xref: /linux/drivers/media/dvb-frontends/stv0910.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for the ST STV0910 DVB-S/S2 demodulator.
4  *
5  * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6  *                         Marcus Metzler <mocm@metzlerbros.de>
7  *                         developed for Digital Devices GmbH
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/firmware.h>
16 #include <linux/i2c.h>
17 #include <asm/div64.h>
18 
19 #include <media/dvb_frontend.h>
20 #include "stv0910.h"
21 #include "stv0910_regs.h"
22 
23 #define EXT_CLOCK    30000000
24 #define TUNING_DELAY 200
25 #define BER_SRC_S    0x20
26 #define BER_SRC_S2   0x20
27 
28 static LIST_HEAD(stvlist);
29 
30 enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
31 
32 enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
33 
34 enum dvbs2_mod_cod {
35 	DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
36 	DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3,	DVBS2_QPSK_3_4,
37 	DVBS2_QPSK_4_5,	DVBS2_QPSK_5_6,	DVBS2_QPSK_8_9,	DVBS2_QPSK_9_10,
38 	DVBS2_8PSK_3_5,	DVBS2_8PSK_2_3,	DVBS2_8PSK_3_4,	DVBS2_8PSK_5_6,
39 	DVBS2_8PSK_8_9,	DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
40 	DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
41 	DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
42 	DVBS2_32APSK_9_10
43 };
44 
45 enum fe_stv0910_mod_cod {
46 	FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
47 	FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
48 	FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
49 	FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
50 	FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
51 	FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
52 	FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
53 	FE_32APSK_910
54 };
55 
56 enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
57 
58 static inline u32 muldiv32(u32 a, u32 b, u32 c)
59 {
60 	u64 tmp64;
61 
62 	tmp64 = (u64)a * (u64)b;
63 	do_div(tmp64, c);
64 
65 	return (u32)tmp64;
66 }
67 
68 struct stv_base {
69 	struct list_head     stvlist;
70 
71 	u8                   adr;
72 	struct i2c_adapter  *i2c;
73 	struct mutex         i2c_lock; /* shared I2C access protect */
74 	struct mutex         reg_lock; /* shared register write protect */
75 	int                  count;
76 
77 	u32                  extclk;
78 	u32                  mclk;
79 };
80 
81 struct stv {
82 	struct stv_base     *base;
83 	struct dvb_frontend  fe;
84 	int                  nr;
85 	u16                  regoff;
86 	u8                   i2crpt;
87 	u8                   tscfgh;
88 	u8                   tsgeneral;
89 	u8                   tsspeed;
90 	u8                   single;
91 	unsigned long        tune_time;
92 
93 	s32                  search_range;
94 	u32                  started;
95 	u32                  demod_lock_time;
96 	enum receive_mode    receive_mode;
97 	u32                  demod_timeout;
98 	u32                  fec_timeout;
99 	u32                  first_time_lock;
100 	u8                   demod_bits;
101 	u32                  symbol_rate;
102 
103 	u8                       last_viterbi_rate;
104 	enum fe_code_rate        puncture_rate;
105 	enum fe_stv0910_mod_cod  mod_cod;
106 	enum dvbs2_fectype       fectype;
107 	u32                      pilots;
108 	enum fe_stv0910_roll_off feroll_off;
109 
110 	int   is_standard_broadcast;
111 	int   is_vcm;
112 
113 	u32   cur_scrambling_code;
114 
115 	u32   last_bernumerator;
116 	u32   last_berdenominator;
117 	u8    berscale;
118 
119 	u8    vth[6];
120 };
121 
122 struct sinit_table {
123 	u16  address;
124 	u8   data;
125 };
126 
127 struct slookup {
128 	s16  value;
129 	u32  reg_value;
130 };
131 
132 static int write_reg(struct stv *state, u16 reg, u8 val)
133 {
134 	struct i2c_adapter *adap = state->base->i2c;
135 	u8 data[3] = {reg >> 8, reg & 0xff, val};
136 	struct i2c_msg msg = {.addr = state->base->adr, .flags = 0,
137 			      .buf = data, .len = 3};
138 
139 	if (i2c_transfer(adap, &msg, 1) != 1) {
140 		dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
141 			 state->base->adr, reg, val);
142 		return -EIO;
143 	}
144 	return 0;
145 }
146 
147 static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
148 				  u16 reg, u8 *val, int count)
149 {
150 	u8 msg[2] = {reg >> 8, reg & 0xff};
151 	struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
152 				   .buf  = msg, .len   = 2},
153 				  {.addr = adr, .flags = I2C_M_RD,
154 				   .buf  = val, .len   = count } };
155 
156 	if (i2c_transfer(adapter, msgs, 2) != 2) {
157 		dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
158 			 adr, reg);
159 		return -EIO;
160 	}
161 	return 0;
162 }
163 
164 static int read_reg(struct stv *state, u16 reg, u8 *val)
165 {
166 	return i2c_read_regs16(state->base->i2c, state->base->adr,
167 			       reg, val, 1);
168 }
169 
170 static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
171 {
172 	return i2c_read_regs16(state->base->i2c, state->base->adr,
173 			       reg, val, len);
174 }
175 
176 static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
177 {
178 	int status;
179 	u8 tmp;
180 
181 	mutex_lock(&state->base->reg_lock);
182 	status = read_reg(state, reg, &tmp);
183 	if (!status)
184 		status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
185 	mutex_unlock(&state->base->reg_lock);
186 	return status;
187 }
188 
189 static int write_field(struct stv *state, u32 field, u8 val)
190 {
191 	int status;
192 	u8 shift, mask, old, new;
193 
194 	status = read_reg(state, field >> 16, &old);
195 	if (status)
196 		return status;
197 	mask = field & 0xff;
198 	shift = (field >> 12) & 0xf;
199 	new = ((val << shift) & mask) | (old & ~mask);
200 	if (new == old)
201 		return 0;
202 	return write_reg(state, field >> 16, new);
203 }
204 
205 #define SET_FIELD(_reg, _val)					\
206 	write_field(state, state->nr ? FSTV0910_P2_##_reg :	\
207 		    FSTV0910_P1_##_reg, _val)
208 
209 #define SET_REG(_reg, _val)					\
210 	write_reg(state, state->nr ? RSTV0910_P2_##_reg :	\
211 		  RSTV0910_P1_##_reg, _val)
212 
213 #define GET_REG(_reg, _val)					\
214 	read_reg(state, state->nr ? RSTV0910_P2_##_reg :	\
215 		 RSTV0910_P1_##_reg, _val)
216 
217 static const struct slookup s1_sn_lookup[] = {
218 	{   0,    9242  }, /* C/N=   0dB */
219 	{   5,    9105  }, /* C/N= 0.5dB */
220 	{  10,    8950  }, /* C/N= 1.0dB */
221 	{  15,    8780  }, /* C/N= 1.5dB */
222 	{  20,    8566  }, /* C/N= 2.0dB */
223 	{  25,    8366  }, /* C/N= 2.5dB */
224 	{  30,    8146  }, /* C/N= 3.0dB */
225 	{  35,    7908  }, /* C/N= 3.5dB */
226 	{  40,    7666  }, /* C/N= 4.0dB */
227 	{  45,    7405  }, /* C/N= 4.5dB */
228 	{  50,    7136  }, /* C/N= 5.0dB */
229 	{  55,    6861  }, /* C/N= 5.5dB */
230 	{  60,    6576  }, /* C/N= 6.0dB */
231 	{  65,    6330  }, /* C/N= 6.5dB */
232 	{  70,    6048  }, /* C/N= 7.0dB */
233 	{  75,    5768  }, /* C/N= 7.5dB */
234 	{  80,    5492  }, /* C/N= 8.0dB */
235 	{  85,    5224  }, /* C/N= 8.5dB */
236 	{  90,    4959  }, /* C/N= 9.0dB */
237 	{  95,    4709  }, /* C/N= 9.5dB */
238 	{  100,   4467  }, /* C/N=10.0dB */
239 	{  105,   4236  }, /* C/N=10.5dB */
240 	{  110,   4013  }, /* C/N=11.0dB */
241 	{  115,   3800  }, /* C/N=11.5dB */
242 	{  120,   3598  }, /* C/N=12.0dB */
243 	{  125,   3406  }, /* C/N=12.5dB */
244 	{  130,   3225  }, /* C/N=13.0dB */
245 	{  135,   3052  }, /* C/N=13.5dB */
246 	{  140,   2889  }, /* C/N=14.0dB */
247 	{  145,   2733  }, /* C/N=14.5dB */
248 	{  150,   2587  }, /* C/N=15.0dB */
