xref: /linux/drivers/media/dvb-frontends/mxl5xx.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for the MaxLinear MxL5xx family of tuners/demods
4  *
5  * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6  *                         Marcus Metzler <mocm@metzlerbros.de>
7  *                         developed for Digital Devices GmbH
8  *
9  * based on code:
10  * Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved
11  * which was released under GPL V2
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/init.h>
18 #include <linux/delay.h>
19 #include <linux/firmware.h>
20 #include <linux/i2c.h>
21 #include <linux/mutex.h>
22 #include <linux/vmalloc.h>
23 #include <asm/div64.h>
24 #include <asm/unaligned.h>
25 
26 #include <media/dvb_frontend.h>
27 #include "mxl5xx.h"
28 #include "mxl5xx_regs.h"
29 #include "mxl5xx_defs.h"
30 
31 #define BYTE0(v) ((v >>  0) & 0xff)
32 #define BYTE1(v) ((v >>  8) & 0xff)
33 #define BYTE2(v) ((v >> 16) & 0xff)
34 #define BYTE3(v) ((v >> 24) & 0xff)
35 
36 static LIST_HEAD(mxllist);
37 
38 struct mxl_base {
39 	struct list_head     mxllist;
40 	struct list_head     mxls;
41 
42 	u8                   adr;
43 	struct i2c_adapter  *i2c;
44 
45 	u32                  count;
46 	u32                  type;
47 	u32                  sku_type;
48 	u32                  chipversion;
49 	u32                  clock;
50 	u32                  fwversion;
51 
52 	u8                  *ts_map;
53 	u8                   can_clkout;
54 	u8                   chan_bond;
55 	u8                   demod_num;
56 	u8                   tuner_num;
57 
58 	unsigned long        next_tune;
59 
60 	struct mutex         i2c_lock;
61 	struct mutex         status_lock;
62 	struct mutex         tune_lock;
63 
64 	u8                   buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
65 
66 	u32                  cmd_size;
67 	u8                   cmd_data[MAX_CMD_DATA];
68 };
69 
70 struct mxl {
71 	struct list_head     mxl;
72 
73 	struct mxl_base     *base;
74 	struct dvb_frontend  fe;
75 	struct device       *i2cdev;
76 	u32                  demod;
77 	u32                  tuner;
78 	u32                  tuner_in_use;
79 	u8                   xbar[3];
80 
81 	unsigned long        tune_time;
82 };
83 
84 static void convert_endian(u8 flag, u32 size, u8 *d)
85 {
86 	u32 i;
87 
88 	if (!flag)
89 		return;
90 	for (i = 0; i < (size & ~3); i += 4) {
91 		d[i + 0] ^= d[i + 3];
92 		d[i + 3] ^= d[i + 0];
93 		d[i + 0] ^= d[i + 3];
94 
95 		d[i + 1] ^= d[i + 2];
96 		d[i + 2] ^= d[i + 1];
97 		d[i + 1] ^= d[i + 2];
98 	}
99 
100 	switch (size & 3) {
101 	case 0:
102 	case 1:
103 		/* do nothing */
104 		break;
105 	case 2:
106 		d[i + 0] ^= d[i + 1];
107 		d[i + 1] ^= d[i + 0];
108 		d[i + 0] ^= d[i + 1];
109 		break;
110 
111 	case 3:
112 		d[i + 0] ^= d[i + 2];
113 		d[i + 2] ^= d[i + 0];
114 		d[i + 0] ^= d[i + 2];
115 		break;
116 	}
117 
118 }
119 
120 static int i2c_write(struct i2c_adapter *adap, u8 adr,
121 			    u8 *data, u32 len)
122 {
123 	struct i2c_msg msg = {.addr = adr, .flags = 0,
124 			      .buf = data, .len = len};
125 
126 	return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
127 }
128 
129 static int i2c_read(struct i2c_adapter *adap, u8 adr,
130 			   u8 *data, u32 len)
131 {
132 	struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD,
133 			      .buf = data, .len = len};
134 
135 	return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
136 }
137 
138 static int i2cread(struct mxl *state, u8 *data, int len)
139 {
140 	return i2c_read(state->base->i2c, state->base->adr, data, len);
141 }
142 
143 static int i2cwrite(struct mxl *state, u8 *data, int len)
144 {
145 	return i2c_write(state->base->i2c, state->base->adr, data, len);
146 }
147 
148 static int read_register_unlocked(struct mxl *state, u32 reg, u32 *val)
149 {
150 	int stat;
151 	u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
152 		MXL_HYDRA_PLID_REG_READ, 0x04,
153 		GET_BYTE(reg, 0), GET_BYTE(reg, 1),
154 		GET_BYTE(reg, 2), GET_BYTE(reg, 3),
155 	};
156 
157 	stat = i2cwrite(state, data,
158 			MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
159 	if (stat)
160 		dev_err(state->i2cdev, "i2c read error 1\n");
161 	if (!stat)
162 		stat = i2cread(state, (u8 *) val,
163 			       MXL_HYDRA_REG_SIZE_IN_BYTES);
164 	le32_to_cpus(val);
165 	if (stat)
166 		dev_err(state->i2cdev, "i2c read error 2\n");
167 	return stat;
168 }
169 
170 #define DMA_I2C_INTERRUPT_ADDR 0x8000011C
171 #define DMA_INTR_PROT_WR_CMP 0x08
172 
173 static int send_command(struct mxl *state, u32 size, u8 *buf)
174 {
175 	int stat;
176 	u32 val, count = 10;
177 
178 	mutex_lock(&state->base->i2c_lock);
179 	if (state->base->fwversion > 0x02010109)  {
180 		read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val);
181 		if (DMA_INTR_PROT_WR_CMP & val)
182 			dev_info(state->i2cdev, "%s busy\n", __func__);
183 		while ((DMA_INTR_PROT_WR_CMP & val) && --count) {
184 			mutex_unlock(&state->base->i2c_lock);
185 			usleep_range(1000, 2000);
186 			mutex_lock(&state->base->i2c_lock);
187 			read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR,
188 					       &val);
189 		}
190 		if (!count) {
191 			dev_info(state->i2cdev, "%s busy\n", __func__);
192 			mutex_unlock(&state->base->i2c_lock);
193 			return -EBUSY;
194 		}
195 	}
196 	stat = i2cwrite(state, buf, size);
197 	mutex_unlock(&state->base->i2c_lock);
198 	return stat;
199 }
200 
201 static int write_register(struct mxl *state, u32 reg, u32 val)
202 {
203 	int stat;
204 	u8 data[MXL_HYDRA_REG_WRITE_LEN] = {
205 		MXL_HYDRA_PLID_REG_WRITE, 0x08,
206 		BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg),
207 		BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val),
208 	};
209 	mutex_lock(&state->base->i2c_lock);
210 	stat = i2cwrite(state, data, sizeof(data));
211 	mutex_unlock(&state->base->i2c_lock);
212 	if (stat)
213 		dev_err(state->i2cdev, "i2c write error\n");
214 	return stat;
215 }
216 
217 static int write_firmware_block(struct mxl *state,
218 				u32 reg, u32 size, u8 *reg_data_ptr)
219 {
220 	int stat;
221 	u8 *buf = state->base->buf;
222 
223 	mutex_lock(&state->base->i2c_lock);
224 	buf[0] = MXL_HYDRA_PLID_REG_WRITE;
225 	buf[1] = size + 4;
226 	buf[2] = GET_BYTE(reg, 0);
227 	buf[3] = GET_BYTE(reg, 1);
228 	buf[4] = GET_BYTE(reg, 2);
229 	buf[5] = GET_BYTE(reg, 3);
230 	memcpy(&buf[6], reg_data_ptr, size);
231 	stat = i2cwrite(state, buf,
232 			MXL_HYDRA_I2C_HDR_SIZE +
233 			MXL_HYDRA_REG_SIZE_IN_BYTES + size);
234 	mutex_unlock(&state->base->i2c_lock);
235 	if (stat)
236 		dev_err(state->i2cdev, "fw block write failed\n");
237 	return stat;
238 }
239 
240 static int read_register(struct mxl *state, u32 reg, u32 *val)
241 {
242 	int stat;
243 	u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
244 		MXL_HYDRA_PLID_REG_READ, 0x04,
245 		GET_BYTE(reg, 0), GET_BYTE(reg, 1),
246 		GET_BYTE(reg, 2), GET_BYTE(reg, 3),
247 	};
248 
249 	mutex_lock(&state->base->i2c_lock);
250 	stat = i2cwrite(state, data,
251 			MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
252 	if (stat)
253 		dev_err(state->i2cdev, "i2c read error 1\n");
254 	if (!stat)
255 		stat = i2cread(state, (u8 *) val,
256 			       MXL_HYDRA_REG_SIZE_IN_BYTES);
257 	mutex_unlock(&state->base->i2c_lock);
258 	le32_to_cpus(val);
259 	if (stat)
260 		dev_err(state->i2cdev, "i2c read error 2\n");
261 	return stat;
262 }
263 
264 static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data)
265 {
266 	int stat;
267 	u8 *buf = state->base->buf;
268 
269 	mutex_lock(&state->base->i2c_lock);
270 
271 	buf[0] = MXL_HYDRA_PLID_REG_READ;
272 	buf[1] = size + 4;
273 	buf[2] = GET_BYTE(reg, 0);
274 	buf[3] = GET_BYTE(reg, 1);
275 	buf[4] = GET_BYTE(reg, 2);
276 	buf[5] = GET_BYTE(reg, 3);
277 	stat = i2cwrite(state, buf,
278 			MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES);
279 	if (!stat) {
280 		stat = i2cread(state, data, size);
281 		convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data);
282 	}
283 	mutex_unlock(&state->base->i2c_lock);
284 	return stat;
285 }
286 
287 static int read_by_mnemonic(struct mxl *state,
288 			    u32 reg, u8 lsbloc, u8 numofbits, u32 *val)
289 {
290 	u32 data = 0, mask = 0;
291 	int stat;
292 
293 	stat = read_register(state, reg, &data);
294 	if (stat)
295 		return stat;
296 	mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
297 	data &= mask;
298 	data >>= lsbloc;
299 	*val = data;
300 	return 0;
301 }
302 
303 
