xref: /linux/drivers/media/i2c/adv7604.c (revision 217188d9f985bd3ce8c9a0cd50ca35be62d0f8c6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * adv7604 - Analog Devices ADV7604 video decoder driver
4  *
5  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  *
7  */
8 
9 /*
10  * References (c = chapter, p = page):
11  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12  *		Revision 2.5, June 2010
13  * REF_02 - Analog devices, Register map documentation, Documentation of
14  *		the register maps, Software manual, Rev. F, June 2010
15  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16  */
17 
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 
31 #include <media/i2c/adv7604.h>
32 #include <media/cec.h>
33 #include <media/v4l2-ctrls.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-event.h>
36 #include <media/v4l2-dv-timings.h>
37 #include <media/v4l2-fwnode.h>
38 
39 static int debug;
40 module_param(debug, int, 0644);
41 MODULE_PARM_DESC(debug, "debug level (0-2)");
42 
43 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
44 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
45 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
46 MODULE_LICENSE("GPL");
47 
48 /* ADV7604 system clock frequency */
49 #define ADV76XX_FSC (28636360)
50 
51 #define ADV76XX_RGB_OUT					(1 << 1)
52 
53 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
54 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
55 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
56 
57 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
58 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
59 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
60 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
61 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
62 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
63 
64 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
65 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
66 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
67 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
68 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
69 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
70 
71 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
72 
73 #define ADV76XX_MAX_ADDRS (3)
74 
75 enum adv76xx_type {
76 	ADV7604,
77 	ADV7611,
78 	ADV7612,
79 };
80 
81 struct adv76xx_reg_seq {
82 	unsigned int reg;
83 	u8 val;
84 };
85 
86 struct adv76xx_format_info {
87 	u32 code;
88 	u8 op_ch_sel;
89 	bool rgb_out;
90 	bool swap_cb_cr;
91 	u8 op_format_sel;
92 };
93 
94 struct adv76xx_cfg_read_infoframe {
95 	const char *desc;
96 	u8 present_mask;
97 	u8 head_addr;
98 	u8 payload_addr;
99 };
100 
101 struct adv76xx_chip_info {
102 	enum adv76xx_type type;
103 
104 	bool has_afe;
105 	unsigned int max_port;
106 	unsigned int num_dv_ports;
107 
108 	unsigned int edid_enable_reg;
109 	unsigned int edid_status_reg;
110 	unsigned int lcf_reg;
111 
112 	unsigned int cable_det_mask;
113 	unsigned int tdms_lock_mask;
114 	unsigned int fmt_change_digital_mask;
115 	unsigned int cp_csc;
116 
117 	const struct adv76xx_format_info *formats;
118 	unsigned int nformats;
119 
120 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
121 	void (*setup_irqs)(struct v4l2_subdev *sd);
122 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
123 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
124 
125 	/* 0 = AFE, 1 = HDMI */
126 	const struct adv76xx_reg_seq *recommended_settings[2];
127 	unsigned int num_recommended_settings[2];
128 
129 	unsigned long page_mask;
130 
131 	/* Masks for timings */
132 	unsigned int linewidth_mask;
133 	unsigned int field0_height_mask;
134 	unsigned int field1_height_mask;
135 	unsigned int hfrontporch_mask;
136 	unsigned int hsync_mask;
137 	unsigned int hbackporch_mask;
138 	unsigned int field0_vfrontporch_mask;
139 	unsigned int field1_vfrontporch_mask;
140 	unsigned int field0_vsync_mask;
141 	unsigned int field1_vsync_mask;
142 	unsigned int field0_vbackporch_mask;
143 	unsigned int field1_vbackporch_mask;
144 };
145 
146 /*
147  **********************************************************************
148  *
149  *  Arrays with configuration parameters for the ADV7604
150  *
151  **********************************************************************
152  */
153 
154 struct adv76xx_state {
155 	const struct adv76xx_chip_info *info;
156 	struct adv76xx_platform_data pdata;
157 
158 	struct gpio_desc *hpd_gpio[4];
159 	struct gpio_desc *reset_gpio;
160 
161 	struct v4l2_subdev sd;
162 	struct media_pad pads[ADV76XX_PAD_MAX];
163 	unsigned int source_pad;
164 
165 	struct v4l2_ctrl_handler hdl;
166 
167 	enum adv76xx_pad selected_input;
168 
169 	struct v4l2_dv_timings timings;
170 	const struct adv76xx_format_info *format;
171 
172 	struct {
173 		u8 edid[256];
174 		u32 present;
175 		unsigned blocks;
176 	} edid;
177 	u16 spa_port_a[2];
178 	struct v4l2_fract aspect_ratio;
179 	u32 rgb_quantization_range;
180 	struct delayed_work delayed_work_enable_hotplug;
181 	bool restart_stdi_once;
182 
183 	/* CEC */
184 	struct cec_adapter *cec_adap;
185 	u8   cec_addr[ADV76XX_MAX_ADDRS];
186 	u8   cec_valid_addrs;
187 	bool cec_enabled_adap;
188 
189 	/* i2c clients */
190 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
191 
192 	/* Regmaps */
193 	struct regmap *regmap[ADV76XX_PAGE_MAX];
194 
195 	/* controls */
196 	struct v4l2_ctrl *detect_tx_5v_ctrl;
197 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
198 	struct v4l2_ctrl *free_run_color_manual_ctrl;
199 	struct v4l2_ctrl *free_run_color_ctrl;
200 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
201 };
202 
203 static bool adv76xx_has_afe(struct adv76xx_state *state)
204 {
205 	return state->info->has_afe;
206 }
207 
208 /* Unsupported timings. This device cannot support 720p30. */
209 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
210 	V4L2_DV_BT_CEA_1280X720P30,
211 	{ }
212 };
213 
214 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
215 {
216 	int i;
217 
218 	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
219 		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
220 			return false;
221 	return true;
222 }
223 
224 struct adv76xx_video_standards {
225 	struct v4l2_dv_timings timings;
226 	u8 vid_std;
227 	u8 v_freq;
228 };
229 
230 /* sorted by number of lines */
231 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
232 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
233 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
234 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
235 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
236 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
237 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
238 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
239 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
240 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
241 	/* TODO add 1920x1080P60_RB (CVT timing) */
242 	{ },
243 };
244 
245 /* sorted by number of lines */
246 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
247 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
248 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
249 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
250 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
251 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
252 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
253 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
254 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
255 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
256 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
257 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
258 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
259 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
260 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
261 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
262 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
263 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
264 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
265 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
266 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
267 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
268 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
269 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
270 	{ },
271 };
272 
273 /* sorted by number of lines */
274 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
275 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
276 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
277 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
278 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
279 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
280 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
281 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
282 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
283 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
284 	{ },
285 };
286 
287 /* sorted by number of lines */
288 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
289 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
290 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
291 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
292 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
293 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
294 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
295 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
296 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
297 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
298 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
299 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
300 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
301 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
302 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
303 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
304 	{ },
305 };
306 
307 static const struct v4l2_event adv76xx_ev_fmt = {
308 	.type = V4L2_EVENT_SOURCE_CHANGE,
309 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
310 };
311 
312 /* ----------------------------------------------------------------------- */
313 
314 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
315 {
316 	return container_of(sd, struct adv76xx_state, sd);
317 }
318 
319 static inline unsigned htotal(const struct v4l2_bt_timings *t)
320 {
321 	return V4L2_DV_BT_FRAME_WIDTH(t);
322 }
323 
324 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
325 {
326 	return V4L2_DV_BT_FRAME_HEIGHT(t);
327 }
328 
329 /* ----------------------------------------------------------------------- */
330 
331 static int adv76xx_read_check(struct adv76xx_state *state,
332 			     int client_page, u8 reg)
333 {
334 	struct i2c_client *client = state->i2c_clients[client_page];
335 	int err;
336 	unsigned int val;
337 
338 	err = regmap_read(state->regmap[client_page], reg, &val);
339 
340 	if (err) {
341 		v4l_err(client, "error reading %02x, %02x\n",
342 				client->addr, reg);
343 		return err;
344 	}
345 	return val;
346 }
347 
348 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
349  * size to one or more registers.
350  *
351  * A value of zero will be returned on success, a negative errno will
352  * be returned in error cases.
353  */
354 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
355 			      unsigned int init_reg, const void *val,
356 			      size_t val_len)
357 {
358 	struct regmap *regmap = state->regmap[client_page];
359 
360 	if (val_len > I2C_SMBUS_BLOCK_MAX)
361 		val_len = I2C_SMBUS_BLOCK_MAX;
362 
363 	return regmap_raw_write(regmap, init_reg, val, val_len);
364 }
365 
366 /* ----------------------------------------------------------------------- */
367 
368 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
369 {
370 	struct adv76xx_state *state = to_state(sd);
371 
372 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
373 }
374 
375 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
376 {
377 	struct adv76xx_state *state = to_state(sd);
378 
379 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
380 }
381 
382 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
383 				   u8 val)
384 {
385 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
386 }
387 
388 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
389 {
390 	struct adv76xx_state *state = to_state(sd);
391 
392 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
393 }
394 
395 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
396 {
397 	struct adv76xx_state *state = to_state(sd);
398 
399 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
400 }
401 
402 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
403 {
404 	struct adv76xx_state *state = to_state(sd);
405 
406 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
407 }
408 
409 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
410 {
411 	struct adv76xx_state *state = to_state(sd);
412 
413 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
414 }
415 
416 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
417 				   u8 val)
418 {
419 	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
420 }
421 
422 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
423 {
424 	struct adv76xx_state *state = to_state(sd);
425 
426 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
427 }
428 
429 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
430 {
431 	struct adv76xx_state *state = to_state(sd);
432 
433 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
434 }
435 
436 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
437 {
438 	struct adv76xx_state *state = to_state(sd);
439 
440 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
441 }
442 
443 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
444 {
445 	struct adv76xx_state *state = to_state(sd);
446 
447 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
448 }
449 
450 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
451 {
452 	struct adv76xx_state *state = to_state(sd);
453 
454 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
455 }
456 
457 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
458 {
459 	struct adv76xx_state *state = to_state(sd);
460 
461 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
462 }
463 
464 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
465 {
466 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
467 }
468 
469 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
470 {
471 	struct adv76xx_state *state = to_state(sd);
472 
473 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
474 }
475 
476 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
477 {
478 	struct adv76xx_state *state = to_state(sd);
479 
480 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
481 }
482 
483 static inline int edid_write_block(struct v4l2_subdev *sd,
484 					unsigned int total_len, const u8 *val)
485 {
486 	struct adv76xx_state *state = to_state(sd);
487 	int err = 0;
488 	int i = 0;
489 	int len = 0;
490 
491 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
492 				__func__, total_len);
493 
494 	while (!err && i < total_len) {
495 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
496 				I2C_SMBUS_BLOCK_MAX :
497 				(total_len - i);
498 
499 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
500 				i, val + i, len);
501 		i += len;
502 	}
503 
504 	return err;
505 }
506 
507 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
508 {
509 	unsigned int i;
510 
511 	for (i = 0; i < state->info->num_dv_ports; ++i)
512 		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
513 
514 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
515 }
516 
517 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
518 {
519 	struct delayed_work *dwork = to_delayed_work(work);
520 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
521 						delayed_work_enable_hotplug);
522 	struct v4l2_subdev *sd = &state->sd;
523 
524 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
525 
526 	adv76xx_set_hpd(state, state->edid.present);
527 }
528 
529 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
530 {
531 	struct adv76xx_state *state = to_state(sd);
532 
533 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
534 }
535 
536 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
537 {
538 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
539 }
540 
541 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
542 {
543 	struct adv76xx_state *state = to_state(sd);
544 
545 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
546 }
547 
