1 /* 2 NxtWave Communications - NXT6000 demodulator driver 3 4 Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org> 5 Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/init.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/string.h> 26 #include <linux/slab.h> 27 28 #include "dvb_frontend.h" 29 #include "nxt6000_priv.h" 30 #include "nxt6000.h" 31 32 33 34 struct nxt6000_state { 35 struct i2c_adapter* i2c; 36 /* configuration settings */ 37 const struct nxt6000_config* config; 38 struct dvb_frontend frontend; 39 }; 40 41 static int debug; 42 #define dprintk if (debug) printk 43 44 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data) 45 { 46 u8 buf[] = { reg, data }; 47 struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 }; 48 int ret; 49 50 if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1) 51 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret); 52 53 return (ret != 1) ? -EIO : 0; 54 } 55 56 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg) 57 { 58 int ret; 59 u8 b0[] = { reg }; 60 u8 b1[] = { 0 }; 61 struct i2c_msg msgs[] = { 62 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1}, 63 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1} 64 }; 65 66 ret = i2c_transfer(state->i2c, msgs, 2); 67 68 if (ret != 2) 69 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret); 70 71 return b1[0]; 72 } 73 74 static void nxt6000_reset(struct nxt6000_state* state) 75 { 76 u8 val; 77 78 val = nxt6000_readreg(state, OFDM_COR_CTL); 79 80 nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT); 81 nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT); 82 } 83 84 static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth) 85 { 86 u16 nominal_rate; 87 int result; 88 89 switch (bandwidth) { 90 case 6000000: 91 nominal_rate = 0x55B7; 92 break; 93 94 case 7000000: 95 nominal_rate = 0x6400; 96 break; 97 98 case 8000000: 99 nominal_rate = 0x7249; 100 break; 101 102 default: 103 return -EINVAL; 104 } 105 106 if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0) 107 return result; 108 109 return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF); 110 } 111 112 static int nxt6000_set_guard_interval(struct nxt6000_state *state, 113 enum fe_guard_interval guard_interval) 114 { 115 switch (guard_interval) { 116 117 case GUARD_INTERVAL_1_32: 118 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03)); 119 120 case GUARD_INTERVAL_1_16: 121 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03)); 122 123 case GUARD_INTERVAL_AUTO: 124 case GUARD_INTERVAL_1_8: 125 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03)); 126 127 case GUARD_INTERVAL_1_4: 128 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03)); 129 130 default: 131 return -EINVAL; 132 } 133 } 134 135 static int nxt6000_set_inversion(struct nxt6000_state *state, 136 enum fe_spectral_inversion inversion) 137 { 138 switch (inversion) { 139 140 case INVERSION_OFF: 141 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00); 142 143 case INVERSION_ON: 144 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV); 145 146 default: 147 return -EINVAL; 148 149 } 150 } 151 152 static int 153 nxt6000_set_transmission_mode(struct nxt6000_state *state, 154 enum fe_transmit_mode transmission_mode) 155 { 156 int result; 157 158 switch (transmission_mode) { 159 160 case TRANSMISSION_MODE_2K: 161 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0) 162 return result; 163 164 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04)); 165 166 case TRANSMISSION_MODE_8K: 167 case TRANSMISSION_MODE_AUTO: 168 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0) 169 return result; 170 171 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04)); 172 173 default: 174 return -EINVAL; 175 176 } 177 } 178 179 static void nxt6000_setup(struct dvb_frontend* fe) 180 { 181 struct nxt6000_state* state = fe->demodulator_priv; 182 183 nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM); 184 nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01); 185 nxt6000_writereg(state, VIT_BERTIME_2, 0x00); // BER Timer = 0x000200 * 256 = 131072 bits 186 nxt6000_writereg(state, VIT_BERTIME_1, 0x02); // 187 nxt6000_writereg(state, VIT_BERTIME_0, 0x00); // 188 nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts 189 nxt6000_writereg(state, VIT_COR_CTL, 0x82); // Enable BER measurement 190 nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 ); 191 nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F)); 192 nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02); 193 nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW); 194 nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06); 195 nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31); 196 nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04); 197 nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */ 198 nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2); 199 nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256); 200 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49); 201 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72); 202 nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5); 203 nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2); 204 nxt6000_writereg(state, DIAG_CONFIG, TB_SET); 205 206 if (state->config->clock_inversion) 207 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION); 208 else 209 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0); 210 211 nxt6000_writereg(state, TS_FORMAT, 0); 212 } 213 214 static void nxt6000_dump_status(struct nxt6000_state *state) 215 { 216 u8 val; 217 218 /* 219 printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT)); 220 printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS)); 221 printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT)); 222 printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT)); 223 printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1)); 224 printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2)); 225 printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3)); 226 printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4)); 227 printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1)); 228 printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2)); 229 */ 230 printk("NXT6000 status:"); 231 232 val = nxt6000_readreg(state, RS_COR_STAT); 233 234 printk(" DATA DESCR LOCK: %d,", val & 0x01); 235 printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01); 236 237 val = nxt6000_readreg(state, VIT_SYNC_STATUS); 238 239 printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01); 240 241 switch ((val >> 4) & 0x07) { 242 243 case 0x00: 244 printk(" VITERBI CODERATE: 1/2,"); 245 break; 246 247 case 0x01: 248 printk(" VITERBI CODERATE: 2/3,"); 249 break; 250 251 case 0x02: 252 printk(" VITERBI CODERATE: 3/4,"); 253 break; 254 255 case 0x03: 256 printk(" VITERBI CODERATE: 5/6,"); 257 break; 258 259 case 0x04: 260 printk(" VITERBI CODERATE: 7/8,"); 261 break; 262 263 default: 264 printk(" VITERBI CODERATE: Reserved,"); 265 266 } 267 268 val = nxt6000_readreg(state, OFDM_COR_STAT); 269 270 printk(" CHCTrack: %d,", (val >> 7) & 0x01); 271 printk(" TPSLock: %d,", (val >> 6) & 0x01); 272 printk(" SYRLock: %d,", (val >> 5) & 0x01); 273 printk(" AGCLock: %d,", (val >> 4) & 0x01); 274 275 switch (val & 0x0F) { 276 277 case 0x00: 278 printk(" CoreState: IDLE,"); 279 break; 280 281 case 0x02: 282 printk(" CoreState: WAIT_AGC,"); 283 break; 284 285 case 0x03: 286 printk(" CoreState: WAIT_SYR,"); 287 break; 288 289 case 0x04: 290 printk(" CoreState: WAIT_PPM,"); 291 break; 292 293 case 0x01: 294 printk(" CoreState: WAIT_TRL,"); 295 break; 296 297 case 0x05: 298 printk(" CoreState: WAIT_TPS,"); 299 break; 300 301 case 0x06: 302 printk(" CoreState: MONITOR_TPS,"); 303 break; 304 305 default: 306 printk(" CoreState: Reserved,"); 307 308 } 309 310 val = nxt6000_readreg(state, OFDM_SYR_STAT); 311 312 printk(" SYRLock: %d,", (val >> 4) & 0x01); 313 printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K"); 314 315 switch ((val >> 4) & 0x03) { 316 317 case 0x00: 318 printk(" SYRGuard: 1/32,"); 319 break; 320 321 case 0x01: 322 printk(" SYRGuard: 1/16,"); 323 break; 324 325 case 0x02: 326 printk(" SYRGuard: 1/8,"); 327 break; 328 329 case 0x03: 330 printk(" SYRGuard: 1/4,"); 331 break; 332 } 333 334 val = nxt6000_readreg(state, OFDM_TPS_RCVD_3); 335 336 switch ((val >> 4) & 0x07) { 337 338 case 0x00: 339 printk(" TPSLP: 1/2,"); 340 break; 341 342 case 0x01: 343 printk(" TPSLP: 2/3,"); 344 break; 345 346 case 0x02: 347 printk(" TPSLP: 3/4,"); 348 break; 349 350 case 0x03: 351 printk(" TPSLP: 5/6,"); 352 break; 353 354 case 0x04: 355 printk(" TPSLP: 7/8,"); 356 break; 357 358 default: 359 printk(" TPSLP: Reserved,"); 360 361 } 362 363 switch (val & 0x07) { 364 365 case 0x00: 366 printk(" TPSHP: 1/2,"); 367 break; 368 369 case 0x01: 370 printk(" TPSHP: 2/3,"); 371 break; 372 373 case 0x02: 374 printk(" TPSHP: 3/4,"); 375 break; 376 377 case 0x03: 378 printk(" TPSHP: 5/6,"); 379 break; 380 381 case 0x04: 382 printk(" TPSHP: 7/8,"); 383 break; 384 385 default: 386 printk(" TPSHP: Reserved,"); 387 388 } 389 390 val = nxt6000_readreg(state, OFDM_TPS_RCVD_4); 391 392 printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K"); 393 394 switch ((val >> 4) & 0x03) { 395 396 case 0x00: 397 printk(" TPSGuard: 1/32,"); 398 break; 399 400 case 0x01: 401 printk(" TPSGuard: 1/16,"); 402 break; 403 404 case 0x02: 405 printk(" TPSGuard: 1/8,"); 406 break; 407 408 case 0x03: 409 printk(" TPSGuard: 1/4,"); 410 break; 411 412 } 413 414 /* Strange magic required to gain access to RF_AGC_STATUS */ 415 nxt6000_readreg(state, RF_AGC_VAL_1); 416 val = nxt6000_readreg(state, RF_AGC_STATUS); 417 val = nxt6000_readreg(state, RF_AGC_STATUS); 418 419 printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01); 420 printk("\n"); 421 } 422 423 static int nxt6000_read_status(struct dvb_frontend *fe, enum fe_status *status) 424 { 425 u8 core_status; 426 struct nxt6000_state* state = fe->demodulator_priv; 427 428 *status = 0; 429 430 core_status = nxt6000_readreg(state, OFDM_COR_STAT); 431 432 if (core_status & AGCLOCKED) 433 *status |= FE_HAS_SIGNAL; 434 435 