304 static int update_by_mnemonic(struct mxl *state,
305 			      u32 reg, u8 lsbloc, u8 numofbits, u32 val)
306 {
307 	u32 data, mask;
308 	int stat;
309 
310 	stat = read_register(state, reg, &data);
311 	if (stat)
312 		return stat;
313 	mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
314 	data = (data & ~mask) | ((val << lsbloc) & mask);
315 	stat = write_register(state, reg, data);
316 	return stat;
317 }
318 
319 static int firmware_is_alive(struct mxl *state)
320 {
321 	u32 hb0, hb1;
322 
323 	if (read_register(state, HYDRA_HEAR_BEAT, &hb0))
324 		return 0;
325 	msleep(20);
326 	if (read_register(state, HYDRA_HEAR_BEAT, &hb1))
327 		return 0;
328 	if (hb1 == hb0)
329 		return 0;
330 	return 1;
331 }
332 
333 static int init(struct dvb_frontend *fe)
334 {
335 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
336 
337 	/* init fe stats */
338 	p->strength.len = 1;
339 	p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
340 	p->cnr.len = 1;
341 	p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
342 	p->pre_bit_error.len = 1;
343 	p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
344 	p->pre_bit_count.len = 1;
345 	p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
346 	p->post_bit_error.len = 1;
347 	p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
348 	p->post_bit_count.len = 1;
349 	p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
350 
351 	return 0;
352 }
353 
354 static void release(struct dvb_frontend *fe)
355 {
356 	struct mxl *state = fe->demodulator_priv;
357 
358 	list_del(&state->mxl);
359 	/* Release one frontend, two more shall take its place! */
360 	state->base->count--;
361 	if (state->base->count == 0) {
362 		list_del(&state->base->mxllist);
363 		kfree(state->base);
364 	}
365 	kfree(state);
366 }
367 
368 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
369 {
370 	return DVBFE_ALGO_HW;
371 }
372 
373 static u32 gold2root(u32 gold)
374 {
375 	u32 x, g, tmp = gold;
376 
377 	if (tmp >= 0x3ffff)
378 		tmp = 0;
379 	for (g = 0, x = 1; g < tmp; g++)
380 		x = (((x ^ (x >> 7)) & 1) << 17) | (x >> 1);
381 	return x;
382 }
383 
384 static int cfg_scrambler(struct mxl *state, u32 gold)
385 {
386 	u32 root;
387 	u8 buf[26] = {
388 		MXL_HYDRA_PLID_CMD_WRITE, 24,
389 		0, MXL_HYDRA_DEMOD_SCRAMBLE_CODE_CMD, 0, 0,
390 		state->demod, 0, 0, 0,
391 		0, 0, 0, 0, 0, 0, 0, 0,
392 		0, 0, 0, 0, 1, 0, 0, 0,
393 	};
394 
395 	root = gold2root(gold);
396 
397 	buf[25] = (root >> 24) & 0xff;
398 	buf[24] = (root >> 16) & 0xff;
399 	buf[23] = (root >> 8) & 0xff;
400 	buf[22] = root & 0xff;
401 
402 	return send_command(state, sizeof(buf), buf);
403 }
404 
405 static int cfg_demod_abort_tune(struct mxl *state)
406 {
407 	struct MXL_HYDRA_DEMOD_ABORT_TUNE_T abort_tune_cmd;
408 	u8 cmd_size = sizeof(abort_tune_cmd);
409 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
410 
411 	abort_tune_cmd.demod_id = state->demod;
412 	BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE,
413 			cmd_size, &abort_tune_cmd, cmd_buff);
414 	return send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
415 			    &cmd_buff[0]);
416 }
417 
418 static int send_master_cmd(struct dvb_frontend *fe,
419 			   struct dvb_diseqc_master_cmd *cmd)
420 {
421 	/*struct mxl *state = fe->demodulator_priv;*/
422 
423 	return 0; /*CfgDemodAbortTune(state);*/
424 }
425 
426 static int set_parameters(struct dvb_frontend *fe)
427 {
428 	struct mxl *state = fe->demodulator_priv;
429 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
430 	struct MXL_HYDRA_DEMOD_PARAM_T demod_chan_cfg;
431 	u8 cmd_size = sizeof(demod_chan_cfg);
432 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
433 	u32 srange = 10;
434 	int stat;
435 
436 	if (p->frequency < 950000 || p->frequency > 2150000)
437 		return -EINVAL;
438 	if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000)
439 		return -EINVAL;
440 
441 	/* CfgDemodAbortTune(state); */
442 
443 	switch (p->delivery_system) {
444 	case SYS_DSS:
445 		demod_chan_cfg.standard = MXL_HYDRA_DSS;
446 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
447 		break;
448 	case SYS_DVBS:
449 		srange = p->symbol_rate / 1000000;
450 		if (srange > 10)
451 			srange = 10;
452 		demod_chan_cfg.standard = MXL_HYDRA_DVBS;
453 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_0_35;
454 		demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_QPSK;
455 		demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_OFF;
456 		break;
457 	case SYS_DVBS2:
458 		demod_chan_cfg.standard = MXL_HYDRA_DVBS2;
459 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
460 		demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_AUTO;
461 		demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_AUTO;
462 		cfg_scrambler(state, p->scrambling_sequence_index);
463 		break;
464 	default:
465 		return -EINVAL;
466 	}
467 	demod_chan_cfg.tuner_index = state->tuner;
468 	demod_chan_cfg.demod_index = state->demod;
469 	demod_chan_cfg.frequency_in_hz = p->frequency * 1000;
470 	demod_chan_cfg.symbol_rate_in_hz = p->symbol_rate;
471 	demod_chan_cfg.max_carrier_offset_in_mhz = srange;
472 	demod_chan_cfg.spectrum_inversion = MXL_HYDRA_SPECTRUM_AUTO;
473 	demod_chan_cfg.fec_code_rate = MXL_HYDRA_FEC_AUTO;
474 
475 	mutex_lock(&state->base->tune_lock);
476 	if (time_after(jiffies + msecs_to_jiffies(200),
477 		       state->base->next_tune))
478 		while (time_before(jiffies, state->base->next_tune))
479 			usleep_range(10000, 11000);
480 	state->base->next_tune = jiffies + msecs_to_jiffies(100);
481 	state->tuner_in_use = state->tuner;
482 	BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE,
483 			cmd_size, &demod_chan_cfg, cmd_buff);
484 	stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
485 			    &cmd_buff[0]);
486 	mutex_unlock(&state->base->tune_lock);
487 	return stat;
488 }
489 
490 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable);
491 
492 static int sleep(struct dvb_frontend *fe)
493 {
494 	struct mxl *state = fe->demodulator_priv;
495 	struct mxl *p;
496 
497 	cfg_demod_abort_tune(state);
498 	if (state->tuner_in_use != 0xffffffff) {
499 		mutex_lock(&state->base->tune_lock);
500 		state->tuner_in_use = 0xffffffff;
501 		list_for_each_entry(p, &state->base->mxls, mxl) {
502 			if (p->tuner_in_use == state->tuner)
503 				break;
504 		}
505 		if (&p->mxl == &state->base->mxls)
506 			enable_tuner(state, state->tuner, 0);
507 		mutex_unlock(&state->base->tune_lock);
508 	}
509 	return 0;
510 }
511 
512 static int read_snr(struct dvb_frontend *fe)
513 {
514 	struct mxl *state = fe->demodulator_priv;
515 	int stat;
516 	u32 reg_data = 0;
517 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
518 
519 	mutex_lock(&state->base->status_lock);
520 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
521 	stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET +
522 				     HYDRA_DMD_STATUS_OFFSET(state->demod)),
523 			     &reg_data);
524 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
525 	mutex_unlock(&state->base->status_lock);
526 
527 	p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
528 	p->cnr.stat[0].svalue = (s16)reg_data * 10;
529 
530 	return stat;
531 }
532 
533 static int read_ber(struct dvb_frontend *fe)
534 {
535 	struct mxl *state = fe->demodulator_priv;
536 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
537 	u32 reg[8];
538 
539 	mutex_lock(&state->base->status_lock);
540 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
541 	read_register_block(state,
542 		(HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET +
543 		 HYDRA_DMD_STATUS_OFFSET(state->demod)),
544 		(4 * sizeof(u32)),
545 		(u8 *) &reg[0]);
546 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
547 
548 	switch (p->delivery_system) {
549 	case SYS_DSS:
550 	case SYS_DVBS:
551 		p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
552 		p->pre_bit_error.stat[0].uvalue = reg[2];
553 		p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
554 		p->pre_bit_count.stat[0].uvalue = reg[3];
555 		break;
556 	default:
557 		break;
558 	}
559 
560 	read_register_block(state,
561 		(HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET +
562 		 HYDRA_DMD_STATUS_OFFSET(state->demod)),
563 		(7 * sizeof(u32)),
564 		(u8 *) &reg[0]);
565 
566 	switch (p->delivery_system) {
567 	case SYS_DSS:
568 	case SYS_DVBS:
569 		p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
570 		p->post_bit_error.stat[0].uvalue = reg[5];
571 		p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
