xref: /linux/drivers/media/i2c/adv7604.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * adv7604 - Analog Devices ADV7604 video decoder driver
4  *
5  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  *
7  */
8 
9 /*
10  * References (c = chapter, p = page):
11  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12  *		Revision 2.5, June 2010
13  * REF_02 - Analog devices, Register map documentation, Documentation of
14  *		the register maps, Software manual, Rev. F, June 2010
15  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16  */
17 
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 #include <linux/interrupt.h>
31 
32 #include <media/i2c/adv7604.h>
33 #include <media/cec.h>
34 #include <media/v4l2-ctrls.h>
35 #include <media/v4l2-device.h>
36 #include <media/v4l2-event.h>
37 #include <media/v4l2-dv-timings.h>
38 #include <media/v4l2-fwnode.h>
39 
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
43 
44 MODULE_DESCRIPTION("Analog Devices ADV7604/10/11/12 video decoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hansverk@cisco.com>");
46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47 MODULE_LICENSE("GPL");
48 
49 /* ADV7604 system clock frequency */
50 #define ADV76XX_FSC (28636360)
51 
52 #define ADV76XX_RGB_OUT					(1 << 1)
53 
54 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
55 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
56 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
57 
58 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
59 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
60 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
61 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
63 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
64 
65 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
66 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
67 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
68 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
69 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
70 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
71 
72 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
73 
74 #define ADV76XX_MAX_ADDRS (3)
75 
76 #define ADV76XX_MAX_EDID_BLOCKS 4
77 
78 enum adv76xx_type {
79 	ADV7604,
80 	ADV7611, // including ADV7610
81 	ADV7612,
82 };
83 
84 struct adv76xx_reg_seq {
85 	unsigned int reg;
86 	u8 val;
87 };
88 
89 struct adv76xx_format_info {
90 	u32 code;
91 	u8 op_ch_sel;
92 	bool rgb_out;
93 	bool swap_cb_cr;
94 	u8 op_format_sel;
95 };
96 
97 struct adv76xx_cfg_read_infoframe {
98 	const char *desc;
99 	u8 present_mask;
100 	u8 head_addr;
101 	u8 payload_addr;
102 };
103 
104 struct adv76xx_chip_info {
105 	enum adv76xx_type type;
106 
107 	bool has_afe;
108 	unsigned int max_port;
109 	unsigned int num_dv_ports;
110 
111 	unsigned int edid_enable_reg;
112 	unsigned int edid_status_reg;
113 	unsigned int edid_segment_reg;
114 	unsigned int edid_segment_mask;
115 	unsigned int edid_spa_loc_reg;
116 	unsigned int edid_spa_loc_msb_mask;
117 	unsigned int edid_spa_port_b_reg;
118 	unsigned int lcf_reg;
119 
120 	unsigned int cable_det_mask;
121 	unsigned int tdms_lock_mask;
122 	unsigned int fmt_change_digital_mask;
123 	unsigned int cp_csc;
124 
125 	unsigned int cec_irq_status;
126 	unsigned int cec_rx_enable;
127 	unsigned int cec_rx_enable_mask;
128 	bool cec_irq_swap;
129 
130 	const struct adv76xx_format_info *formats;
131 	unsigned int nformats;
132 
133 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
134 	void (*setup_irqs)(struct v4l2_subdev *sd);
135 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
136 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
137 
138 	/* 0 = AFE, 1 = HDMI */
139 	const struct adv76xx_reg_seq *recommended_settings[2];
140 	unsigned int num_recommended_settings[2];
141 
142 	unsigned long page_mask;
143 
144 	/* Masks for timings */
145 	unsigned int linewidth_mask;
146 	unsigned int field0_height_mask;
147 	unsigned int field1_height_mask;
148 	unsigned int hfrontporch_mask;
149 	unsigned int hsync_mask;
150 	unsigned int hbackporch_mask;
151 	unsigned int field0_vfrontporch_mask;
152 	unsigned int field1_vfrontporch_mask;
153 	unsigned int field0_vsync_mask;
154 	unsigned int field1_vsync_mask;
155 	unsigned int field0_vbackporch_mask;
156 	unsigned int field1_vbackporch_mask;
157 };
158 
159 /*
160  **********************************************************************
161  *
162  *  Arrays with configuration parameters for the ADV7604
163  *
164  **********************************************************************
165  */
166 
167 struct adv76xx_state {
168 	const struct adv76xx_chip_info *info;
169 	struct adv76xx_platform_data pdata;
170 
171 	struct gpio_desc *hpd_gpio[4];
172 	struct gpio_desc *reset_gpio;
173 
174 	struct v4l2_subdev sd;
175 	struct media_pad pads[ADV76XX_PAD_MAX];
176 	unsigned int source_pad;
177 
178 	struct v4l2_ctrl_handler hdl;
179 
180 	enum adv76xx_pad selected_input;
181 
182 	struct v4l2_dv_timings timings;
183 	const struct adv76xx_format_info *format;
184 
185 	struct {
186 		u8 edid[ADV76XX_MAX_EDID_BLOCKS * 128];
187 		u32 present;
188 		unsigned blocks;
189 	} edid;
190 	u16 spa_port_a[2];
191 	struct v4l2_fract aspect_ratio;
192 	u32 rgb_quantization_range;
193 	struct delayed_work delayed_work_enable_hotplug;
194 	bool restart_stdi_once;
195 
196 	struct dentry *debugfs_dir;
197 	struct v4l2_debugfs_if *infoframes;
198 
199 	/* CEC */
200 	struct cec_adapter *cec_adap;
201 	u8   cec_addr[ADV76XX_MAX_ADDRS];
202 	u8   cec_valid_addrs;
203 	bool cec_enabled_adap;
204 
205 	/* i2c clients */
206 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
207 
208 	/* Regmaps */
209 	struct regmap *regmap[ADV76XX_PAGE_MAX];
210 
211 	/* controls */
212 	struct v4l2_ctrl *detect_tx_5v_ctrl;
213 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
214 	struct v4l2_ctrl *free_run_color_manual_ctrl;
215 	struct v4l2_ctrl *free_run_color_ctrl;
216 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
217 };
218 
219 static bool adv76xx_has_afe(struct adv76xx_state *state)
220 {
221 	return state->info->has_afe;
222 }
223 
224 /* Unsupported timings. This device cannot support 720p30. */
225 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
226 	V4L2_DV_BT_CEA_1280X720P30,
227 	{ }
228 };
229 
230 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
231 {
232 	int i;
233 
234 	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
235 		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
236 			return false;
237 	return true;
238 }
239 
240 struct adv76xx_video_standards {
241 	struct v4l2_dv_timings timings;
242 	u8 vid_std;
243 	u8 v_freq;
244 };
245 
246 /* sorted by number of lines */
247 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
248 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
249 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
250 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
251 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
252 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
253 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
254 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
255 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
256 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
257 	/* TODO add 1920x1080P60_RB (CVT timing) */
258 	{ },
259 };
260 
261 /* sorted by number of lines */
262 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
263 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
264 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
265 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
266 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
267 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
268 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
269 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
270 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
271 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
272 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
273 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
274 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
275 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
276 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
277 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
278 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
279 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
280 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
281 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
282 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
283 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
284 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
285 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
286 	{ },
287 };
288 
289 /* sorted by number of lines */
290 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
291 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
292 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
293 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
294 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
295 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
296 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
297 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
298 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
299 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
300 	{ },
301 };
302 
303 /* sorted by number of lines */
304 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
305 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
306 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
307 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
308 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
309 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
310 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
311 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
312 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
313 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
314 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
315 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
316 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
317 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
318 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
319 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
320 	{ },
321 };
322 
323 static const struct v4l2_event adv76xx_ev_fmt = {
324 	.type = V4L2_EVENT_SOURCE_CHANGE,
325 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
326 };
327 
328 /* ----------------------------------------------------------------------- */
329 
330 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
331 {
332 	return container_of(sd, struct adv76xx_state, sd);
333 }
334 
335 static inline unsigned htotal(const struct v4l2_bt_timings *t)
336 {
337 	return V4L2_DV_BT_FRAME_WIDTH(t);
338 }
339 
340 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
341 {
342 	return V4L2_DV_BT_FRAME_HEIGHT(t);
343 }
344 
345 /* ----------------------------------------------------------------------- */
346 
347 static int adv76xx_read_check(struct adv76xx_state *state,
348 			     int client_page, u8 reg)
349 {
350 	struct i2c_client *client = state->i2c_clients[client_page];
351 	int err;
352 	unsigned int val;
353 
354 	err = regmap_read(state->regmap[client_page], reg, &val);
355 
356 	if (err) {
357 		v4l_err(client, "error reading %02x, %02x\n",
358 				client->addr, reg);
359 		return err;
360 	}
361 	return val;
362 }
363 
364 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
365  * size to one or more registers.
366  *
367  * A value of zero will be returned on success, a negative errno will
368  * be returned in error cases.
369  */
370 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
371 			      unsigned int init_reg, const void *val,
372 			      size_t val_len)
373 {
374 	struct regmap *regmap = state->regmap[client_page];
375 
376 	if (val_len > I2C_SMBUS_BLOCK_MAX)
377 		val_len = I2C_SMBUS_BLOCK_MAX;
378 
379 	return regmap_raw_write(regmap, init_reg, val, val_len);
380 }
381 
382 /* ----------------------------------------------------------------------- */
383 
384 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
385 {
386 	struct adv76xx_state *state = to_state(sd);
387 
388 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
389 }
390 
391 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
392 {
393 	struct adv76xx_state *state = to_state(sd);
394 
395 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
396 }
397 
398 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
399 				   u8 val)
400 {
401 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
402 }
403 
404 static inline int __always_unused avlink_read(struct v4l2_subdev *sd, u8 reg)
405 {
406 	struct adv76xx_state *state = to_state(sd);
407 
408 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
409 }
410 
411 static inline int __always_unused avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
412 {
413 	struct adv76xx_state *state = to_state(sd);
414 
415 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
416 }
417 
418 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
419 {
420 	struct adv76xx_state *state = to_state(sd);
421 
422 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
423 }
424 
425 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
426 {
427 	struct adv76xx_state *state = to_state(sd);
428 
429 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
430 }
431 
432 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
433 				   u8 val)
434 {
435 	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
436 }
437 
438 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
439 {
440 	struct adv76xx_state *state = to_state(sd);
441 
442 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
443 }
444 
445 static inline int __always_unused infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
446 {
447 	struct adv76xx_state *state = to_state(sd);
448 
449 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
450 }
451 
452 static inline int __always_unused afe_read(struct v4l2_subdev *sd, u8 reg)
453 {
454 	struct adv76xx_state *state = to_state(sd);
455 
456 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
457 }
458 
459 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
460 {
461 	struct adv76xx_state *state = to_state(sd);
462 
463 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
464 }
465 
466 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
467 {
468 	struct adv76xx_state *state = to_state(sd);
469 
470 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
471 }
472 
473 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
474 {
475 	struct adv76xx_state *state = to_state(sd);
476 
477 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
478 }
479 
480 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
481 {
482 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
483 }
484 
485 static inline int __always_unused edid_read(struct v4l2_subdev *sd, u8 reg)
486 {
487 	struct adv76xx_state *state = to_state(sd);
488 
489 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
490 }
491 
492 static inline int __always_unused edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
493 {
494 	struct adv76xx_state *state = to_state(sd);
495 
496 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
497 }
498 
499 static inline int edid_write_block(struct v4l2_subdev *sd,
500 					unsigned int total_len, const u8 *val)
501 {
502 	struct adv76xx_state *state = to_state(sd);
503 	int err = 0;
504 	int i = 0;
505 	int len = 0;
506 
507 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
508 				__func__, total_len);
509 
510 	while (!err && i < total_len) {
511 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
512 				I2C_SMBUS_BLOCK_MAX :
513 				(total_len - i);
514 
515 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
516 				i, val + i, len);
517 		i += len;
518 	}
519 
520 	return err;
521 }
522 
523 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
524 {
525 	const struct adv76xx_chip_info *info = state->info;
526 	unsigned int i;
527 
528 	if (info->type == ADV7604) {
529 		for (i = 0; i < state->info->num_dv_ports; ++i)
530 			gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
531 	} else {
532 		for (i = 0; i < state->info->num_dv_ports; ++i)
533 			io_write_clr_set(&state->sd, 0x20, 0x80 >> i,
534 					 (!!(hpd & BIT(i))) << (7 - i));
535 	}
536 
537 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
538 }
539 
540 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
541 {
542 	struct delayed_work *dwork = to_delayed_work(work);
543 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
544 						delayed_work_enable_hotplug);
545 	struct v4l2_subdev *sd = &state->sd;
546 
547 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
548 
549 	adv76xx_set_hpd(state, state->edid.present);
550 }
551 
552 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
553 {
554 	struct adv76xx_state *state = to_state(sd);
555 
556 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
