xref: /linux/drivers/media/dvb-frontends/stv0910.c (revision 96f30c8f0aa9923aa39b30bcaefeacf88b490231)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for the ST STV0910 DVB-S/S2 demodulator.
4  *
5  * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6  *                         Marcus Metzler <mocm@metzlerbros.de>
7  *                         developed for Digital Devices GmbH
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/firmware.h>
16 #include <linux/i2c.h>
17 #include <asm/div64.h>
18 
19 #include <media/dvb_frontend.h>
20 #include "stv0910.h"
21 #include "stv0910_regs.h"
22 
23 #define EXT_CLOCK    30000000
24 #define TUNING_DELAY 200
25 #define BER_SRC_S    0x20
26 #define BER_SRC_S2   0x20
27 
28 static LIST_HEAD(stvlist);
29 
30 enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
31 
32 enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
33 
34 enum dvbs2_mod_cod {
35 	DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
36 	DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3,	DVBS2_QPSK_3_4,
37 	DVBS2_QPSK_4_5,	DVBS2_QPSK_5_6,	DVBS2_QPSK_8_9,	DVBS2_QPSK_9_10,
38 	DVBS2_8PSK_3_5,	DVBS2_8PSK_2_3,	DVBS2_8PSK_3_4,	DVBS2_8PSK_5_6,
39 	DVBS2_8PSK_8_9,	DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
40 	DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
41 	DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
42 	DVBS2_32APSK_9_10
43 };
44 
45 enum fe_stv0910_mod_cod {
46 	FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
47 	FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
48 	FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
49 	FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
50 	FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
51 	FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
52 	FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
53 	FE_32APSK_910
54 };
55 
56 enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
57 
58 static inline u32 muldiv32(u32 a, u32 b, u32 c)
59 {
60 	u64 tmp64;
61 
62 	tmp64 = (u64)a * (u64)b;
63 	do_div(tmp64, c);
64 
65 	return (u32)tmp64;
66 }
67 
68 struct stv_base {
69 	struct list_head     stvlist;
70 
71 	u8                   adr;
72 	struct i2c_adapter  *i2c;
73 	struct mutex         i2c_lock; /* shared I2C access protect */
74 	struct mutex         reg_lock; /* shared register write protect */
75 	int                  count;
76 
77 	u32                  extclk;
78 	u32                  mclk;
79 };
80 
81 struct stv {
82 	struct stv_base     *base;
83 	struct dvb_frontend  fe;
84 	int                  nr;
85 	u16                  regoff;
86 	u8                   i2crpt;
87 	u8                   tscfgh;
88 	u8                   tsgeneral;
89 	u8                   tsspeed;
90 	u8                   single;
91 	unsigned long        tune_time;
92 
93 	s32                  search_range;
94 	u32                  started;
95 	u32                  demod_lock_time;
96 	enum receive_mode    receive_mode;
97 	u32                  demod_timeout;
98 	u32                  fec_timeout;
99 	u32                  first_time_lock;
100 	u8                   demod_bits;
101 	u32                  symbol_rate;
102 
103 	u8                       last_viterbi_rate;
104 	enum fe_code_rate        puncture_rate;
105 	enum fe_stv0910_mod_cod  mod_cod;
106 	enum dvbs2_fectype       fectype;
107 	u32                      pilots;
108 	enum fe_stv0910_roll_off feroll_off;
109 
110 	int   is_standard_broadcast;
111 	int   is_vcm;
112 
113 	u32   cur_scrambling_code;
114 
115 	u32   last_bernumerator;
116 	u32   last_berdenominator;
117 	u8    berscale;
118 
119 	u8    vth[6];
120 };
121 
122 struct slookup {
123 	s16  value;
124 	u32  reg_value;
125 };
126 
127 static int write_reg(struct stv *state, u16 reg, u8 val)
128 {
129 	struct i2c_adapter *adap = state->base->i2c;
130 	u8 data[3] = {reg >> 8, reg & 0xff, val};
131 	struct i2c_msg msg = {.addr = state->base->adr, .flags = 0,
132 			      .buf = data, .len = 3};
133 
134 	if (i2c_transfer(adap, &msg, 1) != 1) {
135 		dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
136 			 state->base->adr, reg, val);
137 		return -EIO;
138 	}
139 	return 0;
140 }
141 
142 static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
143 				  u16 reg, u8 *val, int count)
144 {
145 	u8 msg[2] = {reg >> 8, reg & 0xff};
146 	struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
147 				   .buf  = msg, .len   = 2},
148 				  {.addr = adr, .flags = I2C_M_RD,
149 				   .buf  = val, .len   = count } };
150 
151 	if (i2c_transfer(adapter, msgs, 2) != 2) {
152 		dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
153 			 adr, reg);
154 		return -EIO;
155 	}
156 	return 0;
157 }
158 
159 static int read_reg(struct stv *state, u16 reg, u8 *val)
160 {
161 	return i2c_read_regs16(state->base->i2c, state->base->adr,
162 			       reg, val, 1);
163 }
164 
165 static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
166 {
167 	return i2c_read_regs16(state->base->i2c, state->base->adr,
168 			       reg, val, len);
169 }
170 
171 static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
172 {
173 	int status;
174 	u8 tmp;
175 
176 	mutex_lock(&state->base->reg_lock);
177 	status = read_reg(state, reg, &tmp);
178 	if (!status)
179 		status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
180 	mutex_unlock(&state->base->reg_lock);
181 	return status;
182 }
183 
184 static int write_field(struct stv *state, u32 field, u8 val)
185 {
186 	int status;
187 	u8 shift, mask, old, new;
188 
189 	status = read_reg(state, field >> 16, &old);
190 	if (status)
191 		return status;
192 	mask = field & 0xff;
193 	shift = (field >> 12) & 0xf;
194 	new = ((val << shift) & mask) | (old & ~mask);
195 	if (new == old)
196 		return 0;
197 	return write_reg(state, field >> 16, new);
198 }
199 
200 #define SET_FIELD(_reg, _val)					\
201 	write_field(state, state->nr ? FSTV0910_P2_##_reg :	\
202 		    FSTV0910_P1_##_reg, _val)
203 
204 #define SET_REG(_reg, _val)					\
205 	write_reg(state, state->nr ? RSTV0910_P2_##_reg :	\
206 		  RSTV0910_P1_##_reg, _val)
207 
208 #define GET_REG(_reg, _val)					\
209 	read_reg(state, state->nr ? RSTV0910_P2_##_reg :	\
210 		 RSTV0910_P1_##_reg, _val)
211 
212 static const struct slookup s1_sn_lookup[] = {
213 	{   0,    9242  }, /* C/N=   0dB */
214 	{   5,    9105  }, /* C/N= 0.5dB */
215 	{  10,    8950  }, /* C/N= 1.0dB */
216 	{  15,    8780  }, /* C/N= 1.5dB */
217 	{  20,    8566  }, /* C/N= 2.0dB */
218 	{  25,    8366  }, /* C/N= 2.5dB */
219 	{  30,    8146  }, /* C/N= 3.0dB */
220 	{  35,    7908  }, /* C/N= 3.5dB */
221 	{  40,    7666  }, /* C/N= 4.0dB */
222 	{  45,    7405  }, /* C/N= 4.5dB */
223 	{  50,    7136  }, /* C/N= 5.0dB */
224 	{  55,    6861  }, /* C/N= 5.5dB */
225 	{  60,    6576  }, /* C/N= 6.0dB */
226 	{  65,    6330  }, /* C/N= 6.5dB */
227 	{  70,    6048  }, /* C/N= 7.0dB */
228 	{  75,    5768  }, /* C/N= 7.5dB */
229 	{  80,    5492  }, /* C/N= 8.0dB */
230 	{  85,    5224  }, /* C/N= 8.5dB */
231 	{  90,    4959  }, /* C/N= 9.0dB */
232 	{  95,    4709  }, /* C/N= 9.5dB */
233 	{  100,   4467  }, /* C/N=10.0dB */
234 	{  105,   4236  }, /* C/N=10.5dB */
235 	{  110,   4013  }, /* C/N=11.0dB */
236 	{  115,   3800  }, /* C/N=11.5dB */
237 	{  120,   3598  }, /* C/N=12.0dB */
238 	{  125,   3406  }, /* C/N=12.5dB */
239 	{  130,   3225  }, /* C/N=13.0dB */
240 	{  135,   3052  }, /* C/N=13.5dB */
241 	{  140,   2889  }, /* C/N=14.0dB */
242 	{  145,   2733  }, /* C/N=14.5dB */
243 	{  150,   2587  }, /* C/N=15.0dB */
