xref: /linux/drivers/media/i2c/adv7604.c (revision 1a2ac6d7ecdcde74a4e16f31de64124160fc7237)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * adv7604 - Analog Devices ADV7604 video decoder driver
4  *
5  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  *
7  */
8 
9 /*
10  * References (c = chapter, p = page):
11  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12  *		Revision 2.5, June 2010
13  * REF_02 - Analog devices, Register map documentation, Documentation of
14  *		the register maps, Software manual, Rev. F, June 2010
15  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16  */
17 
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 #include <linux/interrupt.h>
31 
32 #include <media/i2c/adv7604.h>
33 #include <media/cec.h>
34 #include <media/v4l2-ctrls.h>
35 #include <media/v4l2-device.h>
36 #include <media/v4l2-event.h>
37 #include <media/v4l2-dv-timings.h>
38 #include <media/v4l2-fwnode.h>
39 
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
43 
44 MODULE_DESCRIPTION("Analog Devices ADV7604/10/11/12 video decoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47 MODULE_LICENSE("GPL");
48 
49 /* ADV7604 system clock frequency */
50 #define ADV76XX_FSC (28636360)
51 
52 #define ADV76XX_RGB_OUT					(1 << 1)
53 
54 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
55 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
56 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
57 
58 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
59 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
60 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
61 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
63 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
64 
65 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
66 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
67 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
68 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
69 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
70 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
71 
72 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
73 
74 #define ADV76XX_MAX_ADDRS (3)
75 
76 #define ADV76XX_MAX_EDID_BLOCKS 4
77 
78 enum adv76xx_type {
79 	ADV7604,
80 	ADV7611, // including ADV7610
81 	ADV7612,
82 };
83 
84 struct adv76xx_reg_seq {
85 	unsigned int reg;
86 	u8 val;
87 };
88 
89 struct adv76xx_format_info {
90 	u32 code;
91 	u8 op_ch_sel;
92 	bool rgb_out;
93 	bool swap_cb_cr;
94 	u8 op_format_sel;
95 };
96 
97 struct adv76xx_cfg_read_infoframe {
98 	const char *desc;
99 	u8 present_mask;
100 	u8 head_addr;
101 	u8 payload_addr;
102 };
103 
104 struct adv76xx_chip_info {
105 	enum adv76xx_type type;
106 
107 	bool has_afe;
108 	unsigned int max_port;
109 	unsigned int num_dv_ports;
110 
111 	unsigned int edid_enable_reg;
112 	unsigned int edid_status_reg;
113 	unsigned int edid_segment_reg;
114 	unsigned int edid_segment_mask;
115 	unsigned int edid_spa_loc_reg;
116 	unsigned int edid_spa_loc_msb_mask;
117 	unsigned int edid_spa_port_b_reg;
118 	unsigned int lcf_reg;
119 
120 	unsigned int cable_det_mask;
121 	unsigned int tdms_lock_mask;
122 	unsigned int fmt_change_digital_mask;
123 	unsigned int cp_csc;
124 
125 	unsigned int cec_irq_status;
126 	unsigned int cec_rx_enable;
127 	unsigned int cec_rx_enable_mask;
128 	bool cec_irq_swap;
129 
130 	const struct adv76xx_format_info *formats;
131 	unsigned int nformats;
132 
133 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
134 	void (*setup_irqs)(struct v4l2_subdev *sd);
135 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
136 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
137 
138 	/* 0 = AFE, 1 = HDMI */
139 	const struct adv76xx_reg_seq *recommended_settings[2];
140 	unsigned int num_recommended_settings[2];
141 
142 	unsigned long page_mask;
143 
144 	/* Masks for timings */
145 	unsigned int linewidth_mask;
146 	unsigned int field0_height_mask;
147 	unsigned int field1_height_mask;
148 	unsigned int hfrontporch_mask;
149 	unsigned int hsync_mask;
150 	unsigned int hbackporch_mask;
151 	unsigned int field0_vfrontporch_mask;
152 	unsigned int field1_vfrontporch_mask;
153 	unsigned int field0_vsync_mask;
154 	unsigned int field1_vsync_mask;
155 	unsigned int field0_vbackporch_mask;
156 	unsigned int field1_vbackporch_mask;
157 };
158 
159 /*
160  **********************************************************************
161  *
162  *  Arrays with configuration parameters for the ADV7604
163  *
164  **********************************************************************
165  */
166 
167 struct adv76xx_state {
168 	const struct adv76xx_chip_info *info;
169 	struct adv76xx_platform_data pdata;
170 
171 	struct gpio_desc *hpd_gpio[4];
172 	struct gpio_desc *reset_gpio;
173 
174 	struct v4l2_subdev sd;
175 	struct media_pad pads[ADV76XX_PAD_MAX];
176 	unsigned int source_pad;
177 
178 	struct v4l2_ctrl_handler hdl;
179 
180 	enum adv76xx_pad selected_input;
181 
182 	struct v4l2_dv_timings timings;
183 	const struct adv76xx_format_info *format;
184 
185 	struct {
186 		u8 edid[ADV76XX_MAX_EDID_BLOCKS * 128];
187 		u32 present;
188 		unsigned blocks;
189 	} edid;
190 	u16 spa_port_a[2];
191 	struct v4l2_fract aspect_ratio;
192 	u32 rgb_quantization_range;
193 	struct delayed_work delayed_work_enable_hotplug;
194 	bool restart_stdi_once;
195 
196 	/* CEC */
197 	struct cec_adapter *cec_adap;
198 	u8   cec_addr[ADV76XX_MAX_ADDRS];
199 	u8   cec_valid_addrs;
200 	bool cec_enabled_adap;
201 
202 	/* i2c clients */
203 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
204 
205 	/* Regmaps */
206 	struct regmap *regmap[ADV76XX_PAGE_MAX];
207 
208 	/* controls */
209 	struct v4l2_ctrl *detect_tx_5v_ctrl;
210 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
211 	struct v4l2_ctrl *free_run_color_manual_ctrl;
212 	struct v4l2_ctrl *free_run_color_ctrl;
213 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
214 };
215 
216 static bool adv76xx_has_afe(struct adv76xx_state *state)
217 {
218 	return state->info->has_afe;
219 }
220 
221 /* Unsupported timings. This device cannot support 720p30. */
222 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
223 	V4L2_DV_BT_CEA_1280X720P30,
224 	{ }
225 };
226 
227 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
228 {
229 	int i;
230 
231 	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
232 		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
233 			return false;
234 	return true;
235 }
236 
237 struct adv76xx_video_standards {
238 	struct v4l2_dv_timings timings;
239 	u8 vid_std;
240 	u8 v_freq;
241 };
242 
243 /* sorted by number of lines */
244 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
245 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
246 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
247 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
248 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
249 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
250 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
251 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
252 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
253 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
254 	/* TODO add 1920x1080P60_RB (CVT timing) */
255 	{ },
256 };
257 
258 /* sorted by number of lines */
259 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
260 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
261 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
262 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
263 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
264 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
265 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
266 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
267 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
268 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
269 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
270 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
271 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
272 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
273 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
274 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
275 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
276 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
277 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
278 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
279 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
280 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
281 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
282 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
283 	{ },
284 };
285 
286 /* sorted by number of lines */
287 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
288 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
289 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
290 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
291 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
292 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
293 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
294 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
295 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
296 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
297 	{ },
298 };
299 
300 /* sorted by number of lines */
301 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
302 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
303 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
304 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
305 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
306 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
307 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
308 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
309 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
310 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
311 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
312 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
313 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
314 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
315 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
316 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
317 	{ },
318 };
319 
320 static const struct v4l2_event adv76xx_ev_fmt = {
321 	.type = V4L2_EVENT_SOURCE_CHANGE,
322 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
323 };
324 
325 /* ----------------------------------------------------------------------- */
326 
327 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
328 {
329 	return container_of(sd, struct adv76xx_state, sd);
330 }
331 
332 static inline unsigned htotal(const struct v4l2_bt_timings *t)
333 {
334 	return V4L2_DV_BT_FRAME_WIDTH(t);
335 }
336 
337 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
338 {
339 	return V4L2_DV_BT_FRAME_HEIGHT(t);
340 }
341 
342 /* ----------------------------------------------------------------------- */
343 
344 static int adv76xx_read_check(struct adv76xx_state *state,
345 			     int client_page, u8 reg)
346 {
347 	struct i2c_client *client = state->i2c_clients[client_page];
348 	int err;
349 	unsigned int val;
350 
351 	err = regmap_read(state->regmap[client_page], reg, &val);
352 
353 	if (err) {
354 		v4l_err(client, "error reading %02x, %02x\n",
355 				client->addr, reg);
356 		return err;
357 	}
358 	return val;
359 }
360 
361 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
362  * size to one or more registers.
363  *
364  * A value of zero will be returned on success, a negative errno will
365  * be returned in error cases.
366  */
367 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
368 			      unsigned int init_reg, const void *val,
369 			      size_t val_len)
370 {
371 	struct regmap *regmap = state->regmap[client_page];
372 
373 	if (val_len > I2C_SMBUS_BLOCK_MAX)
374 		val_len = I2C_SMBUS_BLOCK_MAX;
375 
376 	return regmap_raw_write(regmap, init_reg, val, val_len);
377 }
378 
379 /* ----------------------------------------------------------------------- */
380 
381 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
382 {
383 	struct adv76xx_state *state = to_state(sd);
384 
385 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
386 }
387 
388 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
389 {
390 	struct adv76xx_state *state = to_state(sd);
391 
392 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
393 }
394 
395 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
396 				   u8 val)
397 {
398 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
399 }
400 
401 static inline int __always_unused avlink_read(struct v4l2_subdev *sd, u8 reg)
402 {
403 	struct adv76xx_state *state = to_state(sd);
404 
405 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
406 }
407 
408 static inline int __always_unused avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
409 {
410 	struct adv76xx_state *state = to_state(sd);
411 
412 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
413 }
414 
415 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
416 {
417 	struct adv76xx_state *state = to_state(sd);
418 
419 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
420 }
421 
422 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
423 {
424 	struct adv76xx_state *state = to_state(sd);
425 
426 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
427 }
428 
429 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
430 				   u8 val)
431 {
432 	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
433 }
434 
435 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
436 {
437 	struct adv76xx_state *state = to_state(sd);
438 
439 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
440 }
441 
442 static inline int __always_unused infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
443 {
444 	struct adv76xx_state *state = to_state(sd);
445 
446 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
447 }
448 
449 static inline int __always_unused afe_read(struct v4l2_subdev *sd, u8 reg)
450 {
451 	struct adv76xx_state *state = to_state(sd);
452 
453 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
454 }
455 
456 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
457 {
458 	struct adv76xx_state *state = to_state(sd);
459 
460 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
461 }
462 
463 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
464 {
465 	struct adv76xx_state *state = to_state(sd);
466 
467 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
468 }
469 
470 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
471 {
472 	struct adv76xx_state *state = to_state(sd);
473 
474 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
475 }
476 
477 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
478 {
479 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
480 }
481 
482 static inline int __always_unused edid_read(struct v4l2_subdev *sd, u8 reg)
483 {
484 	struct adv76xx_state *state = to_state(sd);
485 
486 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
487 }
488 
489 static inline int __always_unused edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
490 {
491 	struct adv76xx_state *state = to_state(sd);
492 
493 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
494 }
495 
496 static inline int edid_write_block(struct v4l2_subdev *sd,
497 					unsigned int total_len, const u8 *val)
498 {
499 	struct adv76xx_state *state = to_state(sd);
500 	int err = 0;
501 	int i = 0;
502 	int len = 0;
503 
504 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
505 				__func__, total_len);
506 
507 	while (!err && i < total_len) {
508 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
509 				I2C_SMBUS_BLOCK_MAX :
510 				(total_len - i);
511 
512 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
513 				i, val + i, len);
514 		i += len;
515 	}
516 
517 	return err;
518 }
519 
520 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
521 {
522 	const struct adv76xx_chip_info *info = state->info;
523 	unsigned int i;
524 
525 	if (info->type == ADV7604) {
526 		for (i = 0; i < state->info->num_dv_ports; ++i)
527 			gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
528 	} else {
529 		for (i = 0; i < state->info->num_dv_ports; ++i)
530 			io_write_clr_set(&state->sd, 0x20, 0x80 >> i,
531 					 (!!(hpd & BIT(i))) << (7 - i));
532 	}
533 
534 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
535 }
536 
537 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
538 {
539 	struct delayed_work *dwork = to_delayed_work(work);
540 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
541 						delayed_work_enable_hotplug);
542 	struct v4l2_subdev *sd = &state->sd;
543 
544 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
545 
546 	adv76xx_set_hpd(state, state->edid.present);
547 }
548 
549 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
550 {
551 	struct adv76xx_state *state = to_state(sd);
552 
553 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
554 }
555 
