xref: /linux/drivers/media/dvb-frontends/mb86a20s.c (revision 8795a739e5c72abeec51caf36b6df2b37e5720c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
4  *
5  *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
6  *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <asm/div64.h>
11 
12 #include <media/dvb_frontend.h>
13 #include "mb86a20s.h"
14 
15 #define NUM_LAYERS 3
16 
17 enum mb86a20s_bandwidth {
18 	MB86A20S_13SEG = 0,
19 	MB86A20S_13SEG_PARTIAL = 1,
20 	MB86A20S_1SEG = 2,
21 	MB86A20S_3SEG = 3,
22 };
23 
24 static u8 mb86a20s_subchannel[] = {
25 	0xb0, 0xc0, 0xd0, 0xe0,
26 	0xf0, 0x00, 0x10, 0x20,
27 };
28 
29 struct mb86a20s_state {
30 	struct i2c_adapter *i2c;
31 	const struct mb86a20s_config *config;
32 	u32 last_frequency;
33 
34 	struct dvb_frontend frontend;
35 
36 	u32 if_freq;
37 	enum mb86a20s_bandwidth bw;
38 	bool inversion;
39 	u32 subchannel;
40 
41 	u32 estimated_rate[NUM_LAYERS];
42 	unsigned long get_strength_time;
43 
44 	bool need_init;
45 };
46 
47 struct regdata {
48 	u8 reg;
49 	u8 data;
50 };
51 
52 #define BER_SAMPLING_RATE	1	/* Seconds */
53 
54 /*
55  * Initialization sequence: Use whatevere default values that PV SBTVD
56  * does on its initialisation, obtained via USB snoop
57  */
58 static struct regdata mb86a20s_init1[] = {
59 	{ 0x70, 0x0f },
60 	{ 0x70, 0xff },
61 	{ 0x08, 0x01 },
62 	{ 0x50, 0xd1 }, { 0x51, 0x20 },
63 };
64 
65 static struct regdata mb86a20s_init2[] = {
66 	{ 0x50, 0xd1 }, { 0x51, 0x22 },
67 	{ 0x39, 0x01 },
68 	{ 0x71, 0x00 },
69 	{ 0x3b, 0x21 },
70 	{ 0x3c, 0x3a },
71 	{ 0x01, 0x0d },
72 	{ 0x04, 0x08 }, { 0x05, 0x05 },
73 	{ 0x04, 0x0e }, { 0x05, 0x00 },
74 	{ 0x04, 0x0f }, { 0x05, 0x14 },
75 	{ 0x04, 0x0b }, { 0x05, 0x8c },
76 	{ 0x04, 0x00 }, { 0x05, 0x00 },
77 	{ 0x04, 0x01 }, { 0x05, 0x07 },
78 	{ 0x04, 0x02 }, { 0x05, 0x0f },
79 	{ 0x04, 0x03 }, { 0x05, 0xa0 },
80 	{ 0x04, 0x09 }, { 0x05, 0x00 },
81 	{ 0x04, 0x0a }, { 0x05, 0xff },
82 	{ 0x04, 0x27 }, { 0x05, 0x64 },
83 	{ 0x04, 0x28 }, { 0x05, 0x00 },
84 	{ 0x04, 0x1e }, { 0x05, 0xff },
85 	{ 0x04, 0x29 }, { 0x05, 0x0a },
86 	{ 0x04, 0x32 }, { 0x05, 0x0a },
87 	{ 0x04, 0x14 }, { 0x05, 0x02 },
88 	{ 0x04, 0x04 }, { 0x05, 0x00 },
89 	{ 0x04, 0x05 }, { 0x05, 0x22 },
90 	{ 0x04, 0x06 }, { 0x05, 0x0e },
91 	{ 0x04, 0x07 }, { 0x05, 0xd8 },
92 	{ 0x04, 0x12 }, { 0x05, 0x00 },
93 	{ 0x04, 0x13 }, { 0x05, 0xff },
94 
95 	/*
96 	 * On this demod, when the bit count reaches the count below,
97 	 * it collects the bit error count. The bit counters are initialized
98 	 * to 65535 here. This warrants that all of them will be quickly
99 	 * calculated when device gets locked. As TMCC is parsed, the values
100 	 * will be adjusted later in the driver's code.
101 	 */
102 	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
103 	{ 0x50, 0xa7 }, { 0x51, 0x00 },
104 	{ 0x50, 0xa8 }, { 0x51, 0xff },
105 	{ 0x50, 0xa9 }, { 0x51, 0xff },
106 	{ 0x50, 0xaa }, { 0x51, 0x00 },
107 	{ 0x50, 0xab }, { 0x51, 0xff },
108 	{ 0x50, 0xac }, { 0x51, 0xff },
109 	{ 0x50, 0xad }, { 0x51, 0x00 },
110 	{ 0x50, 0xae }, { 0x51, 0xff },
111 	{ 0x50, 0xaf }, { 0x51, 0xff },
112 
113 	/*
114 	 * On this demod, post BER counts blocks. When the count reaches the
115 	 * value below, it collects the block error count. The block counters
116 	 * are initialized to 127 here. This warrants that all of them will be
117 	 * quickly calculated when device gets locked. As TMCC is parsed, the
118 	 * values will be adjusted later in the driver's code.
119 	 */
120 	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
121 	{ 0x50, 0xdc }, { 0x51, 0x00 },
122 	{ 0x50, 0xdd }, { 0x51, 0x7f },
123 	{ 0x50, 0xde }, { 0x51, 0x00 },
124 	{ 0x50, 0xdf }, { 0x51, 0x7f },
125 	{ 0x50, 0xe0 }, { 0x51, 0x00 },
126 	{ 0x50, 0xe1 }, { 0x51, 0x7f },
127 
128 	/*
129 	 * On this demod, when the block count reaches the count below,
130 	 * it collects the block error count. The block counters are initialized
131 	 * to 127 here. This warrants that all of them will be quickly
132 	 * calculated when device gets locked. As TMCC is parsed, the values
133 	 * will be adjusted later in the driver's code.
