xref: /linux/drivers/media/dvb-frontends/mxl5xx.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for the MaxLinear MxL5xx family of tuners/demods
4  *
5  * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6  *                         Marcus Metzler <mocm@metzlerbros.de>
7  *                         developed for Digital Devices GmbH
8  *
9  * based on code:
10  * Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved
11  * which was released under GPL V2
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * version 2, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/firmware.h>
29 #include <linux/i2c.h>
30 #include <linux/mutex.h>
31 #include <linux/vmalloc.h>
32 #include <asm/div64.h>
33 #include <asm/unaligned.h>
34 
35 #include <media/dvb_frontend.h>
36 #include "mxl5xx.h"
37 #include "mxl5xx_regs.h"
38 #include "mxl5xx_defs.h"
39 
40 #define BYTE0(v) ((v >>  0) & 0xff)
41 #define BYTE1(v) ((v >>  8) & 0xff)
42 #define BYTE2(v) ((v >> 16) & 0xff)
43 #define BYTE3(v) ((v >> 24) & 0xff)
44 
45 static LIST_HEAD(mxllist);
46 
47 struct mxl_base {
48 	struct list_head     mxllist;
49 	struct list_head     mxls;
50 
51 	u8                   adr;
52 	struct i2c_adapter  *i2c;
53 
54 	u32                  count;
55 	u32                  type;
56 	u32                  sku_type;
57 	u32                  chipversion;
58 	u32                  clock;
59 	u32                  fwversion;
60 
61 	u8                  *ts_map;
62 	u8                   can_clkout;
63 	u8                   chan_bond;
64 	u8                   demod_num;
65 	u8                   tuner_num;
66 
67 	unsigned long        next_tune;
68 
69 	struct mutex         i2c_lock;
70 	struct mutex         status_lock;
71 	struct mutex         tune_lock;
72 
73 	u8                   buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
74 
75 	u32                  cmd_size;
76 	u8                   cmd_data[MAX_CMD_DATA];
77 };
78 
79 struct mxl {
80 	struct list_head     mxl;
81 
82 	struct mxl_base     *base;
83 	struct dvb_frontend  fe;
84 	struct device       *i2cdev;
85 	u32                  demod;
86 	u32                  tuner;
87 	u32                  tuner_in_use;
88 	u8                   xbar[3];
89 
90 	unsigned long        tune_time;
91 };
92 
93 static void convert_endian(u8 flag, u32 size, u8 *d)
94 {
95 	u32 i;
96 
97 	if (!flag)
98 		return;
99 	for (i = 0; i < (size & ~3); i += 4) {
100 		d[i + 0] ^= d[i + 3];
101 		d[i + 3] ^= d[i + 0];
102 		d[i + 0] ^= d[i + 3];
103 
104 		d[i + 1] ^= d[i + 2];
105 		d[i + 2] ^= d[i + 1];
106 		d[i + 1] ^= d[i + 2];
107 	}
108 
109 	switch (size & 3) {
110 	case 0:
111 	case 1:
112 		/* do nothing */
113 		break;
114 	case 2:
115 		d[i + 0] ^= d[i + 1];
116 		d[i + 1] ^= d[i + 0];
117 		d[i + 0] ^= d[i + 1];
118 		break;
119 
120 	case 3:
121 		d[i + 0] ^= d[i + 2];
122 		d[i + 2] ^= d[i + 0];
123 		d[i + 0] ^= d[i + 2];
124 		break;
125 	}
126 
127 }
128 
129 static int i2c_write(struct i2c_adapter *adap, u8 adr,
130 			    u8 *data, u32 len)
131 {
132 	struct i2c_msg msg = {.addr = adr, .flags = 0,
133 			      .buf = data, .len = len};
134 
135 	return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
136 }
137 
138 static int i2c_read(struct i2c_adapter *adap, u8 adr,
139 			   u8 *data, u32 len)
140 {
141 	struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD,
142 			      .buf = data, .len = len};
143 
144 	return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
145 }
146 
147 static int i2cread(struct mxl *state, u8 *data, int len)
148 {
149 	return i2c_read(state->base->i2c, state->base->adr, data, len);
150 }
151 
152 static int i2cwrite(struct mxl *state, u8 *data, int len)
153 {
154 	return i2c_write(state->base->i2c, state->base->adr, data, len);
155 }
156 
157 static int read_register_unlocked(struct mxl *state, u32 reg, u32 *val)
158 {
159 	int stat;
160 	u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
161 		MXL_HYDRA_PLID_REG_READ, 0x04,
162 		GET_BYTE(reg, 0), GET_BYTE(reg, 1),
163 		GET_BYTE(reg, 2), GET_BYTE(reg, 3),
164 	};
165 
166 	stat = i2cwrite(state, data,
167 			MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
168 	if (stat)
169 		dev_err(state->i2cdev, "i2c read error 1\n");
170 	if (!stat)
171 		stat = i2cread(state, (u8 *) val,
172 			       MXL_HYDRA_REG_SIZE_IN_BYTES);
173 	le32_to_cpus(val);
174 	if (stat)
175 		dev_err(state->i2cdev, "i2c read error 2\n");
176 	return stat;
177 }
178 
179 #define DMA_I2C_INTERRUPT_ADDR 0x8000011C
180 #define DMA_INTR_PROT_WR_CMP 0x08
181 
182 static int send_command(struct mxl *state, u32 size, u8 *buf)
183 {
184 	int stat;
185 	u32 val, count = 10;
186 
187 	mutex_lock(&state->base->i2c_lock);
188 	if (state->base->fwversion > 0x02010109)  {
189 		read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val);
190 		if (DMA_INTR_PROT_WR_CMP & val)
191 			dev_info(state->i2cdev, "%s busy\n", __func__);
192 		while ((DMA_INTR_PROT_WR_CMP & val) && --count) {
193 			mutex_unlock(&state->base->i2c_lock);
194 			usleep_range(1000, 2000);
195 			mutex_lock(&state->base->i2c_lock);
196 			read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR,
197 					       &val);
198 		}
199 		if (!count) {
200 			dev_info(state->i2cdev, "%s busy\n", __func__);
201 			mutex_unlock(&state->base->i2c_lock);
202 			return -EBUSY;
203 		}
204 	}
205 	stat = i2cwrite(state, buf, size);
206 	mutex_unlock(&state->base->i2c_lock);
207 	return stat;
208 }
209 
210 static int write_register(struct mxl *state, u32 reg, u32 val)
211 {
212 	int stat;
213 	u8 data[MXL_HYDRA_REG_WRITE_LEN] = {
214 		MXL_HYDRA_PLID_REG_WRITE, 0x08,
215 		BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg),
216 		BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val),
217 	};
218 	mutex_lock(&state->base->i2c_lock);
219 	stat = i2cwrite(state, data, sizeof(data));
220 	mutex_unlock(&state->base->i2c_lock);
221 	if (stat)
222 		dev_err(state->i2cdev, "i2c write error\n");
223 	return stat;
224 }
225 
226 static int write_firmware_block(struct mxl *state,
227 				u32 reg, u32 size, u8 *reg_data_ptr)
228 {
229 	int stat;
230 	u8 *buf = state->base->buf;
231 
232 	mutex_lock(&state->base->i2c_lock);
233 	buf[0] = MXL_HYDRA_PLID_REG_WRITE;
234 	buf[1] = size + 4;
235 	buf[2] = GET_BYTE(reg, 0);
236 	buf[3] = GET_BYTE(reg, 1);
237 	buf[4] = GET_BYTE(reg, 2);
238 	buf[5] = GET_BYTE(reg, 3);
239 	memcpy(&buf[6], reg_data_ptr, size);
240 	stat = i2cwrite(state, buf,
241 			MXL_HYDRA_I2C_HDR_SIZE +
242 			MXL_HYDRA_REG_SIZE_IN_BYTES + size);
243 	mutex_unlock(&state->base->i2c_lock);
244 	if (stat)
245 		dev_err(state->i2cdev, "fw block write failed\n");
246 	return stat;
247 }
248 
249 static int read_register(struct mxl *state, u32 reg, u32 *val)
250 {
251 	int stat;
252 	u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
253 		MXL_HYDRA_PLID_REG_READ, 0x04,
254 		GET_BYTE(reg, 0), GET_BYTE(reg, 1),
255 		GET_BYTE(reg, 2), GET_BYTE(reg, 3),
256 	};
257 
258 	mutex_lock(&state->base->i2c_lock);
259 	stat = i2cwrite(state, data,
260 			MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
261 	if (stat)
262 		dev_err(state->i2cdev, "i2c read error 1\n");
263 	if (!stat)
264 		stat = i2cread(state, (u8 *) val,
265 			       MXL_HYDRA_REG_SIZE_IN_BYTES);
266 	mutex_unlock(&state->base->i2c_lock);
267 	le32_to_cpus(val);
268 	if (stat)
269 		dev_err(state->i2cdev, "i2c read error 2\n");
270 	return stat;
271 }
272 
273 static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data)
274 {
275 	int stat;
276 	u8 *buf = state->base->buf;
277 
278 	mutex_lock(&state->base->i2c_lock);
279 
280 	buf[0] = MXL_HYDRA_PLID_REG_READ;
281 	buf[1] = size + 4;
282 	buf[2] = GET_BYTE(reg, 0);
283 	buf[3] = GET_BYTE(reg, 1);
284 	buf[4] = GET_BYTE(reg, 2);
285 	buf[5] = GET_BYTE(reg, 3);
286 	stat = i2cwrite(state, buf,
287 			MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES);
288 	if (!stat) {
289 		stat = i2cread(state, data, size);
290 		convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data);
291 	}
292 	mutex_unlock(&state->base->i2c_lock);
293 	return stat;
294 }
295 
296 static int read_by_mnemonic(struct mxl *state,
297 			    u32 reg, u8 lsbloc, u8 numofbits, u32 *val)
298 {
299 	u32 data = 0, mask = 0;
300 	int stat;
301 
302 	stat = read_register(state, reg, &data);
303 	if (stat)
304 		return stat;
305 	mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
306 	data &= mask;
307 	data >>= lsbloc;
308 	*val = data;
309 	return 0;
310 }
311 
312 
