xref: /linux/drivers/media/dvb-frontends/mxl5xx.c (revision 2359ccddc1c3f4752f43cc19b3db189710b15791)
1 /*
2  * Driver for the MaxLinear MxL5xx family of tuners/demods
3  *
4  * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
5  *                         Marcus Metzler <mocm@metzlerbros.de>
6  *                         developed for Digital Devices GmbH
7  *
8  * based on code:
9  * Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved
10  * which was released under GPL V2
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/firmware.h>
29 #include <linux/i2c.h>
30 #include <linux/version.h>
31 #include <linux/mutex.h>
32 #include <linux/vmalloc.h>
33 #include <asm/div64.h>
34 #include <asm/unaligned.h>
35 
36 #include <media/dvb_frontend.h>
37 #include "mxl5xx.h"
38 #include "mxl5xx_regs.h"
39 #include "mxl5xx_defs.h"
40 
41 #define BYTE0(v) ((v >>  0) & 0xff)
42 #define BYTE1(v) ((v >>  8) & 0xff)
43 #define BYTE2(v) ((v >> 16) & 0xff)
44 #define BYTE3(v) ((v >> 24) & 0xff)
45 
46 static LIST_HEAD(mxllist);
47 
48 struct mxl_base {
49 	struct list_head     mxllist;
50 	struct list_head     mxls;
51 
52 	u8                   adr;
53 	struct i2c_adapter  *i2c;
54 
55 	u32                  count;
56 	u32                  type;
57 	u32                  sku_type;
58 	u32                  chipversion;
59 	u32                  clock;
60 	u32                  fwversion;
61 
62 	u8                  *ts_map;
63 	u8                   can_clkout;
64 	u8                   chan_bond;
65 	u8                   demod_num;
66 	u8                   tuner_num;
67 
68 	unsigned long        next_tune;
69 
70 	struct mutex         i2c_lock;
71 	struct mutex         status_lock;
72 	struct mutex         tune_lock;
73 
74 	u8                   buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
75 
76 	u32                  cmd_size;
77 	u8                   cmd_data[MAX_CMD_DATA];
78 };
79 
80 struct mxl {
81 	struct list_head     mxl;
82 
83 	struct mxl_base     *base;
84 	struct dvb_frontend  fe;
85 	struct device       *i2cdev;
86 	u32                  demod;
87 	u32                  tuner;
88 	u32                  tuner_in_use;
89 	u8                   xbar[3];
90 
91 	unsigned long        tune_time;
92 };
93 
94 static void convert_endian(u8 flag, u32 size, u8 *d)
95 {
96 	u32 i;
97 
98 	if (!flag)
99 		return;
100 	for (i = 0; i < (size & ~3); i += 4) {
101 		d[i + 0] ^= d[i + 3];
102 		d[i + 3] ^= d[i + 0];
103 		d[i + 0] ^= d[i + 3];
104 
105 		d[i + 1] ^= d[i + 2];
106 		d[i + 2] ^= d[i + 1];
107 		d[i + 1] ^= d[i + 2];
108 	}
109 
110 	switch (size & 3) {
111 	case 0:
112 	case 1:
113 		/* do nothing */
114 		break;
115 	case 2:
116 		d[i + 0] ^= d[i + 1];
117 		d[i + 1] ^= d[i + 0];
118 		d[i + 0] ^= d[i + 1];
119 		break;
120 
121 	case 3:
122 		d[i + 0] ^= d[i + 2];
123 		d[i + 2] ^= d[i + 0];
124 		d[i + 0] ^= d[i + 2];
125 		break;
126 	}
127 
128 }
129 
130 static int i2c_write(struct i2c_adapter *adap, u8 adr,
131 			    u8 *data, u32 len)
132 {
133 	struct i2c_msg msg = {.addr = adr, .flags = 0,
134 			      .buf = data, .len = len};
135 
136 	return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
137 }
138 
139 static int i2c_read(struct i2c_adapter *adap, u8 adr,
140 			   u8 *data, u32 len)
141 {
142 	struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD,
143 			      .buf = data, .len = len};
144 
145 	return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
146 }
147 
148 static int i2cread(struct mxl *state, u8 *data, int len)
149 {
150 	return i2c_read(state->base->i2c, state->base->adr, data, len);
151 }
152 
153 static int i2cwrite(struct mxl *state, u8 *data, int len)
154 {
155 	return i2c_write(state->base->i2c, state->base->adr, data, len);
156 }
157 
158 static int read_register_unlocked(struct mxl *state, u32 reg, u32 *val)
159 {
160 	int stat;
161 	u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
162 		MXL_HYDRA_PLID_REG_READ, 0x04,
163 		GET_BYTE(reg, 0), GET_BYTE(reg, 1),
164 		GET_BYTE(reg, 2), GET_BYTE(reg, 3),
165 	};
166 
167 	stat = i2cwrite(state, data,
168 			MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
169 	if (stat)
170 		dev_err(state->i2cdev, "i2c read error 1\n");
171 	if (!stat)
172 		stat = i2cread(state, (u8 *) val,
173 			       MXL_HYDRA_REG_SIZE_IN_BYTES);
174 	le32_to_cpus(val);
175 	if (stat)
176 		dev_err(state->i2cdev, "i2c read error 2\n");
177 	return stat;
178 }
179 
180 #define DMA_I2C_INTERRUPT_ADDR 0x8000011C
181 #define DMA_INTR_PROT_WR_CMP 0x08
182 
183 static int send_command(struct mxl *state, u32 size, u8 *buf)
184 {
185 	int stat;
186 	u32 val, count = 10;
187 
188 	mutex_lock(&state->base->i2c_lock);
189 	if (state->base->fwversion > 0x02010109)  {
190 		read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val);
191 		if (DMA_INTR_PROT_WR_CMP & val)
192 			dev_info(state->i2cdev, "%s busy\n", __func__);
193 		while ((DMA_INTR_PROT_WR_CMP & val) && --count) {
194 			mutex_unlock(&state->base->i2c_lock);
195 			usleep_range(1000, 2000);
196 			mutex_lock(&state->base->i2c_lock);
197 			read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR,
198 					       &val);
199 		}
200 		if (!count) {
201 			dev_info(state->i2cdev, "%s busy\n", __func__);
202 			mutex_unlock(&state->base->i2c_lock);
203 			return -EBUSY;
204 		}
205 	}
206 	stat = i2cwrite(state, buf, size);
207 	mutex_unlock(&state->base->i2c_lock);
208 	return stat;
209 }
210 
211 static int write_register(struct mxl *state, u32 reg, u32 val)
212 {
213 	int stat;
214 	u8 data[MXL_HYDRA_REG_WRITE_LEN] = {
215 		MXL_HYDRA_PLID_REG_WRITE, 0x08,
216 		BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg),
217 		BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val),
218 	};
219 	mutex_lock(&state->base->i2c_lock);
220 	stat = i2cwrite(state, data, sizeof(data));
221 	mutex_unlock(&state->base->i2c_lock);
222 	if (stat)
223 		dev_err(state->i2cdev, "i2c write error\n");
224 	return stat;
225 }
226 
227 static int write_firmware_block(struct mxl *state,
228 				u32 reg, u32 size, u8 *reg_data_ptr)
229 {
230 	int stat;
231 	u8 *buf = state->base->buf;
232 
233 	mutex_lock(&state->base->i2c_lock);
234 	buf[0] = MXL_HYDRA_PLID_REG_WRITE;
235 	buf[1] = size + 4;
236 	buf[2] = GET_BYTE(reg, 0);
237 	buf[3] = GET_BYTE(reg, 1);
238 	buf[4] = GET_BYTE(reg, 2);
239 	buf[5] = GET_BYTE(reg, 3);
240 	memcpy(&buf[6], reg_data_ptr, size);
241 	stat = i2cwrite(state, buf,
242 			MXL_HYDRA_I2C_HDR_SIZE +
243 			MXL_HYDRA_REG_SIZE_IN_BYTES + size);
244 	mutex_unlock(&state->base->i2c_lock);
245 	if (stat)
246 		dev_err(state->i2cdev, "fw block write failed\n");
247 	return stat;
248 }
249 
250 static int read_register(struct mxl *state, u32 reg, u32 *val)
251 {
252 	int stat;
253 	u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
254 		MXL_HYDRA_PLID_REG_READ, 0x04,
255 		GET_BYTE(reg, 0), GET_BYTE(reg, 1),
256 		GET_BYTE(reg, 2), GET_BYTE(reg, 3),
257 	};
258 
259 	mutex_lock(&state->base->i2c_lock);
260 	stat = i2cwrite(state, data,
261 			MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
262 	if (stat)
263 		dev_err(state->i2cdev, "i2c read error 1\n");
264 	if (!stat)
265 		stat = i2cread(state, (u8 *) val,
266 			       MXL_HYDRA_REG_SIZE_IN_BYTES);
267 	mutex_unlock(&state->base->i2c_lock);
268 	le32_to_cpus(val);
269 	if (stat)
270 		dev_err(state->i2cdev, "i2c read error 2\n");
271 	return stat;
272 }
273 
274 static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data)
275 {
276 	int stat;
277 	u8 *buf = state->base->buf;
278 
279 	mutex_lock(&state->base->i2c_lock);
280 
281 	buf[0] = MXL_HYDRA_PLID_REG_READ;
282 	buf[1] = size + 4;
283 	buf[2] = GET_BYTE(reg, 0);
284 	buf[3] = GET_BYTE(reg, 1);
285 	buf[4] = GET_BYTE(reg, 2);
286 	buf[5] = GET_BYTE(reg, 3);
287 	stat = i2cwrite(state, buf,
288 			MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES);
289 	if (!stat) {
290 		stat = i2cread(state, data, size);
291 		convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data);
292 	}
293 	mutex_unlock(&state->base->i2c_lock);
294 	return stat;
295 }
296 
297 static int read_by_mnemonic(struct mxl *state,
298 			    u32 reg, u8 lsbloc, u8 numofbits, u32 *val)
299 {
300 	u32 data = 0, mask = 0;
301 	int stat;
302 
303 	stat = read_register(state, reg, &data);
304 	if (stat)
305 		return stat;
306 	mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
307 	data &= mask;
308 	data >>= lsbloc;
309 	*val = data;
310 	return 0;
311 }
312 
313 