556 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
557 {
558 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
559 }
560 
561 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
562 {
563 	struct adv76xx_state *state = to_state(sd);
564 
565 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
566 }
567 
568 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
569 {
570 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
571 }
572 
573 static inline int __always_unused test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
574 {
575 	struct adv76xx_state *state = to_state(sd);
576 
577 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
578 }
579 
580 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
581 {
582 	struct adv76xx_state *state = to_state(sd);
583 
584 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
585 }
586 
587 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
588 {
589 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
590 }
591 
592 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
593 {
594 	struct adv76xx_state *state = to_state(sd);
595 
596 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
597 }
598 
599 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
600 {
601 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
602 }
603 
604 static inline int __always_unused vdp_read(struct v4l2_subdev *sd, u8 reg)
605 {
606 	struct adv76xx_state *state = to_state(sd);
607 
608 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
609 }
610 
611 static inline int __always_unused vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
612 {
613 	struct adv76xx_state *state = to_state(sd);
614 
615 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
616 }
617 
618 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
619 #define ADV76XX_REG_SEQ_TERM		0xffff
620 
621 #ifdef CONFIG_VIDEO_ADV_DEBUG
622 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
623 {
624 	struct adv76xx_state *state = to_state(sd);
625 	unsigned int page = reg >> 8;
626 	unsigned int val;
627 	int err;
628 
629 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
630 		return -EINVAL;
631 
632 	reg &= 0xff;
633 	err = regmap_read(state->regmap[page], reg, &val);
634 
635 	return err ? err : val;
636 }
637 #endif
638 
639 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
640 {
641 	struct adv76xx_state *state = to_state(sd);
642 	unsigned int page = reg >> 8;
643 
644 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
645 		return -EINVAL;
646 
647 	reg &= 0xff;
648 
649 	return regmap_write(state->regmap[page], reg, val);
650 }
651 
652 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
653 				  const struct adv76xx_reg_seq *reg_seq)
654 {
655 	unsigned int i;
656 
657 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
658 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
659 }
660 
661 /* -----------------------------------------------------------------------------
662  * Format helpers
663  */
664 
665 static const struct adv76xx_format_info adv7604_formats[] = {
666 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
667 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
668 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
669 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
670 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
671 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
672 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
673 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
674 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
675 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
676 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
677 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
678 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
679 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
680 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
681 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
682 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
683 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
684 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
685 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
686 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
687 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
688 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
689 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
690 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
691 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
692 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
693 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
694 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
695 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
696 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
697 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
698 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
699 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
700 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
701 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
702 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
703 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
704 };
705 
706 static const struct adv76xx_format_info adv7611_formats[] = {
707 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
708 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
709 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
710 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
711 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
712 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
713 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
714 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
715 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
716 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
717 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
718 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
719 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
720 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
721 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
722 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
723 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
724 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
725 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
726 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
727 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
728 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
729 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
730 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
731 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
732 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
733 };
734 
735 static const struct adv76xx_format_info adv7612_formats[] = {
736 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
737 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
738 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
739 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
740 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
741 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
742 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
743 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
744 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
745 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
746 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
747 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
748 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
749 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
750 };
751 
752 static const struct adv76xx_format_info *
753 adv76xx_format_info(struct adv76xx_state *state, u32 code)
754 {
755 	unsigned int i;
756 
757 	for (i = 0; i < state->info->nformats; ++i) {
758 		if (state->info->formats[i].code == code)
759 			return &state->info->formats[i];
760 	}
761 
762 	return NULL;
763 }
764 
765 /* ----------------------------------------------------------------------- */
766 
767 static inline bool is_analog_input(struct v4l2_subdev *sd)
768 {
769 	struct adv76xx_state *state = to_state(sd);
770 
771 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
772 	       state->selected_input == ADV7604_PAD_VGA_COMP;
773 }
774 
775 static inline bool is_digital_input(struct v4l2_subdev *sd)
776 {
777 	struct adv76xx_state *state = to_state(sd);
778 
779 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
780 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
781 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
782 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
783 }
784 
785 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
786 	.type = V4L2_DV_BT_656_1120,
787 	/* keep this initialization for compatibility with GCC < 4.4.6 */
788 	.reserved = { 0 },
789 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
790 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
791 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
792 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
793 			V4L2_DV_BT_CAP_CUSTOM)
794 };
795 
796 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
797 	.type = V4L2_DV_BT_656_1120,
798 	/* keep this initialization for compatibility with GCC < 4.4.6 */
799 	.reserved = { 0 },
800 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
801 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
802 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
803 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
804 			V4L2_DV_BT_CAP_CUSTOM)
805 };
806 
807 /*
808  * Return the DV timings capabilities for the requested sink pad. As a special
809  * case, pad value -1 returns the capabilities for the currently selected input.
810  */
811 static const struct v4l2_dv_timings_cap *
812 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
813 {
814 	if (pad == -1) {
815 		struct adv76xx_state *state = to_state(sd);
816 
817 		pad = state->selected_input;
818 	}
819 
820 	switch (pad) {
821 	case ADV76XX_PAD_HDMI_PORT_A:
822 	case ADV7604_PAD_HDMI_PORT_B:
823 	case ADV7604_PAD_HDMI_PORT_C:
824 	case ADV7604_PAD_HDMI_PORT_D:
825 		return &adv76xx_timings_cap_digital;
826 
827 	case ADV7604_PAD_VGA_RGB:
828 	case ADV7604_PAD_VGA_COMP:
829 	default:
830 		return &adv7604_timings_cap_analog;
831 	}
832 }
833 
834 
835 /* ----------------------------------------------------------------------- */
836 
837 #ifdef CONFIG_VIDEO_ADV_DEBUG
838 static void adv76xx_inv_register(struct v4l2_subdev *sd)
839 {
840 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
841 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
842 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
843 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
844 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
845 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
846 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
847 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
848 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
849 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
850 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
851 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
852 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
853 }
854 
855 static int adv76xx_g_register(struct v4l2_subdev *sd,
856 					struct v4l2_dbg_register *reg)
857 {
858 	int ret;
859 
860 	ret = adv76xx_read_reg(sd, reg->reg);
861 	if (ret < 0) {
862 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
863 		adv76xx_inv_register(sd);
864 		return ret;
865 	}
866 
867 	reg->size = 1;
868 	reg->val = ret;
869 
870 	return 0;
871 }
872 
873 static int adv76xx_s_register(struct v4l2_subdev *sd,
874 					const struct v4l2_dbg_register *reg)
875 {
876 	int ret;
877 
878 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
879 	if (ret < 0) {
880 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
881 		adv76xx_inv_register(sd);
882 		return ret;
883 	}
884 
885 	return 0;
886 }
887 #endif
888 
889 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
890 {
891 	u8 value = io_read(sd, 0x6f);
892 
893 	return ((value & 0x10) >> 4)
894 	     | ((value & 0x08) >> 2)
895 	     | ((value & 0x04) << 0)
896 	     | ((value & 0x02) << 2);
897 }
898 
899 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
900 {
901 	u8 value = io_read(sd, 0x6f);
902 
903 	return value & 1;
904 }
905 
906 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
907 {
908 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
909 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
910 	 */
911 	u8 value = io_read(sd, 0x6f);
912 
913 	return value & 1;
914 }
915 
916 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
917 {
918 	struct adv76xx_state *state = to_state(sd);
919 	const struct adv76xx_chip_info *info = state->info;
920 	u16 cable_det = info->read_cable_det(sd);
921 
922 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
923 }
924 
925 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
926 		u8 prim_mode,
927 		const struct adv76xx_video_standards *predef_vid_timings,
928 		const struct v4l2_dv_timings *timings)
929 {
930 	int i;
931 
932 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
933 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
934 				is_digital_input(sd) ? 250000 : 1000000, false))
935 			continue;
936 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
937 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
938 				prim_mode); /* v_freq and prim mode */
939 		return 0;
940 	}
941 
942 	return -1;
943 }
944 
945 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
946 		struct v4l2_dv_timings *timings)
947 {
948 	struct adv76xx_state *state = to_state(sd);
949 	int err;
950 
951 	v4l2_dbg(1, debug, sd, "%s", __func__);
952 
953 	if (adv76xx_has_afe(state)) {
954 		/* reset to default values */
955 		io_write(sd, 0x16, 0x43);
956 		io_write(sd, 0x17, 0x5a);
957 	}
958 	/* disable embedded syncs for auto graphics mode */
959 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
960 	cp_write(sd, 0x8f, 0x00);
961 	cp_write(sd, 0x90, 0x00);
962 	cp_write(sd, 0xa2, 0x00);
963 	cp_write(sd, 0xa3, 0x00);
964 	cp_write(sd, 0xa4, 0x00);
965 	cp_write(sd, 0xa5, 0x00);
966 	cp_write(sd, 0xa6, 0x00);
967 	cp_write(sd, 0xa7, 0x00);
968 	cp_write(sd, 0xab, 0x00);
969 	cp_write(sd, 0xac, 0x00);
970 
971 	if (is_analog_input(sd)) {
972 		err = find_and_set_predefined_video_timings(sd,
973 				0x01, adv7604_prim_mode_comp, timings);
974 		if (err)
975 			err = find_and_set_predefined_video_timings(sd,
976 					0x02, adv7604_prim_mode_gr, timings);
977 	} else if (is_digital_input(sd)) {
978 		err = find_and_set_predefined_video_timings(sd,
979 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
980 		if (err)
981 			err = find_and_set_predefined_video_timings(sd,
982 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
983 	} else {
984 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
985 				__func__, state->selected_input);
986 		err = -1;
987 	}
988 
989 
990 	return err;
991 }
992 
993 static void configure_custom_video_timings(struct v4l2_subdev *sd,
994 		const struct v4l2_bt_timings *bt)
995 {
996 	struct adv76xx_state *state = to_state(sd);
997 	u32 width = htotal(bt);
998 	u32 height = vtotal(bt);
999 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
1000 	u16 cp_start_eav = width - bt->hfrontporch;
1001 	u16 cp_start_vbi = height - bt->vfrontporch;
1002 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
1003 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
1004 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
1005 	const u8 pll[2] = {
1006 		0xc0 | ((width >> 8) & 0x1f),
1007 		width & 0xff
1008 	};
1009 
1010 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
1011 
1012 	if (is_analog_input(sd)) {
1013 		/* auto graphics */
1014 		io_write(sd, 0x00, 0x07); /* video std */
1015 		io_write(sd, 0x01, 0x02); /* prim mode */
1016 		/* enable embedded syncs for auto graphics mode */
1017 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1018 
1019 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1020 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1021 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1022 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1023 					0x16, pll, 2))
1024 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1025 
1026 		/* active video - horizontal timing */
1027 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1028 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1029 				   ((cp_start_eav >> 8) & 0x0f));
1030 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1031 
1032 		/* active video - vertical timing */
1033 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1034 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1035 				   ((cp_end_vbi >> 8) & 0xf));
1036 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1037 	} else if (is_digital_input(sd)) {
