xref: /linux/drivers/media/i2c/adv7180.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * adv7180.c Analog Devices ADV7180 video decoder driver
3  * Copyright (c) 2009 Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/errno.h>
22 #include <linux/kernel.h>
23 #include <linux/interrupt.h>
24 #include <linux/i2c.h>
25 #include <linux/slab.h>
26 #include <media/v4l2-ioctl.h>
27 #include <linux/videodev2.h>
28 #include <media/v4l2-device.h>
29 #include <media/v4l2-ctrls.h>
30 #include <media/v4l2-chip-ident.h>
31 #include <linux/mutex.h>
32 
33 #define ADV7180_INPUT_CONTROL_REG			0x00
34 #define ADV7180_INPUT_CONTROL_AD_PAL_BG_NTSC_J_SECAM	0x00
35 #define ADV7180_INPUT_CONTROL_AD_PAL_BG_NTSC_J_SECAM_PED 0x10
36 #define ADV7180_INPUT_CONTROL_AD_PAL_N_NTSC_J_SECAM	0x20
37 #define ADV7180_INPUT_CONTROL_AD_PAL_N_NTSC_M_SECAM	0x30
38 #define ADV7180_INPUT_CONTROL_NTSC_J			0x40
39 #define ADV7180_INPUT_CONTROL_NTSC_M			0x50
40 #define ADV7180_INPUT_CONTROL_PAL60			0x60
41 #define ADV7180_INPUT_CONTROL_NTSC_443			0x70
42 #define ADV7180_INPUT_CONTROL_PAL_BG			0x80
43 #define ADV7180_INPUT_CONTROL_PAL_N			0x90
44 #define ADV7180_INPUT_CONTROL_PAL_M			0xa0
45 #define ADV7180_INPUT_CONTROL_PAL_M_PED			0xb0
46 #define ADV7180_INPUT_CONTROL_PAL_COMB_N		0xc0
47 #define ADV7180_INPUT_CONTROL_PAL_COMB_N_PED		0xd0
48 #define ADV7180_INPUT_CONTROL_PAL_SECAM			0xe0
49 #define ADV7180_INPUT_CONTROL_PAL_SECAM_PED		0xf0
50 #define ADV7180_INPUT_CONTROL_INSEL_MASK		0x0f
51 
52 #define ADV7180_EXTENDED_OUTPUT_CONTROL_REG		0x04
53 #define ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS		0xC5
54 
55 #define ADV7180_AUTODETECT_ENABLE_REG			0x07
56 #define ADV7180_AUTODETECT_DEFAULT			0x7f
57 /* Contrast */
58 #define ADV7180_CON_REG		0x08	/*Unsigned */
59 #define ADV7180_CON_MIN		0
60 #define ADV7180_CON_DEF		128
61 #define ADV7180_CON_MAX		255
62 /* Brightness*/
63 #define ADV7180_BRI_REG		0x0a	/*Signed */
64 #define ADV7180_BRI_MIN		-128
65 #define ADV7180_BRI_DEF		0
66 #define ADV7180_BRI_MAX		127
67 /* Hue */
68 #define ADV7180_HUE_REG		0x0b	/*Signed, inverted */
69 #define ADV7180_HUE_MIN		-127
70 #define ADV7180_HUE_DEF		0
71 #define ADV7180_HUE_MAX		128
72 
73 #define ADV7180_ADI_CTRL_REG				0x0e
74 #define ADV7180_ADI_CTRL_IRQ_SPACE			0x20
75 
76 #define ADV7180_PWR_MAN_REG		0x0f
77 #define ADV7180_PWR_MAN_ON		0x04
78 #define ADV7180_PWR_MAN_OFF		0x24
79 #define ADV7180_PWR_MAN_RES		0x80
80 
81 #define ADV7180_STATUS1_REG				0x10
82 #define ADV7180_STATUS1_IN_LOCK		0x01
83 #define ADV7180_STATUS1_AUTOD_MASK	0x70
84 #define ADV7180_STATUS1_AUTOD_NTSM_M_J	0x00
85 #define ADV7180_STATUS1_AUTOD_NTSC_4_43 0x10
86 #define ADV7180_STATUS1_AUTOD_PAL_M	0x20
87 #define ADV7180_STATUS1_AUTOD_PAL_60	0x30
88 #define ADV7180_STATUS1_AUTOD_PAL_B_G	0x40
89 #define ADV7180_STATUS1_AUTOD_SECAM	0x50