244 	{  160,   2318  }, /* C/N=16.0dB */
245 	{  170,   2077  }, /* C/N=17.0dB */
246 	{  180,   1862  }, /* C/N=18.0dB */
247 	{  190,   1670  }, /* C/N=19.0dB */
248 	{  200,   1499  }, /* C/N=20.0dB */
249 	{  210,   1347  }, /* C/N=21.0dB */
250 	{  220,   1213  }, /* C/N=22.0dB */
251 	{  230,   1095  }, /* C/N=23.0dB */
252 	{  240,    992  }, /* C/N=24.0dB */
253 	{  250,    900  }, /* C/N=25.0dB */
254 	{  260,    826  }, /* C/N=26.0dB */
255 	{  270,    758  }, /* C/N=27.0dB */
256 	{  280,    702  }, /* C/N=28.0dB */
257 	{  290,    653  }, /* C/N=29.0dB */
258 	{  300,    613  }, /* C/N=30.0dB */
259 	{  310,    579  }, /* C/N=31.0dB */
260 	{  320,    550  }, /* C/N=32.0dB */
261 	{  330,    526  }, /* C/N=33.0dB */
262 	{  350,    490  }, /* C/N=33.0dB */
263 	{  400,    445  }, /* C/N=40.0dB */
264 	{  450,    430  }, /* C/N=45.0dB */
265 	{  500,    426  }, /* C/N=50.0dB */
266 	{  510,    425  }  /* C/N=51.0dB */
267 };
268 
269 static const struct slookup s2_sn_lookup[] = {
270 	{  -30,  13950  }, /* C/N=-2.5dB */
271 	{  -25,  13580  }, /* C/N=-2.5dB */
272 	{  -20,  13150  }, /* C/N=-2.0dB */
273 	{  -15,  12760  }, /* C/N=-1.5dB */
274 	{  -10,  12345  }, /* C/N=-1.0dB */
275 	{   -5,  11900  }, /* C/N=-0.5dB */
276 	{    0,  11520  }, /* C/N=   0dB */
277 	{    5,  11080  }, /* C/N= 0.5dB */
278 	{   10,  10630  }, /* C/N= 1.0dB */
279 	{   15,  10210  }, /* C/N= 1.5dB */
280 	{   20,   9790  }, /* C/N= 2.0dB */
281 	{   25,   9390  }, /* C/N= 2.5dB */
282 	{   30,   8970  }, /* C/N= 3.0dB */
283 	{   35,   8575  }, /* C/N= 3.5dB */
284 	{   40,   8180  }, /* C/N= 4.0dB */
285 	{   45,   7800  }, /* C/N= 4.5dB */
286 	{   50,   7430  }, /* C/N= 5.0dB */
287 	{   55,   7080  }, /* C/N= 5.5dB */
288 	{   60,   6720  }, /* C/N= 6.0dB */
289 	{   65,   6320  }, /* C/N= 6.5dB */
290 	{   70,   6060  }, /* C/N= 7.0dB */
291 	{   75,   5760  }, /* C/N= 7.5dB */
292 	{   80,   5480  }, /* C/N= 8.0dB */
293 	{   85,   5200  }, /* C/N= 8.5dB */
294 	{   90,   4930  }, /* C/N= 9.0dB */
295 	{   95,   4680  }, /* C/N= 9.5dB */
296 	{  100,   4425  }, /* C/N=10.0dB */
297 	{  105,   4210  }, /* C/N=10.5dB */
298 	{  110,   3980  }, /* C/N=11.0dB */
299 	{  115,   3765  }, /* C/N=11.5dB */
300 	{  120,   3570  }, /* C/N=12.0dB */
301 	{  125,   3315  }, /* C/N=12.5dB */
302 	{  130,   3140  }, /* C/N=13.0dB */
303 	{  135,   2980  }, /* C/N=13.5dB */
304 	{  140,   2820  }, /* C/N=14.0dB */
305 	{  145,   2670  }, /* C/N=14.5dB */
306 	{  150,   2535  }, /* C/N=15.0dB */
307 	{  160,   2270  }, /* C/N=16.0dB */
308 	{  170,   2035  }, /* C/N=17.0dB */
309 	{  180,   1825  }, /* C/N=18.0dB */
310 	{  190,   1650  }, /* C/N=19.0dB */
311 	{  200,   1485  }, /* C/N=20.0dB */
312 	{  210,   1340  }, /* C/N=21.0dB */
313 	{  220,   1212  }, /* C/N=22.0dB */
314 	{  230,   1100  }, /* C/N=23.0dB */
315 	{  240,   1000  }, /* C/N=24.0dB */
316 	{  250,    910  }, /* C/N=25.0dB */
317 	{  260,    836  }, /* C/N=26.0dB */
318 	{  270,    772  }, /* C/N=27.0dB */
319 	{  280,    718  }, /* C/N=28.0dB */
320 	{  290,    671  }, /* C/N=29.0dB */
321 	{  300,    635  }, /* C/N=30.0dB */
322 	{  310,    602  }, /* C/N=31.0dB */
323 	{  320,    575  }, /* C/N=32.0dB */
324 	{  330,    550  }, /* C/N=33.0dB */
325 	{  350,    517  }, /* C/N=35.0dB */
326 	{  400,    480  }, /* C/N=40.0dB */
327 	{  450,    466  }, /* C/N=45.0dB */
328 	{  500,    464  }, /* C/N=50.0dB */
329 	{  510,    463  }, /* C/N=51.0dB */
330 };
331 
332 static const struct slookup padc_lookup[] = {
333 	{    0,  118000 }, /* PADC= +0dBm */
334 	{ -100,  93600  }, /* PADC= -1dBm */
335 	{ -200,  74500  }, /* PADC= -2dBm */
336 	{ -300,  59100  }, /* PADC= -3dBm */
337 	{ -400,  47000  }, /* PADC= -4dBm */
338 	{ -500,  37300  }, /* PADC= -5dBm */
339 	{ -600,  29650  }, /* PADC= -6dBm */
340 	{ -700,  23520  }, /* PADC= -7dBm */
341 	{ -900,  14850  }, /* PADC= -9dBm */
342 	{ -1100, 9380   }, /* PADC=-11dBm */
343 	{ -1300, 5910   }, /* PADC=-13dBm */
344 	{ -1500, 3730   }, /* PADC=-15dBm */
345 	{ -1700, 2354   }, /* PADC=-17dBm */
346 	{ -1900, 1485   }, /* PADC=-19dBm */
347 	{ -2000, 1179   }, /* PADC=-20dBm */
348 	{ -2100, 1000   }, /* PADC=-21dBm */
349 };
350 
351 /*********************************************************************
352  * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
353  *********************************************************************/
354 static const u8 s2car_loop[] =	{
355 	/*
356 	 * Modcod  2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
357 	 * 20MPon 20MPoff 30MPon 30MPoff
358 	 */
359 
360 	/* FE_QPSK_14  */
361 	0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x2A,  0x1C,  0x3A,  0x3B,
362 	/* FE_QPSK_13  */
363 	0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x3A,  0x0C,  0x3A,  0x2B,
364 	/* FE_QPSK_25  */
365 	0x1C,  0x3C,  0x1B,  0x3C,  0x3A,  0x1C,  0x3A,  0x3B,  0x3A,  0x2B,
366 	/* FE_QPSK_12  */
367 	0x0C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
368 	/* FE_QPSK_35  */
369 	0x1C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
370 	/* FE_QPSK_23  */
371 	0x2C,  0x2C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
372 	/* FE_QPSK_34  */
373 	0x3C,  0x2C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
374 	/* FE_QPSK_45  */
375 	0x0D,  0x3C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
376 	/* FE_QPSK_56  */
377 	0x1D,  0x3C,  0x0C,  0x2C,  0x2B,  0x1C,  0x1B,  0x3B,  0x0B,  0x1B,
378 	/* FE_QPSK_89  */
379 	0x3D,  0x0D,  0x0C,  0x2C,  0x2B,  0x0C,  0x2B,  0x2B,  0x0B,  0x0B,
380 	/* FE_QPSK_910 */
381 	0x1E,  0x0D,  0x1C,  0x2C,  0x3B,  0x0C,  0x2B,  0x2B,  0x1B,  0x0B,
382 	/* FE_8PSK_35  */
383 	0x28,  0x09,  0x28,  0x09,  0x28,  0x09,  0x28,  0x08,  0x28,  0x27,
384 	/* FE_8PSK_23  */
385 	0x19,  0x29,  0x19,  0x29,  0x19,  0x29,  0x38,  0x19,  0x28,  0x09,
386 	/* FE_8PSK_34  */
387 	0x1A,  0x0B,  0x1A,  0x3A,  0x0A,  0x2A,  0x39,  0x2A,  0x39,  0x1A,
388 	/* FE_8PSK_56  */
389 	0x2B,  0x2B,  0x1B,  0x1B,  0x0B,  0x1B,  0x1A,  0x0B,  0x1A,  0x1A,
390 	/* FE_8PSK_89  */
391 	0x0C,  0x0C,  0x3B,  0x3B,  0x1B,  0x1B,  0x2A,  0x0B,  0x2A,  0x2A,
392 	/* FE_8PSK_910 */
393 	0x0C,  0x1C,  0x0C,  0x3B,  0x2B,  0x1B,  0x3A,  0x0B,  0x2A,  0x2A,
394 
395 	/**********************************************************************
396 	 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
397 	 **********************************************************************/
398 
399 	/*
400 	 * Modcod 2MPon  2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
401 	 * 20MPoff 30MPon 30MPoff
402 	 */
403 
404 	/* FE_16APSK_23  */
405 	0x0A,  0x0A,  0x0A,  0x0A,  0x1A,  0x0A,  0x39,  0x0A,  0x29,  0x0A,
406 	/* FE_16APSK_34  */
407 	0x0A,  0x0A,  0x0A,  0x0A,  0x0B,  0x0A,  0x2A,  0x0A,  0x1A,  0x0A,
408 	/* FE_16APSK_45  */
409 	0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
410 	/* FE_16APSK_56  */
411 	0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
412 	/* FE_16APSK_89  */
413 	0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
414 	/* FE_16APSK_910 */
415 	0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
416 	/* FE_32APSK_34  */
417 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
418 	/* FE_32APSK_45  */
419 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
420 	/* FE_32APSK_56  */
421 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
422 	/* FE_32APSK_89  */
423 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
424 	/* FE_32APSK_910 */
425 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
426 };