548 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
549 {
550 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
551 }
552 
553 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
554 {
555 	struct adv76xx_state *state = to_state(sd);
556 
557 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
558 }
559 
560 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
561 {
562 	struct adv76xx_state *state = to_state(sd);
563 
564 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
565 }
566 
567 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
568 {
569 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
570 }
571 
572 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
573 {
574 	struct adv76xx_state *state = to_state(sd);
575 
576 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
577 }
578 
579 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
580 {
581 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
582 }
583 
584 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
585 {
586 	struct adv76xx_state *state = to_state(sd);
587 
588 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
589 }
590 
591 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
592 {
593 	struct adv76xx_state *state = to_state(sd);
594 
595 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
596 }
597 
598 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
599 #define ADV76XX_REG_SEQ_TERM		0xffff
600 
601 #ifdef CONFIG_VIDEO_ADV_DEBUG
602 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
603 {
604 	struct adv76xx_state *state = to_state(sd);
605 	unsigned int page = reg >> 8;
606 	unsigned int val;
607 	int err;
608 
609 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
610 		return -EINVAL;
611 
612 	reg &= 0xff;
613 	err = regmap_read(state->regmap[page], reg, &val);
614 
615 	return err ? err : val;
616 }
617 #endif
618 
619 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
620 {
621 	struct adv76xx_state *state = to_state(sd);
622 	unsigned int page = reg >> 8;
623 
624 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
625 		return -EINVAL;
626 
627 	reg &= 0xff;
628 
629 	return regmap_write(state->regmap[page], reg, val);
630 }
631 
632 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
633 				  const struct adv76xx_reg_seq *reg_seq)
634 {
635 	unsigned int i;
636 
637 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
638 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
639 }
640 
641 /* -----------------------------------------------------------------------------
642  * Format helpers
643  */
644 
645 static const struct adv76xx_format_info adv7604_formats[] = {
646 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
647 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
648 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
649 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
650 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
651 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
652 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
653 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
654 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
655 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
656 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
657 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
658 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
659 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
660 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
661 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
662 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
663 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
664 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
665 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
666 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
667 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
668 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
669 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
670 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
671 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
672 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
673 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
674 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
675 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
676 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
677 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
678 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
679 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
680 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
681 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
682 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
683 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
684 };
685 
686 static const struct adv76xx_format_info adv7611_formats[] = {
687 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
688 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
689 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
690 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
691 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
692 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
693 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
694 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
695 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
696 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
697 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
698 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
699 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
700 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
701 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
702 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
703 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
704 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
705 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
706 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
707 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
708 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
709 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
710 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
711 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
712 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
713 };
714 
715 static const struct adv76xx_format_info adv7612_formats[] = {
716 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
717 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
718 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
719 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
720 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
721 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
722 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
723 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
724 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
725 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
726 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
727 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
728 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
729 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
730 };
731 
732 static const struct adv76xx_format_info *
733 adv76xx_format_info(struct adv76xx_state *state, u32 code)
734 {
735 	unsigned int i;
736 
737 	for (i = 0; i < state->info->nformats; ++i) {
738 		if (state->info->formats[i].code == code)
739 			return &state->info->formats[i];
740 	}
741 
742 	return NULL;
743 }
744 
745 /* ----------------------------------------------------------------------- */
746 
747 static inline bool is_analog_input(struct v4l2_subdev *sd)
748 {
749 	struct adv76xx_state *state = to_state(sd);
750 
751 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
752 	       state->selected_input == ADV7604_PAD_VGA_COMP;
753 }
754 
755 static inline bool is_digital_input(struct v4l2_subdev *sd)
756 {
757 	struct adv76xx_state *state = to_state(sd);
758 
759 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
760 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
761 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
762 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
763 }
764 
765 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
766 	.type = V4L2_DV_BT_656_1120,
767 	/* keep this initialization for compatibility with GCC < 4.4.6 */
768 	.reserved = { 0 },
769 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
770 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
771 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
772 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
773 			V4L2_DV_BT_CAP_CUSTOM)
774 };
775 
776 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
777 	.type = V4L2_DV_BT_656_1120,
778 	/* keep this initialization for compatibility with GCC < 4.4.6 */
779 	.reserved = { 0 },
780 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
781 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
782 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
783 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
784 			V4L2_DV_BT_CAP_CUSTOM)
785 };
786 
787 /*
788  * Return the DV timings capabilities for the requested sink pad. As a special
789  * case, pad value -1 returns the capabilities for the currently selected input.
790  */
791 static const struct v4l2_dv_timings_cap *
792 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
793 {
794 	if (pad == -1) {
795 		struct adv76xx_state *state = to_state(sd);
796 
797 		pad = state->selected_input;
798 	}
799 
800 	switch (pad) {
801 	case ADV76XX_PAD_HDMI_PORT_A:
802 	case ADV7604_PAD_HDMI_PORT_B:
803 	case ADV7604_PAD_HDMI_PORT_C:
804 	case ADV7604_PAD_HDMI_PORT_D:
805 		return &adv76xx_timings_cap_digital;
806 
807 	case ADV7604_PAD_VGA_RGB:
808 	case ADV7604_PAD_VGA_COMP:
809 	default:
810 		return &adv7604_timings_cap_analog;
811 	}
812 }
813 
814 
815 /* ----------------------------------------------------------------------- */
816 
817 #ifdef CONFIG_VIDEO_ADV_DEBUG
818 static void adv76xx_inv_register(struct v4l2_subdev *sd)
819 {
820 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
821 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
822 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
823 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
824 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
825 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
826 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
827 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
828 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
829 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
830 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
831 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
832 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
833 }
834 
835 static int adv76xx_g_register(struct v4l2_subdev *sd,
836 					struct v4l2_dbg_register *reg)
837 {
838 	int ret;
839 
840 	ret = adv76xx_read_reg(sd, reg->reg);
841 	if (ret < 0) {
842 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
843 		adv76xx_inv_register(sd);
844 		return ret;
845 	}
846 
847 	reg->size = 1;
848 	reg->val = ret;
849 
850 	return 0;
851 }
852 
853 static int adv76xx_s_register(struct v4l2_subdev *sd,
854 					const struct v4l2_dbg_register *reg)
855 {
856 	int ret;
857 
858 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
859 	if (ret < 0) {
860 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
861 		adv76xx_inv_register(sd);
862 		return ret;
863 	}
864 
865 	return 0;
866 }
867 #endif
868 
869 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
870 {
871 	u8 value = io_read(sd, 0x6f);
872 
873 	return ((value & 0x10) >> 4)
874 	     | ((value & 0x08) >> 2)
875 	     | ((value & 0x04) << 0)
876 	     | ((value & 0x02) << 2);
877 }
878 
879 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
880 {
881 	u8 value = io_read(sd, 0x6f);
882 
883 	return value & 1;
884 }
885 
886 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
887 {
888 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
889 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
890 	 */
891 	u8 value = io_read(sd, 0x6f);
892 
893 	return value & 1;
894 }
895 
896 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
897 {
898 	struct adv76xx_state *state = to_state(sd);
899 	const struct adv76xx_chip_info *info = state->info;
900 	u16 cable_det = info->read_cable_det(sd);
901 
902 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
903 }
904 
905 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
906 		u8 prim_mode,
907 		const struct adv76xx_video_standards *predef_vid_timings,
908 		const struct v4l2_dv_timings *timings)
909 {
910 	int i;
911 
912 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
913 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
914 				is_digital_input(sd) ? 250000 : 1000000, false))
915 			continue;
916 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
917 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
918 				prim_mode); /* v_freq and prim mode */
919 		return 0;
920 	}
921 
922 	return -1;
923 }
924 
925 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
926 		struct v4l2_dv_timings *timings)
927 {
928 	struct adv76xx_state *state = to_state(sd);
929 	int err;
930 
931 	v4l2_dbg(1, debug, sd, "%s", __func__);
932 
933 	if (adv76xx_has_afe(state)) {
934 		/* reset to default values */
935 		io_write(sd, 0x16, 0x43);
936 		io_write(sd, 0x17, 0x5a);
937 	}
938 	/* disable embedded syncs for auto graphics mode */
939 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
940 	cp_write(sd, 0x8f, 0x00);
941 	cp_write(sd, 0x90, 0x00);
942 	cp_write(sd, 0xa2, 0x00);
943 	cp_write(sd, 0xa3, 0x00);
944 	cp_write(sd, 0xa4, 0x00);
945 	cp_write(sd, 0xa5, 0x00);
946 	cp_write(sd, 0xa6, 0x00);
947 	cp_write(sd, 0xa7, 0x00);
948 	cp_write(sd, 0xab, 0x00);
949 	cp_write(sd, 0xac, 0x00);
950 
951 	if (is_analog_input(sd)) {
952 		err = find_and_set_predefined_video_timings(sd,
953 				0x01, adv7604_prim_mode_comp, timings);
954 		if (err)
955 			err = find_and_set_predefined_video_timings(sd,
956 					0x02, adv7604_prim_mode_gr, timings);
957 	} else if (is_digital_input(sd)) {
958 		err = find_and_set_predefined_video_timings(sd,
959 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
960 		if (err)
961 			err = find_and_set_predefined_video_timings(sd,
962 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
963 	} else {
964 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
965 				__func__, state->selected_input);
966 		err = -1;
967 	}
968 
969 
970 	return err;
971 }
972 
973 static void configure_custom_video_timings(struct v4l2_subdev *sd,
974 		const struct v4l2_bt_timings *bt)
975 {
976 	struct adv76xx_state *state = to_state(sd);
977 	u32 width = htotal(bt);
978 	u32 height = vtotal(bt);
979 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
980 	u16 cp_start_eav = width - bt->hfrontporch;
981 	u16 cp_start_vbi = height - bt->vfrontporch;
982 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
983 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
984 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
985 	const u8 pll[2] = {
986 		0xc0 | ((width >> 8) & 0x1f),
987 		width & 0xff
988 	};
989 
990 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
991 
992 	if (is_analog_input(sd)) {
993 		/* auto graphics */
994 		io_write(sd, 0x00, 0x07); /* video std */
995 		io_write(sd, 0x01, 0x02); /* prim mode */
996 		/* enable embedded syncs for auto graphics mode */
997 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
998 
999 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1000 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1001 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1002 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1003 					0x16, pll, 2))
1004 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1005 
1006 		/* active video - horizontal timing */
1007 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1008 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1009 				   ((cp_start_eav >> 8) & 0x0f));
1010 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1011 
1012 		/* active video - vertical timing */
1013 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1014 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1015 				   ((cp_end_vbi >> 8) & 0xf));
1016 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1017 	} else if (is_digital_input(sd)) {
1018 		/* set default prim_mode/vid_std for HDMI