1038 		/* set default prim_mode/vid_std for HDMI
1039 		   according to [REF_03, c. 4.2] */
1040 		io_write(sd, 0x00, 0x02); /* video std */
1041 		io_write(sd, 0x01, 0x06); /* prim mode */
1042 	} else {
1043 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1044 				__func__, state->selected_input);
1045 	}
1046 
1047 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1048 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1049 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1050 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1051 }
1052 
1053 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1054 {
1055 	struct adv76xx_state *state = to_state(sd);
1056 	u8 offset_buf[4];
1057 
1058 	if (auto_offset) {
1059 		offset_a = 0x3ff;
1060 		offset_b = 0x3ff;
1061 		offset_c = 0x3ff;
1062 	}
1063 
1064 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1065 			__func__, auto_offset ? "Auto" : "Manual",
1066 			offset_a, offset_b, offset_c);
1067 
1068 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1069 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1070 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1071 	offset_buf[3] = offset_c & 0x0ff;
1072 
1073 	/* Registers must be written in this order with no i2c access in between */
1074 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1075 			0x77, offset_buf, 4))
1076 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1077 }
1078 
1079 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1080 {
1081 	struct adv76xx_state *state = to_state(sd);
1082 	u8 gain_buf[4];
1083 	u8 gain_man = 1;
1084 	u8 agc_mode_man = 1;
1085 
1086 	if (auto_gain) {
1087 		gain_man = 0;
1088 		agc_mode_man = 0;
1089 		gain_a = 0x100;
1090 		gain_b = 0x100;
1091 		gain_c = 0x100;
1092 	}
1093 
1094 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1095 			__func__, auto_gain ? "Auto" : "Manual",
1096 			gain_a, gain_b, gain_c);
1097 
1098 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1099 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1100 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1101 	gain_buf[3] = ((gain_c & 0x0ff));
1102 
1103 	/* Registers must be written in this order with no i2c access in between */
1104 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1105 			     0x73, gain_buf, 4))
1106 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1107 }
1108 
1109 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1110 {
1111 	struct adv76xx_state *state = to_state(sd);
1112 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1113 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1114 	u8 y = HDMI_COLORSPACE_RGB;
1115 
1116 	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1117 		y = infoframe_read(sd, 0x01) >> 5;
1118 
1119 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1120 			__func__, state->rgb_quantization_range,
1121 			rgb_output, hdmi_signal);
1122 
1123 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1124 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1125 	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1126 
1127 	switch (state->rgb_quantization_range) {
1128 	case V4L2_DV_RGB_RANGE_AUTO:
1129 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1130 			/* Receiving analog RGB signal
1131 			 * Set RGB full range (0-255) */
1132 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1133 			break;
1134 		}
1135 
1136 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1137 			/* Receiving analog YPbPr signal
1138 			 * Set automode */
1139 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1140 			break;
1141 		}
1142 
1143 		if (hdmi_signal) {
1144 			/* Receiving HDMI signal
1145 			 * Set automode */
1146 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1147 			break;
1148 		}
1149 
1150 		/* Receiving DVI-D signal
1151 		 * ADV7604 selects RGB limited range regardless of
1152 		 * input format (CE/IT) in automatic mode */
1153 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1154 			/* RGB limited range (16-235) */
1155 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1156 		} else {
1157 			/* RGB full range (0-255) */
1158 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1159 
1160 			if (is_digital_input(sd) && rgb_output) {
1161 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1162 			} else {
1163 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1164 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1165 			}
1166 		}
1167 		break;
1168 	case V4L2_DV_RGB_RANGE_LIMITED:
1169 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170 			/* YCrCb limited range (16-235) */
1171 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1172 			break;
1173 		}
1174 
1175 		if (y != HDMI_COLORSPACE_RGB)
1176 			break;
1177 
1178 		/* RGB limited range (16-235) */
1179 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1180 
1181 		break;
1182 	case V4L2_DV_RGB_RANGE_FULL:
1183 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1184 			/* YCrCb full range (0-255) */
1185 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1186 			break;
1187 		}
1188 
1189 		if (y != HDMI_COLORSPACE_RGB)
1190 			break;
1191 
1192 		/* RGB full range (0-255) */
1193 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1194 
1195 		if (is_analog_input(sd) || hdmi_signal)
1196 			break;
1197 
1198 		/* Adjust gain/offset for DVI-D signals only */
1199 		if (rgb_output) {
1200 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1201 		} else {
1202 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1203 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1204 		}
1205 		break;
1206 	}
1207 }
1208 
1209 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1210 {
1211 	struct v4l2_subdev *sd =
1212 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1213 
1214 	struct adv76xx_state *state = to_state(sd);
1215 
1216 	switch (ctrl->id) {
1217 	case V4L2_CID_BRIGHTNESS:
1218 		cp_write(sd, 0x3c, ctrl->val);
1219 		return 0;
1220 	case V4L2_CID_CONTRAST:
1221 		cp_write(sd, 0x3a, ctrl->val);
1222 		return 0;
1223 	case V4L2_CID_SATURATION:
1224 		cp_write(sd, 0x3b, ctrl->val);
1225 		return 0;
1226 	case V4L2_CID_HUE:
1227 		cp_write(sd, 0x3d, ctrl->val);
1228 		return 0;
1229 	case  V4L2_CID_DV_RX_RGB_RANGE:
1230 		state->rgb_quantization_range = ctrl->val;
1231 		set_rgb_quantization_range(sd);
1232 		return 0;
1233 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1234 		if (!adv76xx_has_afe(state))
1235 			return -EINVAL;
1236 		/* Set the analog sampling phase. This is needed to find the
1237 		   best sampling phase for analog video: an application or
1238 		   driver has to try a number of phases and analyze the picture
1239 		   quality before settling on the best performing phase. */
1240 		afe_write(sd, 0xc8, ctrl->val);
1241 		return 0;
1242 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1243 		/* Use the default blue color for free running mode,
1244 		   or supply your own. */
1245 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1246 		return 0;
1247 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1248 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1249 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1250 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1251 		return 0;
1252 	}
1253 	return -EINVAL;
1254 }
1255 
1256 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1257 {
1258 	struct v4l2_subdev *sd =
1259 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1260 
1261 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1262 		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1263 		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1264 			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1265 		return 0;
1266 	}
1267 	return -EINVAL;
1268 }
1269 
1270 /* ----------------------------------------------------------------------- */
1271 
1272 static inline bool no_power(struct v4l2_subdev *sd)
1273 {
1274 	/* Entire chip or CP powered off */
1275 	return io_read(sd, 0x0c) & 0x24;
1276 }
1277 
1278 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1279 {
1280 	struct adv76xx_state *state = to_state(sd);
1281 
1282 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1283 }
1284 
1285 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1286 {
1287 	struct adv76xx_state *state = to_state(sd);
1288 	const struct adv76xx_chip_info *info = state->info;
1289 
1290 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1291 }
1292 
1293 static inline bool is_hdmi(struct v4l2_subdev *sd)
1294 {
1295 	return hdmi_read(sd, 0x05) & 0x80;
1296 }
1297 
1298 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1299 {
1300 	struct adv76xx_state *state = to_state(sd);
1301 
1302 	/*
1303 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1304 	 * that we have a lock.
1305 	 */
1306 	if (adv76xx_has_afe(state))
1307 		return false;
1308 
1309 	/* TODO channel 2 */
1310 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1311 }
1312 
1313 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1314 {
1315 	/* TODO channel 2 */
1316 	return !(cp_read(sd, 0xb1) & 0x80);
1317 }
1318 
1319 static inline bool no_signal(struct v4l2_subdev *sd)
1320 {
1321 	bool ret;
1322 
1323 	ret = no_power(sd);
1324 
1325 	ret |= no_lock_stdi(sd);
1326 	ret |= no_lock_sspd(sd);
1327 
1328 	if (is_digital_input(sd)) {
1329 		ret |= no_lock_tmds(sd);
1330 		ret |= no_signal_tmds(sd);
1331 	}
1332 
1333 	return ret;
1334 }
1335 
1336 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1337 {
1338 	struct adv76xx_state *state = to_state(sd);
1339 
1340 	if (!adv76xx_has_afe(state))
1341 		return false;
1342 
1343 	/* CP has detected a non standard number of lines on the incoming
1344 	   video compared to what it is configured to receive by s_dv_timings */
1345 	return io_read(sd, 0x12) & 0x01;
1346 }
1347 
1348 static inline bool in_free_run(struct v4l2_subdev *sd)
1349 {
1350 	return cp_read(sd, 0xff) & 0x10;
1351 }
1352 
1353 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1354 {
1355 	*status = 0;
1356 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1357 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1358 	if (!in_free_run(sd) && no_lock_cp(sd))
1359 		*status |= is_digital_input(sd) ?
1360 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1361 
1362 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1363 
1364 	return 0;
1365 }
1366 
1367 /* ----------------------------------------------------------------------- */
1368 
1369 struct stdi_readback {
1370 	u16 bl, lcf, lcvs;
1371 	u8 hs_pol, vs_pol;
1372 	bool interlaced;
1373 };
1374 
1375 static int stdi2dv_timings(struct v4l2_subdev *sd,
1376 		struct stdi_readback *stdi,
1377 		struct v4l2_dv_timings *timings)
1378 {
1379 	struct adv76xx_state *state = to_state(sd);
1380 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1381 	u32 pix_clk;
1382 	int i;
1383 
1384 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1385 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1386 
1387 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1388 					   adv76xx_get_dv_timings_cap(sd, -1),
1389 					   adv76xx_check_dv_timings, NULL))
1390 			continue;
1391 		if (vtotal(bt) != stdi->lcf + 1)
1392 			continue;
1393 		if (bt->vsync != stdi->lcvs)
1394 			continue;
1395 
1396 		pix_clk = hfreq * htotal(bt);
1397 
1398 		if ((pix_clk < bt->pixelclock + 1000000) &&
1399 		    (pix_clk > bt->pixelclock - 1000000)) {
1400 			*timings = v4l2_dv_timings_presets[i];
1401 			return 0;
1402 		}
1403 	}
1404 
1405 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1406 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1407 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1408 			false, timings))
1409 		return 0;
1410 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1411 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1412 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1413 			false, state->aspect_ratio, timings))
1414 		return 0;
1415 
1416 	v4l2_dbg(2, debug, sd,
1417 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1418 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1419 		stdi->hs_pol, stdi->vs_pol);
1420 	return -1;
1421 }
1422 
1423 
1424 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1425 {
1426 	struct adv76xx_state *state = to_state(sd);
1427 	const struct adv76xx_chip_info *info = state->info;
1428 	u8 polarity;
1429 
1430 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1431 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1432 		return -1;
1433 	}
1434 
1435 	/* read STDI */
1436 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1437 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1438 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1439 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1440 
1441 	if (adv76xx_has_afe(state)) {
1442 		/* read SSPD */
1443 		polarity = cp_read(sd, 0xb5);
1444 		if ((polarity & 0x03) == 0x01) {
1445 			stdi->hs_pol = polarity & 0x10
1446 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1447 			stdi->vs_pol = polarity & 0x40
1448 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1449 		} else {
1450 			stdi->hs_pol = 'x';
1451 			stdi->vs_pol = 'x';
1452 		}
1453 	} else {
1454 		polarity = hdmi_read(sd, 0x05);
1455 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1456 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1457 	}
1458 
1459 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1460 		v4l2_dbg(2, debug, sd,
1461 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1462 		return -1;
1463 	}
1464 
1465 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1466 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1467 		memset(stdi, 0, sizeof(struct stdi_readback));
1468 		return -1;
1469 	}
1470 
1471 	v4l2_dbg(2, debug, sd,
1472 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1473 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1474 		stdi->hs_pol, stdi->vs_pol,
1475 		stdi->interlaced ? "interlaced" : "progressive");
1476 
1477 	return 0;
1478 }
1479 
1480 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1481 			struct v4l2_enum_dv_timings *timings)
1482 {
1483 	struct adv76xx_state *state = to_state(sd);
1484 
1485 	if (timings->pad >= state->source_pad)
1486 		return -EINVAL;
1487 
1488 	return v4l2_enum_dv_timings_cap(timings,
1489 		adv76xx_get_dv_timings_cap(sd, timings->pad),
1490 		adv76xx_check_dv_timings, NULL);
1491 }
1492 
1493 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1494 			struct v4l2_dv_timings_cap *cap)
1495 {
1496 	struct adv76xx_state *state = to_state(sd);
1497 	unsigned int pad = cap->pad;
1498 
1499 	if (cap->pad >= state->source_pad)
1500 		return -EINVAL;
1501 
1502 	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1503 	cap->pad = pad;
1504 
1505 	return 0;
1506 }
1507 
1508 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1509    if the format is listed in adv76xx_timings[] */
1510 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1511 		struct v4l2_dv_timings *timings)
1512 {
1513 	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1514 				 is_digital_input(sd) ? 250000 : 1000000,
1515 				 adv76xx_check_dv_timings, NULL);
1516 }
1517 
1518 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1519 {
1520 	int a, b;
1521 
1522 	a = hdmi_read(sd, 0x06);
1523 	b = hdmi_read(sd, 0x3b);
1524 	if (a < 0 || b < 0)
1525 		return 0;
1526 
1527 	return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1528 }
1529 
1530 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1531 {
1532 	int a, b;
1533 
1534 	a = hdmi_read(sd, 0x51);
1535 	b = hdmi_read(sd, 0x52);
1536 	if (a < 0 || b < 0)
1537 		return 0;
1538 
1539 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1540 }
1541 
1542 static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1543 {
1544 	struct adv76xx_state *state = to_state(sd);
1545 	const struct adv76xx_chip_info *info = state->info;
1546 	unsigned int freq, bits_per_channel, pixelrepetition;
1547 
1548 	freq = info->read_hdmi_pixelclock(sd);
1549 	if (is_hdmi(sd)) {
1550 		/* adjust for deep color mode and pixel repetition */
1551 		bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1552 		pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1553 
1554 		freq = freq * 8 / bits_per_channel / pixelrepetition;
1555 	}
1556 
1557 	return freq;
1558 }
1559 
1560 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1561 			struct v4l2_dv_timings *timings)
1562 {
1563 	struct adv76xx_state *state = to_state(sd);
1564 	const struct adv76xx_chip_info *info = state->info;
1565 	struct v4l2_bt_timings *bt = &timings->bt;
1566 	struct stdi_readback stdi;
1567 
1568 	if (!timings)
1569 		return -EINVAL;
1570 
1571 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1572 
1573 	if (no_signal(sd)) {
1574 		state->restart_stdi_once = true;
1575 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1576 		return -ENOLINK;
1577 	}
1578 
1579 	/* read STDI */
1580 	if (read_stdi(sd, &stdi)) {
1581 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1582 		return -ENOLINK;
1583 	}
1584 	bt->interlaced = stdi.interlaced ?