572 		p->post_bit_count.stat[0].uvalue = reg[6];
573 		break;
574 	case SYS_DVBS2:
575 		p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
576 		p->post_bit_error.stat[0].uvalue = reg[1];
577 		p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
578 		p->post_bit_count.stat[0].uvalue = reg[2];
579 		break;
580 	default:
581 		break;
582 	}
583 
584 	mutex_unlock(&state->base->status_lock);
585 
586 	return 0;
587 }
588 
589 static int read_signal_strength(struct dvb_frontend *fe)
590 {
591 	struct mxl *state = fe->demodulator_priv;
592 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
593 	int stat;
594 	u32 reg_data = 0;
595 
596 	mutex_lock(&state->base->status_lock);
597 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
598 	stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR +
599 				     HYDRA_DMD_STATUS_OFFSET(state->demod)),
600 			     &reg_data);
601 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
602 	mutex_unlock(&state->base->status_lock);
603 
604 	p->strength.stat[0].scale = FE_SCALE_DECIBEL;
605 	p->strength.stat[0].svalue = (s16) reg_data * 10; /* fix scale */
606 
607 	return stat;
608 }
609 
610 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
611 {
612 	struct mxl *state = fe->demodulator_priv;
613 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
614 	u32 reg_data = 0;
615 
616 	mutex_lock(&state->base->status_lock);
617 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
618 	read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET +
619 			     HYDRA_DMD_STATUS_OFFSET(state->demod)),
620 			     &reg_data);
621 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
622 	mutex_unlock(&state->base->status_lock);
623 
624 	*status = (reg_data == 1) ? 0x1f : 0;
625 
626 	/* signal statistics */
627 
628 	/* signal strength is always available */
629 	read_signal_strength(fe);
630 
631 	if (*status & FE_HAS_CARRIER)
632 		read_snr(fe);
633 	else
634 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
635 
636 	if (*status & FE_HAS_SYNC)
637 		read_ber(fe);
638 	else {
639 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
640 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
641 		p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
642 		p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
643 	}
644 
645 	return 0;
646 }
647 
648 static int tune(struct dvb_frontend *fe, bool re_tune,
649 		unsigned int mode_flags,
650 		unsigned int *delay, enum fe_status *status)
651 {
652 	struct mxl *state = fe->demodulator_priv;
653 	int r = 0;
654 
655 	*delay = HZ / 2;
656 	if (re_tune) {
657 		r = set_parameters(fe);
658 		if (r)
659 			return r;
660 		state->tune_time = jiffies;
661 	}
662 
663 	return read_status(fe, status);
664 }
665 
666 static enum fe_code_rate conv_fec(enum MXL_HYDRA_FEC_E fec)
667 {
668 	enum fe_code_rate fec2fec[11] = {
669 		FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3,
670 		FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7,
671 		FEC_7_8, FEC_8_9, FEC_9_10
672 	};
673 
674 	if (fec > MXL_HYDRA_FEC_9_10)
675 		return FEC_NONE;
676 	return fec2fec[fec];
677 }
678 
679 static int get_frontend(struct dvb_frontend *fe,
680 			struct dtv_frontend_properties *p)
681 {
682 	struct mxl *state = fe->demodulator_priv;
683 	u32 reg_data[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE];
684 	u32 freq;
685 
686 	mutex_lock(&state->base->status_lock);
687 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
688 	read_register_block(state,
689 		(HYDRA_DMD_STANDARD_ADDR_OFFSET +
690 		HYDRA_DMD_STATUS_OFFSET(state->demod)),
691 		(MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), /* 25 * 4 bytes */
692 		(u8 *) &reg_data[0]);
693 	/* read demod channel parameters */
694 	read_register_block(state,
695 		(HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR +
696 		HYDRA_DMD_STATUS_OFFSET(state->demod)),
697 		(4), /* 4 bytes */
698 		(u8 *) &freq);
699 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
700 	mutex_unlock(&state->base->status_lock);
701 
702 	dev_dbg(state->i2cdev, "freq=%u delsys=%u srate=%u\n",
703 		freq * 1000, reg_data[DMD_STANDARD_ADDR],
704 		reg_data[DMD_SYMBOL_RATE_ADDR]);
705 	p->symbol_rate = reg_data[DMD_SYMBOL_RATE_ADDR];
706 	p->frequency = freq;
707 	/*
708 	 * p->delivery_system =
709 	 *	(MXL_HYDRA_BCAST_STD_E) regData[DMD_STANDARD_ADDR];
710 	 * p->inversion =
711 	 *	(MXL_HYDRA_SPECTRUM_E) regData[DMD_SPECTRUM_INVERSION_ADDR];
712 	 * freqSearchRangeKHz =
713 	 *	(regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]);
714 	 */
715 
716 	p->fec_inner = conv_fec(reg_data[DMD_FEC_CODE_RATE_ADDR]);
717 	switch (p->delivery_system) {
718 	case SYS_DSS:
719 		break;
720 	case SYS_DVBS2:
721 		switch ((enum MXL_HYDRA_PILOTS_E)
722 			reg_data[DMD_DVBS2_PILOT_ON_OFF_ADDR]) {
723 		case MXL_HYDRA_PILOTS_OFF:
724 			p->pilot = PILOT_OFF;
725 			break;
726 		case MXL_HYDRA_PILOTS_ON:
727 			p->pilot = PILOT_ON;
728 			break;
729 		default:
730 			break;
731 		}
732 		fallthrough;
733 	case SYS_DVBS:
734 		switch ((enum MXL_HYDRA_MODULATION_E)
735 			reg_data[DMD_MODULATION_SCHEME_ADDR]) {
736 		case MXL_HYDRA_MOD_QPSK:
737 			p->modulation = QPSK;
738 			break;
739 		case MXL_HYDRA_MOD_8PSK:
740 			p->modulation = PSK_8;
741 			break;
742 		default:
743 			break;
744 		}
745 		switch ((enum MXL_HYDRA_ROLLOFF_E)
746 			reg_data[DMD_SPECTRUM_ROLL_OFF_ADDR]) {
747 		case MXL_HYDRA_ROLLOFF_0_20:
748 			p->rolloff = ROLLOFF_20;
749 			break;
750 		case MXL_HYDRA_ROLLOFF_0_35:
751 			p->rolloff = ROLLOFF_35;
752 			break;
753 		case MXL_HYDRA_ROLLOFF_0_25:
754 			p->rolloff = ROLLOFF_25;
755 			break;
756 		default:
757 			break;
758 		}
759 		break;
760 	default:
761 		return -EINVAL;
762 	}
763 	return 0;
764 }
765 
766 static int set_input(struct dvb_frontend *fe, int input)
767 {
768 	struct mxl *state = fe->demodulator_priv;
769 
770 	state->tuner = input;
771 	return 0;
772 }
773 
774 static const struct dvb_frontend_ops mxl_ops = {
775 	.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
776 	.info = {
777 		.name			= "MaxLinear MxL5xx DVB-S/S2 tuner-demodulator",
778 		.frequency_min_hz	=  300 * MHz,
779 		.frequency_max_hz	= 2350 * MHz,
780 		.symbol_rate_min	= 1000000,
781 		.symbol_rate_max	= 45000000,
782 		.caps			= FE_CAN_INVERSION_AUTO |
783 					  FE_CAN_FEC_AUTO       |
784 					  FE_CAN_QPSK           |
785 					  FE_CAN_2G_MODULATION
786 	},
787 	.init				= init,
788 	.release                        = release,
789 	.get_frontend_algo              = get_algo,
790 	.tune                           = tune,
791 	.read_status			= read_status,
792 	.sleep				= sleep,
793 	.get_frontend                   = get_frontend,
794 	.diseqc_send_master_cmd		= send_master_cmd,
795 };
796 
797 static struct mxl_base *match_base(struct i2c_adapter  *i2c, u8 adr)
798 {
799 	struct mxl_base *p;
800 
801 	list_for_each_entry(p, &mxllist, mxllist)
802 		if (p->i2c == i2c && p->adr == adr)
803 			return p;
804 	return NULL;
805 }
806 
807 static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable)
808 {
809 	if (state->base->can_clkout || !enable)
810 		update_by_mnemonic(state, 0x90200054, 23, 1, enable);
811 
812 	if (freq == 24000000)
813 		write_register(state, HYDRA_CRYSTAL_SETTING, 0);
814 	else
815 		write_register(state, HYDRA_CRYSTAL_SETTING, 1);
816 
817 	write_register(state, HYDRA_CRYSTAL_CAP, cap);
818 }
819 
820 static u32 get_big_endian(u8 num_of_bits, const u8 buf[])
821 {
822 	u32 ret_value = 0;
823 
824 	switch (num_of_bits) {
825 	case 24:
826 		ret_value = (((u32) buf[0]) << 16) |
827 			(((u32) buf[1]) << 8) | buf[2];
828 		break;
829 	case 32:
830 		ret_value = (((u32) buf[0]) << 24) |
831 			(((u32) buf[1]) << 16) |
832 			(((u32) buf[2]) << 8) | buf[3];
833 		break;
834 	default:
835 		break;
836 	}
837 
838 	return ret_value;
839 }
840 
841 static int write_fw_segment(struct mxl *state,
842 			    u32 mem_addr, u32 total_size, u8 *data_ptr)
843 {
844 	int status;
845 	u32 data_count = 0;
846 	u32 size = 0;
847 	u32 orig_size = 0;
848 	u8 *w_buf_ptr = NULL;
849 	u32 block_size = ((MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
850 			 (MXL_HYDRA_I2C_HDR_SIZE +
851 			  MXL_HYDRA_REG_SIZE_IN_BYTES)) / 4) * 4;
852 	u8 w_msg_buffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
853 		      (MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)];
854 
855 	do {
856 		size = orig_size = (((u32)(data_count + block_size)) > total_size) ?
