors\n",
262 		ncol_desc, nrow_desc);
263 
264 	for (i = 0; i < ncol_desc + nrow_desc; i++) {
265 		u32 desc;
266 		u32 pixelcode;
267 		u32 pixels;
268 		char *which;
269 		char *what;
270 
271 		if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
272 			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
273 
274 			pixelcode =
275 				(desc
276 				 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
277 				>> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
278 			pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
279 		} else if (fmt_model_type
280 			   == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
281 			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
282 
283 			pixelcode =
284 				(desc
285 				 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
286 				>> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
287 			pixels = desc &
288 				CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
289 		} else {
290 			dev_dbg(&client->dev,
291 				"invalid frame format model type %u\n",
292 				fmt_model_type);
293 			return -EINVAL;
294 		}
295 
296 		if (i < ncol_desc)
297 			which = "columns";
298 		else
299 			which = "rows";
300 
301 		switch (pixelcode) {
302 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
303 			what = "embedded";
304 			break;
305 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
306 			what = "dummy";
307 			break;
308 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
309 			what = "black";
310 			break;
311 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
312 			what = "dark";
313 			break;
314 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
315 			what = "visible";
316 			break;
317 		default:
318 			what = "invalid";
319 			break;
320 		}
321 
322 		dev_dbg(&client->dev,
323 			"%s pixels: %u %s (pixelcode %u)\n",
324 			what, pixels, which, pixelcode);
325 
326 		if (i < ncol_desc) {
327 			if (pixelcode ==
328 			    CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
329 				sensor->visible_pixel_start = pixel_count;
330 			pixel_count += pixels;
331 			continue;
332 		}
333 
334 		/* Handle row descriptors */
335 		switch (pixelcode) {
336 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
337 			if (sensor->embedded_end)
338 				break;
339 			sensor->embedded_start = line_count;
340 			sensor->embedded_end = line_count + pixels;
341 			break;
342 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
343 			sensor->image_start = line_count;
344 			break;
345 		}
346 		line_count += pixels;
347 	}
348 
349 	if (sensor->embedded_end > sensor->image_start) {
350 		dev_dbg(&client->dev,
351 			"adjusting image start line to %u (was %u)\n",
352 			sensor->embedded_end, sensor->image_start);
353 		sensor->image_start = sensor->embedded_end;
354 	}
355 
356 	dev_dbg(&client->dev, "embedded data from lines %u to %u\n",
357 		sensor->embedded_start, sensor->embedded_end);
358 	dev_dbg(&client->dev, "image data starts at line %u\n",
359 		sensor->image_start);
360 
361 	return 0;
362 }
363 
364 static int ccs_pll_configure(struct ccs_sensor *sensor)
365 {
366 	struct ccs_pll *pll = &sensor->pll;
367 	int rval;
368 
369 	rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
370 	if (rval < 0)
371 		return rval;
372 
373 	rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
374 	if (rval < 0)
375 		return rval;
376 
377 	rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
378 	if (rval < 0)
379 		return rval;
380 
381 	rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
382 	if (rval < 0)
383 		return rval;
384 
385 	if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
386 	      CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
387 		/* Lane op clock ratio does not apply here. */
388 		rval = ccs_write(sensor, REQUESTED_LINK_RATE,
389 				 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
390 					      1000000 / 256 / 256) *
391 				 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
392 				  sensor->pll.csi2.lanes : 1) <<
393 				 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
394 				  1 : 0));
395 		if (rval < 0)
396 			return rval;
397 	}
398 
399 	if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
400 		return 0;
401 
402 	rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
403 	if (rval < 0)
404 		return rval;
405 
406 	rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
407 	if (rval < 0)
408 		return rval;
409 
410 	if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
411 		return 0;
412 
413 	rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
414 	if (rval < 0)
415 		return rval;
416 
417 	rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
418 			 pll->op_fr.pre_pll_clk_div);
419 	if (rval < 0)
420 		return rval;
421 
422 	return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
423 }
424 
425 static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
426 {
427 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
428 	struct ccs_pll_limits lim = {
429 		.vt_fr = {
430 			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
431 			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
432 			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
433 			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
434 			.min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
435 			.max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
436 			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
437 			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
438 		},
439 		.op_fr = {
440 			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
441 			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
442 			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
443 			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
444 			.min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
445 			.max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
446 			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
447 			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
448 		},
449 		.op_bk = {
450 			 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
451 			 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
452 			 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
453 			 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
454 			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
455 			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
456 			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
457 			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
458 		 },
459 		.vt_bk = {
460 			 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
461 			 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
462 			 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
463 			 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
464 			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
465 			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
466 			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
467 			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
468 		 },
469 		.min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
470 		.min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
471 	};
472 
473 	return ccs_pll_calculate(&client->dev, &lim, pll);
474 }
475 
476 static int ccs_pll_update(struct ccs_sensor *sensor)
477 {
478 	struct ccs_pll *pll = &sensor->pll;
479 	int rval;
480 
481 	pll->binning_horizontal = sensor->binning_horizontal;
482 	pll->binning_vertical = sensor->binning_vertical;
483 	pll->link_freq =
484 		sensor->link_freq->qmenu_int[sensor->link_freq->val];
485 	pll->scale_m = sensor->scale_m;
486 	pll->bits_per_pixel = sensor->csi_format->compressed;
487 
488 	rval = ccs_pll_try(sensor, pll);
489 	if (rval < 0)
490 		return rval;
491 
492 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
493 				 pll->pixel_rate_pixel_array);
494 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
495 
496 	return 0;
497 }
498 
499 
500 /*
501  *
502  * V4L2 Controls handling
503  *
504  */
505 
506 static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
507 {
508 	struct v4l2_ctrl *ctrl = sensor->exposure;
509 	int max;
510 
511 	max = sensor->pa_src.height + sensor->vblank->val -
512 		CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
513 
514 	__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
515 }
516 
517 /*
518  * Order matters.
519  *
520  * 1. Bits-per-pixel, descending.
521  * 2. Bits-per-pixel compressed, descending.
522  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
523  *    orders must be defined.
524  */
525 static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
526 	{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
527 	{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
528 	{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
529 	{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
530 	{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
531 	{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
532 	{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
533 	{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
534 	{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
535 	{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
536 	{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
537 	{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
538 	{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
539 	{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
540 	{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
541 	{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
542 	{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
543 	{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
544 	{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
545 	{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
546 	{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
547 	{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
548 	{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
549 	{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
550 };
551 
552 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
553 
554 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
555 				 - (unsigned long)ccs_csi_data_formats) \
556 				/ sizeof(*ccs_csi_data_formats))
557 
558 static u32 ccs_pixel_order(struct ccs_sensor *sensor)
559 {
560 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
561 	int flip = 0;
562 
563 	if (sensor->hflip) {
564 		if (sensor->hflip->val)
565 			flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
566 
567 		if (sensor->vflip->val)
568 			flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
569 	}
570 
571 	dev_dbg(&client->dev, "flip %u\n", flip);
572 	return sensor->default_pixel_order ^ flip;
573 }
574 
575 static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
576 {
577 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
578 	unsigned int csi_format_idx =
579 		to_csi_format_idx(sensor->csi_format) & ~3;
580 	unsigned int internal_csi_format_idx =
581 		to_csi_format_idx(sensor->internal_csi_format) & ~3;
582 	unsigned int pixel_order = ccs_pixel_order(sensor);
583 
584 	if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
585 			 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
586 		return;
587 
588 	sensor->mbus_frame_fmts =
589 		sensor->default_mbus_frame_fmts << pixel_order;
590 	sensor->csi_format =
591 		&ccs_csi_data_formats[csi_format_idx + pixel_order];
592 	sensor->internal_csi_format =
593 		&ccs_csi_data_formats[internal_csi_format_idx
594 					 + pixel_order];
595 
596 	dev_dbg(&client->dev, "new pixel order %s\n",
597 		pixel_order_str[pixel_order]);
598 }
599 
600 static const char * const ccs_test_patterns[] = {
601 	"Disabled",
602 	"Solid Colour",
603 	"Eight Vertical Colour Bars",
604 	"Colour Bars With Fade to Grey",
605 	"Pseudorandom Sequence (PN9)",
606 };
607 
608 static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
609 {
610 	struct ccs_sensor *sensor =
611 		container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
612 			->sensor;
613 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
614 	int pm_status;
615 	u32 orient = 0;
616 	unsigned int i;
617 	int exposure;
618 	int rval;
619 
620 	switch (ctrl->id) {
621 	case V4L2_CID_HFLIP:
622 	case V4L2_CID_VFLIP:
623 		if (sensor->streaming)
624 			return -EBUSY;
625 
626 		if (sensor->hflip->val)
627 			orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
628 
629 		if (sensor->vflip->val)
630 			orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
631 
632 		ccs_update_mbus_formats(sensor);
633 
634 		break;
635 	case V4L2_CID_VBLANK:
636 		exposure = sensor->exposure->val;
637 
638 		__ccs_update_exposure_limits(sensor);
639 
640 		if (exposure > sensor->exposure->maximum) {
641 			sensor->exposure->val =	sensor->exposure->maximum;
642 			rval = ccs_set_ctrl(sensor->exposure);
643 			if (rval < 0)
644 				return rval;
645 		}
646 
647 		break;
648 	case V4L2_CID_LINK_FREQ:
649 		if (sensor->streaming)
650 			return -EBUSY;
651 
652 		rval = ccs_pll_update(sensor);
653 		if (rval)
654 			return rval;
655 
656 		return 0;
657 	case V4L2_CID_TEST_PATTERN:
658 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
659 			v4l2_ctrl_activate(
660 				sensor->test_data[i],
661 				ctrl->val ==
662 				V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
663 
664 		break;
665 	}
666 
667 	pm_status = pm_runtime_get_if_active(&client->dev, true);
668 	if (!pm_status)
669 		return 0;
670 
671 	switch (ctrl->id) {
672 	case V4L2_CID_ANALOGUE_GAIN:
673 		rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
674 
675 		break;
676 
677 	case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
678 		rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
679 
680 		break;
681 
682 	case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
683 		rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
684 				 ctrl->val);
685 
686 		break;
687 
688 	case V4L2_CID_DIGITAL_GAIN:
689 		if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
690 		    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
691 			rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
692 					 ctrl->val);
693 			break;
694 		}
695 
696 		rval = ccs_write_addr(sensor,
697 				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
698 				      ctrl->val);
699 		if (rval)
700 			break;
701 
702 		rval = ccs_write_addr(sensor,
703 				      SMIAPP_REG_U16_DIGITAL_GAIN_RED,
704 				      ctrl->val);
705 		if (rval)
706 			break;
707 
708 		rval = ccs_write_addr(sensor,
709 				      SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
710 				      ctrl->val);
711 		if (rval)
712 			break;
713 
714 		rval = ccs_write_addr(sensor,
715 				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
716 				      ctrl->val);
717 
718 		break;
719 	case V4L2_CID_EXPOSURE:
720 		rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
721 
722 		break;
723 	case V4L2_CID_HFLIP:
724 	case V4L2_CID_VFLIP:
725 		rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
726 
727 		break;
728 	case V4L2_CID_VBLANK:
729 		rval = ccs_write(sensor, FRAME_LENGTH_LINES,
730 				 sensor->pa_src.height + ctrl->val);
731 
732 		break;
733 	case V4L2_CID_HBLANK:
734 		rval = ccs_write(sensor, LINE_LENGTH_PCK,
735 				 sensor->pa_src.width + ctrl->val);
736 
737 		break;
738 	case V4L2_CID_TEST_PATTERN:
739 		rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
740 
741 		break;
742 	case V4L2_CID_TEST_PATTERN_RED:
743 		rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
744 
745 		break;
746 	case V4L2_CID_TEST_PATTERN_GREENR:
747 		rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
748 
749 		break;
750 	case V4L2_CID_TEST_PATTERN_BLUE:
751 		rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
752 
753 		break;
754 	case V4L2_CID_TEST_PATTERN_GREENB:
755 		rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
756 
757 		break;
758 	case V4L2_CID_CCS_SHADING_CORRECTION:
759 		rval = ccs_write(sensor, SHADING_CORRECTION_EN,
760 				 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
761 				 0);
762 
763 		if (!rval && sensor->luminance_level)
764 			v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
765 
766 		break;
767 	case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
768 		rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
769 
770 		break;
771 	case V4L2_CID_PIXEL_RATE:
772 		/* For v4l2_ctrl_s_ctrl_int64() used internally. */
773 		rval = 0;
774 
775 		break;
776 	default:
777 		rval = -EINVAL;
778 	}
779 
780 	if (pm_status > 0) {
781 		pm_runtime_mark_last_busy(&client->dev);
782 		pm_runtime_put_autosuspend(&client->dev);
783 	}
784 
785 	return rval;
786 }
787 
788 static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
789 	.s_ctrl = ccs_set_ctrl,
790 };
791 
792 static int ccs_init_controls(struct ccs_sensor *sensor)
793 {
794 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
795 	struct v4l2_fwnode_device_properties props;
796 	int rval;
797 
798 	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 19);
799 	if (rval)
800 		return rval;
801 
802 	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
803 
804 	rval = v4l2_fwnode_device_parse(&client->dev, &props);
805 	if (rval)
806 		return rval;
807 
808 	rval = v4l2_ctrl_new_fwnode_properties(&sensor->pixel_array->ctrl_handler,
809 					       &ccs_ctrl_ops, &props);
810 	if (rval)
811 		return rval;
812 
813 	switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
814 	case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
815 		struct {
816 			const char *name;
817 			u32 id;
818 			s32 value;
819 		} const gain_ctrls[] = {
820 			{ "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
821 			  CCS_LIM(sensor, ANALOG_GAIN_M0), },
822 			{ "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
823 			  CCS_LIM(sensor, ANALOG_GAIN_C0), },
824 			{ "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
825 			  CCS_LIM(sensor, ANALOG_GAIN_M1), },
826 			{ "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
827 			  CCS_LIM(sensor, ANALOG_GAIN_C1), },
828 		};
