xref: /linux/drivers/media/i2c/adv7604.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * adv7604 - Analog Devices ADV7604 video decoder driver
3  *
4  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20 
21 /*
22  * References (c = chapter, p = page):
23  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24  *		Revision 2.5, June 2010
25  * REF_02 - Analog devices, Register map documentation, Documentation of
26  *		the register maps, Software manual, Rev. F, June 2010
27  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-dv-timings.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40 #include <linux/regmap.h>
41 
42 #include <media/adv7604.h>
43 #include <media/v4l2-ctrls.h>
44 #include <media/v4l2-device.h>
45 #include <media/v4l2-event.h>
46 #include <media/v4l2-dv-timings.h>
47 #include <media/v4l2-of.h>
48 
49 static int debug;
50 module_param(debug, int, 0644);
51 MODULE_PARM_DESC(debug, "debug level (0-2)");
52 
53 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
54 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
55 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
56 MODULE_LICENSE("GPL");
57 
58 /* ADV7604 system clock frequency */
59 #define ADV76XX_FSC (28636360)
60 
61 #define ADV76XX_RGB_OUT					(1 << 1)
62 
63 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
64 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
65 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
66 
67 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
68 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
69 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
70 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
71 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
72 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
73 
74 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
75 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
76 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
77 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
78 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
79 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
80 
81 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
82 
83 enum adv76xx_type {
84 	ADV7604,
85 	ADV7611,
86 	ADV7612,
87 };
88 
89 struct adv76xx_reg_seq {
90 	unsigned int reg;
91 	u8 val;
92 };
93 
94 struct adv76xx_format_info {
95 	u32 code;
96 	u8 op_ch_sel;
97 	bool rgb_out;
98 	bool swap_cb_cr;
99 	u8 op_format_sel;
100 };
101 
102 struct adv76xx_cfg_read_infoframe {
103 	const char *desc;
104 	u8 present_mask;
105 	u8 head_addr;
106 	u8 payload_addr;
107 };
108 
109 struct adv76xx_chip_info {
110 	enum adv76xx_type type;
111 
112 	bool has_afe;
113 	unsigned int max_port;
114 	unsigned int num_dv_ports;
115 
116 	unsigned int edid_enable_reg;
117 	unsigned int edid_status_reg;
118 	unsigned int lcf_reg;
119 
120 	unsigned int cable_det_mask;
121 	unsigned int tdms_lock_mask;
122 	unsigned int fmt_change_digital_mask;
123 	unsigned int cp_csc;
124 
125 	const struct adv76xx_format_info *formats;
126 	unsigned int nformats;
127 
128 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
129 	void (*setup_irqs)(struct v4l2_subdev *sd);
130 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
131 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
132 
133 	/* 0 = AFE, 1 = HDMI */
134 	const struct adv76xx_reg_seq *recommended_settings[2];
135 	unsigned int num_recommended_settings[2];
136 
137 	unsigned long page_mask;
138 
139 	/* Masks for timings */
140 	unsigned int linewidth_mask;
141 	unsigned int field0_height_mask;
142 	unsigned int field1_height_mask;
143 	unsigned int hfrontporch_mask;
144 	unsigned int hsync_mask;
145 	unsigned int hbackporch_mask;
146 	unsigned int field0_vfrontporch_mask;
147 	unsigned int field1_vfrontporch_mask;
148 	unsigned int field0_vsync_mask;
149 	unsigned int field1_vsync_mask;
150 	unsigned int field0_vbackporch_mask;
151 	unsigned int field1_vbackporch_mask;
152 };
153 
154 /*
155  **********************************************************************
156  *
157  *  Arrays with configuration parameters for the ADV7604
158  *
159  **********************************************************************
160  */
161 
162 struct adv76xx_state {
163 	const struct adv76xx_chip_info *info;
164 	struct adv76xx_platform_data pdata;
165 
166 	struct gpio_desc *hpd_gpio[4];
167 
168 	struct v4l2_subdev sd;
169 	struct media_pad pads[ADV76XX_PAD_MAX];
170 	unsigned int source_pad;
171 
172 	struct v4l2_ctrl_handler hdl;
173 
174 	enum adv76xx_pad selected_input;
175 
176 	struct v4l2_dv_timings timings;
177 	const struct adv76xx_format_info *format;
178 
179 	struct {
180 		u8 edid[256];
181 		u32 present;
182 		unsigned blocks;
183 	} edid;
184 	u16 spa_port_a[2];
185 	struct v4l2_fract aspect_ratio;
186 	u32 rgb_quantization_range;
187 	struct workqueue_struct *work_queues;
188 	struct delayed_work delayed_work_enable_hotplug;
189 	bool restart_stdi_once;
190 
191 	/* i2c clients */
192 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
193 
194 	/* Regmaps */
195 	struct regmap *regmap[ADV76XX_PAGE_MAX];
196 
197 	/* controls */
198 	struct v4l2_ctrl *detect_tx_5v_ctrl;
199 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
200 	struct v4l2_ctrl *free_run_color_manual_ctrl;
201 	struct v4l2_ctrl *free_run_color_ctrl;
202 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
203 };
204 
205 static bool adv76xx_has_afe(struct adv76xx_state *state)
206 {
207 	return state->info->has_afe;
208 }
209 
210 /* Supported CEA and DMT timings */
211 static const struct v4l2_dv_timings adv76xx_timings[] = {
212 	V4L2_DV_BT_CEA_720X480P59_94,
213 	V4L2_DV_BT_CEA_720X576P50,
214 	V4L2_DV_BT_CEA_1280X720P24,
215 	V4L2_DV_BT_CEA_1280X720P25,
216 	V4L2_DV_BT_CEA_1280X720P50,
217 	V4L2_DV_BT_CEA_1280X720P60,
218 	V4L2_DV_BT_CEA_1920X1080P24,
219 	V4L2_DV_BT_CEA_1920X1080P25,
220 	V4L2_DV_BT_CEA_1920X1080P30,
221 	V4L2_DV_BT_CEA_1920X1080P50,
222 	V4L2_DV_BT_CEA_1920X1080P60,
223 
224 	/* sorted by DMT ID */
225 	V4L2_DV_BT_DMT_640X350P85,
226 	V4L2_DV_BT_DMT_640X400P85,
227 	V4L2_DV_BT_DMT_720X400P85,
228 	V4L2_DV_BT_DMT_640X480P60,
229 	V4L2_DV_BT_DMT_640X480P72,
230 	V4L2_DV_BT_DMT_640X480P75,
231 	V4L2_DV_BT_DMT_640X480P85,
232 	V4L2_DV_BT_DMT_800X600P56,
233 	V4L2_DV_BT_DMT_800X600P60,
234 	V4L2_DV_BT_DMT_800X600P72,
235 	V4L2_DV_BT_DMT_800X600P75,
236 	V4L2_DV_BT_DMT_800X600P85,
237 	V4L2_DV_BT_DMT_848X480P60,
238 	V4L2_DV_BT_DMT_1024X768P60,
239 	V4L2_DV_BT_DMT_1024X768P70,
240 	V4L2_DV_BT_DMT_1024X768P75,
241 	V4L2_DV_BT_DMT_1024X768P85,
242 	V4L2_DV_BT_DMT_1152X864P75,
243 	V4L2_DV_BT_DMT_1280X768P60_RB,
244 	V4L2_DV_BT_DMT_1280X768P60,
245 	V4L2_DV_BT_DMT_1280X768P75,
246 	V4L2_DV_BT_DMT_1280X768P85,
247 	V4L2_DV_BT_DMT_1280X800P60_RB,
248 	V4L2_DV_BT_DMT_1280X800P60,
249 	V4L2_DV_BT_DMT_1280X800P75,
250 	V4L2_DV_BT_DMT_1280X800P85,
251 	V4L2_DV_BT_DMT_1280X960P60,
252 	V4L2_DV_BT_DMT_1280X960P85,
253 	V4L2_DV_BT_DMT_1280X1024P60,
254 	V4L2_DV_BT_DMT_1280X1024P75,
255 	V4L2_DV_BT_DMT_1280X1024P85,
256 	V4L2_DV_BT_DMT_1360X768P60,
257 	V4L2_DV_BT_DMT_1400X1050P60_RB,
258 	V4L2_DV_BT_DMT_1400X1050P60,
259 	V4L2_DV_BT_DMT_1400X1050P75,
260 	V4L2_DV_BT_DMT_1400X1050P85,
261 	V4L2_DV_BT_DMT_1440X900P60_RB,
262 	V4L2_DV_BT_DMT_1440X900P60,
263 	V4L2_DV_BT_DMT_1600X1200P60,
264 	V4L2_DV_BT_DMT_1680X1050P60_RB,
265 	V4L2_DV_BT_DMT_1680X1050P60,
266 	V4L2_DV_BT_DMT_1792X1344P60,
267 	V4L2_DV_BT_DMT_1856X1392P60,
268 	V4L2_DV_BT_DMT_1920X1200P60_RB,
269 	V4L2_DV_BT_DMT_1366X768P60_RB,
270 	V4L2_DV_BT_DMT_1366X768P60,
271 	V4L2_DV_BT_DMT_1920X1080P60,
272 	{ },
273 };
274 
275 struct adv76xx_video_standards {
276 	struct v4l2_dv_timings timings;
277 	u8 vid_std;
278 	u8 v_freq;
279 };
280 
281 /* sorted by number of lines */
282 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
283 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
284 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
285 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
286 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
287 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
288 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
289 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
290 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
291 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
292 	/* TODO add 1920x1080P60_RB (CVT timing) */
293 	{ },
294 };
295 
296 /* sorted by number of lines */
297 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
298 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
299 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
300 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
301 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
302 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
303 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
304 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
305 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
306 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
307 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
308 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
309 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
310 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
311 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
312 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
313 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
314 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
315 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
316 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
317 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
318 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
319 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
320 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
321 	{ },
322 };
323 
324 /* sorted by number of lines */
325 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
326 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
327 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
328 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
329 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
330 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
331 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
332 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
333 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
334 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
335 	{ },
336 };
337 
338 /* sorted by number of lines */
339 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
340 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
341 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
342 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
343 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
344 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
345 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
346 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
347 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
348 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
349 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
350 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
351 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
352 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
353 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
354 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
355 	{ },
356 };
357 
358 static const struct v4l2_event adv76xx_ev_fmt = {
359 	.type = V4L2_EVENT_SOURCE_CHANGE,
360 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
361 };
362 
363 /* ----------------------------------------------------------------------- */
364 
365 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
366 {
367 	return container_of(sd, struct adv76xx_state, sd);
368 }
369 
370 static inline unsigned htotal(const struct v4l2_bt_timings *t)
371 {
372 	return V4L2_DV_BT_FRAME_WIDTH(t);
373 }
374 
375 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
376 {
377 	return V4L2_DV_BT_FRAME_HEIGHT(t);
378 }
379 
380 /* ----------------------------------------------------------------------- */
381 
382 static int adv76xx_read_check(struct adv76xx_state *state,
383 			     int client_page, u8 reg)
384 {
385 	struct i2c_client *client = state->i2c_clients[client_page];
386 	int err;
387 	unsigned int val;
388 
389 	err = regmap_read(state->regmap[client_page], reg, &val);
390 
391 	if (err) {
392 		v4l_err(client, "error reading %02x, %02x\n",
393 				client->addr, reg);
394 		return err;
395 	}
396 	return val;
397 }
398 
399 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
400  * size to one or more registers.