314 static int update_by_mnemonic(struct mxl *state,
315 			      u32 reg, u8 lsbloc, u8 numofbits, u32 val)
316 {
317 	u32 data, mask;
318 	int stat;
319 
320 	stat = read_register(state, reg, &data);
321 	if (stat)
322 		return stat;
323 	mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
324 	data = (data & ~mask) | ((val << lsbloc) & mask);
325 	stat = write_register(state, reg, data);
326 	return stat;
327 }
328 
329 static int firmware_is_alive(struct mxl *state)
330 {
331 	u32 hb0, hb1;
332 
333 	if (read_register(state, HYDRA_HEAR_BEAT, &hb0))
334 		return 0;
335 	msleep(20);
336 	if (read_register(state, HYDRA_HEAR_BEAT, &hb1))
337 		return 0;
338 	if (hb1 == hb0)
339 		return 0;
340 	return 1;
341 }
342 
343 static int init(struct dvb_frontend *fe)
344 {
345 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
346 
347 	/* init fe stats */
348 	p->strength.len = 1;
349 	p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
350 	p->cnr.len = 1;
351 	p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
352 	p->pre_bit_error.len = 1;
353 	p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
354 	p->pre_bit_count.len = 1;
355 	p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
356 	p->post_bit_error.len = 1;
357 	p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
358 	p->post_bit_count.len = 1;
359 	p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
360 
361 	return 0;
362 }
363 
364 static void release(struct dvb_frontend *fe)
365 {
366 	struct mxl *state = fe->demodulator_priv;
367 
368 	list_del(&state->mxl);
369 	/* Release one frontend, two more shall take its place! */
370 	state->base->count--;
371 	if (state->base->count == 0) {
372 		list_del(&state->base->mxllist);
373 		kfree(state->base);
374 	}
375 	kfree(state);
376 }
377 
378 static int get_algo(struct dvb_frontend *fe)
379 {
380 	return DVBFE_ALGO_HW;
381 }
382 
383 static u32 gold2root(u32 gold)
384 {
385 	u32 x, g, tmp = gold;
386 
387 	if (tmp >= 0x3ffff)
388 		tmp = 0;
389 	for (g = 0, x = 1; g < tmp; g++)
390 		x = (((x ^ (x >> 7)) & 1) << 17) | (x >> 1);
391 	return x;
392 }
393 
394 static int cfg_scrambler(struct mxl *state, u32 gold)
395 {
396 	u32 root;
397 	u8 buf[26] = {
398 		MXL_HYDRA_PLID_CMD_WRITE, 24,
399 		0, MXL_HYDRA_DEMOD_SCRAMBLE_CODE_CMD, 0, 0,
400 		state->demod, 0, 0, 0,
401 		0, 0, 0, 0, 0, 0, 0, 0,
402 		0, 0, 0, 0, 1, 0, 0, 0,
403 	};
404 
405 	root = gold2root(gold);
406 
407 	buf[25] = (root >> 24) & 0xff;
408 	buf[24] = (root >> 16) & 0xff;
409 	buf[23] = (root >> 8) & 0xff;
410 	buf[22] = root & 0xff;
411 
412 	return send_command(state, sizeof(buf), buf);
413 }
414 
415 static int cfg_demod_abort_tune(struct mxl *state)
416 {
417 	struct MXL_HYDRA_DEMOD_ABORT_TUNE_T abort_tune_cmd;
418 	u8 cmd_size = sizeof(abort_tune_cmd);
419 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
420 
421 	abort_tune_cmd.demod_id = state->demod;
422 	BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE,
423 			cmd_size, &abort_tune_cmd, cmd_buff);
424 	return send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
425 			    &cmd_buff[0]);
426 }
427 
428 static int send_master_cmd(struct dvb_frontend *fe,
429 			   struct dvb_diseqc_master_cmd *cmd)
430 {
431 	/*struct mxl *state = fe->demodulator_priv;*/
432 
433 	return 0; /*CfgDemodAbortTune(state);*/
434 }
435 
436 static int set_parameters(struct dvb_frontend *fe)
437 {
438 	struct mxl *state = fe->demodulator_priv;
439 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
440 	struct MXL_HYDRA_DEMOD_PARAM_T demod_chan_cfg;
441 	u8 cmd_size = sizeof(demod_chan_cfg);
442 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
443 	u32 srange = 10;
444 	int stat;
445 
446 	if (p->frequency < 950000 || p->frequency > 2150000)
447 		return -EINVAL;
448 	if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000)
449 		return -EINVAL;
450 
451 	/* CfgDemodAbortTune(state); */
452 
453 	switch (p->delivery_system) {
454 	case SYS_DSS:
455 		demod_chan_cfg.standard = MXL_HYDRA_DSS;
456 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
457 		break;
458 	case SYS_DVBS:
459 		srange = p->symbol_rate / 1000000;
460 		if (srange > 10)
461 			srange = 10;
462 		demod_chan_cfg.standard = MXL_HYDRA_DVBS;
463 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_0_35;
464 		demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_QPSK;
465 		demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_OFF;
466 		break;
467 	case SYS_DVBS2:
468 		demod_chan_cfg.standard = MXL_HYDRA_DVBS2;
469 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
470 		demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_AUTO;
471 		demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_AUTO;
472 		cfg_scrambler(state, p->scrambling_sequence_index);
473 		break;
474 	default:
475 		return -EINVAL;
476 	}
477 	demod_chan_cfg.tuner_index = state->tuner;
478 	demod_chan_cfg.demod_index = state->demod;
479 	demod_chan_cfg.frequency_in_hz = p->frequency * 1000;
480 	demod_chan_cfg.symbol_rate_in_hz = p->symbol_rate;
481 	demod_chan_cfg.max_carrier_offset_in_mhz = srange;
482 	demod_chan_cfg.spectrum_inversion = MXL_HYDRA_SPECTRUM_AUTO;
483 	demod_chan_cfg.fec_code_rate = MXL_HYDRA_FEC_AUTO;
484 
485 	mutex_lock(&state->base->tune_lock);
486 	if (time_after(jiffies + msecs_to_jiffies(200),
487 		       state->base->next_tune))
488 		while (time_before(jiffies, state->base->next_tune))
489 			usleep_range(10000, 11000);
490 	state->base->next_tune = jiffies + msecs_to_jiffies(100);
491 	state->tuner_in_use = state->tuner;
492 	BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE,
493 			cmd_size, &demod_chan_cfg, cmd_buff);
494 	stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
495 			    &cmd_buff[0]);
496 	mutex_unlock(&state->base->tune_lock);
497 	return stat;
498 }
499 
500 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable);
501 
502 static int sleep(struct dvb_frontend *fe)
503 {
504 	struct mxl *state = fe->demodulator_priv;
505 	struct mxl *p;
506 
507 	cfg_demod_abort_tune(state);
508 	if (state->tuner_in_use != 0xffffffff) {
509 		mutex_lock(&state->base->tune_lock);
510 		state->tuner_in_use = 0xffffffff;
511 		list_for_each_entry(p, &state->base->mxls, mxl) {
512 			if (p->tuner_in_use == state->tuner)
513 				break;
514 		}
515 		if (&p->mxl == &state->base->mxls)
516 			enable_tuner(state, state->tuner, 0);
517 		mutex_unlock(&state->base->tune_lock);
518 	}
519 	return 0;
520 }
521 
522 static int read_snr(struct dvb_frontend *fe)
523 {
524 	struct mxl *state = fe->demodulator_priv;
525 	int stat;
526 	u32 reg_data = 0;
527 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
528 
529 	mutex_lock(&state->base->status_lock);
530 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
531 	stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET +
532 				     HYDRA_DMD_STATUS_OFFSET(state->demod)),
533 			     &reg_data);
534 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
535 	mutex_unlock(&state->base->status_lock);
536 
537 	p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
538 	p->cnr.stat[0].svalue = (s16)reg_data * 10;
539 
540 	return stat;
541 }
542 
543 static int read_ber(struct dvb_frontend *fe)
544 {
545 	struct mxl *state = fe->demodulator_priv;
546 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
547 	u32 reg[8];
548 
549 	mutex_lock(&state->base->status_lock);
550 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
551 	read_register_block(state,
552 		(HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET +
553 		 HYDRA_DMD_STATUS_OFFSET(state->demod)),
554 		(4 * sizeof(u32)),
555 		(u8 *) &reg[0]);
556 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
557 
558 	switch (p->delivery_system) {
559 	case SYS_DSS:
560 	case SYS_DVBS:
561 		p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
562 		p->pre_bit_error.stat[0].uvalue = reg[2];
563 		p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
564 		p->pre_bit_count.stat[0].uvalue = reg[3];
565 		break;
566 	default:
567 		break;
568 	}
569 
570 	read_register_block(state,
571 		(HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET +
572 		 HYDRA_DMD_STATUS_OFFSET(state->demod)),
573 		(7 * sizeof(u32)),
574 		(u8 *) &reg[0]);
575 
576 	switch (p->delivery_system) {
577 	case SYS_DSS:
578 	case SYS_DVBS:
579 		p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
580 		p->post_bit_error.stat[0].uvalue = reg[5];
581 		p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