427 
428 static u8 get_optim_cloop(struct stv *state,
429 			  enum fe_stv0910_mod_cod mod_cod, u32 pilots)
430 {
431 	int i = 0;
432 
433 	if (mod_cod >= FE_32APSK_910)
434 		i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
435 	else if (mod_cod >= FE_QPSK_14)
436 		i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
437 
438 	if (state->symbol_rate <= 3000000)
439 		i += 0;
440 	else if (state->symbol_rate <=  7000000)
441 		i += 2;
442 	else if (state->symbol_rate <= 15000000)
443 		i += 4;
444 	else if (state->symbol_rate <= 25000000)
445 		i += 6;
446 	else
447 		i += 8;
448 
449 	if (!pilots)
450 		i += 1;
451 
452 	return s2car_loop[i];
453 }
454 
455 static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
456 {
457 	int status = 0;
458 	u8 symb_freq0;
459 	u8 symb_freq1;
460 	u8 symb_freq2;
461 	u8 symb_freq3;
462 	u8 tim_offs0;
463 	u8 tim_offs1;
464 	u8 tim_offs2;
465 	u32 symbol_rate;
466 	s32 timing_offset;
467 
468 	*p_symbol_rate = 0;
469 	if (!state->started)
470 		return status;
471 
472 	read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
473 	read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
474 	read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
475 	read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
476 	read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
477 	read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
478 	read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
479 
480 	symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
481 		((u32)symb_freq1 << 8) | (u32)symb_freq0;
482 	timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
483 		(u32)tim_offs0;
484 
485 	if ((timing_offset & (1 << 23)) != 0)
486 		timing_offset |= 0xFF000000; /* Sign extent */
487 
488 	symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
489 	timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
490 
491 	*p_symbol_rate = symbol_rate + timing_offset;
492 
493 	return 0;
494 }
495 
496 static int get_signal_parameters(struct stv *state)
497 {
498 	u8 tmp;
499 
500 	if (!state->started)
501 		return -EINVAL;
502 
503 	if (state->receive_mode == RCVMODE_DVBS2) {
504 		read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
505 		state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
506 		state->pilots = (tmp & 0x01) != 0;
507 		state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
508 
509 	} else if (state->receive_mode == RCVMODE_DVBS) {
510 		read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
511 		state->puncture_rate = FEC_NONE;
512 		switch (tmp & 0x1F) {
513 		case 0x0d:
514 			state->puncture_rate = FEC_1_2;
515 			break;
516 		case 0x12:
517 			state->puncture_rate = FEC_2_3;
518 			break;
519 		case 0x15:
520 			state->puncture_rate = FEC_3_4;
521 			break;
522 		case 0x18:
523 			state->puncture_rate = FEC_5_6;
524 			break;
525 		case 0x1a:
526 			state->puncture_rate = FEC_7_8;
527 			break;
528 		}
529 		state->is_vcm = 0;
530 		state->is_standard_broadcast = 1;
531 		state->feroll_off = FE_SAT_35;
532 	}
533 	return 0;
534 }
535 
536 static int tracking_optimization(struct stv *state)
537 {
538 	u8 tmp;
539 
540 	read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
541 	tmp &= ~0xC0;
542 
543 	switch (state->receive_mode) {
544 	case RCVMODE_DVBS:
545 		tmp |= 0x40;
546 		break;
547 	case RCVMODE_DVBS2:
548 		tmp |= 0x80;
549 		break;
550 	default:
551 		tmp |= 0xC0;
552 		break;
553 	}
554 	write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
555 
556 	if (state->receive_mode == RCVMODE_DVBS2) {
557 		/* Disable Reed-Solomon */
558 		write_shared_reg(state,
559 				 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
560 				 0x03);
561 
562 		if (state->fectype == DVBS2_64K) {
563 			u8 aclc = get_optim_cloop(state, state->mod_cod,
564 						  state->pilots);
565 
566 			if (state->mod_cod <= FE_QPSK_910) {
567 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
568 					  state->regoff, aclc);
569 			} else if (state->mod_cod <= FE_8PSK_910) {
570 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
571 					  state->regoff, 0x2a);
572 				write_reg(state, RSTV0910_P2_ACLC2S28 +
573 					  state->regoff, aclc);
574 			} else if (state->mod_cod <= FE_16APSK_910) {
575 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
576 					  state->regoff, 0x2a);
577 				write_reg(state, RSTV0910_P2_ACLC2S216A +
578 					  state->regoff, aclc);
579 			} else if (state->mod_cod <= FE_32APSK_910) {
580 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
581 					  state->regoff, 0x2a);
582 				write_reg(state, RSTV0910_P2_ACLC2S232A +
583 					  state->regoff, aclc);
584 			}
585 		}
586 	}
587 	return 0;
588 }
589 
590 static s32 table_lookup(const struct slookup *table,
591 			int table_size, u32 reg_value)
592 {
593 	s32 value;
594 	int imin = 0;
595 	int imax = table_size - 1;
596 	int i;
597 	s32 reg_diff;
598 
599 	/* Assumes Table[0].RegValue > Table[imax].RegValue */
600 	if (reg_value >= table[0].reg_value) {
601 		value = table[0].value;
602 	} else if (reg_value <= table[imax].reg_value) {
603 		value = table[imax].value;
604 	} else {
605 		while ((imax - imin) > 1) {
606 			i = (imax + imin) / 2;
607 			if ((table[imin].reg_value >= reg_value) &&
608 			    (reg_value >= table[i].reg_value))
609 				imax = i;
610 			else
611 				imin = i;
612 		}
613 
614 		reg_diff = table[imax].reg_value - table[imin].reg_value;
615 		value = table[imin].value;
616 		if (reg_diff != 0)
617 			value += ((s32)(reg_value - table[imin].reg_value) *
618 				  (s32)(table[imax].value
619 					- table[imin].value))
620 					/ (reg_diff);
621 	}
622 
623 	return value;
624 }
625 
626 static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
627 {
628 	u8 data0;
629 	u8 data1;
630 	u16 data;
631 	int n_lookup;
632 	const struct slookup *lookup;
633 
634 	*signal_to_noise = 0;
635 
636 	if (!state->started)
637 		return -EINVAL;
638 
639 	if (state->receive_mode == RCVMODE_DVBS2) {
640 		read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
641 			 &data1);
642 		read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
643 			 &data0);
644 		n_lookup = ARRAY_SIZE(s2_sn_lookup);
645 		lookup = s2_sn_lookup;
646 	} else {
647 		read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
648 			 &data1);
649 		read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
650 			 &data0);
651 		n_lookup = ARRAY_SIZE(s1_sn_lookup);
652 		lookup = s1_sn_lookup;
653 	}
654 	data = (((u16)data1) << 8) | (u16)data0;
655 	*signal_to_noise = table_lookup(lookup, n_lookup, data);
656 	return 0;
657 }
658 
659 static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
660 				u32 *berdenominator)
661 {
662 	u8 regs[3];
663 
664 	int status = read_regs(state,
665 			       RSTV0910_P2_ERRCNT12 + state->regoff,
666 			       regs, 3);
667 
668 	if (status)
669 		return -EINVAL;
670 
671 	if ((regs[0] & 0x80) == 0) {
672 		state->last_berdenominator = 1ULL << ((state->berscale * 2) +
673 						     10 + 3);
674 		state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
675 			((u32)regs[1] << 8) | regs[2];
676 		if (state->last_bernumerator < 256 && state->berscale < 6) {
677 			state->berscale += 1;
678 			status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
679 					   state->regoff,
680 					   0x20 | state->berscale);
681 		} else if (state->last_bernumerator > 1024 &&
682 			   state->berscale > 2) {
683 			state->berscale -= 1;
684 			status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