401  *
402  * A value of zero will be returned on success, a negative errno will
403  * be returned in error cases.
404  */
405 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
406 			      unsigned int init_reg, const void *val,
407 			      size_t val_len)
408 {
409 	struct regmap *regmap = state->regmap[client_page];
410 
411 	if (val_len > I2C_SMBUS_BLOCK_MAX)
412 		val_len = I2C_SMBUS_BLOCK_MAX;
413 
414 	return regmap_raw_write(regmap, init_reg, val, val_len);
415 }
416 
417 /* ----------------------------------------------------------------------- */
418 
419 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
420 {
421 	struct adv76xx_state *state = to_state(sd);
422 
423 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
424 }
425 
426 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
427 {
428 	struct adv76xx_state *state = to_state(sd);
429 
430 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
431 }
432 
433 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
434 {
435 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
436 }
437 
438 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
439 {
440 	struct adv76xx_state *state = to_state(sd);
441 
442 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
443 }
444 
445 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
446 {
447 	struct adv76xx_state *state = to_state(sd);
448 
449 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
450 }
451 
452 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
453 {
454 	struct adv76xx_state *state = to_state(sd);
455 
456 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
457 }
458 
459 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
460 {
461 	struct adv76xx_state *state = to_state(sd);
462 
463 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
464 }
465 
466 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
467 {
468 	struct adv76xx_state *state = to_state(sd);
469 
470 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
471 }
472 
473 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
474 {
475 	struct adv76xx_state *state = to_state(sd);
476 
477 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
478 }
479 
480 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
481 {
482 	struct adv76xx_state *state = to_state(sd);
483 
484 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
485 }
486 
487 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
488 {
489 	struct adv76xx_state *state = to_state(sd);
490 
491 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
492 }
493 
494 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
495 {
496 	struct adv76xx_state *state = to_state(sd);
497 
498 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
499 }
500 
501 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
502 {
503 	struct adv76xx_state *state = to_state(sd);
504 
505 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
506 }
507 
508 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
509 {
510 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
511 }
512 
513 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
514 {
515 	struct adv76xx_state *state = to_state(sd);
516 
517 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
518 }
519 
520 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
521 {
522 	struct adv76xx_state *state = to_state(sd);
523 
524 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
525 }
526 
527 static inline int edid_write_block(struct v4l2_subdev *sd,
528 					unsigned int total_len, const u8 *val)
529 {
530 	struct adv76xx_state *state = to_state(sd);
531 	int err = 0;
532 	int i = 0;
533 	int len = 0;
534 
535 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
536 				__func__, total_len);
537 
538 	while (!err && i < total_len) {
539 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
540 				I2C_SMBUS_BLOCK_MAX :
541 				(total_len - i);
542 
543 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
544 				i, val + i, len);
545 		i += len;
546 	}
547 
548 	return err;
549 }
550 
551 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
552 {
553 	unsigned int i;
554 
555 	for (i = 0; i < state->info->num_dv_ports; ++i)
556 		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
557 
558 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
559 }
560 
561 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
562 {
563 	struct delayed_work *dwork = to_delayed_work(work);
564 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
565 						delayed_work_enable_hotplug);
566 	struct v4l2_subdev *sd = &state->sd;
567 
568 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
569 
570 	adv76xx_set_hpd(state, state->edid.present);
571 }
572 
573 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
574 {
575 	struct adv76xx_state *state = to_state(sd);
576 
577 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
578 }
579 
580 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
581 {
582 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
583 }
584 
585 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
586 {
587 	struct adv76xx_state *state = to_state(sd);
588 
589 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
590 }
591 
592 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
593 {
594 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
595 }
596 
597 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
598 {
599 	struct adv76xx_state *state = to_state(sd);
600 
601 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
602 }
603 
604 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
605 {
606 	struct adv76xx_state *state = to_state(sd);
607 
608 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
609 }
610 
611 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
612 {
613 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
614 }
615 
616 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
617 {
618 	struct adv76xx_state *state = to_state(sd);
619 
620 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
621 }
622 
623 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
624 {
625 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
626 }
627 
628 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
629 {
630 	struct adv76xx_state *state = to_state(sd);
631 
632 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
633 }
634 
635 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
636 {
637 	struct adv76xx_state *state = to_state(sd);
638 
639 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
640 }
641 
642 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
643 #define ADV76XX_REG_SEQ_TERM		0xffff
644 
645 #ifdef CONFIG_VIDEO_ADV_DEBUG
646 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
647 {
648 	struct adv76xx_state *state = to_state(sd);
649 	unsigned int page = reg >> 8;
650 	unsigned int val;
651 	int err;
652 
653 	if (!(BIT(page) & state->info->page_mask))
654 		return -EINVAL;
655 
656 	reg &= 0xff;
657 	err = regmap_read(state->regmap[page], reg, &val);
658 
659 	return err ? err : val;
660 }
661 #endif
662 
663 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
664 {
665 	struct adv76xx_state *state = to_state(sd);
666 	unsigned int page = reg >> 8;
667 
668 	if (!(BIT(page) & state->info->page_mask))
669 		return -EINVAL;
670 
671 	reg &= 0xff;
672 
673 	return regmap_write(state->regmap[page], reg, val);
674 }
675 
676 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
677 				  const struct adv76xx_reg_seq *reg_seq)
678 {
679 	unsigned int i;
680 
681 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
682 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
683 }
684 
685 /* -----------------------------------------------------------------------------
686  * Format helpers
687  */
688 
689 static const struct adv76xx_format_info adv7604_formats[] = {
690 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
691 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
692 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
693 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
694 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
695 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
696 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
697 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
698 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
699 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
700 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
701 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
702 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
703 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
704 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
705 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
706 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
707 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
708 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
709 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
710 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
711 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
712 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
713 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
714 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
715 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
716 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
717 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
718 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
719 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
720 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
721 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
722 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
723 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
724 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
725 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
726 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
727 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
728 };
729 
730 static const struct adv76xx_format_info adv7611_formats[] = {
731 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
732 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
733 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
734 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
735 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
736 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
737 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
738 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
739 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
740 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
741 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
742 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
743 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
744 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
745 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
746 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
747 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
748 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
749 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
750 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
751 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
752 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
753 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
754 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
755 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
756 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
757 };
758 
759 static const struct adv76xx_format_info adv7612_formats[] = {
760 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
761 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
762 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
763 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
764 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
765 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
766 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
767 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
768 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
769 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
770 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
771 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
772 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
773 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
774 };
775 
776 static const struct adv76xx_format_info *
777 adv76xx_format_info(struct adv76xx_state *state, u32 code)
778 {
779 	unsigned int i;
780 
781 	for (i = 0; i < state->info->nformats; ++i) {
782 		if (state->info->formats[i].code == code)
783 			return &state->info->formats[i];
784 	}
785 
786 	return NULL;
787 }
788 
789 /* ----------------------------------------------------------------------- */
790 
791 static inline bool is_analog_input(struct v4l2_subdev *sd)
792 {
793 	struct adv76xx_state *state = to_state(sd);
794 
795 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
796 	       state->selected_input == ADV7604_PAD_VGA_COMP;
797 }
798 
799 static inline bool is_digital_input(struct v4l2_subdev *sd)
800 {
801 	struct adv76xx_state *state = to_state(sd);
802 
803 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
804 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
805 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
806 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
807 }
808 
809 /* ----------------------------------------------------------------------- */
810 
811 #ifdef CONFIG_VIDEO_ADV_DEBUG
812 static void adv76xx_inv_register(struct v4l2_subdev *sd)
813 {
814 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
815 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
816 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
817 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
818 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
819 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
820 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
821 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
822 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
823 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
824 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
825 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
826 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
827 }
828 
829 static int adv76xx_g_register(struct v4l2_subdev *sd,
830 					struct v4l2_dbg_register *reg)
831 {
832 	int ret;
833 
834 	ret = adv76xx_read_reg(sd, reg->reg);
835 	if (ret < 0) {
836 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
837 		adv76xx_inv_register(sd);
838 		return ret;