90 #define ADV7180_STATUS1_AUTOD_PAL_COMB	0x60
91 #define ADV7180_STATUS1_AUTOD_SECAM_525	0x70
92 
93 #define ADV7180_IDENT_REG 0x11
94 #define ADV7180_ID_7180 0x18
95 
96 #define ADV7180_ICONF1_ADI		0x40
97 #define ADV7180_ICONF1_ACTIVE_LOW	0x01
98 #define ADV7180_ICONF1_PSYNC_ONLY	0x10
99 #define ADV7180_ICONF1_ACTIVE_TO_CLR	0xC0
100 /* Saturation */
101 #define ADV7180_SD_SAT_CB_REG	0xe3	/*Unsigned */
102 #define ADV7180_SD_SAT_CR_REG	0xe4	/*Unsigned */
103 #define ADV7180_SAT_MIN		0
104 #define ADV7180_SAT_DEF		128
105 #define ADV7180_SAT_MAX		255
106 
107 #define ADV7180_IRQ1_LOCK	0x01
108 #define ADV7180_IRQ1_UNLOCK	0x02
109 #define ADV7180_ISR1_ADI	0x42
110 #define ADV7180_ICR1_ADI	0x43
111 #define ADV7180_IMR1_ADI	0x44
112 #define ADV7180_IMR2_ADI	0x48
113 #define ADV7180_IRQ3_AD_CHANGE	0x08
114 #define ADV7180_ISR3_ADI	0x4A
115 #define ADV7180_ICR3_ADI	0x4B
116 #define ADV7180_IMR3_ADI	0x4C
117 #define ADV7180_IMR4_ADI	0x50
118 
119 #define ADV7180_NTSC_V_BIT_END_REG	0xE6
120 #define ADV7180_NTSC_V_BIT_END_MANUAL_NVEND	0x4F
121 
122 struct adv7180_state {
123 	struct v4l2_ctrl_handler ctrl_hdl;
124 	struct v4l2_subdev	sd;
125 	struct work_struct	work;
126 	struct mutex		mutex; /* mutual excl. when accessing chip */
127 	int			irq;
128 	v4l2_std_id		curr_norm;
129 	bool			autodetect;
130 	u8			input;
131 };
132 #define to_adv7180_sd(_ctrl) (&container_of(_ctrl->handler,		\
133 					    struct adv7180_state,	\
134 					    ctrl_hdl)->sd)
135 
136 static v4l2_std_id adv7180_std_to_v4l2(u8 status1)
137 {
138 	switch (status1 & ADV7180_STATUS1_AUTOD_MASK) {
139 	case ADV7180_STATUS1_AUTOD_NTSM_M_J:
140 		return V4L2_STD_NTSC;
141 	case ADV7180_STATUS1_AUTOD_NTSC_4_43:
142 		return V4L2_STD_NTSC_443;
143 	case ADV7180_STATUS1_AUTOD_PAL_M:
144 		return V4L2_STD_PAL_M;
145 	case ADV7180_STATUS1_AUTOD_PAL_60:
146 		return V4L2_STD_PAL_60;
147 	case ADV7180_STATUS1_AUTOD_PAL_B_G:
148 		return V4L2_STD_PAL;
149 	case ADV7180_STATUS1_AUTOD_SECAM:
150 		return V4L2_STD_SECAM;
151 	case ADV7180_STATUS1_AUTOD_PAL_COMB:
152 		return V4L2_STD_PAL_Nc | V4L2_STD_PAL_N;
153 	case ADV7180_STATUS1_AUTOD_SECAM_525:
154 		return V4L2_STD_SECAM;
155 	default:
156 		return V4L2_STD_UNKNOWN;
157 	}
158 }
159 
160 static int v4l2_std_to_adv7180(v4l2_std_id std)
161 {
162 	if (std == V4L2_STD_PAL_60)
163 		return ADV7180_INPUT_CONTROL_PAL60;
164 	if (std == V4L2_STD_NTSC_443)
165 		return ADV7180_INPUT_CONTROL_NTSC_443;
166 	if (std == V4L2_STD_PAL_N)
167 		return ADV7180_INPUT_CONTROL_PAL_N;
168 	if (std == V4L2_STD_PAL_M)
169 		return ADV7180_INPUT_CONTROL_PAL_M;
170 	if (std == V4L2_STD_PAL_Nc)
171 		return ADV7180_INPUT_CONTROL_PAL_COMB_N;
172 
173 	if (std & V4L2_STD_PAL)
174 		return ADV7180_INPUT_CONTROL_PAL_BG;
175 	if (std & V4L2_STD_NTSC)