685 					   state->regoff, 0x20 |
686 					   state->berscale);
687 		}
688 	}
689 	*bernumerator = state->last_bernumerator;
690 	*berdenominator = state->last_berdenominator;
691 	return 0;
692 }
693 
694 static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
695 {
696 	static const u32 nbch[][2] = {
697 		{    0,     0}, /* DUMMY_PLF   */
698 		{16200,  3240}, /* QPSK_1_4,   */
699 		{21600,  5400}, /* QPSK_1_3,   */
700 		{25920,  6480}, /* QPSK_2_5,   */
701 		{32400,  7200}, /* QPSK_1_2,   */
702 		{38880,  9720}, /* QPSK_3_5,   */
703 		{43200, 10800}, /* QPSK_2_3,   */
704 		{48600, 11880}, /* QPSK_3_4,   */
705 		{51840, 12600}, /* QPSK_4_5,   */
706 		{54000, 13320}, /* QPSK_5_6,   */
707 		{57600, 14400}, /* QPSK_8_9,   */
708 		{58320, 16000}, /* QPSK_9_10,  */
709 		{43200,  9720}, /* 8PSK_3_5,   */
710 		{48600, 10800}, /* 8PSK_2_3,   */
711 		{51840, 11880}, /* 8PSK_3_4,   */
712 		{54000, 13320}, /* 8PSK_5_6,   */
713 		{57600, 14400}, /* 8PSK_8_9,   */
714 		{58320, 16000}, /* 8PSK_9_10,  */
715 		{43200, 10800}, /* 16APSK_2_3, */
716 		{48600, 11880}, /* 16APSK_3_4, */
717 		{51840, 12600}, /* 16APSK_4_5, */
718 		{54000, 13320}, /* 16APSK_5_6, */
719 		{57600, 14400}, /* 16APSK_8_9, */
720 		{58320, 16000}, /* 16APSK_9_10 */
721 		{48600, 11880}, /* 32APSK_3_4, */
722 		{51840, 12600}, /* 32APSK_4_5, */
723 		{54000, 13320}, /* 32APSK_5_6, */
724 		{57600, 14400}, /* 32APSK_8_9, */
725 		{58320, 16000}, /* 32APSK_9_10 */
726 	};
727 
728 	if (mod_cod >= DVBS2_QPSK_1_4 &&
729 	    mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
730 		return nbch[mod_cod][fectype];
731 	return 64800;
732 }
733 
734 static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
735 				 u32 *berdenominator)
736 {
737 	u8 regs[3];
738 
739 	int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
740 			       regs, 3);
741 
742 	if (status)
743 		return -EINVAL;
744 
745 	if ((regs[0] & 0x80) == 0) {
746 		state->last_berdenominator =
747 			dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
748 				   state->fectype) <<
749 			(state->berscale * 2);
750 		state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
751 			((u32)regs[1] << 8) | regs[2];
752 		if (state->last_bernumerator < 256 && state->berscale < 6) {
753 			state->berscale += 1;
754 			write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
755 				  0x20 | state->berscale);
756 		} else if (state->last_bernumerator > 1024 &&
757 			   state->berscale > 2) {
758 			state->berscale -= 1;
759 			write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
760 				  0x20 | state->berscale);
761 		}
762 	}
763 	*bernumerator = state->last_bernumerator;
764 	*berdenominator = state->last_berdenominator;
765 	return status;
766 }
767 
768 static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
769 			      u32 *berdenominator)
770 {
771 	*bernumerator = 0;
772 	*berdenominator = 1;
773 
774 	switch (state->receive_mode) {
775 	case RCVMODE_DVBS:
776 		return get_bit_error_rate_s(state,
777 					    bernumerator, berdenominator);
778 	case RCVMODE_DVBS2:
779 		return get_bit_error_rate_s2(state,
780 					     bernumerator, berdenominator);
781 	default:
782 		break;
783 	}
784 	return 0;
785 }
786 
787 static int set_mclock(struct stv *state, u32 master_clock)
788 {
789 	u32 idf = 1;
790 	u32 odf = 4;
791 	u32 quartz = state->base->extclk / 1000000;
792 	u32 fphi = master_clock / 1000000;
793 	u32 ndiv = (fphi * odf * idf) / quartz;
794 	u32 cp = 7;
795 	u32 fvco;
796 
797 	if (ndiv >= 7 && ndiv <= 71)
798 		cp = 7;
799 	else if (ndiv >=  72 && ndiv <=  79)
800 		cp = 8;
801 	else if (ndiv >=  80 && ndiv <=  87)
802 		cp = 9;
803 	else if (ndiv >=  88 && ndiv <=  95)
804 		cp = 10;
805 	else if (ndiv >=  96 && ndiv <= 103)
806 		cp = 11;
807 	else if (ndiv >= 104 && ndiv <= 111)
808 		cp = 12;
809 	else if (ndiv >= 112 && ndiv <= 119)
810 		cp = 13;
811 	else if (ndiv >= 120 && ndiv <= 127)
812 		cp = 14;
813 	else if (ndiv >= 128 && ndiv <= 135)
814 		cp = 15;
815 	else if (ndiv >= 136 && ndiv <= 143)
816 		cp = 16;
817 	else if (ndiv >= 144 && ndiv <= 151)
818 		cp = 17;
819 	else if (ndiv >= 152 && ndiv <= 159)
820 		cp = 18;
821 	else if (ndiv >= 160 && ndiv <= 167)
822 		cp = 19;
823 	else if (ndiv >= 168 && ndiv <= 175)
824 		cp = 20;
825 	else if (ndiv >= 176 && ndiv <= 183)
826 		cp = 21;
827 	else if (ndiv >= 184 && ndiv <= 191)
828 		cp = 22;
829 	else if (ndiv >= 192 && ndiv <= 199)
830 		cp = 23;
831 	else if (ndiv >= 200 && ndiv <= 207)
832 		cp = 24;
833 	else if (ndiv >= 208 && ndiv <= 215)
834 		cp = 25;
835 	else if (ndiv >= 216 && ndiv <= 223)
836 		cp = 26;
837 	else if (ndiv >= 224 && ndiv <= 225)
838 		cp = 27;
839 
840 	write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
841 	write_reg(state, RSTV0910_NCOARSE2, odf);
842 	write_reg(state, RSTV0910_NCOARSE1, ndiv);
843 
844 	fvco = (quartz * 2 * ndiv) / idf;
845 	state->base->mclk = fvco / (2 * odf) * 1000000;
846 
847 	return 0;
848 }
849 
850 static int stop(struct stv *state)
851 {
852 	if (state->started) {
853 		u8 tmp;
854 
855 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
856 			  state->tscfgh | 0x01);
857 		read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
858 		tmp &= ~0x01; /* release reset DVBS2 packet delin */
859 		write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
860 		/* Blind optim*/
861 		write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
862 		/* Stop the demod */
863 		write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
864 		state->started = 0;
865 	}
866 	state->receive_mode = RCVMODE_NONE;
867 	return 0;
868 }
869 
870 static void set_pls(struct stv *state, u32 pls_code)
871 {
872 	if (pls_code == state->cur_scrambling_code)
873 		return;
874 
875 	/* PLROOT2 bit 2 = gold code */
876 	write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
877 		  pls_code & 0xff);
878 	write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
879 		  (pls_code >> 8) & 0xff);
880 	write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
881 		  0x04 | ((pls_code >> 16) & 0x03));
882 	state->cur_scrambling_code = pls_code;
883 }
884 
885 static void set_isi(struct stv *state, u32 isi)
886 {
887 	if (isi == NO_STREAM_ID_FILTER)
888 		return;
889 	if (isi == 0x80000000) {
890 		SET_FIELD(FORCE_CONTINUOUS, 1);
891 		SET_FIELD(TSOUT_NOSYNC, 1);
892 	} else {
893 		SET_FIELD(FILTER_EN, 1);
894 		write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
895 			  isi & 0xff);
896 		write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff);
897 	}
898 	SET_FIELD(ALGOSWRST, 1);
899 	SET_FIELD(ALGOSWRST, 0);
900 }
901 
902 static void set_stream_modes(struct stv *state,
903 			     struct dtv_frontend_properties *p)
904 {
905 	set_isi(state, p->stream_id);
906 	set_pls(state, p->scrambling_sequence_index);
907 }
908 
909 static int init_search_param(struct stv *state,
910 			     struct dtv_frontend_properties *p)
911 {
912 	SET_FIELD(FORCE_CONTINUOUS, 0);
913 	SET_FIELD(FRAME_MODE, 0);
914 	SET_FIELD(FILTER_EN, 0);
915 	SET_FIELD(TSOUT_NOSYNC, 0);
916 	SET_FIELD(TSFIFO_EMBINDVB, 0);
917 	SET_FIELD(TSDEL_SYNCBYTE, 0);
918 	SET_REG(UPLCCST0, 0xe0);
919 	SET_FIELD(TSINS_TOKEN, 0);
920 	SET_FIELD(HYSTERESIS_THRESHOLD, 0);
921 	SET_FIELD(ISIOBS_MODE, 1);
922 
923 	set_stream_modes(state, p);
924 	return 0;
925 }
926 
927 static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
928 {
929 	u8 val;
930 
931 	switch (rate) {
932 	case FEC_1_2:
933 		val = 0x01;
934 		break;
935 	case FEC_2_3:
936 		val = 0x02;