249 	{  160,   2318  }, /* C/N=16.0dB */
250 	{  170,   2077  }, /* C/N=17.0dB */
251 	{  180,   1862  }, /* C/N=18.0dB */
252 	{  190,   1670  }, /* C/N=19.0dB */
253 	{  200,   1499  }, /* C/N=20.0dB */
254 	{  210,   1347  }, /* C/N=21.0dB */
255 	{  220,   1213  }, /* C/N=22.0dB */
256 	{  230,   1095  }, /* C/N=23.0dB */
257 	{  240,    992  }, /* C/N=24.0dB */
258 	{  250,    900  }, /* C/N=25.0dB */
259 	{  260,    826  }, /* C/N=26.0dB */
260 	{  270,    758  }, /* C/N=27.0dB */
261 	{  280,    702  }, /* C/N=28.0dB */
262 	{  290,    653  }, /* C/N=29.0dB */
263 	{  300,    613  }, /* C/N=30.0dB */
264 	{  310,    579  }, /* C/N=31.0dB */
265 	{  320,    550  }, /* C/N=32.0dB */
266 	{  330,    526  }, /* C/N=33.0dB */
267 	{  350,    490  }, /* C/N=33.0dB */
268 	{  400,    445  }, /* C/N=40.0dB */
269 	{  450,    430  }, /* C/N=45.0dB */
270 	{  500,    426  }, /* C/N=50.0dB */
271 	{  510,    425  }  /* C/N=51.0dB */
272 };
273 
274 static const struct slookup s2_sn_lookup[] = {
275 	{  -30,  13950  }, /* C/N=-2.5dB */
276 	{  -25,  13580  }, /* C/N=-2.5dB */
277 	{  -20,  13150  }, /* C/N=-2.0dB */
278 	{  -15,  12760  }, /* C/N=-1.5dB */
279 	{  -10,  12345  }, /* C/N=-1.0dB */
280 	{   -5,  11900  }, /* C/N=-0.5dB */
281 	{    0,  11520  }, /* C/N=   0dB */
282 	{    5,  11080  }, /* C/N= 0.5dB */
283 	{   10,  10630  }, /* C/N= 1.0dB */
284 	{   15,  10210  }, /* C/N= 1.5dB */
285 	{   20,   9790  }, /* C/N= 2.0dB */
286 	{   25,   9390  }, /* C/N= 2.5dB */
287 	{   30,   8970  }, /* C/N= 3.0dB */
288 	{   35,   8575  }, /* C/N= 3.5dB */
289 	{   40,   8180  }, /* C/N= 4.0dB */
290 	{   45,   7800  }, /* C/N= 4.5dB */
291 	{   50,   7430  }, /* C/N= 5.0dB */
292 	{   55,   7080  }, /* C/N= 5.5dB */
293 	{   60,   6720  }, /* C/N= 6.0dB */
294 	{   65,   6320  }, /* C/N= 6.5dB */
295 	{   70,   6060  }, /* C/N= 7.0dB */
296 	{   75,   5760  }, /* C/N= 7.5dB */
297 	{   80,   5480  }, /* C/N= 8.0dB */
298 	{   85,   5200  }, /* C/N= 8.5dB */
299 	{   90,   4930  }, /* C/N= 9.0dB */
300 	{   95,   4680  }, /* C/N= 9.5dB */
301 	{  100,   4425  }, /* C/N=10.0dB */
302 	{  105,   4210  }, /* C/N=10.5dB */
303 	{  110,   3980  }, /* C/N=11.0dB */
304 	{  115,   3765  }, /* C/N=11.5dB */
305 	{  120,   3570  }, /* C/N=12.0dB */
306 	{  125,   3315  }, /* C/N=12.5dB */
307 	{  130,   3140  }, /* C/N=13.0dB */
308 	{  135,   2980  }, /* C/N=13.5dB */
309 	{  140,   2820  }, /* C/N=14.0dB */
310 	{  145,   2670  }, /* C/N=14.5dB */
311 	{  150,   2535  }, /* C/N=15.0dB */
312 	{  160,   2270  }, /* C/N=16.0dB */
313 	{  170,   2035  }, /* C/N=17.0dB */
314 	{  180,   1825  }, /* C/N=18.0dB */
315 	{  190,   1650  }, /* C/N=19.0dB */
316 	{  200,   1485  }, /* C/N=20.0dB */
317 	{  210,   1340  }, /* C/N=21.0dB */
318 	{  220,   1212  }, /* C/N=22.0dB */
319 	{  230,   1100  }, /* C/N=23.0dB */
320 	{  240,   1000  }, /* C/N=24.0dB */
321 	{  250,    910  }, /* C/N=25.0dB */
322 	{  260,    836  }, /* C/N=26.0dB */
323 	{  270,    772  }, /* C/N=27.0dB */
324 	{  280,    718  }, /* C/N=28.0dB */
325 	{  290,    671  }, /* C/N=29.0dB */
326 	{  300,    635  }, /* C/N=30.0dB */
327 	{  310,    602  }, /* C/N=31.0dB */
328 	{  320,    575  }, /* C/N=32.0dB */
329 	{  330,    550  }, /* C/N=33.0dB */
330 	{  350,    517  }, /* C/N=35.0dB */
331 	{  400,    480  }, /* C/N=40.0dB */
332 	{  450,    466  }, /* C/N=45.0dB */
333 	{  500,    464  }, /* C/N=50.0dB */
334 	{  510,    463  }, /* C/N=51.0dB */
335 };
336 
337 static const struct slookup padc_lookup[] = {
338 	{    0,  118000 }, /* PADC= +0dBm */
339 	{ -100,  93600  }, /* PADC= -1dBm */
340 	{ -200,  74500  }, /* PADC= -2dBm */
341 	{ -300,  59100  }, /* PADC= -3dBm */
342 	{ -400,  47000  }, /* PADC= -4dBm */
343 	{ -500,  37300  }, /* PADC= -5dBm */
344 	{ -600,  29650  }, /* PADC= -6dBm */
345 	{ -700,  23520  }, /* PADC= -7dBm */
346 	{ -900,  14850  }, /* PADC= -9dBm */
347 	{ -1100, 9380   }, /* PADC=-11dBm */
348 	{ -1300, 5910   }, /* PADC=-13dBm */
349 	{ -1500, 3730   }, /* PADC=-15dBm */
350 	{ -1700, 2354   }, /* PADC=-17dBm */
351 	{ -1900, 1485   }, /* PADC=-19dBm */
352 	{ -2000, 1179   }, /* PADC=-20dBm */
353 	{ -2100, 1000   }, /* PADC=-21dBm */
354 };
355 
356 /*********************************************************************
357  * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
358  *********************************************************************/
359 static const u8 s2car_loop[] =	{
360 	/*
361 	 * Modcod  2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
362 	 * 20MPon 20MPoff 30MPon 30MPoff
363 	 */
364 
365 	/* FE_QPSK_14  */
366 	0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x2A,  0x1C,  0x3A,  0x3B,
367 	/* FE_QPSK_13  */
368 	0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x3A,  0x0C,  0x3A,  0x2B,
369 	/* FE_QPSK_25  */
370 	0x1C,  0x3C,  0x1B,  0x3C,  0x3A,  0x1C,  0x3A,  0x3B,  0x3A,  0x2B,
371 	/* FE_QPSK_12  */
372 	0x0C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
373 	/* FE_QPSK_35  */
374 	0x1C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
375 	/* FE_QPSK_23  */
376 	0x2C,  0x2C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
377 	/* FE_QPSK_34  */
378 	0x3C,  0x2C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
379 	/* FE_QPSK_45  */
380 	0x0D,  0x3C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
381 	/* FE_QPSK_56  */
382 	0x1D,  0x3C,  0x0C,  0x2C,  0x2B,  0x1C,  0x1B,  0x3B,  0x0B,  0x1B,
383 	/* FE_QPSK_89  */
384 	0x3D,  0x0D,  0x0C,  0x2C,  0x2B,  0x0C,  0x2B,  0x2B,  0x0B,  0x0B,
385 	/* FE_QPSK_910 */
386 	0x1E,  0x0D,  0x1C,  0x2C,  0x3B,  0x0C,  0x2B,  0x2B,  0x1B,  0x0B,
387 	/* FE_8PSK_35  */
388 	0x28,  0x09,  0x28,  0x09,  0x28,  0x09,  0x28,  0x08,  0x28,  0x27,
389 	/* FE_8PSK_23  */
390 	0x19,  0x29,  0x19,  0x29,  0x19,  0x29,  0x38,  0x19,  0x28,  0x09,
391 	/* FE_8PSK_34  */
392 	0x1A,  0x0B,  0x1A,  0x3A,  0x0A,  0x2A,  0x39,  0x2A,  0x39,  0x1A,
393 	/* FE_8PSK_56  */
394 	0x2B,  0x2B,  0x1B,  0x1B,  0x0B,  0x1B,  0x1A,  0x0B,  0x1A,  0x1A,
395 	/* FE_8PSK_89  */
396 	0x0C,  0x0C,  0x3B,  0x3B,  0x1B,  0x1B,  0x2A,  0x0B,  0x2A,  0x2A,
397 	/* FE_8PSK_910 */
398 	0x0C,  0x1C,  0x0C,  0x3B,  0x2B,  0x1B,  0x3A,  0x0B,  0x2A,  0x2A,
399 
400 	/**********************************************************************
401 	 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
402 	 **********************************************************************/
403 
404 	/*
405 	 * Modcod 2MPon  2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
406 	 * 20MPoff 30MPon 30MPoff
407 	 */
408 
409 	/* FE_16APSK_23  */
410 	0x0A,  0x0A,  0x0A,  0x0A,  0x1A,  0x0A,  0x39,  0x0A,  0x29,  0x0A,
411 	/* FE_16APSK_34  */
412 	0x0A,  0x0A,  0x0A,  0x0A,  0x0B,  0x0A,  0x2A,  0x0A,  0x1A,  0x0A,
413 	/* FE_16APSK_45  */
414 	0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
415 	/* FE_16APSK_56  */
416 	0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
417 	/* FE_16APSK_89  */
418 	0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
419 	/* FE_16APSK_910 */
420 	0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
421 	/* FE_32APSK_34  */
422 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
423 	/* FE_32APSK_45  */
424 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
425 	/* FE_32APSK_56  */
426 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
427 	/* FE_32APSK_89  */
428 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
429 	/* FE_32APSK_910 */
430 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