134 	 */
135 	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
136 	{ 0x50, 0xb2 }, { 0x51, 0x00 },
137 	{ 0x50, 0xb3 }, { 0x51, 0x7f },
138 	{ 0x50, 0xb4 }, { 0x51, 0x00 },
139 	{ 0x50, 0xb5 }, { 0x51, 0x7f },
140 	{ 0x50, 0xb6 }, { 0x51, 0x00 },
141 	{ 0x50, 0xb7 }, { 0x51, 0x7f },
142 
143 	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
144 	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
145 	{ 0x45, 0x04 },				/* CN symbol 4 */
146 	{ 0x48, 0x04 },				/* CN manual mode */
147 	{ 0x50, 0xd5 }, { 0x51, 0x01 },
148 	{ 0x50, 0xd6 }, { 0x51, 0x1f },
149 	{ 0x50, 0xd2 }, { 0x51, 0x03 },
150 	{ 0x50, 0xd7 }, { 0x51, 0x3f },
151 	{ 0x1c, 0x01 },
152 	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
153 	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
154 	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
155 	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
156 	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
157 	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
158 	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
159 	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
160 	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
161 	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
162 	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
163 	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
164 	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
165 	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
166 	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
167 	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
168 	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
169 	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
170 	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
171 	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
172 	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
173 	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
174 	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
175 	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
176 	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
177 	{ 0x50, 0x1e }, { 0x51, 0x5d },
178 	{ 0x50, 0x22 }, { 0x51, 0x00 },
179 	{ 0x50, 0x23 }, { 0x51, 0xc8 },
180 	{ 0x50, 0x24 }, { 0x51, 0x00 },
181 	{ 0x50, 0x25 }, { 0x51, 0xf0 },
182 	{ 0x50, 0x26 }, { 0x51, 0x00 },
183 	{ 0x50, 0x27 }, { 0x51, 0xc3 },
184 	{ 0x50, 0x39 }, { 0x51, 0x02 },
185 	{ 0x50, 0xd5 }, { 0x51, 0x01 },
186 	{ 0xd0, 0x00 },
187 };
188 
189 static struct regdata mb86a20s_reset_reception[] = {
190 	{ 0x70, 0xf0 },
191 	{ 0x70, 0xff },
192 	{ 0x08, 0x01 },
193 	{ 0x08, 0x00 },
194 };
195 
196 static struct regdata mb86a20s_per_ber_reset[] = {
197 	{ 0x53, 0x00 },	/* pre BER Counter reset */
198 	{ 0x53, 0x07 },
199 
200 	{ 0x5f, 0x00 },	/* post BER Counter reset */
201 	{ 0x5f, 0x07 },
202 
203 	{ 0x50, 0xb1 },	/* PER Counter reset */
204 	{ 0x51, 0x07 },
205 	{ 0x51, 0x00 },
206 };
207 
208 /*
209  * I2C read/write functions and macros
210  */
211 
212 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
213 			     u8 i2c_addr, u8 reg, u8 data)
214 {
215 	u8 buf[] = { reg, data };
216 	struct i2c_msg msg = {
217 		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
218 	};
219 	int rc;
220 
221 	rc = i2c_transfer(state->i2c, &msg, 1);
222 	if (rc != 1) {
223 		dev_err(&state->i2c->dev,
224 			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
225 			__func__, rc, reg, data);
226 		return rc;
227 	}
228 
229 	return 0;
230 }
231 
232 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
233 				     u8 i2c_addr, struct regdata *rd, int size)
234 {
235 	int i, rc;
236 
237 	for (i = 0; i < size; i++) {
238 		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
239 					   rd[i].data);
240 		if (rc < 0)
241 			return rc;
242 	}
243 	return 0;
244 }
245 
246 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
247 				u8 i2c_addr, u8 reg)
248 {
249 	u8 val;
250 	int rc;
251 	struct i2c_msg msg[] = {
252 		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
253 		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
254 	};
255 
256 	rc = i2c_transfer(state->i2c, msg, 2);
257 
258 	if (rc != 2) {
259 		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
260 			__func__, reg, rc);
261 		return (rc < 0) ? rc : -EIO;
262 	}
263 
264 	return val;
265 }
266 
267 #define mb86a20s_readreg(state, reg) \
268 	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
269 #define mb86a20s_writereg(state, reg, val) \
270 	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
271 #define mb86a20s_writeregdata(state, regdata) \
272 	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
273 	regdata, ARRAY_SIZE(regdata))
274 
275 /*
276  * Ancillary internal routines (likely compiled inlined)
277  *
278  * The functions below assume that gateway lock has already obtained
279  */
280 
281 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
282 {
283 	struct mb86a20s_state *state = fe->demodulator_priv;
284 	int val;
285 
286 	*status = 0;
287 
288 	val = mb86a20s_readreg(state, 0x0a);
289 	if (val < 0)
290 		return val;
291 
292 	val &= 0xf;
293 	if (val >= 2)
294 		*status |= FE_HAS_SIGNAL;
295 
296 	if (val >= 4)
297 		*status |= FE_HAS_CARRIER;
298 
299 	if (val >= 5)
300 		*status |= FE_HAS_VITERBI;
301 
302 	if (val >= 7)
303 		*status |= FE_HAS_SYNC;
304 
305 	/*
306 	 * Actually, on state S8, it starts receiving TS, but the TS
307 	 * output is only on normal state after the transition to S9.
308 	 */
309 	if (val >= 9)
310 		*status |= FE_HAS_LOCK;
311 
312 	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
313 		 __func__, *status, val);
314 
315 	return val;
316 }
317 
318 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
319 {
320 	struct mb86a20s_state *state = fe->demodulator_priv;
321 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
322 	int rc;
323 	unsigned rf_max, rf_min, rf;
324 
325 	if (state->get_strength_time &&
326 	   (!time_after(jiffies, state->get_strength_time)))
327 		return c->strength.stat[0].uvalue;
328 
329 	/* Reset its value if an error happen */
330 	c->strength.stat[0].uvalue = 0;
331 
332 	/* Does a binary search to get RF strength */
333 	rf_max = 0xfff;
334 	rf_min = 0;
335 	do {
336 		rf = (rf_max + rf_min) / 2;
337 		rc = mb86a20s_writereg(state, 0x04, 0x1f);
338 		if (rc < 0)
339 			return rc;
340 		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
341 		if (rc < 0)
342 			return rc;
343 		rc = mb86a20s_writereg(state, 0x04, 0x20);
344 		if (rc < 0)
345 			return rc;
346 		rc = mb86a20s_writereg(state, 0x05, rf);
347 		if (rc < 0)
348 			return rc;
349 
350 		rc = mb86a20s_readreg(state, 0x02);
351 		if (rc < 0)
352 			return rc;
353 		if (rc & 0x08)
354 			rf_min = (rf_max + rf_min) / 2;
355 		else
356 			rf_max = (rf_max + rf_min) / 2;
357 		if (rf_max - rf_min < 4) {
358 			rf = (rf_max + rf_min) / 2;
359 
360 			/* Rescale it from 2^12 (4096) to 2^16 */
361 			rf = rf << (16 - 12);
362 			if (rf)
363 				rf |= (1 << 12) - 1;
364 
365 			dev_dbg(&state->i2c->dev,
366 				"%s: signal strength = %d (%d < RF=%d < %d)\n",
367 				__func__, rf, rf_min, rf >> 4, rf_max);
368 			c->strength.stat[0].uvalue = rf;
369 			state->get_strength_time = jiffies +
370 						   msecs_to_jiffies(1000);
371 			return 0;
372 		}
373 	} while (1);
374 }
375 
376 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
377 				   unsigned layer)
378 {
379 	int rc;
380 	static unsigned char reg[] = {
381 		[0] = 0x86,	/* Layer A */
382 		[1] = 0x8a,	/* Layer B */
383 		[2] = 0x8e,	/* Layer C */
384 	};
385 
386 	if (layer >= ARRAY_SIZE(reg))
387 		return -EINVAL;
388 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
389 	if (rc < 0)
390 		return rc;
391 	rc = mb86a20s_readreg(state, 0x6e);
392 	if (rc < 0)
393 		return rc;
394 	switch ((rc >> 4) & 0x07) {
395 	case 0:
396 		return DQPSK;
397 	case 1:
398 		return QPSK;
399 	case 2:
400 		return QAM_16;
401 	case 3:
402 		return QAM_64;
403 	default:
404 		return QAM_AUTO;
405 	}
406 }
407 
408 static int mb86a20s_get_fec(struct mb86a20s_state *state,
409 			    unsigned layer)
410 {
411 	int rc;
412 
413 	static unsigned char reg[] = {
414 		[0] = 0x87,	/* Layer A */
415 		[1] = 0x8b,	/* Layer B */
416 		[2] = 0x8f,	/* Layer C */
417 	};
418 
419 	if (layer >= ARRAY_SIZE(reg))
420 		return -EINVAL;
421 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
422 	if (rc < 0)
423 		return rc;
424 	rc = mb86a20s_readreg(state, 0x6e);
425 	if (rc < 0)
426 		return rc;
427 	switch ((rc >> 4) & 0x07) {
428 	case 0:
429 		return FEC_1_2;
430 	case 1:
431 		return FEC_2_3;
432 	case 2:
433 		return FEC_3_4;
434 	case 3:
435 		return FEC_5_6;
436 	case 4:
437 		return FEC_7_8;
438 	default:
439 		return FEC_AUTO;
440 	}
441 }
442 
443 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
444 				     unsigned layer)
445 {
446 	int rc;
447 	int interleaving[] = {
448 		0, 1, 2, 4, 8
449 	};
450 
451 	static unsigned char reg[] = {
452 		[0] = 0x88,	/* Layer A */
453 		[1] = 0x8c,	/* Layer B */
454 		[2] = 0x90,	/* Layer C */
455 	};
456 
457 	if (layer >= ARRAY_SIZE(reg))
458 		return -EINVAL;
459 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
460 	if (rc < 0)
461 		return rc;
462 	rc = mb86a20s_readreg(state, 0x6e);
463 	if (rc < 0)
464 		return rc;
465 
466 	return interleaving[(rc >> 4) & 0x07];
467 }
468 
469 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
470 				      unsigned layer)
471 {
472 	int rc, count;
473 	static unsigned char reg[] = {
474 		[0] = 0x89,	/* Layer A */
475 		[1] = 0x8d,	/* Layer B */
476 		[2] = 0x91,	/* Layer C */
477 	};
478 
479 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
480 
481 	if (layer >= ARRAY_SIZE(reg))
482 		return -EINVAL;
483 
484 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
485 	if (rc < 0)
486 		return rc;
487 	rc = mb86a20s_readreg(state, 0x6e);
488 	if (rc < 0)
489 		return rc;
490 	count = (rc >> 4) & 0x0f;
491 
492 	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
493 
494 	return count;
495 }
496 
497 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
498 {
499 	struct mb86a20s_state *state = fe->demodulator_priv;
500 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
501 
502 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
503 
504 	/* Fixed parameters */
505 	c->delivery_system = SYS_ISDBT;
506 	c->bandwidth_hz = 6000000;
507 
508 	/* Initialize values that will be later autodetected */
509 	c->isdbt_layer_enabled = 0;
510 	c->transmission_mode = TRANSMISSION_MODE_AUTO;
511 	c->guard_interval = GUARD_INTERVAL_AUTO;
512 	c->isdbt_sb_mode = 0;
513 	c->isdbt_sb_segment_count = 0;
514 }
515 
516 /*
517  * Estimates the bit rate using the per-segment bit rate given by
518  * ABNT/NBR 15601 spec (table 4).
