1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * adv7604 - Analog Devices ADV7604 video decoder driver 4 * 5 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 * 7 */ 8 9 /* 10 * References (c = chapter, p = page): 11 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations, 12 * Revision 2.5, June 2010 13 * REF_02 - Analog devices, Register map documentation, Documentation of 14 * the register maps, Software manual, Rev. F, June 2010 15 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010 16 */ 17 18 #include <linux/delay.h> 19 #include <linux/gpio/consumer.h> 20 #include <linux/hdmi.h> 21 #include <linux/i2c.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/of_graph.h> 25 #include <linux/slab.h> 26 #include <linux/v4l2-dv-timings.h> 27 #include <linux/videodev2.h> 28 #include <linux/workqueue.h> 29 #include <linux/regmap.h> 30 #include <linux/interrupt.h> 31 32 #include <media/i2c/adv7604.h> 33 #include <media/cec.h> 34 #include <media/v4l2-ctrls.h> 35 #include <media/v4l2-device.h> 36 #include <media/v4l2-event.h> 37 #include <media/v4l2-dv-timings.h> 38 #include <media/v4l2-fwnode.h> 39 40 static int debug; 41 module_param(debug, int, 0644); 42 MODULE_PARM_DESC(debug, "debug level (0-2)"); 43 44 MODULE_DESCRIPTION("Analog Devices ADV7604/10/11/12 video decoder driver"); 45 MODULE_AUTHOR("Hans Verkuil <hansverk@cisco.com>"); 46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>"); 47 MODULE_LICENSE("GPL"); 48 49 /* ADV7604 system clock frequency */ 50 #define ADV76XX_FSC (28636360) 51 52 #define ADV76XX_RGB_OUT (1 << 1) 53 54 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0) 55 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0) 56 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0) 57 58 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5) 59 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5) 60 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5) 61 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5) 62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5) 63 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5) 64 65 #define ADV76XX_OP_CH_SEL_GBR (0 << 5) 66 #define ADV76XX_OP_CH_SEL_GRB (1 << 5) 67 #define ADV76XX_OP_CH_SEL_BGR (2 << 5) 68 #define ADV76XX_OP_CH_SEL_RGB (3 << 5) 69 #define ADV76XX_OP_CH_SEL_BRG (4 << 5) 70 #define ADV76XX_OP_CH_SEL_RBG (5 << 5) 71 72 #define ADV76XX_OP_SWAP_CB_CR (1 << 0) 73 74 #define ADV76XX_MAX_ADDRS (3) 75 76 #define ADV76XX_MAX_EDID_BLOCKS 4 77 78 enum adv76xx_type { 79 ADV7604, 80 ADV7611, // including ADV7610 81 ADV7612, 82 }; 83 84 struct adv76xx_reg_seq { 85 unsigned int reg; 86 u8 val; 87 }; 88 89 struct adv76xx_format_info { 90 u32 code; 91 u8 op_ch_sel; 92 bool rgb_out; 93 bool swap_cb_cr; 94 u8 op_format_sel; 95 }; 96 97 struct adv76xx_cfg_read_infoframe { 98 const char *desc; 99 u8 present_mask; 100 u8 head_addr; 101 u8 payload_addr; 102 }; 103 104 struct adv76xx_chip_info { 105 enum adv76xx_type type; 106 107 bool has_afe; 108 unsigned int max_port; 109 unsigned int num_dv_ports; 110 111 unsigned int edid_enable_reg; 112 unsigned int edid_status_reg; 113 unsigned int edid_segment_reg; 114 unsigned int edid_segment_mask; 115 unsigned int edid_spa_loc_reg; 116 unsigned int edid_spa_loc_msb_mask; 117 unsigned int edid_spa_port_b_reg; 118 unsigned int lcf_reg; 119 120 unsigned int cable_det_mask; 121 unsigned int tdms_lock_mask; 122 unsigned int fmt_change_digital_mask; 123 unsigned int cp_csc; 124 125 unsigned int cec_irq_status; 126 unsigned int cec_rx_enable; 127 unsigned int cec_rx_enable_mask; 128 bool cec_irq_swap; 129 130 const struct adv76xx_format_info *formats; 131 unsigned int nformats; 132 133 void (*set_termination)(struct v4l2_subdev *sd, bool enable); 134 void (*setup_irqs)(struct v4l2_subdev *sd); 135 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd); 136 unsigned int (*read_cable_det)(struct v4l2_subdev *sd); 137 138 /* 0 = AFE, 1 = HDMI */ 139 const struct adv76xx_reg_seq *recommended_settings[2]; 140 unsigned int num_recommended_settings[2]; 141 142 unsigned long page_mask; 143 144 /* Masks for timings */ 145 unsigned int linewidth_mask; 146 unsigned int field0_height_mask; 147 unsigned int field1_height_mask; 148 unsigned int hfrontporch_mask; 149 unsigned int hsync_mask; 150 unsigned int hbackporch_mask; 151 unsigned int field0_vfrontporch_mask; 152 unsigned int field1_vfrontporch_mask; 153 unsigned int field0_vsync_mask; 154 unsigned int field1_vsync_mask; 155 unsigned int field0_vbackporch_mask; 156 unsigned int field1_vbackporch_mask; 157 }; 158 159 /* 160 ********************************************************************** 161 * 162 * Arrays with configuration parameters for the ADV7604 163 * 164 ********************************************************************** 165 */ 166 167 struct adv76xx_state { 168 const struct adv76xx_chip_info *info; 169 struct adv76xx_platform_data pdata; 170 171 struct gpio_desc *hpd_gpio[4]; 172 struct gpio_desc *reset_gpio; 173 174 struct v4l2_subdev sd; 175 struct media_pad pads[ADV76XX_PAD_MAX]; 176 unsigned int source_pad; 177 178 struct v4l2_ctrl_handler hdl; 179 180 enum adv76xx_pad selected_input; 181 182 struct v4l2_dv_timings timings; 183 const struct adv76xx_format_info *format; 184 185 struct { 186 u8 edid[ADV76XX_MAX_EDID_BLOCKS * 128]; 187 u32 present; 188 unsigned blocks; 189 } edid; 190 u16 spa_port_a[2]; 191 struct v4l2_fract aspect_ratio; 192 u32 rgb_quantization_range; 193 struct delayed_work delayed_work_enable_hotplug; 194 bool restart_stdi_once; 195 196 struct dentry *debugfs_dir; 197 struct v4l2_debugfs_if *infoframes; 198 199 /* CEC */ 200 struct cec_adapter *cec_adap; 201 u8 cec_addr[ADV76XX_MAX_ADDRS]; 202 u8 cec_valid_addrs; 203 bool cec_enabled_adap; 204 205 /* i2c clients */ 206 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX]; 207 208 /* Regmaps */ 209 struct regmap *regmap[ADV76XX_PAGE_MAX]; 210 211 /* controls */ 212 struct v4l2_ctrl *detect_tx_5v_ctrl; 213 struct v4l2_ctrl *analog_sampling_phase_ctrl; 214 struct v4l2_ctrl *free_run_color_manual_ctrl; 215 struct v4l2_ctrl *free_run_color_ctrl; 216 struct v4l2_ctrl *rgb_quantization_range_ctrl; 217 }; 218 219 static bool adv76xx_has_afe(struct adv76xx_state *state) 220 { 221 return state->info->has_afe; 222 } 223 224 /* Unsupported timings. This device cannot support 720p30. */ 225 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = { 226 V4L2_DV_BT_CEA_1280X720P30, 227 { } 228 }; 229 230 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl) 231 { 232 int i; 233 234 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++) 235 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false)) 236 return false; 237 return true; 238 } 239 240 struct adv76xx_video_standards { 241 struct v4l2_dv_timings timings; 242 u8 vid_std; 243 u8 v_freq; 244 }; 245 246 /* sorted by number of lines */ 247 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = { 248 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ 249 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 250 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, 251 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, 252 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 253 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 254 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 255 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 256 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 257 /* TODO add 1920x1080P60_RB (CVT timing) */ 258 { }, 259 }; 260 261 /* sorted by number of lines */ 262 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = { 263 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 264 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 265 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 266 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 267 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 268 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 269 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 270 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 271 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 272 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 273 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 274 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 275 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 276 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 277 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 278 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, 279 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, 280 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, 281 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, 282 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ 283 /* TODO add 1600X1200P60_RB (not a DMT timing) */ 284 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, 285 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ 286 { }, 287 }; 288 289 /* sorted by number of lines */ 290 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = { 291 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, 292 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 293 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, 294 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, 295 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 296 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 297 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 298 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 299 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 300 { }, 301 }; 302 303 /* sorted by number of lines */ 304 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = { 305 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 306 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 307 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 308 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 309 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 310 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 311 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 312 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 313 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 314 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 315 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 316 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 317 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 318 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 319 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 320 { }, 321 }; 322 323 static const struct v4l2_event adv76xx_ev_fmt = { 324 .type = V4L2_EVENT_SOURCE_CHANGE, 325 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, 326 }; 327 328 /* ----------------------------------------------------------------------- */ 329 330 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd) 331 { 332 return container_of(sd, struct adv76xx_state, sd); 333 } 334 335 static inline unsigned htotal(const struct v4l2_bt_timings *t) 336 { 337 return V4L2_DV_BT_FRAME_WIDTH(t); 338 } 339 340 static inline unsigned vtotal(const struct v4l2_bt_timings *t) 341 { 342 return V4L2_DV_BT_FRAME_HEIGHT(t); 343 } 344 345 /* ----------------------------------------------------------------------- */ 346 347 static int adv76xx_read_check(struct adv76xx_state *state, 348 int client_page, u8 reg) 349 { 350 struct i2c_client *client = state->i2c_clients[client_page]; 351 int err; 352 unsigned int val; 353 354 err = regmap_read(state->regmap[client_page], reg, &val); 355 356 if (err) { 357 v4l_err(client, "error reading %02x, %02x\n", 358 client->addr, reg); 359 return err; 360 } 361 return val; 362 } 363 364 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX 365 * size to one or more registers. 366 * 367 * A value of zero will be returned on success, a negative errno will 368 * be returned in error cases. 369 */ 370 static int adv76xx_write_block(struct adv76xx_state *state, int client_page, 371 unsigned int init_reg, const void *val, 372 size_t val_len) 373 { 374 struct regmap *regmap = state->regmap[client_page]; 375 376 if (val_len > I2C_SMBUS_BLOCK_MAX) 377 val_len = I2C_SMBUS_BLOCK_MAX; 378 379 return regmap_raw_write(regmap, init_reg, val, val_len); 380 } 381 382 /* ----------------------------------------------------------------------- */ 383 384 static inline int io_read(struct v4l2_subdev *sd, u8 reg) 385 { 386 struct adv76xx_state *state = to_state(sd); 387 388 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg); 389 } 390 391 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) 392 { 393 struct adv76xx_state *state = to_state(sd); 394 395 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val); 396 } 397 398 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, 399 u8 val) 400 { 401 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val); 402 } 403 404 static inline int __always_unused avlink_read(struct v4l2_subdev *sd, u8 reg) 405 { 406 struct adv76xx_state *state = to_state(sd); 407 408 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg); 409 } 410 411 static inline int __always_unused avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) 412 { 413 struct adv76xx_state *state = to_state(sd); 414 415 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val); 416 } 417 418 static inline int cec_read(struct v4l2_subdev *sd, u8 reg) 419 { 420 struct adv76xx_state *state = to_state(sd); 421 422 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg); 423 } 424 425 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) 426 { 427 struct adv76xx_state *state = to_state(sd); 428 429 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val); 430 } 431 432 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, 433 u8 val) 434 { 435 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val); 436 } 437 438 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) 439 { 440 struct adv76xx_state *state = to_state(sd); 441 442 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg); 443 } 444 445 static inline int __always_unused infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 446 { 447 struct adv76xx_state *state = to_state(sd); 448 449 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val); 450 } 451 452 static inline int __always_unused afe_read(struct v4l2_subdev *sd, u8 reg) 453 { 454 struct adv76xx_state *state = to_state(sd); 455 456 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg); 457 } 458 459 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 460 { 461 struct adv76xx_state *state = to_state(sd); 462 463 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val); 464 } 465 466 static inline int rep_read(struct v4l2_subdev *sd, u8 reg) 467 { 468 struct adv76xx_state *state = to_state(sd); 469 470 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg); 471 } 472 473 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) 474 { 475 struct adv76xx_state *state = to_state(sd); 476 477 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val); 478 } 479 480 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 481 { 482 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val); 483 } 484 485 static inline int __always_unused edid_read(struct v4l2_subdev *sd, u8 reg) 486 { 487 struct adv76xx_state *state = to_state(sd); 488 489 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg); 490 } 491 492 static inline int __always_unused edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) 493 { 494 struct adv76xx_state *state = to_state(sd); 495 496 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val); 497 } 498 499 static inline int edid_write_block(struct v4l2_subdev *sd, 500 unsigned int total_len, const u8 *val) 501 { 502 struct adv76xx_state *state = to_state(sd); 503 int err = 0; 504 int i = 0; 505 int len = 0; 506 507 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", 508 __func__, total_len); 509 510 while (!err && i < total_len) { 511 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ? 