857 			(total_size - data_count) : block_size;
858 
859 		if (orig_size & 3)
860 			size = (orig_size + 4) & ~3;
861 		w_buf_ptr = &w_msg_buffer[0];
862 		memset((void *) w_buf_ptr, 0, size);
863 		memcpy((void *) w_buf_ptr, (void *) data_ptr, orig_size);
864 		convert_endian(1, size, w_buf_ptr);
865 		status  = write_firmware_block(state, mem_addr, size, w_buf_ptr);
866 		if (status)
867 			return status;
868 		data_count += size;
869 		mem_addr   += size;
870 		data_ptr   += size;
871 	} while (data_count < total_size);
872 
873 	return status;
874 }
875 
876 static int do_firmware_download(struct mxl *state, u8 *mbin_buffer_ptr,
877 				u32 mbin_buffer_size)
878 
879 {
880 	int status;
881 	u32 index = 0;
882 	u32 seg_length = 0;
883 	u32 seg_address = 0;
884 	struct MBIN_FILE_T *mbin_ptr  = (struct MBIN_FILE_T *)mbin_buffer_ptr;
885 	struct MBIN_SEGMENT_T *segment_ptr;
886 	enum MXL_BOOL_E xcpu_fw_flag = MXL_FALSE;
887 
888 	if (mbin_ptr->header.id != MBIN_FILE_HEADER_ID) {
889 		dev_err(state->i2cdev, "%s: Invalid file header ID (%c)\n",
890 		       __func__, mbin_ptr->header.id);
891 		return -EINVAL;
892 	}
893 	status = write_register(state, FW_DL_SIGN_ADDR, 0);
894 	if (status)
895 		return status;
896 	segment_ptr = (struct MBIN_SEGMENT_T *) (&mbin_ptr->data[0]);
897 	for (index = 0; index < mbin_ptr->header.num_segments; index++) {
898 		if (segment_ptr->header.id != MBIN_SEGMENT_HEADER_ID) {
899 			dev_err(state->i2cdev, "%s: Invalid segment header ID (%c)\n",
900 			       __func__, segment_ptr->header.id);
901 			return -EINVAL;
902 		}
903 		seg_length  = get_big_endian(24,
904 					    &(segment_ptr->header.len24[0]));
905 		seg_address = get_big_endian(32,
906 					    &(segment_ptr->header.address[0]));
907 
908 		if (state->base->type == MXL_HYDRA_DEVICE_568) {
909 			if ((((seg_address & 0x90760000) == 0x90760000) ||
910 			     ((seg_address & 0x90740000) == 0x90740000)) &&
911 			    (xcpu_fw_flag == MXL_FALSE)) {
912 				update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
913 				msleep(200);
914 				write_register(state, 0x90720000, 0);
915 				usleep_range(10000, 11000);
916 				xcpu_fw_flag = MXL_TRUE;
917 			}
918 			status = write_fw_segment(state, seg_address,
919 						  seg_length,
920 						  (u8 *) segment_ptr->data);
921 		} else {
922 			if (((seg_address & 0x90760000) != 0x90760000) &&
923 			    ((seg_address & 0x90740000) != 0x90740000))
924 				status = write_fw_segment(state, seg_address,
925 					seg_length, (u8 *) segment_ptr->data);
926 		}
927 		if (status)
928 			return status;
929 		segment_ptr = (struct MBIN_SEGMENT_T *)
930 			&(segment_ptr->data[((seg_length + 3) / 4) * 4]);
931 	}
932 	return status;
933 }
934 
935 static int check_fw(struct mxl *state, u8 *mbin, u32 mbin_len)
936 {
937 	struct MBIN_FILE_HEADER_T *fh = (struct MBIN_FILE_HEADER_T *) mbin;
938 	u32 flen = (fh->image_size24[0] << 16) |
939 		(fh->image_size24[1] <<  8) | fh->image_size24[2];
940 	u8 *fw, cs = 0;
941 	u32 i;
942 
943 	if (fh->id != 'M' || fh->fmt_version != '1' || flen > 0x3FFF0) {
944 		dev_info(state->i2cdev, "Invalid FW Header\n");
945 		return -1;
946 	}
947 	fw = mbin + sizeof(struct MBIN_FILE_HEADER_T);
948 	for (i = 0; i < flen; i += 1)
949 		cs += fw[i];
950 	if (cs != fh->image_checksum) {
951 		dev_info(state->i2cdev, "Invalid FW Checksum\n");
952 		return -1;
953 	}
954 	return 0;
955 }
956 
957 static int firmware_download(struct mxl *state, u8 *mbin, u32 mbin_len)
958 {
959 	int status;
960 	u32 reg_data = 0;
961 	struct MXL_HYDRA_SKU_COMMAND_T dev_sku_cfg;
962 	u8 cmd_size = sizeof(struct MXL_HYDRA_SKU_COMMAND_T);
963 	u8 cmd_buff[sizeof(struct MXL_HYDRA_SKU_COMMAND_T) + 6];
964 
965 	if (check_fw(state, mbin, mbin_len))
966 		return -1;
967 
968 	/* put CPU into reset */
969 	status = update_by_mnemonic(state, 0x8003003C, 0, 1, 0);
970 	if (status)
971 		return status;
972 	usleep_range(1000, 2000);
973 
974 	/* Reset TX FIFO's, BBAND, XBAR */
975 	status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG,
976 				HYDRA_RESET_TRANSPORT_FIFO_DATA);
977 	if (status)
978 		return status;
979 	status = write_register(state, HYDRA_RESET_BBAND_REG,
980 				HYDRA_RESET_BBAND_DATA);
981 	if (status)
982 		return status;
983 	status = write_register(state, HYDRA_RESET_XBAR_REG,
984 				HYDRA_RESET_XBAR_DATA);
985 	if (status)
986 		return status;
987 
988 	/* Disable clock to Baseband, Wideband, SerDes,
989 	 * Alias ext & Transport modules
990 	 */
991 	status = write_register(state, HYDRA_MODULES_CLK_2_REG,
992 				HYDRA_DISABLE_CLK_2);
993 	if (status)
994 		return status;
995 	/* Clear Software & Host interrupt status - (Clear on read) */
996 	status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, &reg_data);
997 	if (status)
998 		return status;
999 	status = do_firmware_download(state, mbin, mbin_len);
1000 	if (status)
1001 		return status;
1002 
1003 	if (state->base->type == MXL_HYDRA_DEVICE_568) {
1004 		usleep_range(10000, 11000);
1005 
1006 		/* bring XCPU out of reset */
1007 		status = write_register(state, 0x90720000, 1);
1008 		if (status)
1009 			return status;
1010 		msleep(500);
1011 
1012 		/* Enable XCPU UART message processing in MCPU */
1013 		status = write_register(state, 0x9076B510, 1);
1014 		if (status)
1015 			return status;
1016 	} else {
1017 		/* Bring CPU out of reset */
1018 		status = update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
1019 		if (status)
1020 			return status;
1021 		/* Wait until FW boots */
1022 		msleep(150);
1023 	}
1024 
1025 	/* Initialize XPT XBAR */
1026 	status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210);
1027 	if (status)
1028 		return status;
1029 
1030 	if (!firmware_is_alive(state))
1031 		return -1;
1032 
1033 	dev_info(state->i2cdev, "Hydra FW alive. Hail!\n");
1034 
1035 	/* sometimes register values are wrong shortly
1036 	 * after first heart beats
1037 	 */
1038 	msleep(50);
1039 
1040 	dev_sku_cfg.sku_type = state->base->sku_type;
1041 	BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE,
1042 			cmd_size, &dev_sku_cfg, cmd_buff);
1043 	status = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1044 			      &cmd_buff[0]);
1045 
1046 	return status;
1047 }
1048 
1049 static int cfg_ts_pad_mux(struct mxl *state, enum MXL_BOOL_E enable_serial_ts)
1050 {
1051 	int status = 0;
1052 	u32 pad_mux_value = 0;
1053 
1054 	if (enable_serial_ts == MXL_TRUE) {
1055 		pad_mux_value = 0;
1056 		if ((state->base->type == MXL_HYDRA_DEVICE_541) ||
1057 		    (state->base->type == MXL_HYDRA_DEVICE_541S))
1058 			pad_mux_value = 2;
1059 	} else {
1060 		if ((state->base->type == MXL_HYDRA_DEVICE_581) ||
1061 		    (state->base->type == MXL_HYDRA_DEVICE_581S))
1062 			pad_mux_value = 2;
1063 		else
1064 			pad_mux_value = 3;
1065 	}
1066 
1067 	switch (state->base->type) {
1068 	case MXL_HYDRA_DEVICE_561:
1069 	case MXL_HYDRA_DEVICE_581:
1070 	case MXL_HYDRA_DEVICE_541:
1071 	case MXL_HYDRA_DEVICE_541S:
1072 	case MXL_HYDRA_DEVICE_561S:
1073 	case MXL_HYDRA_DEVICE_581S:
1074 		status |= update_by_mnemonic(state, 0x90000170, 24, 3,
1075 					     pad_mux_value);
1076 		status |= update_by_mnemonic(state, 0x90000170, 28, 3,
1077 					     pad_mux_value);
1078 		status |= update_by_mnemonic(state, 0x90000174, 0, 3,
1079 					     pad_mux_value);
1080 		status |= update_by_mnemonic(state, 0x90000174, 4, 3,
1081 					     pad_mux_value);
1082 		status |= update_by_mnemonic(state, 0x90000174, 8, 3,
