xref: /linux/drivers/media/dvb-frontends/s5h1420.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for
4  *    Samsung S5H1420 and
5  *    PnpNetwork PN1010 QPSK Demodulator
6  *
7  * Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net>
8  * Copyright (C) 2005-8 Patrick Boettcher <pb@linuxtv.org>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/jiffies.h>
18 #include <asm/div64.h>
19 
20 #include <linux/i2c.h>
21 
22 
23 #include <media/dvb_frontend.h>
24 #include "s5h1420.h"
25 #include "s5h1420_priv.h"
26 
27 #define TONE_FREQ 22000
28 
29 struct s5h1420_state {
30 	struct i2c_adapter* i2c;
31 	const struct s5h1420_config* config;
32 
33 	struct dvb_frontend frontend;
34 	struct i2c_adapter tuner_i2c_adapter;
35 
36 	u8 CON_1_val;
37 
38 	u8 postlocked:1;
39 	u32 fclk;
40 	u32 tunedfreq;
41 	enum fe_code_rate fec_inner;
42 	u32 symbol_rate;
43 
44 	/* FIXME: ugly workaround for flexcop's incapable i2c-controller
45 	 * it does not support repeated-start, workaround: write addr-1
46 	 * and then read
47 	 */
48 	u8 shadow[256];
49 };
50 
51 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
52 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
53 				     struct dvb_frontend_tune_settings* fesettings);
54 
55 
56 static int debug;
57 module_param(debug, int, 0644);
58 MODULE_PARM_DESC(debug, "enable debugging");
59 
60 #define dprintk(x...) do { \
61 	if (debug) \
62 		printk(KERN_DEBUG "S5H1420: " x); \
63 } while (0)
64 
65 static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg)
66 {
67 	int ret;
68 	u8 b[2];
69 	struct i2c_msg msg[] = {
70 		{ .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 },
71 		{ .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
72 		{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 },
73 	};
74 
75 	b[0] = (reg - 1) & 0xff;
76 	b[1] = state->shadow[(reg - 1) & 0xff];
77 
78 	if (state->config->repeated_start_workaround) {
79 		ret = i2c_transfer(state->i2c, msg, 3);
80 		if (ret != 3)
81 			return ret;
82 	} else {
83 		ret = i2c_transfer(state->i2c, &msg[1], 1);
84 		if (ret != 1)
85 			return ret;
86 		ret = i2c_transfer(state->i2c, &msg[2], 1);
87 		if (ret != 1)
88 			return ret;
89 	}
90 
91 	/* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */
92 
93 	return b[0];
94 }
95 
96 static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
97 {
98 	u8 buf[] = { reg, data };
99 	struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
100 	int err;
101 
102 	/* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */
103 	err = i2c_transfer(state->i2c, &msg, 1);
104 	if (err != 1) {
105 		dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data);
106 		return -EREMOTEIO;
107 	}
108 	state->shadow[reg] = data;
109 
110 	return 0;
111 }
112 
113 static int s5h1420_set_voltage(struct dvb_frontend *fe,
114 			       enum fe_sec_voltage voltage)
115 {
116 	struct s5h1420_state* state = fe->demodulator_priv;
117 
118 	dprintk("enter %s\n", __func__);
119 
120 	switch(voltage) {
121 	case SEC_VOLTAGE_13:
122 		s5h1420_writereg(state, 0x3c,
123 				 (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
124 		break;
125 
126 	case SEC_VOLTAGE_18:
127 		s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
128 		break;
129 
130 	case SEC_VOLTAGE_OFF:
131 		s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
132 		break;
133 	}
134 
135 	dprintk("leave %s\n", __func__);
136 	return 0;
137 }
138 