1585 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1586 
1587 	if (is_digital_input(sd)) {
1588 		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1589 		u8 vic = 0;
1590 		u32 w, h;
1591 
1592 		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1593 		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1594 
1595 		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1596 			vic = infoframe_read(sd, 0x04);
1597 
1598 		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1599 		    bt->width == w && bt->height == h)
1600 			goto found;
1601 
1602 		timings->type = V4L2_DV_BT_656_1120;
1603 
1604 		bt->width = w;
1605 		bt->height = h;
1606 		bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1607 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1608 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1609 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1610 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1611 			info->field0_vfrontporch_mask) / 2;
1612 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1613 		bt->vbackporch = hdmi_read16(sd, 0x32,
1614 			info->field0_vbackporch_mask) / 2;
1615 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1616 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1617 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1618 			bt->height += hdmi_read16(sd, 0x0b,
1619 				info->field1_height_mask);
1620 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1621 				info->field1_vfrontporch_mask) / 2;
1622 			bt->il_vsync = hdmi_read16(sd, 0x30,
1623 				info->field1_vsync_mask) / 2;
1624 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1625 				info->field1_vbackporch_mask) / 2;
1626 		}
1627 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1628 	} else {
1629 		/* find format
1630 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1631 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1632 		 */
1633 		if (!stdi2dv_timings(sd, &stdi, timings))
1634 			goto found;
1635 		stdi.lcvs += 1;
1636 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1637 		if (!stdi2dv_timings(sd, &stdi, timings))
1638 			goto found;
1639 		stdi.lcvs -= 2;
1640 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1641 		if (stdi2dv_timings(sd, &stdi, timings)) {
1642 			/*
1643 			 * The STDI block may measure wrong values, especially
1644 			 * for lcvs and lcf. If the driver can not find any
1645 			 * valid timing, the STDI block is restarted to measure
1646 			 * the video timings again. The function will return an
1647 			 * error, but the restart of STDI will generate a new
1648 			 * STDI interrupt and the format detection process will
1649 			 * restart.
1650 			 */
1651 			if (state->restart_stdi_once) {
1652 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1653 				/* TODO restart STDI for Sync Channel 2 */
1654 				/* enter one-shot mode */
1655 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1656 				/* trigger STDI restart */
1657 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1658 				/* reset to continuous mode */
1659 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1660 				state->restart_stdi_once = false;
1661 				return -ENOLINK;
1662 			}
1663 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1664 			return -ERANGE;
1665 		}
1666 		state->restart_stdi_once = true;
1667 	}
1668 found:
1669 
1670 	if (no_signal(sd)) {
1671 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1672 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1673 		return -ENOLINK;
1674 	}
1675 
1676 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1677 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1678 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1679 				__func__, (u32)bt->pixelclock);
1680 		return -ERANGE;
1681 	}
1682 
1683 	if (debug > 1)
1684 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1685 				      timings, true);
1686 
1687 	return 0;
1688 }
1689 
1690 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1691 		struct v4l2_dv_timings *timings)
1692 {
1693 	struct adv76xx_state *state = to_state(sd);
1694 	struct v4l2_bt_timings *bt;
1695 	int err;
1696 
1697 	if (!timings)
1698 		return -EINVAL;
1699 
1700 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1701 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1702 		return 0;
1703 	}
1704 
1705 	bt = &timings->bt;
1706 
1707 	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1708 				   adv76xx_check_dv_timings, NULL))
1709 		return -ERANGE;
1710 
1711 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1712 
1713 	state->timings = *timings;
1714 
1715 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1716 
1717 	/* Use prim_mode and vid_std when available */
1718 	err = configure_predefined_video_timings(sd, timings);
1719 	if (err) {
1720 		/* custom settings when the video format
1721 		 does not have prim_mode/vid_std */
1722 		configure_custom_video_timings(sd, bt);
1723 	}
1724 
1725 	set_rgb_quantization_range(sd);
1726 
1727 	if (debug > 1)
1728 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1729 				      timings, true);
1730 	return 0;
1731 }
1732 
1733 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1734 		struct v4l2_dv_timings *timings)
1735 {
1736 	struct adv76xx_state *state = to_state(sd);
1737 
1738 	*timings = state->timings;
1739 	return 0;
1740 }
1741 
1742 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1743 {
1744 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1745 }
1746 
1747 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1748 {
1749 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1750 }
1751 
1752 static void enable_input(struct v4l2_subdev *sd)
1753 {
1754 	struct adv76xx_state *state = to_state(sd);
1755 
1756 	if (is_analog_input(sd)) {
1757 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1758 	} else if (is_digital_input(sd)) {
1759 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1760 		state->info->set_termination(sd, true);
1761 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1762 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1763 	} else {
1764 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1765 				__func__, state->selected_input);
1766 	}
1767 }
1768 
1769 static void disable_input(struct v4l2_subdev *sd)
1770 {
1771 	struct adv76xx_state *state = to_state(sd);
1772 
1773 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1774 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1775 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1776 	state->info->set_termination(sd, false);
1777 }
1778 
1779 static void select_input(struct v4l2_subdev *sd)
1780 {
1781 	struct adv76xx_state *state = to_state(sd);
1782 	const struct adv76xx_chip_info *info = state->info;
1783 
1784 	if (is_analog_input(sd)) {
1785 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1786 
1787 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1788 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1789 		afe_write(sd, 0xc8, 0x00); /* phase control */
1790 	} else if (is_digital_input(sd)) {
1791 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1792 
1793 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1794 
1795 		if (adv76xx_has_afe(state)) {
1796 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1797 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1798 			afe_write(sd, 0xc8, 0x40); /* phase control */
1799 		}
1800 
1801 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1802 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1803 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1804 	} else {
1805 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1806 				__func__, state->selected_input);
1807 	}
1808 }
1809 
1810 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1811 		u32 input, u32 output, u32 config)
1812 {
1813 	struct adv76xx_state *state = to_state(sd);
1814 
1815 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1816 			__func__, input, state->selected_input);
1817 
1818 	if (input == state->selected_input)
1819 		return 0;
1820 
1821 	if (input > state->info->max_port)
1822 		return -EINVAL;
1823 
1824 	state->selected_input = input;
1825 
1826 	disable_input(sd);
1827 	select_input(sd);
1828 	enable_input(sd);
1829 
1830 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1831 
1832 	return 0;
1833 }
1834 
1835 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1836 				  struct v4l2_subdev_state *sd_state,
1837 				  struct v4l2_subdev_mbus_code_enum *code)
1838 {
1839 	struct adv76xx_state *state = to_state(sd);
1840 
1841 	if (code->index >= state->info->nformats)
1842 		return -EINVAL;
1843 
1844 	code->code = state->info->formats[code->index].code;
1845 
1846 	return 0;
1847 }
1848 
1849 static void adv76xx_fill_format(struct adv76xx_state *state,
1850 				struct v4l2_mbus_framefmt *format)
1851 {
1852 	memset(format, 0, sizeof(*format));
1853 
1854 	format->width = state->timings.bt.width;
1855 	format->height = state->timings.bt.height;
1856 	format->field = V4L2_FIELD_NONE;
1857 	format->colorspace = V4L2_COLORSPACE_SRGB;
1858 
1859 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1860 		format->colorspace = (state->timings.bt.height <= 576) ?
1861 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1862 }
1863 
1864 /*
1865  * Compute the op_ch_sel value required to obtain on the bus the component order
1866  * corresponding to the selected format taking into account bus reordering
1867  * applied by the board at the output of the device.
1868  *
1869  * The following table gives the op_ch_value from the format component order
1870  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1871  * adv76xx_bus_order value in row).
1872  *
1873  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1874  * ----------+-------------------------------------------------
1875  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1876  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1877  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1878  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1879  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1880  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1881  */
1882 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1883 {
1884 #define _SEL(a,b,c,d,e,f)	{ \
1885 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1886 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1887 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1888 
1889 	static const unsigned int op_ch_sel[6][6] = {
1890 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1891 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1892 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1893 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1894 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1895 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1896 	};
1897 
1898 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1899 }
1900 
1901 static void adv76xx_setup_format(struct adv76xx_state *state)
1902 {
1903 	struct v4l2_subdev *sd = &state->sd;
1904 
1905 	io_write_clr_set(sd, 0x02, 0x02,
1906 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1907 	io_write(sd, 0x03, state->format->op_format_sel |
1908 		 state->pdata.op_format_mode_sel);
1909 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1910 	io_write_clr_set(sd, 0x05, 0x01,
1911 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1912 	set_rgb_quantization_range(sd);
1913 }
1914 
1915 static int adv76xx_get_format(struct v4l2_subdev *sd,
1916 			      struct v4l2_subdev_state *sd_state,
1917 			      struct v4l2_subdev_format *format)
1918 {
1919 	struct adv76xx_state *state = to_state(sd);
1920 
1921 	if (format->pad != state->source_pad)
1922 		return -EINVAL;
1923 
1924 	adv76xx_fill_format(state, &format->format);
1925 
1926 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1927 		struct v4l2_mbus_framefmt *fmt;
1928 
1929 		fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1930 		format->format.code = fmt->code;
1931 	} else {
1932 		format->format.code = state->format->code;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1939 				 struct v4l2_subdev_state *sd_state,
1940 				 struct v4l2_subdev_selection *sel)
1941 {
1942 	struct adv76xx_state *state = to_state(sd);
1943 
1944 	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1945 		return -EINVAL;
1946 	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1947 	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1948 		return -EINVAL;
1949 
1950 	sel->r.left	= 0;
1951 	sel->r.top	= 0;
1952 	sel->r.width	= state->timings.bt.width;
1953 	sel->r.height	= state->timings.bt.height;
1954 
1955 	return 0;
1956 }
1957 
1958 static int adv76xx_set_format(struct v4l2_subdev *sd,
1959 			      struct v4l2_subdev_state *sd_state,
1960 			      struct v4l2_subdev_format *format)
1961 {
1962 	struct adv76xx_state *state = to_state(sd);
1963 	const struct adv76xx_format_info *info;
1964 
1965 	if (format->pad != state->source_pad)
1966 		return -EINVAL;
1967 
1968 	info = adv76xx_format_info(state, format->format.code);
1969 	if (!info)
1970 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1971 
1972 	adv76xx_fill_format(state, &format->format);
1973 	format->format.code = info->code;
1974 
1975 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1976 		struct v4l2_mbus_framefmt *fmt;
1977 
1978 		fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1979 		fmt->code = format->format.code;
1980 	} else {
1981 		state->format = info;
1982 		adv76xx_setup_format(state);
1983 	}
1984 
1985 	return 0;
1986 }
1987 
1988 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1989 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1990 {
1991 	struct adv76xx_state *state = to_state(sd);
1992 
1993 	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1994 		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1995 		return;
1996 	}
1997 
1998 	if (tx_raw_status & 0x02) {
1999 		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
2000 			 __func__);
2001 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
2002 				  1, 0, 0, 0);
2003 		return;
2004 	}
2005 	if (tx_raw_status & 0x04) {
2006 		u8 status;
2007 		u8 nack_cnt;
2008 		u8 low_drive_cnt;
2009 
2010 		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
2011 		/*
2012 		 * We set this status bit since this hardware performs
2013 		 * retransmissions.