1083 					     pad_mux_value);
1084 		status |= update_by_mnemonic(state, 0x90000174, 12, 3,
1085 					     pad_mux_value);
1086 		status |= update_by_mnemonic(state, 0x90000174, 16, 3,
1087 					     pad_mux_value);
1088 		status |= update_by_mnemonic(state, 0x90000174, 20, 3,
1089 					     pad_mux_value);
1090 		status |= update_by_mnemonic(state, 0x90000174, 24, 3,
1091 					     pad_mux_value);
1092 		status |= update_by_mnemonic(state, 0x90000174, 28, 3,
1093 					     pad_mux_value);
1094 		status |= update_by_mnemonic(state, 0x90000178, 0, 3,
1095 					     pad_mux_value);
1096 		status |= update_by_mnemonic(state, 0x90000178, 4, 3,
1097 					     pad_mux_value);
1098 		status |= update_by_mnemonic(state, 0x90000178, 8, 3,
1099 					     pad_mux_value);
1100 		break;
1101 
1102 	case MXL_HYDRA_DEVICE_544:
1103 	case MXL_HYDRA_DEVICE_542:
1104 		status |= update_by_mnemonic(state, 0x9000016C, 4, 3, 1);
1105 		status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 0);
1106 		status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 0);
1107 		status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 0);
1108 		status |= update_by_mnemonic(state, 0x90000170, 0, 3, 0);
1109 		status |= update_by_mnemonic(state, 0x90000178, 12, 3, 1);
1110 		status |= update_by_mnemonic(state, 0x90000178, 16, 3, 1);
1111 		status |= update_by_mnemonic(state, 0x90000178, 20, 3, 1);
1112 		status |= update_by_mnemonic(state, 0x90000178, 24, 3, 1);
1113 		status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 1);
1114 		status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 1);
1115 		if (enable_serial_ts == MXL_ENABLE) {
1116 			status |= update_by_mnemonic(state,
1117 				0x90000170, 4, 3, 0);
1118 			status |= update_by_mnemonic(state,
1119 				0x90000170, 8, 3, 0);
1120 			status |= update_by_mnemonic(state,
1121 				0x90000170, 12, 3, 0);
1122 			status |= update_by_mnemonic(state,
1123 				0x90000170, 16, 3, 0);
1124 			status |= update_by_mnemonic(state,
1125 				0x90000170, 20, 3, 1);
1126 			status |= update_by_mnemonic(state,
1127 				0x90000170, 24, 3, 1);
1128 			status |= update_by_mnemonic(state,
1129 				0x90000170, 28, 3, 2);
1130 			status |= update_by_mnemonic(state,
1131 				0x90000174, 0, 3, 2);
1132 			status |= update_by_mnemonic(state,
1133 				0x90000174, 4, 3, 2);
1134 			status |= update_by_mnemonic(state,
1135 				0x90000174, 8, 3, 2);
1136 			status |= update_by_mnemonic(state,
1137 				0x90000174, 12, 3, 2);
1138 			status |= update_by_mnemonic(state,
1139 				0x90000174, 16, 3, 2);
1140 			status |= update_by_mnemonic(state,
1141 				0x90000174, 20, 3, 2);
1142 			status |= update_by_mnemonic(state,
1143 				0x90000174, 24, 3, 2);
1144 			status |= update_by_mnemonic(state,
1145 				0x90000174, 28, 3, 2);
1146 			status |= update_by_mnemonic(state,
1147 				0x90000178, 0, 3, 2);
1148 			status |= update_by_mnemonic(state,
1149 				0x90000178, 4, 3, 2);
1150 			status |= update_by_mnemonic(state,
1151 				0x90000178, 8, 3, 2);
1152 		} else {
1153 			status |= update_by_mnemonic(state,
1154 				0x90000170, 4, 3, 3);
1155 			status |= update_by_mnemonic(state,
1156 				0x90000170, 8, 3, 3);
1157 			status |= update_by_mnemonic(state,
1158 				0x90000170, 12, 3, 3);
1159 			status |= update_by_mnemonic(state,
1160 				0x90000170, 16, 3, 3);
1161 			status |= update_by_mnemonic(state,
1162 				0x90000170, 20, 3, 3);
1163 			status |= update_by_mnemonic(state,
1164 				0x90000170, 24, 3, 3);
1165 			status |= update_by_mnemonic(state,
1166 				0x90000170, 28, 3, 3);
1167 			status |= update_by_mnemonic(state,
1168 				0x90000174, 0, 3, 3);
1169 			status |= update_by_mnemonic(state,
1170 				0x90000174, 4, 3, 3);
1171 			status |= update_by_mnemonic(state,
1172 				0x90000174, 8, 3, 3);
1173 			status |= update_by_mnemonic(state,
1174 				0x90000174, 12, 3, 3);
1175 			status |= update_by_mnemonic(state,
1176 				0x90000174, 16, 3, 3);
1177 			status |= update_by_mnemonic(state,
1178 				0x90000174, 20, 3, 1);
1179 			status |= update_by_mnemonic(state,
1180 				0x90000174, 24, 3, 1);
1181 			status |= update_by_mnemonic(state,
1182 				0x90000174, 28, 3, 1);
1183 			status |= update_by_mnemonic(state,
1184 				0x90000178, 0, 3, 1);
1185 			status |= update_by_mnemonic(state,
1186 				0x90000178, 4, 3, 1);
1187 			status |= update_by_mnemonic(state,
1188 				0x90000178, 8, 3, 1);
1189 		}
1190 		break;
1191 
1192 	case MXL_HYDRA_DEVICE_568:
1193 		if (enable_serial_ts == MXL_FALSE) {
1194 			status |= update_by_mnemonic(state,
1195 				0x9000016C, 8, 3, 5);
1196 			status |= update_by_mnemonic(state,
1197 				0x9000016C, 12, 3, 5);
1198 			status |= update_by_mnemonic(state,
1199 				0x9000016C, 16, 3, 5);
1200 			status |= update_by_mnemonic(state,
1201 				0x9000016C, 20, 3, 5);
1202 			status |= update_by_mnemonic(state,
1203 				0x9000016C, 24, 3, 5);
1204 			status |= update_by_mnemonic(state,
1205 				0x9000016C, 28, 3, 5);
1206 			status |= update_by_mnemonic(state,
1207 				0x90000170, 0, 3, 5);
1208 			status |= update_by_mnemonic(state,
1209 				0x90000170, 4, 3, 5);
1210 			status |= update_by_mnemonic(state,
1211 				0x90000170, 8, 3, 5);
1212 			status |= update_by_mnemonic(state,
1213 				0x90000170, 12, 3, 5);
1214 			status |= update_by_mnemonic(state,
1215 				0x90000170, 16, 3, 5);
1216 			status |= update_by_mnemonic(state,
1217 				0x90000170, 20, 3, 5);
1218 
1219 			status |= update_by_mnemonic(state,
1220 				0x90000170, 24, 3, pad_mux_value);
1221 			status |= update_by_mnemonic(state,
1222 				0x90000174, 0, 3, pad_mux_value);
1223 			status |= update_by_mnemonic(state,
1224 				0x90000174, 4, 3, pad_mux_value);
1225 			status |= update_by_mnemonic(state,
1226 				0x90000174, 8, 3, pad_mux_value);
1227 			status |= update_by_mnemonic(state,
1228 				0x90000174, 12, 3, pad_mux_value);
1229 			status |= update_by_mnemonic(state,
1230 				0x90000174, 16, 3, pad_mux_value);
1231 			status |= update_by_mnemonic(state,
1232 				0x90000174, 20, 3, pad_mux_value);
1233 			status |= update_by_mnemonic(state,
1234 				0x90000174, 24, 3, pad_mux_value);
1235 			status |= update_by_mnemonic(state,
1236 				0x90000174, 28, 3, pad_mux_value);
1237 			status |= update_by_mnemonic(state,
1238 				0x90000178, 0, 3, pad_mux_value);
1239 			status |= update_by_mnemonic(state,
1240 				0x90000178, 4, 3, pad_mux_value);
1241 
1242 			status |= update_by_mnemonic(state,
1243 				0x90000178, 8, 3, 5);
1244 			status |= update_by_mnemonic(state,
1245 				0x90000178, 12, 3, 5);
1246 			status |= update_by_mnemonic(state,
1247 				0x90000178, 16, 3, 5);
1248 			status |= update_by_mnemonic(state,
1249 				0x90000178, 20, 3, 5);
1250 			status |= update_by_mnemonic(state,
1251 				0x90000178, 24, 3, 5);
1252 			status |= update_by_mnemonic(state,
1253 				0x90000178, 28, 3, 5);
1254 			status |= update_by_mnemonic(state,
1255 				0x9000017C, 0, 3, 5);
1256 			status |= update_by_mnemonic(state,
1257 				0x9000017C, 4, 3, 5);
1258 		} else {
1259 			status |= update_by_mnemonic(state,
1260 				0x90000170, 4, 3, pad_mux_value);
1261 			status |= update_by_mnemonic(state,
1262 				0x90000170, 8, 3, pad_mux_value);
1263 			status |= update_by_mnemonic(state,
1264 				0x90000170, 12, 3, pad_mux_value);
1265 			status |= update_by_mnemonic(state,
1266 				0x90000170, 16, 3, pad_mux_value);
1267 			status |= update_by_mnemonic(state,
1268 				0x90000170, 20, 3, pad_mux_value);
1269 			status |= update_by_mnemonic(state,