176 		return ADV7180_INPUT_CONTROL_NTSC_M;
177 	if (std & V4L2_STD_SECAM)
178 		return ADV7180_INPUT_CONTROL_PAL_SECAM;
179 
180 	return -EINVAL;
181 }
182 
183 static u32 adv7180_status_to_v4l2(u8 status1)
184 {
185 	if (!(status1 & ADV7180_STATUS1_IN_LOCK))
186 		return V4L2_IN_ST_NO_SIGNAL;
187 
188 	return 0;
189 }
190 
191 static int __adv7180_status(struct i2c_client *client, u32 *status,
192 			    v4l2_std_id *std)
193 {
194 	int status1 = i2c_smbus_read_byte_data(client, ADV7180_STATUS1_REG);
195 
196 	if (status1 < 0)
197 		return status1;
198 
199 	if (status)
200 		*status = adv7180_status_to_v4l2(status1);
201 	if (std)
202 		*std = adv7180_std_to_v4l2(status1);
203 
204 	return 0;
205 }
206 
207 static inline struct adv7180_state *to_state(struct v4l2_subdev *sd)
208 {
209 	return container_of(sd, struct adv7180_state, sd);
210 }
211 
212 static int adv7180_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
213 {
214 	struct adv7180_state *state = to_state(sd);
215 	int err = mutex_lock_interruptible(&state->mutex);
216 	if (err)
217 		return err;
218 
219 	/* when we are interrupt driven we know the state */
220 	if (!state->autodetect || state->irq > 0)
221 		*std = state->curr_norm;
222 	else
223 		err = __adv7180_status(v4l2_get_subdevdata(sd), NULL, std);
224 
225 	mutex_unlock(&state->mutex);
226 	return err;
227 }
228 
229 static int adv7180_s_routing(struct v4l2_subdev *sd, u32 input,
230 			     u32 output, u32 config)
231 {
232 	struct adv7180_state *state = to_state(sd);
233 	int ret = mutex_lock_interruptible(&state->mutex);
234 	struct i2c_client *client = v4l2_get_subdevdata(sd);
235 
236 	if (ret)
237 		return ret;
238 
239 	/* We cannot discriminate between LQFP and 40-pin LFCSP, so accept
240 	 * all inputs and let the card driver take care of validation
241 	 */
242 	if ((input & ADV7180_INPUT_CONTROL_INSEL_MASK) != input)
243 		goto out;
244 
245 	ret = i2c_smbus_read_byte_data(client, ADV7180_INPUT_CONTROL_REG);
246 
247 	if (ret < 0)
248 		goto out;
249 
250 	ret &= ~ADV7180_INPUT_CONTROL_INSEL_MASK;
251 	ret = i2c_smbus_write_byte_data(client,
252 					ADV7180_INPUT_CONTROL_REG, ret | input);
253 	state->input = input;
254 out:
255 	mutex_unlock(&state->mutex);
256 	return ret;
257 }
258 
259 static int adv7180_g_input_status(struct v4l2_subdev *sd, u32 *status)
260 {
261 	struct adv7180_state *state = to_state(sd);
262 	int ret = mutex_lock_interruptible(&state->mutex);
263 	if (ret)
264 		return ret;
265 
266 	ret = __adv7180_status(v4l2_get_subdevdata(sd), status, NULL);
267 	mutex_unlock(&state->mutex);
268 	return ret;
269 }
270 
271 static int adv7180_g_chip_ident(struct v4l2_subdev *sd,
272 				struct v4l2_dbg_chip_ident *chip)
273 {
274 	struct i2c_client *client = v4l2_get_subdevdata(sd);
275 