829 		struct v4l2_ctrl_config ctrl_cfg = {
830 			.type = V4L2_CTRL_TYPE_INTEGER,
831 			.ops = &ccs_ctrl_ops,
832 			.flags = V4L2_CTRL_FLAG_READ_ONLY,
833 			.step = 1,
834 		};
835 		unsigned int i;
836 
837 		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
838 			ctrl_cfg.name = gain_ctrls[i].name;
839 			ctrl_cfg.id = gain_ctrls[i].id;
840 			ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
841 				gain_ctrls[i].value;
842 
843 			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
844 					     &ctrl_cfg, NULL);
845 		}
846 
847 		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
848 				  &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
849 				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
850 				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
851 				  max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
852 				      1U),
853 				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
854 	}
855 		break;
856 
857 	case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
858 		struct {
859 			const char *name;
860 			u32 id;
861 			u16 min, max, step;
862 		} const gain_ctrls[] = {
863 			{
864 				"Analogue Linear Gain",
865 				V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
866 				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
867 				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
868 				max(CCS_LIM(sensor,
869 					    ANALOG_LINEAR_GAIN_STEP_SIZE),
870 				    1U),
871 			},
872 			{
873 				"Analogue Exponential Gain",
874 				V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
875 				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
876 				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
877 				max(CCS_LIM(sensor,
878 					    ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
879 				    1U),
880 			},
881 		};
882 		struct v4l2_ctrl_config ctrl_cfg = {
883 			.type = V4L2_CTRL_TYPE_INTEGER,
884 			.ops = &ccs_ctrl_ops,
885 		};
886 		unsigned int i;
887 
888 		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
889 			ctrl_cfg.name = gain_ctrls[i].name;
890 			ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
891 			ctrl_cfg.max = gain_ctrls[i].max;
892 			ctrl_cfg.step = gain_ctrls[i].step;
893 			ctrl_cfg.id = gain_ctrls[i].id;
894 
895 			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
896 					     &ctrl_cfg, NULL);
897 		}
898 	}
899 	}
900 
901 	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
902 	    (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
903 	     CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
904 		const struct v4l2_ctrl_config ctrl_cfg = {
905 			.name = "Shading Correction",
906 			.type = V4L2_CTRL_TYPE_BOOLEAN,
907 			.id = V4L2_CID_CCS_SHADING_CORRECTION,
908 			.ops = &ccs_ctrl_ops,
909 			.max = 1,
910 			.step = 1,
911 		};
912 
913 		v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
914 				     &ctrl_cfg, NULL);
915 	}
916 
917 	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
918 	    CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
919 		const struct v4l2_ctrl_config ctrl_cfg = {
920 			.name = "Luminance Correction Level",
921 			.type = V4L2_CTRL_TYPE_BOOLEAN,
922 			.id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
923 			.ops = &ccs_ctrl_ops,
924 			.max = 255,
925 			.step = 1,
926 			.def = 128,
927 		};
928 
929 		sensor->luminance_level =
930 			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
931 					     &ctrl_cfg, NULL);
932 	}
933 
934 	if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
935 	    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
936 	    CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
937 	    SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
938 		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
939 				  &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
940 				  CCS_LIM(sensor, DIGITAL_GAIN_MIN),
941 				  CCS_LIM(sensor, DIGITAL_GAIN_MAX),
942 				  max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
943 				      1U),
944 				  0x100);
945 
946 	/* Exposure limits will be updated soon, use just something here. */
947 	sensor->exposure = v4l2_ctrl_new_std(
948 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
949 		V4L2_CID_EXPOSURE, 0, 0, 1, 0);
950 
951 	sensor->hflip = v4l2_ctrl_new_std(
952 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
953 		V4L2_CID_HFLIP, 0, 1, 1, 0);
954 	sensor->vflip = v4l2_ctrl_new_std(
955 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
956 		V4L2_CID_VFLIP, 0, 1, 1, 0);
957 
958 	sensor->vblank = v4l2_ctrl_new_std(
959 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
960 		V4L2_CID_VBLANK, 0, 1, 1, 0);
961 
962 	if (sensor->vblank)
963 		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
964 
965 	sensor->hblank = v4l2_ctrl_new_std(
966 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
967 		V4L2_CID_HBLANK, 0, 1, 1, 0);
968 
969 	if (sensor->hblank)
970 		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
971 
972 	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
973 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
974 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
975 
976 	v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
977 				     &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
978 				     ARRAY_SIZE(ccs_test_patterns) - 1,
979 				     0, 0, ccs_test_patterns);
980 
981 	if (sensor->pixel_array->ctrl_handler.error) {
982 		dev_err(&client->dev,
983 			"pixel array controls initialization failed (%d)\n",
984 			sensor->pixel_array->ctrl_handler.error);
985 		return sensor->pixel_array->ctrl_handler.error;
986 	}
987 
988 	sensor->pixel_array->sd.ctrl_handler =
989 		&sensor->pixel_array->ctrl_handler;
990 
991 	v4l2_ctrl_cluster(2, &sensor->hflip);
992 
993 	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
994 	if (rval)
995 		return rval;
996 
997 	sensor->src->ctrl_handler.lock = &sensor->mutex;
998 
999 	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
1000 		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
1001 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
1002 
1003 	if (sensor->src->ctrl_handler.error) {
1004 		dev_err(&client->dev,
1005 			"src controls initialization failed (%d)\n",
1006 			sensor->src->ctrl_handler.error);
1007 		return sensor->src->ctrl_handler.error;
1008 	}
1009 
1010 	sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * For controls that require information on available media bus codes
1017  * and linke frequencies.
1018  */
1019 static int ccs_init_late_controls(struct ccs_sensor *sensor)
1020 {
1021 	unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1022 		sensor->csi_format->compressed - sensor->compressed_min_bpp];
1023 	unsigned int i;
1024 
1025 	for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1026 		int max_value = (1 << sensor->csi_format->width) - 1;
1027 
1028 		sensor->test_data[i] = v4l2_ctrl_new_std(
1029 				&sensor->pixel_array->ctrl_handler,
1030 				&ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1031 				0, max_value, 1, max_value);
1032 	}
1033 
1034 	sensor->link_freq = v4l2_ctrl_new_int_menu(
1035 		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
1036 		V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
1037 		__ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
1038 
1039 	return sensor->src->ctrl_handler.error;
1040 }
1041 
1042 static void ccs_free_controls(struct ccs_sensor *sensor)
1043 {
1044 	unsigned int i;
1045 
1046 	for (i = 0; i < sensor->ssds_used; i++)
1047 		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
1048 }
1049 
1050 static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1051 {
1052 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1053 	struct ccs_pll *pll = &sensor->pll;
1054 	u8 compressed_max_bpp = 0;
1055 	unsigned int type, n;
1056 	unsigned int i, pixel_order;
1057 	int rval;
1058 
1059 	type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1060 
1061 	dev_dbg(&client->dev, "data_format_model_type %u\n", type);
1062 
1063 	rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1064 	if (rval)
1065 		return rval;
1066 
1067 	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1068 		dev_dbg(&client->dev, "bad pixel order %u\n", pixel_order);
1069 		return -EINVAL;
1070 	}
1071 
1072 	dev_dbg(&client->dev, "pixel order %u (%s)\n", pixel_order,
1073 		pixel_order_str[pixel_order]);
1074 
1075 	switch (type) {
1076 	case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1077 		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1078 		break;
1079 	case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1080 		n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1081 		break;
1082 	default:
1083 		return -EINVAL;
1084 	}
1085 
1086 	sensor->default_pixel_order = pixel_order;
1087 	sensor->mbus_frame_fmts = 0;
1088 
1089 	for (i = 0; i < n; i++) {
1090 		unsigned int fmt, j;
1091 
1092 		fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1093 
1094 		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1095 			i, fmt >> 8, (u8)fmt);
1096 
1097 		for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1098 			const struct ccs_csi_data_format *f =
1099 				&ccs_csi_data_formats[j];
1100 
1101 			if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1102 				continue;
1103 
1104 			if (f->width != fmt >>
1105 			    CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1106 			    f->compressed !=
1107 			    (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1108 				continue;
1109 
1110 			dev_dbg(&client->dev, "jolly good! %u\n", j);
1111 
1112 			sensor->default_mbus_frame_fmts |= 1 << j;
1113 		}
1114 	}
1115 
1116 	/* Figure out which BPP values can be used with which formats. */
1117 	pll->binning_horizontal = 1;
1118 	pll->binning_vertical = 1;
1119 	pll->scale_m = sensor->scale_m;
1120 
1121 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1122 		sensor->compressed_min_bpp =
1123 			min(ccs_csi_data_formats[i].compressed,
1124 			    sensor->compressed_min_bpp);
1125 		compressed_max_bpp =
1126 			max(ccs_csi_data_formats[i].compressed,
1127 			    compressed_max_bpp);
1128 	}
1129 
1130 	sensor->valid_link_freqs = devm_kcalloc(
1131 		&client->dev,
1132 		compressed_max_bpp - sensor->compressed_min_bpp + 1,
1133 		sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1134 	if (!sensor->valid_link_freqs)
1135 		return -ENOMEM;
1136 
1137 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1138 		const struct ccs_csi_data_format *f =
1139 			&ccs_csi_data_formats[i];
1140 		unsigned long *valid_link_freqs =
1141 			&sensor->valid_link_freqs[
1142 				f->compressed - sensor->compressed_min_bpp];
1143 		unsigned int j;
1144 
1145 		if (!(sensor->default_mbus_frame_fmts & 1 << i))
1146 			continue;
1147 
1148 		pll->bits_per_pixel = f->compressed;
1149 
1150 		for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1151 			pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1152 
1153 			rval = ccs_pll_try(sensor, pll);
1154 			dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1155 				pll->link_freq, pll->bits_per_pixel,
1156 				rval ? "not ok" : "ok");
1157 			if (rval)
1158 				continue;
1159 
1160 			set_bit(j, valid_link_freqs);
1161 		}
1162 
1163 		if (!*valid_link_freqs) {
1164 			dev_info(&client->dev,
1165 				 "no valid link frequencies for %u bpp\n",
1166 				 f->compressed);
1167 			sensor->default_mbus_frame_fmts &= ~BIT(i);
1168 			continue;
1169 		}
1170 
1171 		if (!sensor->csi_format
1172 		    || f->width > sensor->csi_format->width
1173 		    || (f->width == sensor->csi_format->width
1174 			&& f->compressed > sensor->csi_format->compressed)) {
1175 			sensor->csi_format = f;
1176 			sensor->internal_csi_format = f;
1177 		}
1178 	}
1179 
1180 	if (!sensor->csi_format) {
1181 		dev_err(&client->dev, "no supported mbus code found\n");
1182 		return -EINVAL;
1183 	}
1184 
1185 	ccs_update_mbus_formats(sensor);
1186 
1187 	return 0;
1188 }
1189 
1190 static void ccs_update_blanking(struct ccs_sensor *sensor)
1191 {
1192 	struct v4l2_ctrl *vblank = sensor->vblank;
1193 	struct v4l2_ctrl *hblank = sensor->hblank;
1194 	u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1195 	int min, max;
1196 
1197 	if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1198 		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1199 		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1200 		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1201 		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1202 		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1203 	} else {
1204 		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1205 		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1206 		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1207 		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1208 		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1209 	}
1210 
1211 	min = max_t(int,
1212 		    CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1213 		    min_fll - sensor->pa_src.height);
1214 	max = max_fll -	sensor->pa_src.height;
1215 
1216 	__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1217 
1218 	min = max_t(int, min_llp - sensor->pa_src.width, min_lbp);
1219 	max = max_llp - sensor->pa_src.width;
1220 
1221 	__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1222 
1223 	__ccs_update_exposure_limits(sensor);
1224 }
1225 
1226 static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1227 {
1228 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1229 	int rval;
1230 
1231 	rval = ccs_pll_update(sensor);
1232 	if (rval < 0)
1233 		return rval;
1234 
1235 	/* Output from pixel array, including blanking */
1236 	ccs_update_blanking(sensor);
1237 
1238 	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1239 	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1240 
1241 	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1242 		sensor->pll.pixel_rate_pixel_array /
1243 		((sensor->pa_src.width + sensor->hblank->val) *
1244 		 (sensor->pa_src.height + sensor->vblank->val) / 100));
1245 
1246 	return 0;
1247 }
1248 
1249 /*
1250  *
1251  * SMIA++ NVM handling
1252  *
1253  */
1254 
1255 static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1256 			     u8 *status)
1257 {
1258 	unsigned int i;
1259 	int rval;
1260 	u32 s;
1261 
1262 	*status = 0;
1263 
1264 	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1265 	if (rval)
1266 		return rval;
1267 
1268 	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1269 			 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1270 	if (rval)
1271 		return rval;
1272 
1273 	rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1274 	if (rval)
1275 		return rval;
1276 
1277 	if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1278 		*status = s;
1279 		return -ENODATA;
1280 	}
1281 
1282 	if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1283 	    CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1284 		for (i = 1000; i > 0; i--) {
1285 			if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1286 				break;
1287 
1288 			rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1289 			if (rval)
1290 				return rval;
1291 		}
1292 
1293 		if (!i)
1294 			return -ETIMEDOUT;
1295 	}
1296 
1297 	for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1298 		u32 v;
1299 
1300 		rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1301 		if (rval)
1302 			return rval;
1303 
1304 		*nvm++ = v;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1311 			size_t nvm_size)
1312 {
1313 	u8 status = 0;
1314 	u32 p;
1315 	int rval = 0, rval2;
1316 
1317 	for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1318 		     && !rval; p++) {
1319 		rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1320 		nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1321 	}
1322 
1323 	if (rval == -ENODATA &&
1324 	    status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1325 		rval = 0;
1326 
1327 	rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1328 	if (rval < 0)
1329 		return rval;
1330 	else
1331 		return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1332 }
1333 
1334 /*
1335  *
1336  * SMIA++ CCI address control
1337  *
1338  */
1339 static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1340 {
1341 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1342 	int rval;
1343 	u32 val;
1344 
1345 	client->addr = sensor->hwcfg.i2c_addr_dfl;
1346 
1347 	rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
1348 			 sensor->hwcfg.i2c_addr_alt << 1);
1349 	if (rval)
1350 		return rval;
1351 
1352 	client->addr = sensor->hwcfg.i2c_addr_alt;
1353 
1354 	/* verify addr change went ok */
1355 	rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1356 	if (rval)
1357 		return rval;
1358 
1359 	if (val != sensor->hwcfg.i2c_addr_alt << 1)
1360 		return -ENODEV;
1361 
1362 	return 0;
1363 }
1364 
1365 /*
1366  *
1367  * SMIA++ Mode Control
1368  *
1369  */
1370 static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1371 {
1372 	struct ccs_flash_strobe_parms *strobe_setup;
1373 	unsigned int ext_freq = sensor->hwcfg.ext_clk;
1374 	u32 tmp;
1375 	u32 strobe_adjustment;
1376 	u32 strobe_width_high_rs;
1377 	int rval;
1378 
1379 	strobe_setup = sensor->hwcfg.strobe_setup;
1380 
1381 	/*
1382 	 * How to calculate registers related to strobe length. Please
1383 	 * do not change, or if you do at least know what you're
1384 	 * doing. :-)
1385 	 *
1386 	 * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1387 	 *
1388 	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1389 	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
1390 	 *
1391 	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1392 	 * flash_strobe_adjustment E N, [1 - 0xff]
1393 	 *
1394 	 * The formula above is written as below to keep it on one
1395 	 * line:
1396 	 *
1397 	 * l / 10^6 = w / e * a
1398 	 *
1399 	 * Let's mark w * a by x:
1400 	 *
1401 	 * x = w * a
1402 	 *
1403 	 * Thus, we get:
1404 	 *
1405 	 * x = l * e / 10^6
1406 	 *
1407 	 * The strobe width must be at least as long as requested,
1408 	 * thus rounding upwards is needed.
