1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for the MaxLinear MxL5xx family of tuners/demods 4 * 5 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de> 6 * Marcus Metzler <mocm@metzlerbros.de> 7 * developed for Digital Devices GmbH 8 * 9 * based on code: 10 * Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved 11 * which was released under GPL V2 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/init.h> 18 #include <linux/delay.h> 19 #include <linux/firmware.h> 20 #include <linux/i2c.h> 21 #include <linux/mutex.h> 22 #include <linux/vmalloc.h> 23 #include <asm/div64.h> 24 #include <linux/unaligned.h> 25 26 #include <media/dvb_frontend.h> 27 #include "mxl5xx.h" 28 #include "mxl5xx_regs.h" 29 #include "mxl5xx_defs.h" 30 31 #define BYTE0(v) ((v >> 0) & 0xff) 32 #define BYTE1(v) ((v >> 8) & 0xff) 33 #define BYTE2(v) ((v >> 16) & 0xff) 34 #define BYTE3(v) ((v >> 24) & 0xff) 35 36 static LIST_HEAD(mxllist); 37 38 struct mxl_base { 39 struct list_head mxllist; 40 struct list_head mxls; 41 42 u8 adr; 43 struct i2c_adapter *i2c; 44 45 u32 count; 46 u32 type; 47 u32 sku_type; 48 u32 chipversion; 49 u32 clock; 50 u32 fwversion; 51 52 u8 *ts_map; 53 u8 can_clkout; 54 u8 chan_bond; 55 u8 demod_num; 56 u8 tuner_num; 57 58 unsigned long next_tune; 59 60 struct mutex i2c_lock; 61 struct mutex status_lock; 62 struct mutex tune_lock; 63 64 u8 buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN]; 65 66 u32 cmd_size; 67 u8 cmd_data[MAX_CMD_DATA]; 68 }; 69 70 struct mxl { 71 struct list_head mxl; 72 73 struct mxl_base *base; 74 struct dvb_frontend fe; 75 struct device *i2cdev; 76 u32 demod; 77 u32 tuner; 78 u32 tuner_in_use; 79 u8 xbar[3]; 80 81 unsigned long tune_time; 82 }; 83 84 static void convert_endian(u8 flag, u32 size, u8 *d) 85 { 86 u32 i; 87 88 if (!flag) 89 return; 90 for (i = 0; i < (size & ~3); i += 4) { 91 d[i + 0] ^= d[i + 3]; 92 d[i + 3] ^= d[i + 0]; 93 d[i + 0] ^= d[i + 3]; 94 95 d[i + 1] ^= d[i + 2]; 96 d[i + 2] ^= d[i + 1]; 97 d[i + 1] ^= d[i + 2]; 98 } 99 100 switch (size & 3) { 101 case 0: 102 case 1: 103 /* do nothing */ 104 break; 105 case 2: 106 d[i + 0] ^= d[i + 1]; 107 d[i + 1] ^= d[i + 0]; 108 d[i + 0] ^= d[i + 1]; 109 break; 110 111 case 3: 112 d[i + 0] ^= d[i + 2]; 113 d[i + 2] ^= d[i + 0]; 114 d[i + 0] ^= d[i + 2]; 115 break; 116 } 117 118 } 119 120 static int i2c_write(struct i2c_adapter *adap, u8 adr, 121 u8 *data, u32 len) 122 { 123 struct i2c_msg msg = {.addr = adr, .flags = 0, 124 .buf = data, .len = len}; 125 126 return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1; 127 } 128 129 static int i2c_read(struct i2c_adapter *adap, u8 adr, 130 u8 *data, u32 len) 131 { 132 struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD, 133 .buf = data, .len = len}; 134 135 return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1; 136 } 137 138 static int i2cread(struct mxl *state, u8 *data, int len) 139 { 140 return i2c_read(state->base->i2c, state->base->adr, data, len); 141 } 142 143 static int i2cwrite(struct mxl *state, u8 *data, int len) 144 { 145 return i2c_write(state->base->i2c, state->base->adr, data, len); 146 } 147 148 static int read_register_unlocked(struct mxl *state, u32 reg, u32 *val) 149 { 150 int stat; 151 u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = { 152 MXL_HYDRA_PLID_REG_READ, 0x04, 153 GET_BYTE(reg, 0), GET_BYTE(reg, 1), 154 GET_BYTE(reg, 2), GET_BYTE(reg, 3), 155 }; 156 157 stat = i2cwrite(state, data, 158 MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE); 159 if (stat) 160 dev_err(state->i2cdev, "i2c read error 1\n"); 161 if (!stat) 162 stat = i2cread(state, (u8 *) val, 163 MXL_HYDRA_REG_SIZE_IN_BYTES); 164 le32_to_cpus(val); 165 if (stat) 166 dev_err(state->i2cdev, "i2c read error 2\n"); 167 return stat; 168 } 169 170 #define DMA_I2C_INTERRUPT_ADDR 0x8000011C 171 #define DMA_INTR_PROT_WR_CMP 0x08 172 173 static int send_command(struct mxl *state, u32 size, u8 *buf) 174 { 175 int stat; 176 u32 val, count = 10; 177 178 mutex_lock(&state->base->i2c_lock); 179 if (state->base->fwversion > 0x02010109) { 180 read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val); 181 if (DMA_INTR_PROT_WR_CMP & val) 182 dev_info(state->i2cdev, "%s busy\n", __func__); 183 while ((DMA_INTR_PROT_WR_CMP & val) && --count) { 184 mutex_unlock(&state->base->i2c_lock); 185 usleep_range(1000, 2000); 186 mutex_lock(&state->base->i2c_lock); 187 read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, 188 &val); 189 } 190 if (!count) { 191 dev_info(state->i2cdev, "%s busy\n", __func__); 192 mutex_unlock(&state->base->i2c_lock); 193 return -EBUSY; 194 } 195 } 196 stat = i2cwrite(state, buf, size); 197 mutex_unlock(&state->base->i2c_lock); 198 return stat; 199 } 200 201 static int write_register(struct mxl *state, u32 reg, u32 val) 202 { 203 int stat; 204 u8 data[MXL_HYDRA_REG_WRITE_LEN] = { 205 MXL_HYDRA_PLID_REG_WRITE, 0x08, 206 BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg), 207 BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val), 208 }; 209 mutex_lock(&state->base->i2c_lock); 210 stat = i2cwrite(state, data, sizeof(data)); 211 mutex_unlock(&state->base->i2c_lock); 212 if (stat) 213 dev_err(state->i2cdev, "i2c write error\n"); 214 return stat; 215 } 216 217 static int write_firmware_block(struct mxl *state, 218 u32 reg, u32 size, u8 *reg_data_ptr) 219 { 220 int stat; 221 u8 *buf = state->base->buf; 222 223 mutex_lock(&state->base->i2c_lock); 224 buf[0] = MXL_HYDRA_PLID_REG_WRITE; 225 buf[1] = size + 4; 226 buf[2] = GET_BYTE(reg, 0); 227 buf[3] = GET_BYTE(reg, 1); 228 buf[4] = GET_BYTE(reg, 2); 229 buf[5] = GET_BYTE(reg, 3); 230 memcpy(&buf[6], reg_data_ptr, size); 231 stat = i2cwrite(state, buf, 232 MXL_HYDRA_I2C_HDR_SIZE + 233 MXL_HYDRA_REG_SIZE_IN_BYTES + size); 234 mutex_unlock(&state->base->i2c_lock); 235 if (stat) 236 dev_err(state->i2cdev, "fw block write failed\n"); 237 return stat; 238 } 239 240 static int read_register(struct mxl *state, u32 reg, u32 *val) 241 { 242 int stat; 243 u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = { 244 MXL_HYDRA_PLID_REG_READ, 0x04, 245 GET_BYTE(reg, 0), GET_BYTE(reg, 1), 246 GET_BYTE(reg, 2), GET_BYTE(reg, 3), 247 }; 248 249 mutex_lock(&state->base->i2c_lock); 250 stat = i2cwrite(state, data, 251 MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE); 252 if (stat) 253 dev_err(state->i2cdev, "i2c read error 1\n"); 254 if (!stat) 255 stat = i2cread(state, (u8 *) val, 256 MXL_HYDRA_REG_SIZE_IN_BYTES); 257 mutex_unlock(&state->base->i2c_lock); 258 le32_to_cpus(val); 259 if (stat) 260 dev_err(state->i2cdev, "i2c read error 2\n"); 261 return stat; 262 } 263 264 static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data) 265 { 266 int stat; 267 u8 *buf = state->base->buf; 268 269 mutex_lock(&state->base->i2c_lock); 270 271 buf[0] = MXL_HYDRA_PLID_REG_READ; 272 buf[1] = size + 4; 273 buf[2] = GET_BYTE(reg, 0); 274 buf[3] = GET_BYTE(reg, 1); 275 buf[4] = GET_BYTE(reg, 2); 276 buf[5] = GET_BYTE(reg, 3); 277 stat = i2cwrite(state, buf, 278 MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES); 279 if (!stat) { 280 stat = i2cread(state, data, size); 281 convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data); 282 } 283 mutex_unlock(&state->base->i2c_lock); 284 return stat; 285 } 286 287 static int read_by_mnemonic(struct mxl *state, 288 u32 reg, u8 lsbloc, u8 numofbits, u32 *val) 