139 static int s5h1420_set_tone(struct dvb_frontend *fe,
140 			    enum fe_sec_tone_mode tone)
141 {
142 	struct s5h1420_state* state = fe->demodulator_priv;
143 
144 	dprintk("enter %s\n", __func__);
145 	switch(tone) {
146 	case SEC_TONE_ON:
147 		s5h1420_writereg(state, 0x3b,
148 				 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
149 		break;
150 
151 	case SEC_TONE_OFF:
152 		s5h1420_writereg(state, 0x3b,
153 				 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
154 		break;
155 	}
156 	dprintk("leave %s\n", __func__);
157 
158 	return 0;
159 }
160 
161 static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
162 				    struct dvb_diseqc_master_cmd* cmd)
163 {
164 	struct s5h1420_state* state = fe->demodulator_priv;
165 	u8 val;
166 	int i;
167 	unsigned long timeout;
168 	int result = 0;
169 
170 	dprintk("enter %s\n", __func__);
171 	if (cmd->msg_len > sizeof(cmd->msg))
172 		return -EINVAL;
173 
174 	/* setup for DISEQC */
175 	val = s5h1420_readreg(state, 0x3b);
176 	s5h1420_writereg(state, 0x3b, 0x02);
177 	msleep(15);
178 
179 	/* write the DISEQC command bytes */
180 	for(i=0; i< cmd->msg_len; i++) {
181 		s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
182 	}
183 
184 	/* kick off transmission */
185 	s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
186 				      ((cmd->msg_len-1) << 4) | 0x08);
187 
188 	/* wait for transmission to complete */
189 	timeout = jiffies + ((100*HZ) / 1000);
190 	while(time_before(jiffies, timeout)) {
191 		if (!(s5h1420_readreg(state, 0x3b) & 0x08))
192 			break;
193 
194 		msleep(5);
195 	}
196 	if (time_after(jiffies, timeout))
197 		result = -ETIMEDOUT;
198 
199 	/* restore original settings */
200 	s5h1420_writereg(state, 0x3b, val);
201 	msleep(15);
202 	dprintk("leave %s\n", __func__);
203 	return result;
204 }
205 
206 static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
207 				     struct dvb_diseqc_slave_reply* reply)
208 {
209 	struct s5h1420_state* state = fe->demodulator_priv;
210 	u8 val;
211 	int i;
212 	int length;
213 	unsigned long timeout;
214 	int result = 0;
215 
216 	/* setup for DISEQC receive */
217 	val = s5h1420_readreg(state, 0x3b);
218 	s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */
219 	msleep(15);
220 
221 	/* wait for reception to complete */
222 	timeout = jiffies + ((reply->timeout*HZ) / 1000);
223 	while(time_before(jiffies, timeout)) {
224 		if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */
225 			break;
226 
227 		msleep(5);
228 	}
229 	if (time_after(jiffies, timeout)) {
230 		result = -ETIMEDOUT;
231 		goto exit;
232 	}
233 
234 	/* check error flag - FIXME: not sure what this does - docs do not describe
235 	 * beyond "error flag for diseqc receive data :( */
236 	if (s5h1420_readreg(state, 0x49)) {
237 		result = -EIO;
238 		goto exit;
239 	}
240 
241 	/* check length */
242 	length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
243 	if (length > sizeof(reply->msg)) {
244 		result = -EOVERFLOW;
245 		goto exit;
246 	}
247 	reply->msg_len = length;
248 
249 	/* extract data */
250 	for(i=0; i< length; i++) {
251 		reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
252 	}
253 
254 exit:
255 	/* restore original settings */
256 	s5h1420_writereg(state, 0x3b, val);
257 	msleep(15);
258 	return result;
259 }
260 
261 static int s5h1420_send_burst(struct dvb_frontend *fe,
262 			      enum fe_sec_mini_cmd minicmd)
263 {
264 	struct s5h1420_state* state = fe->demodulator_priv;