937 		break;
938 	case FEC_3_4:
939 		val = 0x04;
940 		break;
941 	case FEC_5_6:
942 		val = 0x08;
943 		break;
944 	case FEC_7_8:
945 		val = 0x20;
946 		break;
947 	case FEC_NONE:
948 	default:
949 		val = 0x2f;
950 		break;
951 	}
952 
953 	return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val);
954 }
955 
956 static int set_vth_default(struct stv *state)
957 {
958 	state->vth[0] = 0xd7;
959 	state->vth[1] = 0x85;
960 	state->vth[2] = 0x58;
961 	state->vth[3] = 0x3a;
962 	state->vth[4] = 0x34;
963 	state->vth[5] = 0x28;
964 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
965 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
966 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
967 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
968 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
969 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
970 	return 0;
971 }
972 
973 static int set_vth(struct stv *state)
974 {
975 	static const struct slookup vthlookup_table[] = {
976 		{250,	8780}, /* C/N= 1.5dB */
977 		{100,	7405}, /* C/N= 4.5dB */
978 		{40,	6330}, /* C/N= 6.5dB */
979 		{12,	5224}, /* C/N= 8.5dB */
980 		{5,	4236}  /* C/N=10.5dB */
981 	};
982 
983 	int i;
984 	u8 tmp[2];
985 	int status = read_regs(state,
986 			       RSTV0910_P2_NNOSDATAT1 + state->regoff,
987 			       tmp, 2);
988 	u16 reg_value = (tmp[0] << 8) | tmp[1];
989 	s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
990 			      reg_value);
991 
992 	for (i = 0; i < 6; i += 1)
993 		if (state->vth[i] > vth)
994 			state->vth[i] = vth;
995 
996 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
997 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
998 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
999 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
1000 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
1001 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
1002 	return status;
1003 }
1004 
1005 static int start(struct stv *state, struct dtv_frontend_properties *p)
1006 {
1007 	s32 freq;
1008 	u8  reg_dmdcfgmd;
1009 	u16 symb;
1010 
1011 	if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
1012 		return -EINVAL;
1013 
1014 	state->receive_mode = RCVMODE_NONE;
1015 	state->demod_lock_time = 0;
1016 
1017 	/* Demod Stop */
1018 	if (state->started)
1019 		write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
1020 
1021 	init_search_param(state, p);
1022 
1023 	if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
1024 		state->demod_timeout = 3000;
1025 		state->fec_timeout = 2000;
1026 	} else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
1027 		state->demod_timeout = 2500;
1028 		state->fec_timeout = 1300;
1029 	} else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
1030 		state->demod_timeout = 1000;
1031 		state->fec_timeout = 650;
1032 	} else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
1033 		state->demod_timeout = 700;
1034 		state->fec_timeout = 350;
1035 	} else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
1036 		state->demod_timeout = 400;
1037 		state->fec_timeout = 200;
1038 	} else { /* SR >=20Msps */
1039 		state->demod_timeout = 300;
1040 		state->fec_timeout = 200;
1041 	}
1042 
1043 	/* Set the Init Symbol rate */
1044 	symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
1045 	write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
1046 		  ((symb >> 8) & 0x7F));
1047 	write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
1048 
1049 	state->demod_bits |= 0x80;
1050 	write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
1051 
1052 	/* FE_STV0910_SetSearchStandard */
1053 	read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &reg_dmdcfgmd);
1054 	write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
1055 		  reg_dmdcfgmd |= 0xC0);
1056 
1057 	write_shared_reg(state,
1058 			 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
1059 
1060 	/* Disable DSS */
1061 	write_reg(state, RSTV0910_P2_FECM  + state->regoff, 0x00);
1062 	write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
1063 
1064 	enable_puncture_rate(state, FEC_NONE);
1065 
1066 	/* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
1067 	write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
1068 	write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
1069 	write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
1070 	write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
1071 	write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
1072 	write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
1073 
1074 	write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
1075 	write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
1076 	write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
1077 	write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
1078 
1079 	/*
1080 	 * Reset CAR3, bug DVBS2->DVBS1 lock
1081 	 * Note: The bit is only pulsed -> no lock on shared register needed
1082 	 */
1083 	write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
1084 	write_reg(state, RSTV0910_TSTRES0, 0);
1085 
1086 	set_vth_default(state);
1087 	/* Reset demod */
1088 	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1089 
1090 	write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
1091 
1092 	if (p->symbol_rate <= 5000000)
1093 		freq = (state->search_range / 2000) + 80;
1094 	else
1095 		freq = (state->search_range / 2000) + 1600;
1096 	freq = (freq << 16) / (state->base->mclk / 1000);
1097 
1098 	write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
1099 		  (freq >> 8) & 0xff);
1100 	write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
1101 	/* CFR Low Setting */
1102 	freq = -freq;
1103 	write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
1104 		  (freq >> 8) & 0xff);
1105 	write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
1106 
1107 	/* init the demod frequency offset to 0 */
1108 	write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
1109 	write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
1110 
1111 	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1112 	/* Trigger acq */
1113 	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
1114 
1115 	state->demod_lock_time += TUNING_DELAY;
1116 	state->started = 1;
1117 
1118 	return 0;
1119 }
1120 
1121 static int init_diseqc(struct stv *state)
1122 {
1123 	u16 offs = state->nr ? 0x40 : 0; /* Address offset */
1124 	u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
1125 
1126 	/* Disable receiver */
1127 	write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
1128 	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
1129 	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
1130 	write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
1131 	return 0;
1132 }
1133 
1134 static int probe(struct stv *state)
1135 {
1136 	u8 id;
1137 
1138 	state->receive_mode = RCVMODE_NONE;
1139 	state->started = 0;
1140 
1141 	if (read_reg(state, RSTV0910_MID, &id) < 0)
1142 		return -ENODEV;
1143 
1144 	if (id != 0x51)
1145 		return -EINVAL;
1146 
1147 	/* Configure the I2C repeater to off */
1148 	write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
1149 	/* Configure the I2C repeater to off */
1150 	write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
1151 	/* Set the I2C to oversampling ratio */
1152 	write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
1153 
1154 	write_reg(state, RSTV0910_OUTCFG,    0x00); /* OUTCFG */
1155 	write_reg(state, RSTV0910_PADCFG,    0x05); /* RFAGC Pads Dev = 05 */