2014 		 */
2015 		status = CEC_TX_STATUS_MAX_RETRIES;
2016 		nack_cnt = cec_read(sd, 0x14) & 0xf;
2017 		if (nack_cnt)
2018 			status |= CEC_TX_STATUS_NACK;
2019 		low_drive_cnt = cec_read(sd, 0x14) >> 4;
2020 		if (low_drive_cnt)
2021 			status |= CEC_TX_STATUS_LOW_DRIVE;
2022 		cec_transmit_done(state->cec_adap, status,
2023 				  0, nack_cnt, low_drive_cnt, 0);
2024 		return;
2025 	}
2026 	if (tx_raw_status & 0x01) {
2027 		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2028 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2029 		return;
2030 	}
2031 }
2032 
2033 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2034 {
2035 	struct adv76xx_state *state = to_state(sd);
2036 	const struct adv76xx_chip_info *info = state->info;
2037 	u8 cec_irq;
2038 
2039 	/* cec controller */
2040 	cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2041 	if (!cec_irq)
2042 		return;
2043 
2044 	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2045 	adv76xx_cec_tx_raw_status(sd, cec_irq);
2046 	if (cec_irq & 0x08) {
2047 		struct cec_msg msg;
2048 
2049 		msg.len = cec_read(sd, 0x25) & 0x1f;
2050 		if (msg.len > CEC_MAX_MSG_SIZE)
2051 			msg.len = CEC_MAX_MSG_SIZE;
2052 
2053 		if (msg.len) {
2054 			u8 i;
2055 
2056 			for (i = 0; i < msg.len; i++)
2057 				msg.msg[i] = cec_read(sd, i + 0x15);
2058 			cec_write(sd, info->cec_rx_enable,
2059 				  info->cec_rx_enable_mask); /* re-enable rx */
2060 			cec_received_msg(state->cec_adap, &msg);
2061 		}
2062 	}
2063 
2064 	if (info->cec_irq_swap) {
2065 		/*
2066 		 * Note: the bit order is swapped between 0x4d and 0x4e
2067 		 * on adv7604
2068 		 */
2069 		cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2070 			  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2071 	}
2072 	io_write(sd, info->cec_irq_status + 1, cec_irq);
2073 
2074 	if (handled)
2075 		*handled = true;
2076 }
2077 
2078 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2079 {
2080 	struct adv76xx_state *state = cec_get_drvdata(adap);
2081 	const struct adv76xx_chip_info *info = state->info;
2082 	struct v4l2_subdev *sd = &state->sd;
2083 
2084 	if (!state->cec_enabled_adap && enable) {
2085 		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2086 		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2087 		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2088 		/* enabled irqs: */
2089 		/* tx: ready */
2090 		/* tx: arbitration lost */
2091 		/* tx: retry timeout */
2092 		/* rx: ready */
2093 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2094 		cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2095 	} else if (state->cec_enabled_adap && !enable) {
2096 		/* disable cec interrupts */
2097 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2098 		/* disable address mask 1-3 */
2099 		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2100 		/* power down cec section */
2101 		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2102 		state->cec_valid_addrs = 0;
2103 	}
2104 	state->cec_enabled_adap = enable;
2105 	adv76xx_s_detect_tx_5v_ctrl(sd);
2106 	return 0;
2107 }
2108 
2109 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2110 {
2111 	struct adv76xx_state *state = cec_get_drvdata(adap);
2112 	struct v4l2_subdev *sd = &state->sd;
2113 	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2114 
2115 	if (!state->cec_enabled_adap)
2116 		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2117 
2118 	if (addr == CEC_LOG_ADDR_INVALID) {
2119 		cec_write_clr_set(sd, 0x27, 0x70, 0);
2120 		state->cec_valid_addrs = 0;
2121 		return 0;
2122 	}
2123 
2124 	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2125 		bool is_valid = state->cec_valid_addrs & (1 << i);
2126 
2127 		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2128 			free_idx = i;
2129 		if (is_valid && state->cec_addr[i] == addr)
2130 			return 0;
2131 	}
2132 	if (i == ADV76XX_MAX_ADDRS) {
2133 		i = free_idx;
2134 		if (i == ADV76XX_MAX_ADDRS)
2135 			return -ENXIO;
2136 	}
2137 	state->cec_addr[i] = addr;
2138 	state->cec_valid_addrs |= 1 << i;
2139 
2140 	switch (i) {
2141 	case 0:
2142 		/* enable address mask 0 */
2143 		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2144 		/* set address for mask 0 */
2145 		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2146 		break;
2147 	case 1:
2148 		/* enable address mask 1 */
2149 		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2150 		/* set address for mask 1 */
2151 		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2152 		break;
2153 	case 2:
2154 		/* enable address mask 2 */
2155 		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2156 		/* set address for mask 1 */
2157 		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2158 		break;
2159 	}
2160 	return 0;
2161 }
2162 
2163 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2164 				     u32 signal_free_time, struct cec_msg *msg)
2165 {
2166 	struct adv76xx_state *state = cec_get_drvdata(adap);
2167 	struct v4l2_subdev *sd = &state->sd;
2168 	u8 len = msg->len;
2169 	unsigned int i;
2170 
2171 	/*
2172 	 * The number of retries is the number of attempts - 1, but retry
2173 	 * at least once. It's not clear if a value of 0 is allowed, so
2174 	 * let's do at least one retry.
2175 	 */
2176 	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2177 
2178 	if (len > 16) {
2179 		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2180 		return -EINVAL;
2181 	}
2182 
2183 	/* write data */
2184 	for (i = 0; i < len; i++)
2185 		cec_write(sd, i, msg->msg[i]);
2186 
2187 	/* set length (data + header) */
2188 	cec_write(sd, 0x10, len);
2189 	/* start transmit, enable tx */
2190 	cec_write(sd, 0x11, 0x01);
2191 	return 0;
2192 }
2193 
2194 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2195 	.adap_enable = adv76xx_cec_adap_enable,
2196 	.adap_log_addr = adv76xx_cec_adap_log_addr,
2197 	.adap_transmit = adv76xx_cec_adap_transmit,
2198 };
2199 #endif
2200 
2201 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2202 {
2203 	struct adv76xx_state *state = to_state(sd);
2204 	const struct adv76xx_chip_info *info = state->info;
2205 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2206 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2207 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2208 	u8 fmt_change_digital;
2209 	u8 fmt_change;
2210 	u8 tx_5v;
2211 
2212 	if (irq_reg_0x43)
2213 		io_write(sd, 0x44, irq_reg_0x43);
2214 	if (irq_reg_0x70)
2215 		io_write(sd, 0x71, irq_reg_0x70);
2216 	if (irq_reg_0x6b)
2217 		io_write(sd, 0x6c, irq_reg_0x6b);
2218 
2219 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2220 
2221 	/* format change */
2222 	fmt_change = irq_reg_0x43 & 0x98;
2223 	fmt_change_digital = is_digital_input(sd)
2224 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2225 			   : 0;
2226 
2227 	if (fmt_change || fmt_change_digital) {
2228 		v4l2_dbg(1, debug, sd,
2229 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2230 			__func__, fmt_change, fmt_change_digital);
2231 
2232 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2233 
2234 		if (handled)
2235 			*handled = true;
2236 	}
2237 	/* HDMI/DVI mode */
2238 	if (irq_reg_0x6b & 0x01) {
2239 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2240 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2241 		set_rgb_quantization_range(sd);
2242 		if (handled)
2243 			*handled = true;
2244 	}
2245 
2246 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2247 	/* cec */
2248 	adv76xx_cec_isr(sd, handled);
2249 #endif
2250 
2251 	/* tx 5v detect */
2252 	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2253 	if (tx_5v) {
2254 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2255 		adv76xx_s_detect_tx_5v_ctrl(sd);
2256 		if (handled)
2257 			*handled = true;
2258 	}
2259 	return 0;
2260 }
2261 
2262 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2263 {
2264 	struct adv76xx_state *state = dev_id;
2265 	bool handled = false;
2266 
2267 	adv76xx_isr(&state->sd, 0, &handled);
2268 
2269 	return handled ? IRQ_HANDLED : IRQ_NONE;
2270 }
2271 
2272 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2273 {
2274 	struct adv76xx_state *state = to_state(sd);
2275 	u8 *data = NULL;
2276 
2277 	memset(edid->reserved, 0, sizeof(edid->reserved));
2278 
2279 	switch (edid->pad) {
2280 	case ADV76XX_PAD_HDMI_PORT_A:
2281 	case ADV7604_PAD_HDMI_PORT_B:
2282 	case ADV7604_PAD_HDMI_PORT_C:
2283 	case ADV7604_PAD_HDMI_PORT_D:
2284 		if (state->edid.present & (1 << edid->pad))
2285 			data = state->edid.edid;
2286 		break;
2287 	default:
2288 		return -EINVAL;
2289 	}
2290 
2291 	if (edid->start_block == 0 && edid->blocks == 0) {
2292 		edid->blocks = data ? state->edid.blocks : 0;
2293 		return 0;
2294 	}
2295 
2296 	if (!data)
2297 		return -ENODATA;
2298 
2299 	if (edid->start_block >= state->edid.blocks)
2300 		return -EINVAL;
2301 
2302 	if (edid->start_block + edid->blocks > state->edid.blocks)
2303 		edid->blocks = state->edid.blocks - edid->start_block;
2304 
2305 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2306 
2307 	return 0;
2308 }
2309 
2310 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2311 {
2312 	struct adv76xx_state *state = to_state(sd);
2313 	const struct adv76xx_chip_info *info = state->info;
2314 	unsigned int spa_loc;
2315 	u16 pa, parent_pa;
2316 	int err;
2317 	int i;
2318 
2319 	memset(edid->reserved, 0, sizeof(edid->reserved));
2320 
2321 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2322 		return -EINVAL;
2323 	if (edid->start_block != 0)
2324 		return -EINVAL;
2325 	if (edid->blocks == 0) {
2326 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2327 		state->edid.present &= ~(1 << edid->pad);
2328 		adv76xx_set_hpd(state, state->edid.present);
2329 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2330 
2331 		/* Fall back to a 16:9 aspect ratio */
2332 		state->aspect_ratio.numerator = 16;
2333 		state->aspect_ratio.denominator = 9;
2334 
2335 		if (!state->edid.present) {
2336 			state->edid.blocks = 0;
2337 			cec_phys_addr_invalidate(state->cec_adap);
2338 		}
2339 
2340 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2341 				__func__, edid->pad, state->edid.present);
2342 		return 0;
2343 	}
2344 	if (edid->blocks > ADV76XX_MAX_EDID_BLOCKS) {
2345 		edid->blocks = ADV76XX_MAX_EDID_BLOCKS;
2346 		return -E2BIG;
2347 	}
2348 
2349 	pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2350 	err = v4l2_phys_addr_validate(pa, &parent_pa, NULL);
2351 	if (err)
2352 		return err;
2353 
2354 	if (!spa_loc) {
2355 		/*
2356 		 * There is no SPA, so just set spa_loc to 128 and pa to whatever
2357 		 * data is there.