265 	u8 val;
266 	int result = 0;
267 	unsigned long timeout;
268 
269 	/* setup for tone burst */
270 	val = s5h1420_readreg(state, 0x3b);
271 	s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);
272 
273 	/* set value for B position if requested */
274 	if (minicmd == SEC_MINI_B) {
275 		s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
276 	}
277 	msleep(15);
278 
279 	/* start transmission */
280 	s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);
281 
282 	/* wait for transmission to complete */
283 	timeout = jiffies + ((100*HZ) / 1000);
284 	while(time_before(jiffies, timeout)) {
285 		if (!(s5h1420_readreg(state, 0x3b) & 0x08))
286 			break;
287 
288 		msleep(5);
289 	}
290 	if (time_after(jiffies, timeout))
291 		result = -ETIMEDOUT;
292 
293 	/* restore original settings */
294 	s5h1420_writereg(state, 0x3b, val);
295 	msleep(15);
296 	return result;
297 }
298 
299 static enum fe_status s5h1420_get_status_bits(struct s5h1420_state *state)
300 {
301 	u8 val;
302 	enum fe_status status = 0;
303 
304 	val = s5h1420_readreg(state, 0x14);
305 	if (val & 0x02)
306 		status |=  FE_HAS_SIGNAL;
307 	if (val & 0x01)
308 		status |=  FE_HAS_CARRIER;
309 	val = s5h1420_readreg(state, 0x36);
310 	if (val & 0x01)
311 		status |=  FE_HAS_VITERBI;
312 	if (val & 0x20)
313 		status |=  FE_HAS_SYNC;
314 	if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC))
315 		status |=  FE_HAS_LOCK;
316 
317 	return status;
318 }
319 
320 static int s5h1420_read_status(struct dvb_frontend *fe,
321 			       enum fe_status *status)
322 {
323 	struct s5h1420_state* state = fe->demodulator_priv;
324 	u8 val;
325 
326 	dprintk("enter %s\n", __func__);
327 
328 	if (status == NULL)
329 		return -EINVAL;
330 
331 	/* determine lock state */
332 	*status = s5h1420_get_status_bits(state);
333 
334 	/* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert
335 	the inversion, wait a bit and check again */
336 	if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) {
337 		val = s5h1420_readreg(state, Vit10);
338 		if ((val & 0x07) == 0x03) {
339 			if (val & 0x08)
340 				s5h1420_writereg(state, Vit09, 0x13);
341 			else
342 				s5h1420_writereg(state, Vit09, 0x1b);
343 
344 			/* wait a bit then update lock status */
345 			mdelay(200);
346 			*status = s5h1420_get_status_bits(state);
347 		}
348 	}
349 
350 	/* perform post lock setup */
351 	if ((*status & FE_HAS_LOCK) && !state->postlocked) {
352 
353 		/* calculate the data rate */
354 		u32 tmp = s5h1420_getsymbolrate(state);
355 		switch (s5h1420_readreg(state, Vit10) & 0x07) {
356 		case 0: tmp = (tmp * 2 * 1) / 2; break;
357 		case 1: tmp = (tmp * 2 * 2) / 3; break;
358 		case 2: tmp = (tmp * 2 * 3) / 4; break;
359 		case 3: tmp = (tmp * 2 * 5) / 6; break;
360 		case 4: tmp = (tmp * 2 * 6) / 7; break;
361 		case 5: tmp = (tmp * 2 * 7) / 8; break;
362 		}
363 
364 		if (tmp == 0) {
365 			printk(KERN_ERR "s5h1420: avoided division by 0\n");
366 			tmp = 1;
367 		}
368 		tmp = state->fclk / tmp;
369 
370 
371 		/* set the MPEG_CLK_INTL for the calculated data rate */
372 		if (tmp < 2)
373 			val = 0x00;
374 		else if (tmp < 5)
375 			val = 0x01;
376 		else if (tmp < 9)
377 			val = 0x02;
378 		else if (tmp < 13)
379 			val = 0x03;
380 		else if (tmp < 17)
381 			val = 0x04;
382 		else if (tmp < 25)
383 			val = 0x05;
384 		else if (tmp < 33)
385 			val = 0x06;
386 		else
387 			val = 0x07;
388 		dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val);