276 	return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_ADV7180, 0);
277 }
278 
279 static int adv7180_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
280 {
281 	struct adv7180_state *state = to_state(sd);
282 	struct i2c_client *client = v4l2_get_subdevdata(sd);
283 	int ret = mutex_lock_interruptible(&state->mutex);
284 	if (ret)
285 		return ret;
286 
287 	/* all standards -> autodetect */
288 	if (std == V4L2_STD_ALL) {
289 		ret =
290 		    i2c_smbus_write_byte_data(client, ADV7180_INPUT_CONTROL_REG,
291 				ADV7180_INPUT_CONTROL_AD_PAL_BG_NTSC_J_SECAM
292 					      | state->input);
293 		if (ret < 0)
294 			goto out;
295 
296 		__adv7180_status(client, NULL, &state->curr_norm);
297 		state->autodetect = true;
298 	} else {
299 		ret = v4l2_std_to_adv7180(std);
300 		if (ret < 0)
301 			goto out;
302 
303 		ret = i2c_smbus_write_byte_data(client,
304 						ADV7180_INPUT_CONTROL_REG,
305 						ret | state->input);
306 		if (ret < 0)
307 			goto out;
308 
309 		state->curr_norm = std;
310 		state->autodetect = false;
311 	}
312 	ret = 0;
313 out:
314 	mutex_unlock(&state->mutex);
315 	return ret;
316 }
317 
318 static int adv7180_s_ctrl(struct v4l2_ctrl *ctrl)
319 {
320 	struct v4l2_subdev *sd = to_adv7180_sd(ctrl);
321 	struct adv7180_state *state = to_state(sd);
322 	struct i2c_client *client = v4l2_get_subdevdata(sd);
323 	int ret = mutex_lock_interruptible(&state->mutex);
324 	int val;
325 
326 	if (ret)
327 		return ret;
328 	val = ctrl->val;
329 	switch (ctrl->id) {
330 	case V4L2_CID_BRIGHTNESS:
331 		ret = i2c_smbus_write_byte_data(client, ADV7180_BRI_REG, val);
332 		break;
333 	case V4L2_CID_HUE:
334 		/*Hue is inverted according to HSL chart */
335 		ret = i2c_smbus_write_byte_data(client, ADV7180_HUE_REG, -val);
336 		break;
337 	case V4L2_CID_CONTRAST:
338 		ret = i2c_smbus_write_byte_data(client, ADV7180_CON_REG, val);
339 		break;
340 	case V4L2_CID_SATURATION:
341 		/*
342 		 *This could be V4L2_CID_BLUE_BALANCE/V4L2_CID_RED_BALANCE
343 		 *Let's not confuse the user, everybody understands saturation
344 		 */
345 		ret = i2c_smbus_write_byte_data(client, ADV7180_SD_SAT_CB_REG,
346 						val);
347 		if (ret < 0)
348 			break;
349 		ret = i2c_smbus_write_byte_data(client, ADV7180_SD_SAT_CR_REG,
350 						val);
351 		break;
352 	default:
353 		ret = -EINVAL;
354 	}
355 
356 	mutex_unlock(&state->mutex);
357 	return ret;
358 }
359 
360 static const struct v4l2_ctrl_ops adv7180_ctrl_ops = {
361 	.s_ctrl = adv7180_s_ctrl,
362 };
363 
364 static int adv7180_init_controls(struct adv7180_state *state)
365 {
366 	v4l2_ctrl_handler_init(&state->ctrl_hdl, 4);
367 
368 	v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
369 			  V4L2_CID_BRIGHTNESS, ADV7180_BRI_MIN,
370 			  ADV7180_BRI_MAX, 1, ADV7180_BRI_DEF);
371 	v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