582 		p->post_bit_count.stat[0].uvalue = reg[6];
583 		break;
584 	case SYS_DVBS2:
585 		p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
586 		p->post_bit_error.stat[0].uvalue = reg[1];
587 		p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
588 		p->post_bit_count.stat[0].uvalue = reg[2];
589 		break;
590 	default:
591 		break;
592 	}
593 
594 	mutex_unlock(&state->base->status_lock);
595 
596 	return 0;
597 }
598 
599 static int read_signal_strength(struct dvb_frontend *fe)
600 {
601 	struct mxl *state = fe->demodulator_priv;
602 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
603 	int stat;
604 	u32 reg_data = 0;
605 
606 	mutex_lock(&state->base->status_lock);
607 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
608 	stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR +
609 				     HYDRA_DMD_STATUS_OFFSET(state->demod)),
610 			     &reg_data);
611 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
612 	mutex_unlock(&state->base->status_lock);
613 
614 	p->strength.stat[0].scale = FE_SCALE_DECIBEL;
615 	p->strength.stat[0].svalue = (s16) reg_data * 10; /* fix scale */
616 
617 	return stat;
618 }
619 
620 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
621 {
622 	struct mxl *state = fe->demodulator_priv;
623 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
624 	u32 reg_data = 0;
625 
626 	mutex_lock(&state->base->status_lock);
627 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
628 	read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET +
629 			     HYDRA_DMD_STATUS_OFFSET(state->demod)),
630 			     &reg_data);
631 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
632 	mutex_unlock(&state->base->status_lock);
633 
634 	*status = (reg_data == 1) ? 0x1f : 0;
635 
636 	/* signal statistics */
637 
638 	/* signal strength is always available */
639 	read_signal_strength(fe);
640 
641 	if (*status & FE_HAS_CARRIER)
642 		read_snr(fe);
643 	else
644 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
645 
646 	if (*status & FE_HAS_SYNC)
647 		read_ber(fe);
648 	else {
649 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
650 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
651 		p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
652 		p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
653 	}
654 
655 	return 0;
656 }
657 
658 static int tune(struct dvb_frontend *fe, bool re_tune,
659 		unsigned int mode_flags,
660 		unsigned int *delay, enum fe_status *status)
661 {
662 	struct mxl *state = fe->demodulator_priv;
663 	int r = 0;
664 
665 	*delay = HZ / 2;
666 	if (re_tune) {
667 		r = set_parameters(fe);
668 		if (r)
669 			return r;
670 		state->tune_time = jiffies;
671 	}
672 
673 	return read_status(fe, status);
674 }
675 
676 static enum fe_code_rate conv_fec(enum MXL_HYDRA_FEC_E fec)
677 {
678 	enum fe_code_rate fec2fec[11] = {
679 		FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3,
680 		FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7,
681 		FEC_7_8, FEC_8_9, FEC_9_10
682 	};
683 
684 	if (fec > MXL_HYDRA_FEC_9_10)
685 		return FEC_NONE;
686 	return fec2fec[fec];
687 }
688 
689 static int get_frontend(struct dvb_frontend *fe,
690 			struct dtv_frontend_properties *p)
691 {
692 	struct mxl *state = fe->demodulator_priv;
693 	u32 reg_data[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE];
694 	u32 freq;
695 
696 	mutex_lock(&state->base->status_lock);
697 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
698 	read_register_block(state,
699 		(HYDRA_DMD_STANDARD_ADDR_OFFSET +
700 		HYDRA_DMD_STATUS_OFFSET(state->demod)),
701 		(MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), /* 25 * 4 bytes */
702 		(u8 *) &reg_data[0]);
703 	/* read demod channel parameters */
704 	read_register_block(state,
705 		(HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR +
706 		HYDRA_DMD_STATUS_OFFSET(state->demod)),
707 		(4), /* 4 bytes */
708 		(u8 *) &freq);
709 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
710 	mutex_unlock(&state->base->status_lock);
711 
712 	dev_dbg(state->i2cdev, "freq=%u delsys=%u srate=%u\n",
713 		freq * 1000, reg_data[DMD_STANDARD_ADDR],
714 		reg_data[DMD_SYMBOL_RATE_ADDR]);
715 	p->symbol_rate = reg_data[DMD_SYMBOL_RATE_ADDR];
716 	p->frequency = freq;
717 	/*
718 	 * p->delivery_system =
719 	 *	(MXL_HYDRA_BCAST_STD_E) regData[DMD_STANDARD_ADDR];
720 	 * p->inversion =
721 	 *	(MXL_HYDRA_SPECTRUM_E) regData[DMD_SPECTRUM_INVERSION_ADDR];
722 	 * freqSearchRangeKHz =
723 	 *	(regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]);
724 	 */
725 
726 	p->fec_inner = conv_fec(reg_data[DMD_FEC_CODE_RATE_ADDR]);
727 	switch (p->delivery_system) {
728 	case SYS_DSS:
729 		break;
730 	case SYS_DVBS2:
731 		switch ((enum MXL_HYDRA_PILOTS_E)
732 			reg_data[DMD_DVBS2_PILOT_ON_OFF_ADDR]) {
733 		case MXL_HYDRA_PILOTS_OFF:
734 			p->pilot = PILOT_OFF;
735 			break;
736 		case MXL_HYDRA_PILOTS_ON:
737 			p->pilot = PILOT_ON;
738 			break;
739 		default:
740 			break;
741 		}
742 	case SYS_DVBS:
743 		switch ((enum MXL_HYDRA_MODULATION_E)
744 			reg_data[DMD_MODULATION_SCHEME_ADDR]) {
745 		case MXL_HYDRA_MOD_QPSK:
746 			p->modulation = QPSK;
747 			break;
748 		case MXL_HYDRA_MOD_8PSK:
749 			p->modulation = PSK_8;
750 			break;
751 		default:
752 			break;
753 		}
754 		switch ((enum MXL_HYDRA_ROLLOFF_E)
755 			reg_data[DMD_SPECTRUM_ROLL_OFF_ADDR]) {
756 		case MXL_HYDRA_ROLLOFF_0_20:
757 			p->rolloff = ROLLOFF_20;
758 			break;
759 		case MXL_HYDRA_ROLLOFF_0_35:
760 			p->rolloff = ROLLOFF_35;
761 			break;
762 		case MXL_HYDRA_ROLLOFF_0_25:
763 			p->rolloff = ROLLOFF_25;
764 			break;
765 		default:
766 			break;
767 		}
768 		break;
769 	default:
770 		return -EINVAL;
771 	}
772 	return 0;
773 }
774 
775 static int set_input(struct dvb_frontend *fe, int input)
776 {
777 	struct mxl *state = fe->demodulator_priv;
778 
779 	state->tuner = input;
780 	return 0;
781 }
782 
783 static struct dvb_frontend_ops mxl_ops = {
784 	.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
785 	.info = {
786 		.name			= "MaxLinear MxL5xx DVB-S/S2 tuner-demodulator",
787 		.frequency_min		= 300000,
788 		.frequency_max		= 2350000,
789 		.frequency_stepsize	= 0,
790 		.frequency_tolerance	= 0,
791 		.symbol_rate_min	= 1000000,
792 		.symbol_rate_max	= 45000000,
793 		.caps			= FE_CAN_INVERSION_AUTO |
794 					  FE_CAN_FEC_AUTO       |
795 					  FE_CAN_QPSK           |
796 					  FE_CAN_2G_MODULATION
797 	},
798 	.init				= init,
799 	.release                        = release,
800 	.get_frontend_algo              = get_algo,
801 	.tune                           = tune,
802 	.read_status			= read_status,
803 	.sleep				= sleep,
804 	.get_frontend                   = get_frontend,
805 	.diseqc_send_master_cmd		= send_master_cmd,
806 };
807 
808 static struct mxl_base *match_base(struct i2c_adapter  *i2c, u8 adr)
809 {
810 	struct mxl_base *p;
811 
812 	list_for_each_entry(p, &mxllist, mxllist)
813 		if (p->i2c == i2c && p->adr == adr)
814 			return p;
815 	return NULL;
816 }
817 
818 static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable)
819 {
820 	if (state->base->can_clkout || !enable)
821 		update_by_mnemonic(state, 0x90200054, 23, 1, enable);
822 
823 	if (freq == 24000000)
824 		write_register(state, HYDRA_CRYSTAL_SETTING, 0);
825 	else
826 		write_register(state, HYDRA_CRYSTAL_SETTING, 1);
827 
828 	write_register(state, HYDRA_CRYSTAL_CAP, cap);
829 }
830 
831 static u32 get_big_endian(u8 num_of_bits, const u8 buf[])
832 {
833 	u32 ret_value = 0;
834 
835 	switch (num_of_bits) {
836 	case 24:
837 		ret_value = (((u32) buf[0]) << 16) |
838 			(((u32) buf[1]) << 8) | buf[2];
839 		break;
840 	case 32:
841 		ret_value = (((u32) buf[0]) << 24) |
842 			(((u32) buf[1]) << 16) |
843 			(((u32) buf[2]) << 8) | buf[3];
844 		break;
845 	default:
846 		break;
847 	}
848 
849 	return ret_value;
850 }
851 
852 static int write_fw_segment(struct mxl *state,
853 			    u32 mem_addr, u32 total_size, u8 *data_ptr)
854 {
855 	int status;
856 	u32 data_count = 0;
857 	u32 size = 0;
858 	u32 orig_size = 0;
859 	u8 *w_buf_ptr = NULL;
860 	u32 block_size = ((MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
861 			 (MXL_HYDRA_I2C_HDR_SIZE +
862 			  MXL_HYDRA_REG_SIZE_IN_BYTES)) / 4) * 4;
863 	u8 w_msg_buffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
864 		      (MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)];
865 
866 	do {
867 		size = orig_size = (((u32)(data_count + block_size)) > total_size) ?