1156 	write_reg(state, RSTV0910_SYNTCTRL,  0x02); /* SYNTCTRL */
1157 	write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
1158 	write_reg(state, RSTV0910_CFGEXT,    0x02); /* CFGEXT */
1159 
1160 	if (state->single)
1161 		write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
1162 	else
1163 		write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
1164 
1165 	write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
1166 	write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
1167 
1168 	write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
1169 	write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
1170 	write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
1171 	write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
1172 
1173 	write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
1174 	write_reg(state, RSTV0910_TSTRES0, 0x00);
1175 
1176 	write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
1177 	write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
1178 
1179 	write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
1180 	write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
1181 
1182 	set_mclock(state, 135000000);
1183 
1184 	/* TS output */
1185 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1186 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1187 	write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
1188 	write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
1189 
1190 	write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
1191 
1192 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1193 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1194 	write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
1195 	write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
1196 
1197 	write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
1198 
1199 	/* Reset stream merger */
1200 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1201 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1202 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1203 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1204 
1205 	write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
1206 	write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
1207 
1208 	write_reg(state, RSTV0910_P1_TSINSDELM, 0x17);
1209 	write_reg(state, RSTV0910_P1_TSINSDELL, 0xff);
1210 
1211 	write_reg(state, RSTV0910_P2_TSINSDELM, 0x17);
1212 	write_reg(state, RSTV0910_P2_TSINSDELL, 0xff);
1213 
1214 	init_diseqc(state);
1215 	return 0;
1216 }
1217 
1218 static int gate_ctrl(struct dvb_frontend *fe, int enable)
1219 {
1220 	struct stv *state = fe->demodulator_priv;
1221 	u8 i2crpt = state->i2crpt & ~0x86;
1222 
1223 	/*
1224 	 * mutex_lock note: Concurrent I2C gate bus accesses must be
1225 	 * prevented (STV0910 = dual demod on a single IC with a single I2C
1226 	 * gate/bus, and two tuners attached), similar to most (if not all)
1227 	 * other I2C host interfaces/buses.
1228 	 *
1229 	 * enable=1 (open I2C gate) will grab the lock
1230 	 * enable=0 (close I2C gate) releases the lock
1231 	 */
1232 
1233 	if (enable) {
1234 		mutex_lock(&state->base->i2c_lock);
1235 		i2crpt |= 0x80;
1236 	} else {
1237 		i2crpt |= 0x02;
1238 	}
1239 
1240 	if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
1241 		      RSTV0910_P1_I2CRPT, i2crpt) < 0) {
1242 		/* don't hold the I2C bus lock on failure */
1243 		if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1244 			mutex_unlock(&state->base->i2c_lock);
1245 		dev_err(&state->base->i2c->dev,
1246 			"%s() write_reg failure (enable=%d)\n",
1247 			__func__, enable);
1248 		return -EIO;
1249 	}
1250 
1251 	state->i2crpt = i2crpt;
1252 
1253 	if (!enable)
1254 		if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1255 			mutex_unlock(&state->base->i2c_lock);
1256 	return 0;
1257 }
1258 
1259 static void release(struct dvb_frontend *fe)
1260 {
1261 	struct stv *state = fe->demodulator_priv;
1262 
1263 	state->base->count--;
1264 	if (state->base->count == 0) {
1265 		list_del(&state->base->stvlist);
1266 		kfree(state->base);
1267 	}
1268 	kfree(state);
1269 }
1270 
1271 static int set_parameters(struct dvb_frontend *fe)
1272 {
1273 	int stat = 0;
1274 	struct stv *state = fe->demodulator_priv;
1275 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1276 
1277 	stop(state);
1278 	if (fe->ops.tuner_ops.set_params)
1279 		fe->ops.tuner_ops.set_params(fe);
1280 	state->symbol_rate = p->symbol_rate;
1281 	stat = start(state, p);
1282 	return stat;
1283 }
1284 
1285 static int manage_matype_info(struct stv *state)
1286 {
1287 	if (!state->started)
1288 		return -EINVAL;
1289 	if (state->receive_mode == RCVMODE_DVBS2) {
1290 		u8 bbheader[2];
1291 
1292 		read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
1293 			  bbheader, 2);
1294 		state->feroll_off =
1295 			(enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
1296 		state->is_vcm = (bbheader[0] & 0x10) == 0;
1297 		state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
1298 	} else if (state->receive_mode == RCVMODE_DVBS) {
1299 		state->is_vcm = 0;
1300 		state->is_standard_broadcast = 1;
1301 		state->feroll_off = FE_SAT_35;
1302 	}
1303 	return 0;
1304 }
1305 
1306 static int read_snr(struct dvb_frontend *fe)
1307 {
1308 	struct stv *state = fe->demodulator_priv;
1309 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1310 	s32 snrval;
1311 
1312 	if (!get_signal_to_noise(state, &snrval)) {
1313 		p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1314 		p->cnr.stat[0].svalue = 100 * snrval; /* fix scale */
1315 	} else {
1316 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static int read_ber(struct dvb_frontend *fe)
1323 {
1324 	struct stv *state = fe->demodulator_priv;
1325 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1326 	u32 n, d;
1327 
1328 	get_bit_error_rate(state, &n, &d);
1329 
1330 	p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1331 	p->pre_bit_error.stat[0].uvalue = n;
1332 	p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1333 	p->pre_bit_count.stat[0].uvalue = d;
1334 
1335 	return 0;
1336 }
1337 
1338 static void read_signal_strength(struct dvb_frontend *fe)
1339 {
1340 	struct stv *state = fe->demodulator_priv;
1341 	struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1342 	u8 reg[2];
1343 	u16 agc;
1344 	s32 padc, power = 0;
1345 	int i;
1346 
1347 	read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
1348 
1349 	agc = (((u32)reg[0]) << 8) | reg[1];
1350 
1351 	for (i = 0; i < 5; i += 1) {
1352 		read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
1353 		power += (u32)reg[0] * (u32)reg[0]
1354 			+ (u32)reg[1] * (u32)reg[1];
1355 		usleep_range(3000, 4000);
1356 	}
1357 	power /= 5;
1358 
1359 	padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
1360 
1361 	p->strength.stat[0].scale = FE_SCALE_DECIBEL;
1362 	p->strength.stat[0].svalue = (padc - agc);
1363 }
1364 
1365 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
1366 {
1367 	struct stv *state = fe->demodulator_priv;
1368 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1369 	u8 dmd_state = 0;
1370 	u8 dstatus  = 0;
1371 	enum receive_mode cur_receive_mode = RCVMODE_NONE;
1372 	u32 feclock = 0;
1373 
1374 	*status = 0;
1375 
1376 	read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
1377 
1378 	if (dmd_state & 0x40) {
1379 		read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
1380 		if (dstatus & 0x08)
1381 			cur_receive_mode = (dmd_state & 0x20) ?