372 			  V4L2_CID_CONTRAST, ADV7180_CON_MIN,
373 			  ADV7180_CON_MAX, 1, ADV7180_CON_DEF);
374 	v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
375 			  V4L2_CID_SATURATION, ADV7180_SAT_MIN,
376 			  ADV7180_SAT_MAX, 1, ADV7180_SAT_DEF);
377 	v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
378 			  V4L2_CID_HUE, ADV7180_HUE_MIN,
379 			  ADV7180_HUE_MAX, 1, ADV7180_HUE_DEF);
380 	state->sd.ctrl_handler = &state->ctrl_hdl;
381 	if (state->ctrl_hdl.error) {
382 		int err = state->ctrl_hdl.error;
383 
384 		v4l2_ctrl_handler_free(&state->ctrl_hdl);
385 		return err;
386 	}
387 	v4l2_ctrl_handler_setup(&state->ctrl_hdl);
388 
389 	return 0;
390 }
391 static void adv7180_exit_controls(struct adv7180_state *state)
392 {
393 	v4l2_ctrl_handler_free(&state->ctrl_hdl);
394 }
395 
396 static const struct v4l2_subdev_video_ops adv7180_video_ops = {
397 	.querystd = adv7180_querystd,
398 	.g_input_status = adv7180_g_input_status,
399 	.s_routing = adv7180_s_routing,
400 };
401 
402 static const struct v4l2_subdev_core_ops adv7180_core_ops = {
403 	.g_chip_ident = adv7180_g_chip_ident,
404 	.s_std = adv7180_s_std,
405 	.queryctrl = v4l2_subdev_queryctrl,
406 	.g_ctrl = v4l2_subdev_g_ctrl,
407 	.s_ctrl = v4l2_subdev_s_ctrl,
408 };
409 
410 static const struct v4l2_subdev_ops adv7180_ops = {
411 	.core = &adv7180_core_ops,
412 	.video = &adv7180_video_ops,
413 };
414 
415 static void adv7180_work(struct work_struct *work)
416 {
417 	struct adv7180_state *state = container_of(work, struct adv7180_state,
418 						   work);
419 	struct i2c_client *client = v4l2_get_subdevdata(&state->sd);
420 	u8 isr3;
421 
422 	mutex_lock(&state->mutex);
423 	i2c_smbus_write_byte_data(client, ADV7180_ADI_CTRL_REG,
424 				  ADV7180_ADI_CTRL_IRQ_SPACE);
425 	isr3 = i2c_smbus_read_byte_data(client, ADV7180_ISR3_ADI);
426 	/* clear */
427 	i2c_smbus_write_byte_data(client, ADV7180_ICR3_ADI, isr3);
428 	i2c_smbus_write_byte_data(client, ADV7180_ADI_CTRL_REG, 0);
429 
430 	if (isr3 & ADV7180_IRQ3_AD_CHANGE && state->autodetect)
431 		__adv7180_status(client, NULL, &state->curr_norm);
432 	mutex_unlock(&state->mutex);
433 
434 	enable_irq(state->irq);
435 }
436 
437 static irqreturn_t adv7180_irq(int irq, void *devid)
438 {
439 	struct adv7180_state *state = devid;
440 
441 	schedule_work(&state->work);
442 
443 	disable_irq_nosync(state->irq);
444 
445 	return IRQ_HANDLED;
446 }
447 
448 static int init_device(struct i2c_client *client, struct adv7180_state *state)
449 {
450 	int ret;
451 
452 	/* Initialize adv7180 */
453 	/* Enable autodetection */
454 	if (state->autodetect) {
455 		ret =
456 		    i2c_smbus_write_byte_data(client, ADV7180_INPUT_CONTROL_REG,
457 				ADV7180_INPUT_CONTROL_AD_PAL_BG_NTSC_J_SECAM
458 					      | state->input);
459 		if (ret < 0)
