xref: /linux/drivers/media/dvb-frontends/nxt6000.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 	NxtWave Communications - NXT6000 demodulator driver
4 
5     Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
6     Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
7 
8 */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 
18 #include <media/dvb_frontend.h>
19 #include "nxt6000_priv.h"
20 #include "nxt6000.h"
21 
22 
23 
24 struct nxt6000_state {
25 	struct i2c_adapter* i2c;
26 	/* configuration settings */
27 	const struct nxt6000_config* config;
28 	struct dvb_frontend frontend;
29 };
30 
31 static int debug;
32 #define dprintk(fmt, arg...) do {					\
33 	if (debug)							\
34 		printk(KERN_DEBUG pr_fmt("%s: " fmt),			\
35 		       __func__, ##arg);				\
36 } while (0)
37 
38 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
39 {
40 	u8 buf[] = { reg, data };
41 	struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
42 	int ret;
43 
44 	if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
45 		dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
46 
47 	return (ret != 1) ? -EIO : 0;
48 }
49 
50 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
51 {
52 	int ret;
53 	u8 b0[] = { reg };
54 	u8 b1[] = { 0 };
55 	struct i2c_msg msgs[] = {
56 		{.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
57 		{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
58 	};
59 
60 	ret = i2c_transfer(state->i2c, msgs, 2);
61 
62 	if (ret != 2)
63 		dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
64 
65 	return b1[0];
66 }
67 
68 static void nxt6000_reset(struct nxt6000_state* state)
69 {
70 	u8 val;
71 
72 	val = nxt6000_readreg(state, OFDM_COR_CTL);
73 
74 	nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
75 	nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
76 }
77 
78 static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth)
79 {
80 	u16 nominal_rate;
81 	int result;
82 
83 	switch (bandwidth) {
84 	case 6000000:
85 		nominal_rate = 0x55B7;
86 		break;
87 
88 	case 7000000:
89 		nominal_rate = 0x6400;
90 		break;
91 
92 	case 8000000:
93 		nominal_rate = 0x7249;
94 		break;
95 
96 	default:
97 		return -EINVAL;
98 	}
99 
100 	if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
101 		return result;
102 
103 	return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
104 }
105 
106 static int nxt6000_set_guard_interval(struct nxt6000_state *state,
107 				      enum fe_guard_interval guard_interval)
108 {
109 	switch (guard_interval) {
110 
111 	case GUARD_INTERVAL_1_32:
112 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
113 
114 	case GUARD_INTERVAL_1_16:
115 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
116 
117 	case GUARD_INTERVAL_AUTO:
118 	case GUARD_INTERVAL_1_8:
119 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
120 
121 	case GUARD_INTERVAL_1_4:
122 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
123 
124 	default:
125 		return -EINVAL;
126 	}
127 }
128 
129 static int nxt6000_set_inversion(struct nxt6000_state *state,
130 				 enum fe_spectral_inversion inversion)
131 {
132 	switch (inversion) {
133 
134 	case INVERSION_OFF:
135 		return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
136 
137 	case INVERSION_ON:
138 		return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
139 
140 	default:
141 		return -EINVAL;
142 
143 	}
144 }
145 
146 static int
147 nxt6000_set_transmission_mode(struct nxt6000_state *state,
148 			      enum fe_transmit_mode transmission_mode)
149 {
150 	int result;
151 
152 	switch (transmission_mode) {
153 
154 	case TRANSMISSION_MODE_2K:
155 		if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
156 			return result;
157 
158 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
159 
160 	case TRANSMISSION_MODE_8K:
161 	case TRANSMISSION_MODE_AUTO:
162 		if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
163 			return result;
164 
165 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
166 
167 	default:
168 		return -EINVAL;
169 
170 	}
171 }
172 
173 static void nxt6000_setup(struct dvb_frontend* fe)