1270 				0x90000170, 24, 3, pad_mux_value);
1271 			status |= update_by_mnemonic(state,
1272 				0x90000170, 28, 3, pad_mux_value);
1273 			status |= update_by_mnemonic(state,
1274 				0x90000174, 0, 3, pad_mux_value);
1275 			status |= update_by_mnemonic(state,
1276 				0x90000174, 4, 3, pad_mux_value);
1277 			status |= update_by_mnemonic(state,
1278 				0x90000174, 8, 3, pad_mux_value);
1279 			status |= update_by_mnemonic(state,
1280 				0x90000174, 12, 3, pad_mux_value);
1281 		}
1282 		break;
1283 
1284 
1285 	case MXL_HYDRA_DEVICE_584:
1286 	default:
1287 		status |= update_by_mnemonic(state,
1288 			0x90000170, 4, 3, pad_mux_value);
1289 		status |= update_by_mnemonic(state,
1290 			0x90000170, 8, 3, pad_mux_value);
1291 		status |= update_by_mnemonic(state,
1292 			0x90000170, 12, 3, pad_mux_value);
1293 		status |= update_by_mnemonic(state,
1294 			0x90000170, 16, 3, pad_mux_value);
1295 		status |= update_by_mnemonic(state,
1296 			0x90000170, 20, 3, pad_mux_value);
1297 		status |= update_by_mnemonic(state,
1298 			0x90000170, 24, 3, pad_mux_value);
1299 		status |= update_by_mnemonic(state,
1300 			0x90000170, 28, 3, pad_mux_value);
1301 		status |= update_by_mnemonic(state,
1302 			0x90000174, 0, 3, pad_mux_value);
1303 		status |= update_by_mnemonic(state,
1304 			0x90000174, 4, 3, pad_mux_value);
1305 		status |= update_by_mnemonic(state,
1306 			0x90000174, 8, 3, pad_mux_value);
1307 		status |= update_by_mnemonic(state,
1308 			0x90000174, 12, 3, pad_mux_value);
1309 		break;
1310 	}
1311 	return status;
1312 }
1313 
1314 static int set_drive_strength(struct mxl *state,
1315 		enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength)
1316 {
1317 	int stat = 0;
1318 	u32 val;
1319 
1320 	read_register(state, 0x90000194, &val);
1321 	dev_info(state->i2cdev, "DIGIO = %08x\n", val);
1322 	dev_info(state->i2cdev, "set drive_strength = %u\n", ts_drive_strength);
1323 
1324 
1325 	stat |= update_by_mnemonic(state, 0x90000194, 0, 3, ts_drive_strength);
1326 	stat |= update_by_mnemonic(state, 0x90000194, 20, 3, ts_drive_strength);
1327 	stat |= update_by_mnemonic(state, 0x90000194, 24, 3, ts_drive_strength);
1328 	stat |= update_by_mnemonic(state, 0x90000198, 12, 3, ts_drive_strength);
1329 	stat |= update_by_mnemonic(state, 0x90000198, 16, 3, ts_drive_strength);
1330 	stat |= update_by_mnemonic(state, 0x90000198, 20, 3, ts_drive_strength);
1331 	stat |= update_by_mnemonic(state, 0x90000198, 24, 3, ts_drive_strength);
1332 	stat |= update_by_mnemonic(state, 0x9000019C, 0, 3, ts_drive_strength);
1333 	stat |= update_by_mnemonic(state, 0x9000019C, 4, 3, ts_drive_strength);
1334 	stat |= update_by_mnemonic(state, 0x9000019C, 8, 3, ts_drive_strength);
1335 	stat |= update_by_mnemonic(state, 0x9000019C, 24, 3, ts_drive_strength);
1336 	stat |= update_by_mnemonic(state, 0x9000019C, 28, 3, ts_drive_strength);
1337 	stat |= update_by_mnemonic(state, 0x900001A0, 0, 3, ts_drive_strength);
1338 	stat |= update_by_mnemonic(state, 0x900001A0, 4, 3, ts_drive_strength);
1339 	stat |= update_by_mnemonic(state, 0x900001A0, 20, 3, ts_drive_strength);
1340 	stat |= update_by_mnemonic(state, 0x900001A0, 24, 3, ts_drive_strength);
1341 	stat |= update_by_mnemonic(state, 0x900001A0, 28, 3, ts_drive_strength);
1342 
1343 	return stat;
1344 }
1345 
1346 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable)
1347 {
1348 	int stat = 0;
1349 	struct MXL_HYDRA_TUNER_CMD ctrl_tuner_cmd;
1350 	u8 cmd_size = sizeof(ctrl_tuner_cmd);
1351 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
1352 	u32 val, count = 10;
1353 
1354 	ctrl_tuner_cmd.tuner_id = tuner;
1355 	ctrl_tuner_cmd.enable = enable;
1356 	BUILD_HYDRA_CMD(MXL_HYDRA_TUNER_ACTIVATE_CMD, MXL_CMD_WRITE,
1357 			cmd_size, &ctrl_tuner_cmd, cmd_buff);
1358 	stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1359 			    &cmd_buff[0]);
1360 	if (stat)
1361 		return stat;
1362 	read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1363 	while (--count && ((val >> tuner) & 1) != enable) {
1364 		msleep(20);
1365 		read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1366 	}
1367 	if (!count)
1368 		return -1;
1369 	read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1370 	dev_dbg(state->i2cdev, "tuner %u ready = %u\n",
1371 		tuner, (val >> tuner) & 1);
1372 
1373 	return 0;
1374 }
1375 
1376 
1377 static int config_ts(struct mxl *state, enum MXL_HYDRA_DEMOD_ID_E demod_id,
1378 		     struct MXL_HYDRA_MPEGOUT_PARAM_T *mpeg_out_param_ptr)
1379 {
1380 	int status = 0;
1381 	u32 nco_count_min = 0;
1382 	u32 clk_type = 0;
1383 
1384 	static const struct MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = {
1385 		{0x90700010, 8, 1}, {0x90700010, 9, 1},
1386 		{0x90700010, 10, 1}, {0x90700010, 11, 1},
1387 		{0x90700010, 12, 1}, {0x90700010, 13, 1},
1388 		{0x90700010, 14, 1}, {0x90700010, 15, 1} };
1389 	static const struct MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = {
1390 		{0x90700010, 16, 1}, {0x90700010, 17, 1},
1391 		{0x90700010, 18, 1}, {0x90700010, 19, 1},
1392 		{0x90700010, 20, 1}, {0x90700010, 21, 1},
1393 		{0x90700010, 22, 1}, {0x90700010, 23, 1} };
1394 	static const struct MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = {
1395 		{0x90700014, 0, 1}, {0x90700014, 1, 1},
1396 		{0x90700014, 2, 1}, {0x90700014, 3, 1},
1397 		{0x90700014, 4, 1}, {0x90700014, 5, 1},
1398 		{0x90700014, 6, 1}, {0x90700014, 7, 1} };
1399 	static const struct MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = {
1400 		{0x90700018, 0, 3}, {0x90700018, 4, 3},
1401 		{0x90700018, 8, 3}, {0x90700018, 12, 3},
1402 		{0x90700018, 16, 3}, {0x90700018, 20, 3},
1403 		{0x90700018, 24, 3}, {0x90700018, 28, 3} };
1404 	static const struct MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = {
1405 		{0x9070000C, 16, 1}, {0x9070000C, 17, 1},
1406 		{0x9070000C, 18, 1}, {0x9070000C, 19, 1},
1407 		{0x9070000C, 20, 1}, {0x9070000C, 21, 1},
1408 		{0x9070000C, 22, 1}, {0x9070000C, 23, 1} };
1409 	static const struct MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = {
1410 		{0x90700010, 0, 1}, {0x90700010, 1, 1},
1411 		{0x90700010, 2, 1}, {0x90700010, 3, 1},
1412 		{0x90700010, 4, 1}, {0x90700010, 5, 1},
1413 		{0x90700010, 6, 1}, {0x90700010, 7, 1} };
1414 	static const struct MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = {
1415 		{0x9070000C, 0, 1}, {0x9070000C, 1, 1},
1416 		{0x9070000C, 2, 1}, {0x9070000C, 3, 1},
1417 		{0x9070000C, 4, 1}, {0x9070000C, 5, 1},
1418 		{0x9070000C, 6, 1}, {0x9070000C, 7, 1} };
1419 	static const struct MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = {
1420 		{0x9070000C, 24, 1}, {0x9070000C, 25, 1},
1421 		{0x9070000C, 26, 1}, {0x9070000C, 27, 1},
1422 		{0x9070000C, 28, 1}, {0x9070000C, 29, 1},
1423 		{0x9070000C, 30, 1}, {0x9070000C, 31, 1} };
1424 	static const struct MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = {
1425 		{0x90700014, 8, 1}, {0x90700014, 9, 1},
1426 		{0x90700014, 10, 1}, {0x90700014, 11, 1},
1427 		{0x90700014, 12, 1}, {0x90700014, 13, 1},
1428 		{0x90700014, 14, 1}, {0x90700014, 15, 1} };
1429 	static const struct MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = {
1430 		{0x907001D4, 0, 1}, {0x907001D4, 1, 1},
1431 		{0x907001D4, 2, 1}, {0x907001D4, 3, 1},
1432 		{0x907001D4, 4, 1}, {0x907001D4, 5, 1},
1433 		{0x907001D4, 6, 1}, {0x907001D4, 7, 1} };
1434 	static const struct MXL_REG_FIELD_T xpt_nco_clock_rate[MXL_HYDRA_DEMOD_MAX] = {
1435 		{0x90700044, 16, 80}, {0x90700044, 16, 81},