431 };
432 
433 static u8 get_optim_cloop(struct stv *state,
434 			  enum fe_stv0910_mod_cod mod_cod, u32 pilots)
435 {
436 	int i = 0;
437 
438 	if (mod_cod >= FE_32APSK_910)
439 		i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
440 	else if (mod_cod >= FE_QPSK_14)
441 		i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
442 
443 	if (state->symbol_rate <= 3000000)
444 		i += 0;
445 	else if (state->symbol_rate <=  7000000)
446 		i += 2;
447 	else if (state->symbol_rate <= 15000000)
448 		i += 4;
449 	else if (state->symbol_rate <= 25000000)
450 		i += 6;
451 	else
452 		i += 8;
453 
454 	if (!pilots)
455 		i += 1;
456 
457 	return s2car_loop[i];
458 }
459 
460 static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
461 {
462 	int status = 0;
463 	u8 symb_freq0;
464 	u8 symb_freq1;
465 	u8 symb_freq2;
466 	u8 symb_freq3;
467 	u8 tim_offs0;
468 	u8 tim_offs1;
469 	u8 tim_offs2;
470 	u32 symbol_rate;
471 	s32 timing_offset;
472 
473 	*p_symbol_rate = 0;
474 	if (!state->started)
475 		return status;
476 
477 	read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
478 	read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
479 	read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
480 	read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
481 	read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
482 	read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
483 	read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
484 
485 	symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
486 		((u32)symb_freq1 << 8) | (u32)symb_freq0;
487 	timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
488 		(u32)tim_offs0;
489 
490 	if ((timing_offset & (1 << 23)) != 0)
491 		timing_offset |= 0xFF000000; /* Sign extent */
492 
493 	symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
494 	timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
495 
496 	*p_symbol_rate = symbol_rate + timing_offset;
497 
498 	return 0;
499 }
500 
501 static int get_signal_parameters(struct stv *state)
502 {
503 	u8 tmp;
504 
505 	if (!state->started)
506 		return -EINVAL;
507 
508 	if (state->receive_mode == RCVMODE_DVBS2) {
509 		read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
510 		state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
511 		state->pilots = (tmp & 0x01) != 0;
512 		state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
513 
514 	} else if (state->receive_mode == RCVMODE_DVBS) {
515 		read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
516 		state->puncture_rate = FEC_NONE;
517 		switch (tmp & 0x1F) {
518 		case 0x0d:
519 			state->puncture_rate = FEC_1_2;
520 			break;
521 		case 0x12:
522 			state->puncture_rate = FEC_2_3;
523 			break;
524 		case 0x15:
525 			state->puncture_rate = FEC_3_4;
526 			break;
527 		case 0x18:
528 			state->puncture_rate = FEC_5_6;
529 			break;
530 		case 0x1a:
531 			state->puncture_rate = FEC_7_8;
532 			break;
533 		}
534 		state->is_vcm = 0;
535 		state->is_standard_broadcast = 1;
536 		state->feroll_off = FE_SAT_35;
537 	}
538 	return 0;
539 }
540 
541 static int tracking_optimization(struct stv *state)
542 {
543 	u8 tmp;
544 
545 	read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
546 	tmp &= ~0xC0;
547 
548 	switch (state->receive_mode) {
549 	case RCVMODE_DVBS:
550 		tmp |= 0x40;
551 		break;
552 	case RCVMODE_DVBS2:
553 		tmp |= 0x80;
554 		break;
555 	default:
556 		tmp |= 0xC0;
557 		break;
558 	}
559 	write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
560 
561 	if (state->receive_mode == RCVMODE_DVBS2) {
562 		/* Disable Reed-Solomon */
563 		write_shared_reg(state,
564 				 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
565 				 0x03);
566 
567 		if (state->fectype == DVBS2_64K) {
568 			u8 aclc = get_optim_cloop(state, state->mod_cod,
569 						  state->pilots);
570 
571 			if (state->mod_cod <= FE_QPSK_910) {
572 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
573 					  state->regoff, aclc);
574 			} else if (state->mod_cod <= FE_8PSK_910) {
575 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
576 					  state->regoff, 0x2a);
577 				write_reg(state, RSTV0910_P2_ACLC2S28 +
578 					  state->regoff, aclc);
579 			} else if (state->mod_cod <= FE_16APSK_910) {
580 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
581 					  state->regoff, 0x2a);
582 				write_reg(state, RSTV0910_P2_ACLC2S216A +
583 					  state->regoff, aclc);
584 			} else if (state->mod_cod <= FE_32APSK_910) {
585 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
586 					  state->regoff, 0x2a);
587 				write_reg(state, RSTV0910_P2_ACLC2S232A +
588 					  state->regoff, aclc);
589 			}
590 		}
591 	}
592 	return 0;
593 }
594 
595 static s32 table_lookup(const struct slookup *table,
596 			int table_size, u32 reg_value)
597 {
598 	s32 value;
599 	int imin = 0;
600 	int imax = table_size - 1;
601 	int i;
602 	s32 reg_diff;
603 
604 	/* Assumes Table[0].RegValue > Table[imax].RegValue */
605 	if (reg_value >= table[0].reg_value) {
606 		value = table[0].value;
607 	} else if (reg_value <= table[imax].reg_value) {
608 		value = table[imax].value;
609 	} else {
610 		while ((imax - imin) > 1) {
611 			i = (imax + imin) / 2;
612 			if ((table[imin].reg_value >= reg_value) &&
613 			    (reg_value >= table[i].reg_value))
614 				imax = i;
615 			else
616 				imin = i;
617 		}
618 
619 		reg_diff = table[imax].reg_value - table[imin].reg_value;
620 		value = table[imin].value;
621 		if (reg_diff != 0)
622 			value += ((s32)(reg_value - table[imin].reg_value) *
623 				  (s32)(table[imax].value
624 					- table[imin].value))
625 					/ (reg_diff);
626 	}
627 
628 	return value;
629 }
630 
631 static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
632 {
633 	u8 data0;
634 	u8 data1;
635 	u16 data;
636 	int n_lookup;
637 	const struct slookup *lookup;
638 
639 	*signal_to_noise = 0;
640 
641 	if (!state->started)
642 		return -EINVAL;
643 
644 	if (state->receive_mode == RCVMODE_DVBS2) {
645 		read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
646 			 &data1);
647 		read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
648 			 &data0);
649 		n_lookup = ARRAY_SIZE(s2_sn_lookup);
650 		lookup = s2_sn_lookup;
651 	} else {
652 		read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
653 			 &data1);
654 		read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
655 			 &data0);
656 		n_lookup = ARRAY_SIZE(s1_sn_lookup);
657 		lookup = s1_sn_lookup;
658 	}
659 	data = (((u16)data1) << 8) | (u16)data0;
660 	*signal_to_noise = table_lookup(lookup, n_lookup, data);
661 	return 0;
662 }
663 
664 static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
665 				u32 *berdenominator)
666 {
667 	u8 regs[3];
668 
669 	int status = read_regs(state,
670 			       RSTV0910_P2_ERRCNT12 + state->regoff,
671 			       regs, 3);
672 
673 	if (status)
674 		return -EINVAL;
675 
676 	if ((regs[0] & 0x80) == 0) {
677 		state->last_berdenominator = 1ULL << ((state->berscale * 2) +
678 						     10 + 3);
679 		state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
680 			((u32)regs[1] << 8) | regs[2];
681 		if (state->last_bernumerator < 256 && state->berscale < 6) {
682 			state->berscale += 1;
683 			status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
684 					   state->regoff,
685 					   0x20 | state->berscale);
686 		} else if (state->last_bernumerator > 1024 &&
687 			   state->berscale > 2) {
688 			state->berscale -= 1;
689 			status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