174 {
175 	struct nxt6000_state* state = fe->demodulator_priv;
176 
177 	nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
178 	nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
179 	nxt6000_writereg(state, VIT_BERTIME_2, 0x00);  // BER Timer = 0x000200 * 256 = 131072 bits
180 	nxt6000_writereg(state, VIT_BERTIME_1, 0x02);  //
181 	nxt6000_writereg(state, VIT_BERTIME_0, 0x00);  //
182 	nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
183 	nxt6000_writereg(state, VIT_COR_CTL, 0x82);   // Enable BER measurement
184 	nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
185 	nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
186 	nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
187 	nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
188 	nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
189 	nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
190 	nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
191 	nxt6000_writereg(state, CAS_FREQ, 0xBB);	/* CHECKME */
192 	nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
193 	nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
194 	nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
195 	nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
196 	nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
197 	nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
198 	nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
199 
200 	if (state->config->clock_inversion)
201 		nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
202 	else
203 		nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
204 
205 	nxt6000_writereg(state, TS_FORMAT, 0);
206 }
207 
208 static void nxt6000_dump_status(struct nxt6000_state *state)
209 {
210 	u8 val;
211 
212 #if 0
213 	pr_info("RS_COR_STAT: 0x%02X\n",
214 		nxt6000_readreg(fe, RS_COR_STAT));
215 	pr_info("VIT_SYNC_STATUS: 0x%02X\n",
216 		nxt6000_readreg(fe, VIT_SYNC_STATUS));
217 	pr_info("OFDM_COR_STAT: 0x%02X\n",
218 		nxt6000_readreg(fe, OFDM_COR_STAT));
219 	pr_info("OFDM_SYR_STAT: 0x%02X\n",
220 		nxt6000_readreg(fe, OFDM_SYR_STAT));
221 	pr_info("OFDM_TPS_RCVD_1: 0x%02X\n",
222 		nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
223 	pr_info("OFDM_TPS_RCVD_2: 0x%02X\n",
224 		nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
225 	pr_info("OFDM_TPS_RCVD_3: 0x%02X\n",
226 		nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
227 	pr_info("OFDM_TPS_RCVD_4: 0x%02X\n",
228 		nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
229 	pr_info("OFDM_TPS_RESERVED_1: 0x%02X\n",
230 		nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
231 	pr_info("OFDM_TPS_RESERVED_2: 0x%02X\n",
232 		nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
233 #endif
234 	pr_info("NXT6000 status:");
235 
236 	val = nxt6000_readreg(state, RS_COR_STAT);
237 
238 	pr_cont(" DATA DESCR LOCK: %d,", val & 0x01);
239 	pr_cont(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
240 
241 	val = nxt6000_readreg(state, VIT_SYNC_STATUS);
242 
243 	pr_cont(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
244 
245 	switch ((val >> 4) & 0x07) {
246 
247 	case 0x00:
248 		pr_cont(" VITERBI CODERATE: 1/2,");
249 		break;
250 
251 	case 0x01:
252 		pr_cont(" VITERBI CODERATE: 2/3,");
253 		break;
254 
255 	case 0x02:
256 		pr_cont(" VITERBI CODERATE: 3/4,");
257 		break;
258 
259 	case 0x03:
260 		pr_cont(" VITERBI CODERATE: 5/6,");
261 		break;
262 
263 	case 0x04:
264 		pr_cont(" VITERBI CODERATE: 7/8,");
265 		break;
266 
267 	default:
268 		pr_cont(" VITERBI CODERATE: Reserved,");
269 
270 	}
271 
272 	val = nxt6000_readreg(state, OFDM_COR_STAT);
273 
274 	pr_cont(" CHCTrack: %d,", (val >> 7) & 0x01);
275 	pr_cont(" TPSLock: %d,", (val >> 6) & 0x01);
276 	pr_cont(" SYRLock: %d,", (val >> 5) & 0x01);
277 	pr_cont(" AGCLock: %d,", (val >> 4) & 0x01);
278 
279 	switch (val & 0x0F) {
280 
281 	case 0x00:
282 		pr_cont(" CoreState: IDLE,");
283 		break;
284 
285 	case 0x02:
286 		pr_cont(" CoreState: WAIT_AGC,");
287 		break;
288 
289 	case 0x03:
290 		pr_cont(" CoreState: WAIT_SYR,");