389 
390 		s5h1420_writereg(state, FEC01, 0x18);
391 		s5h1420_writereg(state, FEC01, 0x10);
392 		s5h1420_writereg(state, FEC01, val);
393 
394 		/* Enable "MPEG_Out" */
395 		val = s5h1420_readreg(state, Mpeg02);
396 		s5h1420_writereg(state, Mpeg02, val | (1 << 6));
397 
398 		/* kicker disable */
399 		val = s5h1420_readreg(state, QPSK01) & 0x7f;
400 		s5h1420_writereg(state, QPSK01, val);
401 
402 		/* DC freeze TODO it was never activated by default or it can stay activated */
403 
404 		if (s5h1420_getsymbolrate(state) >= 20000000) {
405 			s5h1420_writereg(state, Loop04, 0x8a);
406 			s5h1420_writereg(state, Loop05, 0x6a);
407 		} else {
408 			s5h1420_writereg(state, Loop04, 0x58);
409 			s5h1420_writereg(state, Loop05, 0x27);
410 		}
411 
412 		/* post-lock processing has been done! */
413 		state->postlocked = 1;
414 	}
415 
416 	dprintk("leave %s\n", __func__);
417 
418 	return 0;
419 }
420 
421 static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
422 {
423 	struct s5h1420_state* state = fe->demodulator_priv;
424 
425 	s5h1420_writereg(state, 0x46, 0x1d);
426 	mdelay(25);
427 
428 	*ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
429 
430 	return 0;
431 }
432 
433 static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
434 {
435 	struct s5h1420_state* state = fe->demodulator_priv;
436 
437 	u8 val = s5h1420_readreg(state, 0x15);
438 
439 	*strength =  (u16) ((val << 8) | val);
440 
441 	return 0;
442 }
443 
444 static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
445 {
446 	struct s5h1420_state* state = fe->demodulator_priv;
447 
448 	s5h1420_writereg(state, 0x46, 0x1f);
449 	mdelay(25);
450 
451 	*ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
452 
453 	return 0;
454 }
455 
456 static void s5h1420_reset(struct s5h1420_state* state)
457 {
458 	dprintk("%s\n", __func__);
459 	s5h1420_writereg (state, 0x01, 0x08);
460 	s5h1420_writereg (state, 0x01, 0x00);
461 	udelay(10);
462 }
463 
464 static void s5h1420_setsymbolrate(struct s5h1420_state* state,
465 				  struct dtv_frontend_properties *p)
466 {
467 	u8 v;
468 	u64 val;
469 
470 	dprintk("enter %s\n", __func__);
471 
472 	val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24);
473 	if (p->symbol_rate < 29000000)
474 		val *= 2;
475 	do_div(val, (state->fclk / 1000));
476 
477 	dprintk("symbol rate register: %06llx\n", (unsigned long long)val);
478 
479 	v = s5h1420_readreg(state, Loop01);
480 	s5h1420_writereg(state, Loop01, v & 0x7f);
481 	s5h1420_writereg(state, Tnco01, val >> 16);
482 	s5h1420_writereg(state, Tnco02, val >> 8);
483 	s5h1420_writereg(state, Tnco03, val & 0xff);
484 	s5h1420_writereg(state, Loop01,  v | 0x80);
485 	dprintk("leave %s\n", __func__);
486 }
487 
488 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
489 {
490 	return state->symbol_rate;
491 }
492 
493 static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
494 {
495 	int val;
496 	u8 v;
497 
498 	dprintk("enter %s\n", __func__);
499 
500 	/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
501 	 * divide fclk by 1000000 to get the correct value. */
502 	val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));
503 
504 	dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val);
505 
506 	v = s5h1420_readreg(state, Loop01);
507 	s5h1420_writereg(state, Loop01, v & 0xbf);
508 	s5h1420_writereg(state, Pnco01, val >> 16);
509 	s5h1420_writereg(state, Pnco02, val >> 8);