519  */
520 static u32 isdbt_rate[3][5][4] = {
521 	{	/* DQPSK/QPSK */
522 		{  280850,  312060,  330420,  340430 },	/* 1/2 */
523 		{  374470,  416080,  440560,  453910 },	/* 2/3 */
524 		{  421280,  468090,  495630,  510650 },	/* 3/4 */
525 		{  468090,  520100,  550700,  567390 },	/* 5/6 */
526 		{  491500,  546110,  578230,  595760 },	/* 7/8 */
527 	}, {	/* QAM16 */
528 		{  561710,  624130,  660840,  680870 },	/* 1/2 */
529 		{  748950,  832170,  881120,  907820 },	/* 2/3 */
530 		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
531 		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
532 		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
533 	}, {	/* QAM64 */
534 		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
535 		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
536 		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
537 		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
538 		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
539 	}
540 };
541 
542 static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
543 				   u32 modulation, u32 forward_error_correction,
544 				   u32 guard_interval,
545 				   u32 segment)
546 {
547 	struct mb86a20s_state *state = fe->demodulator_priv;
548 	u32 rate;
549 	int mod, fec, guard;
550 
551 	/*
552 	 * If modulation/fec/guard is not detected, the default is
553 	 * to consider the lowest bit rate, to avoid taking too long time
554 	 * to get BER.
555 	 */
556 	switch (modulation) {
557 	case DQPSK:
558 	case QPSK:
559 	default:
560 		mod = 0;
561 		break;
562 	case QAM_16:
563 		mod = 1;
564 		break;
565 	case QAM_64:
566 		mod = 2;
567 		break;
568 	}
569 
570 	switch (forward_error_correction) {
571 	default:
572 	case FEC_1_2:
573 	case FEC_AUTO:
574 		fec = 0;
575 		break;
576 	case FEC_2_3:
577 		fec = 1;
578 		break;
579 	case FEC_3_4:
580 		fec = 2;
581 		break;
582 	case FEC_5_6:
583 		fec = 3;
584 		break;
585 	case FEC_7_8:
586 		fec = 4;
587 		break;
588 	}
589 
590 	switch (guard_interval) {
591 	default:
592 	case GUARD_INTERVAL_1_4:
593 		guard = 0;
594 		break;
595 	case GUARD_INTERVAL_1_8:
596 		guard = 1;
597 		break;
598 	case GUARD_INTERVAL_1_16:
599 		guard = 2;
600 		break;
601 	case GUARD_INTERVAL_1_32:
602 		guard = 3;
603 		break;
604 	}
605 
606 	/* Samples BER at BER_SAMPLING_RATE seconds */
607 	rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
608 
609 	/* Avoids sampling too quickly or to overflow the register */
610 	if (rate < 256)
611 		rate = 256;
612 	else if (rate > (1 << 24) - 1)
613 		rate = (1 << 24) - 1;
614 
615 	dev_dbg(&state->i2c->dev,
616 		"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
617 		__func__, 'A' + layer,
618 		segment * isdbt_rate[mod][fec][guard]/1000,
619 		rate, rate);
620 
621 	state->estimated_rate[layer] = rate;
622 }
623 
624 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
625 {
626 	struct mb86a20s_state *state = fe->demodulator_priv;
627 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
628 	int layer, rc;
629 
630 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
631 
632 	/* Reset frontend cache to default values */
633 	mb86a20s_reset_frontend_cache(fe);
634 
635 	/* Check for partial reception */
636 	rc = mb86a20s_writereg(state, 0x6d, 0x85);
637 	if (rc < 0)
638 		return rc;
639 	rc = mb86a20s_readreg(state, 0x6e);
640 	if (rc < 0)
641 		return rc;
642 	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
643 
644 	/* Get per-layer data */
645 
646 	for (layer = 0; layer < NUM_LAYERS; layer++) {
647 		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
648 			__func__, 'A' + layer);
649 
650 		rc = mb86a20s_get_segment_count(state, layer);
651 		if (rc < 0)
652 			goto noperlayer_error;
653 		if (rc >= 0 && rc < 14) {
654 			c->layer[layer].segment_count = rc;
655 		} else {
656 			c->layer[layer].segment_count = 0;
657 			state->estimated_rate[layer] = 0;
658 			continue;
659 		}
660 		c->isdbt_layer_enabled |= 1 << layer;
661 		rc = mb86a20s_get_modulation(state, layer);
662 		if (rc < 0)
663 			goto noperlayer_error;
664 		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
665 			__func__, rc);
666 		c->layer[layer].modulation = rc;
667 		rc = mb86a20s_get_fec(state, layer);
668 		if (rc < 0)
669 			goto noperlayer_error;
670 		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
671 			__func__, rc);
672 		c->layer[layer].fec = rc;
673 		rc = mb86a20s_get_interleaving(state, layer);
674 		if (rc < 0)
675 			goto noperlayer_error;
676 		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
677 			__func__, rc);
678 		c->layer[layer].interleaving = rc;
679 		mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
680 				       c->layer[layer].fec,
681 				       c->guard_interval,
682 				       c->layer[layer].segment_count);
683 	}
684 
685 	rc = mb86a20s_writereg(state, 0x6d, 0x84);
686 	if (rc < 0)
687 		return rc;
688 	if ((rc & 0x60) == 0x20) {
689 		c->isdbt_sb_mode = 1;
690 		/* At least, one segment should exist */
691 		if (!c->isdbt_sb_segment_count)
692 			c->isdbt_sb_segment_count = 1;
693 	}
694 
695 	/* Get transmission mode and guard interval */
696 	rc = mb86a20s_readreg(state, 0x07);
697 	if (rc < 0)
698 		return rc;
699 	c->transmission_mode = TRANSMISSION_MODE_AUTO;
700 	if ((rc & 0x60) == 0x20) {
701 		/* Only modes 2 and 3 are supported */
702 		switch ((rc >> 2) & 0x03) {
703 		case 1:
704 			c->transmission_mode = TRANSMISSION_MODE_4K;
705 			break;
706 		case 2:
707 			c->transmission_mode = TRANSMISSION_MODE_8K;
708 			break;
709 		}
710 	}
711 	c->guard_interval = GUARD_INTERVAL_AUTO;
712 	if (!(rc & 0x10)) {
713 		/* Guard interval 1/32 is not supported */
714 		switch (rc & 0x3) {
715 		case 0:
716 			c->guard_interval = GUARD_INTERVAL_1_4;
717 			break;
718 		case 1:
719 			c->guard_interval = GUARD_INTERVAL_1_8;
720 			break;
721 		case 2:
722 			c->guard_interval = GUARD_INTERVAL_1_16;
723 			break;
724 		}
725 	}
726 	return 0;
727 
728 noperlayer_error:
729 
730 	/* per-layer info is incomplete; discard all per-layer */
731 	c->isdbt_layer_enabled = 0;
732 
733 	return rc;
734 }
735 
736 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
737 {
738 	struct mb86a20s_state *state = fe->demodulator_priv;
739 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
740 	int rc, val;
741 
742 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
743 
744 	/* Reset the counters, if the channel changed */
745 	if (state->last_frequency != c->frequency) {
746 		memset(&c->cnr, 0, sizeof(c->cnr));
747 		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
748 		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
749 		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
750 		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
751 		memset(&c->block_error, 0, sizeof(c->block_error));
752 		memset(&c->block_count, 0, sizeof(c->block_count));
753 
754 		state->last_frequency = c->frequency;
755 	}
756 