291 		break;
292 
293 	case 0x04:
294 		pr_cont(" CoreState: WAIT_PPM,");
295 		break;
296 
297 	case 0x01:
298 		pr_cont(" CoreState: WAIT_TRL,");
299 		break;
300 
301 	case 0x05:
302 		pr_cont(" CoreState: WAIT_TPS,");
303 		break;
304 
305 	case 0x06:
306 		pr_cont(" CoreState: MONITOR_TPS,");
307 		break;
308 
309 	default:
310 		pr_cont(" CoreState: Reserved,");
311 
312 	}
313 
314 	val = nxt6000_readreg(state, OFDM_SYR_STAT);
315 
316 	pr_cont(" SYRLock: %d,", (val >> 4) & 0x01);
317 	pr_cont(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
318 
319 	switch ((val >> 4) & 0x03) {
320 
321 	case 0x00:
322 		pr_cont(" SYRGuard: 1/32,");
323 		break;
324 
325 	case 0x01:
326 		pr_cont(" SYRGuard: 1/16,");
327 		break;
328 
329 	case 0x02:
330 		pr_cont(" SYRGuard: 1/8,");
331 		break;
332 
333 	case 0x03:
334 		pr_cont(" SYRGuard: 1/4,");
335 		break;
336 	}
337 
338 	val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
339 
340 	switch ((val >> 4) & 0x07) {
341 
342 	case 0x00:
343 		pr_cont(" TPSLP: 1/2,");
344 		break;
345 
346 	case 0x01:
347 		pr_cont(" TPSLP: 2/3,");
348 		break;
349 
350 	case 0x02:
351 		pr_cont(" TPSLP: 3/4,");
352 		break;
353 
354 	case 0x03:
355 		pr_cont(" TPSLP: 5/6,");
356 		break;
357 
358 	case 0x04:
359 		pr_cont(" TPSLP: 7/8,");
360 		break;
361 
362 	default:
363 		pr_cont(" TPSLP: Reserved,");
364 
365 	}
366 
367 	switch (val & 0x07) {
368 
369 	case 0x00:
370 		pr_cont(" TPSHP: 1/2,");
371 		break;
372 
373 	case 0x01:
374 		pr_cont(" TPSHP: 2/3,");
375 		break;
376 
377 	case 0x02:
378 		pr_cont(" TPSHP: 3/4,");
379 		break;
380 
381 	case 0x03:
382 		pr_cont(" TPSHP: 5/6,");
383 		break;
384 
385 	case 0x04:
386 		pr_cont(" TPSHP: 7/8,");
387 		break;
388 
389 	default:
390 		pr_cont(" TPSHP: Reserved,");
391 
392 	}
393 
394 	val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
395 
396 	pr_cont(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
397 
398 	switch ((val >> 4) & 0x03) {
399 
400 	case 0x00:
401 		pr_cont(" TPSGuard: 1/32,");
402 		break;
403 
404 	case 0x01:
405 		pr_cont(" TPSGuard: 1/16,");
406 		break;
407 
408 	case 0x02:
409 		pr_cont(" TPSGuard: 1/8,");
410 		break;
411 
412 	case 0x03:
413 		pr_cont(" TPSGuard: 1/4,");
414 		break;
415 
416 	}
417 
418 	/* Strange magic required to gain access to RF_AGC_STATUS */
419 	nxt6000_readreg(state, RF_AGC_VAL_1);
420 	val = nxt6000_readreg(state, RF_AGC_STATUS);
421 	val = nxt6000_readreg(state, RF_AGC_STATUS);
422 
423 	pr_cont(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
424 	pr_cont("\n");
425 }
426 
427 static int nxt6000_read_status(struct dvb_frontend *fe, enum fe_status *status)
428 {
429 	u8 core_status;
430 	struct nxt6000_state* state = fe->demodulator_priv;
431 
432 	*status = 0;
433 
434 	core_status = nxt6000_readreg(state, OFDM_COR_STAT);
435 
436 	if (core_status & AGCLOCKED)
437 		*status |= FE_HAS_SIGNAL;
438 
439 	if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
440 		*status |= FE_HAS_CARRIER;
441 
442 	if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
443 		*status |= FE_HAS_VITERBI;
444 
445 	if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
446 		*status |= FE_HAS_SYNC;
447 
448 	if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
449 		*status |= FE_HAS_LOCK;
450 
451 	if (debug)
452 		nxt6000_dump_status(state);
453 
454 	return 0;
455 }
456 
457 static int nxt6000_init(struct dvb_frontend* fe)
458 {
459 	struct nxt6000_state* state = fe->demodulator_priv;
460 
461 	nxt6000_reset(state);
462 	nxt6000_setup(fe);
463 
464 	return 0;
465 }
466 
467 static int nxt6000_set_frontend(struct dvb_frontend *fe)
468 {
469 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
470 	struct nxt6000_state* state = fe->demodulator_priv;
471 	int result;
472 
473 	if (fe->ops.tuner_ops.set_params) {
474 		fe->ops.tuner_ops.set_params(fe);
475 		if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
476 	}
477 
478 	result = nxt6000_set_bandwidth(state, p->bandwidth_hz);
479 	if (result < 0)
480 		return result;
481 
482 	result = nxt6000_set_guard_interval(state, p->guard_interval);