313 static int update_by_mnemonic(struct mxl *state,
314 			      u32 reg, u8 lsbloc, u8 numofbits, u32 val)
315 {
316 	u32 data, mask;
317 	int stat;
318 
319 	stat = read_register(state, reg, &data);
320 	if (stat)
321 		return stat;
322 	mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
323 	data = (data & ~mask) | ((val << lsbloc) & mask);
324 	stat = write_register(state, reg, data);
325 	return stat;
326 }
327 
328 static int firmware_is_alive(struct mxl *state)
329 {
330 	u32 hb0, hb1;
331 
332 	if (read_register(state, HYDRA_HEAR_BEAT, &hb0))
333 		return 0;
334 	msleep(20);
335 	if (read_register(state, HYDRA_HEAR_BEAT, &hb1))
336 		return 0;
337 	if (hb1 == hb0)
338 		return 0;
339 	return 1;
340 }
341 
342 static int init(struct dvb_frontend *fe)
343 {
344 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
345 
346 	/* init fe stats */
347 	p->strength.len = 1;
348 	p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
349 	p->cnr.len = 1;
350 	p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
351 	p->pre_bit_error.len = 1;
352 	p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
353 	p->pre_bit_count.len = 1;
354 	p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
355 	p->post_bit_error.len = 1;
356 	p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
357 	p->post_bit_count.len = 1;
358 	p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
359 
360 	return 0;
361 }
362 
363 static void release(struct dvb_frontend *fe)
364 {
365 	struct mxl *state = fe->demodulator_priv;
366 
367 	list_del(&state->mxl);
368 	/* Release one frontend, two more shall take its place! */
369 	state->base->count--;
370 	if (state->base->count == 0) {
371 		list_del(&state->base->mxllist);
372 		kfree(state->base);
373 	}
374 	kfree(state);
375 }
376 
377 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
378 {
379 	return DVBFE_ALGO_HW;
380 }
381 
382 static u32 gold2root(u32 gold)
383 {
384 	u32 x, g, tmp = gold;
385 
386 	if (tmp >= 0x3ffff)
387 		tmp = 0;
388 	for (g = 0, x = 1; g < tmp; g++)
389 		x = (((x ^ (x >> 7)) & 1) << 17) | (x >> 1);
390 	return x;
391 }
392 
393 static int cfg_scrambler(struct mxl *state, u32 gold)
394 {
395 	u32 root;
396 	u8 buf[26] = {
397 		MXL_HYDRA_PLID_CMD_WRITE, 24,
398 		0, MXL_HYDRA_DEMOD_SCRAMBLE_CODE_CMD, 0, 0,
399 		state->demod, 0, 0, 0,
400 		0, 0, 0, 0, 0, 0, 0, 0,
401 		0, 0, 0, 0, 1, 0, 0, 0,
402 	};
403 
404 	root = gold2root(gold);
405 
406 	buf[25] = (root >> 24) & 0xff;
407 	buf[24] = (root >> 16) & 0xff;
408 	buf[23] = (root >> 8) & 0xff;
409 	buf[22] = root & 0xff;
410 
411 	return send_command(state, sizeof(buf), buf);
412 }
413 
414 static int cfg_demod_abort_tune(struct mxl *state)
415 {
416 	struct MXL_HYDRA_DEMOD_ABORT_TUNE_T abort_tune_cmd;
417 	u8 cmd_size = sizeof(abort_tune_cmd);
418 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
419 
420 	abort_tune_cmd.demod_id = state->demod;
421 	BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE,
422 			cmd_size, &abort_tune_cmd, cmd_buff);
423 	return send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
424 			    &cmd_buff[0]);
425 }
426 
427 static int send_master_cmd(struct dvb_frontend *fe,
428 			   struct dvb_diseqc_master_cmd *cmd)
429 {
430 	/*struct mxl *state = fe->demodulator_priv;*/
431 
432 	return 0; /*CfgDemodAbortTune(state);*/
433 }
434 
435 static int set_parameters(struct dvb_frontend *fe)
436 {
437 	struct mxl *state = fe->demodulator_priv;
438 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
439 	struct MXL_HYDRA_DEMOD_PARAM_T demod_chan_cfg;
440 	u8 cmd_size = sizeof(demod_chan_cfg);
441 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
442 	u32 srange = 10;
443 	int stat;
444 
445 	if (p->frequency < 950000 || p->frequency > 2150000)
446 		return -EINVAL;
447 	if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000)
448 		return -EINVAL;
449 
450 	/* CfgDemodAbortTune(state); */
451 
452 	switch (p->delivery_system) {
453 	case SYS_DSS:
454 		demod_chan_cfg.standard = MXL_HYDRA_DSS;
455 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
456 		break;
457 	case SYS_DVBS:
458 		srange = p->symbol_rate / 1000000;
459 		if (srange > 10)
460 			srange = 10;
461 		demod_chan_cfg.standard = MXL_HYDRA_DVBS;
462 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_0_35;
463 		demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_QPSK;
464 		demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_OFF;
465 		break;
466 	case SYS_DVBS2:
467 		demod_chan_cfg.standard = MXL_HYDRA_DVBS2;
468 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
469 		demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_AUTO;
470 		demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_AUTO;
471 		cfg_scrambler(state, p->scrambling_sequence_index);
472 		break;
473 	default:
474 		return -EINVAL;
475 	}
476 	demod_chan_cfg.tuner_index = state->tuner;
477 	demod_chan_cfg.demod_index = state->demod;
478 	demod_chan_cfg.frequency_in_hz = p->frequency * 1000;
479 	demod_chan_cfg.symbol_rate_in_hz = p->symbol_rate;
480 	demod_chan_cfg.max_carrier_offset_in_mhz = srange;
481 	demod_chan_cfg.spectrum_inversion = MXL_HYDRA_SPECTRUM_AUTO;
482 	demod_chan_cfg.fec_code_rate = MXL_HYDRA_FEC_AUTO;
483 
484 	mutex_lock(&state->base->tune_lock);
485 	if (time_after(jiffies + msecs_to_jiffies(200),
486 		       state->base->next_tune))
487 		while (time_before(jiffies, state->base->next_tune))
488 			usleep_range(10000, 11000);
489 	state->base->next_tune = jiffies + msecs_to_jiffies(100);
490 	state->tuner_in_use = state->tuner;
491 	BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE,
492 			cmd_size, &demod_chan_cfg, cmd_buff);
493 	stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
494 			    &cmd_buff[0]);
495 	mutex_unlock(&state->base->tune_lock);
496 	return stat;
497 }
498 
499 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable);
500 
501 static int sleep(struct dvb_frontend *fe)
502 {
503 	struct mxl *state = fe->demodulator_priv;
504 	struct mxl *p;
505 
506 	cfg_demod_abort_tune(state);
507 	if (state->tuner_in_use != 0xffffffff) {
508 		mutex_lock(&state->base->tune_lock);
509 		state->tuner_in_use = 0xffffffff;
510 		list_for_each_entry(p, &state->base->mxls, mxl) {
511 			if (p->tuner_in_use == state->tuner)
512 				break;
513 		}
514 		if (&p->mxl == &state->base->mxls)
515 			enable_tuner(state, state->tuner, 0);
516 		mutex_unlock(&state->base->tune_lock);
517 	}
518 	return 0;
519 }
520 
521 static int read_snr(struct dvb_frontend *fe)
522 {
523 	struct mxl *state = fe->demodulator_priv;
524 	int stat;
525 	u32 reg_data = 0;
526 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
527 
528 	mutex_lock(&state->base->status_lock);
529 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
530 	stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET +
531 				     HYDRA_DMD_STATUS_OFFSET(state->demod)),
532 			     &reg_data);
533 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
534 	mutex_unlock(&state->base->status_lock);
535 
536 	p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
537 	p->cnr.stat[0].svalue = (s16)reg_data * 10;
538 
539 	return stat;
540 }
541 
542 static int read_ber(struct dvb_frontend *fe)
543 {
544 	struct mxl *state = fe->demodulator_priv;
545 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
546 	u32 reg[8];
547 
548 	mutex_lock(&state->base->status_lock);
549 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
550 	read_register_block(state,
551 		(HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET +
552 		 HYDRA_DMD_STATUS_OFFSET(state->demod)),
553 		(4 * sizeof(u32)),
554 		(u8 *) &reg[0]);
555 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
556 
557 	switch (p->delivery_system) {
558 	case SYS_DSS:
559 	case SYS_DVBS:
560 		p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
561 		p->pre_bit_error.stat[0].uvalue = reg[2];
562 		p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
563 		p->pre_bit_count.stat[0].uvalue = reg[3];
564 		break;
565 	default:
566 		break;
567 	}
568 
569 	read_register_block(state,
570 		(HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET +
571 		 HYDRA_DMD_STATUS_OFFSET(state->demod)),
572 		(7 * sizeof(u32)),
573 		(u8 *) &reg[0]);
574 
575 	switch (p->delivery_system) {
576 	case SYS_DSS:
577 	case SYS_DVBS:
578 		p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
579 		p->post_bit_error.stat[0].uvalue = reg[5];
580 		p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