1409 	 *
1410 	 * x = (l * e + 10^6 - 1) / 10^6
1411 	 * -----------------------------
1412 	 *
1413 	 * Maximum possible accuracy is wanted at all times. Thus keep
1414 	 * a as small as possible.
1415 	 *
1416 	 * Calculate a, assuming maximum w, with rounding upwards:
1417 	 *
1418 	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1419 	 * -------------------------------------
1420 	 *
1421 	 * Thus, we also get w, with that a, with rounding upwards:
1422 	 *
1423 	 * w = (x + a - 1) / a
1424 	 * -------------------
1425 	 *
1426 	 * To get limits:
1427 	 *
1428 	 * x E [1, (2^16 - 1) * (2^8 - 1)]
1429 	 *
1430 	 * Substituting maximum x to the original formula (with rounding),
1431 	 * the maximum l is thus
1432 	 *
1433 	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1434 	 *
1435 	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1436 	 * --------------------------------------------------
1437 	 *
1438 	 * flash_strobe_length must be clamped between 1 and
1439 	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1440 	 *
1441 	 * Then,
1442 	 *
1443 	 * flash_strobe_adjustment = ((flash_strobe_length *
1444 	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1445 	 *
1446 	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1447 	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
1448 	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
1449 	 */
1450 	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1451 		      1000000 + 1, ext_freq);
1452 	strobe_setup->strobe_width_high_us =
1453 		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1454 
1455 	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1456 			1000000 - 1), 1000000ULL);
1457 	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1458 	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1459 				strobe_adjustment;
1460 
1461 	rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1462 	if (rval < 0)
1463 		goto out;
1464 
1465 	rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1466 	if (rval < 0)
1467 		goto out;
1468 
1469 	rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1470 			 strobe_width_high_rs);
1471 	if (rval < 0)
1472 		goto out;
1473 
1474 	rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1475 			 strobe_setup->strobe_delay);
1476 	if (rval < 0)
1477 		goto out;
1478 
1479 	rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1480 			 strobe_setup->stobe_start_point);
1481 	if (rval < 0)
1482 		goto out;
1483 
1484 	rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1485 
1486 out:
1487 	sensor->hwcfg.strobe_setup->trigger = 0;
1488 
1489 	return rval;
1490 }
1491 
1492 /* -----------------------------------------------------------------------------
1493  * Power management
1494  */
1495 
1496 static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1497 {
1498 	int rval;
1499 
1500 	rval = ccs_write_data_regs(sensor,
1501 				   sensor->sdata.sensor_manufacturer_regs,
1502 				   sensor->sdata.num_sensor_manufacturer_regs);
1503 	if (rval)
1504 		return rval;
1505 
1506 	return ccs_write_data_regs(sensor,
1507 				   sensor->mdata.module_manufacturer_regs,
1508 				   sensor->mdata.num_module_manufacturer_regs);
1509 }
1510 
1511 static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1512 {
1513 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1514 	u8 val;
1515 
1516 	if (!sensor->ccs_limits)
1517 		return 0;
1518 
1519 	if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1520 	    CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1521 		val = CCS_PHY_CTRL_AUTO;
1522 	} else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1523 		   CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1524 		val = CCS_PHY_CTRL_UI;
1525 	} else {
1526 		dev_err(&client->dev, "manual PHY control not supported\n");
1527 		return -EINVAL;
1528 	}
1529 
1530 	return ccs_write(sensor, PHY_CTRL, val);
1531 }
1532 
1533 static int ccs_power_on(struct device *dev)
1534 {
1535 	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1536 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1537 	/*
1538 	 * The sub-device related to the I2C device is always the
1539 	 * source one, i.e. ssds[0].
1540 	 */
1541 	struct ccs_sensor *sensor =
1542 		container_of(ssd, struct ccs_sensor, ssds[0]);
1543 	const struct ccs_device *ccsdev = device_get_match_data(dev);
1544 	int rval;
1545 
1546 	rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1547 				     sensor->regulators);
1548 	if (rval) {
1549 		dev_err(dev, "failed to enable vana regulator\n");
1550 		return rval;
1551 	}
1552 
1553 	if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1554 		unsigned int sleep;
1555 
1556 		rval = clk_prepare_enable(sensor->ext_clk);
1557 		if (rval < 0) {
1558 			dev_dbg(dev, "failed to enable xclk\n");
1559 			goto out_xclk_fail;
1560 		}
1561 
1562 		gpiod_set_value(sensor->reset, 0);
1563 		gpiod_set_value(sensor->xshutdown, 1);
1564 
1565 		if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1566 			sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1567 		else
1568 			sleep = 5000;
1569 
1570 		usleep_range(sleep, sleep);
1571 	}
1572 
1573 	/*
1574 	 * Failures to respond to the address change command have been noticed.
1575 	 * Those failures seem to be caused by the sensor requiring a longer
1576 	 * boot time than advertised. An additional 10ms delay seems to work
1577 	 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1578 	 * unnecessary. The failures need to be investigated to find a proper
1579 	 * fix, and a delay will likely need to be added here if the I2C write
1580 	 * retry hack is reverted before the root cause of the boot time issue
1581 	 * is found.
1582 	 */
1583 
1584 	if (!sensor->reset && !sensor->xshutdown) {
1585 		u8 retry = 100;
1586 		u32 reset;
1587 
1588 		rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1589 		if (rval < 0) {
1590 			dev_err(dev, "software reset failed\n");
1591 			goto out_cci_addr_fail;
1592 		}
1593 
1594 		do {
1595 			rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
1596 			reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
1597 			if (reset)
1598 				break;
1599 
1600 			usleep_range(1000, 2000);
1601 		} while (--retry);
1602 
1603 		if (!reset) {
1604 			dev_err(dev, "software reset failed\n");
1605 			rval = -EIO;
1606 			goto out_cci_addr_fail;
1607 		}
1608 	}
1609 
1610 	if (sensor->hwcfg.i2c_addr_alt) {
1611 		rval = ccs_change_cci_addr(sensor);
1612 		if (rval) {
1613 			dev_err(dev, "cci address change error\n");
1614 			goto out_cci_addr_fail;
1615 		}
1616 	}
1617 
1618 	rval = ccs_write(sensor, COMPRESSION_MODE,
1619 			 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1620 	if (rval) {
1621 		dev_err(dev, "compression mode set failed\n");
1622 		goto out_cci_addr_fail;
1623 	}
1624 
1625 	rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1626 			 sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1627 	if (rval) {
1628 		dev_err(dev, "extclk frequency set failed\n");
1629 		goto out_cci_addr_fail;
1630 	}
1631 
1632 	rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1633 	if (rval) {
1634 		dev_err(dev, "csi lane mode set failed\n");
1635 		goto out_cci_addr_fail;
1636 	}
1637 
1638 	rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1639 			 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1640 	if (rval) {
1641 		dev_err(dev, "fast standby set failed\n");
1642 		goto out_cci_addr_fail;
1643 	}
1644 
1645 	rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1646 			 sensor->hwcfg.csi_signalling_mode);
1647 	if (rval) {
1648 		dev_err(dev, "csi signalling mode set failed\n");
1649 		goto out_cci_addr_fail;
1650 	}
1651 
1652 	rval = ccs_update_phy_ctrl(sensor);
1653 	if (rval < 0)
1654 		goto out_cci_addr_fail;
1655 
1656 	rval = ccs_write_msr_regs(sensor);
1657 	if (rval)
1658 		goto out_cci_addr_fail;
1659 
1660 	rval = ccs_call_quirk(sensor, post_poweron);
1661 	if (rval) {
1662 		dev_err(dev, "post_poweron quirks failed\n");
1663 		goto out_cci_addr_fail;
1664 	}
1665 
1666 	return 0;
1667 
1668 out_cci_addr_fail:
1669 	gpiod_set_value(sensor->reset, 1);
1670 	gpiod_set_value(sensor->xshutdown, 0);
1671 	clk_disable_unprepare(sensor->ext_clk);
1672 
1673 out_xclk_fail:
1674 	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1675 			       sensor->regulators);
1676 
1677 	return rval;
1678 }
1679 
1680 static int ccs_power_off(struct device *dev)
1681 {
1682 	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1683 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1684 	struct ccs_sensor *sensor =
1685 		container_of(ssd, struct ccs_sensor, ssds[0]);
1686 
1687 	/*
1688 	 * Currently power/clock to lens are enable/disabled separately
1689 	 * but they are essentially the same signals. So if the sensor is
1690 	 * powered off while the lens is powered on the sensor does not
1691 	 * really see a power off and next time the cci address change
1692 	 * will fail. So do a soft reset explicitly here.