557 }
558 
559 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
560 {
561 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
562 }
563 
564 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
565 {
566 	struct adv76xx_state *state = to_state(sd);
567 
568 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
569 }
570 
571 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
572 {
573 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
574 }
575 
576 static inline int __always_unused test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
577 {
578 	struct adv76xx_state *state = to_state(sd);
579 
580 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
581 }
582 
583 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
584 {
585 	struct adv76xx_state *state = to_state(sd);
586 
587 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
588 }
589 
590 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
591 {
592 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
593 }
594 
595 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
596 {
597 	struct adv76xx_state *state = to_state(sd);
598 
599 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
600 }
601 
602 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
603 {
604 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
605 }
606 
607 static inline int __always_unused vdp_read(struct v4l2_subdev *sd, u8 reg)
608 {
609 	struct adv76xx_state *state = to_state(sd);
610 
611 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
612 }
613 
614 static inline int __always_unused vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
615 {
616 	struct adv76xx_state *state = to_state(sd);
617 
618 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
619 }
620 
621 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
622 #define ADV76XX_REG_SEQ_TERM		0xffff
623 
624 #ifdef CONFIG_VIDEO_ADV_DEBUG
625 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
626 {
627 	struct adv76xx_state *state = to_state(sd);
628 	unsigned int page = reg >> 8;
629 	unsigned int val;
630 	int err;
631 
632 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
633 		return -EINVAL;
634 
635 	reg &= 0xff;
636 	err = regmap_read(state->regmap[page], reg, &val);
637 
638 	return err ? err : val;
639 }
640 #endif
641 
642 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
643 {
644 	struct adv76xx_state *state = to_state(sd);
645 	unsigned int page = reg >> 8;
646 
647 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
648 		return -EINVAL;
649 
650 	reg &= 0xff;
651 
652 	return regmap_write(state->regmap[page], reg, val);
653 }
654 
655 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
656 				  const struct adv76xx_reg_seq *reg_seq)
657 {
658 	unsigned int i;
659 
660 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
661 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
662 }
663 
664 /* -----------------------------------------------------------------------------
665  * Format helpers
666  */
667 
668 static const struct adv76xx_format_info adv7604_formats[] = {
669 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
670 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
671 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
672 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
673 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
674 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
675 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
676 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
677 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
678 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
679 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
680 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
681 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
682 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
683 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
684 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
685 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
686 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
687 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
688 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
689 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
690 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
691 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
692 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
693 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
694 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
695 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
696 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
697 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
698 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
699 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
700 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
701 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
702 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
703 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
704 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
705 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
706 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
707 };
708 
709 static const struct adv76xx_format_info adv7611_formats[] = {
710 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
711 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
712 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
713 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
714 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
715 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
716 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
717 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
718 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
719 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
720 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
721 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
722 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
723 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
724 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
725 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
726 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
727 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
728 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
729 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
730 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
731 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
732 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
733 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
734 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
735 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
736 };
737 
738 static const struct adv76xx_format_info adv7612_formats[] = {
739 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
740 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
741 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
742 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
743 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
744 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
745 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
746 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
747 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
748 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
749 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
750 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
751 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
752 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
753 };
754 
755 static const struct adv76xx_format_info *
756 adv76xx_format_info(struct adv76xx_state *state, u32 code)
757 {
758 	unsigned int i;
759 
760 	for (i = 0; i < state->info->nformats; ++i) {
761 		if (state->info->formats[i].code == code)
762 			return &state->info->formats[i];
763 	}
764 
765 	return NULL;
766 }
767 
768 /* ----------------------------------------------------------------------- */
769 
770 static inline bool is_analog_input(struct v4l2_subdev *sd)
771 {
772 	struct adv76xx_state *state = to_state(sd);
773 
774 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
775 	       state->selected_input == ADV7604_PAD_VGA_COMP;
776 }
777 
778 static inline bool is_digital_input(struct v4l2_subdev *sd)
779 {
780 	struct adv76xx_state *state = to_state(sd);
781 
782 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
783 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
784 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
785 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
786 }
787 
788 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
789 	.type = V4L2_DV_BT_656_1120,
790 	/* keep this initialization for compatibility with GCC < 4.4.6 */
791 	.reserved = { 0 },
792 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
793 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
794 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
795 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
796 			V4L2_DV_BT_CAP_CUSTOM)
797 };
798 
799 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
800 	.type = V4L2_DV_BT_656_1120,
801 	/* keep this initialization for compatibility with GCC < 4.4.6 */
802 	.reserved = { 0 },
803 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
804 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
805 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
806 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
807 			V4L2_DV_BT_CAP_CUSTOM)
808 };
809 
810 /*
811  * Return the DV timings capabilities for the requested sink pad. As a special
812  * case, pad value -1 returns the capabilities for the currently selected input.
813  */
814 static const struct v4l2_dv_timings_cap *
815 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
816 {
817 	if (pad == -1) {
818 		struct adv76xx_state *state = to_state(sd);
819 
820 		pad = state->selected_input;
821 	}
822 
823 	switch (pad) {
824 	case ADV76XX_PAD_HDMI_PORT_A:
825 	case ADV7604_PAD_HDMI_PORT_B:
826 	case ADV7604_PAD_HDMI_PORT_C:
827 	case ADV7604_PAD_HDMI_PORT_D:
828 		return &adv76xx_timings_cap_digital;
829 
830 	case ADV7604_PAD_VGA_RGB:
831 	case ADV7604_PAD_VGA_COMP:
832 	default:
833 		return &adv7604_timings_cap_analog;
834 	}
835 }
836 
837 
838 /* ----------------------------------------------------------------------- */
839 
840 #ifdef CONFIG_VIDEO_ADV_DEBUG
841 static void adv76xx_inv_register(struct v4l2_subdev *sd)
842 {
843 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
844 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
845 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
846 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
847 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
848 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
849 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
850 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
851 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
852 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
853 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
854 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
855 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
856 }
857 
858 static int adv76xx_g_register(struct v4l2_subdev *sd,
859 					struct v4l2_dbg_register *reg)
860 {
861 	int ret;
862 
863 	ret = adv76xx_read_reg(sd, reg->reg);
864 	if (ret < 0) {
865 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
866 		adv76xx_inv_register(sd);
867 		return ret;
868 	}
869 
870 	reg->size = 1;
871 	reg->val = ret;
872 
873 	return 0;
874 }
875 
876 static int adv76xx_s_register(struct v4l2_subdev *sd,
877 					const struct v4l2_dbg_register *reg)
878 {
879 	int ret;
880 
881 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
882 	if (ret < 0) {
883 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
884 		adv76xx_inv_register(sd);
885 		return ret;
886 	}
887 
888 	return 0;
889 }
890 #endif
891 
892 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
893 {
894 	u8 value = io_read(sd, 0x6f);
895 
896 	return ((value & 0x10) >> 4)
897 	     | ((value & 0x08) >> 2)
898 	     | ((value & 0x04) << 0)
899 	     | ((value & 0x02) << 2);
900 }
901 
902 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
903 {
904 	u8 value = io_read(sd, 0x6f);
905 
906 	return value & 1;
907 }
908 
909 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
910 {
911 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
912 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
913 	 */
914 	u8 value = io_read(sd, 0x6f);
915 
916 	return value & 1;
917 }
918 
919 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
920 {
921 	struct adv76xx_state *state = to_state(sd);
922 	const struct adv76xx_chip_info *info = state->info;
923 	u16 cable_det = info->read_cable_det(sd);
924 
925 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
926 }
927 
928 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
929 		u8 prim_mode,
930 		const struct adv76xx_video_standards *predef_vid_timings,
931 		const struct v4l2_dv_timings *timings)
932 {
933 	int i;
934 
935 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
936 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
937 				is_digital_input(sd) ? 250000 : 1000000, false))
938 			continue;
939 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
940 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
941 				prim_mode); /* v_freq and prim mode */
942 		return 0;
943 	}
944 
945 	return -1;
946 }
947 
948 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
949 		struct v4l2_dv_timings *timings)
950 {
951 	struct adv76xx_state *state = to_state(sd);
952 	int err;
953 
954 	v4l2_dbg(1, debug, sd, "%s", __func__);
955 
956 	if (adv76xx_has_afe(state)) {
957 		/* reset to default values */
958 		io_write(sd, 0x16, 0x43);
959 		io_write(sd, 0x17, 0x5a);
960 	}
961 	/* disable embedded syncs for auto graphics mode */
962 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
963 	cp_write(sd, 0x8f, 0x00);
964 	cp_write(sd, 0x90, 0x00);
965 	cp_write(sd, 0xa2, 0x00);
966 	cp_write(sd, 0xa3, 0x00);
967 	cp_write(sd, 0xa4, 0x00);
968 	cp_write(sd, 0xa5, 0x00);
969 	cp_write(sd, 0xa6, 0x00);
970 	cp_write(sd, 0xa7, 0x00);
971 	cp_write(sd, 0xab, 0x00);
972 	cp_write(sd, 0xac, 0x00);
973 
974 	if (is_analog_input(sd)) {
975 		err = find_and_set_predefined_video_timings(sd,
976 				0x01, adv7604_prim_mode_comp, timings);
977 		if (err)
978 			err = find_and_set_predefined_video_timings(sd,
979 					0x02, adv7604_prim_mode_gr, timings);
980 	} else if (is_digital_input(sd)) {
981 		err = find_and_set_predefined_video_timings(sd,
982 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
983 		if (err)
984 			err = find_and_set_predefined_video_timings(sd,
985 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
986 	} else {
987 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
988 				__func__, state->selected_input);
989 		err = -1;
990 	}
991 
992 
993 	return err;
994 }
995 
996 static void configure_custom_video_timings(struct v4l2_subdev *sd,
997 		const struct v4l2_bt_timings *bt)
998 {
999 	struct adv76xx_state *state = to_state(sd);
1000 	u32 width = htotal(bt);
1001 	u32 height = vtotal(bt);
1002 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
1003 	u16 cp_start_eav = width - bt->hfrontporch;
1004 	u16 cp_start_vbi = height - bt->vfrontporch;
1005 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
1006 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
1007 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
1008 	const u8 pll[2] = {
1009 		0xc0 | ((width >> 8) & 0x1f),
1010 		width & 0xff
1011 	};
1012 
1013 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
1014 
1015 	if (is_analog_input(sd)) {
1016 		/* auto graphics */
1017 		io_write(sd, 0x00, 0x07); /* video std */
1018 		io_write(sd, 0x01, 0x02); /* prim mode */
1019 		/* enable embedded syncs for auto graphics mode */
1020 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1021 
1022 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1023 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1024 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1025 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1026 					0x16, pll, 2))
1027 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1028 
1029 		/* active video - horizontal timing */
1030 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1031 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1032 				   ((cp_start_eav >> 8) & 0x0f));
1033 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1034 
1035 		/* active video - vertical timing */
1036 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1037 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1038 				   ((cp_end_vbi >> 8) & 0xf));
1039 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1040 	} else if (is_digital_input(sd)) {
1041 		/* set default prim_mode/vid_std for HDMI