839 	}
840 
841 	reg->size = 1;
842 	reg->val = ret;
843 
844 	return 0;
845 }
846 
847 static int adv76xx_s_register(struct v4l2_subdev *sd,
848 					const struct v4l2_dbg_register *reg)
849 {
850 	int ret;
851 
852 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
853 	if (ret < 0) {
854 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
855 		adv76xx_inv_register(sd);
856 		return ret;
857 	}
858 
859 	return 0;
860 }
861 #endif
862 
863 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
864 {
865 	u8 value = io_read(sd, 0x6f);
866 
867 	return ((value & 0x10) >> 4)
868 	     | ((value & 0x08) >> 2)
869 	     | ((value & 0x04) << 0)
870 	     | ((value & 0x02) << 2);
871 }
872 
873 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
874 {
875 	u8 value = io_read(sd, 0x6f);
876 
877 	return value & 1;
878 }
879 
880 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
881 {
882 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
883 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
884 	 */
885 	u8 value = io_read(sd, 0x6f);
886 
887 	return value & 1;
888 }
889 
890 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
891 {
892 	struct adv76xx_state *state = to_state(sd);
893 	const struct adv76xx_chip_info *info = state->info;
894 
895 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
896 				info->read_cable_det(sd));
897 }
898 
899 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
900 		u8 prim_mode,
901 		const struct adv76xx_video_standards *predef_vid_timings,
902 		const struct v4l2_dv_timings *timings)
903 {
904 	int i;
905 
906 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
907 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
908 					is_digital_input(sd) ? 250000 : 1000000))
909 			continue;
910 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
911 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
912 				prim_mode); /* v_freq and prim mode */
913 		return 0;
914 	}
915 
916 	return -1;
917 }
918 
919 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
920 		struct v4l2_dv_timings *timings)
921 {
922 	struct adv76xx_state *state = to_state(sd);
923 	int err;
924 
925 	v4l2_dbg(1, debug, sd, "%s", __func__);
926 
927 	if (adv76xx_has_afe(state)) {
928 		/* reset to default values */
929 		io_write(sd, 0x16, 0x43);
930 		io_write(sd, 0x17, 0x5a);
931 	}
932 	/* disable embedded syncs for auto graphics mode */
933 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
934 	cp_write(sd, 0x8f, 0x00);
935 	cp_write(sd, 0x90, 0x00);
936 	cp_write(sd, 0xa2, 0x00);
937 	cp_write(sd, 0xa3, 0x00);
938 	cp_write(sd, 0xa4, 0x00);
939 	cp_write(sd, 0xa5, 0x00);
940 	cp_write(sd, 0xa6, 0x00);
941 	cp_write(sd, 0xa7, 0x00);
942 	cp_write(sd, 0xab, 0x00);
943 	cp_write(sd, 0xac, 0x00);
944 
945 	if (is_analog_input(sd)) {
946 		err = find_and_set_predefined_video_timings(sd,
947 				0x01, adv7604_prim_mode_comp, timings);
948 		if (err)
949 			err = find_and_set_predefined_video_timings(sd,
950 					0x02, adv7604_prim_mode_gr, timings);
951 	} else if (is_digital_input(sd)) {
952 		err = find_and_set_predefined_video_timings(sd,
953 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
954 		if (err)
955 			err = find_and_set_predefined_video_timings(sd,
956 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
957 	} else {
958 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
959 				__func__, state->selected_input);
960 		err = -1;
961 	}
962 
963 
964 	return err;
965 }
966 
967 static void configure_custom_video_timings(struct v4l2_subdev *sd,
968 		const struct v4l2_bt_timings *bt)
969 {
970 	struct adv76xx_state *state = to_state(sd);
971 	u32 width = htotal(bt);
972 	u32 height = vtotal(bt);
973 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
974 	u16 cp_start_eav = width - bt->hfrontporch;
975 	u16 cp_start_vbi = height - bt->vfrontporch;
976 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
977 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
978 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
979 	const u8 pll[2] = {
980 		0xc0 | ((width >> 8) & 0x1f),
981 		width & 0xff
982 	};
983 
984 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
985 
986 	if (is_analog_input(sd)) {
987 		/* auto graphics */
988 		io_write(sd, 0x00, 0x07); /* video std */
989 		io_write(sd, 0x01, 0x02); /* prim mode */
990 		/* enable embedded syncs for auto graphics mode */
991 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
992 
993 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
994 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
995 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
996 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
997 					0x16, pll, 2))
998 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
999 
1000 		/* active video - horizontal timing */
1001 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1002 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1003 				   ((cp_start_eav >> 8) & 0x0f));
1004 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1005 
1006 		/* active video - vertical timing */
1007 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1008 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1009 				   ((cp_end_vbi >> 8) & 0xf));
1010 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1011 	} else if (is_digital_input(sd)) {
1012 		/* set default prim_mode/vid_std for HDMI
1013 		   according to [REF_03, c. 4.2] */
1014 		io_write(sd, 0x00, 0x02); /* video std */
1015 		io_write(sd, 0x01, 0x06); /* prim mode */
1016 	} else {
1017 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1018 				__func__, state->selected_input);
1019 	}
1020 
1021 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1022 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1023 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1024 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1025 }
1026 
1027 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1028 {
1029 	struct adv76xx_state *state = to_state(sd);
1030 	u8 offset_buf[4];
1031 
1032 	if (auto_offset) {
1033 		offset_a = 0x3ff;
1034 		offset_b = 0x3ff;
1035 		offset_c = 0x3ff;
1036 	}
1037 
1038 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1039 			__func__, auto_offset ? "Auto" : "Manual",
1040 			offset_a, offset_b, offset_c);
1041 
1042 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1043 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1044 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1045 	offset_buf[3] = offset_c & 0x0ff;
1046 
1047 	/* Registers must be written in this order with no i2c access in between */
1048 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1049 			0x77, offset_buf, 4))
1050 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1051 }
1052 
1053 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1054 {
1055 	struct adv76xx_state *state = to_state(sd);
1056 	u8 gain_buf[4];
1057 	u8 gain_man = 1;
1058 	u8 agc_mode_man = 1;
1059 
1060 	if (auto_gain) {
1061 		gain_man = 0;
1062 		agc_mode_man = 0;
1063 		gain_a = 0x100;
1064 		gain_b = 0x100;
1065 		gain_c = 0x100;
1066 	}
1067 
1068 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1069 			__func__, auto_gain ? "Auto" : "Manual",
1070 			gain_a, gain_b, gain_c);
1071 
1072 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1073 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1074 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1075 	gain_buf[3] = ((gain_c & 0x0ff));
1076 
1077 	/* Registers must be written in this order with no i2c access in between */
1078 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1079 			     0x73, gain_buf, 4))
1080 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1081 }
1082 
1083 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1084 {
1085 	struct adv76xx_state *state = to_state(sd);
1086 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1087 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1088 
1089 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1090 			__func__, state->rgb_quantization_range,
1091 			rgb_output, hdmi_signal);
1092 
1093 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1094 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1095 
1096 	switch (state->rgb_quantization_range) {
1097 	case V4L2_DV_RGB_RANGE_AUTO:
1098 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1099 			/* Receiving analog RGB signal
1100 			 * Set RGB full range (0-255) */
1101 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1102 			break;
1103 		}
1104 
1105 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1106 			/* Receiving analog YPbPr signal
1107 			 * Set automode */
1108 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1109 			break;
1110 		}
1111 
1112 		if (hdmi_signal) {
1113 			/* Receiving HDMI signal
1114 			 * Set automode */
1115 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1116 			break;
1117 		}
1118 
1119 		/* Receiving DVI-D signal
1120 		 * ADV7604 selects RGB limited range regardless of
1121 		 * input format (CE/IT) in automatic mode */
1122 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1123 			/* RGB limited range (16-235) */
1124 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1125 		} else {
1126 			/* RGB full range (0-255) */
1127 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1128 
1129 			if (is_digital_input(sd) && rgb_output) {
1130 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1131 			} else {
1132 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1133 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1134 			}
1135 		}
1136 		break;
1137 	case V4L2_DV_RGB_RANGE_LIMITED:
1138 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1139 			/* YCrCb limited range (16-235) */
1140 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1141 			break;
1142 		}
1143 
1144 		/* RGB limited range (16-235) */
1145 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1146 
1147 		break;
1148 	case V4L2_DV_RGB_RANGE_FULL:
1149 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1150 			/* YCrCb full range (0-255) */
1151 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1152 			break;
1153 		}
1154 
1155 		/* RGB full range (0-255) */
1156 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1157 
1158 		if (is_analog_input(sd) || hdmi_signal)
1159 			break;
1160 
1161 		/* Adjust gain/offset for DVI-D signals only */
1162 		if (rgb_output) {
1163 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1164 		} else {
1165 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1166 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1167 		}
1168 		break;
1169 	}
1170 }
1171 
1172 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1173 {
1174 	struct v4l2_subdev *sd =
1175 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1176 
1177 	struct adv76xx_state *state = to_state(sd);
1178 
1179 	switch (ctrl->id) {
1180 	case V4L2_CID_BRIGHTNESS:
1181 		cp_write(sd, 0x3c, ctrl->val);
1182 		return 0;
1183 	case V4L2_CID_CONTRAST:
1184 		cp_write(sd, 0x3a, ctrl->val);
1185 		return 0;
1186 	case V4L2_CID_SATURATION:
1187 		cp_write(sd, 0x3b, ctrl->val);
1188 		return 0;
1189 	case V4L2_CID_HUE:
1190 		cp_write(sd, 0x3d, ctrl->val);
1191 		return 0;
1192 	case  V4L2_CID_DV_RX_RGB_RANGE:
1193 		state->rgb_quantization_range = ctrl->val;
1194 		set_rgb_quantization_range(sd);
1195 		return 0;
1196 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1197 		if (!adv76xx_has_afe(state))
1198 			return -EINVAL;
1199 		/* Set the analog sampling phase. This is needed to find the
1200 		   best sampling phase for analog video: an application or
1201 		   driver has to try a number of phases and analyze the picture
1202 		   quality before settling on the best performing phase. */
1203 		afe_write(sd, 0xc8, ctrl->val);
1204 		return 0;
1205 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1206 		/* Use the default blue color for free running mode,
1207 		   or supply your own. */
1208 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1209 		return 0;
1210 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1211 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1212 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1213 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1214 		return 0;
1215 	}
1216 	return -EINVAL;
1217 }
1218 
1219 /* ----------------------------------------------------------------------- */
1220 
1221 static inline bool no_power(struct v4l2_subdev *sd)
1222 {
1223 	/* Entire chip or CP powered off */
1224 	return io_read(sd, 0x0c) & 0x24;
1225 }
1226 
1227 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1228 {
1229 	struct adv76xx_state *state = to_state(sd);
1230 
1231 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1232 }
1233 
1234 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1235 {
1236 	struct adv76xx_state *state = to_state(sd);
1237 	const struct adv76xx_chip_info *info = state->info;
1238 
1239 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1240 }
1241 
1242 static inline bool is_hdmi(struct v4l2_subdev *sd)
1243 {
1244 	return hdmi_read(sd, 0x05) & 0x80;
1245 }
1246 
1247 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1248 {
1249 	struct adv76xx_state *state = to_state(sd);
1250 
1251 	/*
1252 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1253 	 * that we have a lock.
1254 	 */
1255 	if (adv76xx_has_afe(state))
1256 		return false;
1257 
1258 	/* TODO channel 2 */
1259 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1260 }
1261 
1262 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1263 {
1264 	/* TODO channel 2 */
1265 	return !(cp_read(sd, 0xb1) & 0x80);
1266 }
1267 
1268 static inline bool no_signal(struct v4l2_subdev *sd)
1269 {
1270 	bool ret;
1271 
1272 	ret = no_power(sd);
1273 
1274 	ret |= no_lock_stdi(sd);
1275 	ret |= no_lock_sspd(sd);
1276 
1277 	if (is_digital_input(sd)) {
1278 		ret |= no_lock_tmds(sd);
1279 		ret |= no_signal_tmds(sd);
1280 	}
1281 
1282 	return ret;
1283 }
1284 
1285 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1286 {
1287 	struct adv76xx_state *state = to_state(sd);
1288 
1289 	if (!adv76xx_has_afe(state))
1290 		return false;
1291 
1292 	/* CP has detected a non standard number of lines on the incoming
1293 	   video compared to what it is configured to receive by s_dv_timings */
1294 	return io_read(sd, 0x12) & 0x01;
1295 }
1296 
1297 static inline bool in_free_run(struct v4l2_subdev *sd)
1298 {
1299 	return cp_read(sd, 0xff) & 0x10;
1300 }
1301 
1302 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1303 {
1304 	*status = 0;
1305 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1306 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1307 	if (!in_free_run(sd) && no_lock_cp(sd))
1308 		*status |= is_digital_input(sd) ?