690 					   state->regoff, 0x20 |
691 					   state->berscale);
692 		}
693 	}
694 	*bernumerator = state->last_bernumerator;
695 	*berdenominator = state->last_berdenominator;
696 	return 0;
697 }
698 
699 static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
700 {
701 	static const u32 nbch[][2] = {
702 		{    0,     0}, /* DUMMY_PLF   */
703 		{16200,  3240}, /* QPSK_1_4,   */
704 		{21600,  5400}, /* QPSK_1_3,   */
705 		{25920,  6480}, /* QPSK_2_5,   */
706 		{32400,  7200}, /* QPSK_1_2,   */
707 		{38880,  9720}, /* QPSK_3_5,   */
708 		{43200, 10800}, /* QPSK_2_3,   */
709 		{48600, 11880}, /* QPSK_3_4,   */
710 		{51840, 12600}, /* QPSK_4_5,   */
711 		{54000, 13320}, /* QPSK_5_6,   */
712 		{57600, 14400}, /* QPSK_8_9,   */
713 		{58320, 16000}, /* QPSK_9_10,  */
714 		{43200,  9720}, /* 8PSK_3_5,   */
715 		{48600, 10800}, /* 8PSK_2_3,   */
716 		{51840, 11880}, /* 8PSK_3_4,   */
717 		{54000, 13320}, /* 8PSK_5_6,   */
718 		{57600, 14400}, /* 8PSK_8_9,   */
719 		{58320, 16000}, /* 8PSK_9_10,  */
720 		{43200, 10800}, /* 16APSK_2_3, */
721 		{48600, 11880}, /* 16APSK_3_4, */
722 		{51840, 12600}, /* 16APSK_4_5, */
723 		{54000, 13320}, /* 16APSK_5_6, */
724 		{57600, 14400}, /* 16APSK_8_9, */
725 		{58320, 16000}, /* 16APSK_9_10 */
726 		{48600, 11880}, /* 32APSK_3_4, */
727 		{51840, 12600}, /* 32APSK_4_5, */
728 		{54000, 13320}, /* 32APSK_5_6, */
729 		{57600, 14400}, /* 32APSK_8_9, */
730 		{58320, 16000}, /* 32APSK_9_10 */
731 	};
732 
733 	if (mod_cod >= DVBS2_QPSK_1_4 &&
734 	    mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
735 		return nbch[mod_cod][fectype];
736 	return 64800;
737 }
738 
739 static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
740 				 u32 *berdenominator)
741 {
742 	u8 regs[3];
743 
744 	int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
745 			       regs, 3);
746 
747 	if (status)
748 		return -EINVAL;
749 
750 	if ((regs[0] & 0x80) == 0) {
751 		state->last_berdenominator =
752 			dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
753 				   state->fectype) <<
754 			(state->berscale * 2);
755 		state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
756 			((u32)regs[1] << 8) | regs[2];
757 		if (state->last_bernumerator < 256 && state->berscale < 6) {
758 			state->berscale += 1;
759 			write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
760 				  0x20 | state->berscale);
761 		} else if (state->last_bernumerator > 1024 &&
762 			   state->berscale > 2) {
763 			state->berscale -= 1;
764 			write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
765 				  0x20 | state->berscale);
766 		}
767 	}
768 	*bernumerator = state->last_bernumerator;
769 	*berdenominator = state->last_berdenominator;
770 	return status;
771 }
772 
773 static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
774 			      u32 *berdenominator)
775 {
776 	*bernumerator = 0;
777 	*berdenominator = 1;
778 
779 	switch (state->receive_mode) {
780 	case RCVMODE_DVBS:
781 		return get_bit_error_rate_s(state,
782 					    bernumerator, berdenominator);
783 	case RCVMODE_DVBS2:
784 		return get_bit_error_rate_s2(state,
785 					     bernumerator, berdenominator);
786 	default:
787 		break;
788 	}
789 	return 0;
790 }
791 
792 static int set_mclock(struct stv *state, u32 master_clock)
793 {
794 	u32 idf = 1;
795 	u32 odf = 4;
796 	u32 quartz = state->base->extclk / 1000000;
797 	u32 fphi = master_clock / 1000000;
798 	u32 ndiv = (fphi * odf * idf) / quartz;
799 	u32 cp = 7;
800 	u32 fvco;
801 
802 	if (ndiv >= 7 && ndiv <= 71)
803 		cp = 7;
804 	else if (ndiv >=  72 && ndiv <=  79)
805 		cp = 8;
806 	else if (ndiv >=  80 && ndiv <=  87)
807 		cp = 9;
808 	else if (ndiv >=  88 && ndiv <=  95)
809 		cp = 10;
810 	else if (ndiv >=  96 && ndiv <= 103)
811 		cp = 11;
812 	else if (ndiv >= 104 && ndiv <= 111)
813 		cp = 12;
814 	else if (ndiv >= 112 && ndiv <= 119)
815 		cp = 13;
816 	else if (ndiv >= 120 && ndiv <= 127)
817 		cp = 14;
818 	else if (ndiv >= 128 && ndiv <= 135)
819 		cp = 15;
820 	else if (ndiv >= 136 && ndiv <= 143)
821 		cp = 16;
822 	else if (ndiv >= 144 && ndiv <= 151)
823 		cp = 17;
824 	else if (ndiv >= 152 && ndiv <= 159)
825 		cp = 18;
826 	else if (ndiv >= 160 && ndiv <= 167)
827 		cp = 19;
828 	else if (ndiv >= 168 && ndiv <= 175)
829 		cp = 20;
830 	else if (ndiv >= 176 && ndiv <= 183)
831 		cp = 21;
832 	else if (ndiv >= 184 && ndiv <= 191)
833 		cp = 22;
834 	else if (ndiv >= 192 && ndiv <= 199)
835 		cp = 23;
836 	else if (ndiv >= 200 && ndiv <= 207)
837 		cp = 24;
838 	else if (ndiv >= 208 && ndiv <= 215)
839 		cp = 25;
840 	else if (ndiv >= 216 && ndiv <= 223)
841 		cp = 26;
842 	else if (ndiv >= 224 && ndiv <= 225)
843 		cp = 27;
844 
845 	write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
846 	write_reg(state, RSTV0910_NCOARSE2, odf);
847 	write_reg(state, RSTV0910_NCOARSE1, ndiv);
848 
849 	fvco = (quartz * 2 * ndiv) / idf;
850 	state->base->mclk = fvco / (2 * odf) * 1000000;
851 
852 	return 0;
853 }
854 
855 static int stop(struct stv *state)
856 {
857 	if (state->started) {
858 		u8 tmp;
859 
860 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
861 			  state->tscfgh | 0x01);
862 		read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
863 		tmp &= ~0x01; /* release reset DVBS2 packet delin */
864 		write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
865 		/* Blind optim*/
866 		write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
867 		/* Stop the demod */
868 		write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
869 		state->started = 0;
870 	}
871 	state->receive_mode = RCVMODE_NONE;
872 	return 0;
873 }
874 
875 static void set_pls(struct stv *state, u32 pls_code)
876 {
877 	if (pls_code == state->cur_scrambling_code)
878 		return;
879 
880 	/* PLROOT2 bit 2 = gold code */
881 	write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
882 		  pls_code & 0xff);
883 	write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
884 		  (pls_code >> 8) & 0xff);
885 	write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
886 		  0x04 | ((pls_code >> 16) & 0x03));
887 	state->cur_scrambling_code = pls_code;
888 }
889 
890 static void set_isi(struct stv *state, u32 isi)
891 {
892 	if (isi == NO_STREAM_ID_FILTER)
893 		return;
894 	if (isi == 0x80000000) {
895 		SET_FIELD(FORCE_CONTINUOUS, 1);
896 		SET_FIELD(TSOUT_NOSYNC, 1);
897 	} else {
898 		SET_FIELD(FILTER_EN, 1);
899 		write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
900 			  isi & 0xff);
901 		write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff);
902 	}
903 	SET_FIELD(ALGOSWRST, 1);
904 	SET_FIELD(ALGOSWRST, 0);
905 }
906 
907 static void set_stream_modes(struct stv *state,
908 			     struct dtv_frontend_properties *p)
909 {
910 	set_isi(state, p->stream_id);
911 	set_pls(state, p->scrambling_sequence_index);
912 }
913 
914 static int init_search_param(struct stv *state,
915 			     struct dtv_frontend_properties *p)
916 {
917 	SET_FIELD(FORCE_CONTINUOUS, 0);
918 	SET_FIELD(FRAME_MODE, 0);
919 	SET_FIELD(FILTER_EN, 0);
920 	SET_FIELD(TSOUT_NOSYNC, 0);
921 	SET_FIELD(TSFIFO_EMBINDVB, 0);
922 	SET_FIELD(TSDEL_SYNCBYTE, 0);
923 	SET_REG(UPLCCST0, 0xe0);
924 	SET_FIELD(TSINS_TOKEN, 0);
925 	SET_FIELD(HYSTERESIS_THRESHOLD, 0);
926 	SET_FIELD(ISIOBS_MODE, 1);
927 
928 	set_stream_modes(state, p);
929 	return 0;
930 }
931 
932 static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
933 {
934 	u8 val;
935 
936 	switch (rate) {
937 	case FEC_1_2:
938 		val = 0x01;
939 		break;
940 	case FEC_2_3:
941 		val = 0x02;