1042 		   according to [REF_03, c. 4.2] */
1043 		io_write(sd, 0x00, 0x02); /* video std */
1044 		io_write(sd, 0x01, 0x06); /* prim mode */
1045 	} else {
1046 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1047 				__func__, state->selected_input);
1048 	}
1049 
1050 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1051 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1052 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1053 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1054 }
1055 
1056 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1057 {
1058 	struct adv76xx_state *state = to_state(sd);
1059 	u8 offset_buf[4];
1060 
1061 	if (auto_offset) {
1062 		offset_a = 0x3ff;
1063 		offset_b = 0x3ff;
1064 		offset_c = 0x3ff;
1065 	}
1066 
1067 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1068 			__func__, auto_offset ? "Auto" : "Manual",
1069 			offset_a, offset_b, offset_c);
1070 
1071 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1072 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1073 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1074 	offset_buf[3] = offset_c & 0x0ff;
1075 
1076 	/* Registers must be written in this order with no i2c access in between */
1077 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1078 			0x77, offset_buf, 4))
1079 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1080 }
1081 
1082 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1083 {
1084 	struct adv76xx_state *state = to_state(sd);
1085 	u8 gain_buf[4];
1086 	u8 gain_man = 1;
1087 	u8 agc_mode_man = 1;
1088 
1089 	if (auto_gain) {
1090 		gain_man = 0;
1091 		agc_mode_man = 0;
1092 		gain_a = 0x100;
1093 		gain_b = 0x100;
1094 		gain_c = 0x100;
1095 	}
1096 
1097 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1098 			__func__, auto_gain ? "Auto" : "Manual",
1099 			gain_a, gain_b, gain_c);
1100 
1101 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1102 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1103 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1104 	gain_buf[3] = ((gain_c & 0x0ff));
1105 
1106 	/* Registers must be written in this order with no i2c access in between */
1107 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1108 			     0x73, gain_buf, 4))
1109 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1110 }
1111 
1112 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1113 {
1114 	struct adv76xx_state *state = to_state(sd);
1115 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1116 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1117 	u8 y = HDMI_COLORSPACE_RGB;
1118 
1119 	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1120 		y = infoframe_read(sd, 0x01) >> 5;
1121 
1122 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1123 			__func__, state->rgb_quantization_range,
1124 			rgb_output, hdmi_signal);
1125 
1126 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1127 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1128 	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1129 
1130 	switch (state->rgb_quantization_range) {
1131 	case V4L2_DV_RGB_RANGE_AUTO:
1132 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1133 			/* Receiving analog RGB signal
1134 			 * Set RGB full range (0-255) */
1135 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1136 			break;
1137 		}
1138 
1139 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1140 			/* Receiving analog YPbPr signal
1141 			 * Set automode */
1142 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1143 			break;
1144 		}
1145 
1146 		if (hdmi_signal) {
1147 			/* Receiving HDMI signal
1148 			 * Set automode */
1149 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1150 			break;
1151 		}
1152 
1153 		/* Receiving DVI-D signal
1154 		 * ADV7604 selects RGB limited range regardless of
1155 		 * input format (CE/IT) in automatic mode */
1156 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1157 			/* RGB limited range (16-235) */
1158 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1159 		} else {
1160 			/* RGB full range (0-255) */
1161 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1162 
1163 			if (is_digital_input(sd) && rgb_output) {
1164 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1165 			} else {
1166 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1167 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1168 			}
1169 		}
1170 		break;
1171 	case V4L2_DV_RGB_RANGE_LIMITED:
1172 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1173 			/* YCrCb limited range (16-235) */
1174 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1175 			break;
1176 		}
1177 
1178 		if (y != HDMI_COLORSPACE_RGB)
1179 			break;
1180 
1181 		/* RGB limited range (16-235) */
1182 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1183 
1184 		break;
1185 	case V4L2_DV_RGB_RANGE_FULL:
1186 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1187 			/* YCrCb full range (0-255) */
1188 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1189 			break;
1190 		}
1191 
1192 		if (y != HDMI_COLORSPACE_RGB)
1193 			break;
1194 
1195 		/* RGB full range (0-255) */
1196 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1197 
1198 		if (is_analog_input(sd) || hdmi_signal)
1199 			break;
1200 
1201 		/* Adjust gain/offset for DVI-D signals only */
1202 		if (rgb_output) {
1203 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1204 		} else {
1205 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1206 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1207 		}
1208 		break;
1209 	}
1210 }
1211 
1212 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1213 {
1214 	struct v4l2_subdev *sd =
1215 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1216 
1217 	struct adv76xx_state *state = to_state(sd);
1218 
1219 	switch (ctrl->id) {
1220 	case V4L2_CID_BRIGHTNESS:
1221 		cp_write(sd, 0x3c, ctrl->val);
1222 		return 0;
1223 	case V4L2_CID_CONTRAST:
1224 		cp_write(sd, 0x3a, ctrl->val);
1225 		return 0;
1226 	case V4L2_CID_SATURATION:
1227 		cp_write(sd, 0x3b, ctrl->val);
1228 		return 0;
1229 	case V4L2_CID_HUE:
1230 		cp_write(sd, 0x3d, ctrl->val);
1231 		return 0;
1232 	case  V4L2_CID_DV_RX_RGB_RANGE:
1233 		state->rgb_quantization_range = ctrl->val;
1234 		set_rgb_quantization_range(sd);
1235 		return 0;
1236 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1237 		if (!adv76xx_has_afe(state))
1238 			return -EINVAL;
1239 		/* Set the analog sampling phase. This is needed to find the
1240 		   best sampling phase for analog video: an application or
1241 		   driver has to try a number of phases and analyze the picture
1242 		   quality before settling on the best performing phase. */
1243 		afe_write(sd, 0xc8, ctrl->val);
1244 		return 0;
1245 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1246 		/* Use the default blue color for free running mode,
1247 		   or supply your own. */
1248 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1249 		return 0;
1250 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1251 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1252 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1253 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1254 		return 0;
1255 	}
1256 	return -EINVAL;
1257 }
1258 
1259 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1260 {
1261 	struct v4l2_subdev *sd =
1262 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1263 
1264 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1265 		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1266 		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1267 			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1268 		return 0;
1269 	}
1270 	return -EINVAL;
1271 }
1272 
1273 /* ----------------------------------------------------------------------- */
1274 
1275 static inline bool no_power(struct v4l2_subdev *sd)
1276 {
1277 	/* Entire chip or CP powered off */
1278 	return io_read(sd, 0x0c) & 0x24;
1279 }
1280 
1281 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1282 {
1283 	struct adv76xx_state *state = to_state(sd);
1284 
1285 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1286 }
1287 
1288 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1289 {
1290 	struct adv76xx_state *state = to_state(sd);
1291 	const struct adv76xx_chip_info *info = state->info;
1292 
1293 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1294 }
1295 
1296 static inline bool is_hdmi(struct v4l2_subdev *sd)
1297 {
1298 	return hdmi_read(sd, 0x05) & 0x80;
1299 }
1300 
1301 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1302 {
1303 	struct adv76xx_state *state = to_state(sd);
1304 
1305 	/*
1306 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1307 	 * that we have a lock.
1308 	 */
1309 	if (adv76xx_has_afe(state))
1310 		return false;
1311 
1312 	/* TODO channel 2 */
1313 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1314 }
1315 
1316 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1317 {
1318 	/* TODO channel 2 */
1319 	return !(cp_read(sd, 0xb1) & 0x80);
1320 }
1321 
1322 static inline bool no_signal(struct v4l2_subdev *sd)
1323 {
1324 	bool ret;
1325 
1326 	ret = no_power(sd);
1327 
1328 	ret |= no_lock_stdi(sd);
1329 	ret |= no_lock_sspd(sd);
1330 
1331 	if (is_digital_input(sd)) {
1332 		ret |= no_lock_tmds(sd);
1333 		ret |= no_signal_tmds(sd);
1334 	}
1335 
1336 	return ret;
1337 }
1338 
1339 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1340 {
1341 	struct adv76xx_state *state = to_state(sd);
1342 
1343 	if (!adv76xx_has_afe(state))
1344 		return false;
1345 
1346 	/* CP has detected a non standard number of lines on the incoming
1347 	   video compared to what it is configured to receive by s_dv_timings */
1348 	return io_read(sd, 0x12) & 0x01;
1349 }
1350 
1351 static inline bool in_free_run(struct v4l2_subdev *sd)
1352 {
1353 	return cp_read(sd, 0xff) & 0x10;
1354 }
1355 
1356 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1357 {
1358 	*status = 0;
1359 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1360 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1361 	if (!in_free_run(sd) && no_lock_cp(sd))
1362 		*status |= is_digital_input(sd) ?
1363 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1364 
1365 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1366 
1367 	return 0;
1368 }
1369 
1370 /* ----------------------------------------------------------------------- */
1371 
1372 struct stdi_readback {
1373 	u16 bl, lcf, lcvs;
1374 	u8 hs_pol, vs_pol;
1375 	bool interlaced;
1376 };
1377 
1378 static int stdi2dv_timings(struct v4l2_subdev *sd,
1379 		struct stdi_readback *stdi,
1380 		struct v4l2_dv_timings *timings)
1381 {
1382 	struct adv76xx_state *state = to_state(sd);
1383 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1384 	u32 pix_clk;
1385 	int i;
1386 
1387 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1388 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1389 
1390 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1391 					   adv76xx_get_dv_timings_cap(sd, -1),
1392 					   adv76xx_check_dv_timings, NULL))
1393 			continue;
1394 		if (vtotal(bt) != stdi->lcf + 1)
1395 			continue;
1396 		if (bt->vsync != stdi->lcvs)
1397 			continue;
1398 
1399 		pix_clk = hfreq * htotal(bt);
1400 
1401 		if ((pix_clk < bt->pixelclock + 1000000) &&
1402 		    (pix_clk > bt->pixelclock - 1000000)) {
1403 			*timings = v4l2_dv_timings_presets[i];
1404 			return 0;
1405 		}
1406 	}
1407 
1408 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1409 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1410 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1411 			false, adv76xx_get_dv_timings_cap(sd, -1), timings))
1412 		return 0;
1413 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1414 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1415 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1416 			false, state->aspect_ratio,
1417 			adv76xx_get_dv_timings_cap(sd, -1), timings))
1418 		return 0;
1419 
1420 	v4l2_dbg(2, debug, sd,
1421 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1422 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1423 		stdi->hs_pol, stdi->vs_pol);
1424 	return -1;
1425 }
1426 
1427 
1428 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1429 {
1430 	struct adv76xx_state *state = to_state(sd);
1431 	const struct adv76xx_chip_info *info = state->info;
1432 	u8 polarity;
1433 
1434 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1435 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1436 		return -1;
1437 	}
1438 
1439 	/* read STDI */
1440 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1441 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1442 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1443 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1444 
1445 	if (adv76xx_has_afe(state)) {
1446 		/* read SSPD */
1447 		polarity = cp_read(sd, 0xb5);
1448 		if ((polarity & 0x03) == 0x01) {
1449 			stdi->hs_pol = polarity & 0x10
1450 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1451 			stdi->vs_pol = polarity & 0x40
1452 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1453 		} else {
1454 			stdi->hs_pol = 'x';
1455 			stdi->vs_pol = 'x';
1456 		}
1457 	} else {
1458 		polarity = hdmi_read(sd, 0x05);
1459 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1460 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1461 	}
1462 
1463 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1464 		v4l2_dbg(2, debug, sd,
1465 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1466 		return -1;
1467 	}
1468 
1469 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1470 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1471 		memset(stdi, 0, sizeof(struct stdi_readback));
1472 		return -1;
1473 	}
1474 
1475 	v4l2_dbg(2, debug, sd,
1476 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1477 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1478 		stdi->hs_pol, stdi->vs_pol,
1479 		stdi->interlaced ? "interlaced" : "progressive");
1480 
1481 	return 0;
1482 }
1483 
1484 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1485 			struct v4l2_enum_dv_timings *timings)
1486 {
1487 	struct adv76xx_state *state = to_state(sd);
1488 
1489 	if (timings->pad >= state->source_pad)
1490 		return -EINVAL;
1491 
1492 	return v4l2_enum_dv_timings_cap(timings,
1493 		adv76xx_get_dv_timings_cap(sd, timings->pad),
1494 		adv76xx_check_dv_timings, NULL);
1495 }
1496 
1497 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1498 			struct v4l2_dv_timings_cap *cap)
1499 {
1500 	struct adv76xx_state *state = to_state(sd);
1501 	unsigned int pad = cap->pad;
1502 
1503 	if (cap->pad >= state->source_pad)
1504 		return -EINVAL;
1505 
1506 	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1507 	cap->pad = pad;
1508 
1509 	return 0;
1510 }
1511 
1512 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1513    if the format is listed in adv76xx_timings[] */
1514 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1515 		struct v4l2_dv_timings *timings)
1516 {
1517 	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1518 				 is_digital_input(sd) ? 250000 : 1000000,
1519 				 adv76xx_check_dv_timings, NULL);
1520 }
1521 
1522 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1523 {
1524 	int a, b;
1525 
1526 	a = hdmi_read(sd, 0x06);
1527 	b = hdmi_read(sd, 0x3b);
1528 	if (a < 0 || b < 0)
1529 		return 0;
1530 
1531 	return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1532 }
1533 
1534 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1535 {
1536 	int a, b;
1537 
1538 	a = hdmi_read(sd, 0x51);
1539 	b = hdmi_read(sd, 0x52);
1540 	if (a < 0 || b < 0)
1541 		return 0;
1542 
1543 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1544 }
1545 
1546 static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1547 {
1548 	struct adv76xx_state *state = to_state(sd);
1549 	const struct adv76xx_chip_info *info = state->info;
1550 	unsigned int freq, bits_per_channel, pixelrepetition;
1551 
1552 	freq = info->read_hdmi_pixelclock(sd);
1553 	if (is_hdmi(sd)) {
1554 		/* adjust for deep color mode and pixel repetition */
1555 		bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1556 		pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1557 
1558 		freq = freq * 8 / bits_per_channel / pixelrepetition;
1559 	}
1560 
1561 	return freq;
1562 }
1563 
1564 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd, unsigned int pad,
1565 				    struct v4l2_dv_timings *timings)
1566 {
1567 	struct adv76xx_state *state = to_state(sd);
1568 	const struct adv76xx_chip_info *info = state->info;
1569 	struct v4l2_bt_timings *bt = &timings->bt;
1570 	struct stdi_readback stdi;
1571 
1572 	if (!timings)
1573 		return -EINVAL;
1574 
1575 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1576 
1577 	if (no_signal(sd)) {
1578 		state->restart_stdi_once = true;
1579 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1580 		return -ENOLINK;
1581 	}
1582 
1583 	/* read STDI */
1584 	if (read_stdi(sd, &stdi)) {
1585 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1586 		return -ENOLINK;
1587 	}
1588 	bt->interlaced = stdi.interlaced ?