289 { 290 u32 data = 0, mask = 0; 291 int stat; 292 293 stat = read_register(state, reg, &data); 294 if (stat) 295 return stat; 296 mask = MXL_GET_REG_MASK_32(lsbloc, numofbits); 297 data &= mask; 298 data >>= lsbloc; 299 *val = data; 300 return 0; 301 } 302 303 304 static int update_by_mnemonic(struct mxl *state, 305 u32 reg, u8 lsbloc, u8 numofbits, u32 val) 306 { 307 u32 data, mask; 308 int stat; 309 310 stat = read_register(state, reg, &data); 311 if (stat) 312 return stat; 313 mask = MXL_GET_REG_MASK_32(lsbloc, numofbits); 314 data = (data & ~mask) | ((val << lsbloc) & mask); 315 stat = write_register(state, reg, data); 316 return stat; 317 } 318 319 static int firmware_is_alive(struct mxl *state) 320 { 321 u32 hb0, hb1; 322 323 if (read_register(state, HYDRA_HEAR_BEAT, &hb0)) 324 return 0; 325 msleep(20); 326 if (read_register(state, HYDRA_HEAR_BEAT, &hb1)) 327 return 0; 328 if (hb1 == hb0) 329 return 0; 330 return 1; 331 } 332 333 static int init(struct dvb_frontend *fe) 334 { 335 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 336 337 /* init fe stats */ 338 p->strength.len = 1; 339 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 340 p->cnr.len = 1; 341 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 342 p->pre_bit_error.len = 1; 343 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 344 p->pre_bit_count.len = 1; 345 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 346 p->post_bit_error.len = 1; 347 p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 348 p->post_bit_count.len = 1; 349 p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 350 351 return 0; 352 } 353 354 static void release(struct dvb_frontend *fe) 355 { 356 struct mxl *state = fe->demodulator_priv; 357 358 list_del(&state->mxl); 359 /* Release one frontend, two more shall take its place! */ 360 state->base->count--; 361 if (state->base->count == 0) { 362 list_del(&state->base->mxllist); 363 kfree(state->base); 364 } 365 kfree(state); 366 } 367 368 static enum dvbfe_algo get_algo(struct dvb_frontend *fe) 369 { 370 return DVBFE_ALGO_HW; 371 } 372 373 static u32 gold2root(u32 gold) 374 { 375 u32 x, g, tmp = gold; 376 377 if (tmp >= 0x3ffff) 378 tmp = 0; 379 for (g = 0, x = 1; g < tmp; g++) 380 x = (((x ^ (x >> 7)) & 1) << 17) | (x >> 1); 381 return x; 382 } 383 384 static int cfg_scrambler(struct mxl *state, u32 gold) 385 { 386 u32 root; 387 u8 buf[26] = { 388 MXL_HYDRA_PLID_CMD_WRITE, 24, 389 0, MXL_HYDRA_DEMOD_SCRAMBLE_CODE_CMD, 0, 0, 390 state->demod, 0, 0, 0, 391 0, 0, 0, 0, 0, 0, 0, 0, 392 0, 0, 0, 0, 1, 0, 0, 0, 393 }; 394 395 root = gold2root(gold); 396 397 buf[25] = (root >> 24) & 0xff; 398 buf[24] = (root >> 16) & 0xff; 399 buf[23] = (root >> 8) & 0xff; 400 buf[22] = root & 0xff; 401 402 return send_command(state, sizeof(buf), buf); 403 } 404 405 static int cfg_demod_abort_tune(struct mxl *state) 406 { 407 struct MXL_HYDRA_DEMOD_ABORT_TUNE_T abort_tune_cmd; 408 u8 cmd_size = sizeof(abort_tune_cmd); 409 u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN]; 410 411 abort_tune_cmd.demod_id = state->demod; 412 BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE, 413 cmd_size, &abort_tune_cmd, cmd_buff); 414 return send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE, 415 &cmd_buff[0]); 416 } 417 418 static int send_master_cmd(struct dvb_frontend *fe, 419 struct dvb_diseqc_master_cmd *cmd) 420 { 421 /*struct mxl *state = fe->demodulator_priv;*/ 422 423 return 0; /*CfgDemodAbortTune(state);*/ 424 } 425 426 static int set_parameters(struct dvb_frontend *fe) 427 { 428 struct mxl *state = fe->demodulator_priv; 429 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 430 struct MXL_HYDRA_DEMOD_PARAM_T demod_chan_cfg; 431 u8 cmd_size = sizeof(demod_chan_cfg); 432 u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN]; 433 u32 srange = 10; 434 int stat; 435 436 if (p->frequency < 950000 || p->frequency > 2150000) 437 return -EINVAL; 438 if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000) 439 return -EINVAL; 440 441 /* CfgDemodAbortTune(state); */ 442 443 switch (p->delivery_system) { 444 case SYS_DSS: 445 demod_chan_cfg.standard = MXL_HYDRA_DSS; 446 demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO; 447 break; 448 case SYS_DVBS: 449 srange = p->symbol_rate / 1000000; 450 if (srange > 10) 451 srange = 10; 452 demod_chan_cfg.standard = MXL_HYDRA_DVBS; 453 demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_0_35; 454 demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_QPSK; 455 demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_OFF; 456 break; 457 case SYS_DVBS2: 458 demod_chan_cfg.standard = MXL_HYDRA_DVBS2; 459 demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO; 460 demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_AUTO; 461 demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_AUTO; 462 cfg_scrambler(state, p->scrambling_sequence_index); 463 break; 464 default: 465 return -EINVAL; 466 } 467 demod_chan_cfg.tuner_index = state->tuner; 468 demod_chan_cfg.demod_index = state->demod; 469 demod_chan_cfg.frequency_in_hz = p->frequency * 1000; 470 demod_chan_cfg.symbol_rate_in_hz = p->symbol_rate; 471 demod_chan_cfg.max_carrier_offset_in_mhz = srange; 472 demod_chan_cfg.spectrum_inversion = MXL_HYDRA_SPECTRUM_AUTO; 473 demod_chan_cfg.fec_code_rate = MXL_HYDRA_FEC_AUTO; 474 475 mutex_lock(&state->base->tune_lock); 476 if (time_after(jiffies + msecs_to_jiffies(200), 477 state->base->next_tune)) 478 while (time_before(jiffies, state->base->next_tune)) 479 usleep_range(10000, 11000); 480 state->base->next_tune = jiffies + msecs_to_jiffies(100); 481 state->tuner_in_use = state->tuner; 482 BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE, 483 cmd_size, &demod_chan_cfg, cmd_buff); 484 stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE, 485 &cmd_buff[0]); 486 mutex_unlock(&state->base->tune_lock); 487 return stat; 488 } 489 490 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable); 491 492 static int sleep(struct dvb_frontend *fe) 493 { 494 struct mxl *state = fe->demodulator_priv; 495 struct mxl *p; 496 497 cfg_demod_abort_tune(state); 498 if (state->tuner_in_use != 0xffffffff) { 499 mutex_lock(&state->base->tune_lock); 500 state->tuner_in_use = 0xffffffff; 501 list_for_each_entry(p, &state->base->mxls, mxl) { 502 if (p->tuner_in_use == state->tuner) 503 break; 504 } 505 if (&p->mxl == &state->base->mxls) 506 enable_tuner(state, state->tuner, 0); 507 mutex_unlock(&state->base->tune_lock); 508 } 509 return 0; 510 } 511 512 static int read_snr(struct dvb_frontend *fe) 513 { 514 struct mxl *state = fe->demodulator_priv; 515 int stat; 516 u32 reg_data = 0; 517 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 518 519 mutex_lock(&state->base->status_lock); 520 HYDRA_DEMOD_STATUS_LOCK(state, state->demod); 521 stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET + 522 HYDRA_DMD_STATUS_OFFSET(state->demod)), 523 ®_data); 524 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); 525 mutex_unlock(&state->base->status_lock); 526 527 p->cnr.stat[0].scale = FE_SCALE_DECIBEL; 528 p->cnr.stat[0].svalue = (s16)reg_data * 10; 529 530 return stat; 531 } 532 533 static int read_ber(struct dvb_frontend *fe) 534 { 535 struct mxl *state = fe->demodulator_priv; 536 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 537 u32 reg[8]; 538 539 