757 	/* Clear status for most stats */
758 
759 	/* BER/PER counter reset */
760 	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
761 	if (rc < 0)
762 		goto err;
763 
764 	/* CNR counter reset */
765 	rc = mb86a20s_readreg(state, 0x45);
766 	if (rc < 0)
767 		goto err;
768 	val = rc;
769 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
770 	if (rc < 0)
771 		goto err;
772 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
773 	if (rc < 0)
774 		goto err;
775 
776 	/* MER counter reset */
777 	rc = mb86a20s_writereg(state, 0x50, 0x50);
778 	if (rc < 0)
779 		goto err;
780 	rc = mb86a20s_readreg(state, 0x51);
781 	if (rc < 0)
782 		goto err;
783 	val = rc;
784 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
785 	if (rc < 0)
786 		goto err;
787 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
788 	if (rc < 0)
789 		goto err;
790 
791 	goto ok;
792 err:
793 	dev_err(&state->i2c->dev,
794 		"%s: Can't reset FE statistics (error %d).\n",
795 		__func__, rc);
796 ok:
797 	return rc;
798 }
799 
800 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
801 				unsigned layer,
802 				u32 *error, u32 *count)
803 {
804 	struct mb86a20s_state *state = fe->demodulator_priv;
805 	int rc, val;
806 
807 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
808 
809 	if (layer >= NUM_LAYERS)
810 		return -EINVAL;
811 
812 	/* Check if the BER measures are already available */
813 	rc = mb86a20s_readreg(state, 0x54);
814 	if (rc < 0)
815 		return rc;
816 
817 	/* Check if data is available for that layer */
818 	if (!(rc & (1 << layer))) {
819 		dev_dbg(&state->i2c->dev,
820 			"%s: preBER for layer %c is not available yet.\n",
821 			__func__, 'A' + layer);
822 		return -EBUSY;
823 	}
824 
825 	/* Read Bit Error Count */
826 	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
827 	if (rc < 0)
828 		return rc;
829 	*error = rc << 16;
830 	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
831 	if (rc < 0)
832 		return rc;
833 	*error |= rc << 8;
834 	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
835 	if (rc < 0)
836 		return rc;
837 	*error |= rc;
838 
839 	dev_dbg(&state->i2c->dev,
840 		"%s: bit error before Viterbi for layer %c: %d.\n",
841 		__func__, 'A' + layer, *error);
842 
843 	/* Read Bit Count */
844 	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
845 	if (rc < 0)
846 		return rc;
847 	rc = mb86a20s_readreg(state, 0x51);
848 	if (rc < 0)
849 		return rc;
850 	*count = rc << 16;
851 	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
852 	if (rc < 0)
853 		return rc;
854 	rc = mb86a20s_readreg(state, 0x51);
855 	if (rc < 0)
856 		return rc;
857 	*count |= rc << 8;
858 	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
859 	if (rc < 0)
860 		return rc;
861 	rc = mb86a20s_readreg(state, 0x51);
862 	if (rc < 0)
863 		return rc;
864 	*count |= rc;
865 
866 	dev_dbg(&state->i2c->dev,
867 		"%s: bit count before Viterbi for layer %c: %d.\n",
868 		__func__, 'A' + layer, *count);
869 
870 
871 	/*
872 	 * As we get TMCC data from the frontend, we can better estimate the
873 	 * BER bit counters, in order to do the BER measure during a longer
874 	 * time. Use those data, if available, to update the bit count
875 	 * measure.
876 	 */
877 
878 	if (state->estimated_rate[layer]
879 	    && state->estimated_rate[layer] != *count) {
880 		dev_dbg(&state->i2c->dev,
881 			"%s: updating layer %c preBER counter to %d.\n",
882 			__func__, 'A' + layer, state->estimated_rate[layer]);
883 
884 		/* Turn off BER before Viterbi */
885 		rc = mb86a20s_writereg(state, 0x52, 0x00);
886 
887 		/* Update counter for this layer */
888 		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
889 		if (rc < 0)
890 			return rc;
891 		rc = mb86a20s_writereg(state, 0x51,
892 				       state->estimated_rate[layer] >> 16);
893 		if (rc < 0)
894 			return rc;
895 		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
896 		if (rc < 0)
897 			return rc;
898 		rc = mb86a20s_writereg(state, 0x51,
899 				       state->estimated_rate[layer] >> 8);
900 		if (rc < 0)
901 			return rc;
902 		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
903 		if (rc < 0)
904 			return rc;
905 		rc = mb86a20s_writereg(state, 0x51,
906 				       state->estimated_rate[layer]);
907 		if (rc < 0)
908 			return rc;
909 
910 		/* Turn on BER before Viterbi */
911 		rc = mb86a20s_writereg(state, 0x52, 0x01);
912 
913 		/* Reset all preBER counters */
914 		rc = mb86a20s_writereg(state, 0x53, 0x00);
915 		if (rc < 0)
916 			return rc;
917 		rc = mb86a20s_writereg(state, 0x53, 0x07);
918 	} else {
919 		/* Reset counter to collect new data */
920 		rc = mb86a20s_readreg(state, 0x53);
921 		if (rc < 0)
922 			return rc;
923 		val = rc;
924 		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
925 		if (rc < 0)
926 			return rc;
927 		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
928 	}
929 
930 	return rc;
931 }
932 
933 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
934 				 unsigned layer,
935 				  u32 *error, u32 *count)
936 {
937 	struct mb86a20s_state *state = fe->demodulator_priv;
938 	u32 counter, collect_rate;
939 	int rc, val;
940 
941 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
942 
943 	if (layer >= NUM_LAYERS)
944 		return -EINVAL;
945 
946 	/* Check if the BER measures are already available */
947 	rc = mb86a20s_readreg(state, 0x60);
948 	if (rc < 0)
949 		return rc;
950 
951 	/* Check if data is available for that layer */
952 	if (!(rc & (1 << layer))) {
953 		dev_dbg(&state->i2c->dev,
954 			"%s: post BER for layer %c is not available yet.\n",
955 			__func__, 'A' + layer);
956 		return -EBUSY;
957 	}
958 
959 	/* Read Bit Error Count */
960 	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
961 	if (rc < 0)
962 		return rc;
963 	*error = rc << 16;
964 	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
965 	if (rc < 0)
966 		return rc;
967 	*error |= rc << 8;
968 	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
969 	if (rc < 0)
970 		return rc;
971 	*error |= rc;
972 
973 	dev_dbg(&state->i2c->dev,
974 		"%s: post bit error for layer %c: %d.\n",
975 		__func__, 'A' + layer, *error);
976 
977 	/* Read Bit Count */
978 	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
979 	if (rc < 0)
980 		return rc;
981 	rc = mb86a20s_readreg(state, 0x51);
982 	if (rc < 0)
983 		return rc;
984 	counter = rc << 8;
985 	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
986 	if (rc < 0)
987 		return rc;
988 	rc = mb86a20s_readreg(state, 0x51);
989 	if (rc < 0)
990 		return rc;
991 	counter |= rc;
992 	*count = counter * 204 * 8;
993 
994 	dev_dbg(&state->i2c->dev,
995 		"%s: post bit count for layer %c: %d.\n",
996 		__func__, 'A' + layer, *count);
997 
998 	/*
999 	 * As we get TMCC data from the frontend, we can better estimate the
1000 	 * BER bit counters, in order to do the BER measure during a longer
1001 	 * time. Use those data, if available, to update the bit count
1002 	 * measure.