1309 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1310 
1311 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1312 
1313 	return 0;
1314 }
1315 
1316 /* ----------------------------------------------------------------------- */
1317 
1318 struct stdi_readback {
1319 	u16 bl, lcf, lcvs;
1320 	u8 hs_pol, vs_pol;
1321 	bool interlaced;
1322 };
1323 
1324 static int stdi2dv_timings(struct v4l2_subdev *sd,
1325 		struct stdi_readback *stdi,
1326 		struct v4l2_dv_timings *timings)
1327 {
1328 	struct adv76xx_state *state = to_state(sd);
1329 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1330 	u32 pix_clk;
1331 	int i;
1332 
1333 	for (i = 0; adv76xx_timings[i].bt.height; i++) {
1334 		if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1)
1335 			continue;
1336 		if (adv76xx_timings[i].bt.vsync != stdi->lcvs)
1337 			continue;
1338 
1339 		pix_clk = hfreq * htotal(&adv76xx_timings[i].bt);
1340 
1341 		if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) &&
1342 		    (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) {
1343 			*timings = adv76xx_timings[i];
1344 			return 0;
1345 		}
1346 	}
1347 
1348 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1349 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1350 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1351 			false, timings))
1352 		return 0;
1353 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1354 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1355 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1356 			false, state->aspect_ratio, timings))
1357 		return 0;
1358 
1359 	v4l2_dbg(2, debug, sd,
1360 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1361 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1362 		stdi->hs_pol, stdi->vs_pol);
1363 	return -1;
1364 }
1365 
1366 
1367 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1368 {
1369 	struct adv76xx_state *state = to_state(sd);
1370 	const struct adv76xx_chip_info *info = state->info;
1371 	u8 polarity;
1372 
1373 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1374 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1375 		return -1;
1376 	}
1377 
1378 	/* read STDI */
1379 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1380 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1381 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1382 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1383 
1384 	if (adv76xx_has_afe(state)) {
1385 		/* read SSPD */
1386 		polarity = cp_read(sd, 0xb5);
1387 		if ((polarity & 0x03) == 0x01) {
1388 			stdi->hs_pol = polarity & 0x10
1389 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1390 			stdi->vs_pol = polarity & 0x40
1391 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1392 		} else {
1393 			stdi->hs_pol = 'x';
1394 			stdi->vs_pol = 'x';
1395 		}
1396 	} else {
1397 		polarity = hdmi_read(sd, 0x05);
1398 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1399 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1400 	}
1401 
1402 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1403 		v4l2_dbg(2, debug, sd,
1404 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1405 		return -1;
1406 	}
1407 
1408 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1409 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1410 		memset(stdi, 0, sizeof(struct stdi_readback));
1411 		return -1;
1412 	}
1413 
1414 	v4l2_dbg(2, debug, sd,
1415 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1416 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1417 		stdi->hs_pol, stdi->vs_pol,
1418 		stdi->interlaced ? "interlaced" : "progressive");
1419 
1420 	return 0;
1421 }
1422 
1423 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1424 			struct v4l2_enum_dv_timings *timings)
1425 {
1426 	struct adv76xx_state *state = to_state(sd);
1427 
1428 	if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1)
1429 		return -EINVAL;
1430 
1431 	if (timings->pad >= state->source_pad)
1432 		return -EINVAL;
1433 
1434 	memset(timings->reserved, 0, sizeof(timings->reserved));
1435 	timings->timings = adv76xx_timings[timings->index];
1436 	return 0;
1437 }
1438 
1439 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1440 			struct v4l2_dv_timings_cap *cap)
1441 {
1442 	struct adv76xx_state *state = to_state(sd);
1443 
1444 	if (cap->pad >= state->source_pad)
1445 		return -EINVAL;
1446 
1447 	cap->type = V4L2_DV_BT_656_1120;
1448 	cap->bt.max_width = 1920;
1449 	cap->bt.max_height = 1200;
1450 	cap->bt.min_pixelclock = 25000000;
1451 
1452 	switch (cap->pad) {
1453 	case ADV76XX_PAD_HDMI_PORT_A:
1454 	case ADV7604_PAD_HDMI_PORT_B:
1455 	case ADV7604_PAD_HDMI_PORT_C:
1456 	case ADV7604_PAD_HDMI_PORT_D:
1457 		cap->bt.max_pixelclock = 225000000;
1458 		break;
1459 	case ADV7604_PAD_VGA_RGB:
1460 	case ADV7604_PAD_VGA_COMP:
1461 	default:
1462 		cap->bt.max_pixelclock = 170000000;
1463 		break;
1464 	}
1465 
1466 	cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
1467 			 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
1468 	cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
1469 		V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
1470 	return 0;
1471 }
1472 
1473 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1474    if the format is listed in adv76xx_timings[] */
1475 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1476 		struct v4l2_dv_timings *timings)
1477 {
1478 	int i;
1479 
1480 	for (i = 0; adv76xx_timings[i].bt.width; i++) {
1481 		if (v4l2_match_dv_timings(timings, &adv76xx_timings[i],
1482 					is_digital_input(sd) ? 250000 : 1000000)) {
1483 			*timings = adv76xx_timings[i];
1484 			break;
1485 		}
1486 	}
1487 }
1488 
1489 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1490 {
1491 	unsigned int freq;
1492 	int a, b;
1493 
1494 	a = hdmi_read(sd, 0x06);
1495 	b = hdmi_read(sd, 0x3b);
1496 	if (a < 0 || b < 0)
1497 		return 0;
1498 	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;
1499 
1500 	if (is_hdmi(sd)) {
1501 		/* adjust for deep color mode */
1502 		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1503 
1504 		freq = freq * 8 / bits_per_channel;
1505 	}
1506 
1507 	return freq;
1508 }
1509 
1510 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1511 {
1512 	int a, b;
1513 
1514 	a = hdmi_read(sd, 0x51);
1515 	b = hdmi_read(sd, 0x52);
1516 	if (a < 0 || b < 0)
1517 		return 0;
1518 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1519 }
1520 
1521 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1522 			struct v4l2_dv_timings *timings)
1523 {
1524 	struct adv76xx_state *state = to_state(sd);
1525 	const struct adv76xx_chip_info *info = state->info;
1526 	struct v4l2_bt_timings *bt = &timings->bt;
1527 	struct stdi_readback stdi;
1528 
1529 	if (!timings)
1530 		return -EINVAL;
1531 
1532 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1533 
1534 	if (no_signal(sd)) {
1535 		state->restart_stdi_once = true;
1536 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1537 		return -ENOLINK;
1538 	}
1539 
1540 	/* read STDI */
1541 	if (read_stdi(sd, &stdi)) {
1542 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1543 		return -ENOLINK;
1544 	}
1545 	bt->interlaced = stdi.interlaced ?
1546 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1547 
1548 	if (is_digital_input(sd)) {
1549 		timings->type = V4L2_DV_BT_656_1120;
1550 
1551 		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
1552 		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1553 		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1554 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1555 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1556 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1557 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1558 			info->field0_vfrontporch_mask) / 2;
1559 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1560 		bt->vbackporch = hdmi_read16(sd, 0x32,
1561 			info->field0_vbackporch_mask) / 2;
1562 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1563 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1564 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1565 			bt->height += hdmi_read16(sd, 0x0b,
1566 				info->field1_height_mask);
1567 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1568 				info->field1_vfrontporch_mask) / 2;
1569 			bt->il_vsync = hdmi_read16(sd, 0x30,
1570 				info->field1_vsync_mask) / 2;
1571 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1572 				info->field1_vbackporch_mask) / 2;
1573 		}
1574 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1575 	} else {
1576 		/* find format
1577 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1578 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1579 		 */
1580 		if (!stdi2dv_timings(sd, &stdi, timings))
1581 			goto found;
1582 		stdi.lcvs += 1;
1583 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1584 		if (!stdi2dv_timings(sd, &stdi, timings))
1585 			goto found;
1586 		stdi.lcvs -= 2;
1587 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1588 		if (stdi2dv_timings(sd, &stdi, timings)) {
1589 			/*
1590 			 * The STDI block may measure wrong values, especially
1591 			 * for lcvs and lcf. If the driver can not find any
1592 			 * valid timing, the STDI block is restarted to measure
1593 			 * the video timings again. The function will return an
1594 			 * error, but the restart of STDI will generate a new
1595 			 * STDI interrupt and the format detection process will
1596 			 * restart.
1597 			 */
1598 			if (state->restart_stdi_once) {
1599 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1600 				/* TODO restart STDI for Sync Channel 2 */
1601 				/* enter one-shot mode */
1602 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1603 				/* trigger STDI restart */
1604 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1605 				/* reset to continuous mode */
1606 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1607 				state->restart_stdi_once = false;
1608 				return -ENOLINK;
1609 			}
1610 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1611 			return -ERANGE;
1612 		}
1613 		state->restart_stdi_once = true;
1614 	}
1615 found:
1616 
1617 	if (no_signal(sd)) {
1618 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1619 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1620 		return -ENOLINK;
1621 	}
1622 
1623 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1624 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1625 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1626 				__func__, (u32)bt->pixelclock);
1627 		return -ERANGE;
1628 	}
1629 
1630 	if (debug > 1)
1631 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1632 				      timings, true);
1633 
1634 	return 0;
1635 }
1636 
1637 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1638 		struct v4l2_dv_timings *timings)
1639 {
1640 	struct adv76xx_state *state = to_state(sd);
1641 	struct v4l2_bt_timings *bt;
1642 	int err;
1643 
1644 	if (!timings)
1645 		return -EINVAL;
1646 
1647 	if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
1648 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1649 		return 0;
1650 	}
1651 
1652 	bt = &timings->bt;
1653 
1654 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1655 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1656 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1657 				__func__, (u32)bt->pixelclock);
1658 		return -ERANGE;
1659 	}
1660 
1661 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1662 
1663 	state->timings = *timings;
1664 
1665 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1666 
1667 	/* Use prim_mode and vid_std when available */
1668 	err = configure_predefined_video_timings(sd, timings);
1669 	if (err) {
1670 		/* custom settings when the video format
1671 		 does not have prim_mode/vid_std */
1672 		configure_custom_video_timings(sd, bt);
1673 	}
1674 
1675 	set_rgb_quantization_range(sd);
1676 
1677 	if (debug > 1)
1678 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1679 				      timings, true);
1680 	return 0;
1681 }
1682 
1683 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1684 		struct v4l2_dv_timings *timings)
1685 {
1686 	struct adv76xx_state *state = to_state(sd);
1687 
1688 	*timings = state->timings;
1689 	return 0;
1690 }
1691 
1692 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1693 {
1694 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1695 }
1696 
1697 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1698 {
1699 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1700 }
1701 
1702 static void enable_input(struct v4l2_subdev *sd)
1703 {
1704 	struct adv76xx_state *state = to_state(sd);
1705 
1706 	if (is_analog_input(sd)) {
1707 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1708 	} else if (is_digital_input(sd)) {
1709 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1710 		state->info->set_termination(sd, true);
1711 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1712 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1713 	} else {
1714 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1715 				__func__, state->selected_input);
1716 	}
1717 }
1718 
1719 static void disable_input(struct v4l2_subdev *sd)
1720 {
1721 	struct adv76xx_state *state = to_state(sd);
1722 
1723 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1724 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1725 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1726 	state->info->set_termination(sd, false);
1727 }
1728 
1729 static void select_input(struct v4l2_subdev *sd)
1730 {
1731 	struct adv76xx_state *state = to_state(sd);
1732 	const struct adv76xx_chip_info *info = state->info;
1733 
1734 	if (is_analog_input(sd)) {
1735 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1736 
1737 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1738 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1739 		afe_write(sd, 0xc8, 0x00); /* phase control */
1740 	} else if (is_digital_input(sd)) {
1741 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1742 
1743 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1744 
1745 		if (adv76xx_has_afe(state)) {
1746 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1747 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1748 			afe_write(sd, 0xc8, 0x40); /* phase control */
1749 		}
1750 
1751 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1752 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1753 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1754 	} else {
1755 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1756 				__func__, state->selected_input);
1757 	}
1758 }
1759 
1760 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1761 		u32 input, u32 output, u32 config)
1762 {
1763 	struct adv76xx_state *state = to_state(sd);
1764 
1765 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1766 			__func__, input, state->selected_input);
1767 
1768 	if (input == state->selected_input)
1769 		return 0;
1770 
1771 	if (input > state->info->max_port)
1772 		return -EINVAL;
1773 
1774 	state->selected_input = input;
1775 
1776 	disable_input(sd);
1777 	select_input(sd);
1778 	enable_input(sd);
1779 
1780 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1781 
1782 	return 0;
1783 }
1784 
1785 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1786 				  struct v4l2_subdev_pad_config *cfg,
1787 				  struct v4l2_subdev_mbus_code_enum *code)
1788 {
1789 	struct adv76xx_state *state = to_state(sd);
1790 
1791 	if (code->index >= state->info->nformats)
1792 		return -EINVAL;
1793 
1794 	code->code = state->info->formats[code->index].code;
1795 
1796 	return 0;
1797 }
1798 
1799 static void adv76xx_fill_format(struct adv76xx_state *state,
1800 				struct v4l2_mbus_framefmt *format)
1801 {
1802 	memset(format, 0, sizeof(*format));
1803 
1804 	format->width = state->timings.bt.width;
1805 	format->height = state->timings.bt.height;
1806 	format->field = V4L2_FIELD_NONE;
1807 	format->colorspace = V4L2_COLORSPACE_SRGB;
1808 
1809 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1810 		format->colorspace = (state->timings.bt.height <= 576) ?