868 			(total_size - data_count) : block_size;
869 
870 		if (orig_size & 3)
871 			size = (orig_size + 4) & ~3;
872 		w_buf_ptr = &w_msg_buffer[0];
873 		memset((void *) w_buf_ptr, 0, size);
874 		memcpy((void *) w_buf_ptr, (void *) data_ptr, orig_size);
875 		convert_endian(1, size, w_buf_ptr);
876 		status  = write_firmware_block(state, mem_addr, size, w_buf_ptr);
877 		if (status)
878 			return status;
879 		data_count += size;
880 		mem_addr   += size;
881 		data_ptr   += size;
882 	} while (data_count < total_size);
883 
884 	return status;
885 }
886 
887 static int do_firmware_download(struct mxl *state, u8 *mbin_buffer_ptr,
888 				u32 mbin_buffer_size)
889 
890 {
891 	int status;
892 	u32 index = 0;
893 	u32 seg_length = 0;
894 	u32 seg_address = 0;
895 	struct MBIN_FILE_T *mbin_ptr  = (struct MBIN_FILE_T *)mbin_buffer_ptr;
896 	struct MBIN_SEGMENT_T *segment_ptr;
897 	enum MXL_BOOL_E xcpu_fw_flag = MXL_FALSE;
898 
899 	if (mbin_ptr->header.id != MBIN_FILE_HEADER_ID) {
900 		dev_err(state->i2cdev, "%s: Invalid file header ID (%c)\n",
901 		       __func__, mbin_ptr->header.id);
902 		return -EINVAL;
903 	}
904 	status = write_register(state, FW_DL_SIGN_ADDR, 0);
905 	if (status)
906 		return status;
907 	segment_ptr = (struct MBIN_SEGMENT_T *) (&mbin_ptr->data[0]);
908 	for (index = 0; index < mbin_ptr->header.num_segments; index++) {
909 		if (segment_ptr->header.id != MBIN_SEGMENT_HEADER_ID) {
910 			dev_err(state->i2cdev, "%s: Invalid segment header ID (%c)\n",
911 			       __func__, segment_ptr->header.id);
912 			return -EINVAL;
913 		}
914 		seg_length  = get_big_endian(24,
915 					    &(segment_ptr->header.len24[0]));
916 		seg_address = get_big_endian(32,
917 					    &(segment_ptr->header.address[0]));
918 
919 		if (state->base->type == MXL_HYDRA_DEVICE_568) {
920 			if ((((seg_address & 0x90760000) == 0x90760000) ||
921 			     ((seg_address & 0x90740000) == 0x90740000)) &&
922 			    (xcpu_fw_flag == MXL_FALSE)) {
923 				update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
924 				msleep(200);
925 				write_register(state, 0x90720000, 0);
926 				usleep_range(10000, 11000);
927 				xcpu_fw_flag = MXL_TRUE;
928 			}
929 			status = write_fw_segment(state, seg_address,
930 						  seg_length,
931 						  (u8 *) segment_ptr->data);
932 		} else {
933 			if (((seg_address & 0x90760000) != 0x90760000) &&
934 			    ((seg_address & 0x90740000) != 0x90740000))
935 				status = write_fw_segment(state, seg_address,
936 					seg_length, (u8 *) segment_ptr->data);
937 		}
938 		if (status)
939 			return status;
940 		segment_ptr = (struct MBIN_SEGMENT_T *)
941 			&(segment_ptr->data[((seg_length + 3) / 4) * 4]);
942 	}
943 	return status;
944 }
945 
946 static int check_fw(struct mxl *state, u8 *mbin, u32 mbin_len)
947 {
948 	struct MBIN_FILE_HEADER_T *fh = (struct MBIN_FILE_HEADER_T *) mbin;
949 	u32 flen = (fh->image_size24[0] << 16) |
950 		(fh->image_size24[1] <<  8) | fh->image_size24[2];
951 	u8 *fw, cs = 0;
952 	u32 i;
953 
954 	if (fh->id != 'M' || fh->fmt_version != '1' || flen > 0x3FFF0) {
955 		dev_info(state->i2cdev, "Invalid FW Header\n");
956 		return -1;
957 	}
958 	fw = mbin + sizeof(struct MBIN_FILE_HEADER_T);
959 	for (i = 0; i < flen; i += 1)
960 		cs += fw[i];
961 	if (cs != fh->image_checksum) {
962 		dev_info(state->i2cdev, "Invalid FW Checksum\n");
963 		return -1;
964 	}
965 	return 0;
966 }
967 
968 static int firmware_download(struct mxl *state, u8 *mbin, u32 mbin_len)
969 {
970 	int status;
971 	u32 reg_data = 0;
972 	struct MXL_HYDRA_SKU_COMMAND_T dev_sku_cfg;
973 	u8 cmd_size = sizeof(struct MXL_HYDRA_SKU_COMMAND_T);
974 	u8 cmd_buff[sizeof(struct MXL_HYDRA_SKU_COMMAND_T) + 6];
975 
976 	if (check_fw(state, mbin, mbin_len))
977 		return -1;
978 
979 	/* put CPU into reset */
980 	status = update_by_mnemonic(state, 0x8003003C, 0, 1, 0);
981 	if (status)
982 		return status;
983 	usleep_range(1000, 2000);
984 
985 	/* Reset TX FIFO's, BBAND, XBAR */
986 	status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG,
987 				HYDRA_RESET_TRANSPORT_FIFO_DATA);
988 	if (status)
989 		return status;
990 	status = write_register(state, HYDRA_RESET_BBAND_REG,
991 				HYDRA_RESET_BBAND_DATA);
992 	if (status)
993 		return status;
994 	status = write_register(state, HYDRA_RESET_XBAR_REG,
995 				HYDRA_RESET_XBAR_DATA);
996 	if (status)
997 		return status;
998 
999 	/* Disable clock to Baseband, Wideband, SerDes,
1000 	 * Alias ext & Transport modules
1001 	 */
1002 	status = write_register(state, HYDRA_MODULES_CLK_2_REG,
1003 				HYDRA_DISABLE_CLK_2);
1004 	if (status)
1005 		return status;
1006 	/* Clear Software & Host interrupt status - (Clear on read) */
1007 	status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, &reg_data);
1008 	if (status)
1009 		return status;
1010 	status = do_firmware_download(state, mbin, mbin_len);
1011 	if (status)
1012 		return status;
1013 
1014 	if (state->base->type == MXL_HYDRA_DEVICE_568) {
1015 		usleep_range(10000, 11000);
1016 
1017 		/* bring XCPU out of reset */
1018 		status = write_register(state, 0x90720000, 1);
1019 		if (status)
1020 			return status;
1021 		msleep(500);
1022 
1023 		/* Enable XCPU UART message processing in MCPU */
1024 		status = write_register(state, 0x9076B510, 1);
1025 		if (status)
1026 			return status;
1027 	} else {
1028 		/* Bring CPU out of reset */
1029 		status = update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
1030 		if (status)
1031 			return status;
1032 		/* Wait until FW boots */
1033 		msleep(150);
1034 	}
1035 
1036 	/* Initialize XPT XBAR */
1037 	status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210);
1038 	if (status)
1039 		return status;
1040 
1041 	if (!firmware_is_alive(state))
1042 		return -1;
1043 
1044 	dev_info(state->i2cdev, "Hydra FW alive. Hail!\n");
1045 
1046 	/* sometimes register values are wrong shortly
1047 	 * after first heart beats
1048 	 */
1049 	msleep(50);
1050 
1051 	dev_sku_cfg.sku_type = state->base->sku_type;
1052 	BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE,
1053 			cmd_size, &dev_sku_cfg, cmd_buff);
1054 	status = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1055 			      &cmd_buff[0]);
1056 
1057 	return status;
1058 }
1059 
1060 static int cfg_ts_pad_mux(struct mxl *state, enum MXL_BOOL_E enable_serial_ts)
1061 {
1062 	int status = 0;
1063 	u32 pad_mux_value = 0;
1064 
1065 	if (enable_serial_ts == MXL_TRUE) {
1066 		pad_mux_value = 0;
1067 		if ((state->base->type == MXL_HYDRA_DEVICE_541) ||
1068 		    (state->base->type == MXL_HYDRA_DEVICE_541S))
1069 			pad_mux_value = 2;
1070 	} else {
1071 		if ((state->base->type == MXL_HYDRA_DEVICE_581) ||
1072 		    (state->base->type == MXL_HYDRA_DEVICE_581S))
1073 			pad_mux_value = 2;
1074 		else
1075 			pad_mux_value = 3;
1076 	}
1077 
1078 	switch (state->base->type) {
1079 	case MXL_HYDRA_DEVICE_561:
1080 	case MXL_HYDRA_DEVICE_581:
1081 	case MXL_HYDRA_DEVICE_541:
1082 	case MXL_HYDRA_DEVICE_541S:
1083 	case MXL_HYDRA_DEVICE_561S:
1084 	case MXL_HYDRA_DEVICE_581S:
1085 		status |= update_by_mnemonic(state, 0x90000170, 24, 3,
1086 					     pad_mux_value);
1087 		status |= update_by_mnemonic(state, 0x90000170, 28, 3,
1088 					     pad_mux_value);
1089 		status |= update_by_mnemonic(state, 0x90000174, 0, 3,
1090 					     pad_mux_value);
1091 		status |= update_by_mnemonic(state, 0x90000174, 4, 3,
1092 					     pad_mux_value);
1093 		status |= update_by_mnemonic(state, 0x90000174, 8, 3,