1019 		   according to [REF_03, c. 4.2] */
1020 		io_write(sd, 0x00, 0x02); /* video std */
1021 		io_write(sd, 0x01, 0x06); /* prim mode */
1022 	} else {
1023 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1024 				__func__, state->selected_input);
1025 	}
1026 
1027 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1028 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1029 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1030 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1031 }
1032 
1033 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1034 {
1035 	struct adv76xx_state *state = to_state(sd);
1036 	u8 offset_buf[4];
1037 
1038 	if (auto_offset) {
1039 		offset_a = 0x3ff;
1040 		offset_b = 0x3ff;
1041 		offset_c = 0x3ff;
1042 	}
1043 
1044 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1045 			__func__, auto_offset ? "Auto" : "Manual",
1046 			offset_a, offset_b, offset_c);
1047 
1048 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1049 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1050 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1051 	offset_buf[3] = offset_c & 0x0ff;
1052 
1053 	/* Registers must be written in this order with no i2c access in between */
1054 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1055 			0x77, offset_buf, 4))
1056 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1057 }
1058 
1059 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1060 {
1061 	struct adv76xx_state *state = to_state(sd);
1062 	u8 gain_buf[4];
1063 	u8 gain_man = 1;
1064 	u8 agc_mode_man = 1;
1065 
1066 	if (auto_gain) {
1067 		gain_man = 0;
1068 		agc_mode_man = 0;
1069 		gain_a = 0x100;
1070 		gain_b = 0x100;
1071 		gain_c = 0x100;
1072 	}
1073 
1074 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1075 			__func__, auto_gain ? "Auto" : "Manual",
1076 			gain_a, gain_b, gain_c);
1077 
1078 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1079 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1080 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1081 	gain_buf[3] = ((gain_c & 0x0ff));
1082 
1083 	/* Registers must be written in this order with no i2c access in between */
1084 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1085 			     0x73, gain_buf, 4))
1086 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1087 }
1088 
1089 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1090 {
1091 	struct adv76xx_state *state = to_state(sd);
1092 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1093 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1094 	u8 y = HDMI_COLORSPACE_RGB;
1095 
1096 	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1097 		y = infoframe_read(sd, 0x01) >> 5;
1098 
1099 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1100 			__func__, state->rgb_quantization_range,
1101 			rgb_output, hdmi_signal);
1102 
1103 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1104 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1105 	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1106 
1107 	switch (state->rgb_quantization_range) {
1108 	case V4L2_DV_RGB_RANGE_AUTO:
1109 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1110 			/* Receiving analog RGB signal
1111 			 * Set RGB full range (0-255) */
1112 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1113 			break;
1114 		}
1115 
1116 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1117 			/* Receiving analog YPbPr signal
1118 			 * Set automode */
1119 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1120 			break;
1121 		}
1122 
1123 		if (hdmi_signal) {
1124 			/* Receiving HDMI signal
1125 			 * Set automode */
1126 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1127 			break;
1128 		}
1129 
1130 		/* Receiving DVI-D signal
1131 		 * ADV7604 selects RGB limited range regardless of
1132 		 * input format (CE/IT) in automatic mode */
1133 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1134 			/* RGB limited range (16-235) */
1135 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1136 		} else {
1137 			/* RGB full range (0-255) */
1138 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1139 
1140 			if (is_digital_input(sd) && rgb_output) {
1141 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1142 			} else {
1143 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1144 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1145 			}
1146 		}
1147 		break;
1148 	case V4L2_DV_RGB_RANGE_LIMITED:
1149 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1150 			/* YCrCb limited range (16-235) */
1151 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1152 			break;
1153 		}
1154 
1155 		if (y != HDMI_COLORSPACE_RGB)
1156 			break;
1157 
1158 		/* RGB limited range (16-235) */
1159 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1160 
1161 		break;
1162 	case V4L2_DV_RGB_RANGE_FULL:
1163 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1164 			/* YCrCb full range (0-255) */
1165 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1166 			break;
1167 		}
1168 
1169 		if (y != HDMI_COLORSPACE_RGB)
1170 			break;
1171 
1172 		/* RGB full range (0-255) */
1173 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1174 
1175 		if (is_analog_input(sd) || hdmi_signal)
1176 			break;
1177 
1178 		/* Adjust gain/offset for DVI-D signals only */
1179 		if (rgb_output) {
1180 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1181 		} else {
1182 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1183 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1184 		}
1185 		break;
1186 	}
1187 }
1188 
1189 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1190 {
1191 	struct v4l2_subdev *sd =
1192 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1193 
1194 	struct adv76xx_state *state = to_state(sd);
1195 
1196 	switch (ctrl->id) {
1197 	case V4L2_CID_BRIGHTNESS:
1198 		cp_write(sd, 0x3c, ctrl->val);
1199 		return 0;
1200 	case V4L2_CID_CONTRAST:
1201 		cp_write(sd, 0x3a, ctrl->val);
1202 		return 0;
1203 	case V4L2_CID_SATURATION:
1204 		cp_write(sd, 0x3b, ctrl->val);
1205 		return 0;
1206 	case V4L2_CID_HUE:
1207 		cp_write(sd, 0x3d, ctrl->val);
1208 		return 0;
1209 	case  V4L2_CID_DV_RX_RGB_RANGE:
1210 		state->rgb_quantization_range = ctrl->val;
1211 		set_rgb_quantization_range(sd);
1212 		return 0;
1213 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1214 		if (!adv76xx_has_afe(state))
1215 			return -EINVAL;
1216 		/* Set the analog sampling phase. This is needed to find the
1217 		   best sampling phase for analog video: an application or
1218 		   driver has to try a number of phases and analyze the picture
1219 		   quality before settling on the best performing phase. */
1220 		afe_write(sd, 0xc8, ctrl->val);
1221 		return 0;
1222 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1223 		/* Use the default blue color for free running mode,
1224 		   or supply your own. */
1225 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1226 		return 0;
1227 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1228 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1229 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1230 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1231 		return 0;
1232 	}
1233 	return -EINVAL;
1234 }
1235 
1236 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1237 {
1238 	struct v4l2_subdev *sd =
1239 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1240 
1241 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1242 		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1243 		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1244 			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1245 		return 0;
1246 	}
1247 	return -EINVAL;
1248 }
1249 
1250 /* ----------------------------------------------------------------------- */
1251 
1252 static inline bool no_power(struct v4l2_subdev *sd)
1253 {
1254 	/* Entire chip or CP powered off */
1255 	return io_read(sd, 0x0c) & 0x24;
1256 }
1257 
1258 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1259 {
1260 	struct adv76xx_state *state = to_state(sd);
1261 
1262 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1263 }
1264 
1265 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1266 {
1267 	struct adv76xx_state *state = to_state(sd);
1268 	const struct adv76xx_chip_info *info = state->info;
1269 
1270 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1271 }
1272 
1273 static inline bool is_hdmi(struct v4l2_subdev *sd)
1274 {
1275 	return hdmi_read(sd, 0x05) & 0x80;
1276 }
1277 
1278 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1279 {
1280 	struct adv76xx_state *state = to_state(sd);
1281 
1282 	/*
1283 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1284 	 * that we have a lock.
1285 	 */
1286 	if (adv76xx_has_afe(state))
1287 		return false;
1288 
1289 	/* TODO channel 2 */
1290 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1291 }
1292 
1293 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1294 {
1295 	/* TODO channel 2 */
1296 	return !(cp_read(sd, 0xb1) & 0x80);
1297 }
1298 
1299 static inline bool no_signal(struct v4l2_subdev *sd)
1300 {
1301 	bool ret;
1302 
1303 	ret = no_power(sd);
1304 
1305 	ret |= no_lock_stdi(sd);
1306 	ret |= no_lock_sspd(sd);
1307 
1308 	if (is_digital_input(sd)) {
1309 		ret |= no_lock_tmds(sd);
1310 		ret |= no_signal_tmds(sd);
1311 	}
1312 
1313 	return ret;
1314 }
1315 
1316 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1317 {
1318 	struct adv76xx_state *state = to_state(sd);
1319 
1320 	if (!adv76xx_has_afe(state))
1321 		return false;
1322 
1323 	/* CP has detected a non standard number of lines on the incoming
1324 	   video compared to what it is configured to receive by s_dv_timings */
1325 	return io_read(sd, 0x12) & 0x01;
1326 }
1327 
1328 static inline bool in_free_run(struct v4l2_subdev *sd)
1329 {
1330 	return cp_read(sd, 0xff) & 0x10;
1331 }
1332 
1333 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1334 {
1335 	*status = 0;
1336 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1337 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1338 	if (!in_free_run(sd) && no_lock_cp(sd))
1339 		*status |= is_digital_input(sd) ?
1340 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1341 
1342 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1343 
1344 	return 0;
1345 }
1346 
1347 /* ----------------------------------------------------------------------- */
1348 
1349 struct stdi_readback {
1350 	u16 bl, lcf, lcvs;
1351 	u8 hs_pol, vs_pol;
1352 	bool interlaced;
1353 };
1354 
1355 static int stdi2dv_timings(struct v4l2_subdev *sd,
1356 		struct stdi_readback *stdi,
1357 		struct v4l2_dv_timings *timings)
1358 {
1359 	struct adv76xx_state *state = to_state(sd);
1360 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1361 	u32 pix_clk;
1362 	int i;
1363 
1364 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1365 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1366 
1367 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1368 					   adv76xx_get_dv_timings_cap(sd, -1),
1369 					   adv76xx_check_dv_timings, NULL))
1370 			continue;
1371 		if (vtotal(bt) != stdi->lcf + 1)
1372 			continue;
1373 		if (bt->vsync != stdi->lcvs)
1374 			continue;
1375 
1376 		pix_clk = hfreq * htotal(bt);
1377 
1378 		if ((pix_clk < bt->pixelclock + 1000000) &&
1379 		    (pix_clk > bt->pixelclock - 1000000)) {
1380 			*timings = v4l2_dv_timings_presets[i];
1381 			return 0;
1382 		}
1383 	}
1384 
1385 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1386 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1387 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1388 			false, timings))
1389 		return 0;
1390 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1391 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1392 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1393 			false, state->aspect_ratio, timings))
1394 		return 0;
1395 
1396 	v4l2_dbg(2, debug, sd,
1397 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1398 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1399 		stdi->hs_pol, stdi->vs_pol);
1400 	return -1;
1401 }
1402 
1403 
1404 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1405 {
1406 	struct adv76xx_state *state = to_state(sd);
1407 	const struct adv76xx_chip_info *info = state->info;
1408 	u8 polarity;
1409 
1410 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1411 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1412 		return -1;
1413 	}
1414 
1415 	/* read STDI */
1416 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1417 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1418 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1419 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1420 
1421 	if (adv76xx_has_afe(state)) {
1422 		/* read SSPD */
1423 		polarity = cp_read(sd, 0xb5);
1424 		if ((polarity & 0x03) == 0x01) {
1425 			stdi->hs_pol = polarity & 0x10
1426 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1427 			stdi->vs_pol = polarity & 0x40
1428 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1429 		} else {
1430 			stdi->hs_pol = 'x';
1431 			stdi->vs_pol = 'x';
1432 		}
1433 	} else {
1434 		polarity = hdmi_read(sd, 0x05);
1435 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1436 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1437 	}
1438 
1439 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1440 		v4l2_dbg(2, debug, sd,
1441 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1442 		return -1;
1443 	}
1444 
1445 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1446 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1447 		memset(stdi, 0, sizeof(struct stdi_readback));
1448 		return -1;
1449 	}
1450 
1451 	v4l2_dbg(2, debug, sd,
1452 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1453 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1454 		stdi->hs_pol, stdi->vs_pol,
1455 		stdi->interlaced ? "interlaced" : "progressive");
1456 
1457 	return 0;
1458 }
1459 
1460 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1461 			struct v4l2_enum_dv_timings *timings)
1462 {
1463 	struct adv76xx_state *state = to_state(sd);
1464 
1465 	if (timings->pad >= state->source_pad)
1466 		return -EINVAL;
1467 
1468 	return v4l2_enum_dv_timings_cap(timings,
1469 		adv76xx_get_dv_timings_cap(sd, timings->pad),
1470 		adv76xx_check_dv_timings, NULL);
1471 }
1472 
1473 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1474 			struct v4l2_dv_timings_cap *cap)
1475 {
1476 	struct adv76xx_state *state = to_state(sd);
1477 	unsigned int pad = cap->pad;
1478 
1479 	if (cap->pad >= state->source_pad)
1480 		return -EINVAL;
1481 
1482 	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1483 	cap->pad = pad;
1484 
1485 	return 0;
1486 }
1487 
1488 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1489    if the format is listed in adv76xx_timings[] */
1490 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1491 		struct v4l2_dv_timings *timings)
1492 {
1493 	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1494 				 is_digital_input(sd) ? 250000 : 1000000,
1495 				 adv76xx_check_dv_timings, NULL);
1496 }
1497 
1498 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1499 {
1500 	unsigned int freq;
1501 	int a, b;
1502 
1503 	a = hdmi_read(sd, 0x06);
1504 	b = hdmi_read(sd, 0x3b);
1505 	if (a < 0 || b < 0)
1506 		return 0;
1507 	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;
1508 
1509 	if (is_hdmi(sd)) {
1510 		/* adjust for deep color mode */
1511 		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1512 
1513 		freq = freq * 8 / bits_per_channel;
1514 	}
1515 
1516 	return freq;
1517 }
1518 
1519 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1520 {
1521 	int a, b;
1522 
1523 	a = hdmi_read(sd, 0x51);
1524 	b = hdmi_read(sd, 0x52);
1525 	if (a < 0 || b < 0)
1526 		return 0;
1527 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1528 }
1529 
1530 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1531 			struct v4l2_dv_timings *timings)
1532 {
1533 	struct adv76xx_state *state = to_state(sd);
1534 	const struct adv76xx_chip_info *info = state->info;
1535 	struct v4l2_bt_timings *bt = &timings->bt;
1536 	struct stdi_readback stdi;
1537 
1538 	if (!timings)
1539 		return -EINVAL;
1540 
1541 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1542 
1543 	if (no_signal(sd)) {
1544 		state->restart_stdi_once = true;
1545 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1546 		return -ENOLINK;
1547 	}
1548 
1549 	/* read STDI */
1550 	if (read_stdi(sd, &stdi)) {
1551 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1552 		return -ENOLINK;
1553 	}
1554 	bt->interlaced = stdi.interlaced ?