1811 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1812 }
1813 
1814 /*
1815  * Compute the op_ch_sel value required to obtain on the bus the component order
1816  * corresponding to the selected format taking into account bus reordering
1817  * applied by the board at the output of the device.
1818  *
1819  * The following table gives the op_ch_value from the format component order
1820  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1821  * adv76xx_bus_order value in row).
1822  *
1823  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1824  * ----------+-------------------------------------------------
1825  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1826  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1827  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1828  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1829  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1830  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1831  */
1832 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1833 {
1834 #define _SEL(a,b,c,d,e,f)	{ \
1835 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1836 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1837 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1838 
1839 	static const unsigned int op_ch_sel[6][6] = {
1840 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1841 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1842 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1843 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1844 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1845 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1846 	};
1847 
1848 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1849 }
1850 
1851 static void adv76xx_setup_format(struct adv76xx_state *state)
1852 {
1853 	struct v4l2_subdev *sd = &state->sd;
1854 
1855 	io_write_clr_set(sd, 0x02, 0x02,
1856 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1857 	io_write(sd, 0x03, state->format->op_format_sel |
1858 		 state->pdata.op_format_mode_sel);
1859 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1860 	io_write_clr_set(sd, 0x05, 0x01,
1861 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1862 }
1863 
1864 static int adv76xx_get_format(struct v4l2_subdev *sd,
1865 			      struct v4l2_subdev_pad_config *cfg,
1866 			      struct v4l2_subdev_format *format)
1867 {
1868 	struct adv76xx_state *state = to_state(sd);
1869 
1870 	if (format->pad != state->source_pad)
1871 		return -EINVAL;
1872 
1873 	adv76xx_fill_format(state, &format->format);
1874 
1875 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1876 		struct v4l2_mbus_framefmt *fmt;
1877 
1878 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1879 		format->format.code = fmt->code;
1880 	} else {
1881 		format->format.code = state->format->code;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static int adv76xx_set_format(struct v4l2_subdev *sd,
1888 			      struct v4l2_subdev_pad_config *cfg,
1889 			      struct v4l2_subdev_format *format)
1890 {
1891 	struct adv76xx_state *state = to_state(sd);
1892 	const struct adv76xx_format_info *info;
1893 
1894 	if (format->pad != state->source_pad)
1895 		return -EINVAL;
1896 
1897 	info = adv76xx_format_info(state, format->format.code);
1898 	if (info == NULL)
1899 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1900 
1901 	adv76xx_fill_format(state, &format->format);
1902 	format->format.code = info->code;
1903 
1904 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1905 		struct v4l2_mbus_framefmt *fmt;
1906 
1907 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1908 		fmt->code = format->format.code;
1909 	} else {
1910 		state->format = info;
1911 		adv76xx_setup_format(state);
1912 	}
1913 
1914 	return 0;
1915 }
1916 
1917 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1918 {
1919 	struct adv76xx_state *state = to_state(sd);
1920 	const struct adv76xx_chip_info *info = state->info;
1921 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
1922 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
1923 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
1924 	u8 fmt_change_digital;
1925 	u8 fmt_change;
1926 	u8 tx_5v;
1927 
1928 	if (irq_reg_0x43)
1929 		io_write(sd, 0x44, irq_reg_0x43);
1930 	if (irq_reg_0x70)
1931 		io_write(sd, 0x71, irq_reg_0x70);
1932 	if (irq_reg_0x6b)
1933 		io_write(sd, 0x6c, irq_reg_0x6b);
1934 
1935 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
1936 
1937 	/* format change */
1938 	fmt_change = irq_reg_0x43 & 0x98;
1939 	fmt_change_digital = is_digital_input(sd)
1940 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
1941 			   : 0;
1942 
1943 	if (fmt_change || fmt_change_digital) {
1944 		v4l2_dbg(1, debug, sd,
1945 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1946 			__func__, fmt_change, fmt_change_digital);
1947 
1948 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1949 
1950 		if (handled)
1951 			*handled = true;
1952 	}
1953 	/* HDMI/DVI mode */
1954 	if (irq_reg_0x6b & 0x01) {
1955 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
1956 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
1957 		set_rgb_quantization_range(sd);
1958 		if (handled)
1959 			*handled = true;
1960 	}
1961 
1962 	/* tx 5v detect */
1963 	tx_5v = io_read(sd, 0x70) & info->cable_det_mask;
1964 	if (tx_5v) {
1965 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
1966 		io_write(sd, 0x71, tx_5v);
1967 		adv76xx_s_detect_tx_5v_ctrl(sd);
1968 		if (handled)
1969 			*handled = true;
1970 	}
1971 	return 0;
1972 }
1973 
1974 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1975 {
1976 	struct adv76xx_state *state = to_state(sd);
1977 	u8 *data = NULL;
1978 
1979 	memset(edid->reserved, 0, sizeof(edid->reserved));
1980 
1981 	switch (edid->pad) {
1982 	case ADV76XX_PAD_HDMI_PORT_A:
1983 	case ADV7604_PAD_HDMI_PORT_B:
1984 	case ADV7604_PAD_HDMI_PORT_C:
1985 	case ADV7604_PAD_HDMI_PORT_D:
1986 		if (state->edid.present & (1 << edid->pad))
1987 			data = state->edid.edid;
1988 		break;
1989 	default:
1990 		return -EINVAL;
1991 	}
1992 
1993 	if (edid->start_block == 0 && edid->blocks == 0) {
1994 		edid->blocks = data ? state->edid.blocks : 0;
1995 		return 0;
1996 	}
1997 
1998 	if (data == NULL)
1999 		return -ENODATA;
2000 
2001 	if (edid->start_block >= state->edid.blocks)
2002 		return -EINVAL;
2003 
2004 	if (edid->start_block + edid->blocks > state->edid.blocks)
2005 		edid->blocks = state->edid.blocks - edid->start_block;
2006 
2007 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2008 
2009 	return 0;
2010 }
2011 
2012 static int get_edid_spa_location(const u8 *edid)
2013 {
2014 	u8 d;
2015 
2016 	if ((edid[0x7e] != 1) ||
2017 	    (edid[0x80] != 0x02) ||
2018 	    (edid[0x81] != 0x03)) {
2019 		return -1;
2020 	}
2021 
2022 	/* search Vendor Specific Data Block (tag 3) */
2023 	d = edid[0x82] & 0x7f;
2024 	if (d > 4) {
2025 		int i = 0x84;
2026 		int end = 0x80 + d;
2027 
2028 		do {
2029 			u8 tag = edid[i] >> 5;
2030 			u8 len = edid[i] & 0x1f;
2031 
2032 			if ((tag == 3) && (len >= 5))
2033 				return i + 4;
2034 			i += len + 1;
2035 		} while (i < end);
2036 	}
2037 	return -1;
2038 }
2039 
2040 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2041 {
2042 	struct adv76xx_state *state = to_state(sd);
2043 	const struct adv76xx_chip_info *info = state->info;
2044 	int spa_loc;
2045 	int err;
2046 	int i;
2047 
2048 	memset(edid->reserved, 0, sizeof(edid->reserved));
2049 
2050 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2051 		return -EINVAL;
2052 	if (edid->start_block != 0)
2053 		return -EINVAL;
2054 	if (edid->blocks == 0) {
2055 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2056 		state->edid.present &= ~(1 << edid->pad);
2057 		adv76xx_set_hpd(state, state->edid.present);
2058 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2059 
2060 		/* Fall back to a 16:9 aspect ratio */
2061 		state->aspect_ratio.numerator = 16;
2062 		state->aspect_ratio.denominator = 9;
2063 
2064 		if (!state->edid.present)
2065 			state->edid.blocks = 0;
2066 
2067 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2068 				__func__, edid->pad, state->edid.present);
2069 		return 0;
2070 	}
2071 	if (edid->blocks > 2) {
2072 		edid->blocks = 2;
2073 		return -E2BIG;
2074 	}
2075 
2076 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2077 			__func__, edid->pad, state->edid.present);
2078 
2079 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2080 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2081 	adv76xx_set_hpd(state, 0);
2082 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2083 
2084 	spa_loc = get_edid_spa_location(edid->edid);
2085 	if (spa_loc < 0)
2086 		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */
2087 
2088 	switch (edid->pad) {
2089 	case ADV76XX_PAD_HDMI_PORT_A:
2090 		state->spa_port_a[0] = edid->edid[spa_loc];
2091 		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2092 		break;
2093 	case ADV7604_PAD_HDMI_PORT_B:
2094 		rep_write(sd, 0x70, edid->edid[spa_loc]);
2095 		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2096 		break;
2097 	case ADV7604_PAD_HDMI_PORT_C:
2098 		rep_write(sd, 0x72, edid->edid[spa_loc]);
2099 		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2100 		break;
2101 	case ADV7604_PAD_HDMI_PORT_D:
2102 		rep_write(sd, 0x74, edid->edid[spa_loc]);
2103 		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2104 		break;
2105 	default:
2106 		return -EINVAL;
2107 	}
2108 
2109 	if (info->type == ADV7604) {
2110 		rep_write(sd, 0x76, spa_loc & 0xff);
2111 		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2112 	} else {
2113 		/* FIXME: Where is the SPA location LSB register ? */
2114 		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2115 	}
2116 
2117 	edid->edid[spa_loc] = state->spa_port_a[0];
2118 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2119 
2120 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2121 	state->edid.blocks = edid->blocks;
2122 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2123 			edid->edid[0x16]);
2124 	state->edid.present |= 1 << edid->pad;
2125 
2126 	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2127 	if (err < 0) {
2128 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2129 		return err;
2130 	}
2131 
2132 	/* adv76xx calculates the checksums and enables I2C access to internal
2133 	   EDID RAM from DDC port. */
2134 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2135 
2136 	for (i = 0; i < 1000; i++) {
2137 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2138 			break;
2139 		mdelay(1);
2140 	}
2141 	if (i == 1000) {
2142 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2143 		return -EIO;
2144 	}
2145 
2146 	/* enable hotplug after 100 ms */
2147 	queue_delayed_work(state->work_queues,
2148 			&state->delayed_work_enable_hotplug, HZ / 10);
2149 	return 0;
2150 }
2151 
2152 /*********** avi info frame CEA-861-E **************/
2153 
2154 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2155 	{ "AVI", 0x01, 0xe0, 0x00 },
2156 	{ "Audio", 0x02, 0xe3, 0x1c },
2157 	{ "SDP", 0x04, 0xe6, 0x2a },
2158 	{ "Vendor", 0x10, 0xec, 0x54 }
2159 };
2160 
2161 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2162 				  union hdmi_infoframe *frame)
2163 {
2164 	uint8_t buffer[32];
2165 	u8 len;
2166 	int i;
2167 
2168 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2169 		v4l2_info(sd, "%s infoframe not received\n",
2170 			  adv76xx_cri[index].desc);
2171 		return -ENOENT;
2172 	}
2173 
2174 	for (i = 0; i < 3; i++)
2175 		buffer[i] = infoframe_read(sd,
2176 					   adv76xx_cri[index].head_addr + i);
2177 
2178 	len = buffer[2] + 1;
2179 
2180 	if (len + 3 > sizeof(buffer)) {
2181 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2182 			 adv76xx_cri[index].desc, len);
2183 		return -ENOENT;
2184 	}
2185 
2186 	for (i = 0; i < len; i++)
2187 		buffer[i + 3] = infoframe_read(sd,
2188 				       adv76xx_cri[index].payload_addr + i);
2189 
2190 	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2191 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2192 			 adv76xx_cri[index].desc);
2193 		return -ENOENT;
2194 	}
2195 	return 0;
2196 }
2197 
2198 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2199 {
2200 	int i;
2201 