512 I2C_SMBUS_BLOCK_MAX : 513 (total_len - i); 514 515 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID, 516 i, val + i, len); 517 i += len; 518 } 519 520 return err; 521 } 522 523 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd) 524 { 525 const struct adv76xx_chip_info *info = state->info; 526 unsigned int i; 527 528 if (info->type == ADV7604) { 529 for (i = 0; i < state->info->num_dv_ports; ++i) 530 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i)); 531 } else { 532 for (i = 0; i < state->info->num_dv_ports; ++i) 533 io_write_clr_set(&state->sd, 0x20, 0x80 >> i, 534 (!!(hpd & BIT(i))) << (7 - i)); 535 } 536 537 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd); 538 } 539 540 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work) 541 { 542 struct delayed_work *dwork = to_delayed_work(work); 543 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state, 544 delayed_work_enable_hotplug); 545 struct v4l2_subdev *sd = &state->sd; 546 547 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__); 548 549 adv76xx_set_hpd(state, state->edid.present); 550 } 551 552 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) 553 { 554 struct adv76xx_state *state = to_state(sd); 555 556 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg); 557 } 558 559 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 560 { 561 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask; 562 } 563 564 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) 565 { 566 struct adv76xx_state *state = to_state(sd); 567 568 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val); 569 } 570 571 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 572 { 573 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val); 574 } 575 576 static inline int __always_unused test_write(struct v4l2_subdev *sd, u8 reg, u8 val) 577 { 578 struct adv76xx_state *state = to_state(sd); 579 580 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val); 581 } 582 583 static inline int cp_read(struct v4l2_subdev *sd, u8 reg) 584 { 585 struct adv76xx_state *state = to_state(sd); 586 587 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg); 588 } 589 590 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 591 { 592 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask; 593 } 594 595 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 596 { 597 struct adv76xx_state *state = to_state(sd); 598 599 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val); 600 } 601 602 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 603 { 604 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val); 605 } 606 607 static inline int __always_unused vdp_read(struct v4l2_subdev *sd, u8 reg) 608 { 609 struct adv76xx_state *state = to_state(sd); 610 611 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg); 612 } 613 614 static inline int __always_unused vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 615 { 616 struct adv76xx_state *state = to_state(sd); 617 618 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val); 619 } 620 621 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset)) 622 #define ADV76XX_REG_SEQ_TERM 0xffff 623 624 #ifdef CONFIG_VIDEO_ADV_DEBUG 625 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg) 626 { 627 struct adv76xx_state *state = to_state(sd); 628 unsigned int page = reg >> 8; 629 unsigned int val; 630 int err; 631 632 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask)) 633 return -EINVAL; 634 635 reg &= 0xff; 636 err = regmap_read(state->regmap[page], reg, &val); 637 638 return err ? err : val; 639 } 640 #endif 641 642 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val) 643 { 644 struct adv76xx_state *state = to_state(sd); 645 unsigned int page = reg >> 8; 646 647 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask)) 648 return -EINVAL; 649 650 reg &= 0xff; 651 652 return regmap_write(state->regmap[page], reg, val); 653 } 654 655 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd, 656 const struct adv76xx_reg_seq *reg_seq) 657 { 658 unsigned int i; 659 660 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++) 661 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val); 662 } 663 664 /* ----------------------------------------------------------------------------- 665 * Format helpers 666 */ 667 668 static const struct adv76xx_format_info adv7604_formats[] = { 669 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 670 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 671 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 672 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 673 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 674 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 675 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false, 676 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 677 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true, 678 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 679 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 680 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 681 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 682 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 683 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 684 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 685 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 686 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 687 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 688 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 689 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 690 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 691 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false, 692 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 693 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true, 694 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 695 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false, 696 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 697 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true, 698 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 699 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 700 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 701 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 702 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 703 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 704 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 705 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 706 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 707 }; 708 709 static const struct adv76xx_format_info adv7611_formats[] = { 710 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 711 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 712 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 713 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 714 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 715 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 716 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 717 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 718 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 719 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 720 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 721 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 722 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 723 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 724 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 725 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 726 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 727 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 728 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 729 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 730 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 731 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 732 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 733 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 734 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 735 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 736 }; 737 738 static const struct adv76xx_format_info adv7612_formats[] = { 739 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 740 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 741 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 742 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 743 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 744 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 745 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 746 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 747 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 748 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 749 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 750 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 751 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 752 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 753 }; 754 755 static const struct adv76xx_format_info * 756 adv76xx_format_info(struct adv76xx_state *state, u32 code) 757 { 758 unsigned int i; 759 760 for (i = 0; i < state->info->nformats; ++i) { 761 if (state->info->formats[i].code == code) 762 return &state->info->formats[i]; 763 } 764 765 return NULL; 766 } 767 768 /* ----------------------------------------------------------------------- */ 769 770 static inline bool is_analog_input(struct v4l2_subdev *sd) 771 { 772 struct adv76xx_state *state = to_state(sd); 773 774 return state->selected_input == ADV7604_PAD_VGA_RGB || 775 state->selected_input == ADV7604_PAD_VGA_COMP; 776 } 777 778 static inline bool is_digital_input(struct v4l2_subdev *sd) 779 { 780 struct adv76xx_state *state = to_state(sd); 781 782 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A || 783 state->selected_input == ADV7604_PAD_HDMI_PORT_B || 784 state->selected_input == ADV7604_PAD_HDMI_PORT_C || 785 state->selected_input == ADV7604_PAD_HDMI_PORT_D; 786 } 787 788 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = { 789 .type = V4L2_DV_BT_656_1120, 790 /* keep this initialization for compatibility with GCC < 4.4.6 */ 791 .reserved = { 0 }, 792 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000, 793 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 794 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 795 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 796 V4L2_DV_BT_CAP_CUSTOM) 797 }; 798 799 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = { 800 .type = V4L2_DV_BT_656_1120, 801 /* keep this initialization for compatibility with GCC < 4.4.6 */ 802 .reserved = { 0 }, 803 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000, 804 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 805 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 806 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 807 V4L2_DV_BT_CAP_CUSTOM) 808 }; 809 810 /* 811 * Return the DV timings capabilities for the requested sink pad. As a special 812 * case, pad value -1 returns the capabilities for the currently selected input. 813 */ 814 static const struct v4l2_dv_timings_cap * 815 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad) 816 { 817 if (pad == -1) { 818 struct adv76xx_state *state = to_state(sd); 819 820 pad = state->selected_input; 821 } 822 823 switch (pad) { 824 case ADV76XX_PAD_HDMI_PORT_A: 825 case ADV7604_PAD_HDMI_PORT_B: 826 case ADV7604_PAD_HDMI_PORT_C: 827 case ADV7604_PAD_HDMI_PORT_D: 828 return &adv76xx_timings_cap_digital; 829 830 case ADV7604_PAD_VGA_RGB: 831 case ADV7604_PAD_VGA_COMP: 832 default: 833 return &adv7604_timings_cap_analog; 834 } 835 } 836 837 838 /* ----------------------------------------------------------------------- */ 839 840 #ifdef CONFIG_VIDEO_ADV_DEBUG 841 static void adv76xx_inv_register(struct v4l2_subdev *sd) 842 { 843 v4l2_info(sd, "0x000-0x0ff: IO Map\n"); 844 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); 845 v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); 846 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); 847 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n"); 848 v4l2_info(sd, "0x500-0x5ff: DPP Map\n"); 849 v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); 850 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); 851 v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); 852 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); 853 v4l2_info(sd, "0xa00-0xaff: Test Map\n"); 854 v4l2_info(sd, "0xb00-0xbff: CP Map\n"); 855 v4l2_info(sd, "0xc00-0xcff: VDP Map\n"); 856 } 857 858 static int adv76xx_g_register(struct v4l2_subdev *sd, 859 struct v4l2_dbg_register *reg) 860 { 861 int ret; 862 863 ret = adv76xx_read_reg(sd, reg->reg); 864 if (ret < 0) { 865 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 866 adv76xx_inv_register(sd); 867 return ret; 868 } 869 870 reg->size = 1; 871 reg->val = ret; 872 873 return 0; 874 } 875 876 static int adv76xx_s_register(struct v4l2_subdev *sd, 877 const struct v4l2_dbg_register *reg) 878 { 879 int ret; 880 881 ret = adv76xx_write_reg(sd, reg->reg, reg->val); 882 if (ret < 0) { 883 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 884 adv76xx_inv_register(sd); 885 return ret; 886 } 887 888 return 0; 889 } 890 #endif 891 892 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd) 893 { 894 u8 value = io_read(sd, 0x6f); 895 896 return ((value & 0x10) >> 4) 897 | ((value & 0x08) >> 2) 898 | ((value & 0x04) << 0) 899 | ((value & 0x02) << 2); 900 } 901 902 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd) 903 { 904 u8 value = io_read(sd, 0x6f); 905 906 return value & 1; 907 } 908 909 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd) 910 { 911 /* Reads CABLE_DET_A_RAW. For input B support, need to 912 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW) 913 */ 914 u8 value = io_read(sd, 0x6f); 915 916 return value & 1; 917 } 918 919 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) 920 { 921 struct adv76xx_state *state = to_state(sd); 922 const struct adv76xx_chip_info *info = state->info; 923 u16 cable_det = info->read_cable_det(sd); 924 925 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det); 926 } 927 928 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, 929 u8 prim_mode, 930 const struct adv76xx_video_standards *predef_vid_timings, 931 const struct v4l2_dv_timings *timings) 932 { 933 int i; 934 935 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { 936 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, 937 is_digital_input(sd) ? 