1589 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1590 
1591 	if (is_digital_input(sd)) {
1592 		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1593 		u8 vic = 0;
1594 		u32 w, h;
1595 
1596 		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1597 		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1598 
1599 		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1600 			vic = infoframe_read(sd, 0x04);
1601 
1602 		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1603 		    bt->width == w && bt->height == h)
1604 			goto found;
1605 
1606 		timings->type = V4L2_DV_BT_656_1120;
1607 
1608 		bt->width = w;
1609 		bt->height = h;
1610 		bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1611 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1612 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1613 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1614 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1615 			info->field0_vfrontporch_mask) / 2;
1616 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1617 		bt->vbackporch = hdmi_read16(sd, 0x32,
1618 			info->field0_vbackporch_mask) / 2;
1619 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1620 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1621 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1622 			bt->height += hdmi_read16(sd, 0x0b,
1623 				info->field1_height_mask);
1624 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1625 				info->field1_vfrontporch_mask) / 2;
1626 			bt->il_vsync = hdmi_read16(sd, 0x30,
1627 				info->field1_vsync_mask) / 2;
1628 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1629 				info->field1_vbackporch_mask) / 2;
1630 		}
1631 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1632 	} else {
1633 		/* find format
1634 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1635 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1636 		 */
1637 		if (!stdi2dv_timings(sd, &stdi, timings))
1638 			goto found;
1639 		stdi.lcvs += 1;
1640 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1641 		if (!stdi2dv_timings(sd, &stdi, timings))
1642 			goto found;
1643 		stdi.lcvs -= 2;
1644 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1645 		if (stdi2dv_timings(sd, &stdi, timings)) {
1646 			/*
1647 			 * The STDI block may measure wrong values, especially
1648 			 * for lcvs and lcf. If the driver can not find any
1649 			 * valid timing, the STDI block is restarted to measure
1650 			 * the video timings again. The function will return an
1651 			 * error, but the restart of STDI will generate a new
1652 			 * STDI interrupt and the format detection process will
1653 			 * restart.
1654 			 */
1655 			if (state->restart_stdi_once) {
1656 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1657 				/* TODO restart STDI for Sync Channel 2 */
1658 				/* enter one-shot mode */
1659 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1660 				/* trigger STDI restart */
1661 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1662 				/* reset to continuous mode */
1663 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1664 				state->restart_stdi_once = false;
1665 				return -ENOLINK;
1666 			}
1667 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1668 			return -ERANGE;
1669 		}
1670 		state->restart_stdi_once = true;
1671 	}
1672 found:
1673 
1674 	if (no_signal(sd)) {
1675 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1676 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1677 		return -ENOLINK;
1678 	}
1679 
1680 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1681 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1682 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1683 				__func__, (u32)bt->pixelclock);
1684 		return -ERANGE;
1685 	}
1686 
1687 	if (debug > 1)
1688 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1689 				      timings, true);
1690 
1691 	return 0;
1692 }
1693 
1694 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd, unsigned int pad,
1695 				struct v4l2_dv_timings *timings)
1696 {
1697 	struct adv76xx_state *state = to_state(sd);
1698 	struct v4l2_bt_timings *bt;
1699 	int err;
1700 
1701 	if (!timings)
1702 		return -EINVAL;
1703 
1704 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1705 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1706 		return 0;
1707 	}
1708 
1709 	bt = &timings->bt;
1710 
1711 	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1712 				   adv76xx_check_dv_timings, NULL))
1713 		return -ERANGE;
1714 
1715 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1716 
1717 	state->timings = *timings;
1718 
1719 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1720 
1721 	/* Use prim_mode and vid_std when available */
1722 	err = configure_predefined_video_timings(sd, timings);
1723 	if (err) {
1724 		/* custom settings when the video format
1725 		 does not have prim_mode/vid_std */
1726 		configure_custom_video_timings(sd, bt);
1727 	}
1728 
1729 	set_rgb_quantization_range(sd);
1730 
1731 	if (debug > 1)
1732 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1733 				      timings, true);
1734 	return 0;
1735 }
1736 
1737 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd, unsigned int pad,
1738 				struct v4l2_dv_timings *timings)
1739 {
1740 	struct adv76xx_state *state = to_state(sd);
1741 
1742 	*timings = state->timings;
1743 	return 0;
1744 }
1745 
1746 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1747 {
1748 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1749 }
1750 
1751 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1752 {
1753 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1754 }
1755 
1756 static void enable_input(struct v4l2_subdev *sd)
1757 {
1758 	struct adv76xx_state *state = to_state(sd);
1759 
1760 	if (is_analog_input(sd)) {
1761 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1762 	} else if (is_digital_input(sd)) {
1763 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1764 		state->info->set_termination(sd, true);
1765 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1766 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1767 	} else {
1768 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1769 				__func__, state->selected_input);
1770 	}
1771 }
1772 
1773 static void disable_input(struct v4l2_subdev *sd)
1774 {
1775 	struct adv76xx_state *state = to_state(sd);
1776 
1777 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1778 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1779 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1780 	state->info->set_termination(sd, false);
1781 }
1782 
1783 static void select_input(struct v4l2_subdev *sd)
1784 {
1785 	struct adv76xx_state *state = to_state(sd);
1786 	const struct adv76xx_chip_info *info = state->info;
1787 
1788 	if (is_analog_input(sd)) {
1789 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1790 
1791 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1792 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1793 		afe_write(sd, 0xc8, 0x00); /* phase control */
1794 	} else if (is_digital_input(sd)) {
1795 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1796 
1797 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1798 
1799 		if (adv76xx_has_afe(state)) {
1800 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1801 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1802 			afe_write(sd, 0xc8, 0x40); /* phase control */
1803 		}
1804 
1805 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1806 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1807 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1808 	} else {
1809 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1810 				__func__, state->selected_input);
1811 	}
1812 
1813 	/* Enable video adjustment (contrast, saturation, brightness and hue) */
1814 	cp_write_clr_set(sd, 0x3e, 0x80, 0x80);
1815 }
1816 
1817 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1818 		u32 input, u32 output, u32 config)
1819 {
1820 	struct adv76xx_state *state = to_state(sd);
1821 
1822 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1823 			__func__, input, state->selected_input);
1824 
1825 	if (input == state->selected_input)
1826 		return 0;
1827 
1828 	if (input > state->info->max_port)
1829 		return -EINVAL;
1830 
1831 	state->selected_input = input;
1832 
1833 	disable_input(sd);
1834 	select_input(sd);
1835 	enable_input(sd);
1836 
1837 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1838 
1839 	return 0;
1840 }
1841 
1842 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1843 				  struct v4l2_subdev_state *sd_state,
1844 				  struct v4l2_subdev_mbus_code_enum *code)
1845 {
1846 	struct adv76xx_state *state = to_state(sd);
1847 
1848 	if (code->index >= state->info->nformats)
1849 		return -EINVAL;
1850 
1851 	code->code = state->info->formats[code->index].code;
1852 
1853 	return 0;
1854 }
1855 
1856 static void adv76xx_fill_format(struct adv76xx_state *state,
1857 				struct v4l2_mbus_framefmt *format)
1858 {
1859 	memset(format, 0, sizeof(*format));
1860 
1861 	format->width = state->timings.bt.width;
1862 	format->height = state->timings.bt.height;
1863 	format->field = V4L2_FIELD_NONE;
1864 	format->colorspace = V4L2_COLORSPACE_SRGB;
1865 
1866 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1867 		format->colorspace = (state->timings.bt.height <= 576) ?
1868 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1869 }
1870 
1871 /*
1872  * Compute the op_ch_sel value required to obtain on the bus the component order
1873  * corresponding to the selected format taking into account bus reordering
1874  * applied by the board at the output of the device.
1875  *
1876  * The following table gives the op_ch_value from the format component order
1877  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1878  * adv76xx_bus_order value in row).
1879  *
1880  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1881  * ----------+-------------------------------------------------
1882  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1883  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1884  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1885  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1886  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1887  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1888  */
1889 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1890 {
1891 #define _SEL(a,b,c,d,e,f)	{ \
1892 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1893 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1894 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1895 
1896 	static const unsigned int op_ch_sel[6][6] = {
1897 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1898 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1899 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1900 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1901 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1902 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1903 	};
1904 
1905 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1906 }
1907 
1908 static void adv76xx_setup_format(struct adv76xx_state *state)
1909 {
1910 	struct v4l2_subdev *sd = &state->sd;
1911 
1912 	io_write_clr_set(sd, 0x02, 0x02,
1913 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1914 	io_write(sd, 0x03, state->format->op_format_sel |
1915 		 state->pdata.op_format_mode_sel);
1916 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1917 	io_write_clr_set(sd, 0x05, 0x01,
1918 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1919 	set_rgb_quantization_range(sd);
1920 }
1921 
1922 static int adv76xx_get_format(struct v4l2_subdev *sd,
1923 			      struct v4l2_subdev_state *sd_state,
1924 			      struct v4l2_subdev_format *format)
1925 {
1926 	struct adv76xx_state *state = to_state(sd);
1927 
1928 	if (format->pad != state->source_pad)
1929 		return -EINVAL;
1930 
1931 	adv76xx_fill_format(state, &format->format);
1932 
1933 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1934 		struct v4l2_mbus_framefmt *fmt;
1935 
1936 		fmt = v4l2_subdev_state_get_format(sd_state, format->pad);
1937 		format->format.code = fmt->code;
1938 	} else {
1939 		format->format.code = state->format->code;
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1946 				 struct v4l2_subdev_state *sd_state,
1947 				 struct v4l2_subdev_selection *sel)
1948 {
1949 	struct adv76xx_state *state = to_state(sd);
1950 
1951 	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1952 		return -EINVAL;
1953 	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1954 	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1955 		return -EINVAL;
1956 
1957 	sel->r.left	= 0;
1958 	sel->r.top	= 0;
1959 	sel->r.width	= state->timings.bt.width;
1960 	sel->r.height	= state->timings.bt.height;
1961 
1962 	return 0;
1963 }
1964 
1965 static int adv76xx_set_format(struct v4l2_subdev *sd,
1966 			      struct v4l2_subdev_state *sd_state,
1967 			      struct v4l2_subdev_format *format)
1968 {
1969 	struct adv76xx_state *state = to_state(sd);
1970 	const struct adv76xx_format_info *info;
1971 
1972 	if (format->pad != state->source_pad)
1973 		return -EINVAL;
1974 
1975 	info = adv76xx_format_info(state, format->format.code);
1976 	if (!info)
1977 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1978 
1979 	adv76xx_fill_format(state, &format->format);
1980 	format->format.code = info->code;
1981 
1982 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1983 		struct v4l2_mbus_framefmt *fmt;
1984 
1985 		fmt = v4l2_subdev_state_get_format(sd_state, format->pad);
1986 		fmt->code = format->format.code;
1987 	} else {
1988 		state->format = info;
1989 		adv76xx_setup_format(state);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1996 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1997 {
1998 	struct adv76xx_state *state = to_state(sd);
1999 
2000 	if ((cec_read(sd, 0x11) & 0x01) == 0) {
2001 		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
2002 		return;
2003 	}
2004 
2005 	if (tx_raw_status & 0x02) {
2006 		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
2007 			 __func__);
2008 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
2009 				  1, 0, 0, 0);
2010 		return;
2011 	}
2012 	if (tx_raw_status & 0x04) {
2013 		u8 status;
2014 		u8 nack_cnt;
2015 		u8 low_drive_cnt;
2016 
2017 		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
2018 		/*
2019 		 * We set this status bit since this hardware performs
2020 		 * retransmissions.