1693 	 */
1694 	if (sensor->hwcfg.i2c_addr_alt)
1695 		ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1696 
1697 	gpiod_set_value(sensor->reset, 1);
1698 	gpiod_set_value(sensor->xshutdown, 0);
1699 	clk_disable_unprepare(sensor->ext_clk);
1700 	usleep_range(5000, 5000);
1701 	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1702 			       sensor->regulators);
1703 	sensor->streaming = false;
1704 
1705 	return 0;
1706 }
1707 
1708 /* -----------------------------------------------------------------------------
1709  * Video stream management
1710  */
1711 
1712 static int ccs_start_streaming(struct ccs_sensor *sensor)
1713 {
1714 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1715 	unsigned int binning_mode;
1716 	int rval;
1717 
1718 	mutex_lock(&sensor->mutex);
1719 
1720 	rval = ccs_write(sensor, CSI_DATA_FORMAT,
1721 			 (sensor->csi_format->width << 8) |
1722 			 sensor->csi_format->compressed);
1723 	if (rval)
1724 		goto out;
1725 
1726 	/* Binning configuration */
1727 	if (sensor->binning_horizontal == 1 &&
1728 	    sensor->binning_vertical == 1) {
1729 		binning_mode = 0;
1730 	} else {
1731 		u8 binning_type =
1732 			(sensor->binning_horizontal << 4)
1733 			| sensor->binning_vertical;
1734 
1735 		rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1736 		if (rval < 0)
1737 			goto out;
1738 
1739 		binning_mode = 1;
1740 	}
1741 	rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1742 	if (rval < 0)
1743 		goto out;
1744 
1745 	/* Set up PLL */
1746 	rval = ccs_pll_configure(sensor);
1747 	if (rval)
1748 		goto out;
1749 
1750 	/* Analog crop start coordinates */
1751 	rval = ccs_write(sensor, X_ADDR_START, sensor->pa_src.left);
1752 	if (rval < 0)
1753 		goto out;
1754 
1755 	rval = ccs_write(sensor, Y_ADDR_START, sensor->pa_src.top);
1756 	if (rval < 0)
1757 		goto out;
1758 
1759 	/* Analog crop end coordinates */
1760 	rval = ccs_write(sensor, X_ADDR_END,
1761 			 sensor->pa_src.left + sensor->pa_src.width - 1);
1762 	if (rval < 0)
1763 		goto out;
1764 
1765 	rval = ccs_write(sensor, Y_ADDR_END,
1766 			 sensor->pa_src.top + sensor->pa_src.height - 1);
1767 	if (rval < 0)
1768 		goto out;
1769 
1770 	/*
1771 	 * Output from pixel array, including blanking, is set using
1772 	 * controls below. No need to set here.
1773 	 */
1774 
1775 	/* Digital crop */
1776 	if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1777 	    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1778 		rval = ccs_write(sensor, DIGITAL_CROP_X_OFFSET,
1779 				 sensor->scaler_sink.left);
1780 		if (rval < 0)
1781 			goto out;
1782 
1783 		rval = ccs_write(sensor, DIGITAL_CROP_Y_OFFSET,
1784 				 sensor->scaler_sink.top);
1785 		if (rval < 0)
1786 			goto out;
1787 
1788 		rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_WIDTH,
1789 				 sensor->scaler_sink.width);
1790 		if (rval < 0)
1791 			goto out;
1792 
1793 		rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1794 				 sensor->scaler_sink.height);
1795 		if (rval < 0)
1796 			goto out;
1797 	}
1798 
1799 	/* Scaling */
1800 	if (CCS_LIM(sensor, SCALING_CAPABILITY)
1801 	    != CCS_SCALING_CAPABILITY_NONE) {
1802 		rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1803 		if (rval < 0)
1804 			goto out;
1805 
1806 		rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1807 		if (rval < 0)
1808 			goto out;
1809 	}
1810 
1811 	/* Output size from sensor */
1812 	rval = ccs_write(sensor, X_OUTPUT_SIZE, sensor->src_src.width);
1813 	if (rval < 0)
1814 		goto out;
1815 	rval = ccs_write(sensor, Y_OUTPUT_SIZE, sensor->src_src.height);
1816 	if (rval < 0)
1817 		goto out;
1818 
1819 	if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1820 	    (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1821 	     SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1822 	    sensor->hwcfg.strobe_setup != NULL &&
1823 	    sensor->hwcfg.strobe_setup->trigger != 0) {
1824 		rval = ccs_setup_flash_strobe(sensor);
1825 		if (rval)
1826 			goto out;
1827 	}
1828 
1829 	rval = ccs_call_quirk(sensor, pre_streamon);
1830 	if (rval) {
1831 		dev_err(&client->dev, "pre_streamon quirks failed\n");
1832 		goto out;
1833 	}
1834 
1835 	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1836 
1837 out:
1838 	mutex_unlock(&sensor->mutex);
1839 
1840 	return rval;
1841 }
1842 
1843 static int ccs_stop_streaming(struct ccs_sensor *sensor)
1844 {
1845 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1846 	int rval;
1847 
1848 	mutex_lock(&sensor->mutex);
1849 	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1850 	if (rval)
1851 		goto out;
1852 
1853 	rval = ccs_call_quirk(sensor, post_streamoff);
1854 	if (rval)
1855 		dev_err(&client->dev, "post_streamoff quirks failed\n");
1856 
1857 out:
1858 	mutex_unlock(&sensor->mutex);
1859 	return rval;
1860 }
1861 
1862 /* -----------------------------------------------------------------------------
1863  * V4L2 subdev video operations
1864  */
1865 
1866 static int ccs_pm_get_init(struct ccs_sensor *sensor)
1867 {
1868 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1869 	int rval;
1870 
1871 	/*
1872 	 * It can't use pm_runtime_resume_and_get() here, as the driver
1873 	 * relies at the returned value to detect if the device was already
1874 	 * active or not.
1875 	 */
1876 	rval = pm_runtime_get_sync(&client->dev);
1877 	if (rval < 0)
1878 		goto error;
1879 
1880 	/* Device was already active, so don't set controls */
1881 	if (rval == 1)
1882 		return 0;
1883 
1884 	/* Restore V4L2 controls to the previously suspended device */
1885 	rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
1886 	if (rval)
1887 		goto error;
1888 
1889 	rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1890 	if (rval)
1891 		goto error;
1892 
1893 	/* Keep PM runtime usage_count incremented on success */
1894 	return 0;
1895 error:
1896 	pm_runtime_put(&client->dev);
1897 	return rval;
1898 }
1899 
1900 static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1901 {
1902 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1903 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1904 	int rval;
1905 
1906 	if (!enable) {
1907 		ccs_stop_streaming(sensor);
1908 		sensor->streaming = false;
1909 		pm_runtime_mark_last_busy(&client->dev);
1910 		pm_runtime_put_autosuspend(&client->dev);
1911 
1912 		return 0;
1913 	}
1914 
1915 	rval = ccs_pm_get_init(sensor);
1916 	if (rval)
1917 		return rval;
1918 
1919 	sensor->streaming = true;
1920 
1921 	rval = ccs_start_streaming(sensor);
1922 	if (rval < 0) {
1923 		sensor->streaming = false;
1924 		pm_runtime_mark_last_busy(&client->dev);
1925 		pm_runtime_put_autosuspend(&client->dev);
1926 	}
1927 
1928 	return rval;
1929 }
1930 
1931 static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1932 {
1933 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1934 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1935 	int rval;
1936 
1937 	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1938 		switch (sensor->hwcfg.csi_signalling_mode) {
1939 		case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1940 			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1941 			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1942 				return -EACCES;
1943 			break;
1944 		case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1945 			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1946 			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1947 				return -EACCES;
1948 			break;
1949 		default:
1950 			return -EACCES;
1951 		}
1952 	}
1953 
1954 	rval = ccs_pm_get_init(sensor);
1955 	if (rval)
1956 		return rval;
1957 
1958 	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1959 		rval = ccs_write(sensor, MANUAL_LP_CTRL,
1960 				 CCS_MANUAL_LP_CTRL_ENABLE);
1961 		if (rval)
1962 			pm_runtime_put(&client->dev);
1963 	}
1964 
1965 	return rval;
1966 }
1967 
1968 static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1969 {
1970 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1971 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1972 
1973 	return pm_runtime_put(&client->dev);
1974 }
1975 
1976 static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
1977 			      struct v4l2_subdev_state *sd_state,
1978 			      struct v4l2_subdev_mbus_code_enum *code)
1979 {
1980 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1981 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1982 	unsigned int i;
1983 	int idx = -1;
1984 	int rval = -EINVAL;
1985 
1986 	mutex_lock(&sensor->mutex);
1987 
1988 	dev_err(&client->dev, "subdev %s, pad %u, index %u\n",
1989 		subdev->name, code->pad, code->index);
1990 
1991 	if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
1992 		if (code->index)
1993 			goto out;
1994 
1995 		code->code = sensor->internal_csi_format->code;
1996 		rval = 0;
1997 		goto out;
1998 	}
1999 
2000 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2001 		if (sensor->mbus_frame_fmts & (1 << i))
2002 			idx++;
2003 
2004 		if (idx == code->index) {
2005 			code->code = ccs_csi_data_formats[i].code;
2006 			dev_err(&client->dev, "found index %u, i %u, code %x\n",
2007 				code->index, i, code->code);
2008 			rval = 0;
2009 			break;
2010 		}
2011 	}
2012 
2013 out:
2014 	mutex_unlock(&sensor->mutex);
2015 
2016 	return rval;
2017 }
2018 
2019 static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2020 {
2021 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2022 
2023 	if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2024 		return sensor->csi_format->code;
2025 	else
2026 		return sensor->internal_csi_format->code;
2027 }
2028 
2029 static int __ccs_get_format(struct v4l2_subdev *subdev,
2030 			    struct v4l2_subdev_state *sd_state,
2031 			    struct v4l2_subdev_format *fmt)
2032 {
2033 	fmt->format = *v4l2_subdev_get_pad_format(subdev, sd_state, fmt->pad);
2034 	fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2035 
2036 	return 0;
2037 }
2038 
2039 static int ccs_get_format(struct v4l2_subdev *subdev,
2040 			  struct v4l2_subdev_state *sd_state,
2041 			  struct v4l2_subdev_format *fmt)
2042 {
2043 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2044 	int rval;
2045 
2046 	mutex_lock(&sensor->mutex);
2047 	rval = __ccs_get_format(subdev, sd_state, fmt);
2048 	mutex_unlock(&sensor->mutex);
2049 
2050 	return rval;
2051 }
2052 
2053 static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2054 				 struct v4l2_subdev_state *sd_state,
2055 				 struct v4l2_rect **crops,
2056 				 struct v4l2_rect **comps)
2057 {
2058 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2059 	unsigned int i;
2060 
2061 	if (crops)
2062 		for (i = 0; i < subdev->entity.num_pads; i++)
2063 			crops[i] =
2064 				v4l2_subdev_get_pad_crop(subdev, sd_state, i);
2065 	if (comps)
2066 		*comps = v4l2_subdev_get_pad_compose(subdev, sd_state,
2067 						     ssd->sink_pad);
2068 }
2069 
2070 /* Changes require propagation only on sink pad. */
2071 static void ccs_propagate(struct v4l2_subdev *subdev,
2072 			  struct v4l2_subdev_state *sd_state, int which,
2073 			  int target)
2074 {
2075 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2076 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2077 	struct v4l2_rect *comp, *crops[CCS_PADS];
2078 	struct v4l2_mbus_framefmt *fmt;
2079 
2080 	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2081 
2082 	switch (target) {
2083 	case V4L2_SEL_TGT_CROP:
2084 		comp->width = crops[CCS_PAD_SINK]->width;
2085 		comp->height = crops[CCS_PAD_SINK]->height;
2086 		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2087 			if (ssd == sensor->scaler) {
2088 				sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2089 				sensor->scaling_mode =
2090 					CCS_SCALING_MODE_NO_SCALING;
2091 				sensor->scaler_sink = *comp;
2092 			} else if (ssd == sensor->binner) {
2093 				sensor->binning_horizontal = 1;
2094 				sensor->binning_vertical = 1;
2095 			}
2096 		}
2097 		fallthrough;
2098 	case V4L2_SEL_TGT_COMPOSE:
2099 		*crops[CCS_PAD_SRC] = *comp;
2100 		fmt = v4l2_subdev_get_pad_format(subdev, sd_state, CCS_PAD_SRC);
2101 		fmt->width = comp->width;
2102 		fmt->height = comp->height;
2103 		if (which == V4L2_SUBDEV_FORMAT_ACTIVE && ssd == sensor->src)
2104 			sensor->src_src = *crops[CCS_PAD_SRC];
2105 		break;
2106 	default:
2107 		WARN_ON_ONCE(1);
2108 	}
2109 }
2110 
2111 static const struct ccs_csi_data_format
2112 *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2113 {
2114 	unsigned int i;
2115 
2116 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2117 		if (sensor->mbus_frame_fmts & (1 << i) &&
2118 		    ccs_csi_data_formats[i].code == code)
2119 			return &ccs_csi_data_formats[i];
2120 	}
2121 
2122 	return sensor->csi_format;
2123 }
2124 
2125 static int ccs_set_format_source(struct v4l2_subdev *subdev,
2126 				 struct v4l2_subdev_state *sd_state,
2127 				 struct v4l2_subdev_format *fmt)
2128 {
2129 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2130 	const struct ccs_csi_data_format *csi_format,
2131 		*old_csi_format = sensor->csi_format;
2132 	unsigned long *valid_link_freqs;
2133 	u32 code = fmt->format.code;
2134 	unsigned int i;
2135 	int rval;
2136 
2137 	rval = __ccs_get_format(subdev, sd_state, fmt);
2138 	if (rval)
2139 		return rval;
2140 
2141 	/*
2142 	 * Media bus code is changeable on src subdev's source pad. On
2143 	 * other source pads we just get format here.