mutex_lock(&state->base->status_lock); 540 HYDRA_DEMOD_STATUS_LOCK(state, state->demod); 541 read_register_block(state, 542 (HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET + 543 HYDRA_DMD_STATUS_OFFSET(state->demod)), 544 (4 * sizeof(u32)), 545 (u8 *) ®[0]); 546 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); 547 548 switch (p->delivery_system) { 549 case SYS_DSS: 550 case SYS_DVBS: 551 p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; 552 p->pre_bit_error.stat[0].uvalue = reg[2]; 553 p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; 554 p->pre_bit_count.stat[0].uvalue = reg[3]; 555 break; 556 default: 557 break; 558 } 559 560 read_register_block(state, 561 (HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET + 562 HYDRA_DMD_STATUS_OFFSET(state->demod)), 563 (7 * sizeof(u32)), 564 (u8 *) ®[0]); 565 566 switch (p->delivery_system) { 567 case SYS_DSS: 568 case SYS_DVBS: 569 p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; 570 p->post_bit_error.stat[0].uvalue = reg[5]; 571 p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 572 p->post_bit_count.stat[0].uvalue = reg[6]; 573 break; 574 case SYS_DVBS2: 575 p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; 576 p->post_bit_error.stat[0].uvalue = reg[1]; 577 p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 578 p->post_bit_count.stat[0].uvalue = reg[2]; 579 break; 580 default: 581 break; 582 } 583 584 mutex_unlock(&state->base->status_lock); 585 586 return 0; 587 } 588 589 static int read_signal_strength(struct dvb_frontend *fe) 590 { 591 struct mxl *state = fe->demodulator_priv; 592 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 593 int stat; 594 u32 reg_data = 0; 595 596 mutex_lock(&state->base->status_lock); 597 HYDRA_DEMOD_STATUS_LOCK(state, state->demod); 598 stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR + 599 HYDRA_DMD_STATUS_OFFSET(state->demod)), 600 ®_data); 601 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); 602 mutex_unlock(&state->base->status_lock); 603 604 p->strength.stat[0].scale = FE_SCALE_DECIBEL; 605 p->strength.stat[0].svalue = (s16) reg_data * 10; /* fix scale */ 606 607 return stat; 608 } 609 610 static int read_status(struct dvb_frontend *fe, enum fe_status *status) 611 { 612 struct mxl *state = fe->demodulator_priv; 613 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 614 u32 reg_data = 0; 615 616 mutex_lock(&state->base->status_lock); 617 HYDRA_DEMOD_STATUS_LOCK(state, state->demod); 618 read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET + 619 HYDRA_DMD_STATUS_OFFSET(state->demod)), 620 ®_data); 621 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); 622 mutex_unlock(&state->base->status_lock); 623 624 *status = (reg_data == 1) ? 0x1f : 0; 625 626 /* signal statistics */ 627 628 /* signal strength is always available */ 629 read_signal_strength(fe); 630 631 if (*status & FE_HAS_CARRIER) 632 read_snr(fe); 633 else 634 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 635 636 if (*status & FE_HAS_SYNC) 637 read_ber(fe); 638 else { 639 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 640 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 641 p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 642 p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 643 } 644 645 return 0; 646 } 647 648 static int tune(struct dvb_frontend *fe, bool re_tune, 649 unsigned int mode_flags, 650 unsigned int *delay, enum fe_status *status) 651 { 652 struct mxl *state = fe->demodulator_priv; 653 int r = 0; 654 655 *delay = HZ / 2; 656 if (re_tune) { 657 r = set_parameters(fe); 658 if (r) 659 return r; 660 state->tune_time = jiffies; 661 } 662 663 return read_status(fe, status); 664 } 665 666 static enum fe_code_rate conv_fec(enum MXL_HYDRA_FEC_E fec) 667 { 668 enum fe_code_rate fec2fec[11] = { 669 FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3, 670 FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7, 671 FEC_7_8, FEC_8_9, FEC_9_10 672 }; 673 674 if (fec > MXL_HYDRA_FEC_9_10) 675 return FEC_NONE; 676 return fec2fec[fec]; 677 } 678 679 static int get_frontend(struct dvb_frontend *fe, 680 struct dtv_frontend_properties *p) 681 { 682 struct mxl *state = fe->demodulator_priv; 683 u32 reg_data[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE]; 684 u32 freq; 685 686 mutex_lock(&state->base->status_lock); 687 HYDRA_DEMOD_STATUS_LOCK(state, state->demod); 688 read_register_block(state, 689 (HYDRA_DMD_STANDARD_ADDR_OFFSET + 690 HYDRA_DMD_STATUS_OFFSET(state->demod)), 691 (MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), /* 25 * 4 bytes */ 692 (u8 *) ®_data[0]); 693 /* read demod channel parameters */ 694 read_register_block(state, 695 (HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR + 696 HYDRA_DMD_STATUS_OFFSET(state->demod)), 697 (4), /* 4 bytes */ 698 (u8 *) &freq); 699 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); 700 mutex_unlock(&state->base->status_lock); 701 702 dev_dbg(state->i2cdev, "freq=%u delsys=%u srate=%u\n", 703 freq * 1000, reg_data[DMD_STANDARD_ADDR], 704 reg_data[DMD_SYMBOL_RATE_ADDR]); 705 p->symbol_rate = reg_data[DMD_SYMBOL_RATE_ADDR]; 706 p->frequency = freq; 707 /* 708 * p->delivery_system = 709 * (MXL_HYDRA_BCAST_STD_E) regData[DMD_STANDARD_ADDR]; 710 * p->inversion = 711 * (MXL_HYDRA_SPECTRUM_E) regData[DMD_SPECTRUM_INVERSION_ADDR]; 712 * freqSearchRangeKHz = 713 * (regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]); 714 */ 715 716 p->fec_inner = conv_fec(reg_data[DMD_FEC_CODE_RATE_ADDR]); 717 switch (p->delivery_system) { 718 case SYS_DSS: 719 break; 720 case SYS_DVBS2: 721 switch ((enum MXL_HYDRA_PILOTS_E) 722 reg_data[DMD_DVBS2_PILOT_ON_OFF_ADDR]) { 723 case MXL_HYDRA_PILOTS_OFF: 724 p->pilot = PILOT_OFF; 725 break; 726 case MXL_HYDRA_PILOTS_ON: 727 p->pilot = PILOT_ON; 728 break; 729 default: 730 break; 731 } 732 fallthrough; 733 case SYS_DVBS: 734 switch ((enum MXL_HYDRA_MODULATION_E) 735 reg_data[DMD_MODULATION_SCHEME_ADDR]) { 736 case MXL_HYDRA_MOD_QPSK: 737 p->modulation = QPSK; 738 break; 739 case MXL_HYDRA_MOD_8PSK: 740 p->modulation = PSK_8; 741 break; 742 default: 743 break; 744 } 745 switch ((enum MXL_HYDRA_ROLLOFF_E) 746 reg_data[DMD_SPECTRUM_ROLL_OFF_ADDR]) { 747 case MXL_HYDRA_ROLLOFF_0_20: 748 p->rolloff = ROLLOFF_20; 749 break; 750 case MXL_HYDRA_ROLLOFF_0_35: 751 p->rolloff = ROLLOFF_35; 752 break; 753 case MXL_HYDRA_ROLLOFF_0_25: 754 p->rolloff = ROLLOFF_25; 755 break; 756 default: 757 break; 758 } 759 break; 760 default: 761 return -EINVAL; 762 } 763 return 0; 764 } 765 766 static int set_input(struct dvb_frontend *fe, int input) 767 { 768 struct mxl *state = fe->demodulator_priv; 769 770 state->tuner = input; 771 return 0; 772 } 773 774 static const struct dvb_frontend_ops mxl_ops = { 775 .