2021 		 */
2022 		status = CEC_TX_STATUS_MAX_RETRIES;
2023 		nack_cnt = cec_read(sd, 0x14) & 0xf;
2024 		if (nack_cnt)
2025 			status |= CEC_TX_STATUS_NACK;
2026 		low_drive_cnt = cec_read(sd, 0x14) >> 4;
2027 		if (low_drive_cnt)
2028 			status |= CEC_TX_STATUS_LOW_DRIVE;
2029 		cec_transmit_done(state->cec_adap, status,
2030 				  0, nack_cnt, low_drive_cnt, 0);
2031 		return;
2032 	}
2033 	if (tx_raw_status & 0x01) {
2034 		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2035 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2036 		return;
2037 	}
2038 }
2039 
2040 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2041 {
2042 	struct adv76xx_state *state = to_state(sd);
2043 	const struct adv76xx_chip_info *info = state->info;
2044 	u8 cec_irq;
2045 
2046 	/* cec controller */
2047 	cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2048 	if (!cec_irq)
2049 		return;
2050 
2051 	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2052 	adv76xx_cec_tx_raw_status(sd, cec_irq);
2053 	if (cec_irq & 0x08) {
2054 		struct cec_msg msg;
2055 
2056 		msg.len = cec_read(sd, 0x25) & 0x1f;
2057 		if (msg.len > CEC_MAX_MSG_SIZE)
2058 			msg.len = CEC_MAX_MSG_SIZE;
2059 
2060 		if (msg.len) {
2061 			u8 i;
2062 
2063 			for (i = 0; i < msg.len; i++)
2064 				msg.msg[i] = cec_read(sd, i + 0x15);
2065 			cec_write(sd, info->cec_rx_enable,
2066 				  info->cec_rx_enable_mask); /* re-enable rx */
2067 			cec_received_msg(state->cec_adap, &msg);
2068 		}
2069 	}
2070 
2071 	if (info->cec_irq_swap) {
2072 		/*
2073 		 * Note: the bit order is swapped between 0x4d and 0x4e
2074 		 * on adv7604
2075 		 */
2076 		cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2077 			  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2078 	}
2079 	io_write(sd, info->cec_irq_status + 1, cec_irq);
2080 
2081 	if (handled)
2082 		*handled = true;
2083 }
2084 
2085 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2086 {
2087 	struct adv76xx_state *state = cec_get_drvdata(adap);
2088 	const struct adv76xx_chip_info *info = state->info;
2089 	struct v4l2_subdev *sd = &state->sd;
2090 
2091 	if (!state->cec_enabled_adap && enable) {
2092 		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2093 		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2094 		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2095 		/* enabled irqs: */
2096 		/* tx: ready */
2097 		/* tx: arbitration lost */
2098 		/* tx: retry timeout */
2099 		/* rx: ready */
2100 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2101 		cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2102 	} else if (state->cec_enabled_adap && !enable) {
2103 		/* disable cec interrupts */
2104 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2105 		/* disable address mask 1-3 */
2106 		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2107 		/* power down cec section */
2108 		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2109 		state->cec_valid_addrs = 0;
2110 	}
2111 	state->cec_enabled_adap = enable;
2112 	adv76xx_s_detect_tx_5v_ctrl(sd);
2113 	return 0;
2114 }
2115 
2116 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2117 {
2118 	struct adv76xx_state *state = cec_get_drvdata(adap);
2119 	struct v4l2_subdev *sd = &state->sd;
2120 	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2121 
2122 	if (!state->cec_enabled_adap)
2123 		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2124 
2125 	if (addr == CEC_LOG_ADDR_INVALID) {
2126 		cec_write_clr_set(sd, 0x27, 0x70, 0);
2127 		state->cec_valid_addrs = 0;
2128 		return 0;
2129 	}
2130 
2131 	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2132 		bool is_valid = state->cec_valid_addrs & (1 << i);
2133 
2134 		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2135 			free_idx = i;
2136 		if (is_valid && state->cec_addr[i] == addr)
2137 			return 0;
2138 	}
2139 	if (i == ADV76XX_MAX_ADDRS) {
2140 		i = free_idx;
2141 		if (i == ADV76XX_MAX_ADDRS)
2142 			return -ENXIO;
2143 	}
2144 	state->cec_addr[i] = addr;
2145 	state->cec_valid_addrs |= 1 << i;
2146 
2147 	switch (i) {
2148 	case 0:
2149 		/* enable address mask 0 */
2150 		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2151 		/* set address for mask 0 */
2152 		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2153 		break;
2154 	case 1:
2155 		/* enable address mask 1 */
2156 		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2157 		/* set address for mask 1 */
2158 		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2159 		break;
2160 	case 2:
2161 		/* enable address mask 2 */
2162 		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2163 		/* set address for mask 1 */
2164 		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2165 		break;
2166 	}
2167 	return 0;
2168 }
2169 
2170 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2171 				     u32 signal_free_time, struct cec_msg *msg)
2172 {
2173 	struct adv76xx_state *state = cec_get_drvdata(adap);
2174 	struct v4l2_subdev *sd = &state->sd;
2175 	u8 len = msg->len;
2176 	unsigned int i;
2177 
2178 	/*
2179 	 * The number of retries is the number of attempts - 1, but retry
2180 	 * at least once. It's not clear if a value of 0 is allowed, so
2181 	 * let's do at least one retry.
2182 	 */
2183 	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2184 
2185 	if (len > 16) {
2186 		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2187 		return -EINVAL;
2188 	}
2189 
2190 	/* write data */
2191 	for (i = 0; i < len; i++)
2192 		cec_write(sd, i, msg->msg[i]);
2193 
2194 	/* set length (data + header) */
2195 	cec_write(sd, 0x10, len);
2196 	/* start transmit, enable tx */
2197 	cec_write(sd, 0x11, 0x01);
2198 	return 0;
2199 }
2200 
2201 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2202 	.adap_enable = adv76xx_cec_adap_enable,
2203 	.adap_log_addr = adv76xx_cec_adap_log_addr,
2204 	.adap_transmit = adv76xx_cec_adap_transmit,
2205 };
2206 #endif
2207 
2208 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2209 {
2210 	struct adv76xx_state *state = to_state(sd);
2211 	const struct adv76xx_chip_info *info = state->info;
2212 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2213 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2214 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2215 	u8 fmt_change_digital;
2216 	u8 fmt_change;
2217 	u8 tx_5v;
2218 
2219 	if (irq_reg_0x43)
2220 		io_write(sd, 0x44, irq_reg_0x43);
2221 	if (irq_reg_0x70)
2222 		io_write(sd, 0x71, irq_reg_0x70);
2223 	if (irq_reg_0x6b)
2224 		io_write(sd, 0x6c, irq_reg_0x6b);
2225 
2226 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2227 
2228 	/* format change */
2229 	fmt_change = irq_reg_0x43 & 0x98;
2230 	fmt_change_digital = is_digital_input(sd)
2231 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2232 			   : 0;
2233 
2234 	if (fmt_change || fmt_change_digital) {
2235 		v4l2_dbg(1, debug, sd,
2236 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2237 			__func__, fmt_change, fmt_change_digital);
2238 
2239 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2240 
2241 		if (handled)
2242 			*handled = true;
2243 	}
2244 	/* HDMI/DVI mode */
2245 	if (irq_reg_0x6b & 0x01) {
2246 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2247 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2248 		set_rgb_quantization_range(sd);
2249 		if (handled)
2250 			*handled = true;
2251 	}
2252 
2253 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2254 	/* cec */
2255 	adv76xx_cec_isr(sd, handled);
2256 #endif
2257 
2258 	/* tx 5v detect */
2259 	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2260 	if (tx_5v) {
2261 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2262 		adv76xx_s_detect_tx_5v_ctrl(sd);
2263 		if (handled)
2264 			*handled = true;
2265 	}
2266 	return 0;
2267 }
2268 
2269 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2270 {
2271 	struct adv76xx_state *state = dev_id;
2272 	bool handled = false;
2273 
2274 	adv76xx_isr(&state->sd, 0, &handled);
2275 
2276 	return handled ? IRQ_HANDLED : IRQ_NONE;
2277 }
2278 
2279 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2280 {
2281 	struct adv76xx_state *state = to_state(sd);
2282 	u8 *data = NULL;
2283 
2284 	memset(edid->reserved, 0, sizeof(edid->reserved));
2285 
2286 	switch (edid->pad) {
2287 	case ADV76XX_PAD_HDMI_PORT_A:
2288 	case ADV7604_PAD_HDMI_PORT_B:
2289 	case ADV7604_PAD_HDMI_PORT_C:
2290 	case ADV7604_PAD_HDMI_PORT_D:
2291 		if (state->edid.present & (1 << edid->pad))
2292 			data = state->edid.edid;
2293 		break;
2294 	default:
2295 		return -EINVAL;
2296 	}
2297 
2298 	if (edid->start_block == 0 && edid->blocks == 0) {
2299 		edid->blocks = data ? state->edid.blocks : 0;
2300 		return 0;
2301 	}
2302 
2303 	if (!data)
2304 		return -ENODATA;
2305 
2306 	if (edid->start_block >= state->edid.blocks)
2307 		return -EINVAL;
2308 
2309 	if (edid->start_block + edid->blocks > state->edid.blocks)
2310 		edid->blocks = state->edid.blocks - edid->start_block;
2311 
2312 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2313 
2314 	return 0;
2315 }
2316 
2317 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2318 {
2319 	struct adv76xx_state *state = to_state(sd);
2320 	const struct adv76xx_chip_info *info = state->info;
2321 	unsigned int spa_loc;
2322 	u16 pa, parent_pa;
2323 	int err;
2324 	int i;
2325 
2326 	memset(edid->reserved, 0, sizeof(edid->reserved));
2327 
2328 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2329 		return -EINVAL;
2330 	if (edid->start_block != 0)
2331 		return -EINVAL;
2332 	if (edid->blocks == 0) {
2333 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2334 		state->edid.present &= ~(1 << edid->pad);
2335 		adv76xx_set_hpd(state, state->edid.present);
2336 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2337 
2338 		/* Fall back to a 16:9 aspect ratio */
2339 		state->aspect_ratio.numerator = 16;
2340 		state->aspect_ratio.denominator = 9;
2341 
2342 		if (!state->edid.present) {
2343 			state->edid.blocks = 0;
2344 			cec_phys_addr_invalidate(state->cec_adap);
2345 		}
2346 
2347 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2348 				__func__, edid->pad, state->edid.present);
2349 		return 0;
2350 	}
2351 	if (edid->blocks > ADV76XX_MAX_EDID_BLOCKS) {
2352 		edid->blocks = ADV76XX_MAX_EDID_BLOCKS;
2353 		return -E2BIG;
2354 	}
2355 
2356 	pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2357 	err = v4l2_phys_addr_validate(pa, &parent_pa, NULL);
2358 	if (err)
2359 		return err;
2360 
2361 	if (!spa_loc) {
2362 		/*
2363 		 * There is no SPA, so just set spa_loc to 128 and pa to whatever
2364 		 * data is there.
2365 		 */
2366 		spa_loc = 128;
2367 		pa = (edid->edid[spa_loc] << 8) | edid->edid[spa_loc + 1];
2368 	}
2369 
2370 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2371 			__func__, edid->pad, state->edid.present);
2372 
2373 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2374 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2375 	adv76xx_set_hpd(state, 0);
2376 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2377 
2378 	switch (edid->pad) {
2379 	case ADV76XX_PAD_HDMI_PORT_A:
2380 		state->spa_port_a[0] = pa >> 8;
2381 		state->spa_port_a[1] = pa & 0xff;
2382 		break;
2383 	case ADV7604_PAD_HDMI_PORT_B:
2384 		rep_write(sd, info->edid_spa_port_b_reg, pa >> 8);
2385 		rep_write(sd, info->edid_spa_port_b_reg + 1, pa & 0xff);
2386 		break;
2387 	case ADV7604_PAD_HDMI_PORT_C:
2388 		rep_write(sd, info->edid_spa_port_b_reg + 2, pa >> 8);
2389 		rep_write(sd, info->edid_spa_port_b_reg + 3, pa & 0xff);
2390 		break;
2391 	case ADV7604_PAD_HDMI_PORT_D:
2392 		rep_write(sd, info->edid_spa_port_b_reg + 4, pa >> 8);
2393 		rep_write(sd, info->edid_spa_port_b_reg + 5, pa & 0xff);
2394 		break;
2395 	default:
2396 		return -EINVAL;
2397 	}
2398 
2399 	if (info->edid_spa_loc_reg) {
2400 		u8 mask = info->edid_spa_loc_msb_mask;
2401 
2402 		rep_write(sd, info->edid_spa_loc_reg, spa_loc & 0xff);
2403 		rep_write_clr_set(sd, info->edid_spa_loc_reg + 1,
2404 				  mask, (spa_loc & 0x100) ? mask : 0);
2405 	}
2406 
2407 	edid->edid[spa_loc] = state->spa_port_a[0];
2408 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2409 
2410 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2411 	state->edid.blocks = edid->blocks;
2412 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2413 			edid->edid[0x16]);
2414 	state->edid.present |= 1 << edid->pad;
2415 
2416 	rep_write_clr_set(sd, info->edid_segment_reg,
2417 			  info->edid_segment_mask, 0);
2418 	err = edid_write_block(sd, 128 * min(edid->blocks, 2U), state->edid.edid);
2419 	if (err < 0) {
2420 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2421 		return err;
2422 	}
2423 	if (edid->blocks > 2) {
2424 		rep_write_clr_set(sd, info->edid_segment_reg,
2425 				  info->edid_segment_mask,
2426 				  info->edid_segment_mask);
2427 		err = edid_write_block(sd, 128 * (edid->blocks - 2),
2428 				       state->edid.edid + 256);
2429 		if (err < 0) {
2430 			v4l2_err(sd, "error %d writing edid pad %d\n",
2431 				 err, edid->pad);
2432 			return err;
2433 		}
2434 	}
2435 
2436 	/* adv76xx calculates the checksums and enables I2C access to internal
2437 	   EDID RAM from DDC port. */
2438 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2439 
2440 	for (i = 0; i < 1000; i++) {
2441 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2442 			break;
2443 		mdelay(1);
2444 	}
2445 	if (i == 1000) {
2446 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2447 		return -EIO;
2448 	}
2449 	cec_s_phys_addr(state->cec_adap, parent_pa, false);
2450 
2451 	/* enable hotplug after 100 ms */
2452 	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2453 	return 0;
2454 }
2455 
2456 /*********** avi info frame CEA-861-E **************/
2457 
2458 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2459 	{ "AVI", 0x01, 0xe0, 0x00 },
2460 	{ "Audio", 0x02, 0xe3, 0x1c },
2461 	{ "SDP", 0x04, 0xe6, 0x2a },
2462 	{ "Vendor", 0x10, 0xec, 0x54 }
2463 };
2464 
2465 static int adv76xx_read_infoframe_buf(struct v4l2_subdev *sd, int index,
2466 				      u8 buf[V4L2_DEBUGFS_IF_MAX_LEN])
2467 {
2468 	u8 len;
2469 	int i;
2470 
2471 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2472 		v4l2_info(sd, "%s infoframe not received\n",
2473 			  adv76xx_cri[index].desc);
2474 		return -ENOENT;
2475 	}
2476 
2477 	for (i = 0; i < 3; i++)
2478 		buf[i] = infoframe_read(sd, adv76xx_cri[index].head_addr + i);
2479 
2480 	len = buf[2] + 1;
2481 
2482 	if (len + 3 > V4L2_DEBUGFS_IF_MAX_LEN) {
2483 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2484 			 adv76xx_cri[index].desc, len);
2485 		return -ENOENT;
2486 	}
2487 
2488 	for (i = 0; i < len; i++)