2358 		 */
2359 		spa_loc = 128;
2360 		pa = (edid->edid[spa_loc] << 8) | edid->edid[spa_loc + 1];
2361 	}
2362 
2363 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2364 			__func__, edid->pad, state->edid.present);
2365 
2366 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2367 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2368 	adv76xx_set_hpd(state, 0);
2369 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2370 
2371 	switch (edid->pad) {
2372 	case ADV76XX_PAD_HDMI_PORT_A:
2373 		state->spa_port_a[0] = pa >> 8;
2374 		state->spa_port_a[1] = pa & 0xff;
2375 		break;
2376 	case ADV7604_PAD_HDMI_PORT_B:
2377 		rep_write(sd, info->edid_spa_port_b_reg, pa >> 8);
2378 		rep_write(sd, info->edid_spa_port_b_reg + 1, pa & 0xff);
2379 		break;
2380 	case ADV7604_PAD_HDMI_PORT_C:
2381 		rep_write(sd, info->edid_spa_port_b_reg + 2, pa >> 8);
2382 		rep_write(sd, info->edid_spa_port_b_reg + 3, pa & 0xff);
2383 		break;
2384 	case ADV7604_PAD_HDMI_PORT_D:
2385 		rep_write(sd, info->edid_spa_port_b_reg + 4, pa >> 8);
2386 		rep_write(sd, info->edid_spa_port_b_reg + 5, pa & 0xff);
2387 		break;
2388 	default:
2389 		return -EINVAL;
2390 	}
2391 
2392 	if (info->edid_spa_loc_reg) {
2393 		u8 mask = info->edid_spa_loc_msb_mask;
2394 
2395 		rep_write(sd, info->edid_spa_loc_reg, spa_loc & 0xff);
2396 		rep_write_clr_set(sd, info->edid_spa_loc_reg + 1,
2397 				  mask, (spa_loc & 0x100) ? mask : 0);
2398 	}
2399 
2400 	edid->edid[spa_loc] = state->spa_port_a[0];
2401 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2402 
2403 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2404 	state->edid.blocks = edid->blocks;
2405 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2406 			edid->edid[0x16]);
2407 	state->edid.present |= 1 << edid->pad;
2408 
2409 	rep_write_clr_set(sd, info->edid_segment_reg,
2410 			  info->edid_segment_mask, 0);
2411 	err = edid_write_block(sd, 128 * min(edid->blocks, 2U), state->edid.edid);
2412 	if (err < 0) {
2413 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2414 		return err;
2415 	}
2416 	if (edid->blocks > 2) {
2417 		rep_write_clr_set(sd, info->edid_segment_reg,
2418 				  info->edid_segment_mask,
2419 				  info->edid_segment_mask);
2420 		err = edid_write_block(sd, 128 * (edid->blocks - 2),
2421 				       state->edid.edid + 256);
2422 		if (err < 0) {
2423 			v4l2_err(sd, "error %d writing edid pad %d\n",
2424 				 err, edid->pad);
2425 			return err;
2426 		}
2427 	}
2428 
2429 	/* adv76xx calculates the checksums and enables I2C access to internal
2430 	   EDID RAM from DDC port. */
2431 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2432 
2433 	for (i = 0; i < 1000; i++) {
2434 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2435 			break;
2436 		mdelay(1);
2437 	}
2438 	if (i == 1000) {
2439 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2440 		return -EIO;
2441 	}
2442 	cec_s_phys_addr(state->cec_adap, parent_pa, false);
2443 
2444 	/* enable hotplug after 100 ms */
2445 	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2446 	return 0;
2447 }
2448 
2449 /*********** avi info frame CEA-861-E **************/
2450 
2451 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2452 	{ "AVI", 0x01, 0xe0, 0x00 },
2453 	{ "Audio", 0x02, 0xe3, 0x1c },
2454 	{ "SDP", 0x04, 0xe6, 0x2a },
2455 	{ "Vendor", 0x10, 0xec, 0x54 }
2456 };
2457 
2458 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2459 				  union hdmi_infoframe *frame)
2460 {
2461 	uint8_t buffer[32];
2462 	u8 len;
2463 	int i;
2464 
2465 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2466 		v4l2_info(sd, "%s infoframe not received\n",
2467 			  adv76xx_cri[index].desc);
2468 		return -ENOENT;
2469 	}
2470 
2471 	for (i = 0; i < 3; i++)
2472 		buffer[i] = infoframe_read(sd,
2473 					   adv76xx_cri[index].head_addr + i);
2474 
2475 	len = buffer[2] + 1;
2476 
2477 	if (len + 3 > sizeof(buffer)) {
2478 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2479 			 adv76xx_cri[index].desc, len);
2480 		return -ENOENT;
2481 	}
2482 
2483 	for (i = 0; i < len; i++)
2484 		buffer[i + 3] = infoframe_read(sd,
2485 				       adv76xx_cri[index].payload_addr + i);
2486 
2487 	if (hdmi_infoframe_unpack(frame, buffer, len + 3) < 0) {
2488 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2489 			 adv76xx_cri[index].desc);
2490 		return -ENOENT;
2491 	}
2492 	return 0;
2493 }
2494 
2495 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2496 {
2497 	int i;
2498 
2499 	if (!is_hdmi(sd)) {
2500 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2501 		return;
2502 	}
2503 
2504 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2505 		union hdmi_infoframe frame;
2506 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2507 
2508 		if (!adv76xx_read_infoframe(sd, i, &frame))
2509 			hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2510 	}
2511 }
2512 
2513 static int adv76xx_log_status(struct v4l2_subdev *sd)
2514 {
2515 	struct adv76xx_state *state = to_state(sd);
2516 	const struct adv76xx_chip_info *info = state->info;
2517 	struct v4l2_dv_timings timings;
2518 	struct stdi_readback stdi;
2519 	u8 reg_io_0x02 = io_read(sd, 0x02);
2520 	u8 edid_enabled;
2521 	u8 cable_det;
2522 
2523 	static const char * const csc_coeff_sel_rb[16] = {
2524 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2525 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2526 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2527 		"reserved", "reserved", "reserved", "reserved", "manual"
2528 	};
2529 	static const char * const input_color_space_txt[16] = {
2530 		"RGB limited range (16-235)", "RGB full range (0-255)",
2531 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2532 		"xvYCC Bt.601", "xvYCC Bt.709",
2533 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2534 		"invalid", "invalid", "invalid", "invalid", "invalid",
2535 		"invalid", "invalid", "automatic"
2536 	};
2537 	static const char * const hdmi_color_space_txt[16] = {
2538 		"RGB limited range (16-235)", "RGB full range (0-255)",
2539 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2540 		"xvYCC Bt.601", "xvYCC Bt.709",
2541 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2542 		"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2543 		"invalid", "invalid", "invalid"
2544 	};
2545 	static const char * const rgb_quantization_range_txt[] = {
2546 		"Automatic",
2547 		"RGB limited range (16-235)",
2548 		"RGB full range (0-255)",
2549 	};
2550 	static const char * const deep_color_mode_txt[4] = {
2551 		"8-bits per channel",
2552 		"10-bits per channel",
2553 		"12-bits per channel",
2554 		"16-bits per channel (not supported)"
2555 	};
2556 
2557 	v4l2_info(sd, "-----Chip status-----\n");
2558 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2559 	edid_enabled = rep_read(sd, info->edid_status_reg);
2560 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2561 			((edid_enabled & 0x01) ? "Yes" : "No"),
2562 			((edid_enabled & 0x02) ? "Yes" : "No"),
2563 			((edid_enabled & 0x04) ? "Yes" : "No"),
2564 			((edid_enabled & 0x08) ? "Yes" : "No"));
2565 	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2566 			"enabled" : "disabled");
2567 	if (state->cec_enabled_adap) {
2568 		int i;
2569 
2570 		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2571 			bool is_valid = state->cec_valid_addrs & (1 << i);
2572 
2573 			if (is_valid)
2574 				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2575 					  state->cec_addr[i]);
2576 		}
2577 	}
2578 
2579 	v4l2_info(sd, "-----Signal status-----\n");
2580 	cable_det = info->read_cable_det(sd);
2581 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2582 			((cable_det & 0x01) ? "Yes" : "No"),
2583 			((cable_det & 0x02) ? "Yes" : "No"),
2584 			((cable_det & 0x04) ? "Yes" : "No"),
2585 			((cable_det & 0x08) ? "Yes" : "No"));
2586 	v4l2_info(sd, "TMDS signal detected: %s\n",
2587 			no_signal_tmds(sd) ? "false" : "true");
2588 	v4l2_info(sd, "TMDS signal locked: %s\n",
2589 			no_lock_tmds(sd) ? "false" : "true");
2590 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2591 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2592 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2593 	v4l2_info(sd, "CP free run: %s\n",
2594 			(in_free_run(sd)) ? "on" : "off");
2595 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2596 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2597 			(io_read(sd, 0x01) & 0x70) >> 4);
2598 
2599 	v4l2_info(sd, "-----Video Timings-----\n");
2600 	if (read_stdi(sd, &stdi))
2601 		v4l2_info(sd, "STDI: not locked\n");
2602 	else
2603 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2604 				stdi.lcf, stdi.bl, stdi.lcvs,
2605 				stdi.interlaced ? "interlaced" : "progressive",
2606 				stdi.hs_pol, stdi.vs_pol);
2607 	if (adv76xx_query_dv_timings(sd, &timings))
2608 		v4l2_info(sd, "No video detected\n");
2609 	else
2610 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2611 				      &timings, true);
2612 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2613 			      &state->timings, true);
2614 
2615 	if (no_signal(sd))
2616 		return 0;
2617 
2618 	v4l2_info(sd, "-----Color space-----\n");
2619 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2620 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2621 	v4l2_info(sd, "Input color space: %s\n",
2622 			input_color_space_txt[reg_io_0x02 >> 4]);
2623 	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2624 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2625 			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2626 				"(16-235)" : "(0-255)",
2627 			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2628 	v4l2_info(sd, "Color space conversion: %s\n",
2629 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2630 
2631 	if (!is_digital_input(sd))
2632 		return 0;
2633 
2634 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2635 	v4l2_info(sd, "Digital video port selected: %c\n",
2636 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2637 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2638 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2639 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2640 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2641 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2642 	if (is_hdmi(sd)) {
2643 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2644 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2645 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2646 
2647 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2648 				audio_pll_locked ? "locked" : "not locked",
2649 				audio_sample_packet_detect ? "detected" : "not detected",
2650 				audio_mute ? "muted" : "enabled");
2651 		if (audio_pll_locked && audio_sample_packet_detect) {
2652 			v4l2_info(sd, "Audio format: %s\n",
2653 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2654 		}
2655 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2656 				(hdmi_read(sd, 0x5c) << 8) +
2657 				(hdmi_read(sd, 0x5d) & 0xf0));
2658 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2659 				(hdmi_read(sd, 0x5e) << 8) +
2660 				hdmi_read(sd, 0x5f));
2661 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2662 
2663 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2664 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2665 
2666 		adv76xx_log_infoframes(sd);
2667 	}
2668 
2669 	return 0;
2670 }
2671 
2672 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2673 				   struct v4l2_fh *fh,
2674 				   struct v4l2_event_subscription *sub)
2675 {
2676 	switch (sub->type) {
2677 	case V4L2_EVENT_SOURCE_CHANGE:
2678 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2679 	case V4L2_EVENT_CTRL:
2680 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2681 	default:
2682 		return -EINVAL;
2683 	}
2684 }
2685 
2686 static int adv76xx_registered(struct v4l2_subdev *sd)
2687 {
2688 	struct adv76xx_state *state = to_state(sd);
2689 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2690 	int err;
2691 
2692 	err = cec_register_adapter(state->cec_adap, &client->dev);
2693 	if (err)
2694 		cec_delete_adapter(state->cec_adap);
2695 	return err;
2696 }
2697 
2698 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2699 {
2700 	struct adv76xx_state *state = to_state(sd);
2701 
2702 	cec_unregister_adapter(state->cec_adap);
2703 }
2704 
2705 /* ----------------------------------------------------------------------- */
2706 
2707 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2708 	.s_ctrl = adv76xx_s_ctrl,
2709 	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2710 };
2711 
2712 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2713 	.log_status = adv76xx_log_status,
2714 	.interrupt_service_routine = adv76xx_isr,
2715 	.subscribe_event = adv76xx_subscribe_event,
2716 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2717 #ifdef CONFIG_VIDEO_ADV_DEBUG
2718 	.g_register = adv76xx_g_register,
2719 	.s_register = adv76xx_s_register,
2720 #endif
2721 };
2722 
2723 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2724 	.s_routing = adv76xx_s_routing,
2725 	.g_input_status = adv76xx_g_input_status,
2726 	.s_dv_timings = adv76xx_s_dv_timings,
2727 	.g_dv_timings = adv76xx_g_dv_timings,
2728 	.query_dv_timings = adv76xx_query_dv_timings,
2729 };
2730 
2731 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2732 	.enum_mbus_code = adv76xx_enum_mbus_code,
2733 	.get_selection = adv76xx_get_selection,
2734 	.get_fmt = adv76xx_get_format,
2735 	.set_fmt = adv76xx_set_format,
2736 	.get_edid = adv76xx_get_edid,
2737 	.set_edid = adv76xx_set_edid,
2738 	.dv_timings_cap = adv76xx_dv_timings_cap,
2739 	.enum_dv_timings = adv76xx_enum_dv_timings,
2740 };
2741 
2742 static const struct v4l2_subdev_ops adv76xx_ops = {
2743 	.core = &adv76xx_core_ops,
2744 	.video = &adv76xx_video_ops,
2745 	.pad = &adv76xx_pad_ops,
2746 };
2747 
2748 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2749 	.registered = adv76xx_registered,
2750 	.unregistered = adv76xx_unregistered,
2751 };
2752 
2753 /* -------------------------- custom ctrls ---------------------------------- */
2754 
2755 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2756 	.ops = &adv76xx_ctrl_ops,
2757 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2758 	.name = "Analog Sampling Phase",
2759 	.type = V4L2_CTRL_TYPE_INTEGER,
2760 	.min = 0,
2761 	.max = 0x1f,
2762 	.step = 1,
2763 	.def = 0,
2764 };
2765 
2766 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2767 	.ops = &adv76xx_ctrl_ops,
2768 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2769 	.name = "Free Running Color, Manual",
2770 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2771 	.min = false,
2772 	.max = true,
2773 	.step = 1,
2774 	.def = false,
2775 };
2776 
2777 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2778 	.ops = &adv76xx_ctrl_ops,
2779 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2780 	.name = "Free Running Color",
2781 	.type = V4L2_CTRL_TYPE_INTEGER,
2782 	.min = 0x0,
2783 	.max = 0xffffff,
2784 	.step = 0x1,
2785 	.def = 0x0,
2786 };
2787 
2788 /* ----------------------------------------------------------------------- */
2789 
2790 struct adv76xx_register_map {
2791 	const char *name;
2792 	u8 default_addr;
2793 };
2794 
2795 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2796 	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2797 	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2798 	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2799 	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2800 	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2801 	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2802 	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2803 	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2804 	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2805 	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2806 	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2807 	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2808 	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2809 };
2810 
2811 static int adv76xx_core_init(struct v4l2_subdev *sd)
2812 {
2813 	struct adv76xx_state *state = to_state(sd);
2814 	const struct adv76xx_chip_info *info = state->info;
2815 	struct adv76xx_platform_data *pdata = &state->pdata;
2816 
2817 	hdmi_write(sd, 0x48,
2818 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2819 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2820 
2821 	disable_input(sd);
2822 
2823 	if (pdata->default_input >= 0 &&
2824 	    pdata->default_input < state->source_pad) {
2825 		state->selected_input = pdata->default_input;
2826 		select_input(sd);
2827 		enable_input(sd);
2828 	}
2829 
2830 	/* power */
2831 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2832 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2833 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2834 
2835 	/* HPD */
2836 	if (info->type != ADV7604) {
2837 		/* Set manual HPD values to 0 */
2838 		io_write_clr_set(sd, 0x20, 0xc0, 0);
2839 		/*
2840 		 * Set HPA_DELAY to 200 ms and set automatic HPD control
2841 		 * to: internal EDID is active AND a cable is detected
2842 		 * AND the manual HPD control is set to 1.