460 			return ret;
461 
462 		ret =
463 		    i2c_smbus_write_byte_data(client,
464 					      ADV7180_AUTODETECT_ENABLE_REG,
465 					      ADV7180_AUTODETECT_DEFAULT);
466 		if (ret < 0)
467 			return ret;
468 	} else {
469 		ret = v4l2_std_to_adv7180(state->curr_norm);
470 		if (ret < 0)
471 			return ret;
472 
473 		ret =
474 		    i2c_smbus_write_byte_data(client, ADV7180_INPUT_CONTROL_REG,
475 					      ret | state->input);
476 		if (ret < 0)
477 			return ret;
478 
479 	}
480 	/* ITU-R BT.656-4 compatible */
481 	ret = i2c_smbus_write_byte_data(client,
482 			ADV7180_EXTENDED_OUTPUT_CONTROL_REG,
483 			ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS);
484 	if (ret < 0)
485 		return ret;
486 
487 	/* Manually set V bit end position in NTSC mode */
488 	ret = i2c_smbus_write_byte_data(client,
489 					ADV7180_NTSC_V_BIT_END_REG,
490 					ADV7180_NTSC_V_BIT_END_MANUAL_NVEND);
491 	if (ret < 0)
492 		return ret;
493 
494 	/* read current norm */
495 	__adv7180_status(client, NULL, &state->curr_norm);
496 
497 	/* register for interrupts */
498 	if (state->irq > 0) {
499 		ret = request_irq(state->irq, adv7180_irq, 0, KBUILD_MODNAME,
500 				  state);
501 		if (ret)
502 			return ret;
503 
504 		ret = i2c_smbus_write_byte_data(client, ADV7180_ADI_CTRL_REG,
505 						ADV7180_ADI_CTRL_IRQ_SPACE);
506 		if (ret < 0)
507 			return ret;
508 
509 		/* config the Interrupt pin to be active low */
510 		ret = i2c_smbus_write_byte_data(client, ADV7180_ICONF1_ADI,
511 						ADV7180_ICONF1_ACTIVE_LOW |
512 						ADV7180_ICONF1_PSYNC_ONLY);
513 		if (ret < 0)
514 			return ret;
515 
516 		ret = i2c_smbus_write_byte_data(client, ADV7180_IMR1_ADI, 0);
517 		if (ret < 0)
518 			return ret;
519 
520 		ret = i2c_smbus_write_byte_data(client, ADV7180_IMR2_ADI, 0);
521 		if (ret < 0)
522 			return ret;
523 
524 		/* enable AD change interrupts interrupts */
525 		ret = i2c_smbus_write_byte_data(client, ADV7180_IMR3_ADI,
526 						ADV7180_IRQ3_AD_CHANGE);
527 		if (ret < 0)
528 			return ret;
529 
530 		ret = i2c_smbus_write_byte_data(client, ADV7180_IMR4_ADI, 0);
531 		if (ret < 0)
532 			return ret;
533 
534 		ret = i2c_smbus_write_byte_data(client, ADV7180_ADI_CTRL_REG,
535 						0);
536 		if (ret < 0)
537 			return ret;
538 	}
539 
540 	return 0;
541 }
542 
543 static __devinit int adv7180_probe(struct i2c_client *client,
544 				   const struct i2c_device_id *id)
545 {
546 	struct adv7180_state *state;
547 	struct v4l2_subdev *sd;
548 	int ret;
549 
550 	/* Check if the adapter supports the needed features */
551 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
552 		return -EIO;
553 
554 	v4l_info(client, "chip found @ 0x%02x (%s)\n",
555 		 client->addr, client->adapter->name);
556 
557 	state = kzalloc(sizeof(struct adv7180_state), GFP_KERNEL);