2144 	 */
2145 	if (subdev != &sensor->src->sd)
2146 		return 0;
2147 
2148 	csi_format = ccs_validate_csi_data_format(sensor, code);
2149 
2150 	fmt->format.code = csi_format->code;
2151 
2152 	if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2153 		return 0;
2154 
2155 	sensor->csi_format = csi_format;
2156 
2157 	if (csi_format->width != old_csi_format->width)
2158 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2159 			__v4l2_ctrl_modify_range(
2160 				sensor->test_data[i], 0,
2161 				(1 << csi_format->width) - 1, 1, 0);
2162 
2163 	if (csi_format->compressed == old_csi_format->compressed)
2164 		return 0;
2165 
2166 	valid_link_freqs =
2167 		&sensor->valid_link_freqs[sensor->csi_format->compressed
2168 					  - sensor->compressed_min_bpp];
2169 
2170 	__v4l2_ctrl_modify_range(
2171 		sensor->link_freq, 0,
2172 		__fls(*valid_link_freqs), ~*valid_link_freqs,
2173 		__ffs(*valid_link_freqs));
2174 
2175 	return ccs_pll_update(sensor);
2176 }
2177 
2178 static int ccs_set_format(struct v4l2_subdev *subdev,
2179 			  struct v4l2_subdev_state *sd_state,
2180 			  struct v4l2_subdev_format *fmt)
2181 {
2182 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2183 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2184 	struct v4l2_rect *crops[CCS_PADS];
2185 
2186 	mutex_lock(&sensor->mutex);
2187 
2188 	if (fmt->pad == ssd->source_pad) {
2189 		int rval;
2190 
2191 		rval = ccs_set_format_source(subdev, sd_state, fmt);
2192 
2193 		mutex_unlock(&sensor->mutex);
2194 
2195 		return rval;
2196 	}
2197 
2198 	/* Sink pad. Width and height are changeable here. */
2199 	fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2200 	fmt->format.width &= ~1;
2201 	fmt->format.height &= ~1;
2202 	fmt->format.field = V4L2_FIELD_NONE;
2203 
2204 	fmt->format.width =
2205 		clamp(fmt->format.width,
2206 		      CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2207 		      CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2208 	fmt->format.height =
2209 		clamp(fmt->format.height,
2210 		      CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2211 		      CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2212 
2213 	ccs_get_crop_compose(subdev, sd_state, crops, NULL);
2214 
2215 	crops[ssd->sink_pad]->left = 0;
2216 	crops[ssd->sink_pad]->top = 0;
2217 	crops[ssd->sink_pad]->width = fmt->format.width;
2218 	crops[ssd->sink_pad]->height = fmt->format.height;
2219 	ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
2220 
2221 	mutex_unlock(&sensor->mutex);
2222 
2223 	return 0;
2224 }
2225 
2226 /*
2227  * Calculate goodness of scaled image size compared to expected image
2228  * size and flags provided.
2229  */
2230 #define SCALING_GOODNESS		100000
2231 #define SCALING_GOODNESS_EXTREME	100000000
2232 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2233 			    int h, int ask_h, u32 flags)
2234 {
2235 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2236 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2237 	int val = 0;
2238 
2239 	w &= ~1;
2240 	ask_w &= ~1;
2241 	h &= ~1;
2242 	ask_h &= ~1;
2243 
2244 	if (flags & V4L2_SEL_FLAG_GE) {
2245 		if (w < ask_w)
2246 			val -= SCALING_GOODNESS;
2247 		if (h < ask_h)
2248 			val -= SCALING_GOODNESS;
2249 	}
2250 
2251 	if (flags & V4L2_SEL_FLAG_LE) {
2252 		if (w > ask_w)
2253 			val -= SCALING_GOODNESS;
2254 		if (h > ask_h)
2255 			val -= SCALING_GOODNESS;
2256 	}
2257 
2258 	val -= abs(w - ask_w);
2259 	val -= abs(h - ask_h);
2260 
2261 	if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2262 		val -= SCALING_GOODNESS_EXTREME;
2263 
2264 	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2265 		w, ask_w, h, ask_h, val);
2266 
2267 	return val;
2268 }
2269 
2270 static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2271 				   struct v4l2_subdev_state *sd_state,
2272 				   struct v4l2_subdev_selection *sel,
2273 				   struct v4l2_rect **crops,
2274 				   struct v4l2_rect *comp)
2275 {
2276 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2277 	unsigned int i;
2278 	unsigned int binh = 1, binv = 1;
2279 	int best = scaling_goodness(
2280 		subdev,
2281 		crops[CCS_PAD_SINK]->width, sel->r.width,
2282 		crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2283 
2284 	for (i = 0; i < sensor->nbinning_subtypes; i++) {
2285 		int this = scaling_goodness(
2286 			subdev,
2287 			crops[CCS_PAD_SINK]->width
2288 			/ sensor->binning_subtypes[i].horizontal,
2289 			sel->r.width,
2290 			crops[CCS_PAD_SINK]->height
2291 			/ sensor->binning_subtypes[i].vertical,
2292 			sel->r.height, sel->flags);
2293 
2294 		if (this > best) {
2295 			binh = sensor->binning_subtypes[i].horizontal;
2296 			binv = sensor->binning_subtypes[i].vertical;
2297 			best = this;
2298 		}
2299 	}
2300 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2301 		sensor->binning_vertical = binv;
2302 		sensor->binning_horizontal = binh;
2303 	}
2304 
2305 	sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2306 	sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2307 }
2308 
2309 /*
2310  * Calculate best scaling ratio and mode for given output resolution.
2311  *
2312  * Try all of these: horizontal ratio, vertical ratio and smallest
2313  * size possible (horizontally).
2314  *
2315  * Also try whether horizontal scaler or full scaler gives a better
2316  * result.
2317  */
2318 static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2319 				   struct v4l2_subdev_state *sd_state,
2320 				   struct v4l2_subdev_selection *sel,
2321 				   struct v4l2_rect **crops,
2322 				   struct v4l2_rect *comp)
2323 {
2324 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2325 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2326 	u32 min, max, a, b, max_m;
2327 	u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2328 	int mode = CCS_SCALING_MODE_HORIZONTAL;
2329 	u32 try[4];
2330 	u32 ntry = 0;
2331 	unsigned int i;
2332 	int best = INT_MIN;
2333 
2334 	sel->r.width = min_t(unsigned int, sel->r.width,
2335 			     crops[CCS_PAD_SINK]->width);
2336 	sel->r.height = min_t(unsigned int, sel->r.height,
2337 			      crops[CCS_PAD_SINK]->height);
2338 
2339 	a = crops[CCS_PAD_SINK]->width
2340 		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2341 	b = crops[CCS_PAD_SINK]->height
2342 		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2343 	max_m = crops[CCS_PAD_SINK]->width
2344 		* CCS_LIM(sensor, SCALER_N_MIN)
2345 		/ CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2346 
2347 	a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2348 		  CCS_LIM(sensor, SCALER_M_MAX));
2349 	b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2350 		  CCS_LIM(sensor, SCALER_M_MAX));
2351 	max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2352 		      CCS_LIM(sensor, SCALER_M_MAX));
2353 
2354 	dev_dbg(&client->dev, "scaling: a %u b %u max_m %u\n", a, b, max_m);
2355 
2356 	min = min(max_m, min(a, b));
2357 	max = min(max_m, max(a, b));
2358 
2359 	try[ntry] = min;
2360 	ntry++;
2361 	if (min != max) {
2362 		try[ntry] = max;
2363 		ntry++;
2364 	}
2365 	if (max != max_m) {
2366 		try[ntry] = min + 1;
2367 		ntry++;
2368 		if (min != max) {
2369 			try[ntry] = max + 1;
2370 			ntry++;
2371 		}
2372 	}
2373 
2374 	for (i = 0; i < ntry; i++) {
2375 		int this = scaling_goodness(
2376 			subdev,
2377 			crops[CCS_PAD_SINK]->width
2378 			/ try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2379 			sel->r.width,
2380 			crops[CCS_PAD_SINK]->height,
2381 			sel->r.height,
2382 			sel->flags);
2383 
2384 		dev_dbg(&client->dev, "trying factor %u (%u)\n", try[i], i);
2385 
2386 		if (this > best) {
2387 			scale_m = try[i];
2388 			mode = CCS_SCALING_MODE_HORIZONTAL;
2389 			best = this;
2390 		}
2391 
2392 		if (CCS_LIM(sensor, SCALING_CAPABILITY)
2393 		    == CCS_SCALING_CAPABILITY_HORIZONTAL)
2394 			continue;
2395 
2396 		this = scaling_goodness(
2397 			subdev, crops[CCS_PAD_SINK]->width
2398 			/ try[i]
2399 			* CCS_LIM(sensor, SCALER_N_MIN),
2400 			sel->r.width,
2401 			crops[CCS_PAD_SINK]->height
2402 			/ try[i]
2403 			* CCS_LIM(sensor, SCALER_N_MIN),
2404 			sel->r.height,
2405 			sel->flags);
2406 
2407 		if (this > best) {
2408 			scale_m = try[i];
2409 			mode = SMIAPP_SCALING_MODE_BOTH;
2410 			best = this;
2411 		}
2412 	}
2413 
2414 	sel->r.width =
2415 		(crops[CCS_PAD_SINK]->width
2416 		 / scale_m
2417 		 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2418 	if (mode == SMIAPP_SCALING_MODE_BOTH)
2419 		sel->r.height =
2420 			(crops[CCS_PAD_SINK]->height
2421 			 / scale_m
2422 			 * CCS_LIM(sensor, SCALER_N_MIN))
2423 			& ~1;
2424 	else
2425 		sel->r.height = crops[CCS_PAD_SINK]->height;
2426 
2427 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2428 		sensor->scale_m = scale_m;
2429 		sensor->scaling_mode = mode;
2430 	}
2431 }
2432 /* We're only called on source pads. This function sets scaling. */
2433 static int ccs_set_compose(struct v4l2_subdev *subdev,
2434 			   struct v4l2_subdev_state *sd_state,
2435 			   struct v4l2_subdev_selection *sel)
2436 {
2437 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2438 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2439 	struct v4l2_rect *comp, *crops[CCS_PADS];
2440 
2441 	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2442 
2443 	sel->r.top = 0;
2444 	sel->r.left = 0;
2445 
2446 	if (ssd == sensor->binner)
2447 		ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2448 	else
2449 		ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2450 
2451 	*comp = sel->r;
2452 	ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
2453 
2454 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2455 		return ccs_pll_blanking_update(sensor);
2456 
2457 	return 0;
2458 }
2459 
2460 static int ccs_sel_supported(struct v4l2_subdev *subdev,
2461 			     struct v4l2_subdev_selection *sel)
2462 {
2463 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2464 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2465 
2466 	/* We only implement crop in three places. */
2467 	switch (sel->target) {
2468 	case V4L2_SEL_TGT_CROP:
2469 	case V4L2_SEL_TGT_CROP_BOUNDS:
2470 		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2471 			return 0;
2472 		if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2473 			return 0;
2474 		if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2475 		    CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2476 		    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2477 			return 0;
2478 		return -EINVAL;
2479 	case V4L2_SEL_TGT_NATIVE_SIZE:
2480 		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2481 			return 0;
2482 		return -EINVAL;
2483 	case V4L2_SEL_TGT_COMPOSE:
2484 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2485 		if (sel->pad == ssd->source_pad)
2486 			return -EINVAL;
2487 		if (ssd == sensor->binner)
2488 			return 0;
2489 		if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2490 		    != CCS_SCALING_CAPABILITY_NONE)