if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK) 436 *status |= FE_HAS_CARRIER; 437 438 if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC) 439 *status |= FE_HAS_VITERBI; 440 441 if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS) 442 *status |= FE_HAS_SYNC; 443 444 if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC))) 445 *status |= FE_HAS_LOCK; 446 447 if (debug) 448 nxt6000_dump_status(state); 449 450 return 0; 451 } 452 453 static int nxt6000_init(struct dvb_frontend* fe) 454 { 455 struct nxt6000_state* state = fe->demodulator_priv; 456 457 nxt6000_reset(state); 458 nxt6000_setup(fe); 459 460 return 0; 461 } 462 463 static int nxt6000_set_frontend(struct dvb_frontend *fe) 464 { 465 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 466 struct nxt6000_state* state = fe->demodulator_priv; 467 int result; 468 469 if (fe->ops.tuner_ops.set_params) { 470 fe->ops.tuner_ops.set_params(fe); 471 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); 472 } 473 474 result = nxt6000_set_bandwidth(state, p->bandwidth_hz); 475 if (result < 0) 476 return result; 477 478 result = nxt6000_set_guard_interval(state, p->guard_interval); 479 if (result < 0) 480 return result; 481 482 result = nxt6000_set_transmission_mode(state, p->transmission_mode); 483 if (result < 0) 484 return result; 485 486 result = nxt6000_set_inversion(state, p->inversion); 487 if (result < 0) 488 return result; 489 490 msleep(500); 491 return 0; 492 } 493 494 static void nxt6000_release(struct dvb_frontend* fe) 495 { 496 struct nxt6000_state* state = fe->demodulator_priv; 497 kfree(state); 498 } 499 500 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr) 501 { 502 struct nxt6000_state* state = fe->demodulator_priv; 503 504 *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8; 505 506 return 0; 507 } 508 509 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber) 510 { 511 struct nxt6000_state* state = fe->demodulator_priv; 512 513 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 ); 514 515 *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) | 516 nxt6000_readreg( state, VIT_BER_0 ); 517 518 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts 519 520 return 0; 521 } 522 523 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength) 524 { 525 struct nxt6000_state* state = fe->demodulator_priv; 526 527 *signal_strength = (short) (511 - 528 (nxt6000_readreg(state, AGC_GAIN_1) + 529 ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8))); 530 531 return 0; 532 } 533 534 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) 535 { 536 tune->min_delay_ms = 500; 537 return 0; 538 } 539 540 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) 541 { 542 struct nxt6000_state* state = fe->demodulator_priv; 543 544 if (enable) { 545 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01); 546 } else { 547 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00); 548 } 549 } 550 551 static struct dvb_frontend_ops nxt6000_ops; 552 553 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config, 554 struct i2c_adapter* i2c) 555 { 556 struct nxt6000_state* state = NULL; 557 558 /* allocate memory for the internal state */ 559 state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL); 560 if (state == NULL) goto error; 561 562 /* setup the state */ 563 state->config = config; 564 state->i2c = i2c; 565 566 /* check if the demod is there */ 567 if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error; 568 569 /* create dvb_frontend */ 570 memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops)); 571 state->frontend.demodulator_priv = state; 572 return &state->frontend; 573 574 error: 575 kfree(state); 576 return NULL; 577 } 578 579 static struct dvb_frontend_ops nxt6000_ops = { 580 .delsys = { SYS_DVBT }, 581 .info = { 582 .name = "NxtWave NXT6000 DVB-T", 583 .frequency_min = 0, 584 .frequency_max = 863250000, 585 .frequency_stepsize = 62500, 586 /*.frequency_tolerance = *//* FIXME: 12% of SR */ 587 .symbol_rate_min = 0, /* FIXME */ 588 .symbol_rate_max = 9360000, /* FIXME */ 589 .symbol_rate_tolerance = 4000, 590 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 591 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | 592 FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO | 593 FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | 594 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | 595 FE_CAN_HIERARCHY_AUTO, 596 }, 597 598 .release = nxt6000_release, 599 600 .init = nxt6000_init, 601 .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl, 602 603 .get_tune_settings = nxt6000_fe_get_tune_settings, 604 605 .set_frontend = nxt6000_set_frontend, 606 607 .read_status = nxt6000_read_status, 608 .read_ber = nxt6000_read_ber, 609 .read_signal_strength = nxt6000_read_signal_strength, 610 .read_snr = nxt6000_read_snr, 611 }; 612 613 module_param(debug, int, 0644); 614 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); 615 616 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver"); 617 MODULE_AUTHOR("Florian Schirmer"); 618 MODULE_LICENSE("GPL"); 619 620 EXPORT_SYMBOL(nxt6000_attach); 621