558 	if (state == NULL) {
559 		ret = -ENOMEM;
560 		goto err;
561 	}
562 
563 	state->irq = client->irq;
564 	INIT_WORK(&state->work, adv7180_work);
565 	mutex_init(&state->mutex);
566 	state->autodetect = true;
567 	state->input = 0;
568 	sd = &state->sd;
569 	v4l2_i2c_subdev_init(sd, client, &adv7180_ops);
570 
571 	ret = adv7180_init_controls(state);
572 	if (ret)
573 		goto err_unreg_subdev;
574 	ret = init_device(client, state);
575 	if (ret)
576 		goto err_free_ctrl;
577 	return 0;
578 
579 err_free_ctrl:
580 	adv7180_exit_controls(state);
581 err_unreg_subdev:
582 	mutex_destroy(&state->mutex);
583 	v4l2_device_unregister_subdev(sd);
584 	kfree(state);
585 err:
586 	printk(KERN_ERR KBUILD_MODNAME ": Failed to probe: %d\n", ret);
587 	return ret;
588 }
589 
590 static __devexit int adv7180_remove(struct i2c_client *client)
591 {
592 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
593 	struct adv7180_state *state = to_state(sd);
594 
595 	if (state->irq > 0) {
596 		free_irq(client->irq, state);
597 		if (cancel_work_sync(&state->work)) {
598 			/*
599 			 * Work was pending, therefore we need to enable
600 			 * IRQ here to balance the disable_irq() done in the
601 			 * interrupt handler.
602 			 */
603 			enable_irq(state->irq);
604 		}
605 	}
606 
607 	mutex_destroy(&state->mutex);
608 	v4l2_device_unregister_subdev(sd);
609 	kfree(to_state(sd));
610 	return 0;
611 }
612 
613 static const struct i2c_device_id adv7180_id[] = {
614 	{KBUILD_MODNAME, 0},
615 	{},
616 };
617 
618 #ifdef CONFIG_PM
619 static int adv7180_suspend(struct i2c_client *client, pm_message_t state)
620 {
621 	int ret;
622 
623 	ret = i2c_smbus_write_byte_data(client, ADV7180_PWR_MAN_REG,
624 					ADV7180_PWR_MAN_OFF);
625 	if (ret < 0)
626 		return ret;
627 	return 0;
628 }
629 
630 static int adv7180_resume(struct i2c_client *client)
631 {
632 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
633 	struct adv7180_state *state = to_state(sd);
634 	int ret;
635 
636 	ret = i2c_smbus_write_byte_data(client, ADV7180_PWR_MAN_REG,
637 					ADV7180_PWR_MAN_ON);
638 	if (ret < 0)
639 		return ret;
640 	ret = init_device(client, state);
641 	if (ret < 0)
642 		return ret;
643 	return 0;
644 }
645 #endif
646 
647 MODULE_DEVICE_TABLE(i2c, adv7180_id);
648 
649 static struct i2c_driver adv7180_driver = {
650 	.driver = {
651 		   .owner = THIS_MODULE,
652 		   .name = KBUILD_MODNAME,
653 		   },
654 	.probe = adv7180_probe,
655 	.remove = __devexit_p(adv7180_remove),
656 #ifdef CONFIG_PM
657 	.suspend = adv7180_suspend,
658 	.resume = adv7180_resume,
659 #endif
660 	.id_table = adv7180_id,
661 };
662 
663 module_i2c_driver(adv7180_driver);
664 
665 MODULE_DESCRIPTION("Analog Devices ADV7180 video decoder driver");
666 MODULE_AUTHOR("Mocean Laboratories");
667 MODULE_LICENSE("GPL v2");
668