2489 		buf[i + 3] = infoframe_read(sd,
2490 					    adv76xx_cri[index].payload_addr + i);
2491 	return len + 3;
2492 }
2493 
2494 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2495 {
2496 	int i;
2497 
2498 	if (!is_hdmi(sd)) {
2499 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2500 		return;
2501 	}
2502 
2503 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2504 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2505 		u8 buffer[V4L2_DEBUGFS_IF_MAX_LEN] = {};
2506 		union hdmi_infoframe frame;
2507 		int len;
2508 
2509 		len = adv76xx_read_infoframe_buf(sd, i, buffer);
2510 		if (len < 0)
2511 			continue;
2512 
2513 		if (hdmi_infoframe_unpack(&frame, buffer, len) < 0)
2514 			v4l2_err(sd, "%s: unpack of %s infoframe failed\n",
2515 				 __func__, adv76xx_cri[i].desc);
2516 		else
2517 			hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2518 	}
2519 }
2520 
2521 static int adv76xx_log_status(struct v4l2_subdev *sd)
2522 {
2523 	struct adv76xx_state *state = to_state(sd);
2524 	const struct adv76xx_chip_info *info = state->info;
2525 	struct v4l2_dv_timings timings;
2526 	struct stdi_readback stdi;
2527 	int ret;
2528 	u8 reg_io_0x02;
2529 	u8 edid_enabled;
2530 	u8 cable_det;
2531 	static const char * const csc_coeff_sel_rb[16] = {
2532 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2533 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2534 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2535 		"reserved", "reserved", "reserved", "reserved", "manual"
2536 	};
2537 	static const char * const input_color_space_txt[16] = {
2538 		"RGB limited range (16-235)", "RGB full range (0-255)",
2539 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2540 		"xvYCC Bt.601", "xvYCC Bt.709",
2541 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2542 		"invalid", "invalid", "invalid", "invalid", "invalid",
2543 		"invalid", "invalid", "automatic"
2544 	};
2545 	static const char * const hdmi_color_space_txt[16] = {
2546 		"RGB limited range (16-235)", "RGB full range (0-255)",
2547 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2548 		"xvYCC Bt.601", "xvYCC Bt.709",
2549 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2550 		"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2551 		"invalid", "invalid", "invalid"
2552 	};
2553 	static const char * const rgb_quantization_range_txt[] = {
2554 		"Automatic",
2555 		"RGB limited range (16-235)",
2556 		"RGB full range (0-255)",
2557 	};
2558 	static const char * const deep_color_mode_txt[4] = {
2559 		"8-bits per channel",
2560 		"10-bits per channel",
2561 		"12-bits per channel",
2562 		"16-bits per channel (not supported)"
2563 	};
2564 
2565 	v4l2_info(sd, "-----Chip status-----\n");
2566 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2567 	edid_enabled = rep_read(sd, info->edid_status_reg);
2568 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2569 			((edid_enabled & 0x01) ? "Yes" : "No"),
2570 			((edid_enabled & 0x02) ? "Yes" : "No"),
2571 			((edid_enabled & 0x04) ? "Yes" : "No"),
2572 			((edid_enabled & 0x08) ? "Yes" : "No"));
2573 	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2574 			"enabled" : "disabled");
2575 	if (state->cec_enabled_adap) {
2576 		int i;
2577 
2578 		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2579 			bool is_valid = state->cec_valid_addrs & (1 << i);
2580 
2581 			if (is_valid)
2582 				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2583 					  state->cec_addr[i]);
2584 		}
2585 	}
2586 
2587 	v4l2_info(sd, "-----Signal status-----\n");
2588 	cable_det = info->read_cable_det(sd);
2589 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2590 			((cable_det & 0x01) ? "Yes" : "No"),
2591 			((cable_det & 0x02) ? "Yes" : "No"),
2592 			((cable_det & 0x04) ? "Yes" : "No"),
2593 			((cable_det & 0x08) ? "Yes" : "No"));
2594 	v4l2_info(sd, "TMDS signal detected: %s\n",
2595 			no_signal_tmds(sd) ? "false" : "true");
2596 	v4l2_info(sd, "TMDS signal locked: %s\n",
2597 			no_lock_tmds(sd) ? "false" : "true");
2598 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2599 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2600 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2601 	v4l2_info(sd, "CP free run: %s\n",
2602 			(in_free_run(sd)) ? "on" : "off");
2603 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2604 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2605 			(io_read(sd, 0x01) & 0x70) >> 4);
2606 
2607 	v4l2_info(sd, "-----Video Timings-----\n");
2608 	if (read_stdi(sd, &stdi))
2609 		v4l2_info(sd, "STDI: not locked\n");
2610 	else
2611 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2612 				stdi.lcf, stdi.bl, stdi.lcvs,
2613 				stdi.interlaced ? "interlaced" : "progressive",
2614 				stdi.hs_pol, stdi.vs_pol);
2615 	if (adv76xx_query_dv_timings(sd, 0, &timings))
2616 		v4l2_info(sd, "No video detected\n");
2617 	else
2618 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2619 				      &timings, true);
2620 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2621 			      &state->timings, true);
2622 
2623 	if (no_signal(sd))
2624 		return 0;
2625 
2626 	v4l2_info(sd, "-----Color space-----\n");
2627 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2628 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2629 
2630 	ret = io_read(sd, 0x02);
2631 	if (ret < 0) {
2632 		v4l2_info(sd, "Can't read Input/Output color space\n");
2633 	} else {
2634 		reg_io_0x02 = ret;
2635 
2636 		v4l2_info(sd, "Input color space: %s\n",
2637 				input_color_space_txt[reg_io_0x02 >> 4]);
2638 		v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2639 				(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2640 				(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2641 					"(16-235)" : "(0-255)",
2642 				(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2643 	}
2644 	v4l2_info(sd, "Color space conversion: %s\n",
2645 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2646 
2647 	if (!is_digital_input(sd))
2648 		return 0;
2649 
2650 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2651 	v4l2_info(sd, "Digital video port selected: %c\n",
2652 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2653 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2654 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2655 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2656 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2657 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2658 	if (is_hdmi(sd)) {
2659 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2660 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2661 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2662 
2663 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2664 				audio_pll_locked ? "locked" : "not locked",
2665 				audio_sample_packet_detect ? "detected" : "not detected",
2666 				audio_mute ? "muted" : "enabled");
2667 		if (audio_pll_locked && audio_sample_packet_detect) {
2668 			v4l2_info(sd, "Audio format: %s\n",
2669 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2670 		}
2671 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2672 				(hdmi_read(sd, 0x5c) << 8) +
2673 				(hdmi_read(sd, 0x5d) & 0xf0));
2674 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2675 				(hdmi_read(sd, 0x5e) << 8) +
2676 				hdmi_read(sd, 0x5f));
2677 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2678 
2679 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2680 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2681 
2682 		adv76xx_log_infoframes(sd);
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2689 				   struct v4l2_fh *fh,
2690 				   struct v4l2_event_subscription *sub)
2691 {
2692 	switch (sub->type) {
2693 	case V4L2_EVENT_SOURCE_CHANGE:
2694 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2695 	case V4L2_EVENT_CTRL:
2696 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2697 	default:
2698 		return -EINVAL;
2699 	}
2700 }
2701 
2702 static ssize_t
2703 adv76xx_debugfs_if_read(u32 type, void *priv, struct file *filp,
2704 			char __user *ubuf, size_t count, loff_t *ppos)
2705 {
2706 	u8 buf[V4L2_DEBUGFS_IF_MAX_LEN] = {};
2707 	struct v4l2_subdev *sd = priv;
2708 	int index;
2709 	int len;
2710 
2711 	if (!is_hdmi(sd))
2712 		return 0;
2713 
2714 	switch (type) {
2715 	case V4L2_DEBUGFS_IF_AVI:
2716 		index = 0;
2717 		break;
2718 	case V4L2_DEBUGFS_IF_AUDIO:
2719 		index = 1;
2720 		break;
2721 	case V4L2_DEBUGFS_IF_SPD:
2722 		index = 2;
2723 		break;
2724 	case V4L2_DEBUGFS_IF_HDMI:
2725 		index = 3;
2726 		break;
2727 	default:
2728 		return 0;
2729 	}
2730 
2731 	len = adv76xx_read_infoframe_buf(sd, index, buf);
2732 	if (len > 0)
2733 		len = simple_read_from_buffer(ubuf, count, ppos, buf, len);
2734 	return len < 0 ? 0 : len;
2735 }
2736 
2737 static int adv76xx_registered(struct v4l2_subdev *sd)
2738 {
2739 	struct adv76xx_state *state = to_state(sd);
2740 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2741 	int err;
2742 
2743 	err = cec_register_adapter(state->cec_adap, &client->dev);
2744 	if (err) {
2745 		cec_delete_adapter(state->cec_adap);
2746 		return err;
2747 	}
2748 	state->debugfs_dir = debugfs_create_dir(sd->name, v4l2_debugfs_root());
2749 	state->infoframes = v4l2_debugfs_if_alloc(state->debugfs_dir,
2750 		V4L2_DEBUGFS_IF_AVI | V4L2_DEBUGFS_IF_AUDIO |
2751 		V4L2_DEBUGFS_IF_SPD | V4L2_DEBUGFS_IF_HDMI, sd,
2752 		adv76xx_debugfs_if_read);
2753 	return 0;
2754 }
2755 
2756 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2757 {
2758 	struct adv76xx_state *state = to_state(sd);
2759 
2760 	cec_unregister_adapter(state->cec_adap);
2761 	v4l2_debugfs_if_free(state->infoframes);
2762 	state->infoframes = NULL;
2763 	debugfs_remove_recursive(state->debugfs_dir);
2764 	state->debugfs_dir = NULL;
2765 }
2766 
2767 /* ----------------------------------------------------------------------- */
2768 
2769 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2770 	.s_ctrl = adv76xx_s_ctrl,
2771 	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2772 };
2773 
2774 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2775 	.log_status = adv76xx_log_status,
2776 	.interrupt_service_routine = adv76xx_isr,
2777 	.subscribe_event = adv76xx_subscribe_event,
2778 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2779 #ifdef CONFIG_VIDEO_ADV_DEBUG
2780 	.g_register = adv76xx_g_register,
2781 	.s_register = adv76xx_s_register,
2782 #endif
2783 };
2784 
2785 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2786 	.s_routing = adv76xx_s_routing,
2787 	.g_input_status = adv76xx_g_input_status,
2788 };
2789 
2790 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2791 	.enum_mbus_code = adv76xx_enum_mbus_code,
2792 	.get_selection = adv76xx_get_selection,
2793 	.get_fmt = adv76xx_get_format,
2794 	.set_fmt = adv76xx_set_format,
2795 	.get_edid = adv76xx_get_edid,
2796 	.set_edid = adv76xx_set_edid,
2797 	.s_dv_timings = adv76xx_s_dv_timings,
2798 	.g_dv_timings = adv76xx_g_dv_timings,
2799 	.query_dv_timings = adv76xx_query_dv_timings,
2800 	.dv_timings_cap = adv76xx_dv_timings_cap,
2801 	.enum_dv_timings = adv76xx_enum_dv_timings,
2802 };
2803 
2804 static const struct v4l2_subdev_ops adv76xx_ops = {
2805 	.core = &adv76xx_core_ops,
2806 	.video = &adv76xx_video_ops,
2807 	.pad = &adv76xx_pad_ops,
2808 };
2809 
2810 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2811 	.registered = adv76xx_registered,
2812 	.unregistered = adv76xx_unregistered,
2813 };
2814 
2815 /* -------------------------- custom ctrls ---------------------------------- */
2816 
2817 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2818 	.ops = &adv76xx_ctrl_ops,
2819 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2820 	.name = "Analog Sampling Phase",
2821 	.type = V4L2_CTRL_TYPE_INTEGER,
2822 	.min = 0,
2823 	.max = 0x1f,
2824 	.step = 1,
2825 	.def = 0,
2826 };
2827 
2828 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2829 	.ops = &adv76xx_ctrl_ops,
2830 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2831 	.name = "Free Running Color, Manual",
2832 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2833 	.min = false,
2834 	.max = true,
2835 	.step = 1,
2836 	.def = false,
2837 };
2838 
2839 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2840 	.ops = &adv76xx_ctrl_ops,
2841 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2842 	.name = "Free Running Color",
2843 	.type = V4L2_CTRL_TYPE_INTEGER,
2844 	.min = 0x0,
2845 	.max = 0xffffff,
2846 	.step = 0x1,
2847 	.def = 0x0,
2848 };
2849 
2850 /* ----------------------------------------------------------------------- */
2851 
2852 struct adv76xx_register_map {
2853 	const char *name;
2854 	u8 default_addr;
2855 };
2856 
2857 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2858 	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2859 	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2860 	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2861 	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2862 	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2863 	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2864 	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2865 	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2866 	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2867 	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2868 	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2869 	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2870 	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2871 };
2872 
2873 static int adv76xx_core_init(struct v4l2_subdev *sd)
2874 {
2875 	struct adv76xx_state *state = to_state(sd);
2876 	const struct adv76xx_chip_info *info = state->info;
2877 	struct adv76xx_platform_data *pdata = &state->pdata;
2878 
2879 	hdmi_write(sd, 0x48,
2880 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2881 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2882 
2883 	disable_input(sd);
2884 
2885 	if (pdata->default_input >= 0 &&
2886 	    pdata->default_input < state->source_pad) {
2887 		state->selected_input = pdata->default_input;
2888 		select_input(sd);
2889 		enable_input(sd);
2890 	}
2891 
2892 	/* power */
2893 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2894 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2895 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2896 
2897 	/* HPD */
2898 	if (info->type != ADV7604) {
2899 		/* Set manual HPD values to 0 */
2900 		io_write_clr_set(sd, 0x20, 0xc0, 0);
2901 		/*
2902 		 * Set HPA_DELAY to 200 ms and set automatic HPD control
2903 		 * to: internal EDID is active AND a cable is detected
2904 		 * AND the manual HPD control is set to 1.