942 		break;
943 	case FEC_3_4:
944 		val = 0x04;
945 		break;
946 	case FEC_5_6:
947 		val = 0x08;
948 		break;
949 	case FEC_7_8:
950 		val = 0x20;
951 		break;
952 	case FEC_NONE:
953 	default:
954 		val = 0x2f;
955 		break;
956 	}
957 
958 	return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val);
959 }
960 
961 static int set_vth_default(struct stv *state)
962 {
963 	state->vth[0] = 0xd7;
964 	state->vth[1] = 0x85;
965 	state->vth[2] = 0x58;
966 	state->vth[3] = 0x3a;
967 	state->vth[4] = 0x34;
968 	state->vth[5] = 0x28;
969 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
970 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
971 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
972 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
973 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
974 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
975 	return 0;
976 }
977 
978 static int set_vth(struct stv *state)
979 {
980 	static const struct slookup vthlookup_table[] = {
981 		{250,	8780}, /* C/N= 1.5dB */
982 		{100,	7405}, /* C/N= 4.5dB */
983 		{40,	6330}, /* C/N= 6.5dB */
984 		{12,	5224}, /* C/N= 8.5dB */
985 		{5,	4236}  /* C/N=10.5dB */
986 	};
987 
988 	int i;
989 	u8 tmp[2];
990 	int status = read_regs(state,
991 			       RSTV0910_P2_NNOSDATAT1 + state->regoff,
992 			       tmp, 2);
993 	u16 reg_value = (tmp[0] << 8) | tmp[1];
994 	s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
995 			      reg_value);
996 
997 	for (i = 0; i < 6; i += 1)
998 		if (state->vth[i] > vth)
999 			state->vth[i] = vth;
1000 
1001 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
1002 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
1003 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
1004 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
1005 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
1006 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
1007 	return status;
1008 }
1009 
1010 static int start(struct stv *state, struct dtv_frontend_properties *p)
1011 {
1012 	s32 freq;
1013 	u8  reg_dmdcfgmd;
1014 	u16 symb;
1015 
1016 	if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
1017 		return -EINVAL;
1018 
1019 	state->receive_mode = RCVMODE_NONE;
1020 	state->demod_lock_time = 0;
1021 
1022 	/* Demod Stop */
1023 	if (state->started)
1024 		write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
1025 
1026 	init_search_param(state, p);
1027 
1028 	if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
1029 		state->demod_timeout = 3000;
1030 		state->fec_timeout = 2000;
1031 	} else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
1032 		state->demod_timeout = 2500;
1033 		state->fec_timeout = 1300;
1034 	} else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
1035 		state->demod_timeout = 1000;
1036 		state->fec_timeout = 650;
1037 	} else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
1038 		state->demod_timeout = 700;
1039 		state->fec_timeout = 350;
1040 	} else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
1041 		state->demod_timeout = 400;
1042 		state->fec_timeout = 200;
1043 	} else { /* SR >=20Msps */
1044 		state->demod_timeout = 300;
1045 		state->fec_timeout = 200;
1046 	}
1047 
1048 	/* Set the Init Symbol rate */
1049 	symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
1050 	write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
1051 		  ((symb >> 8) & 0x7F));
1052 	write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
1053 
1054 	state->demod_bits |= 0x80;
1055 	write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
1056 
1057 	/* FE_STV0910_SetSearchStandard */
1058 	read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &reg_dmdcfgmd);
1059 	write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
1060 		  reg_dmdcfgmd |= 0xC0);
1061 
1062 	write_shared_reg(state,
1063 			 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
1064 
1065 	/* Disable DSS */
1066 	write_reg(state, RSTV0910_P2_FECM  + state->regoff, 0x00);
1067 	write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
1068 
1069 	enable_puncture_rate(state, FEC_NONE);
1070 
1071 	/* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
1072 	write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
1073 	write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
1074 	write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
1075 	write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
1076 	write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
1077 	write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
1078 
1079 	write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
1080 	write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
1081 	write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
1082 	write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
1083 
1084 	/*
1085 	 * Reset CAR3, bug DVBS2->DVBS1 lock
1086 	 * Note: The bit is only pulsed -> no lock on shared register needed
1087 	 */
1088 	write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
1089 	write_reg(state, RSTV0910_TSTRES0, 0);
1090 
1091 	set_vth_default(state);
1092 	/* Reset demod */
1093 	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1094 
1095 	write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
1096 
1097 	if (p->symbol_rate <= 5000000)
1098 		freq = (state->search_range / 2000) + 80;
1099 	else
1100 		freq = (state->search_range / 2000) + 1600;
1101 	freq = (freq << 16) / (state->base->mclk / 1000);
1102 
1103 	write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
1104 		  (freq >> 8) & 0xff);
1105 	write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
1106 	/* CFR Low Setting */
1107 	freq = -freq;
1108 	write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
1109 		  (freq >> 8) & 0xff);
1110 	write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
1111 
1112 	/* init the demod frequency offset to 0 */
1113 	write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
1114 	write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
1115 
1116 	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1117 	/* Trigger acq */
1118 	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
1119 
1120 	state->demod_lock_time += TUNING_DELAY;
1121 	state->started = 1;
1122 
1123 	return 0;
1124 }
1125 
1126 static int init_diseqc(struct stv *state)
1127 {
1128 	u16 offs = state->nr ? 0x40 : 0; /* Address offset */
1129 	u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
1130 
1131 	/* Disable receiver */
1132 	write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
1133 	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
1134 	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
1135 	write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
1136 	return 0;
1137 }
1138 
1139 static int probe(struct stv *state)
1140 {
1141 	u8 id;
1142 
1143 	state->receive_mode = RCVMODE_NONE;
1144 	state->started = 0;
1145 
1146 	if (read_reg(state, RSTV0910_MID, &id) < 0)
1147 		return -ENODEV;
1148 
1149 	if (id != 0x51)
1150 		return -EINVAL;
1151 
1152 	/* Configure the I2C repeater to off */
1153 	write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
1154 	/* Configure the I2C repeater to off */
1155 	write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
1156 	/* Set the I2C to oversampling ratio */
1157 	write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
1158 
1159 	write_reg(state, RSTV0910_OUTCFG,    0x00); /* OUTCFG */
1160 	write_reg(state, RSTV0910_PADCFG,    0x05); /* RFAGC Pads Dev = 05 */