1555 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1556 
1557 	if (is_digital_input(sd)) {
1558 		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1559 		u8 vic = 0;
1560 		u32 w, h;
1561 
1562 		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1563 		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1564 
1565 		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1566 			vic = infoframe_read(sd, 0x04);
1567 
1568 		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1569 		    bt->width == w && bt->height == h)
1570 			goto found;
1571 
1572 		timings->type = V4L2_DV_BT_656_1120;
1573 
1574 		bt->width = w;
1575 		bt->height = h;
1576 		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1577 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1578 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1579 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1580 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1581 			info->field0_vfrontporch_mask) / 2;
1582 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1583 		bt->vbackporch = hdmi_read16(sd, 0x32,
1584 			info->field0_vbackporch_mask) / 2;
1585 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1586 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1587 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1588 			bt->height += hdmi_read16(sd, 0x0b,
1589 				info->field1_height_mask);
1590 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1591 				info->field1_vfrontporch_mask) / 2;
1592 			bt->il_vsync = hdmi_read16(sd, 0x30,
1593 				info->field1_vsync_mask) / 2;
1594 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1595 				info->field1_vbackporch_mask) / 2;
1596 		}
1597 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1598 	} else {
1599 		/* find format
1600 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1601 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1602 		 */
1603 		if (!stdi2dv_timings(sd, &stdi, timings))
1604 			goto found;
1605 		stdi.lcvs += 1;
1606 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1607 		if (!stdi2dv_timings(sd, &stdi, timings))
1608 			goto found;
1609 		stdi.lcvs -= 2;
1610 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1611 		if (stdi2dv_timings(sd, &stdi, timings)) {
1612 			/*
1613 			 * The STDI block may measure wrong values, especially
1614 			 * for lcvs and lcf. If the driver can not find any
1615 			 * valid timing, the STDI block is restarted to measure
1616 			 * the video timings again. The function will return an
1617 			 * error, but the restart of STDI will generate a new
1618 			 * STDI interrupt and the format detection process will
1619 			 * restart.
1620 			 */
1621 			if (state->restart_stdi_once) {
1622 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1623 				/* TODO restart STDI for Sync Channel 2 */
1624 				/* enter one-shot mode */
1625 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1626 				/* trigger STDI restart */
1627 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1628 				/* reset to continuous mode */
1629 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1630 				state->restart_stdi_once = false;
1631 				return -ENOLINK;
1632 			}
1633 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1634 			return -ERANGE;
1635 		}
1636 		state->restart_stdi_once = true;
1637 	}
1638 found:
1639 
1640 	if (no_signal(sd)) {
1641 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1642 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1643 		return -ENOLINK;
1644 	}
1645 
1646 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1647 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1648 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1649 				__func__, (u32)bt->pixelclock);
1650 		return -ERANGE;
1651 	}
1652 
1653 	if (debug > 1)
1654 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1655 				      timings, true);
1656 
1657 	return 0;
1658 }
1659 
1660 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1661 		struct v4l2_dv_timings *timings)
1662 {
1663 	struct adv76xx_state *state = to_state(sd);
1664 	struct v4l2_bt_timings *bt;
1665 	int err;
1666 
1667 	if (!timings)
1668 		return -EINVAL;
1669 
1670 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1671 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1672 		return 0;
1673 	}
1674 
1675 	bt = &timings->bt;
1676 
1677 	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1678 				   adv76xx_check_dv_timings, NULL))
1679 		return -ERANGE;
1680 
1681 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1682 
1683 	state->timings = *timings;
1684 
1685 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1686 
1687 	/* Use prim_mode and vid_std when available */
1688 	err = configure_predefined_video_timings(sd, timings);
1689 	if (err) {
1690 		/* custom settings when the video format
1691 		 does not have prim_mode/vid_std */
1692 		configure_custom_video_timings(sd, bt);
1693 	}
1694 
1695 	set_rgb_quantization_range(sd);
1696 
1697 	if (debug > 1)
1698 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1699 				      timings, true);
1700 	return 0;
1701 }
1702 
1703 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1704 		struct v4l2_dv_timings *timings)
1705 {
1706 	struct adv76xx_state *state = to_state(sd);
1707 
1708 	*timings = state->timings;
1709 	return 0;
1710 }
1711 
1712 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1713 {
1714 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1715 }
1716 
1717 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1718 {
1719 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1720 }
1721 
1722 static void enable_input(struct v4l2_subdev *sd)
1723 {
1724 	struct adv76xx_state *state = to_state(sd);
1725 
1726 	if (is_analog_input(sd)) {
1727 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1728 	} else if (is_digital_input(sd)) {
1729 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1730 		state->info->set_termination(sd, true);
1731 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1732 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1733 	} else {
1734 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1735 				__func__, state->selected_input);
1736 	}
1737 }
1738 
1739 static void disable_input(struct v4l2_subdev *sd)
1740 {
1741 	struct adv76xx_state *state = to_state(sd);
1742 
1743 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1744 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1745 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1746 	state->info->set_termination(sd, false);
1747 }
1748 
1749 static void select_input(struct v4l2_subdev *sd)
1750 {
1751 	struct adv76xx_state *state = to_state(sd);
1752 	const struct adv76xx_chip_info *info = state->info;
1753 
1754 	if (is_analog_input(sd)) {
1755 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1756 
1757 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1758 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1759 		afe_write(sd, 0xc8, 0x00); /* phase control */
1760 	} else if (is_digital_input(sd)) {
1761 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1762 
1763 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1764 
1765 		if (adv76xx_has_afe(state)) {
1766 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1767 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1768 			afe_write(sd, 0xc8, 0x40); /* phase control */
1769 		}
1770 
1771 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1772 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1773 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1774 	} else {
1775 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1776 				__func__, state->selected_input);
1777 	}
1778 }
1779 
1780 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1781 		u32 input, u32 output, u32 config)
1782 {
1783 	struct adv76xx_state *state = to_state(sd);
1784 
1785 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1786 			__func__, input, state->selected_input);
1787 
1788 	if (input == state->selected_input)
1789 		return 0;
1790 
1791 	if (input > state->info->max_port)
1792 		return -EINVAL;
1793 
1794 	state->selected_input = input;
1795 
1796 	disable_input(sd);
1797 	select_input(sd);
1798 	enable_input(sd);
1799 
1800 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1801 
1802 	return 0;
1803 }
1804 
1805 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1806 				  struct v4l2_subdev_pad_config *cfg,
1807 				  struct v4l2_subdev_mbus_code_enum *code)
1808 {
1809 	struct adv76xx_state *state = to_state(sd);
1810 
1811 	if (code->index >= state->info->nformats)
1812 		return -EINVAL;
1813 
1814 	code->code = state->info->formats[code->index].code;
1815 
1816 	return 0;
1817 }
1818 
1819 static void adv76xx_fill_format(struct adv76xx_state *state,
1820 				struct v4l2_mbus_framefmt *format)
1821 {
1822 	memset(format, 0, sizeof(*format));
1823 
1824 	format->width = state->timings.bt.width;
1825 	format->height = state->timings.bt.height;
1826 	format->field = V4L2_FIELD_NONE;
1827 	format->colorspace = V4L2_COLORSPACE_SRGB;
1828 
1829 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1830 		format->colorspace = (state->timings.bt.height <= 576) ?
1831 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1832 }
1833 
1834 /*
1835  * Compute the op_ch_sel value required to obtain on the bus the component order
1836  * corresponding to the selected format taking into account bus reordering
1837  * applied by the board at the output of the device.
1838  *
1839  * The following table gives the op_ch_value from the format component order
1840  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1841  * adv76xx_bus_order value in row).
1842  *
1843  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1844  * ----------+-------------------------------------------------
1845  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1846  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1847  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1848  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1849  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1850  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1851  */
1852 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1853 {
1854 #define _SEL(a,b,c,d,e,f)	{ \
1855 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1856 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1857 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1858 
1859 	static const unsigned int op_ch_sel[6][6] = {
1860 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1861 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1862 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1863 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1864 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1865 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1866 	};
1867 
1868 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1869 }
1870 
1871 static void adv76xx_setup_format(struct adv76xx_state *state)
1872 {
1873 	struct v4l2_subdev *sd = &state->sd;
1874 
1875 	io_write_clr_set(sd, 0x02, 0x02,
1876 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1877 	io_write(sd, 0x03, state->format->op_format_sel |
1878 		 state->pdata.op_format_mode_sel);
1879 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1880 	io_write_clr_set(sd, 0x05, 0x01,
1881 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1882 	set_rgb_quantization_range(sd);
1883 }
1884 
1885 static int adv76xx_get_format(struct v4l2_subdev *sd,
1886 			      struct v4l2_subdev_pad_config *cfg,
1887 			      struct v4l2_subdev_format *format)
1888 {
1889 	struct adv76xx_state *state = to_state(sd);
1890 
1891 	if (format->pad != state->source_pad)
1892 		return -EINVAL;
1893 
1894 	adv76xx_fill_format(state, &format->format);
1895 
1896 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1897 		struct v4l2_mbus_framefmt *fmt;
1898 
1899 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1900 		format->format.code = fmt->code;
1901 	} else {
1902 		format->format.code = state->format->code;
1903 	}
1904 
1905 	return 0;
1906 }
1907 
1908 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1909 				 struct v4l2_subdev_pad_config *cfg,
1910 				 struct v4l2_subdev_selection *sel)
1911 {
1912 	struct adv76xx_state *state = to_state(sd);
1913 
1914 	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1915 		return -EINVAL;
1916 	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1917 	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1918 		return -EINVAL;
1919 
1920 	sel->r.left	= 0;
1921 	sel->r.top	= 0;
1922 	sel->r.width	= state->timings.bt.width;
1923 	sel->r.height	= state->timings.bt.height;
1924 
1925 	return 0;
1926 }
1927 
1928 static int adv76xx_set_format(struct v4l2_subdev *sd,
1929 			      struct v4l2_subdev_pad_config *cfg,
1930 			      struct v4l2_subdev_format *format)
1931 {
1932 	struct adv76xx_state *state = to_state(sd);
1933 	const struct adv76xx_format_info *info;
1934 
1935 	if (format->pad != state->source_pad)
1936 		return -EINVAL;
1937 
1938 	info = adv76xx_format_info(state, format->format.code);
1939 	if (!info)
1940 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1941 
1942 	adv76xx_fill_format(state, &format->format);
1943 	format->format.code = info->code;
1944 
1945 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1946 		struct v4l2_mbus_framefmt *fmt;
1947 
1948 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1949 		fmt->code = format->format.code;
1950 	} else {
1951 		state->format = info;
1952 		adv76xx_setup_format(state);
1953 	}
1954 
1955 	return 0;
1956 }
1957 
1958 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1959 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1960 {
1961 	struct adv76xx_state *state = to_state(sd);
1962 
1963 	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1964 		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1965 		return;
1966 	}
1967 
1968 	if (tx_raw_status & 0x02) {
1969 		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1970 			 __func__);
1971 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1972 				  1, 0, 0, 0);
1973 		return;
1974 	}
1975 	if (tx_raw_status & 0x04) {
1976 		u8 status;
1977 		u8 nack_cnt;
1978 		u8 low_drive_cnt;
1979 
1980 		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1981 		/*
1982 		 * We set this status bit since this hardware performs
1983 		 * retransmissions.