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS }, 776 .info = { 777 .name = "MaxLinear MxL5xx DVB-S/S2 tuner-demodulator", 778 .frequency_min_hz = 300 * MHz, 779 .frequency_max_hz = 2350 * MHz, 780 .symbol_rate_min = 1000000, 781 .symbol_rate_max = 45000000, 782 .caps = FE_CAN_INVERSION_AUTO | 783 FE_CAN_FEC_AUTO | 784 FE_CAN_QPSK | 785 FE_CAN_2G_MODULATION 786 }, 787 .init = init, 788 .release = release, 789 .get_frontend_algo = get_algo, 790 .tune = tune, 791 .read_status = read_status, 792 .sleep = sleep, 793 .get_frontend = get_frontend, 794 .diseqc_send_master_cmd = send_master_cmd, 795 }; 796 797 static struct mxl_base *match_base(struct i2c_adapter *i2c, u8 adr) 798 { 799 struct mxl_base *p; 800 801 list_for_each_entry(p, &mxllist, mxllist) 802 if (p->i2c == i2c && p->adr == adr) 803 return p; 804 return NULL; 805 } 806 807 static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable) 808 { 809 if (state->base->can_clkout || !enable) 810 update_by_mnemonic(state, 0x90200054, 23, 1, enable); 811 812 if (freq == 24000000) 813 write_register(state, HYDRA_CRYSTAL_SETTING, 0); 814 else 815 write_register(state, HYDRA_CRYSTAL_SETTING, 1); 816 817 write_register(state, HYDRA_CRYSTAL_CAP, cap); 818 } 819 820 static u32 get_big_endian(u8 num_of_bits, const u8 buf[]) 821 { 822 u32 ret_value = 0; 823 824 switch (num_of_bits) { 825 case 24: 826 ret_value = (((u32) buf[0]) << 16) | 827 (((u32) buf[1]) << 8) | buf[2]; 828 break; 829 case 32: 830 ret_value = (((u32) buf[0]) << 24) | 831 (((u32) buf[1]) << 16) | 832 (((u32) buf[2]) << 8) | buf[3]; 833 break; 834 default: 835 break; 836 } 837 838 return ret_value; 839 } 840 841 static int write_fw_segment(struct mxl *state, 842 u32 mem_addr, u32 total_size, u8 *data_ptr) 843 { 844 int status; 845 u32 data_count = 0; 846 u32 size = 0; 847 u32 orig_size = 0; 848 u8 *w_buf_ptr = NULL; 849 u32 block_size = ((MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH - 850 (MXL_HYDRA_I2C_HDR_SIZE + 851 MXL_HYDRA_REG_SIZE_IN_BYTES)) / 4) * 4; 852 u8 w_msg_buffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH - 853 (MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)]; 854 855 do { 856 size = orig_size = (((u32)(data_count + block_size)) > total_size) ? 857 (total_size - data_count) : block_size; 858 859 if (orig_size & 3) 860 size = (orig_size + 4) & ~3; 861 w_buf_ptr = &w_msg_buffer[0]; 862 memset((void *) w_buf_ptr, 0, size); 863 memcpy((void *) w_buf_ptr, (void *) data_ptr, orig_size); 864 convert_endian(1, size, w_buf_ptr); 865 status = write_firmware_block(state, mem_addr, size, w_buf_ptr); 866 if (status) 867 return status; 868 data_count += size; 869 mem_addr += size; 870 data_ptr += size; 871 } while (data_count < total_size); 872 873 return status; 874 } 875 876 static int do_firmware_download(struct mxl *state, u8 *mbin_buffer_ptr, 877 u32 mbin_buffer_size) 878 879 { 880 int status; 881 u32 index = 0; 882 u32 seg_length = 0; 883 u32 seg_address = 0; 884 struct MBIN_FILE_T *mbin_ptr = (struct MBIN_FILE_T *)mbin_buffer_ptr; 885 struct MBIN_SEGMENT_T *segment_ptr; 886 enum MXL_BOOL_E xcpu_fw_flag = MXL_FALSE; 887 888 if (mbin_ptr->header.id != MBIN_FILE_HEADER_ID) { 889 dev_err(state->i2cdev, "%s: Invalid file header ID (%c)\n", 890 __func__, mbin_ptr->header.id); 891 return -EINVAL; 892 } 893 status = write_register(state, FW_DL_SIGN_ADDR, 0); 894 if (status) 895 return status; 896 segment_ptr = (struct MBIN_SEGMENT_T *) (&mbin_ptr->data[0]); 897 for (index = 0; index < mbin_ptr->header.num_segments; index++) { 898 if (segment_ptr->header.id != MBIN_SEGMENT_HEADER_ID) { 899 dev_err(state->i2cdev, "%s: Invalid segment header ID (%c)\n", 900 __func__, segment_ptr->header.id); 901 return -EINVAL; 902 } 903 seg_length = get_big_endian(24, 904 &(segment_ptr->header.len24[0])); 905 seg_address = get_big_endian(32, 906 &(segment_ptr->header.address[0])); 907 908 if (state->base->type == MXL_HYDRA_DEVICE_568) { 909 if ((((seg_address & 0x90760000) == 0x90760000) || 910 ((seg_address & 0x90740000) == 0x90740000)) && 911 (xcpu_fw_flag == MXL_FALSE)) { 912 update_by_mnemonic(state, 0x8003003C, 0, 1, 1); 913 msleep(200); 914 write_register(state, 0x90720000, 0); 915 usleep_range(10000, 11000); 916 xcpu_fw_flag = MXL_TRUE; 917 } 918 status = write_fw_segment(state, seg_address, 919 seg_length, 920 (u8 *) segment_ptr->data); 921 } else { 922 if (((seg_address & 0x90760000) != 0x90760000) && 923 ((seg_address & 0x90740000) != 0x90740000)) 924 status = write_fw_segment(state, seg_address, 925 seg_length, (u8 *) segment_ptr->data); 926 } 927 if (status) 928 return status; 929 segment_ptr = (struct MBIN_SEGMENT_T *) 930 &(segment_ptr->data[((seg_length + 3) / 4) * 4]); 931 } 932 return status; 933 } 934 935 static int check_fw(struct mxl *state, u8 *mbin, u32 mbin_len) 936 { 937 struct MBIN_FILE_HEADER_T *fh = (struct MBIN_FILE_HEADER_T *) mbin; 938 u32 flen = (fh->image_size24[0] << 16) | 939 (fh->image_size24[1] << 8) | fh->image_size24[2]; 940 u8 *fw, cs = 0; 941 u32 i; 942 943 if (fh->id != 'M' || fh->fmt_version != '1' || flen > 0x3FFF0) { 944 dev_info(state->i2cdev, "Invalid FW Header\n"); 945 return -1; 946 } 947 fw = mbin + sizeof(struct MBIN_FILE_HEADER_T); 948 for (i = 0; i < flen; i += 1) 949 cs += fw[i]; 950 if (cs != fh->image_checksum) { 951 dev_info(state->i2cdev, "Invalid FW Checksum\n"); 952 return -1; 953 } 954 return 0; 955 } 956 957 static int firmware_download(struct mxl *state, u8 *mbin, u32 mbin_len) 958 { 959 int status; 960 u32 reg_data = 0; 961 struct MXL_HYDRA_SKU_COMMAND_T dev_sku_cfg; 962 u8 cmd_size = sizeof(struct MXL_HYDRA_SKU_COMMAND_T); 963 u8 cmd_buff[sizeof(struct MXL_HYDRA_SKU_COMMAND_T) + 6]; 964 965 if (check_fw(state, mbin, mbin_len)) 966 return -1; 967 968 /* put CPU into reset */ 969 status = update_by_mnemonic(state, 0x8003003C, 0, 1, 0); 970 if (status) 971 return status; 972 usleep_range(1000, 2000); 973 974 /* Reset TX FIFO's, BBAND, XBAR */ 975 status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG, 976 HYDRA_RESET_TRANSPORT_FIFO_DATA); 977 if (status) 978 return status; 979 status = write_register(state, HYDRA_RESET_BBAND_REG, 980 HYDRA_RESET_BBAND_DATA); 981 if (status) 982 return status; 983 status = write_register(state, HYDRA_RESET_XBAR_REG, 984 HYDRA_RESET_XBAR_DATA); 985 if (status) 986 return status; 987 988 /* Disable clock to Baseband, Wideband, SerDes, 989 * Alias ext & Transport modules 990 */ 991 status = write_register(state, HYDRA_MODULES_CLK_2_REG, 992 HYDRA_DISABLE_CLK_2); 993 if (status) 994 return status; 995 /* Clear Software & Host interrupt status - (Clear on read) */ 996 status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, ®_data); 997 if (status) 998 return status; 999 status = do_firmware_download(state, mbin, mbin_len); 1000 if (status) 1001 return status; 1002 1003 if (state->base->type == MXL_HYDRA_DEVICE_568) { 1004 usleep_range(10000, 11000); 1005 1006 /* bring XCPU out of reset */ 1007 status = write_register(state, 0x90720000, 1); 1008 if (status) 1009 return status; 1010 msleep(500); 1011 1012 /* Enable XCPU UART message processing in MCPU */ 1013 status = write_register(state, 0x9076B510, 1); 1014 if (status) 1015 return status; 1016 } else { 1017 /* Bring CPU out of reset */ 1018 status = update_by_mnemonic(state, 0x8003003C, 0, 1, 1); 1019 if (status) 1020 return status; 1021 /* Wait until FW boots */ 1022 msleep(150); 1023 } 1024 1025 /* Initialize XPT XBAR */ 1026 status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210); 1027 if (status) 1028 return status; 1029 1030 if (!firmware_is_alive(state)) 1031 return -1; 1032 1033 dev_info(state->i2cdev, "Hydra FW alive. Hail!