581 		p->post_bit_count.stat[0].uvalue = reg[6];
582 		break;
583 	case SYS_DVBS2:
584 		p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
585 		p->post_bit_error.stat[0].uvalue = reg[1];
586 		p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
587 		p->post_bit_count.stat[0].uvalue = reg[2];
588 		break;
589 	default:
590 		break;
591 	}
592 
593 	mutex_unlock(&state->base->status_lock);
594 
595 	return 0;
596 }
597 
598 static int read_signal_strength(struct dvb_frontend *fe)
599 {
600 	struct mxl *state = fe->demodulator_priv;
601 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
602 	int stat;
603 	u32 reg_data = 0;
604 
605 	mutex_lock(&state->base->status_lock);
606 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
607 	stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR +
608 				     HYDRA_DMD_STATUS_OFFSET(state->demod)),
609 			     &reg_data);
610 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
611 	mutex_unlock(&state->base->status_lock);
612 
613 	p->strength.stat[0].scale = FE_SCALE_DECIBEL;
614 	p->strength.stat[0].svalue = (s16) reg_data * 10; /* fix scale */
615 
616 	return stat;
617 }
618 
619 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
620 {
621 	struct mxl *state = fe->demodulator_priv;
622 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
623 	u32 reg_data = 0;
624 
625 	mutex_lock(&state->base->status_lock);
626 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
627 	read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET +
628 			     HYDRA_DMD_STATUS_OFFSET(state->demod)),
629 			     &reg_data);
630 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
631 	mutex_unlock(&state->base->status_lock);
632 
633 	*status = (reg_data == 1) ? 0x1f : 0;
634 
635 	/* signal statistics */
636 
637 	/* signal strength is always available */
638 	read_signal_strength(fe);
639 
640 	if (*status & FE_HAS_CARRIER)
641 		read_snr(fe);
642 	else
643 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
644 
645 	if (*status & FE_HAS_SYNC)
646 		read_ber(fe);
647 	else {
648 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
649 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
650 		p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
651 		p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
652 	}
653 
654 	return 0;
655 }
656 
657 static int tune(struct dvb_frontend *fe, bool re_tune,
658 		unsigned int mode_flags,
659 		unsigned int *delay, enum fe_status *status)
660 {
661 	struct mxl *state = fe->demodulator_priv;
662 	int r = 0;
663 
664 	*delay = HZ / 2;
665 	if (re_tune) {
666 		r = set_parameters(fe);
667 		if (r)
668 			return r;
669 		state->tune_time = jiffies;
670 	}
671 
672 	return read_status(fe, status);
673 }
674 
675 static enum fe_code_rate conv_fec(enum MXL_HYDRA_FEC_E fec)
676 {
677 	enum fe_code_rate fec2fec[11] = {
678 		FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3,
679 		FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7,
680 		FEC_7_8, FEC_8_9, FEC_9_10
681 	};
682 
683 	if (fec > MXL_HYDRA_FEC_9_10)
684 		return FEC_NONE;
685 	return fec2fec[fec];
686 }
687 
688 static int get_frontend(struct dvb_frontend *fe,
689 			struct dtv_frontend_properties *p)
690 {
691 	struct mxl *state = fe->demodulator_priv;
692 	u32 reg_data[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE];
693 	u32 freq;
694 
695 	mutex_lock(&state->base->status_lock);
696 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
697 	read_register_block(state,
698 		(HYDRA_DMD_STANDARD_ADDR_OFFSET +
699 		HYDRA_DMD_STATUS_OFFSET(state->demod)),
700 		(MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), /* 25 * 4 bytes */
701 		(u8 *) &reg_data[0]);
702 	/* read demod channel parameters */
703 	read_register_block(state,
704 		(HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR +
705 		HYDRA_DMD_STATUS_OFFSET(state->demod)),
706 		(4), /* 4 bytes */
707 		(u8 *) &freq);
708 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
709 	mutex_unlock(&state->base->status_lock);
710 
711 	dev_dbg(state->i2cdev, "freq=%u delsys=%u srate=%u\n",
712 		freq * 1000, reg_data[DMD_STANDARD_ADDR],
713 		reg_data[DMD_SYMBOL_RATE_ADDR]);
714 	p->symbol_rate = reg_data[DMD_SYMBOL_RATE_ADDR];
715 	p->frequency = freq;
716 	/*
717 	 * p->delivery_system =
718 	 *	(MXL_HYDRA_BCAST_STD_E) regData[DMD_STANDARD_ADDR];
719 	 * p->inversion =
720 	 *	(MXL_HYDRA_SPECTRUM_E) regData[DMD_SPECTRUM_INVERSION_ADDR];
721 	 * freqSearchRangeKHz =
722 	 *	(regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]);
723 	 */
724 
725 	p->fec_inner = conv_fec(reg_data[DMD_FEC_CODE_RATE_ADDR]);
726 	switch (p->delivery_system) {
727 	case SYS_DSS:
728 		break;
729 	case SYS_DVBS2:
730 		switch ((enum MXL_HYDRA_PILOTS_E)
731 			reg_data[DMD_DVBS2_PILOT_ON_OFF_ADDR]) {
732 		case MXL_HYDRA_PILOTS_OFF:
733 			p->pilot = PILOT_OFF;
734 			break;
735 		case MXL_HYDRA_PILOTS_ON:
736 			p->pilot = PILOT_ON;
737 			break;
738 		default:
739 			break;
740 		}
741 		fallthrough;
742 	case SYS_DVBS:
743 		switch ((enum MXL_HYDRA_MODULATION_E)
744 			reg_data[DMD_MODULATION_SCHEME_ADDR]) {
745 		case MXL_HYDRA_MOD_QPSK:
746 			p->modulation = QPSK;
747 			break;
748 		case MXL_HYDRA_MOD_8PSK:
749 			p->modulation = PSK_8;
750 			break;
751 		default:
752 			break;
753 		}
754 		switch ((enum MXL_HYDRA_ROLLOFF_E)
755 			reg_data[DMD_SPECTRUM_ROLL_OFF_ADDR]) {
756 		case MXL_HYDRA_ROLLOFF_0_20:
757 			p->rolloff = ROLLOFF_20;
758 			break;
759 		case MXL_HYDRA_ROLLOFF_0_35:
760 			p->rolloff = ROLLOFF_35;
761 			break;
762 		case MXL_HYDRA_ROLLOFF_0_25:
763 			p->rolloff = ROLLOFF_25;
764 			break;
765 		default:
766 			break;
767 		}
768 		break;
769 	default:
770 		return -EINVAL;
771 	}
772 	return 0;
773 }
774 
775 static int set_input(struct dvb_frontend *fe, int input)
776 {
777 	struct mxl *state = fe->demodulator_priv;
778 
779 	state->tuner = input;
780 	return 0;
781 }
782 
783 static const struct dvb_frontend_ops mxl_ops = {
784 	.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
785 	.info = {
786 		.name			= "MaxLinear MxL5xx DVB-S/S2 tuner-demodulator",
787 		.frequency_min_hz	=  300 * MHz,
788 		.frequency_max_hz	= 2350 * MHz,
789 		.symbol_rate_min	= 1000000,
790 		.symbol_rate_max	= 45000000,
791 		.caps			= FE_CAN_INVERSION_AUTO |
792 					  FE_CAN_FEC_AUTO       |
793 					  FE_CAN_QPSK           |
794 					  FE_CAN_2G_MODULATION
795 	},
796 	.init				= init,
797 	.release                        = release,
798 	.get_frontend_algo              = get_algo,
799 	.tune                           = tune,
800 	.read_status			= read_status,
801 	.sleep				= sleep,
802 	.get_frontend                   = get_frontend,
803 	.diseqc_send_master_cmd		= send_master_cmd,
804 };
805 
806 static struct mxl_base *match_base(struct i2c_adapter  *i2c, u8 adr)
807 {
808 	struct mxl_base *p;
809 
810 	list_for_each_entry(p, &mxllist, mxllist)
811 		if (p->i2c == i2c && p->adr == adr)
812 			return p;
813 	return NULL;
814 }
815 
816 static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable)
817 {
818 	if (state->base->can_clkout || !enable)
819 		update_by_mnemonic(state, 0x90200054, 23, 1, enable);
820 
821 	if (freq == 24000000)
822 		write_register(state, HYDRA_CRYSTAL_SETTING, 0);
823 	else
824 		write_register(state, HYDRA_CRYSTAL_SETTING, 1);
825 
826 	write_register(state, HYDRA_CRYSTAL_CAP, cap);
827 }
828 
829 static u32 get_big_endian(u8 num_of_bits, const u8 buf[])
830 {
831 	u32 ret_value = 0;
832 
833 	switch (num_of_bits) {
834 	case 24:
835 		ret_value = (((u32) buf[0]) << 16) |
836 			(((u32) buf[1]) << 8) | buf[2];
837 		break;
838 	case 32:
839 		ret_value = (((u32) buf[0]) << 24) |
840 			(((u32) buf[1]) << 16) |
841 			(((u32) buf[2]) << 8) | buf[3];
842 		break;
843 	default:
844 		break;
845 	}
846 
847 	return ret_value;
848 }
849 
850 static int write_fw_segment(struct mxl *state,
851 			    u32 mem_addr, u32 total_size, u8 *data_ptr)
852 {
853 	int status;
854 	u32 data_count = 0;
855 	u32 size = 0;
856 	u32 orig_size = 0;
857 	u8 *w_buf_ptr = NULL;
858 	u32 block_size = ((MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
859 			 (MXL_HYDRA_I2C_HDR_SIZE +
860 			  MXL_HYDRA_REG_SIZE_IN_BYTES)) / 4) * 4;
861 	u8 w_msg_buffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
862 		      (MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)];
863 
864 	do {
865 		size = orig_size = (((u32)(data_count + block_size)) > total_size) ?
