1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Aptina Sensor PLL Configuration 4 * 5 * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com> 6 */ 7 8 #include <linux/device.h> 9 #include <linux/gcd.h> 10 #include <linux/kernel.h> 11 #include <linux/lcm.h> 12 #include <linux/module.h> 13 14 #include "aptina-pll.h" 15 16 int aptina_pll_calculate(struct device *dev, 17 const struct aptina_pll_limits *limits, 18 struct aptina_pll *pll) 19 { 20 unsigned int mf_min; 21 unsigned int mf_max; 22 unsigned int p1_min; 23 unsigned int p1_max; 24 unsigned int p1; 25 unsigned int div; 26 27 dev_dbg(dev, "PLL: ext clock %u pix clock %u\n", 28 pll->ext_clock, pll->pix_clock); 29 30 if (pll->ext_clock < limits->ext_clock_min || 31 pll->ext_clock > limits->ext_clock_max) { 32 dev_err(dev, "pll: invalid external clock frequency.\n"); 33 return -EINVAL; 34 } 35 36 if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) { 37 dev_err(dev, "pll: invalid pixel clock frequency.\n"); 38 return -EINVAL; 39 } 40 41 /* Compute the multiplier M and combined N*P1 divisor. */ 42 div = gcd(pll->pix_clock, pll->ext_clock); 43 pll->m = pll->pix_clock / div; 44 div = pll->ext_clock / div; 45 46 /* We now have the smallest M and N*P1 values that will result in the 47 * desired pixel clock frequency, but they might be out of the valid 48 * range. Compute the factor by which we should multiply them given the 49 * following constraints: 50 * 51 * - minimum/maximum multiplier 52 * - minimum/maximum multiplier output clock frequency assuming the 53 * minimum/maximum N value 54 * - minimum/maximum combined N*P1 divisor 55 */ 56 mf_min = DIV_ROUND_UP(limits->m_min, pll->m); 57 mf_min = max(mf_min, limits->out_clock_min / 58 (pll->ext_clock / limits->n_min * pll->m)); 59 mf_min = max(mf_min, limits->n_min * limits->p1_min / div); 60 mf_max = limits->m_max / pll->m; 61 mf_max = min(mf_max, limits->out_clock_max / 62 (pll->ext_clock / limits->n_max * pll->m)); 63 mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div)); 64 65 dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max); 66 if (mf_min > mf_max) { 67 dev_err(dev, "pll: no valid combined N*P1 divisor.\n"); 68 return -EINVAL; 69 } 70 71 /* 72 * We're looking for the highest acceptable P1 value for which a 73 * multiplier factor MF exists that fulfills the following conditions: 74 * 75 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is 76 * even 77 * 2. mf is in the [mf_min, mf_max] range computed above 78 * 3. div * mf is a multiple of p1, in order to compute 79 * n = div * mf / p1 80 * m = pll->m * mf 81 * 4. the internal clock frequency, given by ext_clock / n, is in the 82 * [int_clock_min, int_clock_max] range given by the limits 83 * 5. the output clock frequency, given by ext_clock / n * m, is in the 84 * [out_clock_min, out_clock_max] range given by the limits 85 * 86 * The first naive approach is to iterate over all p1 values acceptable 87 * according to (1) and all mf values acceptable according to (2), and 88 * stop at the first combination that fulfills (3), (4) and (5). This 89 * has a O(n^2) complexity. 90 * 91 * Instead of iterating over all mf values in the [mf_min, mf_max] range 92 * we can compute the mf increment between two acceptable values 93 * according to (3) with 94 * 95 * mf_inc = p1 / gcd(div, p1) (6) 96 * 97 * and round the minimum up to the nearest multiple of mf_inc. This will 98 * restrict the number of mf values to be checked. 99 * 100 * Furthermore, conditions (4) and (5) only restrict the range of 101 * acceptable p1 and mf values by modifying the minimum and maximum 102 * limits. (5) can be expressed as 103 * 104 * ext_clock / (div * mf / p1) * m * mf >= out_clock_min 105 * ext_clock / (div * mf / p1) * m * mf <= out_clock_max 106 * 107 * or 108 * 109 * p1 >= out_clock_min * div / (ext_clock * m) (7) 110 * p1 <= out_clock_max * div / (ext_clock * m) 111 * 112 * Similarly, (4) can be expressed as 113 * 114 * mf >= ext_clock * p1 / (int_clock_max * div) (8) 115 * mf <= ext_clock * p1 / (int_clock_min * div) 116 * 117 * We can thus iterate over the restricted p1 range defined by the 118 * combination of (1) and (7), and then compute the restricted mf range 119 * defined by the combination of (2), (6) and (8). If the resulting mf 120 * range is not empty, any value in the mf range is acceptable. We thus 121 * select the mf lwoer bound and the corresponding p1 value. 122 */ 123 if (limits->p1_min == 0) { 124 dev_err(dev, "pll: P1 minimum value must be >0.\n"); 125 return -EINVAL; 126 } 127 128 p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div, 129 pll->ext_clock * pll->m)); 130 p1_max = min(limits->p1_max, limits->out_clock_max * div / 131 (pll->ext_clock * pll->m)); 132 133 for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) { 134 unsigned int mf_inc = p1 / gcd(div, p1); 135 unsigned int mf_high; 136 unsigned int mf_low; 137 138 mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1, 139 limits->int_clock_max * div)), mf_inc); 140 mf_high = min(mf_max, pll->ext_clock * p1 / 141 (limits->int_clock_min * div)); 142 143 if (mf_low > mf_high) 144 continue; 145 146 pll->n = div * mf_low / p1; 147 pll->m *= mf_low; 148 pll->p1 = p1; 149 dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1); 150 return 0; 151 } 152 153 dev_err(dev, "pll: no valid N and P1 divisors found.\n"); 154 return -EINVAL; 155 } 156 EXPORT_SYMBOL_GPL(aptina_pll_calculate); 157 158 MODULE_DESCRIPTION("Aptina PLL Helpers"); 159 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); 160 MODULE_LICENSE("GPL v2"); 161