1003 	 */
1004 
1005 	if (!state->estimated_rate[layer])
1006 		goto reset_measurement;
1007 
1008 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1009 	if (collect_rate < 32)
1010 		collect_rate = 32;
1011 	if (collect_rate > 65535)
1012 		collect_rate = 65535;
1013 	if (collect_rate != counter) {
1014 		dev_dbg(&state->i2c->dev,
1015 			"%s: updating postBER counter on layer %c to %d.\n",
1016 			__func__, 'A' + layer, collect_rate);
1017 
1018 		/* Turn off BER after Viterbi */
1019 		rc = mb86a20s_writereg(state, 0x5e, 0x00);
1020 
1021 		/* Update counter for this layer */
1022 		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1023 		if (rc < 0)
1024 			return rc;
1025 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1026 		if (rc < 0)
1027 			return rc;
1028 		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1029 		if (rc < 0)
1030 			return rc;
1031 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1032 		if (rc < 0)
1033 			return rc;
1034 
1035 		/* Turn on BER after Viterbi */
1036 		rc = mb86a20s_writereg(state, 0x5e, 0x07);
1037 
1038 		/* Reset all preBER counters */
1039 		rc = mb86a20s_writereg(state, 0x5f, 0x00);
1040 		if (rc < 0)
1041 			return rc;
1042 		rc = mb86a20s_writereg(state, 0x5f, 0x07);
1043 
1044 		return rc;
1045 	}
1046 
1047 reset_measurement:
1048 	/* Reset counter to collect new data */
1049 	rc = mb86a20s_readreg(state, 0x5f);
1050 	if (rc < 0)
1051 		return rc;
1052 	val = rc;
1053 	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1054 	if (rc < 0)
1055 		return rc;
1056 	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1057 
1058 	return rc;
1059 }
1060 
1061 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1062 			    unsigned layer,
1063 			    u32 *error, u32 *count)
1064 {
1065 	struct mb86a20s_state *state = fe->demodulator_priv;
1066 	int rc, val;
1067 	u32 collect_rate;
1068 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1069 
1070 	if (layer >= NUM_LAYERS)
1071 		return -EINVAL;
1072 
1073 	/* Check if the PER measures are already available */
1074 	rc = mb86a20s_writereg(state, 0x50, 0xb8);
1075 	if (rc < 0)
1076 		return rc;
1077 	rc = mb86a20s_readreg(state, 0x51);
1078 	if (rc < 0)
1079 		return rc;
1080 
1081 	/* Check if data is available for that layer */
1082 
1083 	if (!(rc & (1 << layer))) {
1084 		dev_dbg(&state->i2c->dev,
1085 			"%s: block counts for layer %c aren't available yet.\n",
1086 			__func__, 'A' + layer);
1087 		return -EBUSY;
1088 	}
1089 
1090 	/* Read Packet error Count */
1091 	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1092 	if (rc < 0)
1093 		return rc;
1094 	rc = mb86a20s_readreg(state, 0x51);
1095 	if (rc < 0)
1096 		return rc;
1097 	*error = rc << 8;
1098 	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1099 	if (rc < 0)
1100 		return rc;
1101 	rc = mb86a20s_readreg(state, 0x51);
1102 	if (rc < 0)
1103 		return rc;
1104 	*error |= rc;
1105 	dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1106 		__func__, 'A' + layer, *error);
1107 
1108 	/* Read Bit Count */
1109 	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1110 	if (rc < 0)
1111 		return rc;
1112 	rc = mb86a20s_readreg(state, 0x51);
1113 	if (rc < 0)
1114 		return rc;
1115 	*count = rc << 8;
1116 	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1117 	if (rc < 0)
1118 		return rc;
1119 	rc = mb86a20s_readreg(state, 0x51);
1120 	if (rc < 0)
1121 		return rc;
1122 	*count |= rc;
1123 
1124 	dev_dbg(&state->i2c->dev,
1125 		"%s: block count for layer %c: %d.\n",
1126 		__func__, 'A' + layer, *count);
1127 
1128 	/*
1129 	 * As we get TMCC data from the frontend, we can better estimate the
1130 	 * BER bit counters, in order to do the BER measure during a longer
1131 	 * time. Use those data, if available, to update the bit count
1132 	 * measure.
1133 	 */
1134 
1135 	if (!state->estimated_rate[layer])
1136 		goto reset_measurement;
1137 
1138 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1139 	if (collect_rate < 32)
1140 		collect_rate = 32;
1141 	if (collect_rate > 65535)
1142 		collect_rate = 65535;
1143 
1144 	if (collect_rate != *count) {
1145 		dev_dbg(&state->i2c->dev,
1146 			"%s: updating PER counter on layer %c to %d.\n",
1147 			__func__, 'A' + layer, collect_rate);
1148 
1149 		/* Stop PER measurement */
1150 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1151 		if (rc < 0)
1152 			return rc;
1153 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1154 		if (rc < 0)
1155 			return rc;
1156 
1157 		/* Update this layer's counter */
1158 		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1159 		if (rc < 0)
1160 			return rc;
1161 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1162 		if (rc < 0)
1163 			return rc;
1164 		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1165 		if (rc < 0)
1166 			return rc;
1167 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1168 		if (rc < 0)
1169 			return rc;
1170 
1171 		/* start PER measurement */
1172 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1173 		if (rc < 0)
1174 			return rc;
1175 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1176 		if (rc < 0)
1177 			return rc;
1178 
1179 		/* Reset all counters to collect new data */
1180 		rc = mb86a20s_writereg(state, 0x50, 0xb1);
1181 		if (rc < 0)
1182 			return rc;
1183 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1184 		if (rc < 0)
1185 			return rc;
1186 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1187 
1188 		return rc;
1189 	}
1190 
1191 reset_measurement:
1192 	/* Reset counter to collect new data */
1193 	rc = mb86a20s_writereg(state, 0x50, 0xb1);
1194 	if (rc < 0)
1195 		return rc;
1196 	rc = mb86a20s_readreg(state, 0x51);
1197 	if (rc < 0)
1198 		return rc;
1199 	val = rc;
1200 	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1201 	if (rc < 0)
1202 		return rc;
1203 	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1204 
1205 	return rc;
1206 }
1207 
1208 struct linear_segments {
1209 	unsigned x, y;
1210 };
1211 
1212 /*
1213  * All tables below return a dB/1000 measurement
1214  */
1215 
1216 static const struct linear_segments cnr_to_db_table[] = {
1217 	{ 19648,     0},
1218 	{ 18187,  1000},
1219 	{ 16534,  2000},
1220 	{ 14823,  3000},
1221 	{ 13161,  4000},
1222 	{ 11622,  5000},
1223 	{ 10279,  6000},
1224 	{  9089,  7000},
1225 	{  8042,  8000},
1226 	{  7137,  9000},
1227 	{  6342, 10000},
1228 	{  5641, 11000},
1229 	{  5030, 12000},
1230 	{  4474, 13000},
1231 	{  3988, 14000},
1232 	{  3556, 15000},
1233 	{  3180, 16000},
1234 	{  2841, 17000},
1235 	{  2541, 18000},
1236 	{  2276, 19000},
1237 	{  2038, 20000},
1238 	{  1800, 21000},
1239 	{  1625, 22000},
1240 	{  1462, 23000},
1241 	{  1324, 24000},
1242 	{  1175, 25000},
1243 	{  1063, 26000},
1244 	{   980, 27000},
1245 	{   907, 28000},
1246 	{   840, 29000},
1247 	{   788, 30000},
1248 };
1249 
1250 static const struct linear_segments cnr_64qam_table[] = {
1251 	{ 3922688,     0},
1252 	{ 3920384,  1000},
1253 	{ 3902720,  2000},
1254 	{ 3894784,  3000},
1255 	{ 3882496,  4000},
1256 	{ 3872768,  5000},
1257 	{ 3858944,  6000},
1258 	{ 3851520,  7000},
1259 	{ 3838976,  8000},
1260 	{ 3829248,  9000},
1261 	{ 3818240, 10000},
1262 	{ 3806976, 11000},
1263 	{ 3791872, 12000},
1264 	{ 3767040, 13000},
1265 	{ 3720960, 14000},
1266 	{ 3637504, 15000},
1267 	{ 3498496, 16000},
1268 	{ 3296000, 17000},
1269 	{ 3031040, 18000},
1270 	{ 2715392, 19000},
1271 	{ 2362624, 20000},
1272 	{ 1963264, 21000},
1273 	{ 1649664, 22000},
1274 	{ 1366784, 23000},
1275 	{ 1120768, 24000},
1276 	{  890880, 25000},
1277 	{  723456, 26000},
1278 	{  612096, 27000},
1279 	{  518912, 28000},
1280 	{  448256, 29000},
1281 	{  388864, 30000},
1282 };
1283 
1284 static const struct linear_segments cnr_16qam_table[] = {
1285 	{ 5314816,     0},
1286 	{ 5219072,  1000},
1287 	{ 5118720,  2000},
1288 	{ 4998912,  3000},
1289 	{ 4875520,  4000},
1290 	{ 4736000,  5000},
1291 	{ 4604160,  6000},
1292 	{ 4458752,  7000},
1293 	{ 4300288,  8000},
1294 	{ 4092928,  9000},
1295 	{ 3836160, 10000},
1296 	{ 3521024, 11000},
1297 	{ 3155968, 12000},
1298 	{ 2756864, 13000},
1299 	{ 2347008, 14000},
1300 	{ 1955072, 15000},
1301 	{ 1593600, 16000},
1302 	{ 1297920, 17000},
1303 	{ 1043968, 18000},
1304 	{  839680, 19000},
1305 	{  672256, 20000},
1306 	{  523008, 21000},
1307 	{  424704, 22000},
1308 	{  345088, 23000},
1309 	{  280064, 24000},
1310 	{  221440, 25000},
1311 	{  179712, 26000},
1312 	{  151040, 27000},
1313 	{  128512, 28000},
1314 	{  110080, 29000},
1315 	{   95744, 30000},
1316 };
1317 
1318 static const struct linear_segments cnr_qpsk_table[] = {
1319 	{ 2834176,     0},
1320 	{ 2683648,  1000},
1321 	{ 2536960,  2000},
1322 	{ 2391808,  3000},
1323 	{ 2133248,  4000},
1324 	{ 1906176,  5000},
1325 	{ 1666560,  6000},
1326 	{ 1422080,  7000},
1327 	{ 1189632,  8000},
1328 	{  976384,  9000},
1329 	{  790272, 10000},
1330 	{  633344, 11000},
1331 	{  505600, 12000},
1332 	{  402944, 13000},
1333 	{  320768, 14000},
1334 	{  255488, 15000},
1335 	{  204032, 16000},
1336 	{  163072, 17000},