\n"); 1034 1035 /* sometimes register values are wrong shortly 1036 * after first heart beats 1037 */ 1038 msleep(50); 1039 1040 dev_sku_cfg.sku_type = state->base->sku_type; 1041 BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE, 1042 cmd_size, &dev_sku_cfg, cmd_buff); 1043 status = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE, 1044 &cmd_buff[0]); 1045 1046 return status; 1047 } 1048 1049 static int cfg_ts_pad_mux(struct mxl *state, enum MXL_BOOL_E enable_serial_ts) 1050 { 1051 int status = 0; 1052 u32 pad_mux_value = 0; 1053 1054 if (enable_serial_ts == MXL_TRUE) { 1055 pad_mux_value = 0; 1056 if ((state->base->type == MXL_HYDRA_DEVICE_541) || 1057 (state->base->type == MXL_HYDRA_DEVICE_541S)) 1058 pad_mux_value = 2; 1059 } else { 1060 if ((state->base->type == MXL_HYDRA_DEVICE_581) || 1061 (state->base->type == MXL_HYDRA_DEVICE_581S)) 1062 pad_mux_value = 2; 1063 else 1064 pad_mux_value = 3; 1065 } 1066 1067 switch (state->base->type) { 1068 case MXL_HYDRA_DEVICE_561: 1069 case MXL_HYDRA_DEVICE_581: 1070 case MXL_HYDRA_DEVICE_541: 1071 case MXL_HYDRA_DEVICE_541S: 1072 case MXL_HYDRA_DEVICE_561S: 1073 case MXL_HYDRA_DEVICE_581S: 1074 status |= update_by_mnemonic(state, 0x90000170, 24, 3, 1075 pad_mux_value); 1076 status |= update_by_mnemonic(state, 0x90000170, 28, 3, 1077 pad_mux_value); 1078 status |= update_by_mnemonic(state, 0x90000174, 0, 3, 1079 pad_mux_value); 1080 status |= update_by_mnemonic(state, 0x90000174, 4, 3, 1081 pad_mux_value); 1082 status |= update_by_mnemonic(state, 0x90000174, 8, 3, 1083 pad_mux_value); 1084 status |= update_by_mnemonic(state, 0x90000174, 12, 3, 1085 pad_mux_value); 1086 status |= update_by_mnemonic(state, 0x90000174, 16, 3, 1087 pad_mux_value); 1088 status |= update_by_mnemonic(state, 0x90000174, 20, 3, 1089 pad_mux_value); 1090 status |= update_by_mnemonic(state, 0x90000174, 24, 3, 1091 pad_mux_value); 1092 status |= update_by_mnemonic(state, 0x90000174, 28, 3, 1093 pad_mux_value); 1094 status |= update_by_mnemonic(state, 0x90000178, 0, 3, 1095 pad_mux_value); 1096 status |= update_by_mnemonic(state, 0x90000178, 4, 3, 1097 pad_mux_value); 1098 status |= update_by_mnemonic(state, 0x90000178, 8, 3, 1099 pad_mux_value); 1100 break; 1101 1102 case MXL_HYDRA_DEVICE_544: 1103 case MXL_HYDRA_DEVICE_542: 1104 status |= update_by_mnemonic(state, 0x9000016C, 4, 3, 1); 1105 status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 0); 1106 status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 0); 1107 status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 0); 1108 status |= update_by_mnemonic(state, 0x90000170, 0, 3, 0); 1109 status |= update_by_mnemonic(state, 0x90000178, 12, 3, 1); 1110 status |= update_by_mnemonic(state, 0x90000178, 16, 3, 1); 1111 status |= update_by_mnemonic(state, 0x90000178, 20, 3, 1); 1112 status |= update_by_mnemonic(state, 0x90000178, 24, 3, 1); 1113 status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 1); 1114 status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 1); 1115 if (enable_serial_ts == MXL_ENABLE) { 1116 status |= update_by_mnemonic(state, 1117 0x90000170, 4, 3, 0); 1118 status |= update_by_mnemonic(state, 1119 0x90000170, 8, 3, 0); 1120 status |= update_by_mnemonic(state, 1121 0x90000170, 12, 3, 0); 1122 status |= update_by_mnemonic(state, 1123 0x90000170, 16, 3, 0); 1124 status |= update_by_mnemonic(state, 1125 0x90000170, 20, 3, 1); 1126 status |= update_by_mnemonic(state, 1127 0x90000170, 24, 3, 1); 1128 status |= update_by_mnemonic(state, 1129 0x90000170, 28, 3, 2); 1130 status |= update_by_mnemonic(state, 1131 0x90000174, 0, 3, 2); 1132 status |= update_by_mnemonic(state, 1133 0x90000174, 4, 3, 2); 1134 status |= update_by_mnemonic(state, 1135 0x90000174, 8, 3, 2); 1136 status |= update_by_mnemonic(state, 1137 0x90000174, 12, 3, 2); 1138 status |= update_by_mnemonic(state, 1139 0x90000174, 16, 3, 2); 1140 status |= update_by_mnemonic(state, 1141 0x90000174, 20, 3, 2); 1142 status |= update_by_mnemonic(state, 1143 0x90000174, 24, 3, 2); 1144 status |= update_by_mnemonic(state, 1145 0x90000174, 28, 3, 2); 1146 status |= update_by_mnemonic(state, 1147 0x90000178, 0, 3, 2); 1148 status |= update_by_mnemonic(state, 1149 0x90000178, 4, 3, 2); 1150 status |= update_by_mnemonic(state, 1151 0x90000178, 8, 3, 2); 1152 } else { 1153 status |= update_by_mnemonic(state, 1154 0x90000170, 4, 3, 3); 1155 status |= update_by_mnemonic(state, 1156 0x90000170, 8, 3, 3); 1157 status |= update_by_mnemonic(state, 1158 0x90000170, 12, 3, 3); 1159 status |= update_by_mnemonic(state, 1160 0x90000170, 16, 3, 3); 1161 status |= update_by_mnemonic(state, 1162 0x90000170, 20, 3, 3); 1163 status |= update_by_mnemonic(state, 1164 0x90000170, 24, 3, 3); 1165 status |= update_by_mnemonic(state, 1166 0x90000170, 28, 3, 3); 1167 status |= update_by_mnemonic(state, 1168 0x90000174, 0, 3, 3); 1169 status |= update_by_mnemonic(state, 1170 0x90000174, 4, 3, 3); 1171 status |= update_by_mnemonic(state, 1172 0x90000174, 8, 3, 3); 1173 status |= update_by_mnemonic(state, 1174 0x90000174, 12, 3, 3); 1175 status |= update_by_mnemonic(state, 1176 0x90000174, 16, 3, 3); 1177 status |= update_by_mnemonic(state, 1178 0x90000174, 20, 3, 1); 1179 status |= update_by_mnemonic(state, 1180 0x90000174, 24, 3, 1); 1181 status |= update_by_mnemonic(state, 1182 0x90000174, 28, 3, 1); 1183 status |= update_by_mnemonic(state, 1184 0x90000178, 0, 3, 1); 1185 status |= update_by_mnemonic(state, 1186 0x90000178, 4, 3, 1); 1187 status |= update_by_mnemonic(state, 1188 0x90000178, 8, 3, 1); 1189 } 1190 break; 1191 1192 case MXL_HYDRA_DEVICE_568: 1193 if (enable_serial_ts == MXL_FALSE) { 1194 status |= update_by_mnemonic(state, 1195 0x9000016C, 8, 3, 5); 1196 status |= update_by_mnemonic(state, 1197 0x9000016C, 12, 3, 5); 1198 status |= update_by_mnemonic(state, 1199 0x9000016C, 16, 3, 5); 1200 status |= update_by_mnemonic(state, 1201 0x9000016C, 20, 3, 5); 1202 status |= update_by_mnemonic(state, 1203 0x9000016C, 24, 3, 5); 1204 status |= update_by_mnemonic(state, 1205 0x9000016C, 28, 3, 5); 1206 status |= update_by_mnemonic(state, 1207 0x90000170, 0, 3, 5); 1208 status |= update_by_mnemonic(state, 1209 0x90000170, 4, 3, 5); 1210 status |= update_by_mnemonic(state, 1211 0x90000170, 8, 3, 5); 1212 status |= update_by_mnemonic(state, 1213 0x90000170, 12, 3, 5); 1214 status |= update_by_mnemonic(state, 1215 0x90000170, 16, 3, 5); 1216 status |= update_by_mnemonic(state, 1217 0x90000170, 20, 3, 5); 1218 1219 status |= update_by_mnemonic(state, 1220 0x90000170, 24, 3, pad_mux_value); 1221 status |= update_by_mnemonic(state, 1222 0x90000174, 0, 3, pad_mux_value); 1223 status |= update_by_mnemonic(state, 1224 0x90000174, 4, 3, pad_mux_value); 1225 status |= update_by_mnemonic(state, 1226 0x90000174, 8, 3, pad_mux_value); 1227 status |= update_by_mnemonic(state, 1228 0x90000174, 12, 3, pad_mux_value); 1229 status |= update_by_mnemonic(state, 1230 0x90000174, 16, 3, pad_mux_value); 1231 status |= update_by_mnemonic(state, 1232 0x90000174, 20, 3, pad_mux_value); 1233 status |= update_by_mnemonic(state, 1234 0x90000174, 24, 3, pad_mux_value); 1235 status |= update_by_mnemonic(state, 1236 0x90000174, 28, 3, pad_mux_value); 1237 status |= update_by_mnemonic(state, 1238 0x90000178, 0, 3, pad_mux_value); 1239 status |= update_by_mnemonic(state, 1240 0x90000178, 4, 3, pad_mux_value); 1241 1242 status |= update_by_mnemonic(state, 1243 0x90000178, 8, 3, 5); 1244 status |= update_by_mnemonic(state, 1245 0x90000178, 12, 3, 5); 1246 status |= update_by_mnemonic(state, 1247 0x90000178, 16, 3, 5); 1248 status |= update_by_mnemonic(state, 1249 0x90000178, 20, 3, 5); 1250 