1094 					     pad_mux_value);
1095 		status |= update_by_mnemonic(state, 0x90000174, 12, 3,
1096 					     pad_mux_value);
1097 		status |= update_by_mnemonic(state, 0x90000174, 16, 3,
1098 					     pad_mux_value);
1099 		status |= update_by_mnemonic(state, 0x90000174, 20, 3,
1100 					     pad_mux_value);
1101 		status |= update_by_mnemonic(state, 0x90000174, 24, 3,
1102 					     pad_mux_value);
1103 		status |= update_by_mnemonic(state, 0x90000174, 28, 3,
1104 					     pad_mux_value);
1105 		status |= update_by_mnemonic(state, 0x90000178, 0, 3,
1106 					     pad_mux_value);
1107 		status |= update_by_mnemonic(state, 0x90000178, 4, 3,
1108 					     pad_mux_value);
1109 		status |= update_by_mnemonic(state, 0x90000178, 8, 3,
1110 					     pad_mux_value);
1111 		break;
1112 
1113 	case MXL_HYDRA_DEVICE_544:
1114 	case MXL_HYDRA_DEVICE_542:
1115 		status |= update_by_mnemonic(state, 0x9000016C, 4, 3, 1);
1116 		status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 0);
1117 		status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 0);
1118 		status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 0);
1119 		status |= update_by_mnemonic(state, 0x90000170, 0, 3, 0);
1120 		status |= update_by_mnemonic(state, 0x90000178, 12, 3, 1);
1121 		status |= update_by_mnemonic(state, 0x90000178, 16, 3, 1);
1122 		status |= update_by_mnemonic(state, 0x90000178, 20, 3, 1);
1123 		status |= update_by_mnemonic(state, 0x90000178, 24, 3, 1);
1124 		status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 1);
1125 		status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 1);
1126 		if (enable_serial_ts == MXL_ENABLE) {
1127 			status |= update_by_mnemonic(state,
1128 				0x90000170, 4, 3, 0);
1129 			status |= update_by_mnemonic(state,
1130 				0x90000170, 8, 3, 0);
1131 			status |= update_by_mnemonic(state,
1132 				0x90000170, 12, 3, 0);
1133 			status |= update_by_mnemonic(state,
1134 				0x90000170, 16, 3, 0);
1135 			status |= update_by_mnemonic(state,
1136 				0x90000170, 20, 3, 1);
1137 			status |= update_by_mnemonic(state,
1138 				0x90000170, 24, 3, 1);
1139 			status |= update_by_mnemonic(state,
1140 				0x90000170, 28, 3, 2);
1141 			status |= update_by_mnemonic(state,
1142 				0x90000174, 0, 3, 2);
1143 			status |= update_by_mnemonic(state,
1144 				0x90000174, 4, 3, 2);
1145 			status |= update_by_mnemonic(state,
1146 				0x90000174, 8, 3, 2);
1147 			status |= update_by_mnemonic(state,
1148 				0x90000174, 12, 3, 2);
1149 			status |= update_by_mnemonic(state,
1150 				0x90000174, 16, 3, 2);
1151 			status |= update_by_mnemonic(state,
1152 				0x90000174, 20, 3, 2);
1153 			status |= update_by_mnemonic(state,
1154 				0x90000174, 24, 3, 2);
1155 			status |= update_by_mnemonic(state,
1156 				0x90000174, 28, 3, 2);
1157 			status |= update_by_mnemonic(state,
1158 				0x90000178, 0, 3, 2);
1159 			status |= update_by_mnemonic(state,
1160 				0x90000178, 4, 3, 2);
1161 			status |= update_by_mnemonic(state,
1162 				0x90000178, 8, 3, 2);
1163 		} else {
1164 			status |= update_by_mnemonic(state,
1165 				0x90000170, 4, 3, 3);
1166 			status |= update_by_mnemonic(state,
1167 				0x90000170, 8, 3, 3);
1168 			status |= update_by_mnemonic(state,
1169 				0x90000170, 12, 3, 3);
1170 			status |= update_by_mnemonic(state,
1171 				0x90000170, 16, 3, 3);
1172 			status |= update_by_mnemonic(state,
1173 				0x90000170, 20, 3, 3);
1174 			status |= update_by_mnemonic(state,
1175 				0x90000170, 24, 3, 3);
1176 			status |= update_by_mnemonic(state,
1177 				0x90000170, 28, 3, 3);
1178 			status |= update_by_mnemonic(state,
1179 				0x90000174, 0, 3, 3);
1180 			status |= update_by_mnemonic(state,
1181 				0x90000174, 4, 3, 3);
1182 			status |= update_by_mnemonic(state,
1183 				0x90000174, 8, 3, 3);
1184 			status |= update_by_mnemonic(state,
1185 				0x90000174, 12, 3, 3);
1186 			status |= update_by_mnemonic(state,
1187 				0x90000174, 16, 3, 3);
1188 			status |= update_by_mnemonic(state,
1189 				0x90000174, 20, 3, 1);
1190 			status |= update_by_mnemonic(state,
1191 				0x90000174, 24, 3, 1);
1192 			status |= update_by_mnemonic(state,
1193 				0x90000174, 28, 3, 1);
1194 			status |= update_by_mnemonic(state,
1195 				0x90000178, 0, 3, 1);
1196 			status |= update_by_mnemonic(state,
1197 				0x90000178, 4, 3, 1);
1198 			status |= update_by_mnemonic(state,
1199 				0x90000178, 8, 3, 1);
1200 		}
1201 		break;
1202 
1203 	case MXL_HYDRA_DEVICE_568:
1204 		if (enable_serial_ts == MXL_FALSE) {
1205 			status |= update_by_mnemonic(state,
1206 				0x9000016C, 8, 3, 5);
1207 			status |= update_by_mnemonic(state,
1208 				0x9000016C, 12, 3, 5);
1209 			status |= update_by_mnemonic(state,
1210 				0x9000016C, 16, 3, 5);
1211 			status |= update_by_mnemonic(state,
1212 				0x9000016C, 20, 3, 5);
1213 			status |= update_by_mnemonic(state,
1214 				0x9000016C, 24, 3, 5);
1215 			status |= update_by_mnemonic(state,
1216 				0x9000016C, 28, 3, 5);
1217 			status |= update_by_mnemonic(state,
1218 				0x90000170, 0, 3, 5);
1219 			status |= update_by_mnemonic(state,
1220 				0x90000170, 4, 3, 5);
1221 			status |= update_by_mnemonic(state,
1222 				0x90000170, 8, 3, 5);
1223 			status |= update_by_mnemonic(state,
1224 				0x90000170, 12, 3, 5);
1225 			status |= update_by_mnemonic(state,
1226 				0x90000170, 16, 3, 5);
1227 			status |= update_by_mnemonic(state,
1228 				0x90000170, 20, 3, 5);
1229 
1230 			status |= update_by_mnemonic(state,
1231 				0x90000170, 24, 3, pad_mux_value);
1232 			status |= update_by_mnemonic(state,
1233 				0x90000174, 0, 3, pad_mux_value);
1234 			status |= update_by_mnemonic(state,
1235 				0x90000174, 4, 3, pad_mux_value);
1236 			status |= update_by_mnemonic(state,
1237 				0x90000174, 8, 3, pad_mux_value);
1238 			status |= update_by_mnemonic(state,
1239 				0x90000174, 12, 3, pad_mux_value);
1240 			status |= update_by_mnemonic(state,
1241 				0x90000174, 16, 3, pad_mux_value);
1242 			status |= update_by_mnemonic(state,
1243 				0x90000174, 20, 3, pad_mux_value);
1244 			status |= update_by_mnemonic(state,
1245 				0x90000174, 24, 3, pad_mux_value);
1246 			status |= update_by_mnemonic(state,
1247 				0x90000174, 28, 3, pad_mux_value);
1248 			status |= update_by_mnemonic(state,
1249 				0x90000178, 0, 3, pad_mux_value);
1250 			status |= update_by_mnemonic(state,
1251 				0x90000178, 4, 3, pad_mux_value);
1252 
1253 			status |= update_by_mnemonic(state,
1254 				0x90000178, 8, 3, 5);
1255 			status |= update_by_mnemonic(state,
1256 				0x90000178, 12, 3, 5);
1257 			status |= update_by_mnemonic(state,
1258 				0x90000178, 16, 3, 5);
1259 			status |= update_by_mnemonic(state,
1260 				0x90000178, 20, 3, 5);
1261 			status |= update_by_mnemonic(state,
1262 				0x90000178, 24, 3, 5);
1263 			status |= update_by_mnemonic(state,
1264 				0x90000178, 28, 3, 5);
1265 			status |= update_by_mnemonic(state,
1266 				0x9000017C, 0, 3, 5);
1267 			status |= update_by_mnemonic(state,
1268 				0x9000017C, 4, 3, 5);
1269 		} else {
1270 			status |= update_by_mnemonic(state,
1271 				0x90000170, 4, 3, pad_mux_value);
1272 			status |= update_by_mnemonic(state,
1273 				0x90000170, 8, 3, pad_mux_value);
1274 			status |= update_by_mnemonic(state,
1275 				0x90000170, 12, 3, pad_mux_value);
1276 			status |= update_by_mnemonic(state,
1277 				0x90000170, 16, 3, pad_mux_value);
1278 			status |= update_by_mnemonic(state,
1279 				0x90000170, 20, 3, pad_mux_value);