2202 	if (!is_hdmi(sd)) {
2203 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2204 		return;
2205 	}
2206 
2207 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2208 		union hdmi_infoframe frame;
2209 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2210 
2211 		if (adv76xx_read_infoframe(sd, i, &frame))
2212 			return;
2213 		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2214 	}
2215 }
2216 
2217 static int adv76xx_log_status(struct v4l2_subdev *sd)
2218 {
2219 	struct adv76xx_state *state = to_state(sd);
2220 	const struct adv76xx_chip_info *info = state->info;
2221 	struct v4l2_dv_timings timings;
2222 	struct stdi_readback stdi;
2223 	u8 reg_io_0x02 = io_read(sd, 0x02);
2224 	u8 edid_enabled;
2225 	u8 cable_det;
2226 
2227 	static const char * const csc_coeff_sel_rb[16] = {
2228 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2229 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2230 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2231 		"reserved", "reserved", "reserved", "reserved", "manual"
2232 	};
2233 	static const char * const input_color_space_txt[16] = {
2234 		"RGB limited range (16-235)", "RGB full range (0-255)",
2235 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2236 		"xvYCC Bt.601", "xvYCC Bt.709",
2237 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2238 		"invalid", "invalid", "invalid", "invalid", "invalid",
2239 		"invalid", "invalid", "automatic"
2240 	};
2241 	static const char * const hdmi_color_space_txt[16] = {
2242 		"RGB limited range (16-235)", "RGB full range (0-255)",
2243 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2244 		"xvYCC Bt.601", "xvYCC Bt.709",
2245 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2246 		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2247 		"invalid", "invalid", "invalid"
2248 	};
2249 	static const char * const rgb_quantization_range_txt[] = {
2250 		"Automatic",
2251 		"RGB limited range (16-235)",
2252 		"RGB full range (0-255)",
2253 	};
2254 	static const char * const deep_color_mode_txt[4] = {
2255 		"8-bits per channel",
2256 		"10-bits per channel",
2257 		"12-bits per channel",
2258 		"16-bits per channel (not supported)"
2259 	};
2260 
2261 	v4l2_info(sd, "-----Chip status-----\n");
2262 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2263 	edid_enabled = rep_read(sd, info->edid_status_reg);
2264 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2265 			((edid_enabled & 0x01) ? "Yes" : "No"),
2266 			((edid_enabled & 0x02) ? "Yes" : "No"),
2267 			((edid_enabled & 0x04) ? "Yes" : "No"),
2268 			((edid_enabled & 0x08) ? "Yes" : "No"));
2269 	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
2270 			"enabled" : "disabled");
2271 
2272 	v4l2_info(sd, "-----Signal status-----\n");
2273 	cable_det = info->read_cable_det(sd);
2274 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2275 			((cable_det & 0x01) ? "Yes" : "No"),
2276 			((cable_det & 0x02) ? "Yes" : "No"),
2277 			((cable_det & 0x04) ? "Yes" : "No"),
2278 			((cable_det & 0x08) ? "Yes" : "No"));
2279 	v4l2_info(sd, "TMDS signal detected: %s\n",
2280 			no_signal_tmds(sd) ? "false" : "true");
2281 	v4l2_info(sd, "TMDS signal locked: %s\n",
2282 			no_lock_tmds(sd) ? "false" : "true");
2283 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2284 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2285 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2286 	v4l2_info(sd, "CP free run: %s\n",
2287 			(in_free_run(sd)) ? "on" : "off");
2288 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2289 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2290 			(io_read(sd, 0x01) & 0x70) >> 4);
2291 
2292 	v4l2_info(sd, "-----Video Timings-----\n");
2293 	if (read_stdi(sd, &stdi))
2294 		v4l2_info(sd, "STDI: not locked\n");
2295 	else
2296 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2297 				stdi.lcf, stdi.bl, stdi.lcvs,
2298 				stdi.interlaced ? "interlaced" : "progressive",
2299 				stdi.hs_pol, stdi.vs_pol);
2300 	if (adv76xx_query_dv_timings(sd, &timings))
2301 		v4l2_info(sd, "No video detected\n");
2302 	else
2303 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2304 				      &timings, true);
2305 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2306 			      &state->timings, true);
2307 
2308 	if (no_signal(sd))
2309 		return 0;
2310 
2311 	v4l2_info(sd, "-----Color space-----\n");
2312 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2313 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2314 	v4l2_info(sd, "Input color space: %s\n",
2315 			input_color_space_txt[reg_io_0x02 >> 4]);
2316 	v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2317 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2318 			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2319 			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2320 				"enabled" : "disabled",
2321 			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2322 	v4l2_info(sd, "Color space conversion: %s\n",
2323 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2324 
2325 	if (!is_digital_input(sd))
2326 		return 0;
2327 
2328 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2329 	v4l2_info(sd, "Digital video port selected: %c\n",
2330 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2331 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2332 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2333 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2334 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2335 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2336 	if (is_hdmi(sd)) {
2337 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2338 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2339 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2340 
2341 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2342 				audio_pll_locked ? "locked" : "not locked",
2343 				audio_sample_packet_detect ? "detected" : "not detected",
2344 				audio_mute ? "muted" : "enabled");
2345 		if (audio_pll_locked && audio_sample_packet_detect) {
2346 			v4l2_info(sd, "Audio format: %s\n",
2347 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2348 		}
2349 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2350 				(hdmi_read(sd, 0x5c) << 8) +
2351 				(hdmi_read(sd, 0x5d) & 0xf0));
2352 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2353 				(hdmi_read(sd, 0x5e) << 8) +
2354 				hdmi_read(sd, 0x5f));
2355 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2356 
2357 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2358 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2359 
2360 		adv76xx_log_infoframes(sd);
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2367 				   struct v4l2_fh *fh,
2368 				   struct v4l2_event_subscription *sub)
2369 {
2370 	switch (sub->type) {
2371 	case V4L2_EVENT_SOURCE_CHANGE:
2372 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2373 	case V4L2_EVENT_CTRL:
2374 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2375 	default:
2376 		return -EINVAL;
2377 	}
2378 }
2379 
2380 /* ----------------------------------------------------------------------- */
2381 
2382 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2383 	.s_ctrl = adv76xx_s_ctrl,
2384 };
2385 
2386 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2387 	.log_status = adv76xx_log_status,
2388 	.interrupt_service_routine = adv76xx_isr,
2389 	.subscribe_event = adv76xx_subscribe_event,
2390 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2391 #ifdef CONFIG_VIDEO_ADV_DEBUG
2392 	.g_register = adv76xx_g_register,
2393 	.s_register = adv76xx_s_register,
2394 #endif
2395 };
2396 
2397 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2398 	.s_routing = adv76xx_s_routing,
2399 	.g_input_status = adv76xx_g_input_status,
2400 	.s_dv_timings = adv76xx_s_dv_timings,
2401 	.g_dv_timings = adv76xx_g_dv_timings,
2402 	.query_dv_timings = adv76xx_query_dv_timings,
2403 };
2404 
2405 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2406 	.enum_mbus_code = adv76xx_enum_mbus_code,
2407 	.get_fmt = adv76xx_get_format,
2408 	.set_fmt = adv76xx_set_format,
2409 	.get_edid = adv76xx_get_edid,
2410 	.set_edid = adv76xx_set_edid,
2411 	.dv_timings_cap = adv76xx_dv_timings_cap,
2412 	.enum_dv_timings = adv76xx_enum_dv_timings,
2413 };
2414 
2415 static const struct v4l2_subdev_ops adv76xx_ops = {
2416 	.core = &adv76xx_core_ops,
2417 	.video = &adv76xx_video_ops,
2418 	.pad = &adv76xx_pad_ops,
2419 };
2420 
2421 /* -------------------------- custom ctrls ---------------------------------- */
2422 
2423 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2424 	.ops = &adv76xx_ctrl_ops,
2425 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2426 	.name = "Analog Sampling Phase",
2427 	.type = V4L2_CTRL_TYPE_INTEGER,
2428 	.min = 0,
2429 	.max = 0x1f,
2430 	.step = 1,
2431 	.def = 0,
2432 };
2433 
2434 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2435 	.ops = &adv76xx_ctrl_ops,
2436 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2437 	.name = "Free Running Color, Manual",
2438 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2439 	.min = false,
2440 	.max = true,
2441 	.step = 1,
2442 	.def = false,
2443 };
2444 
2445 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2446 	.ops = &adv76xx_ctrl_ops,
2447 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2448 	.name = "Free Running Color",
2449 	.type = V4L2_CTRL_TYPE_INTEGER,
2450 	.min = 0x0,
2451 	.max = 0xffffff,
2452 	.step = 0x1,
2453 	.def = 0x0,
2454 };
2455 
2456 /* ----------------------------------------------------------------------- */
2457 
2458 static int adv76xx_core_init(struct v4l2_subdev *sd)
2459 {
2460 	struct adv76xx_state *state = to_state(sd);
2461 	const struct adv76xx_chip_info *info = state->info;
2462 	struct adv76xx_platform_data *pdata = &state->pdata;
2463 
2464 	hdmi_write(sd, 0x48,
2465 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2466 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2467 
2468 	disable_input(sd);
2469 
2470 	if (pdata->default_input >= 0 &&
2471 	    pdata->default_input < state->source_pad) {
2472 		state->selected_input = pdata->default_input;
2473 		select_input(sd);
2474 		enable_input(sd);
2475 	}
2476 
2477 	/* power */
2478 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2479 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2480 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2481 
2482 	/* video format */
2483 	io_write_clr_set(sd, 0x02, 0x0f,
2484 			pdata->alt_gamma << 3 |
2485 			pdata->op_656_range << 2 |
2486 			pdata->alt_data_sat << 0);
2487 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2488 			pdata->insert_av_codes << 2 |
2489 			pdata->replicate_av_codes << 1);
2490 	adv76xx_setup_format(state);
2491 
2492 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2493 
2494 	/* VS, HS polarities */
2495 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2496 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2497 
2498 	/* Adjust drive strength */
2499 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2500 				pdata->dr_str_clk << 2 |
2501 				pdata->dr_str_sync);
2502 
2503 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2504 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2505 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2506 				      ADI recommended setting [REF_01, c. 2.3.3] */
2507 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2508 				      ADI recommended setting [REF_01, c. 2.3.3] */
2509 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2510 				     for digital formats */
2511 
2512 	/* HDMI audio */
2513 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2514 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2515 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2516 
2517 	/* TODO from platform data */
2518 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2519 
2520 	if (adv76xx_has_afe(state)) {
2521 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2522 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2523 	}
2524 
2525 	/* interrupts */
2526 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2527 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2528 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2529 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2530 	info->setup_irqs(sd);