250000 : 1000000, false)) 938 continue; 939 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */ 940 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + 941 prim_mode); /* v_freq and prim mode */ 942 return 0; 943 } 944 945 return -1; 946 } 947 948 static int configure_predefined_video_timings(struct v4l2_subdev *sd, 949 struct v4l2_dv_timings *timings) 950 { 951 struct adv76xx_state *state = to_state(sd); 952 int err; 953 954 v4l2_dbg(1, debug, sd, "%s", __func__); 955 956 if (adv76xx_has_afe(state)) { 957 /* reset to default values */ 958 io_write(sd, 0x16, 0x43); 959 io_write(sd, 0x17, 0x5a); 960 } 961 /* disable embedded syncs for auto graphics mode */ 962 cp_write_clr_set(sd, 0x81, 0x10, 0x00); 963 cp_write(sd, 0x8f, 0x00); 964 cp_write(sd, 0x90, 0x00); 965 cp_write(sd, 0xa2, 0x00); 966 cp_write(sd, 0xa3, 0x00); 967 cp_write(sd, 0xa4, 0x00); 968 cp_write(sd, 0xa5, 0x00); 969 cp_write(sd, 0xa6, 0x00); 970 cp_write(sd, 0xa7, 0x00); 971 cp_write(sd, 0xab, 0x00); 972 cp_write(sd, 0xac, 0x00); 973 974 if (is_analog_input(sd)) { 975 err = find_and_set_predefined_video_timings(sd, 976 0x01, adv7604_prim_mode_comp, timings); 977 if (err) 978 err = find_and_set_predefined_video_timings(sd, 979 0x02, adv7604_prim_mode_gr, timings); 980 } else if (is_digital_input(sd)) { 981 err = find_and_set_predefined_video_timings(sd, 982 0x05, adv76xx_prim_mode_hdmi_comp, timings); 983 if (err) 984 err = find_and_set_predefined_video_timings(sd, 985 0x06, adv76xx_prim_mode_hdmi_gr, timings); 986 } else { 987 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 988 __func__, state->selected_input); 989 err = -1; 990 } 991 992 993 return err; 994 } 995 996 static void configure_custom_video_timings(struct v4l2_subdev *sd, 997 const struct v4l2_bt_timings *bt) 998 { 999 struct adv76xx_state *state = to_state(sd); 1000 u32 width = htotal(bt); 1001 u32 height = vtotal(bt); 1002 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; 1003 u16 cp_start_eav = width - bt->hfrontporch; 1004 u16 cp_start_vbi = height - bt->vfrontporch; 1005 u16 cp_end_vbi = bt->vsync + bt->vbackporch; 1006 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? 1007 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0; 1008 const u8 pll[2] = { 1009 0xc0 | ((width >> 8) & 0x1f), 1010 width & 0xff 1011 }; 1012 1013 v4l2_dbg(2, debug, sd, "%s\n", __func__); 1014 1015 if (is_analog_input(sd)) { 1016 /* auto graphics */ 1017 io_write(sd, 0x00, 0x07); /* video std */ 1018 io_write(sd, 0x01, 0x02); /* prim mode */ 1019 /* enable embedded syncs for auto graphics mode */ 1020 cp_write_clr_set(sd, 0x81, 0x10, 0x10); 1021 1022 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ 1023 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ 1024 /* IO-map reg. 0x16 and 0x17 should be written in sequence */ 1025 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO], 1026 0x16, pll, 2)) 1027 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); 1028 1029 /* active video - horizontal timing */ 1030 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff); 1031 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) | 1032 ((cp_start_eav >> 8) & 0x0f)); 1033 cp_write(sd, 0xa4, cp_start_eav & 0xff); 1034 1035 /* active video - vertical timing */ 1036 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); 1037 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | 1038 ((cp_end_vbi >> 8) & 0xf)); 1039 cp_write(sd, 0xa7, cp_end_vbi & 0xff); 1040 } else if (is_digital_input(sd)) { 1041 /* set default prim_mode/vid_std for HDMI 1042 according to [REF_03, c. 4.2] */ 1043 io_write(sd, 0x00, 0x02); /* video std */ 1044 io_write(sd, 0x01, 0x06); /* prim mode */ 1045 } else { 1046 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1047 __func__, state->selected_input); 1048 } 1049 1050 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); 1051 cp_write(sd, 0x90, ch1_fr_ll & 0xff); 1052 cp_write(sd, 0xab, (height >> 4) & 0xff); 1053 cp_write(sd, 0xac, (height & 0x0f) << 4); 1054 } 1055 1056 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) 1057 { 1058 struct adv76xx_state *state = to_state(sd); 1059 u8 offset_buf[4]; 1060 1061 if (auto_offset) { 1062 offset_a = 0x3ff; 1063 offset_b = 0x3ff; 1064 offset_c = 0x3ff; 1065 } 1066 1067 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", 1068 __func__, auto_offset ? "Auto" : "Manual", 1069 offset_a, offset_b, offset_c); 1070 1071 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); 1072 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); 1073 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); 1074 offset_buf[3] = offset_c & 0x0ff; 1075 1076 /* Registers must be written in this order with no i2c access in between */ 1077 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1078 0x77, offset_buf, 4)) 1079 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); 1080 } 1081 1082 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) 1083 { 1084 struct adv76xx_state *state = to_state(sd); 1085 u8 gain_buf[4]; 1086 u8 gain_man = 1; 1087 u8 agc_mode_man = 1; 1088 1089 if (auto_gain) { 1090 gain_man = 0; 1091 agc_mode_man = 0; 1092 gain_a = 0x100; 1093 gain_b = 0x100; 1094 gain_c = 0x100; 1095 } 1096 1097 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", 1098 __func__, auto_gain ? "Auto" : "Manual", 1099 gain_a, gain_b, gain_c); 1100 1101 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); 1102 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); 1103 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); 1104 gain_buf[3] = ((gain_c & 0x0ff)); 1105 1106 /* Registers must be written in this order with no i2c access in between */ 1107 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1108 0x73, gain_buf, 4)) 1109 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); 1110 } 1111 1112 static void set_rgb_quantization_range(struct v4l2_subdev *sd) 1113 { 1114 struct adv76xx_state *state = to_state(sd); 1115 bool rgb_output = io_read(sd, 0x02) & 0x02; 1116 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1117 u8 y = HDMI_COLORSPACE_RGB; 1118 1119 if (hdmi_signal && (io_read(sd, 0x60) & 1)) 1120 y = infoframe_read(sd, 0x01) >> 5; 1121 1122 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", 1123 __func__, state->rgb_quantization_range, 1124 rgb_output, hdmi_signal); 1125 1126 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0); 1127 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0); 1128 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4); 1129 1130 switch (state->rgb_quantization_range) { 1131 case V4L2_DV_RGB_RANGE_AUTO: 1132 if (state->selected_input == ADV7604_PAD_VGA_RGB) { 1133 /* Receiving analog RGB signal 1134 * Set RGB full range (0-255) */ 1135 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1136 break; 1137 } 1138 1139 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1140 /* Receiving analog YPbPr signal 1141 * Set automode */ 1142 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1143 break; 1144 } 1145 1146 if (hdmi_signal) { 1147 /* Receiving HDMI signal 1148 * Set automode */ 1149 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1150 break; 1151 } 1152 1153 /* Receiving DVI-D signal 1154 * ADV7604 selects RGB limited range regardless of 1155 * input format (CE/IT) in automatic mode */ 1156 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { 1157 /* RGB limited range (16-235) */ 1158 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1159 } else { 1160 /* RGB full range (0-255) */ 1161 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1162 1163 if (is_digital_input(sd) && rgb_output) { 1164 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1165 } else { 1166 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1167 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1168 } 1169 } 1170 break; 1171 case V4L2_DV_RGB_RANGE_LIMITED: 1172 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1173 /* YCrCb limited range (16-235) */ 1174 io_write_clr_set(sd, 0x02, 0xf0, 0x20); 1175 break; 1176 } 1177 1178 if (y != HDMI_COLORSPACE_RGB) 1179 break; 1180 1181 /* RGB limited range (16-235) */ 1182 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1183 1184 break; 1185 case V4L2_DV_RGB_RANGE_FULL: 1186 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1187 /* YCrCb full range (0-255) */ 1188 io_write_clr_set(sd, 0x02, 0xf0, 0x60); 1189 break; 1190 } 1191 1192 if (y != HDMI_COLORSPACE_RGB) 1193 break; 1194 1195 /* RGB full range (0-255) */ 1196 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1197 1198 if (is_analog_input(sd) || hdmi_signal) 1199 break; 1200 1201 /* Adjust gain/offset for DVI-D signals only */ 1202 if (rgb_output) { 1203 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1204 } else { 1205 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1206 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1207 } 1208 break; 1209 } 1210 } 1211 1212 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl) 1213 { 1214 struct v4l2_subdev *sd = 1215 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1216 1217 struct adv76xx_state *state = to_state(sd); 1218 1219 switch (ctrl->id) { 1220 case V4L2_CID_BRIGHTNESS: 1221 cp_write(sd, 0x3c, ctrl->val); 1222 return 0; 1223 case V4L2_CID_CONTRAST: 1224 cp_write(sd, 0x3a, ctrl->val); 1225 return 0; 1226 case V4L2_CID_SATURATION: 1227 cp_write(sd, 0x3b, ctrl->val); 1228 return 0; 1229 case V4L2_CID_HUE: 1230 cp_write(sd, 0x3d, ctrl->val); 1231 return 0; 1232 case V4L2_CID_DV_RX_RGB_RANGE: 1233 state->rgb_quantization_range = ctrl->val; 1234 set_rgb_quantization_range(sd); 1235 return 0; 1236 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: 1237 if (!adv76xx_has_afe(state)) 1238 return -EINVAL; 1239 /* Set the analog sampling phase. This is needed to find the 1240 best sampling phase for analog video: an application or 1241 driver has to try a number of phases and analyze the picture 1242 quality before settling on the best performing phase. */ 1243 afe_write(sd, 0xc8, ctrl->val); 1244 return 0; 1245 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: 1246 /* Use the default blue color for free running mode, 1247 or supply your own. */ 1248 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2); 1249 return 0; 1250 case V4L2_CID_ADV_RX_FREE_RUN_COLOR: 1251 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16); 1252 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8); 1253 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff)); 1254 return 0; 1255 } 1256 return -EINVAL; 1257 } 1258 1259 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1260 { 1261 struct v4l2_subdev *sd = 1262 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1263 1264 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) { 1265 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC; 1266 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80)) 1267 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3; 1268 return 0; 1269 } 1270 return -EINVAL; 1271 } 1272 1273 /* ----------------------------------------------------------------------- */ 1274 1275 static inline bool no_power(struct v4l2_subdev *sd) 1276 { 1277 /* Entire chip or CP powered off */ 1278 return io_read(sd, 0x0c) & 0x24; 1279 } 1280 1281 static inline bool no_signal_tmds(struct v4l2_subdev *sd) 1282 { 1283 struct adv76xx_state *state = to_state(sd); 1284 1285 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input)); 1286 } 1287 1288 static inline bool no_lock_tmds(struct v4l2_subdev *sd) 1289 { 1290 struct adv76xx_state *state = to_state(sd); 1291 const struct adv76xx_chip_info *info = state->info; 1292 1293 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask; 1294 } 1295 1296 static inline bool is_hdmi(struct v4l2_subdev *sd) 1297 { 1298 return hdmi_read(sd, 0x05) & 0x80; 1299 } 1300 1301 static inline bool no_lock_sspd(struct v4l2_subdev *sd) 1302 { 1303 struct adv76xx_state *state = to_state(sd); 1304 1305 /* 1306 * Chips without a AFE don't expose registers for the SSPD, so just assume 1307 * that we have a lock. 1308 */ 1309 if (adv76xx_has_afe(state)) 1310 return false; 1311 1312 /* TODO channel 2 */ 1313 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0); 1314 } 1315 1316 static inline bool no_lock_stdi(struct v4l2_subdev *sd) 1317 { 1318 /* TODO channel 2 */ 1319 return !(cp_read(sd, 0xb1) & 0x80); 1320 } 1321 1322 static inline bool no_signal(struct v4l2_subdev *sd) 1323 { 1324 bool ret; 1325 1326 ret = no_power(sd); 1327 1328 ret |= no_lock_stdi(sd); 1329 ret |= no_lock_sspd(sd); 1330 1331 if (is_digital_input(sd)) { 1332 ret |= no_lock_tmds(sd); 1333 ret |= no_signal_tmds(sd); 1334 } 1335 1336 return ret; 1337 } 1338 1339 static inline bool no_lock_cp(struct v4l2_subdev *sd) 1340 { 1341 struct adv76xx_state *state = to_state(sd); 1342 1343 if (!adv76xx_has_afe(state)) 1344 return false; 1345 1346 /* CP has detected a non standard number of lines on the incoming 1347 video compared to what it is configured to receive by s_dv_timings */ 1348 return io_read(sd, 0x12) & 0x01; 1349 } 1350 1351 static inline bool in_free_run(struct v4l2_subdev *sd) 1352 { 1353 return cp_read(sd, 0xff) & 0x10; 1354 } 1355 1356 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status) 1357 { 1358 *status = 0; 1359 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0; 1360 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0; 1361 if (!in_free_run(sd) && no_lock_cp(sd)) 1362 *status |= is_digital_input(sd) ? 