483 	if (result < 0)
484 		return result;
485 
486 	result = nxt6000_set_transmission_mode(state, p->transmission_mode);
487 	if (result < 0)
488 		return result;
489 
490 	result = nxt6000_set_inversion(state, p->inversion);
491 	if (result < 0)
492 		return result;
493 
494 	msleep(500);
495 	return 0;
496 }
497 
498 static void nxt6000_release(struct dvb_frontend* fe)
499 {
500 	struct nxt6000_state* state = fe->demodulator_priv;
501 	kfree(state);
502 }
503 
504 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
505 {
506 	struct nxt6000_state* state = fe->demodulator_priv;
507 
508 	*snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
509 
510 	return 0;
511 }
512 
513 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
514 {
515 	struct nxt6000_state* state = fe->demodulator_priv;
516 
517 	nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
518 
519 	*ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
520 		nxt6000_readreg( state, VIT_BER_0 );
521 
522 	nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
523 
524 	return 0;
525 }
526 
527 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
528 {
529 	struct nxt6000_state* state = fe->demodulator_priv;
530 
531 	*signal_strength = (short) (511 -
532 		(nxt6000_readreg(state, AGC_GAIN_1) +
533 		((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
534 
535 	return 0;
536 }
537 
538 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
539 {
540 	tune->min_delay_ms = 500;
541 	return 0;
542 }
543 
544 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
545 {
546 	struct nxt6000_state* state = fe->demodulator_priv;
547 
548 	if (enable) {
549 		return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
550 	} else {
551 		return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
552 	}
553 }
554 
555 static const struct dvb_frontend_ops nxt6000_ops;
556 
557 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
558 				    struct i2c_adapter* i2c)
559 {
560 	struct nxt6000_state* state = NULL;
561 
562 	/* allocate memory for the internal state */
563 	state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
564 	if (state == NULL) goto error;
565 
566 	/* setup the state */
567 	state->config = config;
568 	state->i2c = i2c;
569 
570 	/* check if the demod is there */
571 	if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
572 
573 	/* create dvb_frontend */
574 	memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
575 	state->frontend.demodulator_priv = state;
576 	return &state->frontend;
577 
578 error:
579 	kfree(state);
580 	return NULL;
581 }
582 
583 static const struct dvb_frontend_ops nxt6000_ops = {
584 	.delsys = { SYS_DVBT },
585 	.info = {
586 		.name = "NxtWave NXT6000 DVB-T",
587 		.frequency_min_hz = 0,
588 		.frequency_max_hz = 863250 * kHz,
589 		.frequency_stepsize_hz = 62500,
590 		/*.frequency_tolerance = *//* FIXME: 12% of SR */
591 		.symbol_rate_min = 0,	/* FIXME */
592 		.symbol_rate_max = 9360000,	/* FIXME */
593 		.symbol_rate_tolerance = 4000,
594 		.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
595 			FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
596 			FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
597 			FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
598 			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
599 			FE_CAN_HIERARCHY_AUTO,
600 	},
601 
602 	.release = nxt6000_release,
603 
604 	.init = nxt6000_init,
605 	.i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
606 
607 	.get_tune_settings = nxt6000_fe_get_tune_settings,
608 
609 	.set_frontend = nxt6000_set_frontend,
610 
611 	.read_status = nxt6000_read_status,
612 	.read_ber = nxt6000_read_ber,
613 	.read_signal_strength = nxt6000_read_signal_strength,
614 	.read_snr = nxt6000_read_snr,
615 };
616 
617 module_param(debug, int, 0644);
618 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
619 
620 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
621 MODULE_AUTHOR("Florian Schirmer");
622 MODULE_LICENSE("GPL");
623 
624 EXPORT_SYMBOL(nxt6000_attach);
625