510 	s5h1420_writereg(state, Pnco03, val & 0xff);
511 	s5h1420_writereg(state, Loop01, v | 0x40);
512 	dprintk("leave %s\n", __func__);
513 }
514 
515 static int s5h1420_getfreqoffset(struct s5h1420_state* state)
516 {
517 	int val;
518 
519 	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
520 	val  = s5h1420_readreg(state, 0x0e) << 16;
521 	val |= s5h1420_readreg(state, 0x0f) << 8;
522 	val |= s5h1420_readreg(state, 0x10);
523 	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
524 
525 	if (val & 0x800000)
526 		val |= 0xff000000;
527 
528 	/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
529 	 * divide fclk by 1000000 to get the correct value. */
530 	val = (((-val) * (state->fclk/1000000)) / (1<<24));
531 
532 	return val;
533 }
534 
535 static void s5h1420_setfec_inversion(struct s5h1420_state* state,
536 				     struct dtv_frontend_properties *p)
537 {
538 	u8 inversion = 0;
539 	u8 vit08, vit09;
540 
541 	dprintk("enter %s\n", __func__);
542 
543 	if (p->inversion == INVERSION_OFF)
544 		inversion = state->config->invert ? 0x08 : 0;
545 	else if (p->inversion == INVERSION_ON)
546 		inversion = state->config->invert ? 0 : 0x08;
547 
548 	if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
549 		vit08 = 0x3f;
550 		vit09 = 0;
551 	} else {
552 		switch (p->fec_inner) {
553 		case FEC_1_2:
554 			vit08 = 0x01;
555 			vit09 = 0x10;
556 			break;
557 
558 		case FEC_2_3:
559 			vit08 = 0x02;
560 			vit09 = 0x11;
561 			break;
562 
563 		case FEC_3_4:
564 			vit08 = 0x04;
565 			vit09 = 0x12;
566 			break;
567 
568 		case FEC_5_6:
569 			vit08 = 0x08;
570 			vit09 = 0x13;
571 			break;
572 
573 		case FEC_6_7:
574 			vit08 = 0x10;
575 			vit09 = 0x14;
576 			break;
577 
578 		case FEC_7_8:
579 			vit08 = 0x20;
580 			vit09 = 0x15;
581 			break;
582 
583 		default:
584 			return;
585 		}
586 	}
587 	vit09 |= inversion;
588 	dprintk("fec: %02x %02x\n", vit08, vit09);
589 	s5h1420_writereg(state, Vit08, vit08);
590 	s5h1420_writereg(state, Vit09, vit09);
591 	dprintk("leave %s\n", __func__);
592 }
593 
594 static enum fe_code_rate s5h1420_getfec(struct s5h1420_state *state)
595 {
596 	switch(s5h1420_readreg(state, 0x32) & 0x07) {
597 	case 0:
598 		return FEC_1_2;
599 
600 	case 1:
601 		return FEC_2_3;
602 
603 	case 2:
604 		return FEC_3_4;
605 
606 	case 3:
607 		return FEC_5_6;
608 
609 	case 4:
610 		return FEC_6_7;
611 
612 	case 5:
613 		return FEC_7_8;
614 	}
615 
616 	return FEC_NONE;
617 }
618 
619 static enum fe_spectral_inversion
620 s5h1420_getinversion(struct s5h1420_state *state)
621 {
622 	if (s5h1420_readreg(state, 0x32) & 0x08)
623 		return INVERSION_ON;
624 
625 	return INVERSION_OFF;
626 }
627 
628 static int s5h1420_set_frontend(struct dvb_frontend *fe)
629 {
630 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
631 	struct s5h1420_state* state = fe->demodulator_priv;
632 	int frequency_delta;
633 	struct dvb_frontend_tune_settings fesettings;
634 
635 	dprintk("enter %s\n", __func__);
636 
637 	/* check if we should do a fast-tune */
638 	s5h1420_get_tune_settings(fe, &fesettings);
639 	frequency_delta = p->frequency - state->tunedfreq;
640 	if ((frequency_delta > -fesettings.max_drift) &&
641 			(frequency_delta < fesettings.max_drift) &&
642 			(frequency_delta != 0) &&
643 			(state->fec_inner == p->fec_inner) &&
644 			(state->symbol_rate == p->symbol_rate)) {
645 
646 		if (fe->ops.tuner_ops.set_params) {
647 			fe->ops.tuner_ops.set_params(fe);