866 			(total_size - data_count) : block_size;
867 
868 		if (orig_size & 3)
869 			size = (orig_size + 4) & ~3;
870 		w_buf_ptr = &w_msg_buffer[0];
871 		memset((void *) w_buf_ptr, 0, size);
872 		memcpy((void *) w_buf_ptr, (void *) data_ptr, orig_size);
873 		convert_endian(1, size, w_buf_ptr);
874 		status  = write_firmware_block(state, mem_addr, size, w_buf_ptr);
875 		if (status)
876 			return status;
877 		data_count += size;
878 		mem_addr   += size;
879 		data_ptr   += size;
880 	} while (data_count < total_size);
881 
882 	return status;
883 }
884 
885 static int do_firmware_download(struct mxl *state, u8 *mbin_buffer_ptr,
886 				u32 mbin_buffer_size)
887 
888 {
889 	int status;
890 	u32 index = 0;
891 	u32 seg_length = 0;
892 	u32 seg_address = 0;
893 	struct MBIN_FILE_T *mbin_ptr  = (struct MBIN_FILE_T *)mbin_buffer_ptr;
894 	struct MBIN_SEGMENT_T *segment_ptr;
895 	enum MXL_BOOL_E xcpu_fw_flag = MXL_FALSE;
896 
897 	if (mbin_ptr->header.id != MBIN_FILE_HEADER_ID) {
898 		dev_err(state->i2cdev, "%s: Invalid file header ID (%c)\n",
899 		       __func__, mbin_ptr->header.id);
900 		return -EINVAL;
901 	}
902 	status = write_register(state, FW_DL_SIGN_ADDR, 0);
903 	if (status)
904 		return status;
905 	segment_ptr = (struct MBIN_SEGMENT_T *) (&mbin_ptr->data[0]);
906 	for (index = 0; index < mbin_ptr->header.num_segments; index++) {
907 		if (segment_ptr->header.id != MBIN_SEGMENT_HEADER_ID) {
908 			dev_err(state->i2cdev, "%s: Invalid segment header ID (%c)\n",
909 			       __func__, segment_ptr->header.id);
910 			return -EINVAL;
911 		}
912 		seg_length  = get_big_endian(24,
913 					    &(segment_ptr->header.len24[0]));
914 		seg_address = get_big_endian(32,
915 					    &(segment_ptr->header.address[0]));
916 
917 		if (state->base->type == MXL_HYDRA_DEVICE_568) {
918 			if ((((seg_address & 0x90760000) == 0x90760000) ||
919 			     ((seg_address & 0x90740000) == 0x90740000)) &&
920 			    (xcpu_fw_flag == MXL_FALSE)) {
921 				update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
922 				msleep(200);
923 				write_register(state, 0x90720000, 0);
924 				usleep_range(10000, 11000);
925 				xcpu_fw_flag = MXL_TRUE;
926 			}
927 			status = write_fw_segment(state, seg_address,
928 						  seg_length,
929 						  (u8 *) segment_ptr->data);
930 		} else {
931 			if (((seg_address & 0x90760000) != 0x90760000) &&
932 			    ((seg_address & 0x90740000) != 0x90740000))
933 				status = write_fw_segment(state, seg_address,
934 					seg_length, (u8 *) segment_ptr->data);
935 		}
936 		if (status)
937 			return status;
938 		segment_ptr = (struct MBIN_SEGMENT_T *)
939 			&(segment_ptr->data[((seg_length + 3) / 4) * 4]);
940 	}
941 	return status;
942 }
943 
944 static int check_fw(struct mxl *state, u8 *mbin, u32 mbin_len)
945 {
946 	struct MBIN_FILE_HEADER_T *fh = (struct MBIN_FILE_HEADER_T *) mbin;
947 	u32 flen = (fh->image_size24[0] << 16) |
948 		(fh->image_size24[1] <<  8) | fh->image_size24[2];
949 	u8 *fw, cs = 0;
950 	u32 i;
951 
952 	if (fh->id != 'M' || fh->fmt_version != '1' || flen > 0x3FFF0) {
953 		dev_info(state->i2cdev, "Invalid FW Header\n");
954 		return -1;
955 	}
956 	fw = mbin + sizeof(struct MBIN_FILE_HEADER_T);
957 	for (i = 0; i < flen; i += 1)
958 		cs += fw[i];
959 	if (cs != fh->image_checksum) {
960 		dev_info(state->i2cdev, "Invalid FW Checksum\n");
961 		return -1;
962 	}
963 	return 0;
964 }
965 
966 static int firmware_download(struct mxl *state, u8 *mbin, u32 mbin_len)
967 {
968 	int status;
969 	u32 reg_data = 0;
970 	struct MXL_HYDRA_SKU_COMMAND_T dev_sku_cfg;
971 	u8 cmd_size = sizeof(struct MXL_HYDRA_SKU_COMMAND_T);
972 	u8 cmd_buff[sizeof(struct MXL_HYDRA_SKU_COMMAND_T) + 6];
973 
974 	if (check_fw(state, mbin, mbin_len))
975 		return -1;
976 
977 	/* put CPU into reset */
978 	status = update_by_mnemonic(state, 0x8003003C, 0, 1, 0);
979 	if (status)
980 		return status;
981 	usleep_range(1000, 2000);
982 
983 	/* Reset TX FIFO's, BBAND, XBAR */
984 	status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG,
985 				HYDRA_RESET_TRANSPORT_FIFO_DATA);
986 	if (status)
987 		return status;
988 	status = write_register(state, HYDRA_RESET_BBAND_REG,
989 				HYDRA_RESET_BBAND_DATA);
990 	if (status)
991 		return status;
992 	status = write_register(state, HYDRA_RESET_XBAR_REG,
993 				HYDRA_RESET_XBAR_DATA);
994 	if (status)
995 		return status;
996 
997 	/* Disable clock to Baseband, Wideband, SerDes,
998 	 * Alias ext & Transport modules
999 	 */
1000 	status = write_register(state, HYDRA_MODULES_CLK_2_REG,
1001 				HYDRA_DISABLE_CLK_2);
1002 	if (status)
1003 		return status;
1004 	/* Clear Software & Host interrupt status - (Clear on read) */
1005 	status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, &reg_data);
1006 	if (status)
1007 		return status;
1008 	status = do_firmware_download(state, mbin, mbin_len);
1009 	if (status)
1010 		return status;
1011 
1012 	if (state->base->type == MXL_HYDRA_DEVICE_568) {
1013 		usleep_range(10000, 11000);
1014 
1015 		/* bring XCPU out of reset */
1016 		status = write_register(state, 0x90720000, 1);
1017 		if (status)
1018 			return status;
1019 		msleep(500);
1020 
1021 		/* Enable XCPU UART message processing in MCPU */
1022 		status = write_register(state, 0x9076B510, 1);
1023 		if (status)
1024 			return status;
1025 	} else {
1026 		/* Bring CPU out of reset */
1027 		status = update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
1028 		if (status)
1029 			return status;
1030 		/* Wait until FW boots */
1031 		msleep(150);
1032 	}
1033 
1034 	/* Initialize XPT XBAR */
1035 	status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210);
1036 	if (status)
1037 		return status;
1038 
1039 	if (!firmware_is_alive(state))
1040 		return -1;
1041 
1042 	dev_info(state->i2cdev, "Hydra FW alive. Hail!\n");
1043 
1044 	/* sometimes register values are wrong shortly
1045 	 * after first heart beats
1046 	 */
1047 	msleep(50);
1048 
1049 	dev_sku_cfg.sku_type = state->base->sku_type;
1050 	BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE,
1051 			cmd_size, &dev_sku_cfg, cmd_buff);
1052 	status = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1053 			      &cmd_buff[0]);
1054 
1055 	return status;
1056 }
1057 
1058 static int cfg_ts_pad_mux(struct mxl *state, enum MXL_BOOL_E enable_serial_ts)
1059 {
1060 	int status = 0;
1061 	u32 pad_mux_value = 0;
1062 
1063 	if (enable_serial_ts == MXL_TRUE) {
1064 		pad_mux_value = 0;
1065 		if ((state->base->type == MXL_HYDRA_DEVICE_541) ||
1066 		    (state->base->type == MXL_HYDRA_DEVICE_541S))
1067 			pad_mux_value = 2;
1068 	} else {
1069 		if ((state->base->type == MXL_HYDRA_DEVICE_581) ||
1070 		    (state->base->type == MXL_HYDRA_DEVICE_581S))
1071 			pad_mux_value = 2;
1072 		else
1073 			pad_mux_value = 3;
1074 	}
1075 
1076 	switch (state->base->type) {
1077 	case MXL_HYDRA_DEVICE_561:
1078 	case MXL_HYDRA_DEVICE_581:
1079 	case MXL_HYDRA_DEVICE_541:
1080 	case MXL_HYDRA_DEVICE_541S:
1081 	case MXL_HYDRA_DEVICE_561S:
1082 	case MXL_HYDRA_DEVICE_581S:
1083 		status |= update_by_mnemonic(state, 0x90000170, 24, 3,
1084 					     pad_mux_value);
1085 		status |= update_by_mnemonic(state, 0x90000170, 28, 3,
1086 					     pad_mux_value);
1087 		status |= update_by_mnemonic(state, 0x90000174, 0, 3,
1088 					     pad_mux_value);
1089 		status |= update_by_mnemonic(state, 0x90000174, 4, 3,
1090 					     pad_mux_value);
1091 		status |= update_by_mnemonic(state, 0x90000174, 8, 3,