2491 			return 0;
2492 		fallthrough;
2493 	default:
2494 		return -EINVAL;
2495 	}
2496 }
2497 
2498 static int ccs_set_crop(struct v4l2_subdev *subdev,
2499 			struct v4l2_subdev_state *sd_state,
2500 			struct v4l2_subdev_selection *sel)
2501 {
2502 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2503 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2504 	struct v4l2_rect src_size = { 0 }, *crops[CCS_PADS], *comp;
2505 
2506 	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2507 
2508 	if (sel->pad == ssd->sink_pad) {
2509 		struct v4l2_mbus_framefmt *mfmt =
2510 			v4l2_subdev_get_pad_format(subdev, sd_state, sel->pad);
2511 
2512 		src_size.width = mfmt->width;
2513 		src_size.height = mfmt->height;
2514 	} else {
2515 		src_size = *comp;
2516 	}
2517 
2518 	if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2519 		sel->r.left = 0;
2520 		sel->r.top = 0;
2521 	}
2522 
2523 	sel->r.width = min(sel->r.width, src_size.width);
2524 	sel->r.height = min(sel->r.height, src_size.height);
2525 
2526 	sel->r.left = min_t(int, sel->r.left, src_size.width - sel->r.width);
2527 	sel->r.top = min_t(int, sel->r.top, src_size.height - sel->r.height);
2528 
2529 	*crops[sel->pad] = sel->r;
2530 
2531 	if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2532 		ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
2533 	else if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE &&
2534 		 ssd == sensor->pixel_array)
2535 		sensor->pa_src = sel->r;
2536 
2537 	return 0;
2538 }
2539 
2540 static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2541 {
2542 	r->top = 0;
2543 	r->left = 0;
2544 	r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2545 	r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2546 }
2547 
2548 static int ccs_get_selection(struct v4l2_subdev *subdev,
2549 			     struct v4l2_subdev_state *sd_state,
2550 			     struct v4l2_subdev_selection *sel)
2551 {
2552 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2553 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2554 	struct v4l2_rect *comp, *crops[CCS_PADS];
2555 	int ret;
2556 
2557 	ret = ccs_sel_supported(subdev, sel);
2558 	if (ret)
2559 		return ret;
2560 
2561 	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2562 
2563 	switch (sel->target) {
2564 	case V4L2_SEL_TGT_CROP_BOUNDS:
2565 	case V4L2_SEL_TGT_NATIVE_SIZE:
2566 		if (ssd == sensor->pixel_array) {
2567 			ccs_get_native_size(ssd, &sel->r);
2568 		} else if (sel->pad == ssd->sink_pad) {
2569 			struct v4l2_mbus_framefmt *sink_fmt =
2570 				v4l2_subdev_get_pad_format(subdev, sd_state,
2571 							   ssd->sink_pad);
2572 			sel->r.top = sel->r.left = 0;
2573 			sel->r.width = sink_fmt->width;
2574 			sel->r.height = sink_fmt->height;
2575 		} else {
2576 			sel->r = *comp;
2577 		}
2578 		break;
2579 	case V4L2_SEL_TGT_CROP:
2580 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2581 		sel->r = *crops[sel->pad];
2582 		break;
2583 	case V4L2_SEL_TGT_COMPOSE:
2584 		sel->r = *comp;
2585 		break;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static int ccs_set_selection(struct v4l2_subdev *subdev,
2592 			     struct v4l2_subdev_state *sd_state,
2593 			     struct v4l2_subdev_selection *sel)
2594 {
2595 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2596 	int ret;
2597 
2598 	ret = ccs_sel_supported(subdev, sel);
2599 	if (ret)
2600 		return ret;
2601 
2602 	mutex_lock(&sensor->mutex);
2603 
2604 	sel->r.left = max(0, sel->r.left & ~1);
2605 	sel->r.top = max(0, sel->r.top & ~1);
2606 	sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2607 	sel->r.height =	CCS_ALIGN_DIM(sel->r.height, sel->flags);
2608 
2609 	sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2610 			     sel->r.width);
2611 	sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2612 			      sel->r.height);
2613 
2614 	switch (sel->target) {
2615 	case V4L2_SEL_TGT_CROP:
2616 		ret = ccs_set_crop(subdev, sd_state, sel);
2617 		break;
2618 	case V4L2_SEL_TGT_COMPOSE:
2619 		ret = ccs_set_compose(subdev, sd_state, sel);
2620 		break;
2621 	default:
2622 		ret = -EINVAL;
2623 	}
2624 
2625 	mutex_unlock(&sensor->mutex);
2626 	return ret;
2627 }
2628 
2629 static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2630 {
2631 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2632 
2633 	*frames = sensor->frame_skip;
2634 	return 0;
2635 }
2636 
2637 static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2638 {
2639 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2640 
2641 	*lines = sensor->image_start;
2642 
2643 	return 0;
2644 }
2645 
2646 /* -----------------------------------------------------------------------------
2647  * sysfs attributes
2648  */
2649 
2650 static ssize_t
2651 nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2652 {
2653 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2654 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2655 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2656 	int rval;
2657 
2658 	if (!sensor->dev_init_done)
2659 		return -EBUSY;
2660 
2661 	rval = ccs_pm_get_init(sensor);
2662 	if (rval < 0)
2663 		return -ENODEV;
2664 
2665 	rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2666 	if (rval < 0) {
2667 		pm_runtime_put(&client->dev);
2668 		dev_err(&client->dev, "nvm read failed\n");
2669 		return -ENODEV;
2670 	}
2671 
2672 	pm_runtime_mark_last_busy(&client->dev);
2673 	pm_runtime_put_autosuspend(&client->dev);
2674 
2675 	/*
2676 	 * NVM is still way below a PAGE_SIZE, so we can safely
2677 	 * assume this for now.
2678 	 */
2679 	return rval;
2680 }
2681 static DEVICE_ATTR_RO(nvm);
2682 
2683 static ssize_t
2684 ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2685 {
2686 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2687 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2688 	struct ccs_module_info *minfo = &sensor->minfo;
2689 
2690 	if (minfo->mipi_manufacturer_id)
2691 		return sysfs_emit(buf, "%4.4x%4.4x%2.2x\n",
2692 				    minfo->mipi_manufacturer_id, minfo->model_id,
2693 				    minfo->revision_number) + 1;
2694 	else
2695 		return sysfs_emit(buf, "%2.2x%4.4x%2.2x\n",
2696 				    minfo->smia_manufacturer_id, minfo->model_id,
2697 				    minfo->revision_number) + 1;
2698 }
2699 static DEVICE_ATTR_RO(ident);
2700 
2701 /* -----------------------------------------------------------------------------
2702  * V4L2 subdev core operations
2703  */
2704 
2705 static int ccs_identify_module(struct ccs_sensor *sensor)
2706 {
2707 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2708 	struct ccs_module_info *minfo = &sensor->minfo;
2709 	unsigned int i;
2710 	u32 rev;
2711 	int rval = 0;
2712 
2713 	/* Module info */
2714 	rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2715 			&minfo->mipi_manufacturer_id);
2716 	if (!rval && !minfo->mipi_manufacturer_id)
2717 		rval = ccs_read_addr_8only(sensor,
2718 					   SMIAPP_REG_U8_MANUFACTURER_ID,
2719 					   &minfo->smia_manufacturer_id);
2720 	if (!rval)
2721 		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID,
2722 					   &minfo->model_id);
2723 	if (!rval)
2724 		rval = ccs_read_addr_8only(sensor,
2725 					   CCS_R_MODULE_REVISION_NUMBER_MAJOR,
2726 					   &rev);
2727 	if (!rval) {
2728 		rval = ccs_read_addr_8only(sensor,
2729 					   CCS_R_MODULE_REVISION_NUMBER_MINOR,
2730 					   &minfo->revision_number);
2731 		minfo->revision_number |= rev << 8;
2732 	}
2733 	if (!rval)
2734 		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR,
2735 					   &minfo->module_year);
2736 	if (!rval)
2737 		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH,
2738 					   &minfo->module_month);
2739 	if (!rval)
2740 		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY,
2741 					   &minfo->module_day);
2742 
2743 	/* Sensor info */
2744 	if (!rval)
2745 		rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2746 				&minfo->sensor_mipi_manufacturer_id);
2747 	if (!rval && !minfo->sensor_mipi_manufacturer_id)
2748 		rval = ccs_read_addr_8only(sensor,
2749 					   CCS_R_SENSOR_MANUFACTURER_ID,
2750 					   &minfo->sensor_smia_manufacturer_id);
2751 	if (!rval)
2752 		rval = ccs_read_addr_8only(sensor,
2753 					   CCS_R_SENSOR_MODEL_ID,
2754 					   &minfo->sensor_model_id);
2755 	if (!rval)
2756 		rval = ccs_read_addr_8only(sensor,
2757 					   CCS_R_SENSOR_REVISION_NUMBER,
2758 					   &minfo->sensor_revision_number);
2759 	if (!rval && !minfo->sensor_revision_number)
2760 		rval = ccs_read_addr_8only(sensor,
2761 					   CCS_R_SENSOR_REVISION_NUMBER_16,
2762 					   &minfo->sensor_revision_number);
2763 	if (!rval)
2764 		rval = ccs_read_addr_8only(sensor,
2765 					   CCS_R_SENSOR_FIRMWARE_VERSION,
2766 					   &minfo->sensor_firmware_version);
2767 
2768 	/* SMIA */
2769 	if (!rval)
2770 		rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2771 	if (!rval && !minfo->ccs_version)
2772 		rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2773 					   &minfo->smia_version);
2774 	if (!rval && !minfo->ccs_version)
2775 		rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2776 					   &minfo->smiapp_version);
2777 
2778 	if (rval) {
2779 		dev_err(&client->dev, "sensor detection failed\n");
2780 		return -ENODEV;
2781 	}
2782 
2783 	if (minfo->mipi_manufacturer_id)
2784 		dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2785 			minfo->mipi_manufacturer_id, minfo->model_id);
2786 	else
2787 		dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2788 			minfo->smia_manufacturer_id, minfo->model_id);
2789 
2790 	dev_dbg(&client->dev,
2791 		"module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2792 		minfo->revision_number, minfo->module_year, minfo->module_month,
2793 		minfo->module_day);
2794 
2795 	if (minfo->sensor_mipi_manufacturer_id)
2796 		dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2797 			minfo->sensor_mipi_manufacturer_id,
2798 			minfo->sensor_model_id);
2799 	else
2800 		dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2801 			minfo->sensor_smia_manufacturer_id,
2802 			minfo->sensor_model_id);
2803 
2804 	dev_dbg(&client->dev,
2805 		"sensor revision 0x%4.4x firmware version 0x%2.2x\n",
2806 		minfo->sensor_revision_number, minfo->sensor_firmware_version);
2807 
2808 	if (minfo->ccs_version) {
2809 		dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2810 			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2811 			>> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2812 			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2813 		minfo->name = CCS_NAME;
2814 	} else {
2815 		dev_dbg(&client->dev,
2816 			"smia version %2.2d smiapp version %2.2d\n",
2817 			minfo->smia_version, minfo->smiapp_version);
2818 		minfo->name = SMIAPP_NAME;
2819 		/*
2820 		 * Some modules have bad data in the lvalues below. Hope the
2821 		 * rvalues have better stuff. The lvalues are module
2822 		 * parameters whereas the rvalues are sensor parameters.