1280 			status |= update_by_mnemonic(state,
1281 				0x90000170, 24, 3, pad_mux_value);
1282 			status |= update_by_mnemonic(state,
1283 				0x90000170, 28, 3, pad_mux_value);
1284 			status |= update_by_mnemonic(state,
1285 				0x90000174, 0, 3, pad_mux_value);
1286 			status |= update_by_mnemonic(state,
1287 				0x90000174, 4, 3, pad_mux_value);
1288 			status |= update_by_mnemonic(state,
1289 				0x90000174, 8, 3, pad_mux_value);
1290 			status |= update_by_mnemonic(state,
1291 				0x90000174, 12, 3, pad_mux_value);
1292 		}
1293 		break;
1294 
1295 
1296 	case MXL_HYDRA_DEVICE_584:
1297 	default:
1298 		status |= update_by_mnemonic(state,
1299 			0x90000170, 4, 3, pad_mux_value);
1300 		status |= update_by_mnemonic(state,
1301 			0x90000170, 8, 3, pad_mux_value);
1302 		status |= update_by_mnemonic(state,
1303 			0x90000170, 12, 3, pad_mux_value);
1304 		status |= update_by_mnemonic(state,
1305 			0x90000170, 16, 3, pad_mux_value);
1306 		status |= update_by_mnemonic(state,
1307 			0x90000170, 20, 3, pad_mux_value);
1308 		status |= update_by_mnemonic(state,
1309 			0x90000170, 24, 3, pad_mux_value);
1310 		status |= update_by_mnemonic(state,
1311 			0x90000170, 28, 3, pad_mux_value);
1312 		status |= update_by_mnemonic(state,
1313 			0x90000174, 0, 3, pad_mux_value);
1314 		status |= update_by_mnemonic(state,
1315 			0x90000174, 4, 3, pad_mux_value);
1316 		status |= update_by_mnemonic(state,
1317 			0x90000174, 8, 3, pad_mux_value);
1318 		status |= update_by_mnemonic(state,
1319 			0x90000174, 12, 3, pad_mux_value);
1320 		break;
1321 	}
1322 	return status;
1323 }
1324 
1325 static int set_drive_strength(struct mxl *state,
1326 		enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength)
1327 {
1328 	int stat = 0;
1329 	u32 val;
1330 
1331 	read_register(state, 0x90000194, &val);
1332 	dev_info(state->i2cdev, "DIGIO = %08x\n", val);
1333 	dev_info(state->i2cdev, "set drive_strength = %u\n", ts_drive_strength);
1334 
1335 
1336 	stat |= update_by_mnemonic(state, 0x90000194, 0, 3, ts_drive_strength);
1337 	stat |= update_by_mnemonic(state, 0x90000194, 20, 3, ts_drive_strength);
1338 	stat |= update_by_mnemonic(state, 0x90000194, 24, 3, ts_drive_strength);
1339 	stat |= update_by_mnemonic(state, 0x90000198, 12, 3, ts_drive_strength);
1340 	stat |= update_by_mnemonic(state, 0x90000198, 16, 3, ts_drive_strength);
1341 	stat |= update_by_mnemonic(state, 0x90000198, 20, 3, ts_drive_strength);
1342 	stat |= update_by_mnemonic(state, 0x90000198, 24, 3, ts_drive_strength);
1343 	stat |= update_by_mnemonic(state, 0x9000019C, 0, 3, ts_drive_strength);
1344 	stat |= update_by_mnemonic(state, 0x9000019C, 4, 3, ts_drive_strength);
1345 	stat |= update_by_mnemonic(state, 0x9000019C, 8, 3, ts_drive_strength);
1346 	stat |= update_by_mnemonic(state, 0x9000019C, 24, 3, ts_drive_strength);
1347 	stat |= update_by_mnemonic(state, 0x9000019C, 28, 3, ts_drive_strength);
1348 	stat |= update_by_mnemonic(state, 0x900001A0, 0, 3, ts_drive_strength);
1349 	stat |= update_by_mnemonic(state, 0x900001A0, 4, 3, ts_drive_strength);
1350 	stat |= update_by_mnemonic(state, 0x900001A0, 20, 3, ts_drive_strength);
1351 	stat |= update_by_mnemonic(state, 0x900001A0, 24, 3, ts_drive_strength);
1352 	stat |= update_by_mnemonic(state, 0x900001A0, 28, 3, ts_drive_strength);
1353 
1354 	return stat;
1355 }
1356 
1357 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable)
1358 {
1359 	int stat = 0;
1360 	struct MXL_HYDRA_TUNER_CMD ctrl_tuner_cmd;
1361 	u8 cmd_size = sizeof(ctrl_tuner_cmd);
1362 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
1363 	u32 val, count = 10;
1364 
1365 	ctrl_tuner_cmd.tuner_id = tuner;
1366 	ctrl_tuner_cmd.enable = enable;
1367 	BUILD_HYDRA_CMD(MXL_HYDRA_TUNER_ACTIVATE_CMD, MXL_CMD_WRITE,
1368 			cmd_size, &ctrl_tuner_cmd, cmd_buff);
1369 	stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1370 			    &cmd_buff[0]);
1371 	if (stat)
1372 		return stat;
1373 	read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1374 	while (--count && ((val >> tuner) & 1) != enable) {
1375 		msleep(20);
1376 		read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1377 	}
1378 	if (!count)
1379 		return -1;
1380 	read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1381 	dev_dbg(state->i2cdev, "tuner %u ready = %u\n",
1382 		tuner, (val >> tuner) & 1);
1383 
1384 	return 0;
1385 }
1386 
1387 
1388 static int config_ts(struct mxl *state, enum MXL_HYDRA_DEMOD_ID_E demod_id,
1389 		     struct MXL_HYDRA_MPEGOUT_PARAM_T *mpeg_out_param_ptr)
1390 {
1391 	int status = 0;
1392 	u32 nco_count_min = 0;
1393 	u32 clk_type = 0;
1394 
1395 	struct MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = {
1396 		{0x90700010, 8, 1}, {0x90700010, 9, 1},
1397 		{0x90700010, 10, 1}, {0x90700010, 11, 1},
1398 		{0x90700010, 12, 1}, {0x90700010, 13, 1},
1399 		{0x90700010, 14, 1}, {0x90700010, 15, 1} };
1400 	struct MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = {
1401 		{0x90700010, 16, 1}, {0x90700010, 17, 1},
1402 		{0x90700010, 18, 1}, {0x90700010, 19, 1},
1403 		{0x90700010, 20, 1}, {0x90700010, 21, 1},
1404 		{0x90700010, 22, 1}, {0x90700010, 23, 1} };
1405 	struct MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = {
1406 		{0x90700014, 0, 1}, {0x90700014, 1, 1},
1407 		{0x90700014, 2, 1}, {0x90700014, 3, 1},
1408 		{0x90700014, 4, 1}, {0x90700014, 5, 1},
1409 		{0x90700014, 6, 1}, {0x90700014, 7, 1} };
1410 	struct MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = {
1411 		{0x90700018, 0, 3}, {0x90700018, 4, 3},
1412 		{0x90700018, 8, 3}, {0x90700018, 12, 3},
1413 		{0x90700018, 16, 3}, {0x90700018, 20, 3},
1414 		{0x90700018, 24, 3}, {0x90700018, 28, 3} };
1415 	struct MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = {
1416 		{0x9070000C, 16, 1}, {0x9070000C, 17, 1},
1417 		{0x9070000C, 18, 1}, {0x9070000C, 19, 1},
1418 		{0x9070000C, 20, 1}, {0x9070000C, 21, 1},
1419 		{0x9070000C, 22, 1}, {0x9070000C, 23, 1} };
1420 	struct MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = {
1421 		{0x90700010, 0, 1}, {0x90700010, 1, 1},
1422 		{0x90700010, 2, 1}, {0x90700010, 3, 1},
1423 		{0x90700010, 4, 1}, {0x90700010, 5, 1},
1424 		{0x90700010, 6, 1}, {0x90700010, 7, 1} };
1425 	struct MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = {
1426 		{0x9070000C, 0, 1}, {0x9070000C, 1, 1},
1427 		{0x9070000C, 2, 1}, {0x9070000C, 3, 1},
1428 		{0x9070000C, 4, 1}, {0x9070000C, 5, 1},
1429 		{0x9070000C, 6, 1}, {0x9070000C, 7, 1} };
1430 	struct MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = {
1431 		{0x9070000C, 24, 1}, {0x9070000C, 25, 1},
1432 		{0x9070000C, 26, 1}, {0x9070000C, 27, 1},
1433 		{0x9070000C, 28, 1}, {0x9070000C, 29, 1},
1434 		{0x9070000C, 30, 1}, {0x9070000C, 31, 1} };
1435 	struct MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = {
1436 		{0x90700014, 8, 1}, {0x90700014, 9, 1},
1437 		{0x90700014, 10, 1}, {0x90700014, 11, 1},
1438 		{0x90700014, 12, 1}, {0x90700014, 13, 1},
1439 		{0x90700014, 14, 1}, {0x90700014, 15, 1} };
1440 	struct MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = {
1441 		{0x907001D4, 0, 1}, {0x907001D4, 1, 1},
1442 		{0x907001D4, 2, 1}, {0x907001D4, 3, 1},
1443 		{0x907001D4, 4, 1}, {0x907001D4, 5, 1},
1444 		{0x907001D4, 6, 1}, {0x907001D4, 7, 1} };
1445 	struct MXL_REG_FIELD_T xpt_nco_clock_rate[MXL_HYDRA_DEMOD_MAX] = {
1446 		{0x90700044, 16, 80}, {0x90700044, 16, 81},
1447 		{0x90700044, 16, 82}, {0x90700044, 16, 83},