1337 	{  130304, 18000},
1338 	{  105216, 19000},
1339 	{   83456, 20000},
1340 	{   65024, 21000},
1341 	{   52480, 22000},
1342 	{   42752, 23000},
1343 	{   34560, 24000},
1344 	{   27136, 25000},
1345 	{   22016, 26000},
1346 	{   18432, 27000},
1347 	{   15616, 28000},
1348 	{   13312, 29000},
1349 	{   11520, 30000},
1350 };
1351 
1352 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1353 			     unsigned len)
1354 {
1355 	u64 tmp64;
1356 	u32 dx, dy;
1357 	int i, ret;
1358 
1359 	if (value >= segments[0].x)
1360 		return segments[0].y;
1361 	if (value < segments[len-1].x)
1362 		return segments[len-1].y;
1363 
1364 	for (i = 1; i < len - 1; i++) {
1365 		/* If value is identical, no need to interpolate */
1366 		if (value == segments[i].x)
1367 			return segments[i].y;
1368 		if (value > segments[i].x)
1369 			break;
1370 	}
1371 
1372 	/* Linear interpolation between the two (x,y) points */
1373 	dy = segments[i].y - segments[i - 1].y;
1374 	dx = segments[i - 1].x - segments[i].x;
1375 	tmp64 = value - segments[i].x;
1376 	tmp64 *= dy;
1377 	do_div(tmp64, dx);
1378 	ret = segments[i].y - tmp64;
1379 
1380 	return ret;
1381 }
1382 
1383 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1384 {
1385 	struct mb86a20s_state *state = fe->demodulator_priv;
1386 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1387 	u32 cnr_linear, cnr;
1388 	int rc, val;
1389 
1390 	/* Check if CNR is available */
1391 	rc = mb86a20s_readreg(state, 0x45);
1392 	if (rc < 0)
1393 		return rc;
1394 
1395 	if (!(rc & 0x40)) {
1396 		dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1397 			 __func__);
1398 		return -EBUSY;
1399 	}
1400 	val = rc;
1401 
1402 	rc = mb86a20s_readreg(state, 0x46);
1403 	if (rc < 0)
1404 		return rc;
1405 	cnr_linear = rc << 8;
1406 
1407 	rc = mb86a20s_readreg(state, 0x46);
1408 	if (rc < 0)
1409 		return rc;
1410 	cnr_linear |= rc;
1411 
1412 	cnr = interpolate_value(cnr_linear,
1413 				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1414 
1415 	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1416 	c->cnr.stat[0].svalue = cnr;
1417 
1418 	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1419 		__func__, cnr / 1000, cnr % 1000, cnr_linear);
1420 
1421 	/* CNR counter reset */
1422 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1423 	if (rc < 0)
1424 		return rc;
1425 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1426 
1427 	return rc;
1428 }
1429 
1430 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1431 {
1432 	struct mb86a20s_state *state = fe->demodulator_priv;
1433 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1434 	u32 mer, cnr;
1435 	int rc, val, layer;
1436 	const struct linear_segments *segs;
1437 	unsigned segs_len;
1438 
1439 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1440 
1441 	/* Check if the measures are already available */
1442 	rc = mb86a20s_writereg(state, 0x50, 0x5b);
1443 	if (rc < 0)
1444 		return rc;
1445 	rc = mb86a20s_readreg(state, 0x51);
1446 	if (rc < 0)
1447 		return rc;
1448 
1449 	/* Check if data is available */
1450 	if (!(rc & 0x01)) {
1451 		dev_dbg(&state->i2c->dev,
1452 			"%s: MER measures aren't available yet.\n", __func__);
1453 		return -EBUSY;
1454 	}
1455 
1456 	/* Read all layers */
1457 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1458 		if (!(c->isdbt_layer_enabled & (1 << layer))) {
1459 			c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1460 			continue;
1461 		}
1462 
1463 		rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1464 		if (rc < 0)
1465 			return rc;
1466 		rc = mb86a20s_readreg(state, 0x51);
1467 		if (rc < 0)
1468 			return rc;
1469 		mer = rc << 16;
1470 		rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1471 		if (rc < 0)
1472 			return rc;
1473 		rc = mb86a20s_readreg(state, 0x51);
1474 		if (rc < 0)
1475 			return rc;
1476 		mer |= rc << 8;
1477 		rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1478 		if (rc < 0)
1479 			return rc;
1480 		rc = mb86a20s_readreg(state, 0x51);
1481 		if (rc < 0)
1482 			return rc;
1483 		mer |= rc;
1484 
1485 		switch (c->layer[layer].modulation) {
1486 		case DQPSK:
1487 		case QPSK:
1488 			segs = cnr_qpsk_table;
1489 			segs_len = ARRAY_SIZE(cnr_qpsk_table);
1490 			break;
1491 		case QAM_16:
1492 			segs = cnr_16qam_table;
1493 			segs_len = ARRAY_SIZE(cnr_16qam_table);
1494 			break;
1495 		default:
1496 		case QAM_64:
1497 			segs = cnr_64qam_table;
1498 			segs_len = ARRAY_SIZE(cnr_64qam_table);
1499 			break;
1500 		}
1501 		cnr = interpolate_value(mer, segs, segs_len);
1502 
1503 		c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1504 		c->cnr.stat[1 + layer].svalue = cnr;
1505 
1506 		dev_dbg(&state->i2c->dev,
1507 			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1508 			__func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1509 
1510 	}
1511 
1512 	/* Start a new MER measurement */
1513 	/* MER counter reset */
1514 	rc = mb86a20s_writereg(state, 0x50, 0x50);
1515 	if (rc < 0)
1516 		return rc;
1517 	rc = mb86a20s_readreg(state, 0x51);
1518 	if (rc < 0)
1519 		return rc;
1520 	val = rc;
1521 
1522 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1523 	if (rc < 0)
1524 		return rc;
1525 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1526 	if (rc < 0)
1527 		return rc;
1528 
1529 	return 0;
1530 }
1531 
1532 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1533 {
1534 	struct mb86a20s_state *state = fe->demodulator_priv;
1535 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1536 	int layer;
1537 
1538 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1539 
1540 	/* Fill the length of each status counter */
1541 
1542 	/* Only global stats */
1543 	c->strength.len = 1;
1544 
1545 	/* Per-layer stats - 3 layers + global */
1546 	c->cnr.len = NUM_LAYERS + 1;
1547 	c->pre_bit_error.len = NUM_LAYERS + 1;
1548 	c->pre_bit_count.len = NUM_LAYERS + 1;
1549 	c->post_bit_error.len = NUM_LAYERS + 1;
1550 	c->post_bit_count.len = NUM_LAYERS + 1;
1551 	c->block_error.len = NUM_LAYERS + 1;
1552 	c->block_count.len = NUM_LAYERS + 1;
1553 
1554 	/* Signal is always available */
1555 	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1556 	c->strength.stat[0].uvalue = 0;
1557 
1558 	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
1559 	for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1560 		c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1561 		c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1562 		c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1563 		c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1564 		c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1565 		c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1566 		c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1567 	}
1568 }
1569 
1570 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1571 {
1572 	struct mb86a20s_state *state = fe->demodulator_priv;
1573 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1574 	int rc = 0, layer;
1575 	u32 bit_error = 0, bit_count = 0;
1576 	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1577 	u32 t_post_bit_error = 0, t_post_bit_count = 0;
1578 	u32 block_error = 0, block_count = 0;
1579 	u32 t_block_error = 0, t_block_count = 0;
1580 	int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1581 	int per_layers = 0;
1582 
1583 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1584 
1585 	mb86a20s_get_main_CNR(fe);
1586 
1587 	/* Get per-layer stats */
1588 	mb86a20s_get_blk_error_layer_CNR(fe);
1589 
1590 	/*
1591 	 * At state 7, only CNR is available
1592 	 * For BER measures, state=9 is required
1593 	 * FIXME: we may get MER measures with state=8
1594 	 */
1595 	if (status_nr < 9)
1596 		return 0;
1597 
1598 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1599 		if (c->isdbt_layer_enabled & (1 << layer)) {
1600 			/* Layer is active and has rc segments */
1601 			active_layers++;
1602 
1603 			/* Handle BER before vterbi */
1604 			rc = mb86a20s_get_pre_ber(fe, layer,
1605 						  &bit_error, &bit_count);
1606 			if (rc >= 0) {
1607 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1608 				c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1609 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1610 				c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1611 			} else if (rc != -EBUSY) {
1612 				/*
1613 					* If an I/O error happened,
1614 					* measures are now unavailable
1615 					*/
1616 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1617 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1618 				dev_err(&state->i2c->dev,
1619 					"%s: Can't get BER for layer %c (error %d).\n",
1620 					__func__, 'A' + layer, rc);
1621 			}
1622 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1623 				pre_ber_layers++;
1624 
1625 			/* Handle BER post vterbi */
1626 			rc = mb86a20s_get_post_ber(fe, layer,
1627 						   &bit_error, &bit_count);
1628 			if (rc >= 0) {