1984 		 */
1985 		status = CEC_TX_STATUS_MAX_RETRIES;
1986 		nack_cnt = cec_read(sd, 0x14) & 0xf;
1987 		if (nack_cnt)
1988 			status |= CEC_TX_STATUS_NACK;
1989 		low_drive_cnt = cec_read(sd, 0x14) >> 4;
1990 		if (low_drive_cnt)
1991 			status |= CEC_TX_STATUS_LOW_DRIVE;
1992 		cec_transmit_done(state->cec_adap, status,
1993 				  0, nack_cnt, low_drive_cnt, 0);
1994 		return;
1995 	}
1996 	if (tx_raw_status & 0x01) {
1997 		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
1998 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
1999 		return;
2000 	}
2001 }
2002 
2003 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2004 {
2005 	struct adv76xx_state *state = to_state(sd);
2006 	u8 cec_irq;
2007 
2008 	/* cec controller */
2009 	cec_irq = io_read(sd, 0x4d) & 0x0f;
2010 	if (!cec_irq)
2011 		return;
2012 
2013 	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2014 	adv76xx_cec_tx_raw_status(sd, cec_irq);
2015 	if (cec_irq & 0x08) {
2016 		struct cec_msg msg;
2017 
2018 		msg.len = cec_read(sd, 0x25) & 0x1f;
2019 		if (msg.len > 16)
2020 			msg.len = 16;
2021 
2022 		if (msg.len) {
2023 			u8 i;
2024 
2025 			for (i = 0; i < msg.len; i++)
2026 				msg.msg[i] = cec_read(sd, i + 0x15);
2027 			cec_write(sd, 0x26, 0x01); /* re-enable rx */
2028 			cec_received_msg(state->cec_adap, &msg);
2029 		}
2030 	}
2031 
2032 	/* note: the bit order is swapped between 0x4d and 0x4e */
2033 	cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2034 		  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2035 	io_write(sd, 0x4e, cec_irq);
2036 
2037 	if (handled)
2038 		*handled = true;
2039 }
2040 
2041 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2042 {
2043 	struct adv76xx_state *state = cec_get_drvdata(adap);
2044 	struct v4l2_subdev *sd = &state->sd;
2045 
2046 	if (!state->cec_enabled_adap && enable) {
2047 		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2048 		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2049 		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2050 		/* enabled irqs: */
2051 		/* tx: ready */
2052 		/* tx: arbitration lost */
2053 		/* tx: retry timeout */
2054 		/* rx: ready */
2055 		io_write_clr_set(sd, 0x50, 0x0f, 0x0f);
2056 		cec_write(sd, 0x26, 0x01);            /* enable rx */
2057 	} else if (state->cec_enabled_adap && !enable) {
2058 		/* disable cec interrupts */
2059 		io_write_clr_set(sd, 0x50, 0x0f, 0x00);
2060 		/* disable address mask 1-3 */
2061 		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2062 		/* power down cec section */
2063 		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2064 		state->cec_valid_addrs = 0;
2065 	}
2066 	state->cec_enabled_adap = enable;
2067 	adv76xx_s_detect_tx_5v_ctrl(sd);
2068 	return 0;
2069 }
2070 
2071 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2072 {
2073 	struct adv76xx_state *state = cec_get_drvdata(adap);
2074 	struct v4l2_subdev *sd = &state->sd;
2075 	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2076 
2077 	if (!state->cec_enabled_adap)
2078 		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2079 
2080 	if (addr == CEC_LOG_ADDR_INVALID) {
2081 		cec_write_clr_set(sd, 0x27, 0x70, 0);
2082 		state->cec_valid_addrs = 0;
2083 		return 0;
2084 	}
2085 
2086 	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2087 		bool is_valid = state->cec_valid_addrs & (1 << i);
2088 
2089 		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2090 			free_idx = i;
2091 		if (is_valid && state->cec_addr[i] == addr)
2092 			return 0;
2093 	}
2094 	if (i == ADV76XX_MAX_ADDRS) {
2095 		i = free_idx;
2096 		if (i == ADV76XX_MAX_ADDRS)
2097 			return -ENXIO;
2098 	}
2099 	state->cec_addr[i] = addr;
2100 	state->cec_valid_addrs |= 1 << i;
2101 
2102 	switch (i) {
2103 	case 0:
2104 		/* enable address mask 0 */
2105 		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2106 		/* set address for mask 0 */
2107 		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2108 		break;
2109 	case 1:
2110 		/* enable address mask 1 */
2111 		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2112 		/* set address for mask 1 */
2113 		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2114 		break;
2115 	case 2:
2116 		/* enable address mask 2 */
2117 		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2118 		/* set address for mask 1 */
2119 		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2120 		break;
2121 	}
2122 	return 0;
2123 }
2124 
2125 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2126 				     u32 signal_free_time, struct cec_msg *msg)
2127 {
2128 	struct adv76xx_state *state = cec_get_drvdata(adap);
2129 	struct v4l2_subdev *sd = &state->sd;
2130 	u8 len = msg->len;
2131 	unsigned int i;
2132 
2133 	/*
2134 	 * The number of retries is the number of attempts - 1, but retry
2135 	 * at least once. It's not clear if a value of 0 is allowed, so
2136 	 * let's do at least one retry.
2137 	 */
2138 	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2139 
2140 	if (len > 16) {
2141 		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2142 		return -EINVAL;
2143 	}
2144 
2145 	/* write data */
2146 	for (i = 0; i < len; i++)
2147 		cec_write(sd, i, msg->msg[i]);
2148 
2149 	/* set length (data + header) */
2150 	cec_write(sd, 0x10, len);
2151 	/* start transmit, enable tx */
2152 	cec_write(sd, 0x11, 0x01);
2153 	return 0;
2154 }
2155 
2156 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2157 	.adap_enable = adv76xx_cec_adap_enable,
2158 	.adap_log_addr = adv76xx_cec_adap_log_addr,
2159 	.adap_transmit = adv76xx_cec_adap_transmit,
2160 };
2161 #endif
2162 
2163 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2164 {
2165 	struct adv76xx_state *state = to_state(sd);
2166 	const struct adv76xx_chip_info *info = state->info;
2167 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2168 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2169 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2170 	u8 fmt_change_digital;
2171 	u8 fmt_change;
2172 	u8 tx_5v;
2173 
2174 	if (irq_reg_0x43)
2175 		io_write(sd, 0x44, irq_reg_0x43);
2176 	if (irq_reg_0x70)
2177 		io_write(sd, 0x71, irq_reg_0x70);
2178 	if (irq_reg_0x6b)
2179 		io_write(sd, 0x6c, irq_reg_0x6b);
2180 
2181 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2182 
2183 	/* format change */
2184 	fmt_change = irq_reg_0x43 & 0x98;
2185 	fmt_change_digital = is_digital_input(sd)
2186 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2187 			   : 0;
2188 
2189 	if (fmt_change || fmt_change_digital) {
2190 		v4l2_dbg(1, debug, sd,
2191 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2192 			__func__, fmt_change, fmt_change_digital);
2193 
2194 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2195 
2196 		if (handled)
2197 			*handled = true;
2198 	}
2199 	/* HDMI/DVI mode */
2200 	if (irq_reg_0x6b & 0x01) {
2201 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2202 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2203 		set_rgb_quantization_range(sd);
2204 		if (handled)
2205 			*handled = true;
2206 	}
2207 
2208 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2209 	/* cec */
2210 	adv76xx_cec_isr(sd, handled);
2211 #endif
2212 
2213 	/* tx 5v detect */
2214 	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2215 	if (tx_5v) {
2216 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2217 		adv76xx_s_detect_tx_5v_ctrl(sd);
2218 		if (handled)
2219 			*handled = true;
2220 	}
2221 	return 0;
2222 }
2223 
2224 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2225 {
2226 	struct adv76xx_state *state = to_state(sd);
2227 	u8 *data = NULL;
2228 
2229 	memset(edid->reserved, 0, sizeof(edid->reserved));
2230 
2231 	switch (edid->pad) {
2232 	case ADV76XX_PAD_HDMI_PORT_A:
2233 	case ADV7604_PAD_HDMI_PORT_B:
2234 	case ADV7604_PAD_HDMI_PORT_C:
2235 	case ADV7604_PAD_HDMI_PORT_D:
2236 		if (state->edid.present & (1 << edid->pad))
2237 			data = state->edid.edid;
2238 		break;
2239 	default:
2240 		return -EINVAL;
2241 	}
2242 
2243 	if (edid->start_block == 0 && edid->blocks == 0) {
2244 		edid->blocks = data ? state->edid.blocks : 0;
2245 		return 0;
2246 	}
2247 
2248 	if (!data)
2249 		return -ENODATA;
2250 
2251 	if (edid->start_block >= state->edid.blocks)
2252 		return -EINVAL;
2253 
2254 	if (edid->start_block + edid->blocks > state->edid.blocks)
2255 		edid->blocks = state->edid.blocks - edid->start_block;
2256 
2257 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2258 
2259 	return 0;
2260 }
2261 
2262 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2263 {
2264 	struct adv76xx_state *state = to_state(sd);
2265 	const struct adv76xx_chip_info *info = state->info;
2266 	unsigned int spa_loc;
2267 	u16 pa;
2268 	int err;
2269 	int i;
2270 
2271 	memset(edid->reserved, 0, sizeof(edid->reserved));
2272 
2273 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2274 		return -EINVAL;
2275 	if (edid->start_block != 0)
2276 		return -EINVAL;
2277 	if (edid->blocks == 0) {
2278 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2279 		state->edid.present &= ~(1 << edid->pad);
2280 		adv76xx_set_hpd(state, state->edid.present);
2281 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2282 
2283 		/* Fall back to a 16:9 aspect ratio */
2284 		state->aspect_ratio.numerator = 16;
2285 		state->aspect_ratio.denominator = 9;
2286 
2287 		if (!state->edid.present)
2288 			state->edid.blocks = 0;
2289 
2290 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2291 				__func__, edid->pad, state->edid.present);
2292 		return 0;
2293 	}
2294 	if (edid->blocks > 2) {
2295 		edid->blocks = 2;
2296 		return -E2BIG;
2297 	}
2298 	pa = cec_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2299 	err = cec_phys_addr_validate(pa, &pa, NULL);
2300 	if (err)
2301 		return err;
2302 
2303 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2304 			__func__, edid->pad, state->edid.present);
2305 
2306 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2307 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2308 	adv76xx_set_hpd(state, 0);
2309 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2310 
2311 	/*
2312 	 * Return an error if no location of the source physical address
2313 	 * was found.