2843 		 */
2844 		hdmi_write_clr_set(sd, 0x6c, 0xf6, 0x26);
2845 	}
2846 
2847 	/* video format */
2848 	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2849 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2850 			pdata->insert_av_codes << 2 |
2851 			pdata->replicate_av_codes << 1);
2852 	adv76xx_setup_format(state);
2853 
2854 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2855 
2856 	/* VS, HS polarities */
2857 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2858 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2859 
2860 	/* Adjust drive strength */
2861 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2862 				pdata->dr_str_clk << 2 |
2863 				pdata->dr_str_sync);
2864 
2865 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2866 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2867 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2868 				      ADI recommended setting [REF_01, c. 2.3.3] */
2869 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2870 				      ADI recommended setting [REF_01, c. 2.3.3] */
2871 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2872 				     for digital formats */
2873 
2874 	/* HDMI audio */
2875 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2876 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2877 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2878 
2879 	/* TODO from platform data */
2880 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2881 
2882 	if (adv76xx_has_afe(state)) {
2883 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2884 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2885 	}
2886 
2887 	/* interrupts */
2888 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2889 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2890 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2891 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2892 	info->setup_irqs(sd);
2893 
2894 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2895 }
2896 
2897 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2898 {
2899 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2900 }
2901 
2902 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2903 {
2904 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2905 }
2906 
2907 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2908 {
2909 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2910 }
2911 
2912 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2913 {
2914 	unsigned int i;
2915 
2916 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2917 		i2c_unregister_device(state->i2c_clients[i]);
2918 }
2919 
2920 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2921 					       unsigned int page)
2922 {
2923 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2924 	struct adv76xx_state *state = to_state(sd);
2925 	struct adv76xx_platform_data *pdata = &state->pdata;
2926 	unsigned int io_reg = 0xf2 + page;
2927 	struct i2c_client *new_client;
2928 
2929 	if (pdata && pdata->i2c_addresses[page])
2930 		new_client = i2c_new_dummy_device(client->adapter,
2931 					   pdata->i2c_addresses[page]);
2932 	else
2933 		new_client = i2c_new_ancillary_device(client,
2934 				adv76xx_default_addresses[page].name,
2935 				adv76xx_default_addresses[page].default_addr);
2936 
2937 	if (!IS_ERR(new_client))
2938 		io_write(sd, io_reg, new_client->addr << 1);
2939 
2940 	return new_client;
2941 }
2942 
2943 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2944 	/* reset ADI recommended settings for HDMI: */
2945 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2946 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2947 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2948 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2949 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2950 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2951 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2952 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2953 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2954 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2955 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2956 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2957 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2958 
2959 	/* set ADI recommended settings for digitizer */
2960 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2961 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2962 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2963 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2964 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2965 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2966 
2967 	{ ADV76XX_REG_SEQ_TERM, 0 },
2968 };
2969 
2970 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2971 	/* set ADI recommended settings for HDMI: */
2972 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2973 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2974 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2975 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2976 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2977 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2978 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2979 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2980 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2981 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2982 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2983 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2984 
2985 	/* reset ADI recommended settings for digitizer */
2986 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2987 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2988 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2989 
2990 	{ ADV76XX_REG_SEQ_TERM, 0 },
2991 };
2992 
2993 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2994 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2995 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2996 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2997 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2998 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2999 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3000 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3001 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3002 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3003 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3004 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
3005 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
3006 
3007 	{ ADV76XX_REG_SEQ_TERM, 0 },
3008 };
3009 
3010 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
3011 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
3012 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3013 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3014 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3015 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3016 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3017 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3018 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3019 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3020 	{ ADV76XX_REG_SEQ_TERM, 0 },
3021 };
3022 
3023 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
3024 	[ADV7604] = {
3025 		.type = ADV7604,
3026 		.has_afe = true,
3027 		.max_port = ADV7604_PAD_VGA_COMP,
3028 		.num_dv_ports = 4,
3029 		.edid_enable_reg = 0x77,
3030 		.edid_status_reg = 0x7d,
3031 		.edid_segment_reg = 0x77,
3032 		.edid_segment_mask = 0x10,
3033 		.edid_spa_loc_reg = 0x76,
3034 		.edid_spa_loc_msb_mask = 0x40,
3035 		.edid_spa_port_b_reg = 0x70,
3036 		.lcf_reg = 0xb3,
3037 		.tdms_lock_mask = 0xe0,
3038 		.cable_det_mask = 0x1e,
3039 		.fmt_change_digital_mask = 0xc1,
3040 		.cp_csc = 0xfc,
3041 		.cec_irq_status = 0x4d,
3042 		.cec_rx_enable = 0x26,
3043 		.cec_rx_enable_mask = 0x01,
3044 		.cec_irq_swap = true,
3045 		.formats = adv7604_formats,
3046 		.nformats = ARRAY_SIZE(adv7604_formats),
3047 		.set_termination = adv7604_set_termination,
3048 		.setup_irqs = adv7604_setup_irqs,
3049 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3050 		.read_cable_det = adv7604_read_cable_det,
3051 		.recommended_settings = {
3052 		    [0] = adv7604_recommended_settings_afe,
3053 		    [1] = adv7604_recommended_settings_hdmi,
3054 		},
3055 		.num_recommended_settings = {
3056 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3057 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3058 		},
3059 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3060 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3061 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3062 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3063 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3064 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3065 			BIT(ADV7604_PAGE_VDP),
3066 		.linewidth_mask = 0xfff,
3067 		.field0_height_mask = 0xfff,
3068 		.field1_height_mask = 0xfff,
3069 		.hfrontporch_mask = 0x3ff,
3070 		.hsync_mask = 0x3ff,
3071 		.hbackporch_mask = 0x3ff,
3072 		.field0_vfrontporch_mask = 0x1fff,
3073 		.field0_vsync_mask = 0x1fff,
3074 		.field0_vbackporch_mask = 0x1fff,
3075 		.field1_vfrontporch_mask = 0x1fff,
3076 		.field1_vsync_mask = 0x1fff,
3077 		.field1_vbackporch_mask = 0x1fff,
3078 	},
3079 	[ADV7611] = {
3080 		.type = ADV7611,
3081 		.has_afe = false,
3082 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
3083 		.num_dv_ports = 1,
3084 		.edid_enable_reg = 0x74,
3085 		.edid_status_reg = 0x76,
3086 		.edid_segment_reg = 0x7a,
3087 		.edid_segment_mask = 0x01,
3088 		.lcf_reg = 0xa3,
3089 		.tdms_lock_mask = 0x43,
3090 		.cable_det_mask = 0x01,
3091 		.fmt_change_digital_mask = 0x03,
3092 		.cp_csc = 0xf4,
3093 		.cec_irq_status = 0x93,
3094 		.cec_rx_enable = 0x2c,
3095 		.cec_rx_enable_mask = 0x02,
3096 		.formats = adv7611_formats,
3097 		.nformats = ARRAY_SIZE(adv7611_formats),
3098 		.set_termination = adv7611_set_termination,
3099 		.setup_irqs = adv7611_setup_irqs,
3100 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3101 		.read_cable_det = adv7611_read_cable_det,
3102 		.recommended_settings = {
3103 		    [1] = adv7611_recommended_settings_hdmi,
3104 		},
3105 		.num_recommended_settings = {
3106 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3107 		},
3108 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3109 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3110 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3111 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3112 		.linewidth_mask = 0x1fff,
3113 		.field0_height_mask = 0x1fff,
3114 		.field1_height_mask = 0x1fff,
3115 		.hfrontporch_mask = 0x1fff,
3116 		.hsync_mask = 0x1fff,
3117 		.hbackporch_mask = 0x1fff,
3118 		.field0_vfrontporch_mask = 0x3fff,
3119 		.field0_vsync_mask = 0x3fff,
3120 		.field0_vbackporch_mask = 0x3fff,
3121 		.field1_vfrontporch_mask = 0x3fff,
3122 		.field1_vsync_mask = 0x3fff,
3123 		.field1_vbackporch_mask = 0x3fff,
3124 	},
3125 	[ADV7612] = {
3126 		.type = ADV7612,
3127 		.has_afe = false,
3128 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3129 		.num_dv_ports = 1,			/* normally 2 */
3130 		.edid_enable_reg = 0x74,
3131 		.edid_status_reg = 0x76,
3132 		.edid_segment_reg = 0x7a,
3133 		.edid_segment_mask = 0x01,
3134 		.edid_spa_loc_reg = 0x70,
3135 		.edid_spa_loc_msb_mask = 0x01,
3136 		.edid_spa_port_b_reg = 0x52,
3137 		.lcf_reg = 0xa3,
3138 		.tdms_lock_mask = 0x43,
3139 		.cable_det_mask = 0x01,
3140 		.fmt_change_digital_mask = 0x03,
3141 		.cp_csc = 0xf4,
3142 		.cec_irq_status = 0x93,
3143 		.cec_rx_enable = 0x2c,
3144 		.cec_rx_enable_mask = 0x02,
3145 		.formats = adv7612_formats,
3146 		.nformats = ARRAY_SIZE(adv7612_formats),
3147 		.set_termination = adv7611_set_termination,
3148 		.setup_irqs = adv7612_setup_irqs,
3149 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3150 		.read_cable_det = adv7612_read_cable_det,
3151 		.recommended_settings = {
3152 		    [1] = adv7612_recommended_settings_hdmi,
3153 		},
3154 		.num_recommended_settings = {
3155 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3156 		},
3157 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3158 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3159 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3160 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3161 		.linewidth_mask = 0x1fff,
3162 		.field0_height_mask = 0x1fff,
3163 		.field1_height_mask = 0x1fff,
3164 		.hfrontporch_mask = 0x1fff,
3165 		.hsync_mask = 0x1fff,
3166 		.hbackporch_mask = 0x1fff,
3167 		.field0_vfrontporch_mask = 0x3fff,
3168 		.field0_vsync_mask = 0x3fff,
3169 		.field0_vbackporch_mask = 0x3fff,
3170 		.field1_vfrontporch_mask = 0x3fff,
3171 		.field1_vsync_mask = 0x3fff,
3172 		.field1_vbackporch_mask = 0x3fff,
3173 	},
3174 };
3175 
3176 static const struct i2c_device_id adv76xx_i2c_id[] = {
3177 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3178 	{ "adv7610", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3179 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3180 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3181 	{ }
3182 };
3183 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3184 
3185 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3186 	{ .compatible = "adi,adv7610", .data = &adv76xx_chip_info[ADV7611] },
3187 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3188 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3189 	{ }
3190 };
3191 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3192 
3193 static int adv76xx_parse_dt(struct adv76xx_state *state)
3194 {
3195 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3196 	struct device_node *endpoint;
3197 	struct device_node *np;
3198 	unsigned int flags;
3199 	int ret;
3200 	u32 v;
3201 
3202 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3203 
3204 	/* Parse the endpoint. */
3205 	endpoint = of_graph_get_next_endpoint(np, NULL);
3206 	if (!endpoint)
3207 		return -EINVAL;
3208 
3209 	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3210 	of_node_put(endpoint);
3211 	if (ret)