1629 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1630 				c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1631 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1632 				c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1633 			} else if (rc != -EBUSY) {
1634 				/*
1635 					* If an I/O error happened,
1636 					* measures are now unavailable
1637 					*/
1638 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1639 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1640 				dev_err(&state->i2c->dev,
1641 					"%s: Can't get BER for layer %c (error %d).\n",
1642 					__func__, 'A' + layer, rc);
1643 			}
1644 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1645 				post_ber_layers++;
1646 
1647 			/* Handle Block errors for PER/UCB reports */
1648 			rc = mb86a20s_get_blk_error(fe, layer,
1649 						&block_error,
1650 						&block_count);
1651 			if (rc >= 0) {
1652 				c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1653 				c->block_error.stat[1 + layer].uvalue += block_error;
1654 				c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1655 				c->block_count.stat[1 + layer].uvalue += block_count;
1656 			} else if (rc != -EBUSY) {
1657 				/*
1658 					* If an I/O error happened,
1659 					* measures are now unavailable
1660 					*/
1661 				c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1662 				c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1663 				dev_err(&state->i2c->dev,
1664 					"%s: Can't get PER for layer %c (error %d).\n",
1665 					__func__, 'A' + layer, rc);
1666 
1667 			}
1668 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1669 				per_layers++;
1670 
1671 			/* Update total preBER */
1672 			t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1673 			t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1674 
1675 			/* Update total postBER */
1676 			t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1677 			t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1678 
1679 			/* Update total PER */
1680 			t_block_error += c->block_error.stat[1 + layer].uvalue;
1681 			t_block_count += c->block_count.stat[1 + layer].uvalue;
1682 		}
1683 	}
1684 
1685 	/*
1686 	 * Start showing global count if at least one error count is
1687 	 * available.
1688 	 */
1689 	if (pre_ber_layers) {
1690 		/*
1691 		 * At least one per-layer BER measure was read. We can now
1692 		 * calculate the total BER
1693 		 *
1694 		 * Total Bit Error/Count is calculated as the sum of the
1695 		 * bit errors on all active layers.
1696 		 */
1697 		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1698 		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1699 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1700 		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1701 	} else {
1702 		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1703 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1704 	}
1705 
1706 	/*
1707 	 * Start showing global count if at least one error count is
1708 	 * available.
1709 	 */
1710 	if (post_ber_layers) {
1711 		/*
1712 		 * At least one per-layer BER measure was read. We can now
1713 		 * calculate the total BER
1714 		 *
1715 		 * Total Bit Error/Count is calculated as the sum of the
1716 		 * bit errors on all active layers.
1717 		 */
1718 		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1719 		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1720 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1721 		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1722 	} else {
1723 		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1724 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1725 	}
1726 
1727 	if (per_layers) {
1728 		/*
1729 		 * At least one per-layer UCB measure was read. We can now
1730 		 * calculate the total UCB
1731 		 *
1732 		 * Total block Error/Count is calculated as the sum of the
1733 		 * block errors on all active layers.
1734 		 */
1735 		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1736 		c->block_error.stat[0].uvalue = t_block_error;
1737 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1738 		c->block_count.stat[0].uvalue = t_block_count;
1739 	} else {
1740 		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1741 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1742 	}
1743 
1744 	return rc;
1745 }
1746 
1747 /*
1748  * The functions below are called via DVB callbacks, so they need to
1749  * properly use the I2C gate control
1750  */
1751 
1752 static int mb86a20s_initfe(struct dvb_frontend *fe)
1753 {
1754 	struct mb86a20s_state *state = fe->demodulator_priv;
1755 	u64 pll;
1756 	u32 fclk;
1757 	int rc;
1758 	u8  regD5 = 1, reg71, reg09 = 0x3a;
1759 
1760 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1761 
1762 	if (fe->ops.i2c_gate_ctrl)
1763 		fe->ops.i2c_gate_ctrl(fe, 0);
1764 
1765 	/* Initialize the frontend */
1766 	rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1767 	if (rc < 0)
1768 		goto err;
1769 
1770 	if (!state->inversion)
1771 		reg09 |= 0x04;
1772 	rc = mb86a20s_writereg(state, 0x09, reg09);
1773 	if (rc < 0)
1774 		goto err;
1775 	if (!state->bw)
1776 		reg71 = 1;
1777 	else
1778 		reg71 = 0;
1779 	rc = mb86a20s_writereg(state, 0x39, reg71);
1780 	if (rc < 0)
1781 		goto err;
1782 	rc = mb86a20s_writereg(state, 0x71, state->bw);
1783 	if (rc < 0)
1784 		goto err;
1785 	if (state->subchannel) {
1786 		rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1787 		if (rc < 0)
1788 			goto err;
1789 	}
1790 
1791 	fclk = state->config->fclk;
1792 	if (!fclk)
1793 		fclk = 32571428;
1794 
1795 	/* Adjust IF frequency to match tuner */
1796 	if (fe->ops.tuner_ops.get_if_frequency)
1797 		fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1798 
1799 	if (!state->if_freq)
1800 		state->if_freq = 3300000;
1801 
1802 	pll = (((u64)1) << 34) * state->if_freq;
1803 	do_div(pll, 63 * fclk);
1804 	pll = (1 << 25) - pll;
1805 	rc = mb86a20s_writereg(state, 0x28, 0x2a);
1806 	if (rc < 0)
1807 		goto err;
1808 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1809 	if (rc < 0)
1810 		goto err;
1811 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1812 	if (rc < 0)
1813 		goto err;
1814 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1815 	if (rc < 0)
1816 		goto err;
1817 	dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1818 		__func__, fclk, state->if_freq, (long long)pll);
1819 
1820 	/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1821 	pll = state->if_freq * 1677721600L;
1822 	do_div(pll, 1628571429L);
1823 	rc = mb86a20s_writereg(state, 0x28, 0x20);
1824 	if (rc < 0)
1825 		goto err;
1826 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1827 	if (rc < 0)
1828 		goto err;
1829 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1830 	if (rc < 0)
1831 		goto err;
1832 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1833 	if (rc < 0)
1834 		goto err;
1835 	dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1836 		__func__, state->if_freq, (long long)pll);
1837 
1838 	if (!state->config->is_serial)
1839 		regD5 &= ~1;
1840 
1841 	rc = mb86a20s_writereg(state, 0x50, 0xd5);
1842 	if (rc < 0)
1843 		goto err;
1844 	rc = mb86a20s_writereg(state, 0x51, regD5);
1845 	if (rc < 0)
1846 		goto err;
1847 
1848 	rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1849 	if (rc < 0)
1850 		goto err;
1851 
1852 
1853 err:
1854 	if (fe->ops.i2c_gate_ctrl)
1855 		fe->ops.i2c_gate_ctrl(fe, 1);
1856 
1857 	if (rc < 0) {
1858 		state->need_init = true;
1859 		dev_info(&state->i2c->dev,
1860 			 "mb86a20s: Init failed. Will try again later\n");
1861 	} else {
1862 		state->need_init = false;
1863 		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1864 	}
1865 	return rc;
1866 }
1867 
1868 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1869 {
1870 	struct mb86a20s_state *state = fe->demodulator_priv;
1871 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1872 	int rc, if_freq;
1873 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1874 
1875 	if (!c->isdbt_layer_enabled)
1876 		c->isdbt_layer_enabled = 7;
1877 
1878 	if (c->isdbt_layer_enabled == 1)
1879 		state->bw = MB86A20S_1SEG;
1880 	else if (c->isdbt_partial_reception)
1881 		state->bw = MB86A20S_13SEG_PARTIAL;
1882 	else
1883 		state->bw = MB86A20S_13SEG;
1884 
1885 	if (c->inversion == INVERSION_ON)
1886 		state->inversion = true;
1887 	else
1888 		state->inversion = false;
1889 
1890 	if (!c->isdbt_sb_mode) {
1891 		state->subchannel = 0;
1892 	} else {
1893 		if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1894 			c->isdbt_sb_subchannel = 0;
1895 
1896 		state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1897 	}
1898 
1899 	/*
1900 	 * Gate should already be opened, but it doesn't hurt to
1901 	 * double-check
1902 	 */
1903 	if (fe->ops.i2c_gate_ctrl)
1904 		fe->ops.i2c_gate_ctrl(fe, 1);
1905 	fe->ops.tuner_ops.set_params(fe);
1906 
1907 	if (fe->ops.tuner_ops.get_if_frequency)
1908 		fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1909 
1910 	/*
1911 	 * Make it more reliable: if, for some reason, the initial
1912 	 * device initialization doesn't happen, initialize it when
1913 	 * a SBTVD parameters are adjusted.