2905 		 */
2906 		hdmi_write_clr_set(sd, 0x6c, 0xf6, 0x26);
2907 	}
2908 
2909 	/* video format */
2910 	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2911 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2912 			pdata->insert_av_codes << 2 |
2913 			pdata->replicate_av_codes << 1);
2914 	adv76xx_setup_format(state);
2915 
2916 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2917 
2918 	/* VS, HS polarities */
2919 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2920 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2921 
2922 	/* Adjust drive strength */
2923 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2924 				pdata->dr_str_clk << 2 |
2925 				pdata->dr_str_sync);
2926 
2927 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2928 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2929 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2930 				      ADI recommended setting [REF_01, c. 2.3.3] */
2931 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2932 				      ADI recommended setting [REF_01, c. 2.3.3] */
2933 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2934 				     for digital formats */
2935 
2936 	/* HDMI audio */
2937 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2938 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2939 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2940 
2941 	/* TODO from platform data */
2942 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2943 
2944 	if (adv76xx_has_afe(state)) {
2945 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2946 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2947 	}
2948 
2949 	/* interrupts */
2950 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2951 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2952 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2953 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2954 	info->setup_irqs(sd);
2955 
2956 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2957 }
2958 
2959 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2960 {
2961 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2962 }
2963 
2964 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2965 {
2966 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2967 }
2968 
2969 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2970 {
2971 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2972 }
2973 
2974 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2975 {
2976 	unsigned int i;
2977 
2978 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2979 		i2c_unregister_device(state->i2c_clients[i]);
2980 }
2981 
2982 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2983 					       unsigned int page)
2984 {
2985 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2986 	struct adv76xx_state *state = to_state(sd);
2987 	struct adv76xx_platform_data *pdata = &state->pdata;
2988 	unsigned int io_reg = 0xf2 + page;
2989 	struct i2c_client *new_client;
2990 
2991 	if (pdata && pdata->i2c_addresses[page])
2992 		new_client = i2c_new_dummy_device(client->adapter,
2993 					   pdata->i2c_addresses[page]);
2994 	else
2995 		new_client = i2c_new_ancillary_device(client,
2996 				adv76xx_default_addresses[page].name,
2997 				adv76xx_default_addresses[page].default_addr);
2998 
2999 	if (!IS_ERR(new_client))
3000 		io_write(sd, io_reg, new_client->addr << 1);
3001 
3002 	return new_client;
3003 }
3004 
3005 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
3006 	/* reset ADI recommended settings for HDMI: */
3007 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
3008 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
3009 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
3010 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
3011 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
3012 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
3013 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
3014 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
3015 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
3016 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
3017 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
3018 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
3019 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
3020 
3021 	/* set ADI recommended settings for digitizer */
3022 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
3023 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
3024 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
3025 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
3026 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
3027 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
3028 
3029 	{ ADV76XX_REG_SEQ_TERM, 0 },
3030 };
3031 
3032 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
3033 	/* set ADI recommended settings for HDMI: */
3034 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
3035 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
3036 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
3037 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
3038 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
3039 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
3040 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
3041 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
3042 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
3043 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
3044 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
3045 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
3046 
3047 	/* reset ADI recommended settings for digitizer */
3048 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
3049 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
3050 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
3051 
3052 	{ ADV76XX_REG_SEQ_TERM, 0 },
3053 };
3054 
3055 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
3056 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
3057 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
3058 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3059 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3060 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3061 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3062 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3063 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3064 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3065 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3066 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
3067 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
3068 
3069 	{ ADV76XX_REG_SEQ_TERM, 0 },
3070 };
3071 
3072 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
3073 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
3074 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3075 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3076 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3077 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3078 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3079 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3080 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3081 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3082 	{ ADV76XX_REG_SEQ_TERM, 0 },
3083 };
3084 
3085 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
3086 	[ADV7604] = {
3087 		.type = ADV7604,
3088 		.has_afe = true,
3089 		.max_port = ADV7604_PAD_VGA_COMP,
3090 		.num_dv_ports = 4,
3091 		.edid_enable_reg = 0x77,
3092 		.edid_status_reg = 0x7d,
3093 		.edid_segment_reg = 0x77,
3094 		.edid_segment_mask = 0x10,
3095 		.edid_spa_loc_reg = 0x76,
3096 		.edid_spa_loc_msb_mask = 0x40,
3097 		.edid_spa_port_b_reg = 0x70,
3098 		.lcf_reg = 0xb3,
3099 		.tdms_lock_mask = 0xe0,
3100 		.cable_det_mask = 0x1e,
3101 		.fmt_change_digital_mask = 0xc1,
3102 		.cp_csc = 0xfc,
3103 		.cec_irq_status = 0x4d,
3104 		.cec_rx_enable = 0x26,
3105 		.cec_rx_enable_mask = 0x01,
3106 		.cec_irq_swap = true,
3107 		.formats = adv7604_formats,
3108 		.nformats = ARRAY_SIZE(adv7604_formats),
3109 		.set_termination = adv7604_set_termination,
3110 		.setup_irqs = adv7604_setup_irqs,
3111 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3112 		.read_cable_det = adv7604_read_cable_det,
3113 		.recommended_settings = {
3114 		    [0] = adv7604_recommended_settings_afe,
3115 		    [1] = adv7604_recommended_settings_hdmi,
3116 		},
3117 		.num_recommended_settings = {
3118 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3119 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3120 		},
3121 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3122 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3123 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3124 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3125 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3126 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3127 			BIT(ADV7604_PAGE_VDP),
3128 		.linewidth_mask = 0xfff,
3129 		.field0_height_mask = 0xfff,
3130 		.field1_height_mask = 0xfff,
3131 		.hfrontporch_mask = 0x3ff,
3132 		.hsync_mask = 0x3ff,
3133 		.hbackporch_mask = 0x3ff,
3134 		.field0_vfrontporch_mask = 0x1fff,
3135 		.field0_vsync_mask = 0x1fff,
3136 		.field0_vbackporch_mask = 0x1fff,
3137 		.field1_vfrontporch_mask = 0x1fff,
3138 		.field1_vsync_mask = 0x1fff,
3139 		.field1_vbackporch_mask = 0x1fff,
3140 	},
3141 	[ADV7611] = {
3142 		.type = ADV7611,
3143 		.has_afe = false,
3144 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
3145 		.num_dv_ports = 1,
3146 		.edid_enable_reg = 0x74,
3147 		.edid_status_reg = 0x76,
3148 		.edid_segment_reg = 0x7a,
3149 		.edid_segment_mask = 0x01,
3150 		.lcf_reg = 0xa3,
3151 		.tdms_lock_mask = 0x43,
3152 		.cable_det_mask = 0x01,
3153 		.fmt_change_digital_mask = 0x03,
3154 		.cp_csc = 0xf4,
3155 		.cec_irq_status = 0x93,
3156 		.cec_rx_enable = 0x2c,
3157 		.cec_rx_enable_mask = 0x02,
3158 		.formats = adv7611_formats,
3159 		.nformats = ARRAY_SIZE(adv7611_formats),
3160 		.set_termination = adv7611_set_termination,
3161 		.setup_irqs = adv7611_setup_irqs,
3162 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3163 		.read_cable_det = adv7611_read_cable_det,
3164 		.recommended_settings = {
3165 		    [1] = adv7611_recommended_settings_hdmi,
3166 		},
3167 		.num_recommended_settings = {
3168 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3169 		},
3170 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3171 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3172 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3173 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3174 		.linewidth_mask = 0x1fff,
3175 		.field0_height_mask = 0x1fff,
3176 		.field1_height_mask = 0x1fff,
3177 		.hfrontporch_mask = 0x1fff,
3178 		.hsync_mask = 0x1fff,
3179 		.hbackporch_mask = 0x1fff,
3180 		.field0_vfrontporch_mask = 0x3fff,
3181 		.field0_vsync_mask = 0x3fff,
3182 		.field0_vbackporch_mask = 0x3fff,
3183 		.field1_vfrontporch_mask = 0x3fff,
3184 		.field1_vsync_mask = 0x3fff,
3185 		.field1_vbackporch_mask = 0x3fff,
3186 	},
3187 	[ADV7612] = {
3188 		.type = ADV7612,
3189 		.has_afe = false,
3190 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3191 		.num_dv_ports = 1,			/* normally 2 */
3192 		.edid_enable_reg = 0x74,
3193 		.edid_status_reg = 0x76,
3194 		.edid_segment_reg = 0x7a,
3195 		.edid_segment_mask = 0x01,
3196 		.edid_spa_loc_reg = 0x70,
3197 		.edid_spa_loc_msb_mask = 0x01,
3198 		.edid_spa_port_b_reg = 0x52,
3199 		.lcf_reg = 0xa3,
3200 		.tdms_lock_mask = 0x43,
3201 		.cable_det_mask = 0x01,
3202 		.fmt_change_digital_mask = 0x03,
3203 		.cp_csc = 0xf4,
3204 		.cec_irq_status = 0x93,
3205 		.cec_rx_enable = 0x2c,
3206 		.cec_rx_enable_mask = 0x02,
3207 		.formats = adv7612_formats,
3208 		.nformats = ARRAY_SIZE(adv7612_formats),
3209 		.set_termination = adv7611_set_termination,
3210 		.setup_irqs = adv7612_setup_irqs,
3211 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3212 		.read_cable_det = adv7612_read_cable_det,
3213 		.recommended_settings = {
3214 		    [1] = adv7612_recommended_settings_hdmi,
3215 		},
3216 		.num_recommended_settings = {
3217 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3218 		},
3219 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3220 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3221 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3222 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3223 		.linewidth_mask = 0x1fff,
3224 		.field0_height_mask = 0x1fff,
3225 		.field1_height_mask = 0x1fff,
3226 		.hfrontporch_mask = 0x1fff,
3227 		.hsync_mask = 0x1fff,
3228 		.hbackporch_mask = 0x1fff,
3229 		.field0_vfrontporch_mask = 0x3fff,
3230 		.field0_vsync_mask = 0x3fff,
3231 		.field0_vbackporch_mask = 0x3fff,
3232 		.field1_vfrontporch_mask = 0x3fff,
3233 		.field1_vsync_mask = 0x3fff,
3234 		.field1_vbackporch_mask = 0x3fff,
3235 	},
3236 };
3237 
3238 static const struct i2c_device_id adv76xx_i2c_id[] = {
3239 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3240 	{ "adv7610", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3241 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3242 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3243 	{ }
3244 };
3245 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3246 
3247 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3248 	{ .compatible = "adi,adv7610", .data = &adv76xx_chip_info[ADV7611] },
3249 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3250 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3251 	{ }
3252 };
3253 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3254 
3255 static int adv76xx_parse_dt(struct adv76xx_state *state)
3256 {
3257 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3258 	struct device_node *endpoint;
3259 	struct device_node *np;
3260 	unsigned int flags;
3261 	int ret;
3262 	u32 v;
3263 
3264 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3265 
3266 	/* FIXME: Parse the endpoint. */
3267 	endpoint = of_graph_get_endpoint_by_regs(np, -1, -1);
3268 	if (!endpoint)
3269 		return -EINVAL;
3270 
3271 	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3272 	of_node_put(endpoint);