1161 	write_reg(state, RSTV0910_SYNTCTRL,  0x02); /* SYNTCTRL */
1162 	write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
1163 	write_reg(state, RSTV0910_CFGEXT,    0x02); /* CFGEXT */
1164 
1165 	if (state->single)
1166 		write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
1167 	else
1168 		write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
1169 
1170 	write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
1171 	write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
1172 
1173 	write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
1174 	write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
1175 	write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
1176 	write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
1177 
1178 	write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
1179 	write_reg(state, RSTV0910_TSTRES0, 0x00);
1180 
1181 	write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
1182 	write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
1183 
1184 	write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
1185 	write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
1186 
1187 	set_mclock(state, 135000000);
1188 
1189 	/* TS output */
1190 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1191 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1192 	write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
1193 	write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
1194 
1195 	write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
1196 
1197 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1198 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1199 	write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
1200 	write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
1201 
1202 	write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
1203 
1204 	/* Reset stream merger */
1205 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1206 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1207 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1208 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1209 
1210 	write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
1211 	write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
1212 
1213 	write_reg(state, RSTV0910_P1_TSINSDELM, 0x17);
1214 	write_reg(state, RSTV0910_P1_TSINSDELL, 0xff);
1215 
1216 	write_reg(state, RSTV0910_P2_TSINSDELM, 0x17);
1217 	write_reg(state, RSTV0910_P2_TSINSDELL, 0xff);
1218 
1219 	init_diseqc(state);
1220 	return 0;
1221 }
1222 
1223 static int gate_ctrl(struct dvb_frontend *fe, int enable)
1224 {
1225 	struct stv *state = fe->demodulator_priv;
1226 	u8 i2crpt = state->i2crpt & ~0x86;
1227 
1228 	/*
1229 	 * mutex_lock note: Concurrent I2C gate bus accesses must be
1230 	 * prevented (STV0910 = dual demod on a single IC with a single I2C
1231 	 * gate/bus, and two tuners attached), similar to most (if not all)
1232 	 * other I2C host interfaces/buses.
1233 	 *
1234 	 * enable=1 (open I2C gate) will grab the lock
1235 	 * enable=0 (close I2C gate) releases the lock
1236 	 */
1237 
1238 	if (enable) {
1239 		mutex_lock(&state->base->i2c_lock);
1240 		i2crpt |= 0x80;
1241 	} else {
1242 		i2crpt |= 0x02;
1243 	}
1244 
1245 	if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
1246 		      RSTV0910_P1_I2CRPT, i2crpt) < 0) {
1247 		/* don't hold the I2C bus lock on failure */
1248 		if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1249 			mutex_unlock(&state->base->i2c_lock);
1250 		dev_err(&state->base->i2c->dev,
1251 			"%s() write_reg failure (enable=%d)\n",
1252 			__func__, enable);
1253 		return -EIO;
1254 	}
1255 
1256 	state->i2crpt = i2crpt;
1257 
1258 	if (!enable)
1259 		if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1260 			mutex_unlock(&state->base->i2c_lock);
1261 	return 0;
1262 }
1263 
1264 static void release(struct dvb_frontend *fe)
1265 {
1266 	struct stv *state = fe->demodulator_priv;
1267 
1268 	state->base->count--;
1269 	if (state->base->count == 0) {
1270 		list_del(&state->base->stvlist);
1271 		kfree(state->base);
1272 	}
1273 	kfree(state);
1274 }
1275 
1276 static int set_parameters(struct dvb_frontend *fe)
1277 {
1278 	int stat = 0;
1279 	struct stv *state = fe->demodulator_priv;
1280 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1281 
1282 	stop(state);
1283 	if (fe->ops.tuner_ops.set_params)
1284 		fe->ops.tuner_ops.set_params(fe);
1285 	state->symbol_rate = p->symbol_rate;
1286 	stat = start(state, p);
1287 	return stat;
1288 }
1289 
1290 static int manage_matype_info(struct stv *state)
1291 {
1292 	if (!state->started)
1293 		return -EINVAL;
1294 	if (state->receive_mode == RCVMODE_DVBS2) {
1295 		u8 bbheader[2];
1296 
1297 		read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
1298 			  bbheader, 2);
1299 		state->feroll_off =
1300 			(enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
1301 		state->is_vcm = (bbheader[0] & 0x10) == 0;
1302 		state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
1303 	} else if (state->receive_mode == RCVMODE_DVBS) {
1304 		state->is_vcm = 0;
1305 		state->is_standard_broadcast = 1;
1306 		state->feroll_off = FE_SAT_35;
1307 	}
1308 	return 0;
1309 }
1310 
1311 static int read_snr(struct dvb_frontend *fe)
1312 {
1313 	struct stv *state = fe->demodulator_priv;
1314 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1315 	s32 snrval;
1316 
1317 	if (!get_signal_to_noise(state, &snrval)) {
1318 		p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1319 		p->cnr.stat[0].svalue = 100 * snrval; /* fix scale */
1320 	} else {
1321 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 static int read_ber(struct dvb_frontend *fe)
1328 {
1329 	struct stv *state = fe->demodulator_priv;
1330 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1331 	u32 n, d;
1332 
1333 	get_bit_error_rate(state, &n, &d);
1334 
1335 	p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1336 	p->pre_bit_error.stat[0].uvalue = n;
1337 	p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1338 	p->pre_bit_count.stat[0].uvalue = d;
1339 
1340 	return 0;
1341 }
1342 
1343 static void read_signal_strength(struct dvb_frontend *fe)
1344 {
1345 	struct stv *state = fe->demodulator_priv;
1346 	struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1347 	u8 reg[2];
1348 	u16 agc;
1349 	s32 padc, power = 0;
1350 	int i;
1351 
1352 	read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
1353 
1354 	agc = (((u32)reg[0]) << 8) | reg[1];
1355 
1356 	for (i = 0; i < 5; i += 1) {
1357 		read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
1358 		power += (u32)reg[0] * (u32)reg[0]
1359 			+ (u32)reg[1] * (u32)reg[1];
1360 		usleep_range(3000, 4000);
1361 	}
1362 	power /= 5;
1363 
1364 	padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
1365 
1366 	p->strength.stat[0].scale = FE_SCALE_DECIBEL;
1367 	p->strength.stat[0].svalue = (padc - agc);
1368 }
1369 
1370 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
1371 {
1372 	struct stv *state = fe->demodulator_priv;
1373 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1374 	u8 dmd_state = 0;
1375 	u8 dstatus  = 0;
1376 	enum receive_mode cur_receive_mode = RCVMODE_NONE;
1377 	u32 feclock = 0;
1378 
1379 	*status = 0;
1380 
1381 	read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
1382 
1383 	if (dmd_state & 0x40) {
1384 		read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
1385 		if (dstatus & 0x08)
1386 			cur_receive_mode = (dmd_state & 0x20) ?