1092 					     pad_mux_value);
1093 		status |= update_by_mnemonic(state, 0x90000174, 12, 3,
1094 					     pad_mux_value);
1095 		status |= update_by_mnemonic(state, 0x90000174, 16, 3,
1096 					     pad_mux_value);
1097 		status |= update_by_mnemonic(state, 0x90000174, 20, 3,
1098 					     pad_mux_value);
1099 		status |= update_by_mnemonic(state, 0x90000174, 24, 3,
1100 					     pad_mux_value);
1101 		status |= update_by_mnemonic(state, 0x90000174, 28, 3,
1102 					     pad_mux_value);
1103 		status |= update_by_mnemonic(state, 0x90000178, 0, 3,
1104 					     pad_mux_value);
1105 		status |= update_by_mnemonic(state, 0x90000178, 4, 3,
1106 					     pad_mux_value);
1107 		status |= update_by_mnemonic(state, 0x90000178, 8, 3,
1108 					     pad_mux_value);
1109 		break;
1110 
1111 	case MXL_HYDRA_DEVICE_544:
1112 	case MXL_HYDRA_DEVICE_542:
1113 		status |= update_by_mnemonic(state, 0x9000016C, 4, 3, 1);
1114 		status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 0);
1115 		status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 0);
1116 		status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 0);
1117 		status |= update_by_mnemonic(state, 0x90000170, 0, 3, 0);
1118 		status |= update_by_mnemonic(state, 0x90000178, 12, 3, 1);
1119 		status |= update_by_mnemonic(state, 0x90000178, 16, 3, 1);
1120 		status |= update_by_mnemonic(state, 0x90000178, 20, 3, 1);
1121 		status |= update_by_mnemonic(state, 0x90000178, 24, 3, 1);
1122 		status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 1);
1123 		status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 1);
1124 		if (enable_serial_ts == MXL_ENABLE) {
1125 			status |= update_by_mnemonic(state,
1126 				0x90000170, 4, 3, 0);
1127 			status |= update_by_mnemonic(state,
1128 				0x90000170, 8, 3, 0);
1129 			status |= update_by_mnemonic(state,
1130 				0x90000170, 12, 3, 0);
1131 			status |= update_by_mnemonic(state,
1132 				0x90000170, 16, 3, 0);
1133 			status |= update_by_mnemonic(state,
1134 				0x90000170, 20, 3, 1);
1135 			status |= update_by_mnemonic(state,
1136 				0x90000170, 24, 3, 1);
1137 			status |= update_by_mnemonic(state,
1138 				0x90000170, 28, 3, 2);
1139 			status |= update_by_mnemonic(state,
1140 				0x90000174, 0, 3, 2);
1141 			status |= update_by_mnemonic(state,
1142 				0x90000174, 4, 3, 2);
1143 			status |= update_by_mnemonic(state,
1144 				0x90000174, 8, 3, 2);
1145 			status |= update_by_mnemonic(state,
1146 				0x90000174, 12, 3, 2);
1147 			status |= update_by_mnemonic(state,
1148 				0x90000174, 16, 3, 2);
1149 			status |= update_by_mnemonic(state,
1150 				0x90000174, 20, 3, 2);
1151 			status |= update_by_mnemonic(state,
1152 				0x90000174, 24, 3, 2);
1153 			status |= update_by_mnemonic(state,
1154 				0x90000174, 28, 3, 2);
1155 			status |= update_by_mnemonic(state,
1156 				0x90000178, 0, 3, 2);
1157 			status |= update_by_mnemonic(state,
1158 				0x90000178, 4, 3, 2);
1159 			status |= update_by_mnemonic(state,
1160 				0x90000178, 8, 3, 2);
1161 		} else {
1162 			status |= update_by_mnemonic(state,
1163 				0x90000170, 4, 3, 3);
1164 			status |= update_by_mnemonic(state,
1165 				0x90000170, 8, 3, 3);
1166 			status |= update_by_mnemonic(state,
1167 				0x90000170, 12, 3, 3);
1168 			status |= update_by_mnemonic(state,
1169 				0x90000170, 16, 3, 3);
1170 			status |= update_by_mnemonic(state,
1171 				0x90000170, 20, 3, 3);
1172 			status |= update_by_mnemonic(state,
1173 				0x90000170, 24, 3, 3);
1174 			status |= update_by_mnemonic(state,
1175 				0x90000170, 28, 3, 3);
1176 			status |= update_by_mnemonic(state,
1177 				0x90000174, 0, 3, 3);
1178 			status |= update_by_mnemonic(state,
1179 				0x90000174, 4, 3, 3);
1180 			status |= update_by_mnemonic(state,
1181 				0x90000174, 8, 3, 3);
1182 			status |= update_by_mnemonic(state,
1183 				0x90000174, 12, 3, 3);
1184 			status |= update_by_mnemonic(state,
1185 				0x90000174, 16, 3, 3);
1186 			status |= update_by_mnemonic(state,
1187 				0x90000174, 20, 3, 1);
1188 			status |= update_by_mnemonic(state,
1189 				0x90000174, 24, 3, 1);
1190 			status |= update_by_mnemonic(state,
1191 				0x90000174, 28, 3, 1);
1192 			status |= update_by_mnemonic(state,
1193 				0x90000178, 0, 3, 1);
1194 			status |= update_by_mnemonic(state,
1195 				0x90000178, 4, 3, 1);
1196 			status |= update_by_mnemonic(state,
1197 				0x90000178, 8, 3, 1);
1198 		}
1199 		break;
1200 
1201 	case MXL_HYDRA_DEVICE_568:
1202 		if (enable_serial_ts == MXL_FALSE) {
1203 			status |= update_by_mnemonic(state,
1204 				0x9000016C, 8, 3, 5);
1205 			status |= update_by_mnemonic(state,
1206 				0x9000016C, 12, 3, 5);
1207 			status |= update_by_mnemonic(state,
1208 				0x9000016C, 16, 3, 5);
1209 			status |= update_by_mnemonic(state,
1210 				0x9000016C, 20, 3, 5);
1211 			status |= update_by_mnemonic(state,
1212 				0x9000016C, 24, 3, 5);
1213 			status |= update_by_mnemonic(state,
1214 				0x9000016C, 28, 3, 5);
1215 			status |= update_by_mnemonic(state,
1216 				0x90000170, 0, 3, 5);
1217 			status |= update_by_mnemonic(state,
1218 				0x90000170, 4, 3, 5);
1219 			status |= update_by_mnemonic(state,
1220 				0x90000170, 8, 3, 5);
1221 			status |= update_by_mnemonic(state,
1222 				0x90000170, 12, 3, 5);
1223 			status |= update_by_mnemonic(state,
1224 				0x90000170, 16, 3, 5);
1225 			status |= update_by_mnemonic(state,
1226 				0x90000170, 20, 3, 5);
1227 
1228 			status |= update_by_mnemonic(state,
1229 				0x90000170, 24, 3, pad_mux_value);
1230 			status |= update_by_mnemonic(state,
1231 				0x90000174, 0, 3, pad_mux_value);
1232 			status |= update_by_mnemonic(state,
1233 				0x90000174, 4, 3, pad_mux_value);
1234 			status |= update_by_mnemonic(state,
1235 				0x90000174, 8, 3, pad_mux_value);
1236 			status |= update_by_mnemonic(state,
1237 				0x90000174, 12, 3, pad_mux_value);
1238 			status |= update_by_mnemonic(state,
1239 				0x90000174, 16, 3, pad_mux_value);
1240 			status |= update_by_mnemonic(state,
1241 				0x90000174, 20, 3, pad_mux_value);
1242 			status |= update_by_mnemonic(state,
1243 				0x90000174, 24, 3, pad_mux_value);
1244 			status |= update_by_mnemonic(state,
1245 				0x90000174, 28, 3, pad_mux_value);
1246 			status |= update_by_mnemonic(state,
1247 				0x90000178, 0, 3, pad_mux_value);
1248 			status |= update_by_mnemonic(state,
1249 				0x90000178, 4, 3, pad_mux_value);
1250 
1251 			status |= update_by_mnemonic(state,
1252 				0x90000178, 8, 3, 5);
1253 			status |= update_by_mnemonic(state,
1254 				0x90000178, 12, 3, 5);
1255 			status |= update_by_mnemonic(state,
1256 				0x90000178, 16, 3, 5);
1257 			status |= update_by_mnemonic(state,
1258 				0x90000178, 20, 3, 5);
1259 			status |= update_by_mnemonic(state,
1260 				0x90000178, 24, 3, 5);
1261 			status |= update_by_mnemonic(state,
1262 				0x90000178, 28, 3, 5);
1263 			status |= update_by_mnemonic(state,
1264 				0x9000017C, 0, 3, 5);
1265 			status |= update_by_mnemonic(state,
1266 				0x9000017C, 4, 3, 5);
1267 		} else {
1268 			status |= update_by_mnemonic(state,
1269 				0x90000170, 4, 3, pad_mux_value);
1270 			status |= update_by_mnemonic(state,
1271 				0x90000170, 8, 3, pad_mux_value);
1272 			status |= update_by_mnemonic(state,
1273 				0x90000170, 12, 3, pad_mux_value);
1274 			status |= update_by_mnemonic(state,
1275 				0x90000170, 16, 3, pad_mux_value);
1276 			status |= update_by_mnemonic(state,
1277 				0x90000170, 20, 3, pad_mux_value);