2823 		 */
2824 		if (minfo->sensor_smia_manufacturer_id &&
2825 		    !minfo->smia_manufacturer_id && !minfo->model_id) {
2826 			minfo->smia_manufacturer_id =
2827 				minfo->sensor_smia_manufacturer_id;
2828 			minfo->model_id = minfo->sensor_model_id;
2829 			minfo->revision_number = minfo->sensor_revision_number;
2830 		}
2831 	}
2832 
2833 	for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2834 		if (ccs_module_idents[i].mipi_manufacturer_id &&
2835 		    ccs_module_idents[i].mipi_manufacturer_id
2836 		    != minfo->mipi_manufacturer_id)
2837 			continue;
2838 		if (ccs_module_idents[i].smia_manufacturer_id &&
2839 		    ccs_module_idents[i].smia_manufacturer_id
2840 		    != minfo->smia_manufacturer_id)
2841 			continue;
2842 		if (ccs_module_idents[i].model_id != minfo->model_id)
2843 			continue;
2844 		if (ccs_module_idents[i].flags
2845 		    & CCS_MODULE_IDENT_FLAG_REV_LE) {
2846 			if (ccs_module_idents[i].revision_number_major
2847 			    < (minfo->revision_number >> 8))
2848 				continue;
2849 		} else {
2850 			if (ccs_module_idents[i].revision_number_major
2851 			    != (minfo->revision_number >> 8))
2852 				continue;
2853 		}
2854 
2855 		minfo->name = ccs_module_idents[i].name;
2856 		minfo->quirk = ccs_module_idents[i].quirk;
2857 		break;
2858 	}
2859 
2860 	if (i >= ARRAY_SIZE(ccs_module_idents))
2861 		dev_warn(&client->dev,
2862 			 "no quirks for this module; let's hope it's fully compliant\n");
2863 
2864 	dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2865 
2866 	return 0;
2867 }
2868 
2869 static const struct v4l2_subdev_ops ccs_ops;
2870 static const struct media_entity_operations ccs_entity_ops;
2871 
2872 static int ccs_register_subdev(struct ccs_sensor *sensor,
2873 			       struct ccs_subdev *ssd,
2874 			       struct ccs_subdev *sink_ssd,
2875 			       u16 source_pad, u16 sink_pad, u32 link_flags)
2876 {
2877 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2878 	int rval;
2879 
2880 	if (!sink_ssd)
2881 		return 0;
2882 
2883 	rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2884 	if (rval) {
2885 		dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2886 		return rval;
2887 	}
2888 
2889 	rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2890 				     &sink_ssd->sd.entity, sink_pad,
2891 				     link_flags);
2892 	if (rval) {
2893 		dev_err(&client->dev, "media_create_pad_link failed\n");
2894 		v4l2_device_unregister_subdev(&ssd->sd);
2895 		return rval;
2896 	}
2897 
2898 	return 0;
2899 }
2900 
2901 static void ccs_unregistered(struct v4l2_subdev *subdev)
2902 {
2903 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2904 	unsigned int i;
2905 
2906 	for (i = 1; i < sensor->ssds_used; i++)
2907 		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2908 }
2909 
2910 static int ccs_registered(struct v4l2_subdev *subdev)
2911 {
2912 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2913 	int rval;
2914 
2915 	if (sensor->scaler) {
2916 		rval = ccs_register_subdev(sensor, sensor->binner,
2917 					   sensor->scaler,
2918 					   CCS_PAD_SRC, CCS_PAD_SINK,
2919 					   MEDIA_LNK_FL_ENABLED |
2920 					   MEDIA_LNK_FL_IMMUTABLE);
2921 		if (rval < 0)
2922 			return rval;
2923 	}
2924 
2925 	rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
2926 				   CCS_PA_PAD_SRC, CCS_PAD_SINK,
2927 				   MEDIA_LNK_FL_ENABLED |
2928 				   MEDIA_LNK_FL_IMMUTABLE);
2929 	if (rval)
2930 		goto out_err;
2931 
2932 	return 0;
2933 
2934 out_err:
2935 	ccs_unregistered(subdev);
2936 
2937 	return rval;
2938 }
2939 
2940 static void ccs_cleanup(struct ccs_sensor *sensor)
2941 {
2942 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2943 	unsigned int i;
2944 
2945 	for (i = 0; i < sensor->ssds_used; i++) {
2946 		v4l2_subdev_cleanup(&sensor->ssds[2].sd);
2947 		media_entity_cleanup(&sensor->ssds[i].sd.entity);
2948 	}
2949 
2950 	device_remove_file(&client->dev, &dev_attr_nvm);
2951 	device_remove_file(&client->dev, &dev_attr_ident);
2952 
2953 	ccs_free_controls(sensor);
2954 }
2955 
2956 static int ccs_init_subdev(struct ccs_sensor *sensor,
2957 			   struct ccs_subdev *ssd, const char *name,
2958 			   unsigned short num_pads, u32 function,
2959 			   const char *lock_name,
2960 			   struct lock_class_key *lock_key)
2961 {
2962 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2963 	int rval;
2964 
2965 	if (!ssd)
2966 		return 0;
2967 
2968 	if (ssd != sensor->src)
2969 		v4l2_subdev_init(&ssd->sd, &ccs_ops);
2970 
2971 	ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2972 	ssd->sd.entity.function = function;
2973 	ssd->sensor = sensor;
2974 
2975 	ssd->npads = num_pads;
2976 	ssd->source_pad = num_pads - 1;
2977 
2978 	v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
2979 
2980 	ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2981 	if (ssd != sensor->pixel_array)
2982 		ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2983 
2984 	ssd->sd.entity.ops = &ccs_entity_ops;
2985 
2986 	if (ssd != sensor->src) {
2987 		ssd->sd.owner = THIS_MODULE;
2988 		ssd->sd.dev = &client->dev;
2989 		v4l2_set_subdevdata(&ssd->sd, client);
2990 	}
2991 
2992 	rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2993 	if (rval) {
2994 		dev_err(&client->dev, "media_entity_pads_init failed\n");
2995 		return rval;
2996 	}
2997 
2998 	rval = __v4l2_subdev_init_finalize(&ssd->sd, lock_name, lock_key);
2999 	if (rval) {
3000 		media_entity_cleanup(&ssd->sd.entity);
3001 		return rval;
3002 	}
3003 
3004 	return 0;
3005 }
3006 
3007 static int ccs_init_cfg(struct v4l2_subdev *sd,
3008 			struct v4l2_subdev_state *sd_state)
3009 {
3010 	struct ccs_subdev *ssd = to_ccs_subdev(sd);
3011 	struct ccs_sensor *sensor = ssd->sensor;
3012 	unsigned int pad = ssd == sensor->pixel_array ?
3013 		CCS_PA_PAD_SRC : CCS_PAD_SINK;
3014 	struct v4l2_mbus_framefmt *fmt =
3015 		v4l2_subdev_get_pad_format(sd, sd_state, pad);
3016 	struct v4l2_rect *crop =
3017 		v4l2_subdev_get_pad_crop(sd, sd_state, pad);
3018 	bool is_active = !sd->active_state || sd->active_state == sd_state;
3019 
3020 	mutex_lock(&sensor->mutex);
3021 
3022 	ccs_get_native_size(ssd, crop);
3023 
3024 	fmt->width = crop->width;
3025 	fmt->height = crop->height;
3026 	fmt->code = sensor->internal_csi_format->code;
3027 	fmt->field = V4L2_FIELD_NONE;
3028 
3029 	if (ssd == sensor->pixel_array) {
3030 		if (is_active)
3031 			sensor->pa_src = *crop;
3032 
3033 		mutex_unlock(&sensor->mutex);
3034 		return 0;
3035 	}
3036 
3037 	fmt = v4l2_subdev_get_pad_format(sd, sd_state, CCS_PAD_SRC);
3038 	fmt->code = ssd == sensor->src ?
3039 		sensor->csi_format->code : sensor->internal_csi_format->code;
3040 	fmt->field = V4L2_FIELD_NONE;
3041 
3042 	ccs_propagate(sd, sd_state, is_active, V4L2_SEL_TGT_CROP);
3043 
3044 	mutex_unlock(&sensor->mutex);
3045 
3046 	return 0;
3047 }
3048 
3049 static const struct v4l2_subdev_video_ops ccs_video_ops = {
3050 	.s_stream = ccs_set_stream,
3051 	.pre_streamon = ccs_pre_streamon,
3052 	.post_streamoff = ccs_post_streamoff,
3053 };
3054 
3055 static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3056 	.init_cfg = ccs_init_cfg,
3057 	.enum_mbus_code = ccs_enum_mbus_code,
3058 	.get_fmt = ccs_get_format,
3059 	.set_fmt = ccs_set_format,
3060 	.get_selection = ccs_get_selection,
3061 	.set_selection = ccs_set_selection,
3062 };
3063 
3064 static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3065 	.g_skip_frames = ccs_get_skip_frames,
3066 	.g_skip_top_lines = ccs_get_skip_top_lines,
3067 };
3068 
3069 static const struct v4l2_subdev_ops ccs_ops = {
3070 	.video = &ccs_video_ops,
3071 	.pad = &ccs_pad_ops,
3072 	.sensor = &ccs_sensor_ops,
3073 };
3074 
3075 static const struct media_entity_operations ccs_entity_ops = {
3076 	.link_validate = v4l2_subdev_link_validate,
3077 };
3078 
3079 static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3080 	.registered = ccs_registered,
3081 	.unregistered = ccs_unregistered,
3082 };
3083 
3084 /* -----------------------------------------------------------------------------
3085  * I2C Driver
3086  */
3087 
3088 static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3089 {
3090 	struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3091 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3092 	struct fwnode_handle *ep;
3093 	struct fwnode_handle *fwnode = dev_fwnode(dev);
3094 	unsigned int i;
3095 	int rval;
3096 
3097 	ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
3098 					     FWNODE_GRAPH_ENDPOINT_NEXT);
3099 	if (!ep)
3100 		return -ENODEV;
3101 
3102 	/*
3103 	 * Note that we do need to rely on detecting the bus type between CSI-2
3104 	 * D-PHY and CCP2 as the old bindings did not require it.
3105 	 */
3106 	rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
3107 	if (rval)
3108 		goto out_err;
3109 
3110 	switch (bus_cfg.bus_type) {
3111 	case V4L2_MBUS_CSI2_DPHY:
3112 		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3113 		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3114 		break;
3115 	case V4L2_MBUS_CSI2_CPHY:
3116 		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3117 		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3118 		break;
3119 	case V4L2_MBUS_CSI1:
3120 	case V4L2_MBUS_CCP2:
3121 		hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3122 		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3123 		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3124 		hwcfg->lanes = 1;
3125 		break;
3126 	default:
3127 		dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3128 		rval = -EINVAL;
3129 		goto out_err;
3130 	}
3131 
3132 	rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
3133 					&hwcfg->ext_clk);
3134 	if (rval)
3135 		dev_info(dev, "can't get clock-frequency\n");
3136 
3137 	dev_dbg(dev, "clk %u, mode %u\n", hwcfg->ext_clk,
3138 		hwcfg->csi_signalling_mode);
3139 
3140 	if (!bus_cfg.nr_of_link_frequencies) {
3141 		dev_warn(dev, "no link frequencies defined\n");
3142 		rval = -EINVAL;
3143 		goto out_err;
3144 	}
3145 
3146 	hwcfg->op_sys_clock = devm_kcalloc(
3147 		dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3148 		sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3149 	if (!hwcfg->op_sys_clock) {
3150 		rval = -ENOMEM;
3151 		goto out_err;
3152 	}
3153 
3154 	for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3155 		hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3156 		dev_dbg(dev, "freq %u: %lld\n", i, hwcfg->op_sys_clock[i]);
3157 	}
3158 
3159 	v4l2_fwnode_endpoint_free(&bus_cfg);
3160 	fwnode_handle_put(ep);
3161 
3162 	return 0;
3163 
3164 out_err:
3165 	v4l2_fwnode_endpoint_free(&bus_cfg);
3166 	fwnode_handle_put(ep);
3167 
3168 	return rval;
3169 }
3170 
3171 static int ccs_firmware_name(struct i2c_client *client,
3172 			     struct ccs_sensor *sensor, char *filename,
3173 			     size_t filename_size, bool is_module)
3174 {
3175 	const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3176 	bool is_ccs = !(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA);
3177 	bool is_smiapp = sensor->minfo.smiapp_version;
3178 	u16 manufacturer_id;
3179 	u16 model_id;
3180 	u16 revision_number;
3181 
3182 	/*
3183 	 * Old SMIA is module-agnostic. Its sensor identification is based on
3184 	 * what now are those of the module.
3185 	 */
3186 	if (is_module || (!is_ccs && !is_smiapp)) {
3187 		manufacturer_id = is_ccs ?
3188 			sensor->minfo.mipi_manufacturer_id :
3189 			sensor->minfo.smia_manufacturer_id;
3190 		model_id = sensor->minfo.model_id;
3191 		revision_number = sensor->minfo.revision_number;
3192 	} else {
3193 		manufacturer_id = is_ccs ?
3194 			sensor->minfo.sensor_mipi_manufacturer_id :
3195 			sensor->minfo.sensor_smia_manufacturer_id;
3196 		model_id = sensor->minfo.sensor_model_id;
3197 		revision_number = sensor->minfo.sensor_revision_number;
3198 	}
3199 
3200 	return snprintf(filename, filename_size,
3201 			"ccs/%s-%s-%0*x-%4.4x-%0*x.fw",
3202 			is_ccs ? "ccs" : is_smiapp ? "smiapp" : "smia",
3203 			is_module || (!is_ccs && !is_smiapp) ?