1914 	 *
1915 	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1916 	 * the agc callback logic is not called during DVB attach time,
1917 	 * causing mb86a20s to not be initialized with Kworld SBTVD.
1918 	 * So, this hack is needed, in order to make Kworld SBTVD to work.
1919 	 *
1920 	 * It is also needed to change the IF after the initial init.
1921 	 *
1922 	 * HACK: Always init the frontend when set_frontend is called:
1923 	 * it was noticed that, on some devices, it fails to lock on a
1924 	 * different channel. So, it is better to reset everything, even
1925 	 * wasting some time, than to loose channel lock.
1926 	 */
1927 	mb86a20s_initfe(fe);
1928 
1929 	if (fe->ops.i2c_gate_ctrl)
1930 		fe->ops.i2c_gate_ctrl(fe, 0);
1931 
1932 	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1933 	mb86a20s_reset_counters(fe);
1934 	mb86a20s_stats_not_ready(fe);
1935 
1936 	if (fe->ops.i2c_gate_ctrl)
1937 		fe->ops.i2c_gate_ctrl(fe, 1);
1938 
1939 	return rc;
1940 }
1941 
1942 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1943 					  enum fe_status *status)
1944 {
1945 	struct mb86a20s_state *state = fe->demodulator_priv;
1946 	int rc, status_nr;
1947 
1948 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1949 
1950 	if (fe->ops.i2c_gate_ctrl)
1951 		fe->ops.i2c_gate_ctrl(fe, 0);
1952 
1953 	/* Get lock */
1954 	status_nr = mb86a20s_read_status(fe, status);
1955 	if (status_nr < 7) {
1956 		mb86a20s_stats_not_ready(fe);
1957 		mb86a20s_reset_frontend_cache(fe);
1958 	}
1959 	if (status_nr < 0) {
1960 		dev_err(&state->i2c->dev,
1961 			"%s: Can't read frontend lock status\n", __func__);
1962 		rc = status_nr;
1963 		goto error;
1964 	}
1965 
1966 	/* Get signal strength */
1967 	rc = mb86a20s_read_signal_strength(fe);
1968 	if (rc < 0) {
1969 		dev_err(&state->i2c->dev,
1970 			"%s: Can't reset VBER registers.\n", __func__);
1971 		mb86a20s_stats_not_ready(fe);
1972 		mb86a20s_reset_frontend_cache(fe);
1973 
1974 		rc = 0;		/* Status is OK */
1975 		goto error;
1976 	}
1977 
1978 	if (status_nr >= 7) {
1979 		/* Get TMCC info*/
1980 		rc = mb86a20s_get_frontend(fe);
1981 		if (rc < 0) {
1982 			dev_err(&state->i2c->dev,
1983 				"%s: Can't get FE TMCC data.\n", __func__);
1984 			rc = 0;		/* Status is OK */
1985 			goto error;
1986 		}
1987 
1988 		/* Get statistics */
1989 		rc = mb86a20s_get_stats(fe, status_nr);
1990 		if (rc < 0 && rc != -EBUSY) {
1991 			dev_err(&state->i2c->dev,
1992 				"%s: Can't get FE statistics.\n", __func__);
1993 			rc = 0;
1994 			goto error;
1995 		}
1996 		rc = 0;	/* Don't return EBUSY to userspace */
1997 	}
1998 	goto ok;
1999 
2000 error:
2001 	mb86a20s_stats_not_ready(fe);
2002 
2003 ok:
2004 	if (fe->ops.i2c_gate_ctrl)
2005 		fe->ops.i2c_gate_ctrl(fe, 1);
2006 
2007 	return rc;
2008 }
2009 
2010 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2011 						    u16 *strength)
2012 {
2013 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2014 
2015 
2016 	*strength = c->strength.stat[0].uvalue;
2017 
2018 	return 0;
2019 }
2020 
2021 static int mb86a20s_tune(struct dvb_frontend *fe,
2022 			bool re_tune,
2023 			unsigned int mode_flags,
2024 			unsigned int *delay,
2025 			enum fe_status *status)
2026 {
2027 	struct mb86a20s_state *state = fe->demodulator_priv;
2028 	int rc = 0;
2029 
2030 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2031 
2032 	if (re_tune)
2033 		rc = mb86a20s_set_frontend(fe);
2034 
2035 	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2036 		mb86a20s_read_status_and_stats(fe, status);
2037 
2038 	return rc;
2039 }
2040 
2041 static void mb86a20s_release(struct dvb_frontend *fe)
2042 {
2043 	struct mb86a20s_state *state = fe->demodulator_priv;
2044 
2045 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2046 
2047 	kfree(state);
2048 }
2049 
2050 static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
2051 {
2052 	return DVBFE_ALGO_HW;
2053 }
2054 
2055 static const struct dvb_frontend_ops mb86a20s_ops;
2056 
2057 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2058 				    struct i2c_adapter *i2c)
2059 {
2060 	struct mb86a20s_state *state;
2061 	u8	rev;
2062 
2063 	dev_dbg(&i2c->dev, "%s called.\n", __func__);
2064 
2065 	/* allocate memory for the internal state */
2066 	state = kzalloc(sizeof(*state), GFP_KERNEL);
2067 	if (!state)
2068 		return NULL;
2069 
2070 	/* setup the state */
2071 	state->config = config;
2072 	state->i2c = i2c;
2073 
2074 	/* create dvb_frontend */
2075 	memcpy(&state->frontend.ops, &mb86a20s_ops,
2076 		sizeof(struct dvb_frontend_ops));
2077 	state->frontend.demodulator_priv = state;
2078 
2079 	/* Check if it is a mb86a20s frontend */
2080 	rev = mb86a20s_readreg(state, 0);
2081 	if (rev != 0x13) {
2082 		kfree(state);
2083 		dev_dbg(&i2c->dev,
2084 			"Frontend revision %d is unknown - aborting.\n",
2085 		       rev);
2086 		return NULL;
2087 	}
2088 
2089 	dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
2090 	return &state->frontend;
2091 }
2092 EXPORT_SYMBOL(mb86a20s_attach);
2093 
2094 static const struct dvb_frontend_ops mb86a20s_ops = {
2095 	.delsys = { SYS_ISDBT },
2096 	/* Use dib8000 values per default */
2097 	.info = {
2098 		.name = "Fujitsu mb86A20s",
2099 		.caps = FE_CAN_RECOVER  |
2100 			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2101 			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2102 			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2103 			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2104 			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2105 		/* Actually, those values depend on the used tuner */
2106 		.frequency_min_hz =  45 * MHz,
2107 		.frequency_max_hz = 864 * MHz,
2108 		.frequency_stepsize_hz = 62500,
2109 	},
2110 
2111 	.release = mb86a20s_release,
2112 
2113 	.init = mb86a20s_initfe,
2114 	.set_frontend = mb86a20s_set_frontend,
2115 	.read_status = mb86a20s_read_status_and_stats,
2116 	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2117 	.tune = mb86a20s_tune,
2118 	.get_frontend_algo = mb86a20s_get_frontend_algo,
2119 };
2120 
2121 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2122 MODULE_AUTHOR("Mauro Carvalho Chehab");
2123 MODULE_LICENSE("GPL");
2124