1278 			status |= update_by_mnemonic(state,
1279 				0x90000170, 24, 3, pad_mux_value);
1280 			status |= update_by_mnemonic(state,
1281 				0x90000170, 28, 3, pad_mux_value);
1282 			status |= update_by_mnemonic(state,
1283 				0x90000174, 0, 3, pad_mux_value);
1284 			status |= update_by_mnemonic(state,
1285 				0x90000174, 4, 3, pad_mux_value);
1286 			status |= update_by_mnemonic(state,
1287 				0x90000174, 8, 3, pad_mux_value);
1288 			status |= update_by_mnemonic(state,
1289 				0x90000174, 12, 3, pad_mux_value);
1290 		}
1291 		break;
1292 
1293 
1294 	case MXL_HYDRA_DEVICE_584:
1295 	default:
1296 		status |= update_by_mnemonic(state,
1297 			0x90000170, 4, 3, pad_mux_value);
1298 		status |= update_by_mnemonic(state,
1299 			0x90000170, 8, 3, pad_mux_value);
1300 		status |= update_by_mnemonic(state,
1301 			0x90000170, 12, 3, pad_mux_value);
1302 		status |= update_by_mnemonic(state,
1303 			0x90000170, 16, 3, pad_mux_value);
1304 		status |= update_by_mnemonic(state,
1305 			0x90000170, 20, 3, pad_mux_value);
1306 		status |= update_by_mnemonic(state,
1307 			0x90000170, 24, 3, pad_mux_value);
1308 		status |= update_by_mnemonic(state,
1309 			0x90000170, 28, 3, pad_mux_value);
1310 		status |= update_by_mnemonic(state,
1311 			0x90000174, 0, 3, pad_mux_value);
1312 		status |= update_by_mnemonic(state,
1313 			0x90000174, 4, 3, pad_mux_value);
1314 		status |= update_by_mnemonic(state,
1315 			0x90000174, 8, 3, pad_mux_value);
1316 		status |= update_by_mnemonic(state,
1317 			0x90000174, 12, 3, pad_mux_value);
1318 		break;
1319 	}
1320 	return status;
1321 }
1322 
1323 static int set_drive_strength(struct mxl *state,
1324 		enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength)
1325 {
1326 	int stat = 0;
1327 	u32 val;
1328 
1329 	read_register(state, 0x90000194, &val);
1330 	dev_info(state->i2cdev, "DIGIO = %08x\n", val);
1331 	dev_info(state->i2cdev, "set drive_strength = %u\n", ts_drive_strength);
1332 
1333 
1334 	stat |= update_by_mnemonic(state, 0x90000194, 0, 3, ts_drive_strength);
1335 	stat |= update_by_mnemonic(state, 0x90000194, 20, 3, ts_drive_strength);
1336 	stat |= update_by_mnemonic(state, 0x90000194, 24, 3, ts_drive_strength);
1337 	stat |= update_by_mnemonic(state, 0x90000198, 12, 3, ts_drive_strength);
1338 	stat |= update_by_mnemonic(state, 0x90000198, 16, 3, ts_drive_strength);
1339 	stat |= update_by_mnemonic(state, 0x90000198, 20, 3, ts_drive_strength);
1340 	stat |= update_by_mnemonic(state, 0x90000198, 24, 3, ts_drive_strength);
1341 	stat |= update_by_mnemonic(state, 0x9000019C, 0, 3, ts_drive_strength);
1342 	stat |= update_by_mnemonic(state, 0x9000019C, 4, 3, ts_drive_strength);
1343 	stat |= update_by_mnemonic(state, 0x9000019C, 8, 3, ts_drive_strength);
1344 	stat |= update_by_mnemonic(state, 0x9000019C, 24, 3, ts_drive_strength);
1345 	stat |= update_by_mnemonic(state, 0x9000019C, 28, 3, ts_drive_strength);
1346 	stat |= update_by_mnemonic(state, 0x900001A0, 0, 3, ts_drive_strength);
1347 	stat |= update_by_mnemonic(state, 0x900001A0, 4, 3, ts_drive_strength);
1348 	stat |= update_by_mnemonic(state, 0x900001A0, 20, 3, ts_drive_strength);
1349 	stat |= update_by_mnemonic(state, 0x900001A0, 24, 3, ts_drive_strength);
1350 	stat |= update_by_mnemonic(state, 0x900001A0, 28, 3, ts_drive_strength);
1351 
1352 	return stat;
1353 }
1354 
1355 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable)
1356 {
1357 	int stat = 0;
1358 	struct MXL_HYDRA_TUNER_CMD ctrl_tuner_cmd;
1359 	u8 cmd_size = sizeof(ctrl_tuner_cmd);
1360 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
1361 	u32 val, count = 10;
1362 
1363 	ctrl_tuner_cmd.tuner_id = tuner;
1364 	ctrl_tuner_cmd.enable = enable;
1365 	BUILD_HYDRA_CMD(MXL_HYDRA_TUNER_ACTIVATE_CMD, MXL_CMD_WRITE,
1366 			cmd_size, &ctrl_tuner_cmd, cmd_buff);
1367 	stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1368 			    &cmd_buff[0]);
1369 	if (stat)
1370 		return stat;
1371 	read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1372 	while (--count && ((val >> tuner) & 1) != enable) {
1373 		msleep(20);
1374 		read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1375 	}
1376 	if (!count)
1377 		return -1;
1378 	read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1379 	dev_dbg(state->i2cdev, "tuner %u ready = %u\n",
1380 		tuner, (val >> tuner) & 1);
1381 
1382 	return 0;
1383 }
1384 
1385 
1386 static int config_ts(struct mxl *state, enum MXL_HYDRA_DEMOD_ID_E demod_id,
1387 		     struct MXL_HYDRA_MPEGOUT_PARAM_T *mpeg_out_param_ptr)
1388 {
1389 	int status = 0;
1390 	u32 nco_count_min = 0;
1391 	u32 clk_type = 0;
1392 
1393 	struct MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = {
1394 		{0x90700010, 8, 1}, {0x90700010, 9, 1},
1395 		{0x90700010, 10, 1}, {0x90700010, 11, 1},
1396 		{0x90700010, 12, 1}, {0x90700010, 13, 1},
1397 		{0x90700010, 14, 1}, {0x90700010, 15, 1} };
1398 	struct MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = {
1399 		{0x90700010, 16, 1}, {0x90700010, 17, 1},
1400 		{0x90700010, 18, 1}, {0x90700010, 19, 1},
1401 		{0x90700010, 20, 1}, {0x90700010, 21, 1},
1402 		{0x90700010, 22, 1}, {0x90700010, 23, 1} };
1403 	struct MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = {
1404 		{0x90700014, 0, 1}, {0x90700014, 1, 1},
1405 		{0x90700014, 2, 1}, {0x90700014, 3, 1},
1406 		{0x90700014, 4, 1}, {0x90700014, 5, 1},
1407 		{0x90700014, 6, 1}, {0x90700014, 7, 1} };
1408 	struct MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = {
1409 		{0x90700018, 0, 3}, {0x90700018, 4, 3},
1410 		{0x90700018, 8, 3}, {0x90700018, 12, 3},
1411 		{0x90700018, 16, 3}, {0x90700018, 20, 3},
1412 		{0x90700018, 24, 3}, {0x90700018, 28, 3} };
1413 	struct MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = {
1414 		{0x9070000C, 16, 1}, {0x9070000C, 17, 1},
1415 		{0x9070000C, 18, 1}, {0x9070000C, 19, 1},
1416 		{0x9070000C, 20, 1}, {0x9070000C, 21, 1},
1417 		{0x9070000C, 22, 1}, {0x9070000C, 23, 1} };
1418 	struct MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = {
1419 		{0x90700010, 0, 1}, {0x90700010, 1, 1},
1420 		{0x90700010, 2, 1}, {0x90700010, 3, 1},
1421 		{0x90700010, 4, 1}, {0x90700010, 5, 1},
1422 		{0x90700010, 6, 1}, {0x90700010, 7, 1} };
1423 	struct MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = {
1424 		{0x9070000C, 0, 1}, {0x9070000C, 1, 1},
1425 		{0x9070000C, 2, 1}, {0x9070000C, 3, 1},
1426 		{0x9070000C, 4, 1}, {0x9070000C, 5, 1},
1427 		{0x9070000C, 6, 1}, {0x9070000C, 7, 1} };
1428 	struct MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = {
1429 		{0x9070000C, 24, 1}, {0x9070000C, 25, 1},
1430 		{0x9070000C, 26, 1}, {0x9070000C, 27, 1},
1431 		{0x9070000C, 28, 1}, {0x9070000C, 29, 1},
1432 		{0x9070000C, 30, 1}, {0x9070000C, 31, 1} };
1433 	struct MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = {
1434 		{0x90700014, 8, 1}, {0x90700014, 9, 1},
1435 		{0x90700014, 10, 1}, {0x90700014, 11, 1},
1436 		{0x90700014, 12, 1}, {0x90700014, 13, 1},
1437 		{0x90700014, 14, 1}, {0x90700014, 15, 1} };
1438 	struct MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = {
1439 		{0x907001D4, 0, 1}, {0x907001D4, 1, 1},
1440 		{0x907001D4, 2, 1}, {0x907001D4, 3, 1},
1441 		{0x907001D4, 4, 1}, {0x907001D4, 5, 1},
1442 		{0x907001D4, 6, 1}, {0x907001D4, 7, 1} };
1443 	struct MXL_REG_FIELD_T xpt_nco_clock_rate[MXL_HYDRA_DEMOD_MAX] = {
1444 		{0x90700044, 16, 80}, {0x90700044, 16, 81},
1445 		{0x90700044, 16, 82}, {0x90700044, 16, 83},