3204 				"module" : "sensor",
3205 			is_ccs ? 4 : 2, manufacturer_id, model_id,
3206 			!is_ccs && !is_module ? 2 : 4, revision_number);
3207 }
3208 
3209 static int ccs_probe(struct i2c_client *client)
3210 {
3211 	static struct lock_class_key pixel_array_lock_key, binner_lock_key,
3212 		scaler_lock_key;
3213 	const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3214 	struct ccs_sensor *sensor;
3215 	const struct firmware *fw;
3216 	char filename[40];
3217 	unsigned int i;
3218 	int rval;
3219 
3220 	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3221 	if (sensor == NULL)
3222 		return -ENOMEM;
3223 
3224 	rval = ccs_get_hwconfig(sensor, &client->dev);
3225 	if (rval)
3226 		return rval;
3227 
3228 	sensor->src = &sensor->ssds[sensor->ssds_used];
3229 
3230 	v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3231 	sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3232 
3233 	sensor->regulators = devm_kcalloc(&client->dev,
3234 					  ARRAY_SIZE(ccs_regulators),
3235 					  sizeof(*sensor->regulators),
3236 					  GFP_KERNEL);
3237 	if (!sensor->regulators)
3238 		return -ENOMEM;
3239 
3240 	for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3241 		sensor->regulators[i].supply = ccs_regulators[i];
3242 
3243 	rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3244 				       sensor->regulators);
3245 	if (rval) {
3246 		dev_err(&client->dev, "could not get regulators\n");
3247 		return rval;
3248 	}
3249 
3250 	sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3251 	if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3252 		dev_info(&client->dev, "no clock defined, continuing...\n");
3253 		sensor->ext_clk = NULL;
3254 	} else if (IS_ERR(sensor->ext_clk)) {
3255 		dev_err(&client->dev, "could not get clock (%ld)\n",
3256 			PTR_ERR(sensor->ext_clk));
3257 		return -EPROBE_DEFER;
3258 	}
3259 
3260 	if (sensor->ext_clk) {
3261 		if (sensor->hwcfg.ext_clk) {
3262 			unsigned long rate;
3263 
3264 			rval = clk_set_rate(sensor->ext_clk,
3265 					    sensor->hwcfg.ext_clk);
3266 			if (rval < 0) {
3267 				dev_err(&client->dev,
3268 					"unable to set clock freq to %u\n",
3269 					sensor->hwcfg.ext_clk);
3270 				return rval;
3271 			}
3272 
3273 			rate = clk_get_rate(sensor->ext_clk);
3274 			if (rate != sensor->hwcfg.ext_clk) {
3275 				dev_err(&client->dev,
3276 					"can't set clock freq, asked for %u but got %lu\n",
3277 					sensor->hwcfg.ext_clk, rate);
3278 				return -EINVAL;
3279 			}
3280 		} else {
3281 			sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3282 			dev_dbg(&client->dev, "obtained clock freq %u\n",
3283 				sensor->hwcfg.ext_clk);
3284 		}
3285 	} else if (sensor->hwcfg.ext_clk) {
3286 		dev_dbg(&client->dev, "assuming clock freq %u\n",
3287 			sensor->hwcfg.ext_clk);
3288 	} else {
3289 		dev_err(&client->dev, "unable to obtain clock freq\n");
3290 		return -EINVAL;
3291 	}
3292 
3293 	if (!sensor->hwcfg.ext_clk) {
3294 		dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3295 		return -EINVAL;
3296 	}
3297 
3298 	sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3299 						GPIOD_OUT_HIGH);
3300 	if (IS_ERR(sensor->reset))
3301 		return PTR_ERR(sensor->reset);
3302 	/* Support old users that may have used "xshutdown" property. */
3303 	if (!sensor->reset)
3304 		sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3305 							    "xshutdown",
3306 							    GPIOD_OUT_LOW);
3307 	if (IS_ERR(sensor->xshutdown))
3308 		return PTR_ERR(sensor->xshutdown);
3309 
3310 	rval = ccs_power_on(&client->dev);
3311 	if (rval < 0)
3312 		return rval;
3313 
3314 	mutex_init(&sensor->mutex);
3315 
3316 	rval = ccs_identify_module(sensor);
3317 	if (rval) {
3318 		rval = -ENODEV;
3319 		goto out_power_off;
3320 	}
3321 
3322 	rval = ccs_firmware_name(client, sensor, filename, sizeof(filename),
3323 				 false);
3324 	if (rval >= sizeof(filename)) {
3325 		rval = -ENOMEM;
3326 		goto out_power_off;
3327 	}
3328 
3329 	rval = request_firmware(&fw, filename, &client->dev);
3330 	if (!rval) {
3331 		ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
3332 			       true);
3333 		release_firmware(fw);
3334 	}
3335 
3336 	if (!(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) ||
3337 	    sensor->minfo.smiapp_version) {
3338 		rval = ccs_firmware_name(client, sensor, filename,
3339 					 sizeof(filename), true);
3340 		if (rval >= sizeof(filename)) {
3341 			rval = -ENOMEM;
3342 			goto out_release_sdata;
3343 		}
3344 
3345 		rval = request_firmware(&fw, filename, &client->dev);
3346 		if (!rval) {
3347 			ccs_data_parse(&sensor->mdata, fw->data, fw->size,
3348 				       &client->dev, true);
3349 			release_firmware(fw);
3350 		}
3351 	}
3352 
3353 	rval = ccs_read_all_limits(sensor);
3354 	if (rval)
3355 		goto out_release_mdata;
3356 
3357 	rval = ccs_read_frame_fmt(sensor);
3358 	if (rval) {
3359 		rval = -ENODEV;
3360 		goto out_free_ccs_limits;
3361 	}
3362 
3363 	rval = ccs_update_phy_ctrl(sensor);
3364 	if (rval < 0)
3365 		goto out_free_ccs_limits;
3366 
3367 	rval = ccs_call_quirk(sensor, limits);
3368 	if (rval) {
3369 		dev_err(&client->dev, "limits quirks failed\n");
3370 		goto out_free_ccs_limits;
3371 	}
3372 
3373 	if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3374 		sensor->nbinning_subtypes =
3375 			min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3376 			      CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3377 
3378 		for (i = 0; i < sensor->nbinning_subtypes; i++) {
3379 			sensor->binning_subtypes[i].horizontal =
3380 				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3381 				CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3382 			sensor->binning_subtypes[i].vertical =
3383 				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3384 				CCS_BINNING_SUB_TYPE_ROW_MASK;
3385 
3386 			dev_dbg(&client->dev, "binning %xx%x\n",
3387 				sensor->binning_subtypes[i].horizontal,
3388 				sensor->binning_subtypes[i].vertical);
3389 		}
3390 	}
3391 	sensor->binning_horizontal = 1;
3392 	sensor->binning_vertical = 1;
3393 
3394 	if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3395 		dev_err(&client->dev, "sysfs ident entry creation failed\n");
3396 		rval = -ENOENT;
3397 		goto out_free_ccs_limits;
3398 	}
3399 
3400 	if (sensor->minfo.smiapp_version &&
3401 	    CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3402 	    CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3403 		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3404 			dev_err(&client->dev, "sysfs nvm entry failed\n");
3405 			rval = -EBUSY;
3406 			goto out_cleanup;
3407 		}
3408 	}
3409 
3410 	if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3411 	    !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3412 	    !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3413 	    !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3414 		/* No OP clock branch */
3415 		sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3416 	} else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3417 		   != CCS_SCALING_CAPABILITY_NONE ||
3418 		   CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3419 		   == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3420 		/* We have a scaler or digital crop. */
3421 		sensor->scaler = &sensor->ssds[sensor->ssds_used];
3422 		sensor->ssds_used++;
3423 	}
3424 	sensor->binner = &sensor->ssds[sensor->ssds_used];
3425 	sensor->ssds_used++;
3426 	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3427 	sensor->ssds_used++;
3428 
3429 	sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3430 
3431 	/* prepare PLL configuration input values */
3432 	sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3433 	sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3434 	if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3435 	    CCS_CLOCK_CALCULATION_LANE_SPEED) {
3436 		sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3437 		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3438 		    CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3439 			sensor->pll.vt_lanes =
3440 				CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3441 			sensor->pll.op_lanes =
3442 				CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3443 			sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
3444 		} else {
3445 			sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3446 			sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3447 		}
3448 	}
3449 	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3450 	    CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3451 		sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3452 	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3453 	    CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3454 		sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3455 	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3456 	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3457 		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3458 	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3459 	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3460 		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3461 				     CCS_PLL_FLAG_FIFO_OVERRATING;
3462 	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3463 	    CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3464 		if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3465 		    CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3466 			u32 v;
3467 
3468 			/* Use sensor default in PLL mode selection */
3469 			rval = ccs_read(sensor, PLL_MODE, &v);
3470 			if (rval)
3471 				goto out_cleanup;
3472 
3473 			if (v == CCS_PLL_MODE_DUAL)
3474 				sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3475 		} else {
3476 			sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3477 		}
3478 		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3479 		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3480 			sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3481 		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3482 		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3483 			sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3484 	}
3485 	sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3486 	sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3487 	sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3488 
3489 	rval = ccs_get_mbus_formats(sensor);
3490 	if (rval) {
3491 		rval = -ENODEV;
3492 		goto out_cleanup;
3493 	}
3494 
3495 	rval = ccs_init_subdev(sensor, sensor->scaler, " scaler", 2,
3496 			       MEDIA_ENT_F_PROC_VIDEO_SCALER,
3497 			       "ccs scaler mutex", &scaler_lock_key);
3498 	if (rval)
3499 		goto out_cleanup;
3500 	rval = ccs_init_subdev(sensor, sensor->binner, " binner", 2,
3501 			       MEDIA_ENT_F_PROC_VIDEO_SCALER,
3502 			       "ccs binner mutex", &binner_lock_key);
3503 	if (rval)
3504 		goto out_cleanup;
3505 	rval = ccs_init_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3506 			       MEDIA_ENT_F_CAM_SENSOR, "ccs pixel array mutex",
3507 			       &pixel_array_lock_key);
3508 	if (rval)
3509 		goto out_cleanup;
3510 
3511 	rval = ccs_init_controls(sensor);
3512 	if (rval < 0)
3513 		goto out_cleanup;
3514 
3515 	rval = ccs_call_quirk(sensor, init);
3516 	if (rval)
3517 		goto out_cleanup;
3518 
3519 	rval = ccs_init_late_controls(sensor);
3520 	if (rval) {
3521 		rval = -ENODEV;
3522 		goto out_cleanup;
3523 	}
3524 
3525 	mutex_lock(&sensor->mutex);
3526 	rval = ccs_pll_blanking_update(sensor);
3527 	mutex_unlock(&sensor->mutex);
3528 	if (rval) {
3529 		dev_err(&client->dev, "update mode failed\n");
3530 		goto out_cleanup;
3531 	}
3532 
3533 	sensor->streaming = false;
3534 	sensor->dev_init_done = true;
3535 
3536 	rval = ccs_write_msr_regs(sensor);
3537 	if (rval)
3538 		goto out_cleanup;
3539 
3540 	pm_runtime_set_active(&client->dev);
3541 	pm_runtime_get_noresume(&client->dev);
3542 	pm_runtime_enable(&client->dev);
3543 
3544 	rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
3545 	if (rval < 0)
3546 		goto out_disable_runtime_pm;
3547 
3548 	pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3549 	pm_runtime_use_autosuspend(&client->dev);
3550 	pm_runtime_put_autosuspend(&client->dev);
3551 
3552 	return 0;
3553 
3554 out_disable_runtime_pm:
3555 	pm_runtime_put_noidle(&client->dev);
3556 	pm_runtime_disable(&client->dev);
3557 
3558 out_cleanup:
3559 	ccs_cleanup(sensor);
3560 
3561 out_release_mdata:
3562 	kvfree(sensor->mdata.backing);
3563 
3564 out_release_sdata:
3565 	kvfree(sensor->sdata.backing);
3566 
3567 out_free_ccs_limits:
3568 	kfree(sensor->ccs_limits);
3569 
3570 out_power_off:
3571 	ccs_power_off(&client->dev);
3572 	mutex_destroy(&sensor->mutex);
3573 
3574 	return rval;
3575 }
3576 
3577 static void ccs_remove(struct i2c_client *client)
3578 {
3579 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3580 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3581 	unsigned int i;
3582 
3583 	v4l2_async_unregister_subdev(subdev);
3584 
3585 	pm_runtime_disable(&client->dev);
3586 	if (!pm_runtime_status_suspended(&client->dev))
3587 		ccs_power_off(&client->dev);
3588 	pm_runtime_set_suspended(&client->dev);
3589 
3590 	for (i = 0; i < sensor->ssds_used; i++)
3591 		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3592 	ccs_cleanup(sensor);
3593 	mutex_destroy(&sensor->mutex);
3594 	kfree(sensor->ccs_limits);
3595 	kvfree(sensor->sdata.backing);
3596 	kvfree(sensor->mdata.backing);
3597 }
3598 
3599 static const struct ccs_device smia_device = {
3600 	.flags = CCS_DEVICE_FLAG_IS_SMIA,
3601 };
3602 
3603 static const struct ccs_device ccs_device = {};
3604 
3605 static const struct acpi_device_id ccs_acpi_table[] = {
3606 	{ .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3607 	{ },
3608 };
3609 MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3610 
3611 static const struct of_device_id ccs_of_table[] = {
3612 	{ .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3613 	{ .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3614 	{ .compatible = "mipi-ccs", .data = &ccs_device },
3615 	{ .compatible = "nokia,smia", .data = &smia_device },
3616 	{ },
3617 };
3618 MODULE_DEVICE_TABLE(of, ccs_of_table);
3619 
3620 static const struct dev_pm_ops ccs_pm_ops = {
3621 	SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3622 };
3623 
3624 static struct i2c_driver ccs_i2c_driver = {
3625 	.driver	= {
3626 		.acpi_match_table = ccs_acpi_table,
3627 		.of_match_table = ccs_of_table,
3628 		.name = CCS_NAME,
3629 		.pm = &ccs_pm_ops,
3630 	},
3631 	.probe = ccs_probe,
3632 	.remove	= ccs_remove,
3633 };
3634 
3635 static int ccs_module_init(void)
3636 {
3637 	unsigned int i, l;
3638 
3639 	for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3640 		if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3641 			ccs_limit_offsets[l + 1].lim =
3642 				ALIGN(ccs_limit_offsets[l].lim +
3643 				      ccs_limits[i].size,
3644 				      ccs_reg_width(ccs_limits[i + 1].reg));
3645 			ccs_limit_offsets[l].info = i;
3646 			l++;
3647 		} else {
3648 			ccs_limit_offsets[l].lim += ccs_limits[i].size;
3649 		}
3650 	}
3651 
3652 	if (WARN_ON(ccs_limits[i].size))
3653 		return -EINVAL;
3654 
3655 	if (WARN_ON(l != CCS_L_LAST))
3656 		return -EINVAL;
3657 
3658 	return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3659 }
3660 
3661 static void ccs_module_cleanup(void)
3662 {
3663 	i2c_del_driver(&ccs_i2c_driver);
3664 }
3665 
3666 module_init(ccs_module_init);
3667 module_exit(ccs_module_cleanup);
3668 
3669 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3670 MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3671 MODULE_LICENSE("GPL v2");
3672 MODULE_ALIAS("smiapp");
3673