1363 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK; 1364 1365 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status); 1366 1367 return 0; 1368 } 1369 1370 /* ----------------------------------------------------------------------- */ 1371 1372 struct stdi_readback { 1373 u16 bl, lcf, lcvs; 1374 u8 hs_pol, vs_pol; 1375 bool interlaced; 1376 }; 1377 1378 static int stdi2dv_timings(struct v4l2_subdev *sd, 1379 struct stdi_readback *stdi, 1380 struct v4l2_dv_timings *timings) 1381 { 1382 struct adv76xx_state *state = to_state(sd); 1383 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl; 1384 u32 pix_clk; 1385 int i; 1386 1387 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { 1388 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt; 1389 1390 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i], 1391 adv76xx_get_dv_timings_cap(sd, -1), 1392 adv76xx_check_dv_timings, NULL)) 1393 continue; 1394 if (vtotal(bt) != stdi->lcf + 1) 1395 continue; 1396 if (bt->vsync != stdi->lcvs) 1397 continue; 1398 1399 pix_clk = hfreq * htotal(bt); 1400 1401 if ((pix_clk < bt->pixelclock + 1000000) && 1402 (pix_clk > bt->pixelclock - 1000000)) { 1403 *timings = v4l2_dv_timings_presets[i]; 1404 return 0; 1405 } 1406 } 1407 1408 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0, 1409 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1410 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1411 false, adv76xx_get_dv_timings_cap(sd, -1), timings)) 1412 return 0; 1413 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, 1414 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1415 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1416 false, state->aspect_ratio, 1417 adv76xx_get_dv_timings_cap(sd, -1), timings)) 1418 return 0; 1419 1420 v4l2_dbg(2, debug, sd, 1421 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", 1422 __func__, stdi->lcvs, stdi->lcf, stdi->bl, 1423 stdi->hs_pol, stdi->vs_pol); 1424 return -1; 1425 } 1426 1427 1428 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) 1429 { 1430 struct adv76xx_state *state = to_state(sd); 1431 const struct adv76xx_chip_info *info = state->info; 1432 u8 polarity; 1433 1434 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1435 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__); 1436 return -1; 1437 } 1438 1439 /* read STDI */ 1440 stdi->bl = cp_read16(sd, 0xb1, 0x3fff); 1441 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff); 1442 stdi->lcvs = cp_read(sd, 0xb3) >> 3; 1443 stdi->interlaced = io_read(sd, 0x12) & 0x10; 1444 1445 if (adv76xx_has_afe(state)) { 1446 /* read SSPD */ 1447 polarity = cp_read(sd, 0xb5); 1448 if ((polarity & 0x03) == 0x01) { 1449 stdi->hs_pol = polarity & 0x10 1450 ? (polarity & 0x08 ? '+' : '-') : 'x'; 1451 stdi->vs_pol = polarity & 0x40 1452 ? (polarity & 0x20 ? '+' : '-') : 'x'; 1453 } else { 1454 stdi->hs_pol = 'x'; 1455 stdi->vs_pol = 'x'; 1456 } 1457 } else { 1458 polarity = hdmi_read(sd, 0x05); 1459 stdi->hs_pol = polarity & 0x20 ? '+' : '-'; 1460 stdi->vs_pol = polarity & 0x10 ? '+' : '-'; 1461 } 1462 1463 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1464 v4l2_dbg(2, debug, sd, 1465 "%s: signal lost during readout of STDI/SSPD\n", __func__); 1466 return -1; 1467 } 1468 1469 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { 1470 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); 1471 memset(stdi, 0, sizeof(struct stdi_readback)); 1472 return -1; 1473 } 1474 1475 v4l2_dbg(2, debug, sd, 1476 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", 1477 __func__, stdi->lcf, stdi->bl, stdi->lcvs, 1478 stdi->hs_pol, stdi->vs_pol, 1479 stdi->interlaced ? "interlaced" : "progressive"); 1480 1481 return 0; 1482 } 1483 1484 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd, 1485 struct v4l2_enum_dv_timings *timings) 1486 { 1487 struct adv76xx_state *state = to_state(sd); 1488 1489 if (timings->pad >= state->source_pad) 1490 return -EINVAL; 1491 1492 return v4l2_enum_dv_timings_cap(timings, 1493 adv76xx_get_dv_timings_cap(sd, timings->pad), 1494 adv76xx_check_dv_timings, NULL); 1495 } 1496 1497 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd, 1498 struct v4l2_dv_timings_cap *cap) 1499 { 1500 struct adv76xx_state *state = to_state(sd); 1501 unsigned int pad = cap->pad; 1502 1503 if (cap->pad >= state->source_pad) 1504 return -EINVAL; 1505 1506 *cap = *adv76xx_get_dv_timings_cap(sd, pad); 1507 cap->pad = pad; 1508 1509 return 0; 1510 } 1511 1512 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings 1513 if the format is listed in adv76xx_timings[] */ 1514 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, 1515 struct v4l2_dv_timings *timings) 1516 { 1517 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1), 1518 is_digital_input(sd) ? 250000 : 1000000, 1519 adv76xx_check_dv_timings, NULL); 1520 } 1521 1522 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1523 { 1524 int a, b; 1525 1526 a = hdmi_read(sd, 0x06); 1527 b = hdmi_read(sd, 0x3b); 1528 if (a < 0 || b < 0) 1529 return 0; 1530 1531 return a * 1000000 + ((b & 0x30) >> 4) * 250000; 1532 } 1533 1534 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1535 { 1536 int a, b; 1537 1538 a = hdmi_read(sd, 0x51); 1539 b = hdmi_read(sd, 0x52); 1540 if (a < 0 || b < 0) 1541 return 0; 1542 1543 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128; 1544 } 1545 1546 static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1547 { 1548 struct adv76xx_state *state = to_state(sd); 1549 const struct adv76xx_chip_info *info = state->info; 1550 unsigned int freq, bits_per_channel, pixelrepetition; 1551 1552 freq = info->read_hdmi_pixelclock(sd); 1553 if (is_hdmi(sd)) { 1554 /* adjust for deep color mode and pixel repetition */ 1555 bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8; 1556 pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1; 1557 1558 freq = freq * 8 / bits_per_channel / pixelrepetition; 1559 } 1560 1561 return freq; 1562 } 1563 1564 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd, unsigned int pad, 1565 struct v4l2_dv_timings *timings) 1566 { 1567 struct adv76xx_state *state = to_state(sd); 1568 const struct adv76xx_chip_info *info = state->info; 1569 struct v4l2_bt_timings *bt = &timings->bt; 1570 struct stdi_readback stdi; 1571 1572 if (!timings) 1573 return -EINVAL; 1574 1575 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1576 1577 if (no_signal(sd)) { 1578 state->restart_stdi_once = true; 1579 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); 1580 return -ENOLINK; 1581 } 1582 1583 /* read STDI */ 1584 if (read_stdi(sd, &stdi)) { 1585 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__); 1586 return -ENOLINK; 1587 } 1588 bt->interlaced = stdi.interlaced ? 1589 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; 1590 1591 if (is_digital_input(sd)) { 1592 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1593 u8 vic = 0; 1594 u32 w, h; 1595 1596 w = hdmi_read16(sd, 0x07, info->linewidth_mask); 1597 h = hdmi_read16(sd, 0x09, info->field0_height_mask); 1598 1599 if (hdmi_signal && (io_read(sd, 0x60) & 1)) 1600 vic = infoframe_read(sd, 0x04); 1601 1602 if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) && 1603 bt->width == w && bt->height == h) 1604 goto found; 1605 1606 timings->type = V4L2_DV_BT_656_1120; 1607 1608 bt->width = w; 1609 bt->height = h; 1610 bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd); 1611 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask); 1612 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask); 1613 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask); 1614 bt->vfrontporch = hdmi_read16(sd, 0x2a, 1615 info->field0_vfrontporch_mask) / 2; 1616 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2; 1617 bt->vbackporch = hdmi_read16(sd, 0x32, 1618 info->field0_vbackporch_mask) / 2; 1619 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | 1620 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); 1621 if (bt->interlaced == V4L2_DV_INTERLACED) { 1622 bt->height += hdmi_read16(sd, 0x0b, 1623 info->field1_height_mask); 1624 bt->il_vfrontporch = hdmi_read16(sd, 0x2c, 1625 info->field1_vfrontporch_mask) / 2; 1626 bt->il_vsync = hdmi_read16(sd, 0x30, 1627 info->field1_vsync_mask) / 2; 1628 bt->il_vbackporch = hdmi_read16(sd, 0x34, 1629 info->field1_vbackporch_mask) / 2; 1630 } 1631 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1632 } else { 1633 /* find format 1634 * Since LCVS values are inaccurate [REF_03, p. 275-276], 1635 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. 1636 */ 1637 if (!stdi2dv_timings(sd, &stdi, timings)) 1638 goto found; 1639 stdi.lcvs += 1; 1640 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); 1641 if (!stdi2dv_timings(sd, &stdi, timings)) 1642 goto found; 1643 stdi.lcvs -= 2; 1644 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); 1645 if (stdi2dv_timings(sd, &stdi, timings)) { 1646 /* 1647 * The STDI block may measure wrong values, especially 1648 * for lcvs and lcf. If the driver can not find any 1649 * valid timing, the STDI block is restarted to measure 1650 * the video timings again. The function will return an 1651 * error, but the restart of STDI will generate a new 1652 * STDI interrupt and the format detection process will 1653 * restart. 1654 */ 1655 if (state->restart_stdi_once) { 1656 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); 1657 /* TODO restart STDI for Sync Channel 2 */ 1658 /* enter one-shot mode */ 1659 cp_write_clr_set(sd, 0x86, 0x06, 0x00); 1660 /* trigger STDI restart */ 1661 cp_write_clr_set(sd, 0x86, 0x06, 0x04); 1662 /* reset to continuous mode */ 1663 cp_write_clr_set(sd, 0x86, 0x06, 0x02); 1664 state->restart_stdi_once = false; 1665 return -ENOLINK; 1666 } 1667 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); 1668 return -ERANGE; 1669 } 1670 state->restart_stdi_once = true; 1671 } 1672 found: 1673 1674 if (no_signal(sd)) { 1675 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__); 1676 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1677 return -ENOLINK; 1678 } 1679 1680 if ((is_analog_input(sd) && bt->pixelclock > 170000000) || 1681 (is_digital_input(sd) && bt->pixelclock > 225000000)) { 1682 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", 1683 __func__, (u32)bt->pixelclock); 1684 return -ERANGE; 1685 } 1686 1687 if (debug > 1) 1688 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ", 1689 timings, true); 1690 1691 return 0; 1692 } 1693 1694 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd, unsigned int pad, 1695 struct v4l2_dv_timings *timings) 1696 { 1697 struct adv76xx_state *state = to_state(sd); 1698 struct v4l2_bt_timings *bt; 1699 int err; 1700 1701 if (!timings) 1702 return -EINVAL; 1703 1704 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) { 1705 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); 1706 return 0; 1707 } 1708 1709 bt = &timings->bt; 1710 1711 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1), 1712 adv76xx_check_dv_timings, NULL)) 1713 return -ERANGE; 1714 1715 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1716 1717 state->timings = *timings; 1718 1719 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00); 1720 1721 /* Use prim_mode and vid_std when available */ 1722 err = configure_predefined_video_timings(sd, timings); 1723 if (err) { 1724 /* custom settings when the video format 1725 does not have prim_mode/vid_std */ 1726 configure_custom_video_timings(sd, bt); 1727 } 1728 1729 set_rgb_quantization_range(sd); 1730 1731 if (debug > 1) 1732 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ", 1733 timings, true); 1734 return 0; 1735 } 1736 1737 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd, unsigned int pad, 1738 struct v4l2_dv_timings *timings) 1739 { 1740 struct adv76xx_state *state = to_state(sd); 1741 1742 *timings = state->timings; 1743 return 0; 1744 } 1745 1746 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable) 1747 { 1748 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78); 1749 } 1750 1751 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable) 1752 { 1753 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff); 1754 } 1755 1756 static void enable_input(struct v4l2_subdev *sd) 1757 { 1758 struct adv76xx_state *state = to_state(sd); 1759 1760 if (is_analog_input(sd)) { 1761 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ 1762 } else if (is_digital_input(sd)) { 1763 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input); 1764 state->info->set_termination(sd, true); 1765 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ 1766 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */ 1767 } else { 1768 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1769 __func__, state->selected_input); 1770 } 1771 } 1772 1773 static void disable_input(struct v4l2_subdev *sd) 1774 { 1775 struct adv76xx_state *state = to_state(sd); 1776 1777 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */ 1778 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */ 1779 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ 1780 state->info->set_termination(sd, false); 1781 } 1782 1783 static void select_input(struct v4l2_subdev *sd) 1784 { 1785 struct adv76xx_state *state = to_state(sd); 1786 const struct adv76xx_chip_info *info = state->info; 1787 1788 if (is_analog_input(sd)) { 1789 adv76xx_write_reg_seq(sd, info->recommended_settings[0]); 1790 1791 afe_write(sd, 0x00, 0x08); /* power up ADC */ 1792 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */ 1793 afe_write(sd, 0xc8, 0x00); /* phase control */ 1794 } else if (is_digital_input(sd)) { 1795 hdmi_write(sd, 0x00, state->selected_input & 0x03); 1796 1797 adv76xx_write_reg_seq(sd, info->recommended_settings[1]); 1798 1799 if (adv76xx_has_afe(state)) { 1800 afe_write(sd, 0x00, 0xff); /* power down ADC */ 1801 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */ 1802 afe_write(sd, 0xc8, 0x40); /* phase control */ 1803 } 1804 1805 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ 1806 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ 1807 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */ 1808 } else { 1809 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1810 __func__, state->selected_input); 1811 } 1812 1813 /* Enable video adjustment (contrast, saturation, brightness and hue) */ 1814 cp_write_clr_set(sd, 0x3e, 0x80, 0x80); 1815 } 1816 1817 static int adv76xx_s_routing(struct v4l2_subdev *sd, 1818 u32 input, u32 output, u32 config) 1819 { 1820 struct adv76xx_state *state = to_state(sd); 1821 1822 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d", 1823 __func__, input, state->selected_input); 1824 1825 if (input == state->selected_input) 1826 return 0; 1827 1828 if (input > state->info->max_port) 1829 return -EINVAL; 1830 1831 state->selected_input = input; 1832 1833 disable_input(sd); 1834 select_input(sd); 1835 enable_input(sd); 1836 1837 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 1838 1839 return 0; 1840 } 1841 1842 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd, 1843 struct v4l2_subdev_state *sd_state, 1844 struct v4l2_subdev_mbus_code_enum *code) 1845 { 1846 struct adv76xx_state *state = to_state(sd); 1847 1848 if (code->index >= state->info->nformats) 1849 return -EINVAL; 1850 1851 code->code = state->info->formats[code->index].code; 1852 1853 return 0; 1854 } 1855 1856 static void adv76xx_fill_format(struct adv76xx_state *state, 1857 struct v4l2_mbus_framefmt *format) 1858 { 1859 memset(format, 0, sizeof(*format)); 1860 1861 format->width = state->timings.bt.width; 1862 format->height = state->timings.bt.height; 1863 format->field = V4L2_FIELD_NONE; 1864 format->colorspace = V4L2_COLORSPACE_SRGB; 1865 1866 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) 1867 format->colorspace = (state->timings.bt.height <= 576) ? 1868 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; 1869 } 1870 1871 /* 1872 * Compute the op_ch_sel value required to obtain on the bus the component order 1873 * corresponding to the selected format taking into account bus reordering 1874 * applied by the board at the output of the device. 1875 * 1876 * The following table gives the op_ch_value from the format component order 1877 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as 1878 * adv76xx_bus_order value in row). 