3273 	if (ret)
3274 		return ret;
3275 
3276 	if (!of_property_read_u32(np, "default-input", &v))
3277 		state->pdata.default_input = v;
3278 	else
3279 		state->pdata.default_input = -1;
3280 
3281 	flags = bus_cfg.bus.parallel.flags;
3282 
3283 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3284 		state->pdata.inv_hs_pol = 1;
3285 
3286 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3287 		state->pdata.inv_vs_pol = 1;
3288 
3289 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3290 		state->pdata.inv_llc_pol = 1;
3291 
3292 	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3293 		state->pdata.insert_av_codes = 1;
3294 
3295 	/* Disable the interrupt for now as no DT-based board uses it. */
3296 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3297 
3298 	/* Hardcode the remaining platform data fields. */
3299 	state->pdata.disable_pwrdnb = 0;
3300 	state->pdata.disable_cable_det_rst = 0;
3301 	state->pdata.blank_data = 1;
3302 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3303 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3304 	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3305 	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3306 	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3307 
3308 	return 0;
3309 }
3310 
3311 static const struct regmap_config adv76xx_regmap_cnf[] = {
3312 	{
3313 		.name			= "io",
3314 		.reg_bits		= 8,
3315 		.val_bits		= 8,
3316 
3317 		.max_register		= 0xff,
3318 		.cache_type		= REGCACHE_NONE,
3319 	},
3320 	{
3321 		.name			= "avlink",
3322 		.reg_bits		= 8,
3323 		.val_bits		= 8,
3324 
3325 		.max_register		= 0xff,
3326 		.cache_type		= REGCACHE_NONE,
3327 	},
3328 	{
3329 		.name			= "cec",
3330 		.reg_bits		= 8,
3331 		.val_bits		= 8,
3332 
3333 		.max_register		= 0xff,
3334 		.cache_type		= REGCACHE_NONE,
3335 	},
3336 	{
3337 		.name			= "infoframe",
3338 		.reg_bits		= 8,
3339 		.val_bits		= 8,
3340 
3341 		.max_register		= 0xff,
3342 		.cache_type		= REGCACHE_NONE,
3343 	},
3344 	{
3345 		.name			= "esdp",
3346 		.reg_bits		= 8,
3347 		.val_bits		= 8,
3348 
3349 		.max_register		= 0xff,
3350 		.cache_type		= REGCACHE_NONE,
3351 	},
3352 	{
3353 		.name			= "epp",
3354 		.reg_bits		= 8,
3355 		.val_bits		= 8,
3356 
3357 		.max_register		= 0xff,
3358 		.cache_type		= REGCACHE_NONE,
3359 	},
3360 	{
3361 		.name			= "afe",
3362 		.reg_bits		= 8,
3363 		.val_bits		= 8,
3364 
3365 		.max_register		= 0xff,
3366 		.cache_type		= REGCACHE_NONE,
3367 	},
3368 	{
3369 		.name			= "rep",
3370 		.reg_bits		= 8,
3371 		.val_bits		= 8,
3372 
3373 		.max_register		= 0xff,
3374 		.cache_type		= REGCACHE_NONE,
3375 	},
3376 	{
3377 		.name			= "edid",
3378 		.reg_bits		= 8,
3379 		.val_bits		= 8,
3380 
3381 		.max_register		= 0xff,
3382 		.cache_type		= REGCACHE_NONE,
3383 	},
3384 
3385 	{
3386 		.name			= "hdmi",
3387 		.reg_bits		= 8,
3388 		.val_bits		= 8,
3389 
3390 		.max_register		= 0xff,
3391 		.cache_type		= REGCACHE_NONE,
3392 	},
3393 	{
3394 		.name			= "test",
3395 		.reg_bits		= 8,
3396 		.val_bits		= 8,
3397 
3398 		.max_register		= 0xff,
3399 		.cache_type		= REGCACHE_NONE,
3400 	},
3401 	{
3402 		.name			= "cp",
3403 		.reg_bits		= 8,
3404 		.val_bits		= 8,
3405 
3406 		.max_register		= 0xff,
3407 		.cache_type		= REGCACHE_NONE,
3408 	},
3409 	{
3410 		.name			= "vdp",
3411 		.reg_bits		= 8,
3412 		.val_bits		= 8,
3413 
3414 		.max_register		= 0xff,
3415 		.cache_type		= REGCACHE_NONE,
3416 	},
3417 };
3418 
3419 static int configure_regmap(struct adv76xx_state *state, int region)
3420 {
3421 	int err;
3422 
3423 	if (!state->i2c_clients[region])
3424 		return -ENODEV;
3425 
3426 	state->regmap[region] =
3427 		devm_regmap_init_i2c(state->i2c_clients[region],
3428 				     &adv76xx_regmap_cnf[region]);
3429 
3430 	if (IS_ERR(state->regmap[region])) {
3431 		err = PTR_ERR(state->regmap[region]);
3432 		v4l_err(state->i2c_clients[region],
3433 			"Error initializing regmap %d with error %d\n",
3434 			region, err);
3435 		return -EINVAL;
3436 	}
3437 
3438 	return 0;
3439 }
3440 
3441 static int configure_regmaps(struct adv76xx_state *state)
3442 {
3443 	int i, err;
3444 
3445 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3446 		err = configure_regmap(state, i);
3447 		if (err && (err != -ENODEV))
3448 			return err;
3449 	}
3450 	return 0;
3451 }
3452 
3453 static void adv76xx_reset(struct adv76xx_state *state)
3454 {
3455 	if (state->reset_gpio) {
3456 		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3457 		gpiod_set_value_cansleep(state->reset_gpio, 0);
3458 		usleep_range(5000, 10000);
3459 		gpiod_set_value_cansleep(state->reset_gpio, 1);
3460 		/* It is recommended to wait 5 ms after the low pulse before */
3461 		/* an I2C write is performed to the ADV76XX. */
3462 		usleep_range(5000, 10000);
3463 	}
3464 }
3465 
3466 static int adv76xx_probe(struct i2c_client *client)
3467 {
3468 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
3469 	static const struct v4l2_dv_timings cea640x480 =
3470 		V4L2_DV_BT_CEA_640X480P59_94;
3471 	struct adv76xx_state *state;
3472 	struct v4l2_ctrl_handler *hdl;
3473 	struct v4l2_ctrl *ctrl;
3474 	struct v4l2_subdev *sd;
3475 	unsigned int i;
3476 	unsigned int val, val2;
3477 	int err;
3478 
3479 	/* Check if the adapter supports the needed features */
3480 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3481 		return -EIO;
3482 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3483 			client->addr << 1);
3484 
3485 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3486 	if (!state)
3487 		return -ENOMEM;
3488 
3489 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3490 
3491 	/* initialize variables */
3492 	state->restart_stdi_once = true;
3493 	state->selected_input = ~0;
3494 
3495 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3496 		const struct of_device_id *oid;
3497 
3498 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3499 		state->info = oid->data;
3500 
3501 		err = adv76xx_parse_dt(state);
3502 		if (err < 0) {
3503 			v4l_err(client, "DT parsing error\n");
3504 			return err;
3505 		}
3506 	} else if (client->dev.platform_data) {
3507 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3508 
3509 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3510 		state->pdata = *pdata;
3511 	} else {
3512 		v4l_err(client, "No platform data!\n");
3513 		return -ENODEV;
3514 	}
3515 
3516 	/* Request GPIOs. */
3517 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3518 		state->hpd_gpio[i] =
3519 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3520 						      GPIOD_OUT_LOW);
3521 		if (IS_ERR(state->hpd_gpio[i]))
3522 			return PTR_ERR(state->hpd_gpio[i]);
3523 
3524 		if (state->hpd_gpio[i])
3525 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3526 	}
3527 	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3528 								GPIOD_OUT_HIGH);
3529 	if (IS_ERR(state->reset_gpio))
3530 		return PTR_ERR(state->reset_gpio);
3531 
3532 	adv76xx_reset(state);
3533 
3534 	state->timings = cea640x480;
3535 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3536 
3537 	sd = &state->sd;
3538 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3539 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3540 		id->name, i2c_adapter_id(client->adapter),
3541 		client->addr);
3542 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3543 	sd->internal_ops = &adv76xx_int_ops;
3544 
3545 	/* Configure IO Regmap region */
3546 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3547 
3548 	if (err) {
3549 		v4l2_err(sd, "Error configuring IO regmap region\n");
3550 		return -ENODEV;
3551 	}
3552 
3553 	/*
3554 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3555 	 * identifies the revision, while on ADV7611 it identifies the model as
3556 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3557 	 */
3558 	switch (state->info->type) {
3559 	case ADV7604:
3560 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3561 		if (err) {
3562 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3563 			return -ENODEV;
3564 		}
3565 		if (val != 0x68) {
3566 			v4l2_err(sd, "not an ADV7604 on address 0x%x\n",
3567 				 client->addr << 1);
3568 			return -ENODEV;
3569 		}
3570 		break;
3571 	case ADV7611:
3572 	case ADV7612:
3573 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3574 				0xea,
3575 				&val);
3576 		if (err) {
3577 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3578 			return -ENODEV;
3579 		}
3580 		val2 = val << 8;
3581 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3582 			    0xeb,
3583 			    &val);
3584 		if (err) {
3585 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3586 			return -ENODEV;
3587 		}
3588 		val |= val2;
3589 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3590 			(state->info->type == ADV7612 && val != 0x2041)) {
3591 			v4l2_err(sd, "not an %s on address 0x%x\n",
3592 				 state->info->type == ADV7611 ? "ADV7610/11" : "ADV7612",
3593 				 client->addr << 1);
3594 			return -ENODEV;
3595 		}
3596 		break;
3597 	}
3598 
3599 	/* control handlers */
3600 	hdl = &state->hdl;
3601 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3602 
3603 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3604 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3605 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3606 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3607 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3608 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3609 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3610 			V4L2_CID_HUE, 0, 255, 1, 0);
3611 	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3612 			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3613 			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3614 	if (ctrl)
3615 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3616 
3617 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3618 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3619 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3620 	state->rgb_quantization_range_ctrl =
3621 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3622 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3623 			0, V4L2_DV_RGB_RANGE_AUTO);
3624 
3625 	/* custom controls */
3626 	if (adv76xx_has_afe(state))
3627 		state->analog_sampling_phase_ctrl =
3628 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3629 	state->free_run_color_manual_ctrl =
3630 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3631 	state->free_run_color_ctrl =
3632 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3633 
3634 	sd->ctrl_handler = hdl;
3635 	if (hdl->error) {
3636 		err = hdl->error;
3637 		goto err_hdl;
3638 	}
3639 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3640 		err = -ENODEV;
3641 		goto err_hdl;
3642 	}
3643 
3644 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3645 		struct i2c_client *dummy_client;
3646 
3647 		if (!(BIT(i) & state->info->page_mask))
3648 			continue;
3649 
3650 		dummy_client = adv76xx_dummy_client(sd, i);
3651 		if (IS_ERR(dummy_client)) {
3652 			err = PTR_ERR(dummy_client);
3653 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3654 			goto err_i2c;
3655 		}
3656 
3657 		state->i2c_clients[i] = dummy_client;
3658 	}
3659 
3660 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3661 			adv76xx_delayed_work_enable_hotplug);
3662 
3663 	state->source_pad = state->info->num_dv_ports
3664 			  + (state->info->has_afe ? 2 : 0);
3665 	for (i = 0; i < state->source_pad; ++i)
3666 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3667 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3668 	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3669 
3670 	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3671 				state->pads);
3672 	if (err)
3673 		goto err_work_queues;
3674 
3675 	/* Configure regmaps */
3676 	err = configure_regmaps(state);
3677 	if (err)
3678 		goto err_entity;
3679 
3680 	err = adv76xx_core_init(sd);
3681 	if (err)
3682 		goto err_entity;
3683 
3684 	if (client->irq) {
3685 		err = devm_request_threaded_irq(&client->dev,
3686 						client->irq,
3687 						NULL, adv76xx_irq_handler,
3688 						IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3689 						client->name, state);
3690 		if (err)
3691 			goto err_entity;
3692 	}
3693 
3694 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3695 	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3696 		state, dev_name(&client->dev),
3697 		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3698 	err = PTR_ERR_OR_ZERO(state->cec_adap);
3699 	if (err)
3700 		goto err_entity;
3701 #endif
3702 
3703 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3704 			client->addr << 1, client->adapter->name);
3705 
3706 	err = v4l2_async_register_subdev(sd);
3707 	if (err)
3708 		goto err_entity;
3709 
3710 	return 0;
3711 
3712 err_entity:
3713 	media_entity_cleanup(&sd->entity);
3714 err_work_queues:
3715 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3716 err_i2c:
3717 	adv76xx_unregister_clients(state);
3718 err_hdl:
3719 	v4l2_ctrl_handler_free(hdl);
3720 	return err;
3721 }
3722 
3723 /* ----------------------------------------------------------------------- */
3724 
3725 static void adv76xx_remove(struct i2c_client *client)
3726 {
3727 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3728 	struct adv76xx_state *state = to_state(sd);
3729 
3730 	/* disable interrupts */
3731 	io_write(sd, 0x40, 0);
3732 	io_write(sd, 0x41, 0);
3733 	io_write(sd, 0x46, 0);
3734 	io_write(sd, 0x6e, 0);
3735 	io_write(sd, 0x73, 0);
3736 
3737 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
3738 	v4l2_async_unregister_subdev(sd);
3739 	media_entity_cleanup(&sd->entity);
3740 	adv76xx_unregister_clients(to_state(sd));
3741 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3742 }
3743 
3744 /* ----------------------------------------------------------------------- */
3745 
3746 static struct i2c_driver adv76xx_driver = {
3747 	.driver = {
3748 		.name = "adv7604",
3749 		.of_match_table = of_match_ptr(adv76xx_of_id),
3750 	},
3751 	.probe = adv76xx_probe,
3752 	.remove = adv76xx_remove,
3753 	.id_table = adv76xx_i2c_id,
3754 };
3755 
3756 module_i2c_driver(adv76xx_driver);
3757