2531 
2532 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2533 }
2534 
2535 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2536 {
2537 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2538 }
2539 
2540 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2541 {
2542 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2543 }
2544 
2545 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2546 {
2547 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2548 }
2549 
2550 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2551 {
2552 	unsigned int i;
2553 
2554 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2555 		if (state->i2c_clients[i])
2556 			i2c_unregister_device(state->i2c_clients[i]);
2557 	}
2558 }
2559 
2560 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2561 							u8 addr, u8 io_reg)
2562 {
2563 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2564 
2565 	if (addr)
2566 		io_write(sd, io_reg, addr << 1);
2567 	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2568 }
2569 
2570 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2571 	/* reset ADI recommended settings for HDMI: */
2572 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2573 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2574 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2575 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2576 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2577 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2578 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2579 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2580 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2581 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2582 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2583 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2584 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2585 
2586 	/* set ADI recommended settings for digitizer */
2587 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2588 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2589 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2590 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2591 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2592 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2593 
2594 	{ ADV76XX_REG_SEQ_TERM, 0 },
2595 };
2596 
2597 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2598 	/* set ADI recommended settings for HDMI: */
2599 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2600 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2601 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2602 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2603 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2604 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2605 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2606 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2607 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2608 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2609 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2610 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2611 
2612 	/* reset ADI recommended settings for digitizer */
2613 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2614 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2615 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2616 
2617 	{ ADV76XX_REG_SEQ_TERM, 0 },
2618 };
2619 
2620 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2621 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2622 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2623 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2624 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2625 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2626 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2627 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2628 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2629 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2630 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2631 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2632 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2633 
2634 	{ ADV76XX_REG_SEQ_TERM, 0 },
2635 };
2636 
2637 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2638 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2639 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2640 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2641 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2642 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2643 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2644 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2645 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2646 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2647 	{ ADV76XX_REG_SEQ_TERM, 0 },
2648 };
2649 
2650 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2651 	[ADV7604] = {
2652 		.type = ADV7604,
2653 		.has_afe = true,
2654 		.max_port = ADV7604_PAD_VGA_COMP,
2655 		.num_dv_ports = 4,
2656 		.edid_enable_reg = 0x77,
2657 		.edid_status_reg = 0x7d,
2658 		.lcf_reg = 0xb3,
2659 		.tdms_lock_mask = 0xe0,
2660 		.cable_det_mask = 0x1e,
2661 		.fmt_change_digital_mask = 0xc1,
2662 		.cp_csc = 0xfc,
2663 		.formats = adv7604_formats,
2664 		.nformats = ARRAY_SIZE(adv7604_formats),
2665 		.set_termination = adv7604_set_termination,
2666 		.setup_irqs = adv7604_setup_irqs,
2667 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2668 		.read_cable_det = adv7604_read_cable_det,
2669 		.recommended_settings = {
2670 		    [0] = adv7604_recommended_settings_afe,
2671 		    [1] = adv7604_recommended_settings_hdmi,
2672 		},
2673 		.num_recommended_settings = {
2674 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2675 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2676 		},
2677 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2678 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2679 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2680 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2681 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2682 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2683 			BIT(ADV7604_PAGE_VDP),
2684 		.linewidth_mask = 0xfff,
2685 		.field0_height_mask = 0xfff,
2686 		.field1_height_mask = 0xfff,
2687 		.hfrontporch_mask = 0x3ff,
2688 		.hsync_mask = 0x3ff,
2689 		.hbackporch_mask = 0x3ff,
2690 		.field0_vfrontporch_mask = 0x1fff,
2691 		.field0_vsync_mask = 0x1fff,
2692 		.field0_vbackporch_mask = 0x1fff,
2693 		.field1_vfrontporch_mask = 0x1fff,
2694 		.field1_vsync_mask = 0x1fff,
2695 		.field1_vbackporch_mask = 0x1fff,
2696 	},
2697 	[ADV7611] = {
2698 		.type = ADV7611,
2699 		.has_afe = false,
2700 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2701 		.num_dv_ports = 1,
2702 		.edid_enable_reg = 0x74,
2703 		.edid_status_reg = 0x76,
2704 		.lcf_reg = 0xa3,
2705 		.tdms_lock_mask = 0x43,
2706 		.cable_det_mask = 0x01,
2707 		.fmt_change_digital_mask = 0x03,
2708 		.cp_csc = 0xf4,
2709 		.formats = adv7611_formats,
2710 		.nformats = ARRAY_SIZE(adv7611_formats),
2711 		.set_termination = adv7611_set_termination,
2712 		.setup_irqs = adv7611_setup_irqs,
2713 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2714 		.read_cable_det = adv7611_read_cable_det,
2715 		.recommended_settings = {
2716 		    [1] = adv7611_recommended_settings_hdmi,
2717 		},
2718 		.num_recommended_settings = {
2719 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
2720 		},
2721 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2722 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2723 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
2724 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2725 		.linewidth_mask = 0x1fff,
2726 		.field0_height_mask = 0x1fff,
2727 		.field1_height_mask = 0x1fff,
2728 		.hfrontporch_mask = 0x1fff,
2729 		.hsync_mask = 0x1fff,
2730 		.hbackporch_mask = 0x1fff,
2731 		.field0_vfrontporch_mask = 0x3fff,
2732 		.field0_vsync_mask = 0x3fff,
2733 		.field0_vbackporch_mask = 0x3fff,
2734 		.field1_vfrontporch_mask = 0x3fff,
2735 		.field1_vsync_mask = 0x3fff,
2736 		.field1_vbackporch_mask = 0x3fff,
2737 	},
2738 	[ADV7612] = {
2739 		.type = ADV7612,
2740 		.has_afe = false,
2741 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
2742 		.num_dv_ports = 1,			/* normally 2 */
2743 		.edid_enable_reg = 0x74,
2744 		.edid_status_reg = 0x76,
2745 		.lcf_reg = 0xa3,
2746 		.tdms_lock_mask = 0x43,
2747 		.cable_det_mask = 0x01,
2748 		.fmt_change_digital_mask = 0x03,
2749 		.cp_csc = 0xf4,
2750 		.formats = adv7612_formats,
2751 		.nformats = ARRAY_SIZE(adv7612_formats),
2752 		.set_termination = adv7611_set_termination,
2753 		.setup_irqs = adv7612_setup_irqs,
2754 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2755 		.read_cable_det = adv7612_read_cable_det,
2756 		.recommended_settings = {
2757 		    [1] = adv7612_recommended_settings_hdmi,
2758 		},
2759 		.num_recommended_settings = {
2760 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
2761 		},
2762 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2763 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2764 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
2765 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2766 		.linewidth_mask = 0x1fff,
2767 		.field0_height_mask = 0x1fff,
2768 		.field1_height_mask = 0x1fff,
2769 		.hfrontporch_mask = 0x1fff,
2770 		.hsync_mask = 0x1fff,
2771 		.hbackporch_mask = 0x1fff,
2772 		.field0_vfrontporch_mask = 0x3fff,
2773 		.field0_vsync_mask = 0x3fff,
2774 		.field0_vbackporch_mask = 0x3fff,
2775 		.field1_vfrontporch_mask = 0x3fff,
2776 		.field1_vsync_mask = 0x3fff,
2777 		.field1_vbackporch_mask = 0x3fff,
2778 	},
2779 };
2780 
2781 static const struct i2c_device_id adv76xx_i2c_id[] = {
2782 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
2783 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2784 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
2785 	{ }
2786 };
2787 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2788 
2789 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2790 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2791 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
2792 	{ }
2793 };
2794 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2795 
2796 static int adv76xx_parse_dt(struct adv76xx_state *state)
2797 {
2798 	struct v4l2_of_endpoint bus_cfg;
2799 	struct device_node *endpoint;
2800 	struct device_node *np;
2801 	unsigned int flags;
2802 	u32 v;
2803 
2804 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2805 
2806 	/* Parse the endpoint. */
2807 	endpoint = of_graph_get_next_endpoint(np, NULL);
2808 	if (!endpoint)
2809 		return -EINVAL;
2810 
2811 	v4l2_of_parse_endpoint(endpoint, &bus_cfg);
2812 
2813 	if (!of_property_read_u32(endpoint, "default-input", &v))
2814 		state->pdata.default_input = v;
2815 	else
2816 		state->pdata.default_input = -1;
2817 
2818 	of_node_put(endpoint);
2819 
2820 	flags = bus_cfg.bus.parallel.flags;
2821 
2822 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
2823 		state->pdata.inv_hs_pol = 1;
2824 
2825 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
2826 		state->pdata.inv_vs_pol = 1;
2827 
2828 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
2829 		state->pdata.inv_llc_pol = 1;
2830 
2831 	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
2832 		state->pdata.insert_av_codes = 1;
2833 		state->pdata.op_656_range = 1;
2834 	}
2835 
2836 	/* Disable the interrupt for now as no DT-based board uses it. */
2837 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2838 
2839 	/* Use the default I2C addresses. */
2840 	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2841 	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
2842 	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2843 	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
2844 	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2845 	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
2846 	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
2847 	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
2848 	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