1436 		{0x90700044, 16, 82}, {0x90700044, 16, 83},
1437 		{0x90700044, 16, 84}, {0x90700044, 16, 85},
1438 		{0x90700044, 16, 86}, {0x90700044, 16, 87} };
1439 
1440 	demod_id = state->base->ts_map[demod_id];
1441 
1442 	if (mpeg_out_param_ptr->enable == MXL_ENABLE) {
1443 		if (mpeg_out_param_ptr->mpeg_mode ==
1444 		    MXL_HYDRA_MPEG_MODE_PARALLEL) {
1445 		} else {
1446 			cfg_ts_pad_mux(state, MXL_TRUE);
1447 			update_by_mnemonic(state,
1448 				0x90700010, 27, 1, MXL_FALSE);
1449 		}
1450 	}
1451 
1452 	nco_count_min =
1453 		(u32)(MXL_HYDRA_NCO_CLK / mpeg_out_param_ptr->max_mpeg_clk_rate);
1454 
1455 	if (state->base->chipversion >= 2) {
1456 		status |= update_by_mnemonic(state,
1457 			xpt_nco_clock_rate[demod_id].reg_addr, /* Reg Addr */
1458 			xpt_nco_clock_rate[demod_id].lsb_pos, /* LSB pos */
1459 			xpt_nco_clock_rate[demod_id].num_of_bits, /* Num of bits */
1460 			nco_count_min); /* Data */
1461 	} else
1462 		update_by_mnemonic(state, 0x90700044, 16, 8, nco_count_min);
1463 
1464 	if (mpeg_out_param_ptr->mpeg_clk_type == MXL_HYDRA_MPEG_CLK_CONTINUOUS)
1465 		clk_type = 1;
1466 
1467 	if (mpeg_out_param_ptr->mpeg_mode < MXL_HYDRA_MPEG_MODE_PARALLEL) {
1468 		status |= update_by_mnemonic(state,
1469 			xpt_continuous_clock[demod_id].reg_addr,
1470 			xpt_continuous_clock[demod_id].lsb_pos,
1471 			xpt_continuous_clock[demod_id].num_of_bits,
1472 			clk_type);
1473 	} else
1474 		update_by_mnemonic(state, 0x907001D4, 8, 1, clk_type);
1475 
1476 	status |= update_by_mnemonic(state,
1477 		xpt_sync_polarity[demod_id].reg_addr,
1478 		xpt_sync_polarity[demod_id].lsb_pos,
1479 		xpt_sync_polarity[demod_id].num_of_bits,
1480 		mpeg_out_param_ptr->mpeg_sync_pol);
1481 
1482 	status |= update_by_mnemonic(state,
1483 		xpt_valid_polarity[demod_id].reg_addr,
1484 		xpt_valid_polarity[demod_id].lsb_pos,
1485 		xpt_valid_polarity[demod_id].num_of_bits,
1486 		mpeg_out_param_ptr->mpeg_valid_pol);
1487 
1488 	status |= update_by_mnemonic(state,
1489 		xpt_clock_polarity[demod_id].reg_addr,
1490 		xpt_clock_polarity[demod_id].lsb_pos,
1491 		xpt_clock_polarity[demod_id].num_of_bits,
1492 		mpeg_out_param_ptr->mpeg_clk_pol);
1493 
1494 	status |= update_by_mnemonic(state,
1495 		xpt_sync_byte[demod_id].reg_addr,
1496 		xpt_sync_byte[demod_id].lsb_pos,
1497 		xpt_sync_byte[demod_id].num_of_bits,
1498 		mpeg_out_param_ptr->mpeg_sync_pulse_width);
1499 
1500 	status |= update_by_mnemonic(state,
1501 		xpt_ts_clock_phase[demod_id].reg_addr,
1502 		xpt_ts_clock_phase[demod_id].lsb_pos,
1503 		xpt_ts_clock_phase[demod_id].num_of_bits,
1504 		mpeg_out_param_ptr->mpeg_clk_phase);
1505 
1506 	status |= update_by_mnemonic(state,
1507 		xpt_lsb_first[demod_id].reg_addr,
1508 		xpt_lsb_first[demod_id].lsb_pos,
1509 		xpt_lsb_first[demod_id].num_of_bits,
1510 		mpeg_out_param_ptr->lsb_or_msb_first);
1511 
1512 	switch (mpeg_out_param_ptr->mpeg_error_indication) {
1513 	case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC:
1514 		status |= update_by_mnemonic(state,
1515 			xpt_err_replace_sync[demod_id].reg_addr,
1516 			xpt_err_replace_sync[demod_id].lsb_pos,
1517 			xpt_err_replace_sync[demod_id].num_of_bits,
1518 			MXL_TRUE);
1519 		status |= update_by_mnemonic(state,
1520 			xpt_err_replace_valid[demod_id].reg_addr,
1521 			xpt_err_replace_valid[demod_id].lsb_pos,
1522 			xpt_err_replace_valid[demod_id].num_of_bits,
1523 			MXL_FALSE);
1524 		break;
1525 
1526 	case MXL_HYDRA_MPEG_ERR_REPLACE_VALID:
1527 		status |= update_by_mnemonic(state,
1528 			xpt_err_replace_sync[demod_id].reg_addr,
1529 			xpt_err_replace_sync[demod_id].lsb_pos,
1530 			xpt_err_replace_sync[demod_id].num_of_bits,
1531 			MXL_FALSE);
1532 
1533 		status |= update_by_mnemonic(state,
1534 			xpt_err_replace_valid[demod_id].reg_addr,
1535 			xpt_err_replace_valid[demod_id].lsb_pos,
1536 			xpt_err_replace_valid[demod_id].num_of_bits,
1537 			MXL_TRUE);
1538 		break;
1539 
1540 	case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED:
1541 	default:
1542 		status |= update_by_mnemonic(state,
1543 			xpt_err_replace_sync[demod_id].reg_addr,
1544 			xpt_err_replace_sync[demod_id].lsb_pos,
1545 			xpt_err_replace_sync[demod_id].num_of_bits,
1546 			MXL_FALSE);
1547 
1548 		status |= update_by_mnemonic(state,
1549 			xpt_err_replace_valid[demod_id].reg_addr,
1550 			xpt_err_replace_valid[demod_id].lsb_pos,
1551 			xpt_err_replace_valid[demod_id].num_of_bits,
1552 			MXL_FALSE);
1553 
1554 		break;
1555 
1556 	}
1557 
1558 	if (mpeg_out_param_ptr->mpeg_mode != MXL_HYDRA_MPEG_MODE_PARALLEL) {
1559 		status |= update_by_mnemonic(state,
1560 			xpt_enable_output[demod_id].reg_addr,
1561 			xpt_enable_output[demod_id].lsb_pos,
1562 			xpt_enable_output[demod_id].num_of_bits,
1563 			mpeg_out_param_ptr->enable);
1564 	}
1565 	return status;
1566 }
1567 
1568 static int config_mux(struct mxl *state)
1569 {
1570 	update_by_mnemonic(state, 0x9070000C, 0, 1, 0);
1571 	update_by_mnemonic(state, 0x9070000C, 1, 1, 0);
1572 	update_by_mnemonic(state, 0x9070000C, 2, 1, 0);
1573 	update_by_mnemonic(state, 0x9070000C, 3, 1, 0);
1574 	update_by_mnemonic(state, 0x9070000C, 4, 1, 0);
1575 	update_by_mnemonic(state, 0x9070000C, 5, 1, 0);
1576 	update_by_mnemonic(state, 0x9070000C, 6, 1, 0);
1577 	update_by_mnemonic(state, 0x9070000C, 7, 1, 0);
1578 	update_by_mnemonic(state, 0x90700008, 0, 2, 1);
1579 	update_by_mnemonic(state, 0x90700008, 2, 2, 1);
1580 	return 0;
1581 }
1582 
1583 static int load_fw(struct mxl *state, struct mxl5xx_cfg *cfg)
1584 {
1585 	int stat = 0;
1586 	u8 *buf;
1587 
1588 	if (cfg->fw)
1589 		return firmware_download(state, cfg->fw, cfg->fw_len);
1590 
1591 	if (!cfg->fw_read)
1592 		return -1;
1593 
1594 	buf = vmalloc(0x40000);
1595 	if (!buf)
1596 		return -ENOMEM;
1597 
1598 	cfg->fw_read(cfg->fw_priv, buf, 0x40000);
1599 	stat = firmware_download(state, buf, 0x40000);
1600 	vfree(buf);
1601 
1602 	return stat;
1603 }
1604 
1605 static int validate_sku(struct mxl *state)
1606 {
1607 	u32 pad_mux_bond = 0, prcm_chip_id = 0, prcm_so_cid = 0;
1608 	int status;
1609 	u32 type = state->base->type;
1610 
1611 	status = read_by_mnemonic(state, 0x90000190, 0, 3, &pad_mux_bond);
1612 	status |= read_by_mnemonic(state, 0x80030000, 0, 12, &prcm_chip_id);
1613 	status |= read_by_mnemonic(state, 0x80030004, 24, 8, &prcm_so_cid);
1614 	if (status)
1615 		return -1;
1616 
1617 	dev_info(state->i2cdev, "padMuxBond=%08x, prcmChipId=%08x, prcmSoCId=%08x\n",
1618 		pad_mux_bond, prcm_chip_id, prcm_so_cid);
1619 
1620 	if (prcm_chip_id != 0x560) {
1621 		switch (pad_mux_bond) {
1622 		case MXL_HYDRA_SKU_ID_581:
1623 			if (type == MXL_HYDRA_DEVICE_581)
1624 				return 0;
1625 			if (type == MXL_HYDRA_DEVICE_581S) {
1626 				state->base->type = MXL_HYDRA_DEVICE_581;
1627 				return 0;
1628 			}
1629 			break;
1630 		case MXL_HYDRA_SKU_ID_584:
1631 			if (type == MXL_HYDRA_DEVICE_584)
1632 				return 0;
1633 			break;
1634 		case MXL_HYDRA_SKU_ID_544:
1635 			if (type == MXL_HYDRA_DEVICE_544)
1636 				return 0;
1637 			if (type == MXL_HYDRA_DEVICE_542)
1638 				return 0;
1639 			break;
1640 		case MXL_HYDRA_SKU_ID_582:
1641 			if (type == MXL_HYDRA_DEVICE_582)
1642 				return 0;
1643 			break;
1644 		default:
1645 			return -1;
1646 		}
1647 	}
1648 	return -1;
1649 }
1650 
1651 static int get_fwinfo(struct mxl *state)
1652 {
1653 	int status;
1654 	u32 val = 0;
1655 
1656 	status = read_by_mnemonic(state, 0x90000190, 0, 3, &val);
1657 	if (status)
1658 		return status;