2314 	 */
2315 	if (spa_loc == 0)
2316 		return -EINVAL;
2317 
2318 	switch (edid->pad) {
2319 	case ADV76XX_PAD_HDMI_PORT_A:
2320 		state->spa_port_a[0] = edid->edid[spa_loc];
2321 		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2322 		break;
2323 	case ADV7604_PAD_HDMI_PORT_B:
2324 		rep_write(sd, 0x70, edid->edid[spa_loc]);
2325 		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2326 		break;
2327 	case ADV7604_PAD_HDMI_PORT_C:
2328 		rep_write(sd, 0x72, edid->edid[spa_loc]);
2329 		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2330 		break;
2331 	case ADV7604_PAD_HDMI_PORT_D:
2332 		rep_write(sd, 0x74, edid->edid[spa_loc]);
2333 		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2334 		break;
2335 	default:
2336 		return -EINVAL;
2337 	}
2338 
2339 	if (info->type == ADV7604) {
2340 		rep_write(sd, 0x76, spa_loc & 0xff);
2341 		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2342 	} else {
2343 		/* ADV7612 Software Manual Rev. A, p. 15 */
2344 		rep_write(sd, 0x70, spa_loc & 0xff);
2345 		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2346 	}
2347 
2348 	edid->edid[spa_loc] = state->spa_port_a[0];
2349 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2350 
2351 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2352 	state->edid.blocks = edid->blocks;
2353 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2354 			edid->edid[0x16]);
2355 	state->edid.present |= 1 << edid->pad;
2356 
2357 	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2358 	if (err < 0) {
2359 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2360 		return err;
2361 	}
2362 
2363 	/* adv76xx calculates the checksums and enables I2C access to internal
2364 	   EDID RAM from DDC port. */
2365 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2366 
2367 	for (i = 0; i < 1000; i++) {
2368 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2369 			break;
2370 		mdelay(1);
2371 	}
2372 	if (i == 1000) {
2373 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2374 		return -EIO;
2375 	}
2376 	cec_s_phys_addr(state->cec_adap, pa, false);
2377 
2378 	/* enable hotplug after 100 ms */
2379 	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2380 	return 0;
2381 }
2382 
2383 /*********** avi info frame CEA-861-E **************/
2384 
2385 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2386 	{ "AVI", 0x01, 0xe0, 0x00 },
2387 	{ "Audio", 0x02, 0xe3, 0x1c },
2388 	{ "SDP", 0x04, 0xe6, 0x2a },
2389 	{ "Vendor", 0x10, 0xec, 0x54 }
2390 };
2391 
2392 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2393 				  union hdmi_infoframe *frame)
2394 {
2395 	uint8_t buffer[32];
2396 	u8 len;
2397 	int i;
2398 
2399 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2400 		v4l2_info(sd, "%s infoframe not received\n",
2401 			  adv76xx_cri[index].desc);
2402 		return -ENOENT;
2403 	}
2404 
2405 	for (i = 0; i < 3; i++)
2406 		buffer[i] = infoframe_read(sd,
2407 					   adv76xx_cri[index].head_addr + i);
2408 
2409 	len = buffer[2] + 1;
2410 
2411 	if (len + 3 > sizeof(buffer)) {
2412 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2413 			 adv76xx_cri[index].desc, len);
2414 		return -ENOENT;
2415 	}
2416 
2417 	for (i = 0; i < len; i++)
2418 		buffer[i + 3] = infoframe_read(sd,
2419 				       adv76xx_cri[index].payload_addr + i);
2420 
2421 	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2422 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2423 			 adv76xx_cri[index].desc);
2424 		return -ENOENT;
2425 	}
2426 	return 0;
2427 }
2428 
2429 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2430 {
2431 	int i;
2432 
2433 	if (!is_hdmi(sd)) {
2434 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2435 		return;
2436 	}
2437 
2438 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2439 		union hdmi_infoframe frame;
2440 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2441 
2442 		if (adv76xx_read_infoframe(sd, i, &frame))
2443 			return;
2444 		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2445 	}
2446 }
2447 
2448 static int adv76xx_log_status(struct v4l2_subdev *sd)
2449 {
2450 	struct adv76xx_state *state = to_state(sd);
2451 	const struct adv76xx_chip_info *info = state->info;
2452 	struct v4l2_dv_timings timings;
2453 	struct stdi_readback stdi;
2454 	u8 reg_io_0x02 = io_read(sd, 0x02);
2455 	u8 edid_enabled;
2456 	u8 cable_det;
2457 
2458 	static const char * const csc_coeff_sel_rb[16] = {
2459 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2460 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2461 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2462 		"reserved", "reserved", "reserved", "reserved", "manual"
2463 	};
2464 	static const char * const input_color_space_txt[16] = {
2465 		"RGB limited range (16-235)", "RGB full range (0-255)",
2466 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2467 		"xvYCC Bt.601", "xvYCC Bt.709",
2468 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2469 		"invalid", "invalid", "invalid", "invalid", "invalid",
2470 		"invalid", "invalid", "automatic"
2471 	};
2472 	static const char * const hdmi_color_space_txt[16] = {
2473 		"RGB limited range (16-235)", "RGB full range (0-255)",
2474 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2475 		"xvYCC Bt.601", "xvYCC Bt.709",
2476 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2477 		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2478 		"invalid", "invalid", "invalid"
2479 	};
2480 	static const char * const rgb_quantization_range_txt[] = {
2481 		"Automatic",
2482 		"RGB limited range (16-235)",
2483 		"RGB full range (0-255)",
2484 	};
2485 	static const char * const deep_color_mode_txt[4] = {
2486 		"8-bits per channel",
2487 		"10-bits per channel",
2488 		"12-bits per channel",
2489 		"16-bits per channel (not supported)"
2490 	};
2491 
2492 	v4l2_info(sd, "-----Chip status-----\n");
2493 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2494 	edid_enabled = rep_read(sd, info->edid_status_reg);
2495 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2496 			((edid_enabled & 0x01) ? "Yes" : "No"),
2497 			((edid_enabled & 0x02) ? "Yes" : "No"),
2498 			((edid_enabled & 0x04) ? "Yes" : "No"),
2499 			((edid_enabled & 0x08) ? "Yes" : "No"));
2500 	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2501 			"enabled" : "disabled");
2502 	if (state->cec_enabled_adap) {
2503 		int i;
2504 
2505 		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2506 			bool is_valid = state->cec_valid_addrs & (1 << i);
2507 
2508 			if (is_valid)
2509 				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2510 					  state->cec_addr[i]);
2511 		}
2512 	}
2513 
2514 	v4l2_info(sd, "-----Signal status-----\n");
2515 	cable_det = info->read_cable_det(sd);
2516 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2517 			((cable_det & 0x01) ? "Yes" : "No"),
2518 			((cable_det & 0x02) ? "Yes" : "No"),
2519 			((cable_det & 0x04) ? "Yes" : "No"),
2520 			((cable_det & 0x08) ? "Yes" : "No"));
2521 	v4l2_info(sd, "TMDS signal detected: %s\n",
2522 			no_signal_tmds(sd) ? "false" : "true");
2523 	v4l2_info(sd, "TMDS signal locked: %s\n",
2524 			no_lock_tmds(sd) ? "false" : "true");
2525 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2526 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2527 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2528 	v4l2_info(sd, "CP free run: %s\n",
2529 			(in_free_run(sd)) ? "on" : "off");
2530 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2531 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2532 			(io_read(sd, 0x01) & 0x70) >> 4);
2533 
2534 	v4l2_info(sd, "-----Video Timings-----\n");
2535 	if (read_stdi(sd, &stdi))
2536 		v4l2_info(sd, "STDI: not locked\n");
2537 	else
2538 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2539 				stdi.lcf, stdi.bl, stdi.lcvs,
2540 				stdi.interlaced ? "interlaced" : "progressive",
2541 				stdi.hs_pol, stdi.vs_pol);
2542 	if (adv76xx_query_dv_timings(sd, &timings))
2543 		v4l2_info(sd, "No video detected\n");
2544 	else
2545 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2546 				      &timings, true);
2547 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2548 			      &state->timings, true);
2549 
2550 	if (no_signal(sd))
2551 		return 0;
2552 
2553 	v4l2_info(sd, "-----Color space-----\n");
2554 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2555 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2556 	v4l2_info(sd, "Input color space: %s\n",
2557 			input_color_space_txt[reg_io_0x02 >> 4]);
2558 	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2559 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2560 			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2561 				"(16-235)" : "(0-255)",
2562 			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2563 	v4l2_info(sd, "Color space conversion: %s\n",
2564 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2565 
2566 	if (!is_digital_input(sd))
2567 		return 0;
2568 
2569 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2570 	v4l2_info(sd, "Digital video port selected: %c\n",
2571 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2572 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2573 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2574 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2575 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2576 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2577 	if (is_hdmi(sd)) {
2578 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2579 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2580 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2581 
2582 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2583 				audio_pll_locked ? "locked" : "not locked",
2584 				audio_sample_packet_detect ? "detected" : "not detected",
2585 				audio_mute ? "muted" : "enabled");
2586 		if (audio_pll_locked && audio_sample_packet_detect) {
2587 			v4l2_info(sd, "Audio format: %s\n",
2588 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2589 		}
2590 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2591 				(hdmi_read(sd, 0x5c) << 8) +
2592 				(hdmi_read(sd, 0x5d) & 0xf0));
2593 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2594 				(hdmi_read(sd, 0x5e) << 8) +
2595 				hdmi_read(sd, 0x5f));
2596 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2597 
2598 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2599 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2600 
2601 		adv76xx_log_infoframes(sd);
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2608 				   struct v4l2_fh *fh,
2609 				   struct v4l2_event_subscription *sub)
2610 {
2611 	switch (sub->type) {
2612 	case V4L2_EVENT_SOURCE_CHANGE:
2613 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2614 	case V4L2_EVENT_CTRL:
2615 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2616 	default:
2617 		return -EINVAL;
2618 	}
2619 }
2620 
2621 static int adv76xx_registered(struct v4l2_subdev *sd)
2622 {
2623 	struct adv76xx_state *state = to_state(sd);
2624 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2625 	int err;
2626 
2627 	err = cec_register_adapter(state->cec_adap, &client->dev);
2628 	if (err)
2629 		cec_delete_adapter(state->cec_adap);
2630 	return err;
2631 }
2632 
2633 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2634 {
2635 	struct adv76xx_state *state = to_state(sd);
2636 
2637 	cec_unregister_adapter(state->cec_adap);
2638 }
2639 
2640 /* ----------------------------------------------------------------------- */
2641 
2642 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2643 	.s_ctrl = adv76xx_s_ctrl,
2644 	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2645 };
2646 
2647 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2648 	.log_status = adv76xx_log_status,
2649 	.interrupt_service_routine = adv76xx_isr,
2650 	.subscribe_event = adv76xx_subscribe_event,
2651 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2652 #ifdef CONFIG_VIDEO_ADV_DEBUG
2653 	.g_register = adv76xx_g_register,
2654 	.s_register = adv76xx_s_register,
2655 #endif
2656 };
2657 
2658 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2659 	.s_routing = adv76xx_s_routing,
2660 	.g_input_status = adv76xx_g_input_status,
2661 	.s_dv_timings = adv76xx_s_dv_timings,
2662 	.g_dv_timings = adv76xx_g_dv_timings,
2663 	.query_dv_timings = adv76xx_query_dv_timings,
2664 };
2665 
2666 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2667 	.enum_mbus_code = adv76xx_enum_mbus_code,
2668 	.get_selection = adv76xx_get_selection,
2669 	.get_fmt = adv76xx_get_format,
2670 	.set_fmt = adv76xx_set_format,
2671 	.get_edid = adv76xx_get_edid,
2672 	.set_edid = adv76xx_set_edid,
2673 	.dv_timings_cap = adv76xx_dv_timings_cap,
2674 	.enum_dv_timings = adv76xx_enum_dv_timings,
2675 };
2676 
2677 static const struct v4l2_subdev_ops adv76xx_ops = {
2678 	.core = &adv76xx_core_ops,
2679 	.video = &adv76xx_video_ops,
2680 	.pad = &adv76xx_pad_ops,
2681 };
2682 
2683 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2684 	.registered = adv76xx_registered,
2685 	.unregistered = adv76xx_unregistered,
2686 };
2687 
2688 /* -------------------------- custom ctrls ---------------------------------- */
2689 
2690 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2691 	.ops = &adv76xx_ctrl_ops,
2692 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2693 	.name = "Analog Sampling Phase",
2694 	.type = V4L2_CTRL_TYPE_INTEGER,
2695 	.min = 0,
2696 	.max = 0x1f,
2697 	.step = 1,
2698 	.def = 0,
2699 };
2700 
2701 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2702 	.ops = &adv76xx_ctrl_ops,
2703 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2704 	.name = "Free Running Color, Manual",
2705 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2706 	.min = false,
2707 	.max = true,
2708 	.step = 1,
2709 	.def = false,
2710 };
2711 
2712 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2713 	.ops = &adv76xx_ctrl_ops,
2714 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2715 	.name = "Free Running Color",
2716 	.type = V4L2_CTRL_TYPE_INTEGER,
2717 	.min = 0x0,
2718 	.max = 0xffffff,
2719 	.step = 0x1,
2720 	.def = 0x0,
2721 };
2722 
2723 /* ----------------------------------------------------------------------- */
2724 
2725 struct adv76xx_register_map {
2726 	const char *name;
2727 	u8 default_addr;