648 			if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
649 		}
650 		if (fe->ops.tuner_ops.get_frequency) {
651 			u32 tmp;
652 			fe->ops.tuner_ops.get_frequency(fe, &tmp);
653 			if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
654 			s5h1420_setfreqoffset(state, p->frequency - tmp);
655 		} else {
656 			s5h1420_setfreqoffset(state, 0);
657 		}
658 		dprintk("simple tune\n");
659 		return 0;
660 	}
661 	dprintk("tuning demod\n");
662 
663 	/* first of all, software reset */
664 	s5h1420_reset(state);
665 
666 	/* set s5h1420 fclk PLL according to desired symbol rate */
667 	if (p->symbol_rate > 33000000)
668 		state->fclk = 80000000;
669 	else if (p->symbol_rate > 28500000)
670 		state->fclk = 59000000;
671 	else if (p->symbol_rate > 25000000)
672 		state->fclk = 86000000;
673 	else if (p->symbol_rate > 1900000)
674 		state->fclk = 88000000;
675 	else
676 		state->fclk = 44000000;
677 
678 	dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
679 	s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8);
680 	s5h1420_writereg(state, PLL02, 0x40);
681 	s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
682 
683 	/* TODO DC offset removal, config parameter ? */
684 	if (p->symbol_rate > 29000000)
685 		s5h1420_writereg(state, QPSK01, 0xae | 0x10);
686 	else
687 		s5h1420_writereg(state, QPSK01, 0xac | 0x10);
688 
689 	/* set misc registers */
690 	s5h1420_writereg(state, CON_1, 0x00);
691 	s5h1420_writereg(state, QPSK02, 0x00);
692 	s5h1420_writereg(state, Pre01, 0xb0);
693 
694 	s5h1420_writereg(state, Loop01, 0xF0);
695 	s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */
696 	s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */
697 	if (p->symbol_rate > 20000000)
698 		s5h1420_writereg(state, Loop04, 0x79);
699 	else
700 		s5h1420_writereg(state, Loop04, 0x58);
701 	s5h1420_writereg(state, Loop05, 0x6b);
702 
703 	if (p->symbol_rate >= 8000000)
704 		s5h1420_writereg(state, Post01, (0 << 6) | 0x10);
705 	else if (p->symbol_rate >= 4000000)
706 		s5h1420_writereg(state, Post01, (1 << 6) | 0x10);
707 	else
708 		s5h1420_writereg(state, Post01, (3 << 6) | 0x10);
709 
710 	s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */
711 
712 	s5h1420_writereg(state, Sync01, 0x33);
713 	s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity);
714 	s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */
715 	s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */
716 
717 	s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */
718 	s5h1420_writereg(state, DiS03, 0x00);
719 	s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */
720 
721 	/* set tuner PLL */
722 	if (fe->ops.tuner_ops.set_params) {
723 		fe->ops.tuner_ops.set_params(fe);
724 		if (fe->ops.i2c_gate_ctrl)
725 			fe->ops.i2c_gate_ctrl(fe, 0);
726 		s5h1420_setfreqoffset(state, 0);
727 	}
728 
729 	/* set the reset of the parameters */
730 	s5h1420_setsymbolrate(state, p);
731 	s5h1420_setfec_inversion(state, p);
732 
733 	/* start QPSK */
734 	s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1);
735 
736 	state->fec_inner = p->fec_inner;
737 	state->symbol_rate = p->symbol_rate;
738 	state->postlocked = 0;
739 	state->tunedfreq = p->frequency;
740 
741 	dprintk("leave %s\n", __func__);
742 	return 0;
743 }
744 
745 static int s5h1420_get_frontend(struct dvb_frontend* fe,
746 				struct dtv_frontend_properties *p)
747 {
748 	struct s5h1420_state* state = fe->demodulator_priv;