1879 * 1880 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5) 1881 * ----------+------------------------------------------------- 1882 * RGB (NOP) | GBR GRB BGR RGB BRG RBG 1883 * GRB (1-2) | BGR RGB GBR GRB RBG BRG 1884 * RBG (2-3) | GRB GBR BRG RBG BGR RGB 1885 * BGR (1-3) | RBG BRG RGB BGR GRB GBR 1886 * BRG (ROR) | BRG RBG GRB GBR RGB BGR 1887 * GBR (ROL) | RGB BGR RBG BRG GBR GRB 1888 */ 1889 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state) 1890 { 1891 #define _SEL(a,b,c,d,e,f) { \ 1892 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \ 1893 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f } 1894 #define _BUS(x) [ADV7604_BUS_ORDER_##x] 1895 1896 static const unsigned int op_ch_sel[6][6] = { 1897 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG), 1898 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG), 1899 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB), 1900 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR), 1901 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR), 1902 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB), 1903 }; 1904 1905 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5]; 1906 } 1907 1908 static void adv76xx_setup_format(struct adv76xx_state *state) 1909 { 1910 struct v4l2_subdev *sd = &state->sd; 1911 1912 io_write_clr_set(sd, 0x02, 0x02, 1913 state->format->rgb_out ? ADV76XX_RGB_OUT : 0); 1914 io_write(sd, 0x03, state->format->op_format_sel | 1915 state->pdata.op_format_mode_sel); 1916 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state)); 1917 io_write_clr_set(sd, 0x05, 0x01, 1918 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0); 1919 set_rgb_quantization_range(sd); 1920 } 1921 1922 static int adv76xx_get_format(struct v4l2_subdev *sd, 1923 struct v4l2_subdev_state *sd_state, 1924 struct v4l2_subdev_format *format) 1925 { 1926 struct adv76xx_state *state = to_state(sd); 1927 1928 if (format->pad != state->source_pad) 1929 return -EINVAL; 1930 1931 adv76xx_fill_format(state, &format->format); 1932 1933 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1934 struct v4l2_mbus_framefmt *fmt; 1935 1936 fmt = v4l2_subdev_state_get_format(sd_state, format->pad); 1937 format->format.code = fmt->code; 1938 } else { 1939 format->format.code = state->format->code; 1940 } 1941 1942 return 0; 1943 } 1944 1945 static int adv76xx_get_selection(struct v4l2_subdev *sd, 1946 struct v4l2_subdev_state *sd_state, 1947 struct v4l2_subdev_selection *sel) 1948 { 1949 struct adv76xx_state *state = to_state(sd); 1950 1951 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE) 1952 return -EINVAL; 1953 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */ 1954 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS) 1955 return -EINVAL; 1956 1957 sel->r.left = 0; 1958 sel->r.top = 0; 1959 sel->r.width = state->timings.bt.width; 1960 sel->r.height = state->timings.bt.height; 1961 1962 return 0; 1963 } 1964 1965 static int adv76xx_set_format(struct v4l2_subdev *sd, 1966 struct v4l2_subdev_state *sd_state, 1967 struct v4l2_subdev_format *format) 1968 { 1969 struct adv76xx_state *state = to_state(sd); 1970 const struct adv76xx_format_info *info; 1971 1972 if (format->pad != state->source_pad) 1973 return -EINVAL; 1974 1975 info = adv76xx_format_info(state, format->format.code); 1976 if (!info) 1977 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 1978 1979 adv76xx_fill_format(state, &format->format); 1980 format->format.code = info->code; 1981 1982 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1983 struct v4l2_mbus_framefmt *fmt; 1984 1985 fmt = v4l2_subdev_state_get_format(sd_state, format->pad); 1986 fmt->code = format->format.code; 1987 } else { 1988 state->format = info; 1989 adv76xx_setup_format(state); 1990 } 1991 1992 return 0; 1993 } 1994 1995 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 1996 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status) 1997 { 1998 struct adv76xx_state *state = to_state(sd); 1999 2000 if ((cec_read(sd, 0x11) & 0x01) == 0) { 2001 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__); 2002 return; 2003 } 2004 2005 if (tx_raw_status & 0x02) { 2006 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n", 2007 __func__); 2008 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST, 2009 1, 0, 0, 0); 2010 return; 2011 } 2012 if (tx_raw_status & 0x04) { 2013 u8 status; 2014 u8 nack_cnt; 2015 u8 low_drive_cnt; 2016 2017 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__); 2018 /* 2019 * We set this status bit since this hardware performs 2020 * retransmissions. 2021 */ 2022 status = CEC_TX_STATUS_MAX_RETRIES; 2023 nack_cnt = cec_read(sd, 0x14) & 0xf; 2024 if (nack_cnt) 2025 status |= CEC_TX_STATUS_NACK; 2026 low_drive_cnt = cec_read(sd, 0x14) >> 4; 2027 if (low_drive_cnt) 2028 status |= CEC_TX_STATUS_LOW_DRIVE; 2029 cec_transmit_done(state->cec_adap, status, 2030 0, nack_cnt, low_drive_cnt, 0); 2031 return; 2032 } 2033 if (tx_raw_status & 0x01) { 2034 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__); 2035 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); 2036 return; 2037 } 2038 } 2039 2040 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled) 2041 { 2042 struct adv76xx_state *state = to_state(sd); 2043 const struct adv76xx_chip_info *info = state->info; 2044 u8 cec_irq; 2045 2046 /* cec controller */ 2047 cec_irq = io_read(sd, info->cec_irq_status) & 0x0f; 2048 if (!cec_irq) 2049 return; 2050 2051 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq); 2052 adv76xx_cec_tx_raw_status(sd, cec_irq); 2053 if (cec_irq & 0x08) { 2054 struct cec_msg msg; 2055 2056 msg.len = cec_read(sd, 0x25) & 0x1f; 2057 if (msg.len > CEC_MAX_MSG_SIZE) 2058 msg.len = CEC_MAX_MSG_SIZE; 2059 2060 if (msg.len) { 2061 u8 i; 2062 2063 for (i = 0; i < msg.len; i++) 2064 msg.msg[i] = cec_read(sd, i + 0x15); 2065 cec_write(sd, info->cec_rx_enable, 2066 info->cec_rx_enable_mask); /* re-enable rx */ 2067 cec_received_msg(state->cec_adap, &msg); 2068 } 2069 } 2070 2071 if (info->cec_irq_swap) { 2072 /* 2073 * Note: the bit order is swapped between 0x4d and 0x4e 2074 * on adv7604 2075 */ 2076 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) | 2077 ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3); 2078 } 2079 io_write(sd, info->cec_irq_status + 1, cec_irq); 2080 2081 if (handled) 2082 *handled = true; 2083 } 2084 2085 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable) 2086 { 2087 struct adv76xx_state *state = cec_get_drvdata(adap); 2088 const struct adv76xx_chip_info *info = state->info; 2089 struct v4l2_subdev *sd = &state->sd; 2090 2091 if (!state->cec_enabled_adap && enable) { 2092 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */ 2093 cec_write(sd, 0x2c, 0x01); /* cec soft reset */ 2094 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */ 2095 /* enabled irqs: */ 2096 /* tx: ready */ 2097 /* tx: arbitration lost */ 2098 /* tx: retry timeout */ 2099 /* rx: ready */ 2100 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f); 2101 cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask); 2102 } else if (state->cec_enabled_adap && !enable) { 2103 /* disable cec interrupts */ 2104 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00); 2105 /* disable address mask 1-3 */ 2106 cec_write_clr_set(sd, 0x27, 0x70, 0x00); 2107 /* power down cec section */ 2108 cec_write_clr_set(sd, 0x2a, 0x01, 0x00); 2109 state->cec_valid_addrs = 0; 2110 } 2111 state->cec_enabled_adap = enable; 2112 adv76xx_s_detect_tx_5v_ctrl(sd); 2113 return 0; 2114 } 2115 2116 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr) 2117 { 2118 struct adv76xx_state *state = cec_get_drvdata(adap); 2119 struct v4l2_subdev *sd = &state->sd; 2120 unsigned int i, free_idx = ADV76XX_MAX_ADDRS; 2121 2122 if (!state->cec_enabled_adap) 2123 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO; 2124 2125 if (addr == CEC_LOG_ADDR_INVALID) { 2126 cec_write_clr_set(sd, 0x27, 0x70, 0); 2127 state->cec_valid_addrs = 0; 2128 return 0; 2129 } 2130 2131 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { 2132 bool is_valid = state->cec_valid_addrs & (1 << i); 2133 2134 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid) 2135 free_idx = i; 2136 if (is_valid && state->cec_addr[i] == addr) 2137 return 0; 2138 } 2139 if (i == ADV76XX_MAX_ADDRS) { 2140 i = free_idx; 2141 if (i == ADV76XX_MAX_ADDRS) 2142 return -ENXIO; 2143 } 2144 state->cec_addr[i] = addr; 2145 state->cec_valid_addrs |= 1 << i; 2146 2147 switch (i) { 2148 case 0: 2149 /* enable address mask 0 */ 2150 cec_write_clr_set(sd, 0x27, 0x10, 0x10); 2151 /* set address for mask 0 */ 2152 cec_write_clr_set(sd, 0x28, 0x0f, addr); 2153 break; 2154 case 1: 2155 /* enable address mask 1 */ 2156 cec_write_clr_set(sd, 0x27, 0x20, 0x20); 2157 /* set address for mask 1 */ 2158 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4); 2159 break; 2160 case 2: 2161 /* enable address mask 2 */ 2162 cec_write_clr_set(sd, 0x27, 0x40, 0x40); 2163 /* set address for mask 1 */ 2164 cec_write_clr_set(sd, 0x29, 0x0f, addr); 2165 break; 2166 } 2167 return 0; 2168 } 2169 2170 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, 2171 u32 signal_free_time, struct cec_msg *msg) 2172 { 2173 struct adv76xx_state *state = cec_get_drvdata(adap); 2174 struct v4l2_subdev *sd = &state->sd; 2175 u8 len = msg->len; 2176 unsigned int i; 2177 2178 /* 2179 * The number of retries is the number of attempts - 1, but retry 2180 * at least once. It's not clear if a value of 0 is allowed, so 2181 * let's do at least one retry. 2182 */ 2183 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4); 2184 2185 if (len > 16) { 2186 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len); 2187 return -EINVAL; 2188 } 2189 2190 /* write data */ 2191 for (i = 0; i < len; i++) 2192 cec_write(sd, i, msg->msg[i]); 2193 2194 /* set length (data + header) */ 2195 cec_write(sd, 0x10, len); 2196 /* start transmit, enable tx */ 2197 cec_write(sd, 0x11, 0x01); 2198 return 0; 2199 } 2200 2201 static const struct cec_adap_ops adv76xx_cec_adap_ops = { 2202 .adap_enable = adv76xx_cec_adap_enable, 2203 .adap_log_addr = adv76xx_cec_adap_log_addr, 2204 .adap_transmit = adv76xx_cec_adap_transmit, 2205 }; 2206 #endif 2207 2208 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled) 2209 { 2210 struct adv76xx_state *state = to_state(sd); 2211 const struct adv76xx_chip_info *info = state->info; 2212 const u8 irq_reg_0x43 = io_read(sd, 0x43); 2213 const u8 irq_reg_0x6b = io_read(sd, 0x6b); 2214 const u8 irq_reg_0x70 = io_read(sd, 0x70); 2215 u8 fmt_change_digital; 2216 u8 fmt_change; 2217 u8 tx_5v; 2218 2219 if (irq_reg_0x43) 2220 io_write(sd, 0x44, irq_reg_0x43); 2221 if (irq_reg_0x70) 2222 io_write(sd, 0x71, irq_reg_0x70); 2223 if (irq_reg_0x6b) 2224 io_write(sd, 0x6c, irq_reg_0x6b); 2225 2226 v4l2_dbg(2, debug, sd, "%s: ", __func__); 2227 2228 /* format change */ 2229 fmt_change = irq_reg_0x43 & 0x98; 2230 fmt_change_digital = is_digital_input(sd) 2231 ? irq_reg_0x6b & info->fmt_change_digital_mask 2232 : 0; 2233 2234 if (fmt_change || fmt_change_digital) { 2235 v4l2_dbg(1, debug, sd, 2236 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n", 2237 __func__, fmt_change, fmt_change_digital); 2238 2239 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 2240 2241 if (handled) 2242 *handled = true; 2243 } 2244 /* HDMI/DVI mode */ 2245 if (irq_reg_0x6b & 0x01) { 2246 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, 2247 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI"); 2248 set_rgb_quantization_range(sd); 2249 if (handled) 2250 *handled = true; 2251 } 2252 2253 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 2254 /* cec */ 2255 adv76xx_cec_isr(sd, handled); 2256 #endif 2257 2258 /* tx 5v detect */ 2259 tx_5v = irq_reg_0x70 & info->cable_det_mask; 2260 if (tx_5v) { 2261 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v); 2262 adv76xx_s_detect_tx_5v_ctrl(sd); 2263 if (handled) 2264 *handled = true; 2265 } 2266 return 0; 2267 } 2268 2269 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id) 2270 { 2271 struct adv76xx_state *state = dev_id; 2272 bool handled = false; 2273 2274 adv76xx_isr(&state->sd, 0, &handled); 2275 2276 return handled ? IRQ_HANDLED : IRQ_NONE; 2277 } 2278 2279 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2280 { 2281 struct adv76xx_state *state = to_state(sd); 2282 u8 *data = NULL; 2283 2284 memset(edid->reserved, 0, sizeof(edid->reserved)); 2285 2286 switch (edid->pad) { 2287 case ADV76XX_PAD_HDMI_PORT_A: 2288 case ADV7604_PAD_HDMI_PORT_B: 2289 case ADV7604_PAD_HDMI_PORT_C: 2290 case ADV7604_PAD_HDMI_PORT_D: 2291 if (state->edid.present & (1 << edid->pad)) 2292 data = state->edid.edid; 2293 break; 2294 default: 2295 return -EINVAL; 2296 } 2297 2298 if (edid->start_block == 0 && edid->blocks == 0) { 2299 edid->blocks = data ? state->edid.blocks : 0; 2300 return 0; 2301 } 2302 2303 if (!data) 2304 return -ENODATA; 2305 2306 if (edid->start_block >= state->edid.blocks) 2307 return -EINVAL; 2308 2309 if (edid->start_block + edid->blocks > state->edid.blocks) 2310 edid->blocks = state->edid.blocks - edid->start_block; 2311 2312 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); 2313 2314 return 0; 2315 } 2316 2317 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2318 { 2319 struct adv76xx_state *state = to_state(sd); 2320 const struct adv76xx_chip_info *info = state->info; 2321 unsigned int spa_loc; 2322 u16 pa, parent_pa; 2323 int err; 2324 int i; 2325 2326 memset(edid->reserved, 0, sizeof(edid->reserved)); 2327 2328 if (edid->pad > ADV7604_PAD_HDMI_PORT_D) 2329 return -EINVAL; 2330 if (edid->start_block != 0) 2331 return -EINVAL; 2332 if (edid->blocks == 0) { 2333 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2334 state->edid.present &= ~(1 << edid->pad); 2335 adv76xx_set_hpd(state, state->edid.present); 2336 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2337 2338 /* Fall back to a 16:9 aspect ratio */ 2339 state->aspect_ratio.numerator = 16; 2340 state->aspect_ratio.denominator = 9; 2341 2342 if (!state->edid.present) { 2343 state->edid.blocks = 0; 2344 cec_phys_addr_invalidate(state->cec_adap); 2345 } 2346 2347 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n", 2348 __func__, edid->pad, state->edid.present); 2349 return 0; 2350 } 2351 if (edid->blocks > ADV76XX_MAX_EDID_BLOCKS) { 2352 edid->blocks = ADV76XX_MAX_EDID_BLOCKS; 2353 return -E2BIG; 2354 } 2355 2356 pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc); 2357 err = v4l2_phys_addr_validate(pa, &parent_pa, NULL); 2358 if (err) 2359 return err; 2360 2361 if (!spa_loc) { 2362 /* 2363 * There is no SPA, so just set spa_loc to 128 and pa to whatever 2364 * data is there. 