1387 				RCVMODE_DVBS : RCVMODE_DVBS2;
1388 	}
1389 	if (cur_receive_mode == RCVMODE_NONE) {
1390 		set_vth(state);
1391 
1392 		/* reset signal statistics */
1393 		p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1394 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1395 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1396 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1397 
1398 		return 0;
1399 	}
1400 
1401 	*status |= (FE_HAS_SIGNAL
1402 		| FE_HAS_CARRIER
1403 		| FE_HAS_VITERBI
1404 		| FE_HAS_SYNC);
1405 
1406 	if (state->receive_mode == RCVMODE_NONE) {
1407 		state->receive_mode = cur_receive_mode;
1408 		state->demod_lock_time = jiffies;
1409 		state->first_time_lock = 1;
1410 
1411 		get_signal_parameters(state);
1412 		tracking_optimization(state);
1413 
1414 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1415 			  state->tscfgh);
1416 		usleep_range(3000, 4000);
1417 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1418 			  state->tscfgh | 0x01);
1419 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1420 			  state->tscfgh);
1421 	}
1422 	if (dmd_state & 0x40) {
1423 		if (state->receive_mode == RCVMODE_DVBS2) {
1424 			u8 pdelstatus;
1425 
1426 			read_reg(state,
1427 				 RSTV0910_P2_PDELSTATUS1 + state->regoff,
1428 				 &pdelstatus);
1429 			feclock = (pdelstatus & 0x02) != 0;
1430 		} else {
1431 			u8 vstatus;
1432 
1433 			read_reg(state,
1434 				 RSTV0910_P2_VSTATUSVIT + state->regoff,
1435 				 &vstatus);
1436 			feclock = (vstatus & 0x08) != 0;
1437 		}
1438 	}
1439 
1440 	if (feclock) {
1441 		*status |= FE_HAS_LOCK;
1442 
1443 		if (state->first_time_lock) {
1444 			u8 tmp;
1445 
1446 			state->first_time_lock = 0;
1447 
1448 			manage_matype_info(state);
1449 
1450 			if (state->receive_mode == RCVMODE_DVBS2) {
1451 				/*
1452 				 * FSTV0910_P2_MANUALSX_ROLLOFF,
1453 				 * FSTV0910_P2_MANUALS2_ROLLOFF = 0
1454 				 */
1455 				state->demod_bits &= ~0x84;
1456 				write_reg(state,
1457 					  RSTV0910_P2_DEMOD + state->regoff,
1458 					  state->demod_bits);
1459 				read_reg(state,
1460 					 RSTV0910_P2_PDELCTRL2 + state->regoff,
1461 					 &tmp);
1462 				/* reset DVBS2 packet delinator error counter */
1463 				tmp |= 0x40;
1464 				write_reg(state,
1465 					  RSTV0910_P2_PDELCTRL2 + state->regoff,
1466 					  tmp);
1467 				/* reset DVBS2 packet delinator error counter */
1468 				tmp &= ~0x40;
1469 				write_reg(state,
1470 					  RSTV0910_P2_PDELCTRL2 + state->regoff,
1471 					  tmp);
1472 
1473 				state->berscale = 2;
1474 				state->last_bernumerator = 0;
1475 				state->last_berdenominator = 1;
1476 				/* force to PRE BCH Rate */
1477 				write_reg(state,
1478 					  RSTV0910_P2_ERRCTRL1 + state->regoff,
1479 					  BER_SRC_S2 | state->berscale);
1480 			} else {
1481 				state->berscale = 2;
1482 				state->last_bernumerator = 0;
1483 				state->last_berdenominator = 1;
1484 				/* force to PRE RS Rate */
1485 				write_reg(state,
1486 					  RSTV0910_P2_ERRCTRL1 + state->regoff,
1487 					  BER_SRC_S | state->berscale);
1488 			}
1489 			/* Reset the Total packet counter */
1490 			write_reg(state,
1491 				  RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
1492 			/*
1493 			 * Reset the packet Error counter2 (and Set it to
1494 			 * infinite error count mode)
1495 			 */
1496 			write_reg(state,
1497 				  RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
1498 
1499 			set_vth_default(state);
1500 			if (state->receive_mode == RCVMODE_DVBS)
1501 				enable_puncture_rate(state,
1502 						     state->puncture_rate);
1503 		}
1504 
1505 		/* Use highest signaled ModCod for quality */
1506 		if (state->is_vcm) {
1507 			u8 tmp;
1508 			enum fe_stv0910_mod_cod mod_cod;
1509 
1510 			read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff,
1511 				 &tmp);
1512 			mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
1513 
1514 			if (mod_cod > state->mod_cod)
1515 				state->mod_cod = mod_cod;
1516 		}
1517 	}
1518 
1519 	/* read signal statistics */
1520 
1521 	/* read signal strength */
1522 	read_signal_strength(fe);
1523 
1524 	/* read carrier/noise on FE_HAS_CARRIER */
1525 	if (*status & FE_HAS_CARRIER)
1526 		read_snr(fe);
1527 	else
1528 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1529 
1530 	/* read ber */
1531 	if (*status & FE_HAS_VITERBI) {
1532 		read_ber(fe);
1533 	} else {
1534 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1535 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 static int get_frontend(struct dvb_frontend *fe,
1542 			struct dtv_frontend_properties *p)
1543 {
1544 	struct stv *state = fe->demodulator_priv;
1545 	u8 tmp;
1546 	u32 symbolrate;
1547 
1548 	if (state->receive_mode == RCVMODE_DVBS2) {
1549 		u32 mc;
1550 		const enum fe_modulation modcod2mod[0x20] = {
1551 			QPSK, QPSK, QPSK, QPSK,
1552 			QPSK, QPSK, QPSK, QPSK,
1553 			QPSK, QPSK, QPSK, QPSK,
1554 			PSK_8, PSK_8, PSK_8, PSK_8,
1555 			PSK_8, PSK_8, APSK_16, APSK_16,
1556 			APSK_16, APSK_16, APSK_16, APSK_16,
1557 			APSK_32, APSK_32, APSK_32, APSK_32,
1558 			APSK_32,
1559 		};
1560 		const enum fe_code_rate modcod2fec[0x20] = {
1561 			FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
1562 			FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
1563 			FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1564 			FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
1565 			FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
1566 			FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1567 			FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
1568 			FEC_9_10
1569 		};
1570 		read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
1571 		mc = ((tmp & 0x7c) >> 2);
1572 		p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
1573 		p->modulation = modcod2mod[mc];
1574 		p->fec_inner = modcod2fec[mc];
1575 	} else if (state->receive_mode == RCVMODE_DVBS) {
1576 		read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
1577 		switch (tmp & 0x1F) {
1578 		case 0x0d:
1579 			p->fec_inner = FEC_1_2;
1580 			break;
1581 		case 0x12:
1582 			p->fec_inner = FEC_2_3;
1583 			break;
1584 		case 0x15:
1585 			p->fec_inner = FEC_3_4;
1586 			break;
1587 		case 0x18:
1588 			p->fec_inner = FEC_5_6;
1589 			break;
1590 		case 0x1a:
1591 			p->fec_inner = FEC_7_8;
1592 			break;
1593 		default:
1594 			p->fec_inner = FEC_NONE;
1595 			break;
1596 		}
1597 		p->rolloff = ROLLOFF_35;
1598 	}
1599 
1600 	if (state->receive_mode != RCVMODE_NONE) {