1382 				RCVMODE_DVBS : RCVMODE_DVBS2;
1383 	}
1384 	if (cur_receive_mode == RCVMODE_NONE) {
1385 		set_vth(state);
1386 
1387 		/* reset signal statistics */
1388 		p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1389 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1390 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1391 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1392 
1393 		return 0;
1394 	}
1395 
1396 	*status |= (FE_HAS_SIGNAL
1397 		| FE_HAS_CARRIER
1398 		| FE_HAS_VITERBI
1399 		| FE_HAS_SYNC);
1400 
1401 	if (state->receive_mode == RCVMODE_NONE) {
1402 		state->receive_mode = cur_receive_mode;
1403 		state->demod_lock_time = jiffies;
1404 		state->first_time_lock = 1;
1405 
1406 		get_signal_parameters(state);
1407 		tracking_optimization(state);
1408 
1409 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1410 			  state->tscfgh);
1411 		usleep_range(3000, 4000);
1412 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1413 			  state->tscfgh | 0x01);
1414 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1415 			  state->tscfgh);
1416 	}
1417 	if (dmd_state & 0x40) {
1418 		if (state->receive_mode == RCVMODE_DVBS2) {
1419 			u8 pdelstatus;
1420 
1421 			read_reg(state,
1422 				 RSTV0910_P2_PDELSTATUS1 + state->regoff,
1423 				 &pdelstatus);
1424 			feclock = (pdelstatus & 0x02) != 0;
1425 		} else {
1426 			u8 vstatus;
1427 
1428 			read_reg(state,
1429 				 RSTV0910_P2_VSTATUSVIT + state->regoff,
1430 				 &vstatus);
1431 			feclock = (vstatus & 0x08) != 0;
1432 		}
1433 	}
1434 
1435 	if (feclock) {
1436 		*status |= FE_HAS_LOCK;
1437 
1438 		if (state->first_time_lock) {
1439 			u8 tmp;
1440 
1441 			state->first_time_lock = 0;
1442 
1443 			manage_matype_info(state);
1444 
1445 			if (state->receive_mode == RCVMODE_DVBS2) {
1446 				/*
1447 				 * FSTV0910_P2_MANUALSX_ROLLOFF,
1448 				 * FSTV0910_P2_MANUALS2_ROLLOFF = 0
1449 				 */
1450 				state->demod_bits &= ~0x84;
1451 				write_reg(state,
1452 					  RSTV0910_P2_DEMOD + state->regoff,
1453 					  state->demod_bits);
1454 				read_reg(state,
1455 					 RSTV0910_P2_PDELCTRL2 + state->regoff,
1456 					 &tmp);
1457 				/* reset DVBS2 packet delinator error counter */
1458 				tmp |= 0x40;
1459 				write_reg(state,
1460 					  RSTV0910_P2_PDELCTRL2 + state->regoff,
1461 					  tmp);
1462 				/* reset DVBS2 packet delinator error counter */
1463 				tmp &= ~0x40;
1464 				write_reg(state,
1465 					  RSTV0910_P2_PDELCTRL2 + state->regoff,
1466 					  tmp);
1467 
1468 				state->berscale = 2;
1469 				state->last_bernumerator = 0;
1470 				state->last_berdenominator = 1;
1471 				/* force to PRE BCH Rate */
1472 				write_reg(state,
1473 					  RSTV0910_P2_ERRCTRL1 + state->regoff,
1474 					  BER_SRC_S2 | state->berscale);
1475 			} else {
1476 				state->berscale = 2;
1477 				state->last_bernumerator = 0;
1478 				state->last_berdenominator = 1;
1479 				/* force to PRE RS Rate */
1480 				write_reg(state,
1481 					  RSTV0910_P2_ERRCTRL1 + state->regoff,
1482 					  BER_SRC_S | state->berscale);
1483 			}
1484 			/* Reset the Total packet counter */
1485 			write_reg(state,
1486 				  RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
1487 			/*
1488 			 * Reset the packet Error counter2 (and Set it to
1489 			 * infinite error count mode)
1490 			 */
1491 			write_reg(state,
1492 				  RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
1493 
1494 			set_vth_default(state);
1495 			if (state->receive_mode == RCVMODE_DVBS)
1496 				enable_puncture_rate(state,
1497 						     state->puncture_rate);
1498 		}
1499 
1500 		/* Use highest signaled ModCod for quality */
1501 		if (state->is_vcm) {
1502 			u8 tmp;
1503 			enum fe_stv0910_mod_cod mod_cod;
1504 
1505 			read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff,
1506 				 &tmp);
1507 			mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
1508 
1509 			if (mod_cod > state->mod_cod)
1510 				state->mod_cod = mod_cod;
1511 		}
1512 	}
1513 
1514 	/* read signal statistics */
1515 
1516 	/* read signal strength */
1517 	read_signal_strength(fe);
1518 
1519 	/* read carrier/noise on FE_HAS_CARRIER */
1520 	if (*status & FE_HAS_CARRIER)
1521 		read_snr(fe);
1522 	else
1523 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1524 
1525 	/* read ber */
1526 	if (*status & FE_HAS_VITERBI) {
1527 		read_ber(fe);
1528 	} else {
1529 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1530 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 static int get_frontend(struct dvb_frontend *fe,
1537 			struct dtv_frontend_properties *p)
1538 {
1539 	struct stv *state = fe->demodulator_priv;
1540 	u8 tmp;
1541 	u32 symbolrate;
1542 
1543 	if (state->receive_mode == RCVMODE_DVBS2) {
1544 		u32 mc;
1545 		const enum fe_modulation modcod2mod[0x20] = {
1546 			QPSK, QPSK, QPSK, QPSK,
1547 			QPSK, QPSK, QPSK, QPSK,
1548 			QPSK, QPSK, QPSK, QPSK,
1549 			PSK_8, PSK_8, PSK_8, PSK_8,
1550 			PSK_8, PSK_8, APSK_16, APSK_16,
1551 			APSK_16, APSK_16, APSK_16, APSK_16,
1552 			APSK_32, APSK_32, APSK_32, APSK_32,
1553 			APSK_32,
1554 		};
1555 		const enum fe_code_rate modcod2fec[0x20] = {
1556 			FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
1557 			FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
1558 			FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1559 			FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
1560 			FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
1561 			FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1562 			FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
1563 			FEC_9_10
1564 		};
1565 		read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
1566 		mc = ((tmp & 0x7c) >> 2);
1567 		p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
1568 		p->modulation = modcod2mod[mc];
1569 		p->fec_inner = modcod2fec[mc];
1570 	} else if (state->receive_mode == RCVMODE_DVBS) {
1571 		read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
1572 		switch (tmp & 0x1F) {
1573 		case 0x0d:
1574 			p->fec_inner = FEC_1_2;
1575 			break;
1576 		case 0x12:
1577 			p->fec_inner = FEC_2_3;
1578 			break;
1579 		case 0x15:
1580 			p->fec_inner = FEC_3_4;
1581 			break;
1582 		case 0x18:
1583 			p->fec_inner = FEC_5_6;
1584 			break;
1585 		case 0x1a:
1586 			p->fec_inner = FEC_7_8;
1587 			break;
1588 		default:
1589 			p->fec_inner = FEC_NONE;
1590 			break;
1591 		}
1592 		p->rolloff = ROLLOFF_35;
1593 	}
1594 
1595 	if (state->receive_mode != RCVMODE_NONE) {