2728 };
2729 
2730 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2731 	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2732 	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2733 	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2734 	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2735 	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2736 	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2737 	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2738 	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2739 	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2740 	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2741 	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2742 	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2743 	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2744 };
2745 
2746 static int adv76xx_core_init(struct v4l2_subdev *sd)
2747 {
2748 	struct adv76xx_state *state = to_state(sd);
2749 	const struct adv76xx_chip_info *info = state->info;
2750 	struct adv76xx_platform_data *pdata = &state->pdata;
2751 
2752 	hdmi_write(sd, 0x48,
2753 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2754 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2755 
2756 	disable_input(sd);
2757 
2758 	if (pdata->default_input >= 0 &&
2759 	    pdata->default_input < state->source_pad) {
2760 		state->selected_input = pdata->default_input;
2761 		select_input(sd);
2762 		enable_input(sd);
2763 	}
2764 
2765 	/* power */
2766 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2767 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2768 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2769 
2770 	/* video format */
2771 	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2772 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2773 			pdata->insert_av_codes << 2 |
2774 			pdata->replicate_av_codes << 1);
2775 	adv76xx_setup_format(state);
2776 
2777 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2778 
2779 	/* VS, HS polarities */
2780 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2781 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2782 
2783 	/* Adjust drive strength */
2784 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2785 				pdata->dr_str_clk << 2 |
2786 				pdata->dr_str_sync);
2787 
2788 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2789 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2790 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2791 				      ADI recommended setting [REF_01, c. 2.3.3] */
2792 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2793 				      ADI recommended setting [REF_01, c. 2.3.3] */
2794 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2795 				     for digital formats */
2796 
2797 	/* HDMI audio */
2798 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2799 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2800 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2801 
2802 	/* TODO from platform data */
2803 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2804 
2805 	if (adv76xx_has_afe(state)) {
2806 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2807 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2808 	}
2809 
2810 	/* interrupts */
2811 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2812 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2813 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2814 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2815 	info->setup_irqs(sd);
2816 
2817 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2818 }
2819 
2820 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2821 {
2822 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2823 }
2824 
2825 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2826 {
2827 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2828 }
2829 
2830 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2831 {
2832 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2833 }
2834 
2835 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2836 {
2837 	unsigned int i;
2838 
2839 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2840 		if (state->i2c_clients[i])
2841 			i2c_unregister_device(state->i2c_clients[i]);
2842 	}
2843 }
2844 
2845 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2846 					       unsigned int page)
2847 {
2848 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2849 	struct adv76xx_state *state = to_state(sd);
2850 	struct adv76xx_platform_data *pdata = &state->pdata;
2851 	unsigned int io_reg = 0xf2 + page;
2852 	struct i2c_client *new_client;
2853 
2854 	if (pdata && pdata->i2c_addresses[page])
2855 		new_client = i2c_new_dummy(client->adapter,
2856 					   pdata->i2c_addresses[page]);
2857 	else
2858 		new_client = i2c_new_secondary_device(client,
2859 				adv76xx_default_addresses[page].name,
2860 				adv76xx_default_addresses[page].default_addr);
2861 
2862 	if (new_client)
2863 		io_write(sd, io_reg, new_client->addr << 1);
2864 
2865 	return new_client;
2866 }
2867 
2868 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2869 	/* reset ADI recommended settings for HDMI: */
2870 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2871 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2872 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2873 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2874 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2875 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2876 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2877 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2878 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2879 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2880 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2881 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2882 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2883 
2884 	/* set ADI recommended settings for digitizer */
2885 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2886 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2887 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2888 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2889 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2890 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2891 
2892 	{ ADV76XX_REG_SEQ_TERM, 0 },
2893 };
2894 
2895 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2896 	/* set ADI recommended settings for HDMI: */
2897 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2898 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2899 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2900 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2901 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2902 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2903 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2904 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2905 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2906 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2907 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2908 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2909 
2910 	/* reset ADI recommended settings for digitizer */
2911 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2912 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2913 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2914 
2915 	{ ADV76XX_REG_SEQ_TERM, 0 },
2916 };
2917 
2918 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2919 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2920 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2921 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2922 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2923 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2924 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2925 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2926 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2927 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2928 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2929 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2930 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2931 
2932 	{ ADV76XX_REG_SEQ_TERM, 0 },
2933 };
2934 
2935 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2936 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2937 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2938 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2939 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2940 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2941 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2942 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2943 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2944 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2945 	{ ADV76XX_REG_SEQ_TERM, 0 },
2946 };
2947 
2948 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2949 	[ADV7604] = {
2950 		.type = ADV7604,
2951 		.has_afe = true,
2952 		.max_port = ADV7604_PAD_VGA_COMP,
2953 		.num_dv_ports = 4,
2954 		.edid_enable_reg = 0x77,
2955 		.edid_status_reg = 0x7d,
2956 		.lcf_reg = 0xb3,
2957 		.tdms_lock_mask = 0xe0,
2958 		.cable_det_mask = 0x1e,
2959 		.fmt_change_digital_mask = 0xc1,
2960 		.cp_csc = 0xfc,
2961 		.formats = adv7604_formats,
2962 		.nformats = ARRAY_SIZE(adv7604_formats),
2963 		.set_termination = adv7604_set_termination,
2964 		.setup_irqs = adv7604_setup_irqs,
2965 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2966 		.read_cable_det = adv7604_read_cable_det,
2967 		.recommended_settings = {
2968 		    [0] = adv7604_recommended_settings_afe,
2969 		    [1] = adv7604_recommended_settings_hdmi,
2970 		},
2971 		.num_recommended_settings = {
2972 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2973 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2974 		},
2975 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2976 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2977 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2978 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2979 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2980 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2981 			BIT(ADV7604_PAGE_VDP),
2982 		.linewidth_mask = 0xfff,
2983 		.field0_height_mask = 0xfff,
2984 		.field1_height_mask = 0xfff,
2985 		.hfrontporch_mask = 0x3ff,
2986 		.hsync_mask = 0x3ff,
2987 		.hbackporch_mask = 0x3ff,
2988 		.field0_vfrontporch_mask = 0x1fff,
2989 		.field0_vsync_mask = 0x1fff,
2990 		.field0_vbackporch_mask = 0x1fff,
2991 		.field1_vfrontporch_mask = 0x1fff,
2992 		.field1_vsync_mask = 0x1fff,
2993 		.field1_vbackporch_mask = 0x1fff,
2994 	},
2995 	[ADV7611] = {
2996 		.type = ADV7611,
2997 		.has_afe = false,
2998 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2999 		.num_dv_ports = 1,
3000 		.edid_enable_reg = 0x74,
3001 		.edid_status_reg = 0x76,
3002 		.lcf_reg = 0xa3,
3003 		.tdms_lock_mask = 0x43,
3004 		.cable_det_mask = 0x01,
3005 		.fmt_change_digital_mask = 0x03,
3006 		.cp_csc = 0xf4,
3007 		.formats = adv7611_formats,
3008 		.nformats = ARRAY_SIZE(adv7611_formats),
3009 		.set_termination = adv7611_set_termination,
3010 		.setup_irqs = adv7611_setup_irqs,
3011 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3012 		.read_cable_det = adv7611_read_cable_det,
3013 		.recommended_settings = {
3014 		    [1] = adv7611_recommended_settings_hdmi,
3015 		},
3016 		.num_recommended_settings = {
3017 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3018 		},
3019 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3020 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3021 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3022 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3023 		.linewidth_mask = 0x1fff,
3024 		.field0_height_mask = 0x1fff,
3025 		.field1_height_mask = 0x1fff,
3026 		.hfrontporch_mask = 0x1fff,
3027 		.hsync_mask = 0x1fff,
3028 		.hbackporch_mask = 0x1fff,
3029 		.field0_vfrontporch_mask = 0x3fff,
3030 		.field0_vsync_mask = 0x3fff,
3031 		.field0_vbackporch_mask = 0x3fff,
3032 		.field1_vfrontporch_mask = 0x3fff,
3033 		.field1_vsync_mask = 0x3fff,
3034 		.field1_vbackporch_mask = 0x3fff,
3035 	},
3036 	[ADV7612] = {
3037 		.type = ADV7612,
3038 		.has_afe = false,
3039 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3040 		.num_dv_ports = 1,			/* normally 2 */
3041 		.edid_enable_reg = 0x74,
3042 		.edid_status_reg = 0x76,
3043 		.lcf_reg = 0xa3,
3044 		.tdms_lock_mask = 0x43,
3045 		.cable_det_mask = 0x01,
3046 		.fmt_change_digital_mask = 0x03,
3047 		.cp_csc = 0xf4,
3048 		.formats = adv7612_formats,
3049 		.nformats = ARRAY_SIZE(adv7612_formats),
3050 		.set_termination = adv7611_set_termination,
3051 		.setup_irqs = adv7612_setup_irqs,
3052 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3053 		.read_cable_det = adv7612_read_cable_det,
3054 		.recommended_settings = {
3055 		    [1] = adv7612_recommended_settings_hdmi,
3056 		},
3057 		.num_recommended_settings = {
3058 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3059 		},
3060 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3061 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3062 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3063 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3064 		.linewidth_mask = 0x1fff,
3065 		.field0_height_mask = 0x1fff,
3066 		.field1_height_mask = 0x1fff,
3067 		.hfrontporch_mask = 0x1fff,
3068 		.hsync_mask = 0x1fff,
3069 		.hbackporch_mask = 0x1fff,
3070 		.field0_vfrontporch_mask = 0x3fff,
3071 		.field0_vsync_mask = 0x3fff,
3072 		.field0_vbackporch_mask = 0x3fff,
3073 		.field1_vfrontporch_mask = 0x3fff,
3074 		.field1_vsync_mask = 0x3fff,
3075 		.field1_vbackporch_mask = 0x3fff,
3076 	},
3077 };
3078 
3079 static const struct i2c_device_id adv76xx_i2c_id[] = {
3080 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3081 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3082 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3083 	{ }
3084 };
3085 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3086 
3087 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3088 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3089 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3090 	{ }
3091 };