2365 */ 2366 spa_loc = 128; 2367 pa = (edid->edid[spa_loc] << 8) | edid->edid[spa_loc + 1]; 2368 } 2369 2370 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n", 2371 __func__, edid->pad, state->edid.present); 2372 2373 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2374 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 2375 adv76xx_set_hpd(state, 0); 2376 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00); 2377 2378 switch (edid->pad) { 2379 case ADV76XX_PAD_HDMI_PORT_A: 2380 state->spa_port_a[0] = pa >> 8; 2381 state->spa_port_a[1] = pa & 0xff; 2382 break; 2383 case ADV7604_PAD_HDMI_PORT_B: 2384 rep_write(sd, info->edid_spa_port_b_reg, pa >> 8); 2385 rep_write(sd, info->edid_spa_port_b_reg + 1, pa & 0xff); 2386 break; 2387 case ADV7604_PAD_HDMI_PORT_C: 2388 rep_write(sd, info->edid_spa_port_b_reg + 2, pa >> 8); 2389 rep_write(sd, info->edid_spa_port_b_reg + 3, pa & 0xff); 2390 break; 2391 case ADV7604_PAD_HDMI_PORT_D: 2392 rep_write(sd, info->edid_spa_port_b_reg + 4, pa >> 8); 2393 rep_write(sd, info->edid_spa_port_b_reg + 5, pa & 0xff); 2394 break; 2395 default: 2396 return -EINVAL; 2397 } 2398 2399 if (info->edid_spa_loc_reg) { 2400 u8 mask = info->edid_spa_loc_msb_mask; 2401 2402 rep_write(sd, info->edid_spa_loc_reg, spa_loc & 0xff); 2403 rep_write_clr_set(sd, info->edid_spa_loc_reg + 1, 2404 mask, (spa_loc & 0x100) ? mask : 0); 2405 } 2406 2407 edid->edid[spa_loc] = state->spa_port_a[0]; 2408 edid->edid[spa_loc + 1] = state->spa_port_a[1]; 2409 2410 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks); 2411 state->edid.blocks = edid->blocks; 2412 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15], 2413 edid->edid[0x16]); 2414 state->edid.present |= 1 << edid->pad; 2415 2416 rep_write_clr_set(sd, info->edid_segment_reg, 2417 info->edid_segment_mask, 0); 2418 err = edid_write_block(sd, 128 * min(edid->blocks, 2U), state->edid.edid); 2419 if (err < 0) { 2420 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad); 2421 return err; 2422 } 2423 if (edid->blocks > 2) { 2424 rep_write_clr_set(sd, info->edid_segment_reg, 2425 info->edid_segment_mask, 2426 info->edid_segment_mask); 2427 err = edid_write_block(sd, 128 * (edid->blocks - 2), 2428 state->edid.edid + 256); 2429 if (err < 0) { 2430 v4l2_err(sd, "error %d writing edid pad %d\n", 2431 err, edid->pad); 2432 return err; 2433 } 2434 } 2435 2436 /* adv76xx calculates the checksums and enables I2C access to internal 2437 EDID RAM from DDC port. */ 2438 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2439 2440 for (i = 0; i < 1000; i++) { 2441 if (rep_read(sd, info->edid_status_reg) & state->edid.present) 2442 break; 2443 mdelay(1); 2444 } 2445 if (i == 1000) { 2446 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present); 2447 return -EIO; 2448 } 2449 cec_s_phys_addr(state->cec_adap, parent_pa, false); 2450 2451 /* enable hotplug after 100 ms */ 2452 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10); 2453 return 0; 2454 } 2455 2456 /*********** avi info frame CEA-861-E **************/ 2457 2458 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = { 2459 { "AVI", 0x01, 0xe0, 0x00 }, 2460 { "Audio", 0x02, 0xe3, 0x1c }, 2461 { "SDP", 0x04, 0xe6, 0x2a }, 2462 { "Vendor", 0x10, 0xec, 0x54 } 2463 }; 2464 2465 static int adv76xx_read_infoframe_buf(struct v4l2_subdev *sd, int index, 2466 u8 buf[V4L2_DEBUGFS_IF_MAX_LEN]) 2467 { 2468 u8 len; 2469 int i; 2470 2471 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) { 2472 v4l2_info(sd, "%s infoframe not received\n", 2473 adv76xx_cri[index].desc); 2474 return -ENOENT; 2475 } 2476 2477 for (i = 0; i < 3; i++) 2478 buf[i] = infoframe_read(sd, adv76xx_cri[index].head_addr + i); 2479 2480 len = buf[2] + 1; 2481 2482 if (len + 3 > V4L2_DEBUGFS_IF_MAX_LEN) { 2483 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, 2484 adv76xx_cri[index].desc, len); 2485 return -ENOENT; 2486 } 2487 2488 for (i = 0; i < len; i++) 2489 buf[i + 3] = infoframe_read(sd, 2490 adv76xx_cri[index].payload_addr + i); 2491 return len + 3; 2492 } 2493 2494 static void adv76xx_log_infoframes(struct v4l2_subdev *sd) 2495 { 2496 int i; 2497 2498 if (!is_hdmi(sd)) { 2499 v4l2_info(sd, "receive DVI-D signal, no infoframes\n"); 2500 return; 2501 } 2502 2503 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) { 2504 struct i2c_client *client = v4l2_get_subdevdata(sd); 2505 u8 buffer[V4L2_DEBUGFS_IF_MAX_LEN] = {}; 2506 union hdmi_infoframe frame; 2507 int len; 2508 2509 len = adv76xx_read_infoframe_buf(sd, i, buffer); 2510 if (len < 0) 2511 continue; 2512 2513 if (hdmi_infoframe_unpack(&frame, buffer, len) < 0) 2514 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", 2515 __func__, adv76xx_cri[i].desc); 2516 else 2517 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame); 2518 } 2519 } 2520 2521 static int adv76xx_log_status(struct v4l2_subdev *sd) 2522 { 2523 struct adv76xx_state *state = to_state(sd); 2524 const struct adv76xx_chip_info *info = state->info; 2525 struct v4l2_dv_timings timings; 2526 struct stdi_readback stdi; 2527 int ret; 2528 u8 reg_io_0x02; 2529 u8 edid_enabled; 2530 u8 cable_det; 2531 static const char * const csc_coeff_sel_rb[16] = { 2532 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", 2533 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", 2534 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", 2535 "reserved", "reserved", "reserved", "reserved", "manual" 2536 }; 2537 static const char * const input_color_space_txt[16] = { 2538 "RGB limited range (16-235)", "RGB full range (0-255)", 2539 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2540 "xvYCC Bt.601", "xvYCC Bt.709", 2541 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2542 "invalid", "invalid", "invalid", "invalid", "invalid", 2543 "invalid", "invalid", "automatic" 2544 }; 2545 static const char * const hdmi_color_space_txt[16] = { 2546 "RGB limited range (16-235)", "RGB full range (0-255)", 2547 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2548 "xvYCC Bt.601", "xvYCC Bt.709", 2549 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2550 "sYCC", "opYCC 601", "opRGB", "invalid", "invalid", 2551 "invalid", "invalid", "invalid" 2552 }; 2553 static const char * const rgb_quantization_range_txt[] = { 2554 "Automatic", 2555 "RGB limited range (16-235)", 2556 "RGB full range (0-255)", 2557 }; 2558 static const char * const deep_color_mode_txt[4] = { 2559 "8-bits per channel", 2560 "10-bits per channel", 2561 "12-bits per channel", 2562 "16-bits per channel (not supported)" 2563 }; 2564 2565 v4l2_info(sd, "-----Chip status-----\n"); 2566 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); 2567 edid_enabled = rep_read(sd, info->edid_status_reg); 2568 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n", 2569 ((edid_enabled & 0x01) ? "Yes" : "No"), 2570 ((edid_enabled & 0x02) ? "Yes" : "No"), 2571 ((edid_enabled & 0x04) ? "Yes" : "No"), 2572 ((edid_enabled & 0x08) ? "Yes" : "No")); 2573 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ? 2574 "enabled" : "disabled"); 2575 if (state->cec_enabled_adap) { 2576 int i; 2577 2578 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { 2579 bool is_valid = state->cec_valid_addrs & (1 << i); 2580 2581 if (is_valid) 2582 v4l2_info(sd, "CEC Logical Address: 0x%x\n", 2583 state->cec_addr[i]); 2584 } 2585 } 2586 2587 v4l2_info(sd, "-----Signal status-----\n"); 2588 cable_det = info->read_cable_det(sd); 2589 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n", 2590 ((cable_det & 0x01) ? "Yes" : "No"), 2591 ((cable_det & 0x02) ? "Yes" : "No"), 2592 ((cable_det & 0x04) ? "Yes" : "No"), 2593 ((cable_det & 0x08) ? "Yes" : "No")); 2594 v4l2_info(sd, "TMDS signal detected: %s\n", 2595 no_signal_tmds(sd) ? "false" : "true"); 2596 v4l2_info(sd, "TMDS signal locked: %s\n", 2597 no_lock_tmds(sd) ? "false" : "true"); 2598 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true"); 2599 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true"); 2600 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true"); 2601 v4l2_info(sd, "CP free run: %s\n", 2602 (in_free_run(sd)) ? "on" : "off"); 2603 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", 2604 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, 2605 (io_read(sd, 0x01) & 0x70) >> 4); 2606 2607 v4l2_info(sd, "-----Video Timings-----\n"); 2608 if (read_stdi(sd, &stdi)) 2609 v4l2_info(sd, "STDI: not locked\n"); 2610 else 2611 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n", 2612 stdi.lcf, stdi.bl, stdi.lcvs, 2613 stdi.interlaced ? "interlaced" : "progressive", 2614 stdi.hs_pol, stdi.vs_pol); 2615 if (adv76xx_query_dv_timings(sd, 0, &timings)) 2616 v4l2_info(sd, "No video detected\n"); 2617 else 2618 v4l2_print_dv_timings(sd->name, "Detected format: ", 2619 &timings, true); 2620 v4l2_print_dv_timings(sd->name, "Configured format: ", 2621 &state->timings, true); 2622 2623 if (no_signal(sd)) 2624 return 0; 2625 2626 v4l2_info(sd, "-----Color space-----\n"); 2627 v4l2_info(sd, "RGB quantization range ctrl: %s\n", 2628 rgb_quantization_range_txt[state->rgb_quantization_range]); 2629 2630 ret = io_read(sd, 0x02); 2631 if (ret < 0) { 2632 v4l2_info(sd, "Can't read Input/Output color space\n"); 2633 } else { 2634 reg_io_0x02 = ret; 2635 2636 v4l2_info(sd, "Input color space: %s\n", 2637 input_color_space_txt[reg_io_0x02 >> 4]); 2638 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n", 2639 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", 2640 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ? 2641 "(16-235)" : "(0-255)", 2642 (reg_io_0x02 & 0x08) ? "enabled" : "disabled"); 2643 } 2644 v4l2_info(sd, "Color space conversion: %s\n", 2645 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]); 2646 2647 if (!is_digital_input(sd)) 2648 return 0; 2649 2650 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); 2651 v4l2_info(sd, "Digital video port selected: %c\n", 2652 (hdmi_read(sd, 0x00) & 0x03) + 'A'); 2653 v4l2_info(sd, "HDCP encrypted content: %s\n", 2654 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); 2655 v4l2_info(sd, "HDCP keys read: %s%s\n", 2656 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", 2657 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); 2658 if (is_hdmi(sd)) { 2659 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; 2660 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; 2661 bool audio_mute = io_read(sd, 0x65) & 0x40; 2662 2663 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", 2664 audio_pll_locked ? "locked" : "not locked", 2665 audio_sample_packet_detect ? "detected" : "not detected", 2666 audio_mute ? "muted" : "enabled"); 2667 if (audio_pll_locked && audio_sample_packet_detect) { 2668 v4l2_info(sd, "Audio format: %s\n", 2669 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo"); 2670 } 2671 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + 2672 (hdmi_read(sd, 0x5c) << 8) + 2673 (hdmi_read(sd, 0x5d) & 0xf0)); 2674 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + 2675 (hdmi_read(sd, 0x5e) << 8) + 2676 hdmi_read(sd, 0x5f)); 2677 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); 2678 2679 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]); 2680 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]); 2681 2682 adv76xx_log_infoframes(sd); 2683 } 2684 2685 return 0; 2686 } 2687 2688 static int adv76xx_subscribe_event(struct v4l2_subdev *sd, 2689 struct v4l2_fh *fh, 2690 struct v4l2_event_subscription *sub) 2691 { 2692 switch (sub->type) { 2693 case V4L2_EVENT_SOURCE_CHANGE: 2694 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); 2695 case V4L2_EVENT_CTRL: 2696 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); 2697 default: 2698 return -EINVAL; 2699 } 2700 } 2701 2702 static ssize_t 2703 adv76xx_debugfs_if_read(u32 type, void *priv, struct file *filp, 2704 char __user *ubuf, size_t count, loff_t *ppos) 2705 { 2706 u8 buf[V4L2_DEBUGFS_IF_MAX_LEN] = {}; 2707 struct v4l2_subdev *sd = priv; 2708 int index; 2709 int len; 2710 2711 if (!is_hdmi(sd)) 2712 return 0; 2713 2714 switch (type) { 2715 case V4L2_DEBUGFS_IF_AVI: 2716 index = 0; 2717 break; 2718 case V4L2_DEBUGFS_IF_AUDIO: 2719 index = 1; 2720 break; 2721 case V4L2_DEBUGFS_IF_SPD: 2722 index = 2; 2723 break; 2724 case V4L2_DEBUGFS_IF_HDMI: 2725 index = 3; 2726 break; 2727 default: 2728 return 0; 2729 } 2730 2731 len = adv76xx_read_infoframe_buf(sd, index, buf); 2732 if (len > 0) 2733 len = simple_read_from_buffer(ubuf, count, ppos, buf, len); 2734 return len < 0 ? 0 : len; 2735 } 2736 2737 static int adv76xx_registered(struct v4l2_subdev *sd) 2738 { 2739 struct adv76xx_state *state = to_state(sd); 2740 struct i2c_client *client = v4l2_get_subdevdata(sd); 2741 int err; 2742 2743 err = cec_register_adapter(state->cec_adap, &client->dev); 2744 if (err) { 2745 cec_delete_adapter(state->cec_adap); 2746 return err; 2747 } 2748 state->debugfs_dir = debugfs_create_dir(sd->name, v4l2_debugfs_root()); 2749 state->infoframes = v4l2_debugfs_if_alloc(state->debugfs_dir, 2750 V4L2_DEBUGFS_IF_AVI | V4L2_DEBUGFS_IF_AUDIO | 2751 V4L2_DEBUGFS_IF_SPD | V4L2_DEBUGFS_IF_HDMI, sd, 2752 adv76xx_debugfs_if_read); 2753 return 0; 2754 } 2755 2756 static void adv76xx_unregistered(struct v4l2_subdev *sd) 2757 { 2758 struct adv76xx_state *state = to_state(sd); 2759 2760 cec_unregister_adapter(state->cec_adap); 2761 v4l2_debugfs_if_free(state->infoframes); 2762 state->infoframes = NULL; 2763 debugfs_remove_recursive(state->debugfs_dir); 2764 state->debugfs_dir = NULL; 2765 } 2766 2767 /* ----------------------------------------------------------------------- */ 2768 2769 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = { 2770 .s_ctrl = adv76xx_s_ctrl, 2771 .g_volatile_ctrl = adv76xx_g_volatile_ctrl, 2772 }; 2773 2774 static const struct v4l2_subdev_core_ops adv76xx_core_ops = { 2775 .log_status = adv76xx_log_status, 2776 .interrupt_service_routine = adv76xx_isr, 2777 .subscribe_event = adv76xx_subscribe_event, 2778 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2779 #ifdef CONFIG_VIDEO_ADV_DEBUG 2780 .g_register = adv76xx_g_register, 2781 .s_register = adv76xx_s_register, 2782 #endif 2783 }; 2784 2785 static const struct v4l2_subdev_video_ops adv76xx_video_ops = { 2786 .s_routing = adv76xx_s_routing, 2787 .g_input_status = adv76xx_g_input_status, 2788 }; 2789 2790 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = { 2791 .enum_mbus_code = adv76xx_enum_mbus_code, 2792 .get_selection = adv76xx_get_selection, 2793 .get_fmt = adv76xx_get_format, 2794 .set_fmt = adv76xx_set_format, 2795 .get_edid = adv76xx_get_edid, 2796 .set_edid = adv76xx_set_edid, 2797 .s_dv_timings = adv76xx_s_dv_timings, 2798 .g_dv_timings = adv76xx_g_dv_timings, 2799 .query_dv_timings = adv76xx_query_dv_timings, 2800 .dv_timings_cap = adv76xx_dv_timings_cap, 2801 .enum_dv_timings = adv76xx_enum_dv_timings, 2802 }; 2803 2804 static const struct v4l2_subdev_ops adv76xx_ops = { 2805 .core = &adv76xx_core_ops, 2806 .video = &adv76xx_video_ops, 2807 .pad = &adv76xx_pad_ops, 2808 }; 2809 2810 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = { 2811 .registered = adv76xx_registered, 2812 .unregistered = adv76xx_unregistered, 2813 }; 2814 2815 /* -------------------------- custom ctrls ---------------------------------- */ 2816 2817 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = { 2818 .ops = &adv76xx_ctrl_ops, 2819 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, 2820 .name = "Analog Sampling Phase", 2821 .type = V4L2_CTRL_TYPE_INTEGER, 2822 .min = 0, 2823 .max = 0x1f, 2824 .step = 1, 2825 .def = 0, 2826 }; 2827 2828 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = { 2829 .ops = &adv76xx_ctrl_ops, 2830 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, 2831 .name = "Free Running Color, Manual", 2832 .type = V4L2_CTRL_TYPE_BOOLEAN, 2833 .min = false, 2834 .max = true, 2835 .step = 1, 2836 .def = false, 2837 }; 2838 2839 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = { 2840 .ops = &adv76xx_ctrl_ops, 2841 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, 2842 .name = "Free Running Color", 2843 .type = V4L2_CTRL_TYPE_INTEGER, 2844 .min = 0x0, 2845 .max = 0xffffff, 2846 .step = 0x1, 2847 .def = 0x0, 2848 }; 2849 2850 /* ----------------------------------------------------------------------- */ 2851 2852 struct adv76xx_register_map { 2853 const char *name; 2854 u8 default_addr; 2855 }; 2856 2857 static const struct adv76xx_register_map adv76xx_default_addresses[] = { 2858 [ADV76XX_PAGE_IO] = { "main", 0x4c }, 2859 [ADV7604_PAGE_AVLINK] = { "avlink", 0x42 }, 2860 [ADV76XX_PAGE_CEC] = { "cec", 0x40 }, 2861 [ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e }, 2862 [ADV7604_PAGE_ESDP] = { "esdp", 0x38 }, 2863 [ADV7604_PAGE_DPP] = { "dpp", 0x3c }, 2864 [ADV76XX_PAGE_AFE] = { "afe", 0x26 }, 2865 [ADV76XX_PAGE_REP] = { "rep", 0x32 }, 2866 [ADV76XX_PAGE_EDID] = { "edid", 0x36 }, 2867 [ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 }, 2868 [ADV76XX_PAGE_TEST] = { "test", 0x30 }, 2869 [ADV76XX_PAGE_CP] = { "cp", 0x22 }, 2870 [ADV7604_PAGE_VDP] = { "vdp", 0x24 }, 2871 }; 2872 2873 static int adv76xx_core_init(struct v4l2_subdev *sd) 2874 { 2875 struct adv76xx_state *state = to_state(sd); 2876 const struct adv76xx_chip_info *info = state->info; 2877 struct adv76xx_platform_data *pdata = &state->pdata; 2878 2879 hdmi_write(sd, 0x48, 2880 (pdata->disable_pwrdnb ? 