1448 		{0x90700044, 16, 84}, {0x90700044, 16, 85},
1449 		{0x90700044, 16, 86}, {0x90700044, 16, 87} };
1450 
1451 	demod_id = state->base->ts_map[demod_id];
1452 
1453 	if (mpeg_out_param_ptr->enable == MXL_ENABLE) {
1454 		if (mpeg_out_param_ptr->mpeg_mode ==
1455 		    MXL_HYDRA_MPEG_MODE_PARALLEL) {
1456 		} else {
1457 			cfg_ts_pad_mux(state, MXL_TRUE);
1458 			update_by_mnemonic(state,
1459 				0x90700010, 27, 1, MXL_FALSE);
1460 		}
1461 	}
1462 
1463 	nco_count_min =
1464 		(u32)(MXL_HYDRA_NCO_CLK / mpeg_out_param_ptr->max_mpeg_clk_rate);
1465 
1466 	if (state->base->chipversion >= 2) {
1467 		status |= update_by_mnemonic(state,
1468 			xpt_nco_clock_rate[demod_id].reg_addr, /* Reg Addr */
1469 			xpt_nco_clock_rate[demod_id].lsb_pos, /* LSB pos */
1470 			xpt_nco_clock_rate[demod_id].num_of_bits, /* Num of bits */
1471 			nco_count_min); /* Data */
1472 	} else
1473 		update_by_mnemonic(state, 0x90700044, 16, 8, nco_count_min);
1474 
1475 	if (mpeg_out_param_ptr->mpeg_clk_type == MXL_HYDRA_MPEG_CLK_CONTINUOUS)
1476 		clk_type = 1;
1477 
1478 	if (mpeg_out_param_ptr->mpeg_mode < MXL_HYDRA_MPEG_MODE_PARALLEL) {
1479 		status |= update_by_mnemonic(state,
1480 			xpt_continuous_clock[demod_id].reg_addr,
1481 			xpt_continuous_clock[demod_id].lsb_pos,
1482 			xpt_continuous_clock[demod_id].num_of_bits,
1483 			clk_type);
1484 	} else
1485 		update_by_mnemonic(state, 0x907001D4, 8, 1, clk_type);
1486 
1487 	status |= update_by_mnemonic(state,
1488 		xpt_sync_polarity[demod_id].reg_addr,
1489 		xpt_sync_polarity[demod_id].lsb_pos,
1490 		xpt_sync_polarity[demod_id].num_of_bits,
1491 		mpeg_out_param_ptr->mpeg_sync_pol);
1492 
1493 	status |= update_by_mnemonic(state,
1494 		xpt_valid_polarity[demod_id].reg_addr,
1495 		xpt_valid_polarity[demod_id].lsb_pos,
1496 		xpt_valid_polarity[demod_id].num_of_bits,
1497 		mpeg_out_param_ptr->mpeg_valid_pol);
1498 
1499 	status |= update_by_mnemonic(state,
1500 		xpt_clock_polarity[demod_id].reg_addr,
1501 		xpt_clock_polarity[demod_id].lsb_pos,
1502 		xpt_clock_polarity[demod_id].num_of_bits,
1503 		mpeg_out_param_ptr->mpeg_clk_pol);
1504 
1505 	status |= update_by_mnemonic(state,
1506 		xpt_sync_byte[demod_id].reg_addr,
1507 		xpt_sync_byte[demod_id].lsb_pos,
1508 		xpt_sync_byte[demod_id].num_of_bits,
1509 		mpeg_out_param_ptr->mpeg_sync_pulse_width);
1510 
1511 	status |= update_by_mnemonic(state,
1512 		xpt_ts_clock_phase[demod_id].reg_addr,
1513 		xpt_ts_clock_phase[demod_id].lsb_pos,
1514 		xpt_ts_clock_phase[demod_id].num_of_bits,
1515 		mpeg_out_param_ptr->mpeg_clk_phase);
1516 
1517 	status |= update_by_mnemonic(state,
1518 		xpt_lsb_first[demod_id].reg_addr,
1519 		xpt_lsb_first[demod_id].lsb_pos,
1520 		xpt_lsb_first[demod_id].num_of_bits,
1521 		mpeg_out_param_ptr->lsb_or_msb_first);
1522 
1523 	switch (mpeg_out_param_ptr->mpeg_error_indication) {
1524 	case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC:
1525 		status |= update_by_mnemonic(state,
1526 			xpt_err_replace_sync[demod_id].reg_addr,
1527 			xpt_err_replace_sync[demod_id].lsb_pos,
1528 			xpt_err_replace_sync[demod_id].num_of_bits,
1529 			MXL_TRUE);
1530 		status |= update_by_mnemonic(state,
1531 			xpt_err_replace_valid[demod_id].reg_addr,
1532 			xpt_err_replace_valid[demod_id].lsb_pos,
1533 			xpt_err_replace_valid[demod_id].num_of_bits,
1534 			MXL_FALSE);
1535 		break;
1536 
1537 	case MXL_HYDRA_MPEG_ERR_REPLACE_VALID:
1538 		status |= update_by_mnemonic(state,
1539 			xpt_err_replace_sync[demod_id].reg_addr,
1540 			xpt_err_replace_sync[demod_id].lsb_pos,
1541 			xpt_err_replace_sync[demod_id].num_of_bits,
1542 			MXL_FALSE);
1543 
1544 		status |= update_by_mnemonic(state,
1545 			xpt_err_replace_valid[demod_id].reg_addr,
1546 			xpt_err_replace_valid[demod_id].lsb_pos,
1547 			xpt_err_replace_valid[demod_id].num_of_bits,
1548 			MXL_TRUE);
1549 		break;
1550 
1551 	case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED:
1552 	default:
1553 		status |= update_by_mnemonic(state,
1554 			xpt_err_replace_sync[demod_id].reg_addr,
1555 			xpt_err_replace_sync[demod_id].lsb_pos,
1556 			xpt_err_replace_sync[demod_id].num_of_bits,
1557 			MXL_FALSE);
1558 
1559 		status |= update_by_mnemonic(state,
1560 			xpt_err_replace_valid[demod_id].reg_addr,
1561 			xpt_err_replace_valid[demod_id].lsb_pos,
1562 			xpt_err_replace_valid[demod_id].num_of_bits,
1563 			MXL_FALSE);
1564 
1565 		break;
1566 
1567 	}
1568 
1569 	if (mpeg_out_param_ptr->mpeg_mode != MXL_HYDRA_MPEG_MODE_PARALLEL) {
1570 		status |= update_by_mnemonic(state,
1571 			xpt_enable_output[demod_id].reg_addr,
1572 			xpt_enable_output[demod_id].lsb_pos,
1573 			xpt_enable_output[demod_id].num_of_bits,
1574 			mpeg_out_param_ptr->enable);
1575 	}
1576 	return status;
1577 }
1578 
1579 static int config_mux(struct mxl *state)
1580 {
1581 	update_by_mnemonic(state, 0x9070000C, 0, 1, 0);
1582 	update_by_mnemonic(state, 0x9070000C, 1, 1, 0);
1583 	update_by_mnemonic(state, 0x9070000C, 2, 1, 0);
1584 	update_by_mnemonic(state, 0x9070000C, 3, 1, 0);
1585 	update_by_mnemonic(state, 0x9070000C, 4, 1, 0);
1586 	update_by_mnemonic(state, 0x9070000C, 5, 1, 0);
1587 	update_by_mnemonic(state, 0x9070000C, 6, 1, 0);
1588 	update_by_mnemonic(state, 0x9070000C, 7, 1, 0);
1589 	update_by_mnemonic(state, 0x90700008, 0, 2, 1);
1590 	update_by_mnemonic(state, 0x90700008, 2, 2, 1);
1591 	return 0;
1592 }
1593 
1594 static int load_fw(struct mxl *state, struct mxl5xx_cfg *cfg)
1595 {
1596 	int stat = 0;
1597 	u8 *buf;
1598 
1599 	if (cfg->fw)
1600 		return firmware_download(state, cfg->fw, cfg->fw_len);
1601 
1602 	if (!cfg->fw_read)
1603 		return -1;
1604 
1605 	buf = vmalloc(0x40000);
1606 	if (!buf)
1607 		return -ENOMEM;
1608 
1609 	cfg->fw_read(cfg->fw_priv, buf, 0x40000);
1610 	stat = firmware_download(state, buf, 0x40000);
1611 	vfree(buf);
1612 
1613 	return stat;
1614 }
1615 
1616 static int validate_sku(struct mxl *state)
1617 {
1618 	u32 pad_mux_bond = 0, prcm_chip_id = 0, prcm_so_cid = 0;
1619 	int status;
1620 	u32 type = state->base->type;
1621 
1622 	status = read_by_mnemonic(state, 0x90000190, 0, 3, &pad_mux_bond);
1623 	status |= read_by_mnemonic(state, 0x80030000, 0, 12, &prcm_chip_id);
1624 	status |= read_by_mnemonic(state, 0x80030004, 24, 8, &prcm_so_cid);
1625 	if (status)
1626 		return -1;
1627 
1628 	dev_info(state->i2cdev, "padMuxBond=%08x, prcmChipId=%08x, prcmSoCId=%08x\n",
1629 		pad_mux_bond, prcm_chip_id, prcm_so_cid);
1630 
1631 	if (prcm_chip_id != 0x560) {
1632 		switch (pad_mux_bond) {
1633 		case MXL_HYDRA_SKU_ID_581:
1634 			if (type == MXL_HYDRA_DEVICE_581)
1635 				return 0;
1636 			if (type == MXL_HYDRA_DEVICE_581S) {
1637 				state->base->type = MXL_HYDRA_DEVICE_581;
1638 				return 0;
1639 			}
1640 			break;
1641 		case MXL_HYDRA_SKU_ID_584:
1642 			if (type == MXL_HYDRA_DEVICE_584)
1643 				return 0;
1644 			break;
1645 		case MXL_HYDRA_SKU_ID_544:
1646 			if (type == MXL_HYDRA_DEVICE_544)
1647 				return 0;
1648 			if (type == MXL_HYDRA_DEVICE_542)
1649 				return 0;
1650 			break;
1651 		case MXL_HYDRA_SKU_ID_582:
1652 			if (type == MXL_HYDRA_DEVICE_582)
1653 				return 0;
1654 			break;
1655 		default:
1656 			return -1;
1657 		}
1658 	} else {
1659 
1660 	}
1661 	return -1;
1662 }
1663 
1664 static int get_fwinfo(struct mxl *state)
1665 {
1666 	int status;
1667 	u32 val = 0;
1668 
1669 	status = read_by_mnemonic(state, 0x90000190, 0, 3, &val);
1670 	if (status)
1671 		return status;
1672 	dev_info(state->i2cdev, "chipID=%08x\n", val);