3092 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3093 
3094 static int adv76xx_parse_dt(struct adv76xx_state *state)
3095 {
3096 	struct v4l2_fwnode_endpoint bus_cfg;
3097 	struct device_node *endpoint;
3098 	struct device_node *np;
3099 	unsigned int flags;
3100 	int ret;
3101 	u32 v;
3102 
3103 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3104 
3105 	/* Parse the endpoint. */
3106 	endpoint = of_graph_get_next_endpoint(np, NULL);
3107 	if (!endpoint)
3108 		return -EINVAL;
3109 
3110 	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3111 	of_node_put(endpoint);
3112 	if (ret)
3113 		return ret;
3114 
3115 	if (!of_property_read_u32(np, "default-input", &v))
3116 		state->pdata.default_input = v;
3117 	else
3118 		state->pdata.default_input = -1;
3119 
3120 	flags = bus_cfg.bus.parallel.flags;
3121 
3122 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3123 		state->pdata.inv_hs_pol = 1;
3124 
3125 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3126 		state->pdata.inv_vs_pol = 1;
3127 
3128 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3129 		state->pdata.inv_llc_pol = 1;
3130 
3131 	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3132 		state->pdata.insert_av_codes = 1;
3133 
3134 	/* Disable the interrupt for now as no DT-based board uses it. */
3135 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
3136 
3137 	/* Hardcode the remaining platform data fields. */
3138 	state->pdata.disable_pwrdnb = 0;
3139 	state->pdata.disable_cable_det_rst = 0;
3140 	state->pdata.blank_data = 1;
3141 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3142 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3143 	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3144 	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3145 	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3146 
3147 	return 0;
3148 }
3149 
3150 static const struct regmap_config adv76xx_regmap_cnf[] = {
3151 	{
3152 		.name			= "io",
3153 		.reg_bits		= 8,
3154 		.val_bits		= 8,
3155 
3156 		.max_register		= 0xff,
3157 		.cache_type		= REGCACHE_NONE,
3158 	},
3159 	{
3160 		.name			= "avlink",
3161 		.reg_bits		= 8,
3162 		.val_bits		= 8,
3163 
3164 		.max_register		= 0xff,
3165 		.cache_type		= REGCACHE_NONE,
3166 	},
3167 	{
3168 		.name			= "cec",
3169 		.reg_bits		= 8,
3170 		.val_bits		= 8,
3171 
3172 		.max_register		= 0xff,
3173 		.cache_type		= REGCACHE_NONE,
3174 	},
3175 	{
3176 		.name			= "infoframe",
3177 		.reg_bits		= 8,
3178 		.val_bits		= 8,
3179 
3180 		.max_register		= 0xff,
3181 		.cache_type		= REGCACHE_NONE,
3182 	},
3183 	{
3184 		.name			= "esdp",
3185 		.reg_bits		= 8,
3186 		.val_bits		= 8,
3187 
3188 		.max_register		= 0xff,
3189 		.cache_type		= REGCACHE_NONE,
3190 	},
3191 	{
3192 		.name			= "epp",
3193 		.reg_bits		= 8,
3194 		.val_bits		= 8,
3195 
3196 		.max_register		= 0xff,
3197 		.cache_type		= REGCACHE_NONE,
3198 	},
3199 	{
3200 		.name			= "afe",
3201 		.reg_bits		= 8,
3202 		.val_bits		= 8,
3203 
3204 		.max_register		= 0xff,
3205 		.cache_type		= REGCACHE_NONE,
3206 	},
3207 	{
3208 		.name			= "rep",
3209 		.reg_bits		= 8,
3210 		.val_bits		= 8,
3211 
3212 		.max_register		= 0xff,
3213 		.cache_type		= REGCACHE_NONE,
3214 	},
3215 	{
3216 		.name			= "edid",
3217 		.reg_bits		= 8,
3218 		.val_bits		= 8,
3219 
3220 		.max_register		= 0xff,
3221 		.cache_type		= REGCACHE_NONE,
3222 	},
3223 
3224 	{
3225 		.name			= "hdmi",
3226 		.reg_bits		= 8,
3227 		.val_bits		= 8,
3228 
3229 		.max_register		= 0xff,
3230 		.cache_type		= REGCACHE_NONE,
3231 	},
3232 	{
3233 		.name			= "test",
3234 		.reg_bits		= 8,
3235 		.val_bits		= 8,
3236 
3237 		.max_register		= 0xff,
3238 		.cache_type		= REGCACHE_NONE,
3239 	},
3240 	{
3241 		.name			= "cp",
3242 		.reg_bits		= 8,
3243 		.val_bits		= 8,
3244 
3245 		.max_register		= 0xff,
3246 		.cache_type		= REGCACHE_NONE,
3247 	},
3248 	{
3249 		.name			= "vdp",
3250 		.reg_bits		= 8,
3251 		.val_bits		= 8,
3252 
3253 		.max_register		= 0xff,
3254 		.cache_type		= REGCACHE_NONE,
3255 	},
3256 };
3257 
3258 static int configure_regmap(struct adv76xx_state *state, int region)
3259 {
3260 	int err;
3261 
3262 	if (!state->i2c_clients[region])
3263 		return -ENODEV;
3264 
3265 	state->regmap[region] =
3266 		devm_regmap_init_i2c(state->i2c_clients[region],
3267 				     &adv76xx_regmap_cnf[region]);
3268 
3269 	if (IS_ERR(state->regmap[region])) {
3270 		err = PTR_ERR(state->regmap[region]);
3271 		v4l_err(state->i2c_clients[region],
3272 			"Error initializing regmap %d with error %d\n",
3273 			region, err);
3274 		return -EINVAL;
3275 	}
3276 
3277 	return 0;
3278 }
3279 
3280 static int configure_regmaps(struct adv76xx_state *state)
3281 {
3282 	int i, err;
3283 
3284 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3285 		err = configure_regmap(state, i);
3286 		if (err && (err != -ENODEV))
3287 			return err;
3288 	}
3289 	return 0;
3290 }
3291 
3292 static void adv76xx_reset(struct adv76xx_state *state)
3293 {
3294 	if (state->reset_gpio) {
3295 		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3296 		gpiod_set_value_cansleep(state->reset_gpio, 0);
3297 		usleep_range(5000, 10000);
3298 		gpiod_set_value_cansleep(state->reset_gpio, 1);
3299 		/* It is recommended to wait 5 ms after the low pulse before */
3300 		/* an I2C write is performed to the ADV76XX. */
3301 		usleep_range(5000, 10000);
3302 	}
3303 }
3304 
3305 static int adv76xx_probe(struct i2c_client *client,
3306 			 const struct i2c_device_id *id)
3307 {
3308 	static const struct v4l2_dv_timings cea640x480 =
3309 		V4L2_DV_BT_CEA_640X480P59_94;
3310 	struct adv76xx_state *state;
3311 	struct v4l2_ctrl_handler *hdl;
3312 	struct v4l2_ctrl *ctrl;
3313 	struct v4l2_subdev *sd;
3314 	unsigned int i;
3315 	unsigned int val, val2;
3316 	int err;
3317 
3318 	/* Check if the adapter supports the needed features */
3319 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3320 		return -EIO;
3321 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3322 			client->addr << 1);
3323 
3324 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3325 	if (!state)
3326 		return -ENOMEM;
3327 
3328 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3329 
3330 	/* initialize variables */
3331 	state->restart_stdi_once = true;
3332 	state->selected_input = ~0;
3333 
3334 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3335 		const struct of_device_id *oid;
3336 
3337 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3338 		state->info = oid->data;
3339 
3340 		err = adv76xx_parse_dt(state);
3341 		if (err < 0) {
3342 			v4l_err(client, "DT parsing error\n");
3343 			return err;
3344 		}
3345 	} else if (client->dev.platform_data) {
3346 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3347 
3348 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3349 		state->pdata = *pdata;
3350 	} else {
3351 		v4l_err(client, "No platform data!\n");
3352 		return -ENODEV;
3353 	}
3354 
3355 	/* Request GPIOs. */
3356 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3357 		state->hpd_gpio[i] =
3358 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3359 						      GPIOD_OUT_LOW);
3360 		if (IS_ERR(state->hpd_gpio[i]))
3361 			return PTR_ERR(state->hpd_gpio[i]);
3362 
3363 		if (state->hpd_gpio[i])
3364 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3365 	}
3366 	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3367 								GPIOD_OUT_HIGH);
3368 	if (IS_ERR(state->reset_gpio))
3369 		return PTR_ERR(state->reset_gpio);
3370 
3371 	adv76xx_reset(state);
3372 
3373 	state->timings = cea640x480;
3374 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3375 
3376 	sd = &state->sd;
3377 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3378 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3379 		id->name, i2c_adapter_id(client->adapter),
3380 		client->addr);
3381 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3382 	sd->internal_ops = &adv76xx_int_ops;
3383 
3384 	/* Configure IO Regmap region */
3385 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3386 
3387 	if (err) {
3388 		v4l2_err(sd, "Error configuring IO regmap region\n");
3389 		return -ENODEV;
3390 	}
3391 
3392 	/*
3393 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3394 	 * identifies the revision, while on ADV7611 it identifies the model as
3395 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3396 	 */
3397 	switch (state->info->type) {
3398 	case ADV7604:
3399 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3400 		if (err) {
3401 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3402 			return -ENODEV;
3403 		}
3404 		if (val != 0x68) {
3405 			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3406 					client->addr << 1);
3407 			return -ENODEV;
3408 		}
3409 		break;
3410 	case ADV7611:
3411 	case ADV7612:
3412 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3413 				0xea,
3414 				&val);
3415 		if (err) {
3416 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3417 			return -ENODEV;
3418 		}
3419 		val2 = val << 8;
3420 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3421 			    0xeb,
3422 			    &val);
3423 		if (err) {
3424 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3425 			return -ENODEV;
3426 		}
3427 		val |= val2;
3428 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3429 			(state->info->type == ADV7612 && val != 0x2041)) {
3430 			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3431 					client->addr << 1);
3432 			return -ENODEV;
3433 		}
3434 		break;
3435 	}
3436 
3437 	/* control handlers */
3438 	hdl = &state->hdl;
3439 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3440 
3441 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3442 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3443 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3444 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3445 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3446 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3447 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3448 			V4L2_CID_HUE, 0, 128, 1, 0);
3449 	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3450 			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3451 			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3452 	if (ctrl)
3453 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3454 
3455 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3456 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3457 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3458 	state->rgb_quantization_range_ctrl =
3459 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3460 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3461 			0, V4L2_DV_RGB_RANGE_AUTO);
3462 
3463 	/* custom controls */
3464 	if (adv76xx_has_afe(state))
3465 		state->analog_sampling_phase_ctrl =
3466 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3467 	state->free_run_color_manual_ctrl =
3468 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3469 	state->free_run_color_ctrl =
3470 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3471 
3472 	sd->ctrl_handler = hdl;
3473 	if (hdl->error) {
3474 		err = hdl->error;
3475 		goto err_hdl;
3476 	}
3477 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3478 		err = -ENODEV;
3479 		goto err_hdl;
3480 	}
3481 
3482 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3483 		if (!(BIT(i) & state->info->page_mask))
3484 			continue;
3485 
3486 		state->i2c_clients[i] = adv76xx_dummy_client(sd, i);
3487 		if (!state->i2c_clients[i]) {
3488 			err = -EINVAL;
3489 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3490 			goto err_i2c;
3491 		}
3492 	}
3493 
3494 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3495 			adv76xx_delayed_work_enable_hotplug);
3496 
3497 	state->source_pad = state->info->num_dv_ports
3498 			  + (state->info->has_afe ? 2 : 0);
3499 	for (i = 0; i < state->source_pad; ++i)
3500 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3501 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3502 	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3503 
3504 	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3505 				state->pads);
3506 	if (err)
3507 		goto err_work_queues;
3508 
3509 	/* Configure regmaps */
3510 	err = configure_regmaps(state);
3511 	if (err)
3512 		goto err_entity;
3513 
3514 	err = adv76xx_core_init(sd);
3515 	if (err)
3516 		goto err_entity;
3517 
3518 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3519 	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3520 		state, dev_name(&client->dev),
3521 		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3522 	err = PTR_ERR_OR_ZERO(state->cec_adap);
3523 	if (err)
3524 		goto err_entity;
3525 #endif
3526 
3527 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3528 			client->addr << 1, client->adapter->name);
3529 
3530 	err = v4l2_async_register_subdev(sd);
3531 	if (err)
3532 		goto err_entity;
3533 
3534 	return 0;
3535 
3536 err_entity:
3537 	media_entity_cleanup(&sd->entity);
3538 err_work_queues:
3539 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3540 err_i2c:
3541 	adv76xx_unregister_clients(state);
3542 err_hdl:
3543 	v4l2_ctrl_handler_free(hdl);
3544 	return err;
3545 }
3546 
3547 /* ----------------------------------------------------------------------- */
3548 
3549 static int adv76xx_remove(struct i2c_client *client)
3550 {
3551 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3552 	struct adv76xx_state *state = to_state(sd);
3553 
3554 	/* disable interrupts */
3555 	io_write(sd, 0x40, 0);
3556 	io_write(sd, 0x41, 0);
3557 	io_write(sd, 0x46, 0);
3558 	io_write(sd, 0x6e, 0);
3559 	io_write(sd, 0x73, 0);
3560 
3561 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3562 	v4l2_async_unregister_subdev(sd);
3563 	media_entity_cleanup(&sd->entity);
3564 	adv76xx_unregister_clients(to_state(sd));
3565 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3566 	return 0;
3567 }
3568 
3569 /* ----------------------------------------------------------------------- */
3570 
3571 static struct i2c_driver adv76xx_driver = {
3572 	.driver = {
3573 		.name = "adv7604",
3574 		.of_match_table = of_match_ptr(adv76xx_of_id),
3575 	},
3576 	.probe = adv76xx_probe,
3577 	.remove = adv76xx_remove,
3578 	.id_table = adv76xx_i2c_id,
3579 };
3580 
3581 module_i2c_driver(adv76xx_driver);
3582