1446 		{0x90700044, 16, 84}, {0x90700044, 16, 85},
1447 		{0x90700044, 16, 86}, {0x90700044, 16, 87} };
1448 
1449 	demod_id = state->base->ts_map[demod_id];
1450 
1451 	if (mpeg_out_param_ptr->enable == MXL_ENABLE) {
1452 		if (mpeg_out_param_ptr->mpeg_mode ==
1453 		    MXL_HYDRA_MPEG_MODE_PARALLEL) {
1454 		} else {
1455 			cfg_ts_pad_mux(state, MXL_TRUE);
1456 			update_by_mnemonic(state,
1457 				0x90700010, 27, 1, MXL_FALSE);
1458 		}
1459 	}
1460 
1461 	nco_count_min =
1462 		(u32)(MXL_HYDRA_NCO_CLK / mpeg_out_param_ptr->max_mpeg_clk_rate);
1463 
1464 	if (state->base->chipversion >= 2) {
1465 		status |= update_by_mnemonic(state,
1466 			xpt_nco_clock_rate[demod_id].reg_addr, /* Reg Addr */
1467 			xpt_nco_clock_rate[demod_id].lsb_pos, /* LSB pos */
1468 			xpt_nco_clock_rate[demod_id].num_of_bits, /* Num of bits */
1469 			nco_count_min); /* Data */
1470 	} else
1471 		update_by_mnemonic(state, 0x90700044, 16, 8, nco_count_min);
1472 
1473 	if (mpeg_out_param_ptr->mpeg_clk_type == MXL_HYDRA_MPEG_CLK_CONTINUOUS)
1474 		clk_type = 1;
1475 
1476 	if (mpeg_out_param_ptr->mpeg_mode < MXL_HYDRA_MPEG_MODE_PARALLEL) {
1477 		status |= update_by_mnemonic(state,
1478 			xpt_continuous_clock[demod_id].reg_addr,
1479 			xpt_continuous_clock[demod_id].lsb_pos,
1480 			xpt_continuous_clock[demod_id].num_of_bits,
1481 			clk_type);
1482 	} else
1483 		update_by_mnemonic(state, 0x907001D4, 8, 1, clk_type);
1484 
1485 	status |= update_by_mnemonic(state,
1486 		xpt_sync_polarity[demod_id].reg_addr,
1487 		xpt_sync_polarity[demod_id].lsb_pos,
1488 		xpt_sync_polarity[demod_id].num_of_bits,
1489 		mpeg_out_param_ptr->mpeg_sync_pol);
1490 
1491 	status |= update_by_mnemonic(state,
1492 		xpt_valid_polarity[demod_id].reg_addr,
1493 		xpt_valid_polarity[demod_id].lsb_pos,
1494 		xpt_valid_polarity[demod_id].num_of_bits,
1495 		mpeg_out_param_ptr->mpeg_valid_pol);
1496 
1497 	status |= update_by_mnemonic(state,
1498 		xpt_clock_polarity[demod_id].reg_addr,
1499 		xpt_clock_polarity[demod_id].lsb_pos,
1500 		xpt_clock_polarity[demod_id].num_of_bits,
1501 		mpeg_out_param_ptr->mpeg_clk_pol);
1502 
1503 	status |= update_by_mnemonic(state,
1504 		xpt_sync_byte[demod_id].reg_addr,
1505 		xpt_sync_byte[demod_id].lsb_pos,
1506 		xpt_sync_byte[demod_id].num_of_bits,
1507 		mpeg_out_param_ptr->mpeg_sync_pulse_width);
1508 
1509 	status |= update_by_mnemonic(state,
1510 		xpt_ts_clock_phase[demod_id].reg_addr,
1511 		xpt_ts_clock_phase[demod_id].lsb_pos,
1512 		xpt_ts_clock_phase[demod_id].num_of_bits,
1513 		mpeg_out_param_ptr->mpeg_clk_phase);
1514 
1515 	status |= update_by_mnemonic(state,
1516 		xpt_lsb_first[demod_id].reg_addr,
1517 		xpt_lsb_first[demod_id].lsb_pos,
1518 		xpt_lsb_first[demod_id].num_of_bits,
1519 		mpeg_out_param_ptr->lsb_or_msb_first);
1520 
1521 	switch (mpeg_out_param_ptr->mpeg_error_indication) {
1522 	case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC:
1523 		status |= update_by_mnemonic(state,
1524 			xpt_err_replace_sync[demod_id].reg_addr,
1525 			xpt_err_replace_sync[demod_id].lsb_pos,
1526 			xpt_err_replace_sync[demod_id].num_of_bits,
1527 			MXL_TRUE);
1528 		status |= update_by_mnemonic(state,
1529 			xpt_err_replace_valid[demod_id].reg_addr,
1530 			xpt_err_replace_valid[demod_id].lsb_pos,
1531 			xpt_err_replace_valid[demod_id].num_of_bits,
1532 			MXL_FALSE);
1533 		break;
1534 
1535 	case MXL_HYDRA_MPEG_ERR_REPLACE_VALID:
1536 		status |= update_by_mnemonic(state,
1537 			xpt_err_replace_sync[demod_id].reg_addr,
1538 			xpt_err_replace_sync[demod_id].lsb_pos,
1539 			xpt_err_replace_sync[demod_id].num_of_bits,
1540 			MXL_FALSE);
1541 
1542 		status |= update_by_mnemonic(state,
1543 			xpt_err_replace_valid[demod_id].reg_addr,
1544 			xpt_err_replace_valid[demod_id].lsb_pos,
1545 			xpt_err_replace_valid[demod_id].num_of_bits,
1546 			MXL_TRUE);
1547 		break;
1548 
1549 	case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED:
1550 	default:
1551 		status |= update_by_mnemonic(state,
1552 			xpt_err_replace_sync[demod_id].reg_addr,
1553 			xpt_err_replace_sync[demod_id].lsb_pos,
1554 			xpt_err_replace_sync[demod_id].num_of_bits,
1555 			MXL_FALSE);
1556 
1557 		status |= update_by_mnemonic(state,
1558 			xpt_err_replace_valid[demod_id].reg_addr,
1559 			xpt_err_replace_valid[demod_id].lsb_pos,
1560 			xpt_err_replace_valid[demod_id].num_of_bits,
1561 			MXL_FALSE);
1562 
1563 		break;
1564 
1565 	}
1566 
1567 	if (mpeg_out_param_ptr->mpeg_mode != MXL_HYDRA_MPEG_MODE_PARALLEL) {
1568 		status |= update_by_mnemonic(state,
1569 			xpt_enable_output[demod_id].reg_addr,
1570 			xpt_enable_output[demod_id].lsb_pos,
1571 			xpt_enable_output[demod_id].num_of_bits,
1572 			mpeg_out_param_ptr->enable);
1573 	}
1574 	return status;
1575 }
1576 
1577 static int config_mux(struct mxl *state)
1578 {
1579 	update_by_mnemonic(state, 0x9070000C, 0, 1, 0);
1580 	update_by_mnemonic(state, 0x9070000C, 1, 1, 0);
1581 	update_by_mnemonic(state, 0x9070000C, 2, 1, 0);
1582 	update_by_mnemonic(state, 0x9070000C, 3, 1, 0);
1583 	update_by_mnemonic(state, 0x9070000C, 4, 1, 0);
1584 	update_by_mnemonic(state, 0x9070000C, 5, 1, 0);
1585 	update_by_mnemonic(state, 0x9070000C, 6, 1, 0);
1586 	update_by_mnemonic(state, 0x9070000C, 7, 1, 0);
1587 	update_by_mnemonic(state, 0x90700008, 0, 2, 1);
1588 	update_by_mnemonic(state, 0x90700008, 2, 2, 1);
1589 	return 0;
1590 }
1591 
1592 static int load_fw(struct mxl *state, struct mxl5xx_cfg *cfg)
1593 {
1594 	int stat = 0;
1595 	u8 *buf;
1596 
1597 	if (cfg->fw)
1598 		return firmware_download(state, cfg->fw, cfg->fw_len);
1599 
1600 	if (!cfg->fw_read)
1601 		return -1;
1602 
1603 	buf = vmalloc(0x40000);
1604 	if (!buf)
1605 		return -ENOMEM;
1606 
1607 	cfg->fw_read(cfg->fw_priv, buf, 0x40000);
1608 	stat = firmware_download(state, buf, 0x40000);
1609 	vfree(buf);
1610 
1611 	return stat;
1612 }
1613 
1614 static int validate_sku(struct mxl *state)
1615 {
1616 	u32 pad_mux_bond = 0, prcm_chip_id = 0, prcm_so_cid = 0;
1617 	int status;
1618 	u32 type = state->base->type;
1619 
1620 	status = read_by_mnemonic(state, 0x90000190, 0, 3, &pad_mux_bond);
1621 	status |= read_by_mnemonic(state, 0x80030000, 0, 12, &prcm_chip_id);
1622 	status |= read_by_mnemonic(state, 0x80030004, 24, 8, &prcm_so_cid);
1623 	if (status)
1624 		return -1;
1625 
1626 	dev_info(state->i2cdev, "padMuxBond=%08x, prcmChipId=%08x, prcmSoCId=%08x\n",
1627 		pad_mux_bond, prcm_chip_id, prcm_so_cid);
1628 
1629 	if (prcm_chip_id != 0x560) {
1630 		switch (pad_mux_bond) {
1631 		case MXL_HYDRA_SKU_ID_581:
1632 			if (type == MXL_HYDRA_DEVICE_581)
1633 				return 0;
1634 			if (type == MXL_HYDRA_DEVICE_581S) {
1635 				state->base->type = MXL_HYDRA_DEVICE_581;
1636 				return 0;
1637 			}
1638 			break;
1639 		case MXL_HYDRA_SKU_ID_584:
1640 			if (type == MXL_HYDRA_DEVICE_584)
1641 				return 0;
1642 			break;
1643 		case MXL_HYDRA_SKU_ID_544:
1644 			if (type == MXL_HYDRA_DEVICE_544)
1645 				return 0;
1646 			if (type == MXL_HYDRA_DEVICE_542)
1647 				return 0;
1648 			break;
1649 		case MXL_HYDRA_SKU_ID_582:
1650 			if (type == MXL_HYDRA_DEVICE_582)
1651 				return 0;
1652 			break;
1653 		default:
1654 			return -1;
1655 		}
1656 	} else {
1657 
1658 	}
1659 	return -1;
1660 }
1661 
1662 static int get_fwinfo(struct mxl *state)
1663 {
1664 	int status;
1665 	u32 val = 0;
1666 
1667 	status = read_by_mnemonic(state, 0x90000190, 0, 3, &val);
1668 	if (status)
1669 		return status;
1670 	dev_info(state->i2cdev, "chipID=%08x\n", val);