1601 		get_cur_symbol_rate(state, &symbolrate);
1602 		p->symbol_rate = symbolrate;
1603 	}
1604 	return 0;
1605 }
1606 
1607 static int tune(struct dvb_frontend *fe, bool re_tune,
1608 		unsigned int mode_flags,
1609 		unsigned int *delay, enum fe_status *status)
1610 {
1611 	struct stv *state = fe->demodulator_priv;
1612 	int r;
1613 
1614 	if (re_tune) {
1615 		r = set_parameters(fe);
1616 		if (r)
1617 			return r;
1618 		state->tune_time = jiffies;
1619 	}
1620 
1621 	r = read_status(fe, status);
1622 	if (r)
1623 		return r;
1624 
1625 	if (*status & FE_HAS_LOCK)
1626 		return 0;
1627 	*delay = HZ;
1628 
1629 	return 0;
1630 }
1631 
1632 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
1633 {
1634 	return DVBFE_ALGO_HW;
1635 }
1636 
1637 static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1638 {
1639 	struct stv *state = fe->demodulator_priv;
1640 	u16 offs = state->nr ? 0x40 : 0;
1641 
1642 	switch (tone) {
1643 	case SEC_TONE_ON:
1644 		return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
1645 	case SEC_TONE_OFF:
1646 		return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
1647 	default:
1648 		break;
1649 	}
1650 	return -EINVAL;
1651 }
1652 
1653 static int wait_dis(struct stv *state, u8 flag, u8 val)
1654 {
1655 	int i;
1656 	u8 stat;
1657 	u16 offs = state->nr ? 0x40 : 0;
1658 
1659 	for (i = 0; i < 10; i++) {
1660 		read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
1661 		if ((stat & flag) == val)
1662 			return 0;
1663 		usleep_range(10000, 11000);
1664 	}
1665 	return -ETIMEDOUT;
1666 }
1667 
1668 static int send_master_cmd(struct dvb_frontend *fe,
1669 			   struct dvb_diseqc_master_cmd *cmd)
1670 {
1671 	struct stv *state = fe->demodulator_priv;
1672 	int i;
1673 
1674 	SET_FIELD(DISEQC_MODE, 2);
1675 	SET_FIELD(DIS_PRECHARGE, 1);
1676 	for (i = 0; i < cmd->msg_len; i++) {
1677 		wait_dis(state, 0x40, 0x00);
1678 		SET_REG(DISTXFIFO, cmd->msg[i]);
1679 	}
1680 	SET_FIELD(DIS_PRECHARGE, 0);
1681 	wait_dis(state, 0x20, 0x20);
1682 	return 0;
1683 }
1684 
1685 static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
1686 {
1687 	struct stv *state = fe->demodulator_priv;
1688 	u8 value;
1689 
1690 	if (burst == SEC_MINI_A) {
1691 		SET_FIELD(DISEQC_MODE, 3);
1692 		value = 0x00;
1693 	} else {
1694 		SET_FIELD(DISEQC_MODE, 2);
1695 		value = 0xFF;
1696 	}
1697 
1698 	SET_FIELD(DIS_PRECHARGE, 1);
1699 	wait_dis(state, 0x40, 0x00);
1700 	SET_REG(DISTXFIFO, value);
1701 	SET_FIELD(DIS_PRECHARGE, 0);
1702 	wait_dis(state, 0x20, 0x20);
1703 
1704 	return 0;
1705 }
1706 
1707 static int sleep(struct dvb_frontend *fe)
1708 {
1709 	struct stv *state = fe->demodulator_priv;
1710 
1711 	stop(state);
1712 	return 0;
1713 }
1714 
1715 static const struct dvb_frontend_ops stv0910_ops = {
1716 	.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1717 	.info = {
1718 		.name			= "ST STV0910",
1719 		.frequency_min_hz	=  950 * MHz,
1720 		.frequency_max_hz	= 2150 * MHz,
1721 		.symbol_rate_min	= 100000,
1722 		.symbol_rate_max	= 70000000,
1723 		.caps			= FE_CAN_INVERSION_AUTO |
1724 					  FE_CAN_FEC_AUTO       |
1725 					  FE_CAN_QPSK           |
1726 					  FE_CAN_2G_MODULATION  |
1727 					  FE_CAN_MULTISTREAM
1728 	},
1729 	.sleep				= sleep,
1730 	.release			= release,
1731 	.i2c_gate_ctrl			= gate_ctrl,
1732 	.set_frontend			= set_parameters,
1733 	.get_frontend_algo		= get_algo,
1734 	.get_frontend			= get_frontend,
1735 	.tune				= tune,
1736 	.read_status			= read_status,
1737 	.set_tone			= set_tone,
1738 
1739 	.diseqc_send_master_cmd		= send_master_cmd,
1740 	.diseqc_send_burst		= send_burst,
1741 };
1742 
1743 static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
1744 {
1745 	struct stv_base *p;
1746 
1747 	list_for_each_entry(p, &stvlist, stvlist)
1748 		if (p->i2c == i2c && p->adr == adr)
1749 			return p;
1750 	return NULL;
1751 }
1752 
1753 static void stv0910_init_stats(struct stv *state)
1754 {
1755 	struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1756 
1757 	p->strength.len = 1;
1758 	p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1759 	p->cnr.len = 1;
1760 	p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1761 	p->pre_bit_error.len = 1;
1762 	p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1763 	p->pre_bit_count.len = 1;
1764 	p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1765 }
1766 
1767 struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
1768 				    struct stv0910_cfg *cfg,
1769 				    int nr)
1770 {
1771 	struct stv *state;
1772 	struct stv_base *base;
1773 
1774 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1775 	if (!state)
1776 		return NULL;
1777 
1778 	state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
1779 	state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
1780 	state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
1781 	/* use safe tsspeed value if unspecified through stv0910_cfg */
1782 	state->tsspeed = (cfg->tsspeed ? cfg->tsspeed : 0x28);
1783 	state->nr = nr;
1784 	state->regoff = state->nr ? 0 : 0x200;
1785 	state->search_range = 16000000;
1786 	state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
1787 	state->receive_mode = RCVMODE_NONE;
1788 	state->cur_scrambling_code = (~0U);
1789 	state->single = cfg->single ? 1 : 0;
1790 
1791 	base = match_base(i2c, cfg->adr);
1792 	if (base) {
1793 		base->count++;
1794 		state->base = base;
1795 	} else {
1796 		base = kzalloc(sizeof(*base), GFP_KERNEL);
1797 		if (!base)
1798 			goto fail;
1799 		base->i2c = i2c;
1800 		base->adr = cfg->adr;
1801 		base->count = 1;
1802 		base->extclk = cfg->clk ? cfg->clk : 30000000;
1803 
1804 		mutex_init(&base->i2c_lock);
1805 		mutex_init(&base->reg_lock);
1806 		state->base = base;
1807 		if (probe(state) < 0) {
1808 			dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
1809 				 cfg->adr, dev_name(&i2c->dev));
1810 			kfree(base);
1811 			goto fail;
1812 		}
1813 		list_add(&base->stvlist, &stvlist);
1814 	}
1815 	state->fe.ops = stv0910_ops;
1816 	state->fe.demodulator_priv = state;
1817 	state->nr = nr;
1818 
1819 	dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
1820 		 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
1821 
1822 	stv0910_init_stats(state);
1823 
1824 	return &state->fe;
1825 
1826 fail:
1827 	kfree(state);
1828 	return NULL;
1829 }
1830 EXPORT_SYMBOL_GPL(stv0910_attach);
1831 
1832 MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
1833 MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
1834 MODULE_LICENSE("GPL v2");
1835