status |= update_by_mnemonic(state, 1251 0x90000178, 24, 3, 5); 1252 status |= update_by_mnemonic(state, 1253 0x90000178, 28, 3, 5); 1254 status |= update_by_mnemonic(state, 1255 0x9000017C, 0, 3, 5); 1256 status |= update_by_mnemonic(state, 1257 0x9000017C, 4, 3, 5); 1258 } else { 1259 status |= update_by_mnemonic(state, 1260 0x90000170, 4, 3, pad_mux_value); 1261 status |= update_by_mnemonic(state, 1262 0x90000170, 8, 3, pad_mux_value); 1263 status |= update_by_mnemonic(state, 1264 0x90000170, 12, 3, pad_mux_value); 1265 status |= update_by_mnemonic(state, 1266 0x90000170, 16, 3, pad_mux_value); 1267 status |= update_by_mnemonic(state, 1268 0x90000170, 20, 3, pad_mux_value); 1269 status |= update_by_mnemonic(state, 1270 0x90000170, 24, 3, pad_mux_value); 1271 status |= update_by_mnemonic(state, 1272 0x90000170, 28, 3, pad_mux_value); 1273 status |= update_by_mnemonic(state, 1274 0x90000174, 0, 3, pad_mux_value); 1275 status |= update_by_mnemonic(state, 1276 0x90000174, 4, 3, pad_mux_value); 1277 status |= update_by_mnemonic(state, 1278 0x90000174, 8, 3, pad_mux_value); 1279 status |= update_by_mnemonic(state, 1280 0x90000174, 12, 3, pad_mux_value); 1281 } 1282 break; 1283 1284 1285 case MXL_HYDRA_DEVICE_584: 1286 default: 1287 status |= update_by_mnemonic(state, 1288 0x90000170, 4, 3, pad_mux_value); 1289 status |= update_by_mnemonic(state, 1290 0x90000170, 8, 3, pad_mux_value); 1291 status |= update_by_mnemonic(state, 1292 0x90000170, 12, 3, pad_mux_value); 1293 status |= update_by_mnemonic(state, 1294 0x90000170, 16, 3, pad_mux_value); 1295 status |= update_by_mnemonic(state, 1296 0x90000170, 20, 3, pad_mux_value); 1297 status |= update_by_mnemonic(state, 1298 0x90000170, 24, 3, pad_mux_value); 1299 status |= update_by_mnemonic(state, 1300 0x90000170, 28, 3, pad_mux_value); 1301 status |= update_by_mnemonic(state, 1302 0x90000174, 0, 3, pad_mux_value); 1303 status |= update_by_mnemonic(state, 1304 0x90000174, 4, 3, pad_mux_value); 1305 status |= update_by_mnemonic(state, 1306 0x90000174, 8, 3, pad_mux_value); 1307 status |= update_by_mnemonic(state, 1308 0x90000174, 12, 3, pad_mux_value); 1309 break; 1310 } 1311 return status; 1312 } 1313 1314 static int set_drive_strength(struct mxl *state, 1315 enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength) 1316 { 1317 int stat = 0; 1318 u32 val; 1319 1320 read_register(state, 0x90000194, &val); 1321 dev_info(state->i2cdev, "DIGIO = %08x\n", val); 1322 dev_info(state->i2cdev, "set drive_strength = %u\n", ts_drive_strength); 1323 1324 1325 stat |= update_by_mnemonic(state, 0x90000194, 0, 3, ts_drive_strength); 1326 stat |= update_by_mnemonic(state, 0x90000194, 20, 3, ts_drive_strength); 1327 stat |= update_by_mnemonic(state, 0x90000194, 24, 3, ts_drive_strength); 1328 stat |= update_by_mnemonic(state, 0x90000198, 12, 3, ts_drive_strength); 1329 stat |= update_by_mnemonic(state, 0x90000198, 16, 3, ts_drive_strength); 1330 stat |= update_by_mnemonic(state, 0x90000198, 20, 3, ts_drive_strength); 1331 stat |= update_by_mnemonic(state, 0x90000198, 24, 3, ts_drive_strength); 1332 stat |= update_by_mnemonic(state, 0x9000019C, 0, 3, ts_drive_strength); 1333 stat |= update_by_mnemonic(state, 0x9000019C, 4, 3, ts_drive_strength); 1334 stat |= update_by_mnemonic(state, 0x9000019C, 8, 3, ts_drive_strength); 1335 stat |= update_by_mnemonic(state, 0x9000019C, 24, 3, ts_drive_strength); 1336 stat |= update_by_mnemonic(state, 0x9000019C, 28, 3, ts_drive_strength); 1337 stat |= update_by_mnemonic(state, 0x900001A0, 0, 3, ts_drive_strength); 1338 stat |= update_by_mnemonic(state, 0x900001A0, 4, 3, ts_drive_strength); 1339 stat |= update_by_mnemonic(state, 0x900001A0, 20, 3, ts_drive_strength); 1340 stat |= update_by_mnemonic(state, 0x900001A0, 24, 3, ts_drive_strength); 1341 stat |= update_by_mnemonic(state, 0x900001A0, 28, 3, ts_drive_strength); 1342 1343 return stat; 1344 } 1345 1346 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable) 1347 { 1348 int stat = 0; 1349 struct MXL_HYDRA_TUNER_CMD ctrl_tuner_cmd; 1350 u8 cmd_size = sizeof(ctrl_tuner_cmd); 1351 u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN]; 1352 u32 val, count = 10; 1353 1354 ctrl_tuner_cmd.tuner_id = tuner; 1355 ctrl_tuner_cmd.enable = enable; 1356 BUILD_HYDRA_CMD(MXL_HYDRA_TUNER_ACTIVATE_CMD, MXL_CMD_WRITE, 1357 cmd_size, &ctrl_tuner_cmd, cmd_buff); 1358 stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE, 1359 &cmd_buff[0]); 1360 if (stat) 1361 return stat; 1362 read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val); 1363 while (--count && ((val >> tuner) & 1) != enable) { 1364 msleep(20); 1365 read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val); 1366 } 1367 if (!count) 1368 return -1; 1369 read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val); 1370 dev_dbg(state->i2cdev, "tuner %u ready = %u\n", 1371 tuner, (val >> tuner) & 1); 1372 1373 return 0; 1374 } 1375 1376 1377 static int config_ts(struct mxl *state, enum MXL_HYDRA_DEMOD_ID_E demod_id, 1378 struct MXL_HYDRA_MPEGOUT_PARAM_T *mpeg_out_param_ptr) 1379 { 1380 int status = 0; 1381 u32 nco_count_min = 0; 1382 u32 clk_type = 0; 1383 1384 static const struct MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = { 1385 {0x90700010, 8, 1}, {0x90700010, 9, 1}, 1386 {0x90700010, 10, 1}, {0x90700010, 11, 1}, 1387 {0x90700010, 12, 1}, {0x90700010, 13, 1}, 1388 {0x90700010, 14, 1}, {0x90700010, 15, 1} }; 1389 static const struct MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = { 1390 {0x90700010, 16, 1}, {0x90700010, 17, 1}, 1391 {0x90700010, 18, 1}, {0x90700010, 19, 1}, 1392 {0x90700010, 20, 1}, {0x90700010, 21, 1}, 1393 {0x90700010, 22, 1}, {0x90700010, 23, 1} }; 1394 static const struct MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = { 1395 {0x90700014, 0, 1}, {0x90700014, 1, 1}, 1396 {0x90700014, 2, 1}, {0x90700014, 3, 1}, 1397 {0x90700014, 4, 1}, {0x90700014, 5, 1}, 1398 {0x90700014, 6, 1}, {0x90700014, 7, 1} }; 1399 static const struct MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = { 1400 {0x90700018, 0, 3}, {0x90700018, 4, 3}, 1401 {0x90700018, 8, 3}, {0x90700018, 12, 3}, 1402 {0x90700018, 16, 3}, {0x90700018, 20, 3}, 1403 {0x90700018, 24, 3}, {0x90700018, 28, 3} }; 1404 static const struct MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = { 1405 {0x9070000C, 16, 1}, {0x9070000C, 17, 1}, 1406 {0x9070000C, 18, 1}, {0x9070000C, 19, 1}, 1407 {0x9070000C, 20, 1}, {0x9070000C, 21, 1}, 1408 {0x9070000C, 22, 1}, {0x9070000C, 23, 1} }; 1409 static const struct MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = { 1410 {0x90700010, 0, 1}, {0x90700010, 1, 1}, 1411 {0x90700010, 2, 1}, {0x90700010, 3, 1}, 1412 {0x90700010, 4, 1}, {0x90700010, 5, 1}, 1413 {0x90700010, 6, 1}, {0x90700010, 7, 1} }; 1414 static const struct MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = { 1415 {0x9070000C, 0, 1}, {0x9070000C, 1, 1}, 1416 {0x9070000C, 2, 1}, {0x9070000C, 3, 1}, 1417 {0x9070000C, 4, 1}, {0x9070000C, 5, 1}, 1418 {0x9070000C, 6, 1}, {0x9070000C, 7, 1} }; 1419 static const struct MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = { 1420 {0x9070000C, 24, 1}, {0x9070000C, 25, 1}, 1421 {0x9070000C, 26, 1}, {0x9070000C, 27, 1}, 1422 {0x9070000C, 28, 1}, {0x9070000C, 29, 1}, 1423 {0x9070000C, 30, 1}, {0x9070000C, 31, 1} }; 1424 static const struct MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = { 1425 {0x90700014, 8, 1}, {0x90700014, 9, 1}, 1426 {0x90700014, 10, 1}, {0x90700014, 11, 1}, 1427 {0x90700014, 12, 1}, {0x90700014, 13, 1}, 1428 {0x90700014, 14, 1}, {0x90700014, 15, 1} }; 1429 static const struct MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = { 1430 {0x907001D4, 0, 1}, {0x907001D4, 1, 1}, 1431 {0x907001D4, 2, 1}, {0x907001D4, 3, 1}, 1432 {0x907001D4, 4, 1}, {0x907001D4, 5, 1}, 1433 {0x907001D4, 6, 1}, {0x907001D4, 7, 1} }; 1434 static const struct MXL_REG_FIELD_T xpt_nco_clock_rate[MXL_HYDRA_DEMOD_MAX] = { 1435 {0x90700044, 16, 80}, {0x90700044, 16, 81}, 1436 {0x90700044, 16, 82}, {0x90700044, 16, 83}, 1437 {0x90700044, 16, 84}, {0x90700044, 16, 85}, 1438 {0x90700044, 16, 86}, {0x90700044, 16, 87} }; 1439 1440 demod_id = state->base->ts_map[demod_id]; 1441 1442 if (mpeg_out_param_ptr->enable == MXL_ENABLE) { 1443 if (mpeg_out_param_ptr->mpeg_mode == 1444 MXL_HYDRA_MPEG_MODE_PARALLEL) { 1445 } else { 1446 cfg_ts_pad_mux(state, MXL_TRUE); 1447 update_by_mnemonic(state, 1448 0x90700010, 27, 1, MXL_FALSE); 1449 } 1450 } 1451 1452 nco_count_min = 1453 (u32)(MXL_HYDRA_NCO_CLK / mpeg_out_param_ptr->max_mpeg_clk_rate); 1454 1455 if (state->base->chipversion >= 2) { 1456 status |= update_by_mnemonic(state, 1457 xpt_nco_clock_rate[demod_id].reg_addr, /* Reg Addr */ 1458 xpt_nco_clock_rate[demod_id].lsb_pos, /* LSB pos */ 1459 xpt_nco_clock_rate[demod_id].num_of_bits, /* Num of bits */ 1460 nco_count_min); /* Data */ 1461 } else 1462 update_by_mnemonic(state, 0x90700044, 16, 8, nco_count_min); 1463 1464 if (mpeg_out_param_ptr->mpeg_clk_type == MXL_HYDRA_MPEG_CLK_CONTINUOUS) 1465 clk_type = 1; 1466 1467 if (mpeg_out_param_ptr->mpeg_mode < MXL_HYDRA_MPEG_MODE_PARALLEL) { 1468 status |= update_by_mnemonic(state, 1469 xpt_continuous_clock[demod_id].reg_addr, 1470 xpt_continuous_clock[demod_id].lsb_pos, 1471 xpt_continuous_clock[demod_id].num_of_bits, 1472 clk_type); 1473 } else 1474 update_by_mnemonic(state, 0x907001D4, 8, 1, clk_type); 1475 1476 status |= update_by_mnemonic(state, 1477 xpt_sync_polarity[demod_id].reg_addr, 1478 xpt_sync_polarity[demod_id].lsb_pos, 1479 xpt_sync_polarity[demod_id].num_of_bits, 1480 mpeg_out_param_ptr->mpeg_sync_pol); 1481 1482 status |= update_by_mnemonic(state, 1483 xpt_valid_polarity[demod_id].reg_addr, 1484 xpt_valid_polarity[demod_id].lsb_pos, 1485 xpt_valid_polarity[demod_id].num_of_bits, 1486 mpeg_out_param_ptr->mpeg_valid_pol); 1487 1488 status |= update_by_mnemonic(state, 1489 xpt_clock_polarity[demod_id].reg_addr, 1490 xpt_clock_polarity[demod_id].lsb_pos, 1491 xpt_clock_polarity[demod_id].num_of_bits, 1492 mpeg_out_param_ptr->mpeg_clk_pol); 1493 1494 status |= update_by_mnemonic(state, 1495 xpt_sync_byte[demod_id].reg_addr, 1496 xpt_sync_byte[demod_id].lsb_pos, 1497 xpt_sync_byte[demod_id].num_of_bits, 1498 mpeg_out_param_ptr->mpeg_sync_pulse_width); 1499 1500 status |= update_by_mnemonic(state, 1501 xpt_ts_clock_phase[demod_id].reg_addr, 1502 xpt_ts_clock_phase[demod_id].lsb_pos, 1503 xpt_ts_clock_phase[demod_id].num_of_bits, 1504 mpeg_out_param_ptr->mpeg_clk_phase); 1505 1506 status |= update_by_mnemonic(state, 1507 xpt_lsb_first[demod_id].reg_addr, 1508 xpt_lsb_first[demod_id].lsb_pos, 1509 xpt_lsb_first[demod_id].num_of_bits, 1510 mpeg_out_param_ptr->lsb_or_msb_first); 1511 1512 switch (mpeg_out_param_ptr->mpeg_error_indication) { 1513 case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC: 1514 status |= update_by_mnemonic(state, 1515 xpt_err_replace_sync[demod_id].reg_addr, 1516 xpt_err_replace_sync[demod_id].lsb_pos, 1517 xpt_err_replace_sync[demod_id].num_of_bits, 1518 MXL_TRUE); 1519 status |= update_by_mnemonic(state, 1520 xpt_err_replace_valid[demod_id].reg_addr, 1521 xpt_err_replace_valid[demod_id].lsb_pos, 1522 xpt_err_replace_valid[demod_id].num_of_bits, 1523 MXL_FALSE); 1524 break; 1525 1526 case MXL_HYDRA_MPEG_ERR_REPLACE_VALID: 1527 status |= update_by_mnemonic(state, 1528 xpt_err_replace_sync[demod_id].reg_addr, 1529 xpt_err_replace_sync[demod_id].lsb_pos, 1530 xpt_err_replace_sync[demod_id].num_of_bits, 1531 MXL_FALSE); 1532 1533 status |= update_by_mnemonic(state, 1534 xpt_err_replace_valid[demod_id].reg_addr, 1535 xpt_err_replace_valid[demod_id].lsb_pos, 1536 xpt_err_replace_valid[demod_id].num_of_bits, 1537 MXL_TRUE); 1538 break; 1539 1540 case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED: 1541 default: 1542 status |= update_by_mnemonic(state, 1543 xpt_err_replace_sync[demod_id].reg_addr, 1544 xpt_err_replace_sync[demod_id].lsb_pos, 1545 xpt_err_replace_sync[demod_id].num_of_bits, 1546 MXL_FALSE); 1547 1548 status |= update_by_mnemonic(state, 1549 xpt_err_replace_valid[demod_id].reg_addr, 1550 xpt_err_replace_valid[demod_id].lsb_pos, 1551 xpt_err_replace_valid[demod_id].num_of_bits, 1552 MXL_FALSE); 1553 1554 break; 1555 1556 } 1557 1558 if (mpeg_out_param_ptr->mpeg_mode != MXL_HYDRA_MPEG_MODE_PARALLEL) { 1559 status |= update_by_mnemonic(state, 1560 xpt_enable_output[demod_id].reg_addr, 1561 xpt_enable_output[demod_id].lsb_pos, 1562 xpt_enable_output[demod_id].num_of_bits, 1563 mpeg_out_param_ptr->enable); 1564 } 1565 return status; 1566 } 1567 1568 static int config_mux(struct mxl *state) 1569 { 1570 update_by_mnemonic(state, 0x9070000C, 0, 1, 0); 1571 update_by_mnemonic(state, 0x9070000C, 1, 1, 0); 1572 update_by_mnemonic(state, 0x9070000C, 2, 1, 0); 1573 update_by_mnemonic(state, 0x9070000C, 3, 1, 0); 1574 update_by_mnemonic(state, 0x9070000C, 4, 1, 0); 1575 update_by_mnemonic(state, 0x9070000C, 5, 1, 0); 1576 update_by_mnemonic(state, 0x9070000C, 6, 1, 0); 1577 update_by_mnemonic(state, 0x9070000C, 7, 1, 0); 1578 update_by_mnemonic(state, 0x90700008, 0, 2, 1); 1579 update_by_mnemonic(state, 0x90700008, 2, 2, 1); 1580 return 0; 1581 } 1582 1583 static int load_fw(struct mxl *state, struct mxl5xx_cfg *cfg) 1584 { 1585 int stat = 0; 1586 u8 *buf; 1587 1588 if (cfg->fw) 1589 return firmware_download(state, cfg->fw, cfg->fw_len); 1590 1591 if (!cfg->fw_read) 1592 return -1; 1593 1594 buf = vmalloc(0x40000); 1595 if (!buf) 1596 return -ENOMEM; 1597 1598 cfg->fw_read(cfg->fw_priv, buf, 0x40000); 1599 stat = firmware_download(state, buf, 0x40000); 1600 vfree(buf); 1601 1602 return stat; 1603 } 1604 1605 static int validate_sku(struct mxl *state) 1606 { 1607 u32 pad_mux_bond = 0, prcm_chip_id = 0, prcm_so_cid = 0; 1608 int status; 1609 u32 type = state->base->type; 1610 1611 status = read_by_mnemonic(state, 0x90000190, 0, 3, &pad_mux_bond); 1612 status |= read_by_mnemonic(state, 0x80030000, 0, 12, &prcm_chip_id); 1613 status |= read_by_mnemonic(state, 0x80030004, 24, 8, &prcm_so_cid); 1614 if (status) 1615 return -1; 1616 1617 dev_info(state->i2cdev, "padMuxBond=%08x, prcmChipId=%08x, prcmSoCId=%08x\n", 1618 pad_mux_bond, prcm_chip_id, prcm_so_cid); 1619 1620 if (prcm_chip_id != 0x560) { 1621 switch (pad_mux_bond) { 1622 case MXL_HYDRA_SKU_ID_581: 1623 if (type == MXL_HYDRA_DEVICE_581) 1624 return 0; 1625 if (type == MXL_HYDRA_DEVICE_581S) { 1626 state->base->type = MXL_HYDRA_DEVICE_581; 1627 return 0; 1628 } 1629 break; 1630 case MXL_HYDRA_SKU_ID_584: 1631 if (type == MXL_HYDRA_DEVICE_584) 1632 return 0; 1633 break; 1634 case MXL_HYDRA_SKU_ID_544: 1635 if (type == MXL_HYDRA_DEVICE_544) 1636 return 0; 1637 if (type == MXL_HYDRA_DEVICE_542) 1638 return 0; 1639 break; 1640 case MXL_HYDRA_SKU_ID_582: 1641 if (type == MXL_HYDRA_DEVICE_582) 1642 return 0; 1643 break; 1644 default: 1645 return -1; 1646 } 1647 } 1648 return -1; 1649 } 1650 1651 static int get_fwinfo(struct mxl *state) 1652 { 1653 int status; 1654 u32 val = 0; 1655 1656 status = read_by_mnemonic(state, 0x90000190, 0, 3, &val); 1657 if (status) 1658 return status; 1659 dev_info(state->i2cdev, "chipID=%08x\n", val); 1660 1661 status = read_by_mnemonic(state, 0x80030004, 8, 8, &val); 1662 if (status) 1663 return status; 1664 dev_info(state->i2cdev, "chipVer=%08x\n", val); 1665 1666 status = read_register(state, HYDRA_FIRMWARE_VERSION, &val); 1667 if (status) 1668 return status; 1669 dev_info(state->i2cdev, "FWVer=%08x\n", val); 1670 1671 state->base->fwversion = val; 1672 return status; 1673 } 1674 1675 1676 static u8 ts_map1_to_1[MXL_HYDRA_DEMOD_MAX] = { 1677 MXL_HYDRA_DEMOD_ID_0, 1678 MXL_HYDRA_DEMOD_ID_1, 1679 MXL_HYDRA_DEMOD_ID_2, 1680 MXL_HYDRA_DEMOD_ID_3, 1681 MXL_HYDRA_DEMOD_ID_4, 1682 MXL_HYDRA_DEMOD_ID_5, 1683 MXL_HYDRA_DEMOD_ID_6, 1684 MXL_HYDRA_DEMOD_ID_7, 1685 }; 1686 1687 static u8 ts_map54x[MXL_HYDRA_DEMOD_MAX] = { 1688 MXL_HYDRA_DEMOD_ID_2, 1689 MXL_HYDRA_DEMOD_ID_3, 1690 MXL_HYDRA_DEMOD_ID_4, 1691 MXL_HYDRA_DEMOD_ID_5, 1692 MXL_HYDRA_DEMOD_MAX, 1693 MXL_HYDRA_DEMOD_MAX, 1694 MXL_HYDRA_DEMOD_MAX, 1695 MXL_HYDRA_DEMOD_MAX, 1696 }; 1697 1698 static int probe(struct mxl *state, struct mxl5xx_cfg *cfg) 1699 { 1700 u32 chipver; 1701 int fw, status, j; 1702 struct MXL_HYDRA_MPEGOUT_PARAM_T mpeg_interface_cfg; 1703 1704 state->base->ts_map = ts_map1_to_1; 1705 1706 switch (state->base->type) { 1707 case MXL_HYDRA_DEVICE_581: 1708 case MXL_HYDRA_DEVICE_581S: 1709 state->base->can_clkout = 1; 1710 state->base->demod_num = 8; 1711 state->base->tuner_num = 1; 1712 state->base->sku_type = MXL_HYDRA_SKU_TYPE_581; 1713 break; 1714 case MXL_HYDRA_DEVICE_582: 1715 state->base->can_clkout = 1; 1716 state->base->demod_num = 8; 1717 state->base->tuner_num = 3; 1718 state->base->sku_type = MXL_HYDRA_SKU_TYPE_582; 1719 break; 1720 case MXL_HYDRA_DEVICE_585: 1721 state->base->can_clkout = 0; 1722 state->base->demod_num = 8; 1723 state->base->tuner_num = 4; 1724 state->base->sku_type = MXL_HYDRA_SKU_TYPE_585; 1725 break; 1726 case MXL_HYDRA_DEVICE_544: 1727 state->base->can_clkout = 0; 1728 state->base->demod_num = 4; 1729 state->base->tuner_num = 4; 1730 state->base->sku_type = MXL_HYDRA_SKU_TYPE_544; 1731 state->base->ts_map = ts_map54x; 1732 break; 1733 case MXL_HYDRA_DEVICE_541: 1734 case MXL_HYDRA_DEVICE_541S: 1735 state->base->can_clkout = 0; 1736 state->base->demod_num = 4; 1737 state->base->tuner_num = 1; 1738 state->base->sku_type = MXL_HYDRA_SKU_TYPE_541; 1739 state->base->ts_map = ts_map54x; 1740 break; 1741 case MXL_HYDRA_DEVICE_561: 1742 case MXL_HYDRA_DEVICE_561S: 1743 state->base->can_clkout = 0; 1744 state->base->demod_num = 6; 1745 state->base->tuner_num = 1; 1746 state->base->sku_type = MXL_HYDRA_SKU_TYPE_561; 1747 break; 1748 case MXL_HYDRA_DEVICE_568: 1749 state->base->can_clkout = 0; 1750 state->base->demod_num = 8; 1751 state->base->tuner_num = 1; 1752 state->base->chan_bond = 1; 1753 state->base->sku_type = MXL_HYDRA_SKU_TYPE_568; 1754 break; 1755 case MXL_HYDRA_DEVICE_542: 1756 state->base->can_clkout = 1; 1757 state->base->demod_num = 4; 1758 state->base->tuner_num = 3; 1759 state->base->sku_type = MXL_HYDRA_SKU_TYPE_542; 1760 state->base->ts_map = ts_map54x; 1761 break; 1762 case MXL_HYDRA_DEVICE_TEST: 1763 case MXL_HYDRA_DEVICE_584: 1764 default: 1765 state->base->can_clkout = 0; 1766 state->base->demod_num = 8; 1767 state->base->tuner_num = 4; 1768 state->base->sku_type = MXL_HYDRA_SKU_TYPE_584; 1769 break; 1770 } 1771 1772 status = validate_sku(state); 1773 if (status) 1774 return status; 1775 1776 update_by_mnemonic(state, 0x80030014, 9, 1, 1); 1777 update_by_mnemonic(state, 0x8003003C, 12, 1, 1); 1778 status = read_by_mnemonic(state, 0x80030000, 12, 4, &chipver); 1779 if (status) 1780 state->base->chipversion = 0; 1781 else 1782 state->base->chipversion = (chipver == 2) ? 2 : 1; 1783 dev_info(state->i2cdev, "Hydra chip version %u\n", 1784 state->base->chipversion); 1785 1786 cfg_dev_xtal(state, cfg->clk, cfg->cap, 0); 1787 1788 fw = firmware_is_alive(state); 1789 if (!fw) { 1790 status = load_fw(state, cfg); 1791 if (status) 1792 return status; 1793 } 1794 get_fwinfo(state); 1795 1796 config_mux(state); 1797 mpeg_interface_cfg.enable = MXL_ENABLE; 1798 mpeg_interface_cfg.lsb_or_msb_first = MXL_HYDRA_MPEG_SERIAL_MSB_1ST; 1799 /* supports only (0-104&139)MHz */ 1800 if (cfg->ts_clk) 1801 mpeg_interface_cfg.max_mpeg_clk_rate = cfg->ts_clk; 1802 else 1803 mpeg_interface_cfg.max_mpeg_clk_rate = 69; /* 139; */ 1804 mpeg_interface_cfg.mpeg_clk_phase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG; 1805 mpeg_interface_cfg.mpeg_clk_pol = MXL_HYDRA_MPEG_CLK_IN_PHASE; 1806 /* MXL_HYDRA_MPEG_CLK_GAPPED; */ 1807 mpeg_interface_cfg.mpeg_clk_type = MXL_HYDRA_MPEG_CLK_CONTINUOUS; 1808 mpeg_interface_cfg.mpeg_error_indication = 1809 MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED; 1810 mpeg_interface_cfg.mpeg_mode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE; 1811 mpeg_interface_cfg.mpeg_sync_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH; 1812 mpeg_interface_cfg.mpeg_sync_pulse_width = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT; 1813 mpeg_interface_cfg.mpeg_valid_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH; 1814 1815 for (j = 0; j < state->base->demod_num; j++) { 1816 status = config_ts(state, (enum MXL_HYDRA_DEMOD_ID_E) j, 1817 &mpeg_interface_cfg); 1818 if (status) 1819 return status; 1820 } 1821 set_drive_strength(state, 1); 1822 return 0; 1823 } 1824 1825 struct dvb_frontend *mxl5xx_attach(struct i2c_adapter *i2c, 1826 struct mxl5xx_cfg *cfg, u32 demod, u32 tuner, 1827 int (**fn_set_input)(struct dvb_frontend *, int)) 1828 { 1829 struct mxl *state; 1830 struct mxl_base *base; 1831 1832 state = kzalloc(sizeof(struct mxl), GFP_KERNEL); 1833 if (!state) 1834 return NULL; 1835 1836 state->demod = demod; 1837 state->tuner = tuner; 1838 state->tuner_in_use = 0xffffffff; 1839 state->i2cdev = &i2c->dev; 1840 1841 base = match_base(i2c, cfg->adr); 1842 if (base) { 1843 base->count++; 1844 if (base->count > base->demod_num) 1845 goto fail; 1846 state->base = base; 1847 } else { 1848 base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL); 1849 if (!base) 1850 goto fail; 1851 base->i2c = i2c; 1852 base->adr = cfg->adr; 1853 base->type = cfg->type; 1854 base->count = 1; 1855 mutex_init(&base->i2c_lock); 1856 mutex_init(&base->status_lock); 1857 mutex_init(&base->tune_lock); 1858 INIT_LIST_HEAD(&base->mxls); 1859 1860 state->base = base; 1861 if (probe(state, cfg) < 0) { 1862 kfree(base); 1863 goto fail; 1864 } 1865 list_add(&base->mxllist, &mxllist); 1866 } 1867 state->fe.ops = mxl_ops; 1868 state->xbar[0] = 4; 1869 state->xbar[1] = demod; 1870 state->xbar[2] = 8; 1871 state->fe.demodulator_priv = state; 1872 *fn_set_input = set_input; 1873 1874 list_add(&state->mxl, &base->mxls); 1875 return &state->fe; 1876 1877 fail: 1878 kfree(state); 1879 return NULL; 1880 } 1881 EXPORT_SYMBOL_GPL(mxl5xx_attach); 1882 1883 MODULE_DESCRIPTION("MaxLinear MxL5xx DVB-S/S2 tuner-demodulator driver"); 1884 MODULE_AUTHOR("Ralph and Marcus Metzler, Metzler Brothers Systementwicklung GbR"); 1885 MODULE_LICENSE("GPL v2"); 1886