1671 
1672 	status = read_by_mnemonic(state, 0x80030004, 8, 8, &val);
1673 	if (status)
1674 		return status;
1675 	dev_info(state->i2cdev, "chipVer=%08x\n", val);
1676 
1677 	status = read_register(state, HYDRA_FIRMWARE_VERSION, &val);
1678 	if (status)
1679 		return status;
1680 	dev_info(state->i2cdev, "FWVer=%08x\n", val);
1681 
1682 	state->base->fwversion = val;
1683 	return status;
1684 }
1685 
1686 
1687 static u8 ts_map1_to_1[MXL_HYDRA_DEMOD_MAX] = {
1688 	MXL_HYDRA_DEMOD_ID_0,
1689 	MXL_HYDRA_DEMOD_ID_1,
1690 	MXL_HYDRA_DEMOD_ID_2,
1691 	MXL_HYDRA_DEMOD_ID_3,
1692 	MXL_HYDRA_DEMOD_ID_4,
1693 	MXL_HYDRA_DEMOD_ID_5,
1694 	MXL_HYDRA_DEMOD_ID_6,
1695 	MXL_HYDRA_DEMOD_ID_7,
1696 };
1697 
1698 static u8 ts_map54x[MXL_HYDRA_DEMOD_MAX] = {
1699 	MXL_HYDRA_DEMOD_ID_2,
1700 	MXL_HYDRA_DEMOD_ID_3,
1701 	MXL_HYDRA_DEMOD_ID_4,
1702 	MXL_HYDRA_DEMOD_ID_5,
1703 	MXL_HYDRA_DEMOD_MAX,
1704 	MXL_HYDRA_DEMOD_MAX,
1705 	MXL_HYDRA_DEMOD_MAX,
1706 	MXL_HYDRA_DEMOD_MAX,
1707 };
1708 
1709 static int probe(struct mxl *state, struct mxl5xx_cfg *cfg)
1710 {
1711 	u32 chipver;
1712 	int fw, status, j;
1713 	struct MXL_HYDRA_MPEGOUT_PARAM_T mpeg_interface_cfg;
1714 
1715 	state->base->ts_map = ts_map1_to_1;
1716 
1717 	switch (state->base->type) {
1718 	case MXL_HYDRA_DEVICE_581:
1719 	case MXL_HYDRA_DEVICE_581S:
1720 		state->base->can_clkout = 1;
1721 		state->base->demod_num = 8;
1722 		state->base->tuner_num = 1;
1723 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_581;
1724 		break;
1725 	case MXL_HYDRA_DEVICE_582:
1726 		state->base->can_clkout = 1;
1727 		state->base->demod_num = 8;
1728 		state->base->tuner_num = 3;
1729 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_582;
1730 		break;
1731 	case MXL_HYDRA_DEVICE_585:
1732 		state->base->can_clkout = 0;
1733 		state->base->demod_num = 8;
1734 		state->base->tuner_num = 4;
1735 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_585;
1736 		break;
1737 	case MXL_HYDRA_DEVICE_544:
1738 		state->base->can_clkout = 0;
1739 		state->base->demod_num = 4;
1740 		state->base->tuner_num = 4;
1741 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_544;
1742 		state->base->ts_map = ts_map54x;
1743 		break;
1744 	case MXL_HYDRA_DEVICE_541:
1745 	case MXL_HYDRA_DEVICE_541S:
1746 		state->base->can_clkout = 0;
1747 		state->base->demod_num = 4;
1748 		state->base->tuner_num = 1;
1749 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_541;
1750 		state->base->ts_map = ts_map54x;
1751 		break;
1752 	case MXL_HYDRA_DEVICE_561:
1753 	case MXL_HYDRA_DEVICE_561S:
1754 		state->base->can_clkout = 0;
1755 		state->base->demod_num = 6;
1756 		state->base->tuner_num = 1;
1757 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_561;
1758 		break;
1759 	case MXL_HYDRA_DEVICE_568:
1760 		state->base->can_clkout = 0;
1761 		state->base->demod_num = 8;
1762 		state->base->tuner_num = 1;
1763 		state->base->chan_bond = 1;
1764 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_568;
1765 		break;
1766 	case MXL_HYDRA_DEVICE_542:
1767 		state->base->can_clkout = 1;
1768 		state->base->demod_num = 4;
1769 		state->base->tuner_num = 3;
1770 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_542;
1771 		state->base->ts_map = ts_map54x;
1772 		break;
1773 	case MXL_HYDRA_DEVICE_TEST:
1774 	case MXL_HYDRA_DEVICE_584:
1775 	default:
1776 		state->base->can_clkout = 0;
1777 		state->base->demod_num = 8;
1778 		state->base->tuner_num = 4;
1779 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_584;
1780 		break;
1781 	}
1782 
1783 	status = validate_sku(state);
1784 	if (status)
1785 		return status;
1786 
1787 	update_by_mnemonic(state, 0x80030014, 9, 1, 1);
1788 	update_by_mnemonic(state, 0x8003003C, 12, 1, 1);
1789 	status = read_by_mnemonic(state, 0x80030000, 12, 4, &chipver);
1790 	if (status)
1791 		state->base->chipversion = 0;
1792 	else
1793 		state->base->chipversion = (chipver == 2) ? 2 : 1;
1794 	dev_info(state->i2cdev, "Hydra chip version %u\n",
1795 		state->base->chipversion);
1796 
1797 	cfg_dev_xtal(state, cfg->clk, cfg->cap, 0);
1798 
1799 	fw = firmware_is_alive(state);
1800 	if (!fw) {
1801 		status = load_fw(state, cfg);
1802 		if (status)
1803 			return status;
1804 	}
1805 	get_fwinfo(state);
1806 
1807 	config_mux(state);
1808 	mpeg_interface_cfg.enable = MXL_ENABLE;
1809 	mpeg_interface_cfg.lsb_or_msb_first = MXL_HYDRA_MPEG_SERIAL_MSB_1ST;
1810 	/*  supports only (0-104&139)MHz */
1811 	if (cfg->ts_clk)
1812 		mpeg_interface_cfg.max_mpeg_clk_rate = cfg->ts_clk;
1813 	else
1814 		mpeg_interface_cfg.max_mpeg_clk_rate = 69; /* 139; */
1815 	mpeg_interface_cfg.mpeg_clk_phase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG;
1816 	mpeg_interface_cfg.mpeg_clk_pol = MXL_HYDRA_MPEG_CLK_IN_PHASE;
1817 	/* MXL_HYDRA_MPEG_CLK_GAPPED; */
1818 	mpeg_interface_cfg.mpeg_clk_type = MXL_HYDRA_MPEG_CLK_CONTINUOUS;
1819 	mpeg_interface_cfg.mpeg_error_indication =
1820 		MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED;
1821 	mpeg_interface_cfg.mpeg_mode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE;
1822 	mpeg_interface_cfg.mpeg_sync_pol  = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1823 	mpeg_interface_cfg.mpeg_sync_pulse_width  = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT;
1824 	mpeg_interface_cfg.mpeg_valid_pol  = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1825 
1826 	for (j = 0; j < state->base->demod_num; j++) {
1827 		status = config_ts(state, (enum MXL_HYDRA_DEMOD_ID_E) j,
1828 				   &mpeg_interface_cfg);
1829 		if (status)
1830 			return status;
1831 	}
1832 	set_drive_strength(state, 1);
1833 	return 0;
1834 }
1835 
1836 struct dvb_frontend *mxl5xx_attach(struct i2c_adapter *i2c,
1837 	struct mxl5xx_cfg *cfg, u32 demod, u32 tuner,
1838 	int (**fn_set_input)(struct dvb_frontend *, int))
1839 {
1840 	struct mxl *state;
1841 	struct mxl_base *base;
1842 
1843 	state = kzalloc(sizeof(struct mxl), GFP_KERNEL);
1844 	if (!state)
1845 		return NULL;
1846 
1847 	state->demod = demod;
1848 	state->tuner = tuner;
1849 	state->tuner_in_use = 0xffffffff;
1850 	state->i2cdev = &i2c->dev;
1851 
1852 	base = match_base(i2c, cfg->adr);
1853 	if (base) {
1854 		base->count++;
1855 		if (base->count > base->demod_num)
1856 			goto fail;
1857 		state->base = base;
1858 	} else {
1859 		base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL);
1860 		if (!base)
1861 			goto fail;
1862 		base->i2c = i2c;
1863 		base->adr = cfg->adr;
1864 		base->type = cfg->type;
1865 		base->count = 1;
1866 		mutex_init(&base->i2c_lock);
1867 		mutex_init(&base->status_lock);
1868 		mutex_init(&base->tune_lock);
1869 		INIT_LIST_HEAD(&base->mxls);
1870 
1871 		state->base = base;
1872 		if (probe(state, cfg) < 0) {
1873 			kfree(base);
1874 			goto fail;
1875 		}
1876 		list_add(&base->mxllist, &mxllist);
1877 	}
1878 	state->fe.ops               = mxl_ops;
1879 	state->xbar[0]              = 4;
1880 	state->xbar[1]              = demod;
1881 	state->xbar[2]              = 8;
1882 	state->fe.demodulator_priv  = state;
1883 	*fn_set_input               = set_input;
1884 
1885 	list_add(&state->mxl, &base->mxls);
1886 	return &state->fe;
1887 
1888 fail:
1889 	kfree(state);
1890 	return NULL;
1891 }
1892 EXPORT_SYMBOL_GPL(mxl5xx_attach);
1893 
1894 MODULE_DESCRIPTION("MaxLinear MxL5xx DVB-S/S2 tuner-demodulator driver");
1895 MODULE_AUTHOR("Ralph and Marcus Metzler, Metzler Brothers Systementwicklung GbR");
1896 MODULE_LICENSE("GPL v2");
1897