3212 		return ret;
3213 
3214 	if (!of_property_read_u32(np, "default-input", &v))
3215 		state->pdata.default_input = v;
3216 	else
3217 		state->pdata.default_input = -1;
3218 
3219 	flags = bus_cfg.bus.parallel.flags;
3220 
3221 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3222 		state->pdata.inv_hs_pol = 1;
3223 
3224 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3225 		state->pdata.inv_vs_pol = 1;
3226 
3227 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3228 		state->pdata.inv_llc_pol = 1;
3229 
3230 	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3231 		state->pdata.insert_av_codes = 1;
3232 
3233 	/* Disable the interrupt for now as no DT-based board uses it. */
3234 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3235 
3236 	/* Hardcode the remaining platform data fields. */
3237 	state->pdata.disable_pwrdnb = 0;
3238 	state->pdata.disable_cable_det_rst = 0;
3239 	state->pdata.blank_data = 1;
3240 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3241 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3242 	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3243 	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3244 	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3245 
3246 	return 0;
3247 }
3248 
3249 static const struct regmap_config adv76xx_regmap_cnf[] = {
3250 	{
3251 		.name			= "io",
3252 		.reg_bits		= 8,
3253 		.val_bits		= 8,
3254 
3255 		.max_register		= 0xff,
3256 		.cache_type		= REGCACHE_NONE,
3257 	},
3258 	{
3259 		.name			= "avlink",
3260 		.reg_bits		= 8,
3261 		.val_bits		= 8,
3262 
3263 		.max_register		= 0xff,
3264 		.cache_type		= REGCACHE_NONE,
3265 	},
3266 	{
3267 		.name			= "cec",
3268 		.reg_bits		= 8,
3269 		.val_bits		= 8,
3270 
3271 		.max_register		= 0xff,
3272 		.cache_type		= REGCACHE_NONE,
3273 	},
3274 	{
3275 		.name			= "infoframe",
3276 		.reg_bits		= 8,
3277 		.val_bits		= 8,
3278 
3279 		.max_register		= 0xff,
3280 		.cache_type		= REGCACHE_NONE,
3281 	},
3282 	{
3283 		.name			= "esdp",
3284 		.reg_bits		= 8,
3285 		.val_bits		= 8,
3286 
3287 		.max_register		= 0xff,
3288 		.cache_type		= REGCACHE_NONE,
3289 	},
3290 	{
3291 		.name			= "epp",
3292 		.reg_bits		= 8,
3293 		.val_bits		= 8,
3294 
3295 		.max_register		= 0xff,
3296 		.cache_type		= REGCACHE_NONE,
3297 	},
3298 	{
3299 		.name			= "afe",
3300 		.reg_bits		= 8,
3301 		.val_bits		= 8,
3302 
3303 		.max_register		= 0xff,
3304 		.cache_type		= REGCACHE_NONE,
3305 	},
3306 	{
3307 		.name			= "rep",
3308 		.reg_bits		= 8,
3309 		.val_bits		= 8,
3310 
3311 		.max_register		= 0xff,
3312 		.cache_type		= REGCACHE_NONE,
3313 	},
3314 	{
3315 		.name			= "edid",
3316 		.reg_bits		= 8,
3317 		.val_bits		= 8,
3318 
3319 		.max_register		= 0xff,
3320 		.cache_type		= REGCACHE_NONE,
3321 	},
3322 
3323 	{
3324 		.name			= "hdmi",
3325 		.reg_bits		= 8,
3326 		.val_bits		= 8,
3327 
3328 		.max_register		= 0xff,
3329 		.cache_type		= REGCACHE_NONE,
3330 	},
3331 	{
3332 		.name			= "test",
3333 		.reg_bits		= 8,
3334 		.val_bits		= 8,
3335 
3336 		.max_register		= 0xff,
3337 		.cache_type		= REGCACHE_NONE,
3338 	},
3339 	{
3340 		.name			= "cp",
3341 		.reg_bits		= 8,
3342 		.val_bits		= 8,
3343 
3344 		.max_register		= 0xff,
3345 		.cache_type		= REGCACHE_NONE,
3346 	},
3347 	{
3348 		.name			= "vdp",
3349 		.reg_bits		= 8,
3350 		.val_bits		= 8,
3351 
3352 		.max_register		= 0xff,
3353 		.cache_type		= REGCACHE_NONE,
3354 	},
3355 };
3356 
3357 static int configure_regmap(struct adv76xx_state *state, int region)
3358 {
3359 	int err;
3360 
3361 	if (!state->i2c_clients[region])
3362 		return -ENODEV;
3363 
3364 	state->regmap[region] =
3365 		devm_regmap_init_i2c(state->i2c_clients[region],
3366 				     &adv76xx_regmap_cnf[region]);
3367 
3368 	if (IS_ERR(state->regmap[region])) {
3369 		err = PTR_ERR(state->regmap[region]);
3370 		v4l_err(state->i2c_clients[region],
3371 			"Error initializing regmap %d with error %d\n",
3372 			region, err);
3373 		return -EINVAL;
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 static int configure_regmaps(struct adv76xx_state *state)
3380 {
3381 	int i, err;
3382 
3383 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3384 		err = configure_regmap(state, i);
3385 		if (err && (err != -ENODEV))
3386 			return err;
3387 	}
3388 	return 0;
3389 }
3390 
3391 static void adv76xx_reset(struct adv76xx_state *state)
3392 {
3393 	if (state->reset_gpio) {
3394 		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3395 		gpiod_set_value_cansleep(state->reset_gpio, 0);
3396 		usleep_range(5000, 10000);
3397 		gpiod_set_value_cansleep(state->reset_gpio, 1);
3398 		/* It is recommended to wait 5 ms after the low pulse before */
3399 		/* an I2C write is performed to the ADV76XX. */
3400 		usleep_range(5000, 10000);
3401 	}
3402 }
3403 
3404 static int adv76xx_probe(struct i2c_client *client)
3405 {
3406 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
3407 	static const struct v4l2_dv_timings cea640x480 =
3408 		V4L2_DV_BT_CEA_640X480P59_94;
3409 	struct adv76xx_state *state;
3410 	struct v4l2_ctrl_handler *hdl;
3411 	struct v4l2_ctrl *ctrl;
3412 	struct v4l2_subdev *sd;
3413 	unsigned int i;
3414 	unsigned int val, val2;
3415 	int err;
3416 
3417 	/* Check if the adapter supports the needed features */
3418 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3419 		return -EIO;
3420 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3421 			client->addr << 1);
3422 
3423 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3424 	if (!state)
3425 		return -ENOMEM;
3426 
3427 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3428 
3429 	/* initialize variables */
3430 	state->restart_stdi_once = true;
3431 	state->selected_input = ~0;
3432 
3433 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3434 		const struct of_device_id *oid;
3435 
3436 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3437 		state->info = oid->data;
3438 
3439 		err = adv76xx_parse_dt(state);
3440 		if (err < 0) {
3441 			v4l_err(client, "DT parsing error\n");
3442 			return err;
3443 		}
3444 	} else if (client->dev.platform_data) {
3445 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3446 
3447 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3448 		state->pdata = *pdata;
3449 	} else {
3450 		v4l_err(client, "No platform data!\n");
3451 		return -ENODEV;
3452 	}
3453 
3454 	/* Request GPIOs. */
3455 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3456 		state->hpd_gpio[i] =
3457 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3458 						      GPIOD_OUT_LOW);
3459 		if (IS_ERR(state->hpd_gpio[i]))
3460 			return PTR_ERR(state->hpd_gpio[i]);
3461 
3462 		if (state->hpd_gpio[i])
3463 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3464 	}
3465 	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3466 								GPIOD_OUT_HIGH);
3467 	if (IS_ERR(state->reset_gpio))
3468 		return PTR_ERR(state->reset_gpio);
3469 
3470 	adv76xx_reset(state);
3471 
3472 	state->timings = cea640x480;
3473 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3474 
3475 	sd = &state->sd;
3476 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3477 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3478 		id->name, i2c_adapter_id(client->adapter),
3479 		client->addr);
3480 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3481 	sd->internal_ops = &adv76xx_int_ops;
3482 
3483 	/* Configure IO Regmap region */
3484 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3485 
3486 	if (err) {
3487 		v4l2_err(sd, "Error configuring IO regmap region\n");
3488 		return -ENODEV;
3489 	}
3490 
3491 	/*
3492 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3493 	 * identifies the revision, while on ADV7611 it identifies the model as
3494 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3495 	 */
3496 	switch (state->info->type) {
3497 	case ADV7604:
3498 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3499 		if (err) {
3500 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3501 			return -ENODEV;
3502 		}
3503 		if (val != 0x68) {
3504 			v4l2_err(sd, "not an ADV7604 on address 0x%x\n",
3505 				 client->addr << 1);
3506 			return -ENODEV;
3507 		}
3508 		break;
3509 	case ADV7611:
3510 	case ADV7612:
3511 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3512 				0xea,
3513 				&val);
3514 		if (err) {
3515 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3516 			return -ENODEV;
3517 		}
3518 		val2 = val << 8;
3519 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3520 			    0xeb,
3521 			    &val);
3522 		if (err) {
3523 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3524 			return -ENODEV;
3525 		}
3526 		val |= val2;
3527 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3528 			(state->info->type == ADV7612 && val != 0x2041)) {
3529 			v4l2_err(sd, "not an %s on address 0x%x\n",
3530 				 state->info->type == ADV7611 ? "ADV7610/11" : "ADV7612",
3531 				 client->addr << 1);
3532 			return -ENODEV;
3533 		}
3534 		break;
3535 	}
3536 
3537 	/* control handlers */
3538 	hdl = &state->hdl;
3539 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3540 
3541 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3542 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3543 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3544 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3545 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3546 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3547 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3548 			V4L2_CID_HUE, 0, 128, 1, 0);
3549 	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3550 			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3551 			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3552 	if (ctrl)
3553 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3554 
3555 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3556 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3557 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3558 	state->rgb_quantization_range_ctrl =
3559 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3560 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3561 			0, V4L2_DV_RGB_RANGE_AUTO);
3562 
3563 	/* custom controls */
3564 	if (adv76xx_has_afe(state))
3565 		state->analog_sampling_phase_ctrl =
3566 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3567 	state->free_run_color_manual_ctrl =
3568 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3569 	state->free_run_color_ctrl =
3570 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3571 
3572 	sd->ctrl_handler = hdl;
3573 	if (hdl->error) {
3574 		err = hdl->error;
3575 		goto err_hdl;
3576 	}
3577 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3578 		err = -ENODEV;
3579 		goto err_hdl;
3580 	}
3581 
3582 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3583 		struct i2c_client *dummy_client;
3584 
3585 		if (!(BIT(i) & state->info->page_mask))
3586 			continue;
3587 
3588 		dummy_client = adv76xx_dummy_client(sd, i);
3589 		if (IS_ERR(dummy_client)) {
3590 			err = PTR_ERR(dummy_client);
3591 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3592 			goto err_i2c;
3593 		}
3594 
3595 		state->i2c_clients[i] = dummy_client;
3596 	}
3597 
3598 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3599 			adv76xx_delayed_work_enable_hotplug);
3600 
3601 	state->source_pad = state->info->num_dv_ports
3602 			  + (state->info->has_afe ? 2 : 0);
3603 	for (i = 0; i < state->source_pad; ++i)
3604 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3605 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3606 	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3607 
3608 	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3609 				state->pads);
3610 	if (err)
3611 		goto err_work_queues;
3612 
3613 	/* Configure regmaps */
3614 	err = configure_regmaps(state);
3615 	if (err)
3616 		goto err_entity;
3617 
3618 	err = adv76xx_core_init(sd);
3619 	if (err)
3620 		goto err_entity;
3621 
3622 	if (client->irq) {
3623 		err = devm_request_threaded_irq(&client->dev,
3624 						client->irq,
3625 						NULL, adv76xx_irq_handler,
3626 						IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3627 						client->name, state);
3628 		if (err)
3629 			goto err_entity;
3630 	}
3631 
3632 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3633 	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3634 		state, dev_name(&client->dev),
3635 		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3636 	err = PTR_ERR_OR_ZERO(state->cec_adap);
3637 	if (err)
3638 		goto err_entity;
3639 #endif
3640 
3641 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3642 			client->addr << 1, client->adapter->name);
3643 
3644 	err = v4l2_async_register_subdev(sd);
3645 	if (err)
3646 		goto err_entity;
3647 
3648 	return 0;
3649 
3650 err_entity:
3651 	media_entity_cleanup(&sd->entity);
3652 err_work_queues:
3653 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3654 err_i2c:
3655 	adv76xx_unregister_clients(state);
3656 err_hdl:
3657 	v4l2_ctrl_handler_free(hdl);
3658 	return err;
3659 }
3660 
3661 /* ----------------------------------------------------------------------- */
3662 
3663 static void adv76xx_remove(struct i2c_client *client)
3664 {
3665 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3666 	struct adv76xx_state *state = to_state(sd);
3667 
3668 	/* disable interrupts */
3669 	io_write(sd, 0x40, 0);
3670 	io_write(sd, 0x41, 0);
3671 	io_write(sd, 0x46, 0);
3672 	io_write(sd, 0x6e, 0);
3673 	io_write(sd, 0x73, 0);
3674 
3675 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
3676 	v4l2_async_unregister_subdev(sd);
3677 	media_entity_cleanup(&sd->entity);
3678 	adv76xx_unregister_clients(to_state(sd));
3679 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3680 }
3681 
3682 /* ----------------------------------------------------------------------- */
3683 
3684 static struct i2c_driver adv76xx_driver = {
3685 	.driver = {
3686 		.name = "adv7604",
3687 		.of_match_table = of_match_ptr(adv76xx_of_id),
3688 	},
3689 	.probe_new = adv76xx_probe,
3690 	.remove = adv76xx_remove,
3691 	.id_table = adv76xx_i2c_id,
3692 };
3693 
3694 module_i2c_driver(adv76xx_driver);
3695