1659 	dev_info(state->i2cdev, "chipID=%08x\n", val);
1660 
1661 	status = read_by_mnemonic(state, 0x80030004, 8, 8, &val);
1662 	if (status)
1663 		return status;
1664 	dev_info(state->i2cdev, "chipVer=%08x\n", val);
1665 
1666 	status = read_register(state, HYDRA_FIRMWARE_VERSION, &val);
1667 	if (status)
1668 		return status;
1669 	dev_info(state->i2cdev, "FWVer=%08x\n", val);
1670 
1671 	state->base->fwversion = val;
1672 	return status;
1673 }
1674 
1675 
1676 static u8 ts_map1_to_1[MXL_HYDRA_DEMOD_MAX] = {
1677 	MXL_HYDRA_DEMOD_ID_0,
1678 	MXL_HYDRA_DEMOD_ID_1,
1679 	MXL_HYDRA_DEMOD_ID_2,
1680 	MXL_HYDRA_DEMOD_ID_3,
1681 	MXL_HYDRA_DEMOD_ID_4,
1682 	MXL_HYDRA_DEMOD_ID_5,
1683 	MXL_HYDRA_DEMOD_ID_6,
1684 	MXL_HYDRA_DEMOD_ID_7,
1685 };
1686 
1687 static u8 ts_map54x[MXL_HYDRA_DEMOD_MAX] = {
1688 	MXL_HYDRA_DEMOD_ID_2,
1689 	MXL_HYDRA_DEMOD_ID_3,
1690 	MXL_HYDRA_DEMOD_ID_4,
1691 	MXL_HYDRA_DEMOD_ID_5,
1692 	MXL_HYDRA_DEMOD_MAX,
1693 	MXL_HYDRA_DEMOD_MAX,
1694 	MXL_HYDRA_DEMOD_MAX,
1695 	MXL_HYDRA_DEMOD_MAX,
1696 };
1697 
1698 static int probe(struct mxl *state, struct mxl5xx_cfg *cfg)
1699 {
1700 	u32 chipver;
1701 	int fw, status, j;
1702 	struct MXL_HYDRA_MPEGOUT_PARAM_T mpeg_interface_cfg;
1703 
1704 	state->base->ts_map = ts_map1_to_1;
1705 
1706 	switch (state->base->type) {
1707 	case MXL_HYDRA_DEVICE_581:
1708 	case MXL_HYDRA_DEVICE_581S:
1709 		state->base->can_clkout = 1;
1710 		state->base->demod_num = 8;
1711 		state->base->tuner_num = 1;
1712 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_581;
1713 		break;
1714 	case MXL_HYDRA_DEVICE_582:
1715 		state->base->can_clkout = 1;
1716 		state->base->demod_num = 8;
1717 		state->base->tuner_num = 3;
1718 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_582;
1719 		break;
1720 	case MXL_HYDRA_DEVICE_585:
1721 		state->base->can_clkout = 0;
1722 		state->base->demod_num = 8;
1723 		state->base->tuner_num = 4;
1724 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_585;
1725 		break;
1726 	case MXL_HYDRA_DEVICE_544:
1727 		state->base->can_clkout = 0;
1728 		state->base->demod_num = 4;
1729 		state->base->tuner_num = 4;
1730 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_544;
1731 		state->base->ts_map = ts_map54x;
1732 		break;
1733 	case MXL_HYDRA_DEVICE_541:
1734 	case MXL_HYDRA_DEVICE_541S:
1735 		state->base->can_clkout = 0;
1736 		state->base->demod_num = 4;
1737 		state->base->tuner_num = 1;
1738 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_541;
1739 		state->base->ts_map = ts_map54x;
1740 		break;
1741 	case MXL_HYDRA_DEVICE_561:
1742 	case MXL_HYDRA_DEVICE_561S:
1743 		state->base->can_clkout = 0;
1744 		state->base->demod_num = 6;
1745 		state->base->tuner_num = 1;
1746 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_561;
1747 		break;
1748 	case MXL_HYDRA_DEVICE_568:
1749 		state->base->can_clkout = 0;
1750 		state->base->demod_num = 8;
1751 		state->base->tuner_num = 1;
1752 		state->base->chan_bond = 1;
1753 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_568;
1754 		break;
1755 	case MXL_HYDRA_DEVICE_542:
1756 		state->base->can_clkout = 1;
1757 		state->base->demod_num = 4;
1758 		state->base->tuner_num = 3;
1759 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_542;
1760 		state->base->ts_map = ts_map54x;
1761 		break;
1762 	case MXL_HYDRA_DEVICE_TEST:
1763 	case MXL_HYDRA_DEVICE_584:
1764 	default:
1765 		state->base->can_clkout = 0;
1766 		state->base->demod_num = 8;
1767 		state->base->tuner_num = 4;
1768 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_584;
1769 		break;
1770 	}
1771 
1772 	status = validate_sku(state);
1773 	if (status)
1774 		return status;
1775 
1776 	update_by_mnemonic(state, 0x80030014, 9, 1, 1);
1777 	update_by_mnemonic(state, 0x8003003C, 12, 1, 1);
1778 	status = read_by_mnemonic(state, 0x80030000, 12, 4, &chipver);
1779 	if (status)
1780 		state->base->chipversion = 0;
1781 	else
1782 		state->base->chipversion = (chipver == 2) ? 2 : 1;
1783 	dev_info(state->i2cdev, "Hydra chip version %u\n",
1784 		state->base->chipversion);
1785 
1786 	cfg_dev_xtal(state, cfg->clk, cfg->cap, 0);
1787 
1788 	fw = firmware_is_alive(state);
1789 	if (!fw) {
1790 		status = load_fw(state, cfg);
1791 		if (status)
1792 			return status;
1793 	}
1794 	get_fwinfo(state);
1795 
1796 	config_mux(state);
1797 	mpeg_interface_cfg.enable = MXL_ENABLE;
1798 	mpeg_interface_cfg.lsb_or_msb_first = MXL_HYDRA_MPEG_SERIAL_MSB_1ST;
1799 	/*  supports only (0-104&139)MHz */
1800 	if (cfg->ts_clk)
1801 		mpeg_interface_cfg.max_mpeg_clk_rate = cfg->ts_clk;
1802 	else
1803 		mpeg_interface_cfg.max_mpeg_clk_rate = 69; /* 139; */
1804 	mpeg_interface_cfg.mpeg_clk_phase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG;
1805 	mpeg_interface_cfg.mpeg_clk_pol = MXL_HYDRA_MPEG_CLK_IN_PHASE;
1806 	/* MXL_HYDRA_MPEG_CLK_GAPPED; */
1807 	mpeg_interface_cfg.mpeg_clk_type = MXL_HYDRA_MPEG_CLK_CONTINUOUS;
1808 	mpeg_interface_cfg.mpeg_error_indication =
1809 		MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED;
1810 	mpeg_interface_cfg.mpeg_mode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE;
1811 	mpeg_interface_cfg.mpeg_sync_pol  = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1812 	mpeg_interface_cfg.mpeg_sync_pulse_width  = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT;
1813 	mpeg_interface_cfg.mpeg_valid_pol  = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1814 
1815 	for (j = 0; j < state->base->demod_num; j++) {
1816 		status = config_ts(state, (enum MXL_HYDRA_DEMOD_ID_E) j,
1817 				   &mpeg_interface_cfg);
1818 		if (status)
1819 			return status;
1820 	}
1821 	set_drive_strength(state, 1);
1822 	return 0;
1823 }
1824 
1825 struct dvb_frontend *mxl5xx_attach(struct i2c_adapter *i2c,
1826 	struct mxl5xx_cfg *cfg, u32 demod, u32 tuner,
1827 	int (**fn_set_input)(struct dvb_frontend *, int))
1828 {
1829 	struct mxl *state;
1830 	struct mxl_base *base;
1831 
1832 	state = kzalloc(sizeof(struct mxl), GFP_KERNEL);
1833 	if (!state)
1834 		return NULL;
1835 
1836 	state->demod = demod;
1837 	state->tuner = tuner;
1838 	state->tuner_in_use = 0xffffffff;
1839 	state->i2cdev = &i2c->dev;
1840 
1841 	base = match_base(i2c, cfg->adr);
1842 	if (base) {
1843 		base->count++;
1844 		if (base->count > base->demod_num)
1845 			goto fail;
1846 		state->base = base;
1847 	} else {
1848 		base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL);
1849 		if (!base)
1850 			goto fail;
1851 		base->i2c = i2c;
1852 		base->adr = cfg->adr;
1853 		base->type = cfg->type;
1854 		base->count = 1;
1855 		mutex_init(&base->i2c_lock);
1856 		mutex_init(&base->status_lock);
1857 		mutex_init(&base->tune_lock);
1858 		INIT_LIST_HEAD(&base->mxls);
1859 
1860 		state->base = base;
1861 		if (probe(state, cfg) < 0) {
1862 			kfree(base);
1863 			goto fail;
1864 		}
1865 		list_add(&base->mxllist, &mxllist);
1866 	}
1867 	state->fe.ops               = mxl_ops;
1868 	state->xbar[0]              = 4;
1869 	state->xbar[1]              = demod;
1870 	state->xbar[2]              = 8;
1871 	state->fe.demodulator_priv  = state;
1872 	*fn_set_input               = set_input;
1873 
1874 	list_add(&state->mxl, &base->mxls);
1875 	return &state->fe;
1876 
1877 fail:
1878 	kfree(state);
1879 	return NULL;
1880 }
1881 EXPORT_SYMBOL_GPL(mxl5xx_attach);
1882 
1883 MODULE_DESCRIPTION("MaxLinear MxL5xx DVB-S/S2 tuner-demodulator driver");
1884 MODULE_AUTHOR("Ralph and Marcus Metzler, Metzler Brothers Systementwicklung GbR");
1885 MODULE_LICENSE("GPL v2");
1886