749 
750 	p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
751 	p->inversion = s5h1420_getinversion(state);
752 	p->symbol_rate = s5h1420_getsymbolrate(state);
753 	p->fec_inner = s5h1420_getfec(state);
754 
755 	return 0;
756 }
757 
758 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
759 				     struct dvb_frontend_tune_settings* fesettings)
760 {
761 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
762 	if (p->symbol_rate > 20000000) {
763 		fesettings->min_delay_ms = 50;
764 		fesettings->step_size = 2000;
765 		fesettings->max_drift = 8000;
766 	} else if (p->symbol_rate > 12000000) {
767 		fesettings->min_delay_ms = 100;
768 		fesettings->step_size = 1500;
769 		fesettings->max_drift = 9000;
770 	} else if (p->symbol_rate > 8000000) {
771 		fesettings->min_delay_ms = 100;
772 		fesettings->step_size = 1000;
773 		fesettings->max_drift = 8000;
774 	} else if (p->symbol_rate > 4000000) {
775 		fesettings->min_delay_ms = 100;
776 		fesettings->step_size = 500;
777 		fesettings->max_drift = 7000;
778 	} else if (p->symbol_rate > 2000000) {
779 		fesettings->min_delay_ms = 200;
780 		fesettings->step_size = (p->symbol_rate / 8000);
781 		fesettings->max_drift = 14 * fesettings->step_size;
782 	} else {
783 		fesettings->min_delay_ms = 200;
784 		fesettings->step_size = (p->symbol_rate / 8000);
785 		fesettings->max_drift = 18 * fesettings->step_size;
786 	}
787 
788 	return 0;
789 }
790 
791 static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
792 {
793 	struct s5h1420_state* state = fe->demodulator_priv;
794 
795 	if (enable)
796 		return s5h1420_writereg(state, 0x02, state->CON_1_val | 1);
797 	else
798 		return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe);
799 }
800 
801 static int s5h1420_init (struct dvb_frontend* fe)
802 {
803 	struct s5h1420_state* state = fe->demodulator_priv;
804 
805 	/* disable power down and do reset */
806 	state->CON_1_val = state->config->serial_mpeg << 4;
807 	s5h1420_writereg(state, 0x02, state->CON_1_val);
808 	msleep(10);
809 	s5h1420_reset(state);
810 
811 	return 0;
812 }
813 
814 static int s5h1420_sleep(struct dvb_frontend* fe)
815 {
816 	struct s5h1420_state* state = fe->demodulator_priv;
817 	state->CON_1_val = 0x12;
818 	return s5h1420_writereg(state, 0x02, state->CON_1_val);
819 }
820 
821 static void s5h1420_release(struct dvb_frontend* fe)
822 {
823 	struct s5h1420_state* state = fe->demodulator_priv;
824 	i2c_del_adapter(&state->tuner_i2c_adapter);
825 	kfree(state);
826 }
827 
828 static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter)
829 {
830 	return I2C_FUNC_I2C;
831 }
832 
833 static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
834 {
835 	struct s5h1420_state *state = i2c_get_adapdata(i2c_adap);
836 	struct i2c_msg m[3];
837 	u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */
838 
839 	if (1 + num > ARRAY_SIZE(m)) {
840 		printk(KERN_WARNING
841 		       "%s: i2c xfer: num=%d is too big!\n",
842 		       KBUILD_MODNAME, num);
843 		return  -EOPNOTSUPP;
844 	}
845 
846 	memset(m, 0, sizeof(struct i2c_msg) * (1 + num));
847 
848 	m[0].addr = state->config->demod_address;
849 	m[0].buf  = tx_open;
850 	m[0].len  = 2;
851 
852 	memcpy(&m[1], msg, sizeof(struct i2c_msg) * num);
853 
854 	return i2c_transfer(state->i2c, m, 1 + num) == 1 + num ? num : -EIO;
855 }
856 
857 static const struct i2c_algorithm s5h1420_tuner_i2c_algo = {
858 	.master_xfer   = s5h1420_tuner_i2c_tuner_xfer,