1673 
1674 	status = read_by_mnemonic(state, 0x80030004, 8, 8, &val);
1675 	if (status)
1676 		return status;
1677 	dev_info(state->i2cdev, "chipVer=%08x\n", val);
1678 
1679 	status = read_register(state, HYDRA_FIRMWARE_VERSION, &val);
1680 	if (status)
1681 		return status;
1682 	dev_info(state->i2cdev, "FWVer=%08x\n", val);
1683 
1684 	state->base->fwversion = val;
1685 	return status;
1686 }
1687 
1688 
1689 static u8 ts_map1_to_1[MXL_HYDRA_DEMOD_MAX] = {
1690 	MXL_HYDRA_DEMOD_ID_0,
1691 	MXL_HYDRA_DEMOD_ID_1,
1692 	MXL_HYDRA_DEMOD_ID_2,
1693 	MXL_HYDRA_DEMOD_ID_3,
1694 	MXL_HYDRA_DEMOD_ID_4,
1695 	MXL_HYDRA_DEMOD_ID_5,
1696 	MXL_HYDRA_DEMOD_ID_6,
1697 	MXL_HYDRA_DEMOD_ID_7,
1698 };
1699 
1700 static u8 ts_map54x[MXL_HYDRA_DEMOD_MAX] = {
1701 	MXL_HYDRA_DEMOD_ID_2,
1702 	MXL_HYDRA_DEMOD_ID_3,
1703 	MXL_HYDRA_DEMOD_ID_4,
1704 	MXL_HYDRA_DEMOD_ID_5,
1705 	MXL_HYDRA_DEMOD_MAX,
1706 	MXL_HYDRA_DEMOD_MAX,
1707 	MXL_HYDRA_DEMOD_MAX,
1708 	MXL_HYDRA_DEMOD_MAX,
1709 };
1710 
1711 static int probe(struct mxl *state, struct mxl5xx_cfg *cfg)
1712 {
1713 	u32 chipver;
1714 	int fw, status, j;
1715 	struct MXL_HYDRA_MPEGOUT_PARAM_T mpeg_interface_cfg;
1716 
1717 	state->base->ts_map = ts_map1_to_1;
1718 
1719 	switch (state->base->type) {
1720 	case MXL_HYDRA_DEVICE_581:
1721 	case MXL_HYDRA_DEVICE_581S:
1722 		state->base->can_clkout = 1;
1723 		state->base->demod_num = 8;
1724 		state->base->tuner_num = 1;
1725 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_581;
1726 		break;
1727 	case MXL_HYDRA_DEVICE_582:
1728 		state->base->can_clkout = 1;
1729 		state->base->demod_num = 8;
1730 		state->base->tuner_num = 3;
1731 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_582;
1732 		break;
1733 	case MXL_HYDRA_DEVICE_585:
1734 		state->base->can_clkout = 0;
1735 		state->base->demod_num = 8;
1736 		state->base->tuner_num = 4;
1737 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_585;
1738 		break;
1739 	case MXL_HYDRA_DEVICE_544:
1740 		state->base->can_clkout = 0;
1741 		state->base->demod_num = 4;
1742 		state->base->tuner_num = 4;
1743 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_544;
1744 		state->base->ts_map = ts_map54x;
1745 		break;
1746 	case MXL_HYDRA_DEVICE_541:
1747 	case MXL_HYDRA_DEVICE_541S:
1748 		state->base->can_clkout = 0;
1749 		state->base->demod_num = 4;
1750 		state->base->tuner_num = 1;
1751 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_541;
1752 		state->base->ts_map = ts_map54x;
1753 		break;
1754 	case MXL_HYDRA_DEVICE_561:
1755 	case MXL_HYDRA_DEVICE_561S:
1756 		state->base->can_clkout = 0;
1757 		state->base->demod_num = 6;
1758 		state->base->tuner_num = 1;
1759 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_561;
1760 		break;
1761 	case MXL_HYDRA_DEVICE_568:
1762 		state->base->can_clkout = 0;
1763 		state->base->demod_num = 8;
1764 		state->base->tuner_num = 1;
1765 		state->base->chan_bond = 1;
1766 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_568;
1767 		break;
1768 	case MXL_HYDRA_DEVICE_542:
1769 		state->base->can_clkout = 1;
1770 		state->base->demod_num = 4;
1771 		state->base->tuner_num = 3;
1772 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_542;
1773 		state->base->ts_map = ts_map54x;
1774 		break;
1775 	case MXL_HYDRA_DEVICE_TEST:
1776 	case MXL_HYDRA_DEVICE_584:
1777 	default:
1778 		state->base->can_clkout = 0;
1779 		state->base->demod_num = 8;
1780 		state->base->tuner_num = 4;
1781 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_584;
1782 		break;
1783 	}
1784 
1785 	status = validate_sku(state);
1786 	if (status)
1787 		return status;
1788 
1789 	update_by_mnemonic(state, 0x80030014, 9, 1, 1);
1790 	update_by_mnemonic(state, 0x8003003C, 12, 1, 1);
1791 	status = read_by_mnemonic(state, 0x80030000, 12, 4, &chipver);
1792 	if (status)
1793 		state->base->chipversion = 0;
1794 	else
1795 		state->base->chipversion = (chipver == 2) ? 2 : 1;
1796 	dev_info(state->i2cdev, "Hydra chip version %u\n",
1797 		state->base->chipversion);
1798 
1799 	cfg_dev_xtal(state, cfg->clk, cfg->cap, 0);
1800 
1801 	fw = firmware_is_alive(state);
1802 	if (!fw) {
1803 		status = load_fw(state, cfg);
1804 		if (status)
1805 			return status;
1806 	}
1807 	get_fwinfo(state);
1808 
1809 	config_mux(state);
1810 	mpeg_interface_cfg.enable = MXL_ENABLE;
1811 	mpeg_interface_cfg.lsb_or_msb_first = MXL_HYDRA_MPEG_SERIAL_MSB_1ST;
1812 	/*  supports only (0-104&139)MHz */
1813 	if (cfg->ts_clk)
1814 		mpeg_interface_cfg.max_mpeg_clk_rate = cfg->ts_clk;
1815 	else
1816 		mpeg_interface_cfg.max_mpeg_clk_rate = 69; /* 139; */
1817 	mpeg_interface_cfg.mpeg_clk_phase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG;
1818 	mpeg_interface_cfg.mpeg_clk_pol = MXL_HYDRA_MPEG_CLK_IN_PHASE;
1819 	/* MXL_HYDRA_MPEG_CLK_GAPPED; */
1820 	mpeg_interface_cfg.mpeg_clk_type = MXL_HYDRA_MPEG_CLK_CONTINUOUS;
1821 	mpeg_interface_cfg.mpeg_error_indication =
1822 		MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED;
1823 	mpeg_interface_cfg.mpeg_mode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE;
1824 	mpeg_interface_cfg.mpeg_sync_pol  = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1825 	mpeg_interface_cfg.mpeg_sync_pulse_width  = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT;
1826 	mpeg_interface_cfg.mpeg_valid_pol  = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1827 
1828 	for (j = 0; j < state->base->demod_num; j++) {
1829 		status = config_ts(state, (enum MXL_HYDRA_DEMOD_ID_E) j,
1830 				   &mpeg_interface_cfg);
1831 		if (status)
1832 			return status;
1833 	}
1834 	set_drive_strength(state, 1);
1835 	return 0;
1836 }
1837 
1838 struct dvb_frontend *mxl5xx_attach(struct i2c_adapter *i2c,
1839 	struct mxl5xx_cfg *cfg, u32 demod, u32 tuner,
1840 	int (**fn_set_input)(struct dvb_frontend *, int))
1841 {
1842 	struct mxl *state;
1843 	struct mxl_base *base;
1844 
1845 	state = kzalloc(sizeof(struct mxl), GFP_KERNEL);
1846 	if (!state)
1847 		return NULL;
1848 
1849 	state->demod = demod;
1850 	state->tuner = tuner;
1851 	state->tuner_in_use = 0xffffffff;
1852 	state->i2cdev = &i2c->dev;
1853 
1854 	base = match_base(i2c, cfg->adr);
1855 	if (base) {
1856 		base->count++;
1857 		if (base->count > base->demod_num)
1858 			goto fail;
1859 		state->base = base;
1860 	} else {
1861 		base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL);
1862 		if (!base)
1863 			goto fail;
1864 		base->i2c = i2c;
1865 		base->adr = cfg->adr;
1866 		base->type = cfg->type;
1867 		base->count = 1;
1868 		mutex_init(&base->i2c_lock);
1869 		mutex_init(&base->status_lock);
1870 		mutex_init(&base->tune_lock);
1871 		INIT_LIST_HEAD(&base->mxls);
1872 
1873 		state->base = base;
1874 		if (probe(state, cfg) < 0) {
1875 			kfree(base);
1876 			goto fail;
1877 		}
1878 		list_add(&base->mxllist, &mxllist);
1879 	}
1880 	state->fe.ops               = mxl_ops;
1881 	state->xbar[0]              = 4;
1882 	state->xbar[1]              = demod;
1883 	state->xbar[2]              = 8;
1884 	state->fe.demodulator_priv  = state;
1885 	*fn_set_input               = set_input;
1886 
1887 	list_add(&state->mxl, &base->mxls);
1888 	return &state->fe;
1889 
1890 fail:
1891 	kfree(state);
1892 	return NULL;
1893 }
1894 EXPORT_SYMBOL_GPL(mxl5xx_attach);
1895 
1896 MODULE_DESCRIPTION("MaxLinear MxL5xx DVB-S/S2 tuner-demodulator driver");
1897 MODULE_AUTHOR("Ralph and Marcus Metzler, Metzler Brothers Systementwicklung GbR");
1898 MODULE_LICENSE("GPL");
1899