1596 		get_cur_symbol_rate(state, &symbolrate);
1597 		p->symbol_rate = symbolrate;
1598 	}
1599 	return 0;
1600 }
1601 
1602 static int tune(struct dvb_frontend *fe, bool re_tune,
1603 		unsigned int mode_flags,
1604 		unsigned int *delay, enum fe_status *status)
1605 {
1606 	struct stv *state = fe->demodulator_priv;
1607 	int r;
1608 
1609 	if (re_tune) {
1610 		r = set_parameters(fe);
1611 		if (r)
1612 			return r;
1613 		state->tune_time = jiffies;
1614 	}
1615 
1616 	r = read_status(fe, status);
1617 	if (r)
1618 		return r;
1619 
1620 	if (*status & FE_HAS_LOCK)
1621 		return 0;
1622 	*delay = HZ;
1623 
1624 	return 0;
1625 }
1626 
1627 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
1628 {
1629 	return DVBFE_ALGO_HW;
1630 }
1631 
1632 static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1633 {
1634 	struct stv *state = fe->demodulator_priv;
1635 	u16 offs = state->nr ? 0x40 : 0;
1636 
1637 	switch (tone) {
1638 	case SEC_TONE_ON:
1639 		return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
1640 	case SEC_TONE_OFF:
1641 		return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
1642 	default:
1643 		break;
1644 	}
1645 	return -EINVAL;
1646 }
1647 
1648 static int wait_dis(struct stv *state, u8 flag, u8 val)
1649 {
1650 	int i;
1651 	u8 stat;
1652 	u16 offs = state->nr ? 0x40 : 0;
1653 
1654 	for (i = 0; i < 10; i++) {
1655 		read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
1656 		if ((stat & flag) == val)
1657 			return 0;
1658 		usleep_range(10000, 11000);
1659 	}
1660 	return -ETIMEDOUT;
1661 }
1662 
1663 static int send_master_cmd(struct dvb_frontend *fe,
1664 			   struct dvb_diseqc_master_cmd *cmd)
1665 {
1666 	struct stv *state = fe->demodulator_priv;
1667 	int i;
1668 
1669 	SET_FIELD(DISEQC_MODE, 2);
1670 	SET_FIELD(DIS_PRECHARGE, 1);
1671 	for (i = 0; i < cmd->msg_len; i++) {
1672 		wait_dis(state, 0x40, 0x00);
1673 		SET_REG(DISTXFIFO, cmd->msg[i]);
1674 	}
1675 	SET_FIELD(DIS_PRECHARGE, 0);
1676 	wait_dis(state, 0x20, 0x20);
1677 	return 0;
1678 }
1679 
1680 static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
1681 {
1682 	struct stv *state = fe->demodulator_priv;
1683 	u8 value;
1684 
1685 	if (burst == SEC_MINI_A) {
1686 		SET_FIELD(DISEQC_MODE, 3);
1687 		value = 0x00;
1688 	} else {
1689 		SET_FIELD(DISEQC_MODE, 2);
1690 		value = 0xFF;
1691 	}
1692 
1693 	SET_FIELD(DIS_PRECHARGE, 1);
1694 	wait_dis(state, 0x40, 0x00);
1695 	SET_REG(DISTXFIFO, value);
1696 	SET_FIELD(DIS_PRECHARGE, 0);
1697 	wait_dis(state, 0x20, 0x20);
1698 
1699 	return 0;
1700 }
1701 
1702 static int sleep(struct dvb_frontend *fe)
1703 {
1704 	struct stv *state = fe->demodulator_priv;
1705 
1706 	stop(state);
1707 	return 0;
1708 }
1709 
1710 static const struct dvb_frontend_ops stv0910_ops = {
1711 	.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1712 	.info = {
1713 		.name			= "ST STV0910",
1714 		.frequency_min_hz	=  950 * MHz,
1715 		.frequency_max_hz	= 2150 * MHz,
1716 		.symbol_rate_min	= 100000,
1717 		.symbol_rate_max	= 70000000,
1718 		.caps			= FE_CAN_INVERSION_AUTO |
1719 					  FE_CAN_FEC_AUTO       |
1720 					  FE_CAN_QPSK           |
1721 					  FE_CAN_2G_MODULATION  |
1722 					  FE_CAN_MULTISTREAM
1723 	},
1724 	.sleep				= sleep,
1725 	.release			= release,
1726 	.i2c_gate_ctrl			= gate_ctrl,
1727 	.set_frontend			= set_parameters,
1728 	.get_frontend_algo		= get_algo,
1729 	.get_frontend			= get_frontend,
1730 	.tune				= tune,
1731 	.read_status			= read_status,
1732 	.set_tone			= set_tone,
1733 
1734 	.diseqc_send_master_cmd		= send_master_cmd,
1735 	.diseqc_send_burst		= send_burst,
1736 };
1737 
1738 static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
1739 {
1740 	struct stv_base *p;
1741 
1742 	list_for_each_entry(p, &stvlist, stvlist)
1743 		if (p->i2c == i2c && p->adr == adr)
1744 			return p;
1745 	return NULL;
1746 }
1747 
1748 static void stv0910_init_stats(struct stv *state)
1749 {
1750 	struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1751 
1752 	p->strength.len = 1;
1753 	p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1754 	p->cnr.len = 1;
1755 	p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1756 	p->pre_bit_error.len = 1;
1757 	p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1758 	p->pre_bit_count.len = 1;
1759 	p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1760 }
1761 
1762 struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
1763 				    struct stv0910_cfg *cfg,
1764 				    int nr)
1765 {
1766 	struct stv *state;
1767 	struct stv_base *base;
1768 
1769 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1770 	if (!state)
1771 		return NULL;
1772 
1773 	state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
1774 	state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
1775 	state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
1776 	/* use safe tsspeed value if unspecified through stv0910_cfg */
1777 	state->tsspeed = (cfg->tsspeed ? cfg->tsspeed : 0x28);
1778 	state->nr = nr;
1779 	state->regoff = state->nr ? 0 : 0x200;
1780 	state->search_range = 16000000;
1781 	state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
1782 	state->receive_mode = RCVMODE_NONE;
1783 	state->cur_scrambling_code = (~0U);
1784 	state->single = cfg->single ? 1 : 0;
1785 
1786 	base = match_base(i2c, cfg->adr);
1787 	if (base) {
1788 		base->count++;
1789 		state->base = base;
1790 	} else {
1791 		base = kzalloc(sizeof(*base), GFP_KERNEL);
1792 		if (!base)
1793 			goto fail;
1794 		base->i2c = i2c;
1795 		base->adr = cfg->adr;
1796 		base->count = 1;
1797 		base->extclk = cfg->clk ? cfg->clk : 30000000;
1798 
1799 		mutex_init(&base->i2c_lock);
1800 		mutex_init(&base->reg_lock);
1801 		state->base = base;
1802 		if (probe(state) < 0) {
1803 			dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
1804 				 cfg->adr, dev_name(&i2c->dev));
1805 			kfree(base);
1806 			goto fail;
1807 		}
1808 		list_add(&base->stvlist, &stvlist);
1809 	}
1810 	state->fe.ops = stv0910_ops;
1811 	state->fe.demodulator_priv = state;
1812 	state->nr = nr;
1813 
1814 	dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
1815 		 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
1816 
1817 	stv0910_init_stats(state);
1818 
1819 	return &state->fe;
1820 
1821 fail:
1822 	kfree(state);
1823 	return NULL;
1824 }
1825 EXPORT_SYMBOL_GPL(stv0910_attach);
1826 
1827 MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
1828 MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
1829 MODULE_LICENSE("GPL v2");
1830