2849 	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
2850 	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2851 	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;
2852 
2853 	/* Hardcode the remaining platform data fields. */
2854 	state->pdata.disable_pwrdnb = 0;
2855 	state->pdata.disable_cable_det_rst = 0;
2856 	state->pdata.blank_data = 1;
2857 	state->pdata.alt_data_sat = 1;
2858 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
2859 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
2860 
2861 	return 0;
2862 }
2863 
2864 static const struct regmap_config adv76xx_regmap_cnf[] = {
2865 	{
2866 		.name			= "io",
2867 		.reg_bits		= 8,
2868 		.val_bits		= 8,
2869 
2870 		.max_register		= 0xff,
2871 		.cache_type		= REGCACHE_NONE,
2872 	},
2873 	{
2874 		.name			= "avlink",
2875 		.reg_bits		= 8,
2876 		.val_bits		= 8,
2877 
2878 		.max_register		= 0xff,
2879 		.cache_type		= REGCACHE_NONE,
2880 	},
2881 	{
2882 		.name			= "cec",
2883 		.reg_bits		= 8,
2884 		.val_bits		= 8,
2885 
2886 		.max_register		= 0xff,
2887 		.cache_type		= REGCACHE_NONE,
2888 	},
2889 	{
2890 		.name			= "infoframe",
2891 		.reg_bits		= 8,
2892 		.val_bits		= 8,
2893 
2894 		.max_register		= 0xff,
2895 		.cache_type		= REGCACHE_NONE,
2896 	},
2897 	{
2898 		.name			= "esdp",
2899 		.reg_bits		= 8,
2900 		.val_bits		= 8,
2901 
2902 		.max_register		= 0xff,
2903 		.cache_type		= REGCACHE_NONE,
2904 	},
2905 	{
2906 		.name			= "epp",
2907 		.reg_bits		= 8,
2908 		.val_bits		= 8,
2909 
2910 		.max_register		= 0xff,
2911 		.cache_type		= REGCACHE_NONE,
2912 	},
2913 	{
2914 		.name			= "afe",
2915 		.reg_bits		= 8,
2916 		.val_bits		= 8,
2917 
2918 		.max_register		= 0xff,
2919 		.cache_type		= REGCACHE_NONE,
2920 	},
2921 	{
2922 		.name			= "rep",
2923 		.reg_bits		= 8,
2924 		.val_bits		= 8,
2925 
2926 		.max_register		= 0xff,
2927 		.cache_type		= REGCACHE_NONE,
2928 	},
2929 	{
2930 		.name			= "edid",
2931 		.reg_bits		= 8,
2932 		.val_bits		= 8,
2933 
2934 		.max_register		= 0xff,
2935 		.cache_type		= REGCACHE_NONE,
2936 	},
2937 
2938 	{
2939 		.name			= "hdmi",
2940 		.reg_bits		= 8,
2941 		.val_bits		= 8,
2942 
2943 		.max_register		= 0xff,
2944 		.cache_type		= REGCACHE_NONE,
2945 	},
2946 	{
2947 		.name			= "test",
2948 		.reg_bits		= 8,
2949 		.val_bits		= 8,
2950 
2951 		.max_register		= 0xff,
2952 		.cache_type		= REGCACHE_NONE,
2953 	},
2954 	{
2955 		.name			= "cp",
2956 		.reg_bits		= 8,
2957 		.val_bits		= 8,
2958 
2959 		.max_register		= 0xff,
2960 		.cache_type		= REGCACHE_NONE,
2961 	},
2962 	{
2963 		.name			= "vdp",
2964 		.reg_bits		= 8,
2965 		.val_bits		= 8,
2966 
2967 		.max_register		= 0xff,
2968 		.cache_type		= REGCACHE_NONE,
2969 	},
2970 };
2971 
2972 static int configure_regmap(struct adv76xx_state *state, int region)
2973 {
2974 	int err;
2975 
2976 	if (!state->i2c_clients[region])
2977 		return -ENODEV;
2978 
2979 	state->regmap[region] =
2980 		devm_regmap_init_i2c(state->i2c_clients[region],
2981 				     &adv76xx_regmap_cnf[region]);
2982 
2983 	if (IS_ERR(state->regmap[region])) {
2984 		err = PTR_ERR(state->regmap[region]);
2985 		v4l_err(state->i2c_clients[region],
2986 			"Error initializing regmap %d with error %d\n",
2987 			region, err);
2988 		return -EINVAL;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
2994 static int configure_regmaps(struct adv76xx_state *state)
2995 {
2996 	int i, err;
2997 
2998 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
2999 		err = configure_regmap(state, i);
3000 		if (err && (err != -ENODEV))
3001 			return err;
3002 	}
3003 	return 0;
3004 }
3005 
3006 static int adv76xx_probe(struct i2c_client *client,
3007 			 const struct i2c_device_id *id)
3008 {
3009 	static const struct v4l2_dv_timings cea640x480 =
3010 		V4L2_DV_BT_CEA_640X480P59_94;
3011 	struct adv76xx_state *state;
3012 	struct v4l2_ctrl_handler *hdl;
3013 	struct v4l2_subdev *sd;
3014 	unsigned int i;
3015 	unsigned int val, val2;
3016 	int err;
3017 
3018 	/* Check if the adapter supports the needed features */
3019 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3020 		return -EIO;
3021 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3022 			client->addr << 1);
3023 
3024 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3025 	if (!state) {
3026 		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3027 		return -ENOMEM;
3028 	}
3029 
3030 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3031 
3032 	/* initialize variables */
3033 	state->restart_stdi_once = true;
3034 	state->selected_input = ~0;
3035 
3036 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3037 		const struct of_device_id *oid;
3038 
3039 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3040 		state->info = oid->data;
3041 
3042 		err = adv76xx_parse_dt(state);
3043 		if (err < 0) {
3044 			v4l_err(client, "DT parsing error\n");
3045 			return err;
3046 		}
3047 	} else if (client->dev.platform_data) {
3048 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3049 
3050 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3051 		state->pdata = *pdata;
3052 	} else {
3053 		v4l_err(client, "No platform data!\n");
3054 		return -ENODEV;
3055 	}
3056 
3057 	/* Request GPIOs. */
3058 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3059 		state->hpd_gpio[i] =
3060 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3061 						      GPIOD_OUT_LOW);
3062 		if (IS_ERR(state->hpd_gpio[i]))
3063 			return PTR_ERR(state->hpd_gpio[i]);
3064 
3065 		if (state->hpd_gpio[i])
3066 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3067 	}
3068 
3069 	state->timings = cea640x480;
3070 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3071 
3072 	sd = &state->sd;
3073 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3074 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3075 		id->name, i2c_adapter_id(client->adapter),
3076 		client->addr);
3077 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3078 
3079 	/* Configure IO Regmap region */
3080 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3081 
3082 	if (err) {
3083 		v4l2_err(sd, "Error configuring IO regmap region\n");
3084 		return -ENODEV;
3085 	}
3086 
3087 	/*
3088 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3089 	 * identifies the revision, while on ADV7611 it identifies the model as
3090 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3091 	 */
3092 	switch (state->info->type) {
3093 	case ADV7604:
3094 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3095 		if (err) {
3096 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3097 			return -ENODEV;
3098 		}
3099 		if (val != 0x68) {
3100 			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3101 					client->addr << 1);
3102 			return -ENODEV;
3103 		}
3104 		break;
3105 	case ADV7611:
3106 	case ADV7612:
3107 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3108 				0xea,
3109 				&val);
3110 		if (err) {
3111 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3112 			return -ENODEV;
3113 		}
3114 		val2 = val << 8;
3115 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3116 			    0xeb,
3117 			    &val);
3118 		if (err) {
3119 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3120 			return -ENODEV;
3121 		}
3122 		val |= val2;
3123 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3124 			(state->info->type == ADV7612 && val != 0x2041)) {
3125 			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3126 					client->addr << 1);
3127 			return -ENODEV;
3128 		}
3129 		break;
3130 	}
3131 
3132 	/* control handlers */
3133 	hdl = &state->hdl;
3134 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3135 
3136 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3137 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3138 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3139 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3140 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3141 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3142 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3143 			V4L2_CID_HUE, 0, 128, 1, 0);
3144 
3145 	/* private controls */
3146 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3147 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3148 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3149 	state->rgb_quantization_range_ctrl =
3150 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3151 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3152 			0, V4L2_DV_RGB_RANGE_AUTO);
3153 
3154 	/* custom controls */
3155 	if (adv76xx_has_afe(state))
3156 		state->analog_sampling_phase_ctrl =
3157 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3158 	state->free_run_color_manual_ctrl =
3159 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3160 	state->free_run_color_ctrl =
3161 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3162 
3163 	sd->ctrl_handler = hdl;
3164 	if (hdl->error) {
3165 		err = hdl->error;
3166 		goto err_hdl;
3167 	}
3168 	state->detect_tx_5v_ctrl->is_private = true;
3169 	state->rgb_quantization_range_ctrl->is_private = true;
3170 	if (adv76xx_has_afe(state))
3171 		state->analog_sampling_phase_ctrl->is_private = true;
3172 	state->free_run_color_manual_ctrl->is_private = true;
3173 	state->free_run_color_ctrl->is_private = true;
3174 
3175 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3176 		err = -ENODEV;
3177 		goto err_hdl;
3178 	}
3179 
3180 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3181 		if (!(BIT(i) & state->info->page_mask))
3182 			continue;
3183 
3184 		state->i2c_clients[i] =
3185 			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3186 					     0xf2 + i);
3187 		if (state->i2c_clients[i] == NULL) {
3188 			err = -ENOMEM;
3189 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3190 			goto err_i2c;
3191 		}
3192 	}
3193 
3194 	/* work queues */
3195 	state->work_queues = create_singlethread_workqueue(client->name);
3196 	if (!state->work_queues) {
3197 		v4l2_err(sd, "Could not create work queue\n");
3198 		err = -ENOMEM;
3199 		goto err_i2c;
3200 	}
3201 
3202 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3203 			adv76xx_delayed_work_enable_hotplug);
3204 
3205 	state->source_pad = state->info->num_dv_ports
3206 			  + (state->info->has_afe ? 2 : 0);
3207 	for (i = 0; i < state->source_pad; ++i)
3208 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3209 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3210 
3211 	err = media_entity_init(&sd->entity, state->source_pad + 1,
3212 				state->pads, 0);
3213 	if (err)
3214 		goto err_work_queues;
3215 
3216 	/* Configure regmaps */
3217 	err = configure_regmaps(state);
3218 	if (err)
3219 		goto err_entity;
3220 
3221 	err = adv76xx_core_init(sd);
3222 	if (err)
3223 		goto err_entity;
3224 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3225 			client->addr << 1, client->adapter->name);
3226 
3227 	err = v4l2_async_register_subdev(sd);
3228 	if (err)
3229 		goto err_entity;
3230 
3231 	return 0;
3232 
3233 err_entity:
3234 	media_entity_cleanup(&sd->entity);
3235 err_work_queues:
3236 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3237 	destroy_workqueue(state->work_queues);
3238 err_i2c:
3239 	adv76xx_unregister_clients(state);
3240 err_hdl:
3241 	v4l2_ctrl_handler_free(hdl);
3242 	return err;
3243 }
3244 
3245 /* ----------------------------------------------------------------------- */
3246 
3247 static int adv76xx_remove(struct i2c_client *client)
3248 {
3249 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3250 	struct adv76xx_state *state = to_state(sd);
3251 
3252 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3253 	destroy_workqueue(state->work_queues);
3254 	v4l2_async_unregister_subdev(sd);
3255 	media_entity_cleanup(&sd->entity);
3256 	adv76xx_unregister_clients(to_state(sd));
3257 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3258 	return 0;
3259 }
3260 
3261 /* ----------------------------------------------------------------------- */
3262 
3263 static struct i2c_driver adv76xx_driver = {
3264 	.driver = {
3265 		.name = "adv7604",
3266 		.of_match_table = of_match_ptr(adv76xx_of_id),
3267 	},
3268 	.probe = adv76xx_probe,
3269 	.remove = adv76xx_remove,
3270 	.id_table = adv76xx_i2c_id,
3271 };
3272 
3273 module_i2c_driver(adv76xx_driver);
3274