859 	.functionality = s5h1420_tuner_i2c_func,
860 };
861 
862 struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe)
863 {
864 	struct s5h1420_state *state = fe->demodulator_priv;
865 	return &state->tuner_i2c_adapter;
866 }
867 EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter);
868 
869 static const struct dvb_frontend_ops s5h1420_ops;
870 
871 struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config,
872 				    struct i2c_adapter *i2c)
873 {
874 	/* allocate memory for the internal state */
875 	struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
876 	u8 i;
877 
878 	if (state == NULL)
879 		goto error;
880 
881 	/* setup the state */
882 	state->config = config;
883 	state->i2c = i2c;
884 	state->postlocked = 0;
885 	state->fclk = 88000000;
886 	state->tunedfreq = 0;
887 	state->fec_inner = FEC_NONE;
888 	state->symbol_rate = 0;
889 
890 	/* check if the demod is there + identify it */
891 	i = s5h1420_readreg(state, ID01);
892 	if (i != 0x03)
893 		goto error;
894 
895 	memset(state->shadow, 0xff, sizeof(state->shadow));
896 
897 	for (i = 0; i < 0x50; i++)
898 		state->shadow[i] = s5h1420_readreg(state, i);
899 
900 	/* create dvb_frontend */
901 	memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
902 	state->frontend.demodulator_priv = state;
903 
904 	/* create tuner i2c adapter */
905 	strscpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus",
906 		sizeof(state->tuner_i2c_adapter.name));
907 	state->tuner_i2c_adapter.algo      = &s5h1420_tuner_i2c_algo;
908 	state->tuner_i2c_adapter.algo_data = NULL;
909 	i2c_set_adapdata(&state->tuner_i2c_adapter, state);
910 	if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
911 		printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n");
912 		goto error;
913 	}
914 
915 	return &state->frontend;
916 
917 error:
918 	kfree(state);
919 	return NULL;
920 }
921 EXPORT_SYMBOL_GPL(s5h1420_attach);
922 
923 static const struct dvb_frontend_ops s5h1420_ops = {
924 	.delsys = { SYS_DVBS },
925 	.info = {
926 		.name     = "Samsung S5H1420/PnpNetwork PN1010 DVB-S",
927 		.frequency_min_hz    =  950 * MHz,
928 		.frequency_max_hz    = 2150 * MHz,
929 		.frequency_stepsize_hz = 125 * kHz,
930 		.frequency_tolerance_hz  = 29500 * kHz,
931 		.symbol_rate_min  = 1000000,
932 		.symbol_rate_max  = 45000000,
933 		/*  .symbol_rate_tolerance  = ???,*/
934 		.caps = FE_CAN_INVERSION_AUTO |
935 		FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
936 		FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
937 		FE_CAN_QPSK
938 	},
939 
940 	.release = s5h1420_release,
941 
942 	.init = s5h1420_init,
943 	.sleep = s5h1420_sleep,
944 	.i2c_gate_ctrl = s5h1420_i2c_gate_ctrl,
945 
946 	.set_frontend = s5h1420_set_frontend,
947 	.get_frontend = s5h1420_get_frontend,
948 	.get_tune_settings = s5h1420_get_tune_settings,
949 
950 	.read_status = s5h1420_read_status,
951 	.read_ber = s5h1420_read_ber,
952 	.read_signal_strength = s5h1420_read_signal_strength,
953 	.read_ucblocks = s5h1420_read_ucblocks,
954 
955 	.diseqc_send_master_cmd = s5h1420_send_master_cmd,
956 	.diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
957 	.diseqc_send_burst = s5h1420_send_burst,
958 	.set_tone = s5h1420_set_tone,
959 	.set_voltage = s5h1420_set_voltage,
960 };
961 
962 MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver");
963 MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher");
964 MODULE_LICENSE("GPL");
965