0x80 : 0) | 2881 (pdata->disable_cable_det_rst ? 0x40 : 0)); 2882 2883 disable_input(sd); 2884 2885 if (pdata->default_input >= 0 && 2886 pdata->default_input < state->source_pad) { 2887 state->selected_input = pdata->default_input; 2888 select_input(sd); 2889 enable_input(sd); 2890 } 2891 2892 /* power */ 2893 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ 2894 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */ 2895 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */ 2896 2897 /* HPD */ 2898 if (info->type != ADV7604) { 2899 /* Set manual HPD values to 0 */ 2900 io_write_clr_set(sd, 0x20, 0xc0, 0); 2901 /* 2902 * Set HPA_DELAY to 200 ms and set automatic HPD control 2903 * to: internal EDID is active AND a cable is detected 2904 * AND the manual HPD control is set to 1. 2905 */ 2906 hdmi_write_clr_set(sd, 0x6c, 0xf6, 0x26); 2907 } 2908 2909 /* video format */ 2910 io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3); 2911 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 | 2912 pdata->insert_av_codes << 2 | 2913 pdata->replicate_av_codes << 1); 2914 adv76xx_setup_format(state); 2915 2916 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */ 2917 2918 /* VS, HS polarities */ 2919 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 | 2920 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol); 2921 2922 /* Adjust drive strength */ 2923 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 | 2924 pdata->dr_str_clk << 2 | 2925 pdata->dr_str_sync); 2926 2927 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */ 2928 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ 2929 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold - 2930 ADI recommended setting [REF_01, c. 2.3.3] */ 2931 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold - 2932 ADI recommended setting [REF_01, c. 2.3.3] */ 2933 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution 2934 for digital formats */ 2935 2936 /* HDMI audio */ 2937 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */ 2938 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */ 2939 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */ 2940 2941 /* TODO from platform data */ 2942 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ 2943 2944 if (adv76xx_has_afe(state)) { 2945 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ 2946 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4); 2947 } 2948 2949 /* interrupts */ 2950 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */ 2951 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */ 2952 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ 2953 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */ 2954 info->setup_irqs(sd); 2955 2956 return v4l2_ctrl_handler_setup(sd->ctrl_handler); 2957 } 2958 2959 static void adv7604_setup_irqs(struct v4l2_subdev *sd) 2960 { 2961 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */ 2962 } 2963 2964 static void adv7611_setup_irqs(struct v4l2_subdev *sd) 2965 { 2966 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */ 2967 } 2968 2969 static void adv7612_setup_irqs(struct v4l2_subdev *sd) 2970 { 2971 io_write(sd, 0x41, 0xd0); /* disable INT2 */ 2972 } 2973 2974 static void adv76xx_unregister_clients(struct adv76xx_state *state) 2975 { 2976 unsigned int i; 2977 2978 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) 2979 i2c_unregister_device(state->i2c_clients[i]); 2980 } 2981 2982 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd, 2983 unsigned int page) 2984 { 2985 struct i2c_client *client = v4l2_get_subdevdata(sd); 2986 struct adv76xx_state *state = to_state(sd); 2987 struct adv76xx_platform_data *pdata = &state->pdata; 2988 unsigned int io_reg = 0xf2 + page; 2989 struct i2c_client *new_client; 2990 2991 if (pdata && pdata->i2c_addresses[page]) 2992 new_client = i2c_new_dummy_device(client->adapter, 2993 pdata->i2c_addresses[page]); 2994 else 2995 new_client = i2c_new_ancillary_device(client, 2996 adv76xx_default_addresses[page].name, 2997 adv76xx_default_addresses[page].default_addr); 2998 2999 if (!IS_ERR(new_client)) 3000 io_write(sd, io_reg, new_client->addr << 1); 3001 3002 return new_client; 3003 } 3004 3005 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = { 3006 /* reset ADI recommended settings for HDMI: */ 3007 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 3008 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 3009 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 3010 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */ 3011 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */ 3012 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 3013 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */ 3014 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */ 3015 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 3016 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 3017 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */ 3018 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */ 3019 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */ 3020 3021 /* set ADI recommended settings for digitizer */ 3022 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 3023 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */ 3024 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */ 3025 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */ 3026 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */ 3027 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */ 3028 3029 { ADV76XX_REG_SEQ_TERM, 0 }, 3030 }; 3031 3032 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = { 3033 /* set ADI recommended settings for HDMI: */ 3034 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 3035 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */ 3036 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */ 3037 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */ 3038 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 3039 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */ 3040 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */ 3041 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 3042 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 3043 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */ 3044 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */ 3045 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */ 3046 3047 /* reset ADI recommended settings for digitizer */ 3048 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 3049 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */ 3050 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */ 3051 3052 { ADV76XX_REG_SEQ_TERM, 0 }, 3053 }; 3054 3055 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = { 3056 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */ 3057 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 3058 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 3059 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 3060 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 3061 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 3062 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 3063 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 3064 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 3065 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 3066 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 }, 3067 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e }, 3068 3069 { ADV76XX_REG_SEQ_TERM, 0 }, 3070 }; 3071 3072 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = { 3073 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 3074 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 3075 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 3076 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 3077 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 3078 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 3079 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 3080 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 3081 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 3082 { ADV76XX_REG_SEQ_TERM, 0 }, 3083 }; 3084 3085 static const struct adv76xx_chip_info adv76xx_chip_info[] = { 3086 [ADV7604] = { 3087 .type = ADV7604, 3088 .has_afe = true, 3089 .max_port = ADV7604_PAD_VGA_COMP, 3090 .num_dv_ports = 4, 3091 .edid_enable_reg = 0x77, 3092 .edid_status_reg = 0x7d, 3093 .edid_segment_reg = 0x77, 3094 .edid_segment_mask = 0x10, 3095 .edid_spa_loc_reg = 0x76, 3096 .edid_spa_loc_msb_mask = 0x40, 3097 .edid_spa_port_b_reg = 0x70, 3098 .lcf_reg = 0xb3, 3099 .tdms_lock_mask = 0xe0, 3100 .cable_det_mask = 0x1e, 3101 .fmt_change_digital_mask = 0xc1, 3102 .cp_csc = 0xfc, 3103 .cec_irq_status = 0x4d, 3104 .cec_rx_enable = 0x26, 3105 .cec_rx_enable_mask = 0x01, 3106 .cec_irq_swap = true, 3107 .formats = adv7604_formats, 3108 .nformats = ARRAY_SIZE(adv7604_formats), 3109 .set_termination = adv7604_set_termination, 3110 .setup_irqs = adv7604_setup_irqs, 3111 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock, 3112 .read_cable_det = adv7604_read_cable_det, 3113 .recommended_settings = { 3114 [0] = adv7604_recommended_settings_afe, 3115 [1] = adv7604_recommended_settings_hdmi, 3116 }, 3117 .num_recommended_settings = { 3118 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe), 3119 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi), 3120 }, 3121 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) | 3122 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | 3123 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) | 3124 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | 3125 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | 3126 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) | 3127 BIT(ADV7604_PAGE_VDP), 3128 .linewidth_mask = 0xfff, 3129 .field0_height_mask = 0xfff, 3130 .field1_height_mask = 0xfff, 3131 .hfrontporch_mask = 0x3ff, 3132 .hsync_mask = 0x3ff, 3133 .hbackporch_mask = 0x3ff, 3134 .field0_vfrontporch_mask = 0x1fff, 3135 .field0_vsync_mask = 0x1fff, 3136 .field0_vbackporch_mask = 0x1fff, 3137 .field1_vfrontporch_mask = 0x1fff, 3138 .field1_vsync_mask = 0x1fff, 3139 .field1_vbackporch_mask = 0x1fff, 3140 }, 3141 [ADV7611] = { 3142 .type = ADV7611, 3143 .has_afe = false, 3144 .max_port = ADV76XX_PAD_HDMI_PORT_A, 3145 .num_dv_ports = 1, 3146 .edid_enable_reg = 0x74, 3147 .edid_status_reg = 0x76, 3148 .edid_segment_reg = 0x7a, 3149 .edid_segment_mask = 0x01, 3150 .lcf_reg = 0xa3, 3151 .tdms_lock_mask = 0x43, 3152 .cable_det_mask = 0x01, 3153 .fmt_change_digital_mask = 0x03, 3154 .cp_csc = 0xf4, 3155 .cec_irq_status = 0x93, 3156 .cec_rx_enable = 0x2c, 3157 .cec_rx_enable_mask = 0x02, 3158 .formats = adv7611_formats, 3159 .nformats = ARRAY_SIZE(adv7611_formats), 3160 .set_termination = adv7611_set_termination, 3161 .setup_irqs = adv7611_setup_irqs, 3162 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 3163 .read_cable_det = adv7611_read_cable_det, 3164 .recommended_settings = { 3165 [1] = adv7611_recommended_settings_hdmi, 3166 }, 3167 .num_recommended_settings = { 3168 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi), 3169 }, 3170 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 3171 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 3172 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 3173 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 3174 .linewidth_mask = 0x1fff, 3175 .field0_height_mask = 0x1fff, 3176 .field1_height_mask = 0x1fff, 3177 .hfrontporch_mask = 0x1fff, 3178 .hsync_mask = 0x1fff, 3179 .hbackporch_mask = 0x1fff, 3180 .field0_vfrontporch_mask = 0x3fff, 3181 .field0_vsync_mask = 0x3fff, 3182 .field0_vbackporch_mask = 0x3fff, 3183 .field1_vfrontporch_mask = 0x3fff, 3184 .field1_vsync_mask = 0x3fff, 3185 .field1_vbackporch_mask = 0x3fff, 3186 }, 3187 [ADV7612] = { 3188 .type = ADV7612, 3189 .has_afe = false, 3190 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */ 3191 .num_dv_ports = 1, /* normally 2 */ 3192 .edid_enable_reg = 0x74, 3193 .edid_status_reg = 0x76, 3194 .edid_segment_reg = 0x7a, 3195 .edid_segment_mask = 0x01, 3196 .edid_spa_loc_reg = 0x70, 3197 .edid_spa_loc_msb_mask = 0x01, 3198 .edid_spa_port_b_reg = 0x52, 3199 .lcf_reg = 0xa3, 3200 .tdms_lock_mask = 0x43, 3201 .cable_det_mask = 0x01, 3202 .fmt_change_digital_mask = 0x03, 3203 .cp_csc = 0xf4, 3204 .cec_irq_status = 0x93, 3205 .cec_rx_enable = 0x2c, 3206 .cec_rx_enable_mask = 0x02, 3207 .formats = adv7612_formats, 3208 .nformats = ARRAY_SIZE(adv7612_formats), 3209 .set_termination = adv7611_set_termination, 3210 .setup_irqs = adv7612_setup_irqs, 3211 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 3212 .read_cable_det = adv7612_read_cable_det, 3213 .recommended_settings = { 3214 [1] = adv7612_recommended_settings_hdmi, 3215 }, 3216 .num_recommended_settings = { 3217 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi), 3218 }, 3219 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 3220 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 3221 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 3222 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 3223 .linewidth_mask = 0x1fff, 3224 .field0_height_mask = 0x1fff, 3225 .field1_height_mask = 0x1fff, 3226 .hfrontporch_mask = 0x1fff, 3227 .hsync_mask = 0x1fff, 3228 .hbackporch_mask = 0x1fff, 3229 .field0_vfrontporch_mask = 0x3fff, 3230 .field0_vsync_mask = 0x3fff, 3231 .field0_vbackporch_mask = 0x3fff, 3232 .field1_vfrontporch_mask = 0x3fff, 3233 .field1_vsync_mask = 0x3fff, 3234 .field1_vbackporch_mask = 0x3fff, 3235 }, 3236 }; 3237 3238 static const struct i2c_device_id adv76xx_i2c_id[] = { 3239 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] }, 3240 { "adv7610", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, 3241 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, 3242 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] }, 3243 { } 3244 }; 3245 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id); 3246 3247 static const struct of_device_id adv76xx_of_id[] __maybe_unused = { 3248 { .compatible = "adi,adv7610", .data = &adv76xx_chip_info[ADV7611] }, 3249 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] }, 3250 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] }, 3251 { } 3252 }; 3253 MODULE_DEVICE_TABLE(of, adv76xx_of_id); 3254 3255 static int adv76xx_parse_dt(struct adv76xx_state *state) 3256 { 3257 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 }; 3258 struct device_node *endpoint; 3259 struct device_node *np; 3260 unsigned int flags; 3261 int ret; 3262 u32 v; 3263 3264 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node; 3265 3266 /* FIXME: Parse the endpoint. */ 3267 endpoint = of_graph_get_endpoint_by_regs(np, -1, -1); 3268 if (!endpoint) 3269 return -EINVAL; 3270 3271 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg); 3272 of_node_put(endpoint); 3273 if (ret) 3274 return ret; 3275 3276 if (!of_property_read_u32(np, "default-input", &v)) 3277 state->pdata.default_input = v; 3278 else 3279 state->pdata.default_input = -1; 3280 3281 flags = bus_cfg.bus.parallel.flags; 3282 3283 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 3284 state->pdata.inv_hs_pol = 1; 3285 3286 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) 3287 state->pdata.inv_vs_pol = 1; 3288 3289 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 3290 state->pdata.inv_llc_pol = 1; 3291 3292 if (bus_cfg.bus_type == V4L2_MBUS_BT656) 3293 state->pdata.insert_av_codes = 1; 3294 3295 /* Disable the interrupt for now as no DT-based board uses it. */ 3296 state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH; 3297 3298 /* Hardcode the remaining platform data fields. */ 3299 state->pdata.disable_pwrdnb = 0; 3300 state->pdata.disable_cable_det_rst = 0; 3301 state->pdata.blank_data = 1; 3302 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0; 3303 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB; 3304 state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH; 3305 state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH; 3306 state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH; 3307 3308 return 0; 3309 } 3310 3311 static const struct regmap_config adv76xx_regmap_cnf[] = { 3312 { 3313 .name = "io", 3314 .reg_bits = 8, 3315 .val_bits = 8, 3316 3317 .max_register = 0xff, 3318 .cache_type = REGCACHE_NONE, 3319 }, 3320 { 3321 .name = "avlink", 3322 .reg_bits = 8, 3323 .val_bits = 8, 3324 3325 .max_register = 0xff, 3326 .cache_type = REGCACHE_NONE, 3327 }, 3328 { 3329 .name = "cec", 3330 .reg_bits = 8, 3331 .val_bits = 8, 3332 3333 .max_register = 0xff, 3334 .cache_type = REGCACHE_NONE, 3335 }, 3336 { 3337 .name = "infoframe", 3338 .reg_bits = 8, 3339 .val_bits = 8, 3340 3341 .max_register = 0xff, 3342 .cache_type = REGCACHE_NONE, 3343 }, 3344 { 3345 .name = "esdp", 3346 .reg_bits = 8, 3347 .val_bits = 8, 3348 3349 .max_register = 0xff, 3350 .cache_type = REGCACHE_NONE, 3351 }, 3352 { 3353 .name = "epp", 3354 .reg_bits = 8, 3355 .val_bits = 8, 3356 3357 .max_register = 0xff, 3358 .cache_type = REGCACHE_NONE, 3359 }, 3360 { 3361 .name = "afe", 3362 .reg_bits = 8, 3363 .val_bits = 8, 3364 3365 .max_register = 0xff, 3366 .cache_type = REGCACHE_NONE, 3367 }, 3368 { 3369 .name = "rep", 3370 .reg_bits = 8, 3371 .val_bits = 8, 3372 3373 .max_register = 0xff, 3374 .cache_type = REGCACHE_NONE, 3375 }, 3376 { 3377 .name = "edid", 3378 .reg_bits = 8, 3379 .val_bits = 8, 3380 3381 .max_register = 0xff, 3382 .cache_type = REGCACHE_NONE, 3383 }, 3384 3385 { 3386 .name = "hdmi", 3387 .reg_bits = 8, 3388 .val_bits = 8, 3389 3390 .max_register = 0xff, 3391 .cache_type = REGCACHE_NONE, 3392 }, 3393 { 3394 .name = "test", 3395 .reg_bits = 8, 3396 .val_bits = 8, 3397 3398 .max_register = 0xff, 3399 .cache_type = REGCACHE_NONE, 3400 }, 3401 { 3402 .name = "cp", 3403 .reg_bits = 8, 3404 .val_bits = 8, 3405 3406 .max_register = 0xff, 3407 .cache_type = REGCACHE_NONE, 3408 }, 3409 { 3410 .name = "vdp", 3411 .reg_bits = 8, 3412 .val_bits = 8, 3413 3414 .max_register = 0xff, 3415 .cache_type = REGCACHE_NONE, 3416 }, 3417 }; 3418 3419 static int configure_regmap(struct adv76xx_state *state, int region) 3420 { 3421 int err; 3422 3423 if (!state->i2c_clients[region]) 3424 return -ENODEV; 3425 3426 state->regmap[region] = 3427 devm_regmap_init_i2c(state->i2c_clients[region], 3428 &adv76xx_regmap_cnf[region]); 3429 3430 if (IS_ERR(state->regmap[region])) { 3431 err = PTR_ERR(state->regmap[region]); 3432 v4l_err(state->i2c_clients[region], 3433 "Error initializing regmap %d with error %d\n", 3434 region, err); 3435 return -EINVAL; 3436 } 3437 3438 return 0; 3439 } 3440 3441 static int configure_regmaps(struct adv76xx_state *state) 3442 { 3443 int i, err; 3444 3445 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) { 3446 err = configure_regmap(state, i); 3447 if (err && (err != -ENODEV)) 3448 return err; 3449 } 3450 return 0; 3451 } 3452 3453 static void adv76xx_reset(struct adv76xx_state *state) 3454 { 3455 if (state->reset_gpio) { 3456 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */ 3457 gpiod_set_value_cansleep(state->reset_gpio, 0); 3458 usleep_range(5000, 10000); 3459 gpiod_set_value_cansleep(state->reset_gpio, 1); 3460 /* It is recommended to wait 5 ms after the low pulse before */ 3461 /* an I2C write is performed to the ADV76XX. */ 3462 usleep_range(5000, 10000); 3463 } 3464 } 3465 3466 static int adv76xx_probe(struct i2c_client *client) 3467 { 3468 const struct i2c_device_id *id = i2c_client_get_device_id(client); 3469 static const struct v4l2_dv_timings cea640x480 = 3470 V4L2_DV_BT_CEA_640X480P59_94; 3471 struct adv76xx_state *state; 3472 struct v4l2_ctrl_handler *hdl; 3473 struct v4l2_ctrl *ctrl; 3474 struct v4l2_subdev *sd; 3475 unsigned int i; 3476 unsigned int val, val2; 3477 int err; 3478 3479 /* Check if the adapter supports the needed features */ 3480 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 3481 return -EIO; 3482 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n", 3483 client->addr << 1); 3484 3485 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); 3486 if (!state) 3487 return -ENOMEM; 3488 3489 state->i2c_clients[ADV76XX_PAGE_IO] = client; 3490 3491 /* initialize variables */ 3492 state->restart_stdi_once = true; 3493 state->selected_input = ~0; 3494 3495 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) { 3496 const struct of_device_id *oid; 3497 3498 oid = of_match_node(adv76xx_of_id, client->dev.of_node); 3499 state->info = oid->data; 3500 3501 err = adv76xx_parse_dt(state); 3502 if (err < 0) { 3503 v4l_err(client, "DT parsing error\n"); 3504 return err; 3505 } 3506 } else if (client->dev.platform_data) { 3507 struct adv76xx_platform_data *pdata = client->dev.platform_data; 3508 3509 state->info = (const struct adv76xx_chip_info *)id->driver_data; 3510 state->pdata = *pdata; 3511 } else { 3512 v4l_err(client, "No platform data!\n"); 3513 return -ENODEV; 3514 } 3515 3516 /* Request GPIOs. */ 3517 for (i = 0; i < state->info->num_dv_ports; ++i) { 3518 state->hpd_gpio[i] = 3519 devm_gpiod_get_index_optional(&client->dev, "hpd", i, 3520 GPIOD_OUT_LOW); 3521 if (IS_ERR(state->hpd_gpio[i])) 3522 return PTR_ERR(state->hpd_gpio[i]); 3523 3524 if (state->hpd_gpio[i]) 3525 v4l_info(client, "Handling HPD %u GPIO\n", i); 3526 } 3527 state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset", 3528 GPIOD_OUT_HIGH); 3529 if (IS_ERR(state->reset_gpio)) 3530 return PTR_ERR(state->reset_gpio); 3531 3532 adv76xx_reset(state); 3533 3534 state->timings = cea640x480; 3535 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 3536 3537 sd = &state->sd; 3538 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops); 3539 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x", 3540 id->name, i2c_adapter_id(client->adapter), 3541 client->addr); 3542 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; 3543 sd->internal_ops = &adv76xx_int_ops; 3544 3545 /* Configure IO Regmap region */ 3546 err = configure_regmap(state, ADV76XX_PAGE_IO); 3547 3548 if (err) { 3549 v4l2_err(sd, "Error configuring IO regmap region\n"); 3550 return -ENODEV; 3551 } 3552 3553 /* 3554 * Verify that the chip is present. On ADV7604 the RD_INFO register only 3555 * identifies the revision, while on ADV7611 it identifies the model as 3556 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611. 3557 */ 3558 switch (state->info->type) { 3559 case ADV7604: 3560 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val); 3561 if (err) { 3562 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3563 return -ENODEV; 3564 } 3565 if (val != 0x68) { 3566 v4l2_err(sd, "not an ADV7604 on address 0x%x\n", 3567 client->addr << 1); 3568 return -ENODEV; 3569 } 3570 break; 3571 case ADV7611: 3572 case ADV7612: 3573 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3574 0xea, 3575 &val); 3576 if (err) { 3577 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3578 return -ENODEV; 3579 } 3580 val2 = val << 8; 3581 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3582 0xeb, 3583 &val); 3584 if (err) { 3585 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3586 return -ENODEV; 3587 } 3588 val |= val2; 3589 if ((state->info->type == ADV7611 && val != 0x2051) || 3590 (state->info->type == ADV7612 && val != 0x2041)) { 3591 v4l2_err(sd, "not an %s on address 0x%x\n", 3592 state->info->type == ADV7611 ? "ADV7610/11" : "ADV7612", 3593 client->addr << 1); 3594 return -ENODEV; 3595 } 3596 break; 3597 } 3598 3599 /* control handlers */ 3600 hdl = &state->hdl; 3601 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8); 3602 3603 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3604 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); 3605 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3606 V4L2_CID_CONTRAST, 0, 255, 1, 128); 3607 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3608 V4L2_CID_SATURATION, 0, 255, 1, 128); 3609 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3610 V4L2_CID_HUE, 0, 255, 1, 0); 3611 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3612 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 3613 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC); 3614 if (ctrl) 3615 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; 3616 3617 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, 3618 V4L2_CID_DV_RX_POWER_PRESENT, 0, 3619 (1 << state->info->num_dv_ports) - 1, 0, 0); 3620 state->rgb_quantization_range_ctrl = 3621 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3622 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 3623 0, V4L2_DV_RGB_RANGE_AUTO); 3624 3625 /* custom controls */ 3626 if (adv76xx_has_afe(state)) 3627 state->analog_sampling_phase_ctrl = 3628 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL); 3629 state->free_run_color_manual_ctrl = 3630 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL); 3631 state->free_run_color_ctrl = 3632 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL); 3633 3634 sd->ctrl_handler = hdl; 3635 if (hdl->error) { 3636 err = hdl->error; 3637 goto err_hdl; 3638 } 3639 if (adv76xx_s_detect_tx_5v_ctrl(sd)) { 3640 err = -ENODEV; 3641 goto err_hdl; 3642 } 3643 3644 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) { 3645 struct i2c_client *dummy_client; 3646 3647 if (!(BIT(i) & state->info->page_mask)) 3648 continue; 3649 3650 dummy_client = adv76xx_dummy_client(sd, i); 3651 if (IS_ERR(dummy_client)) { 3652 err = PTR_ERR(dummy_client); 3653 v4l2_err(sd, "failed to create i2c client %u\n", i); 3654 goto err_i2c; 3655 } 3656 3657 state->i2c_clients[i] = dummy_client; 3658 } 3659 3660 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, 3661 adv76xx_delayed_work_enable_hotplug); 3662 3663 state->source_pad = state->info->num_dv_ports 3664 + (state->info->has_afe ? 2 : 0); 3665 for (i = 0; i < state->source_pad; ++i) 3666 state->pads[i].flags = MEDIA_PAD_FL_SINK; 3667 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE; 3668 sd->entity.function = MEDIA_ENT_F_DV_DECODER; 3669 3670 err = media_entity_pads_init(&sd->entity, state->source_pad + 1, 3671 state->pads); 3672 if (err) 3673 goto err_work_queues; 3674 3675 /* Configure regmaps */ 3676 err = configure_regmaps(state); 3677 if (err) 3678 goto err_entity; 3679 3680 err = adv76xx_core_init(sd); 3681 if (err) 3682 goto err_entity; 3683 3684 if (client->irq) { 3685 err = devm_request_threaded_irq(&client->dev, 3686 client->irq, 3687 NULL, adv76xx_irq_handler, 3688 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 3689 client->name, state); 3690 if (err) 3691 goto err_entity; 3692 } 3693 3694 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 3695 state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops, 3696 state, dev_name(&client->dev), 3697 CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS); 3698 err = PTR_ERR_OR_ZERO(state->cec_adap); 3699 if (err) 3700 goto err_entity; 3701 #endif 3702 3703 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, 3704 client->addr << 1, client->adapter->name); 3705 3706 err = v4l2_async_register_subdev(sd); 3707 if (err) 3708 goto err_entity; 3709 3710 return 0; 3711 3712 err_entity: 3713 media_entity_cleanup(&sd->entity); 3714 err_work_queues: 3715 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3716 err_i2c: 3717 adv76xx_unregister_clients(state); 3718 err_hdl: 3719 v4l2_ctrl_handler_free(hdl); 3720 return err; 3721 } 3722 3723 /* ----------------------------------------------------------------------- */ 3724 3725 static void adv76xx_remove(struct i2c_client *client) 3726 { 3727 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3728 struct adv76xx_state *state = to_state(sd); 3729 3730 /* disable interrupts */ 3731 io_write(sd, 0x40, 0); 3732 io_write(sd, 0x41, 0); 3733 io_write(sd, 0x46, 0); 3734 io_write(sd, 0x6e, 0); 3735 io_write(sd, 0x73, 0); 3736 3737 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 3738 v4l2_async_unregister_subdev(sd); 3739 media_entity_cleanup(&sd->entity); 3740 adv76xx_unregister_clients(to_state(sd)); 3741 v4l2_ctrl_handler_free(sd->ctrl_handler); 3742 } 3743 3744 /* ----------------------------------------------------------------------- */ 3745 3746 static struct i2c_driver adv76xx_driver = { 3747 .driver = { 3748 .name = "adv7604", 3749 .of_match_table = of_match_ptr(adv76xx_of_id), 3750 }, 3751 .probe = adv76xx_probe, 3752 .remove = adv76xx_remove, 3753 .id_table = adv76xx_i2c_id, 3754 }; 3755 3756 module_i2c_driver(adv76xx_driver); 3757