xref: /linux/drivers/media/dvb-frontends/mb86a16.c (revision f26b118031205135c23b43a311712fe8f34febf9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 	Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
4 
5 	Copyright (C) Manu Abraham (abraham.manu@gmail.com)
6 
7 */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/slab.h>
14 
15 #include <media/dvb_frontend.h>
16 #include "mb86a16.h"
17 #include "mb86a16_priv.h"
18 
19 static unsigned int verbose = 5;
20 module_param(verbose, int, 0644);
21 
22 struct mb86a16_state {
23 	struct i2c_adapter		*i2c_adap;
24 	const struct mb86a16_config	*config;
25 	struct dvb_frontend		frontend;
26 
27 	/* tuning parameters */
28 	int				frequency;
29 	int				srate;
30 
31 	/* Internal stuff */
32 	int				master_clk;
33 	int				deci;
34 	int				csel;
35 	int				rsel;
36 };
37 
38 #define MB86A16_ERROR		0
39 #define MB86A16_NOTICE		1
40 #define MB86A16_INFO		2
41 #define MB86A16_DEBUG		3
42 
43 #define dprintk(x, y, z, format, arg...) do {						\
44 	if (z) {									\
45 		if	((x > MB86A16_ERROR) && (x > y))				\
46 			printk(KERN_ERR "%s: " format "\n", __func__, ##arg);		\
47 		else if ((x > MB86A16_NOTICE) && (x > y))				\
48 			printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);	\
49 		else if ((x > MB86A16_INFO) && (x > y))					\
50 			printk(KERN_INFO "%s: " format "\n", __func__, ##arg);		\
51 		else if ((x > MB86A16_DEBUG) && (x > y))				\
52 			printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);		\
53 	} else {									\
54 		if (x > y)								\
55 			printk(format, ##arg);						\
56 	}										\
57 } while (0)
58 
59 #define TRACE_IN	dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
60 #define TRACE_OUT	dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
61 
62 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
63 {
64 	int ret;
65 	u8 buf[] = { reg, val };
66 
67 	struct i2c_msg msg = {
68 		.addr = state->config->demod_address,
69 		.flags = 0,
70 		.buf = buf,
71 		.len = 2
72 	};
73 
74 	dprintk(verbose, MB86A16_DEBUG, 1,
75 		"writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
76 		state->config->demod_address, buf[0], buf[1]);
77 
78 	ret = i2c_transfer(state->i2c_adap, &msg, 1);
79 
80 	return (ret != 1) ? -EREMOTEIO : 0;
81 }
82 
83 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
84 {
85 	int ret;
86 	u8 b0[] = { reg };
87 	u8 b1[] = { 0 };
88 
89 	struct i2c_msg msg[] = {
90 		{
91 			.addr = state->config->demod_address,
92 			.flags = 0,
93 			.buf = b0,
94 			.len = 1
95 		}, {
96 			.addr = state->config->demod_address,
97 			.flags = I2C_M_RD,
98 			.buf = b1,
99 			.len = 1
100 		}
101 	};
102 	ret = i2c_transfer(state->i2c_adap, msg, 2);
103 	if (ret != 2) {
104 		dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)",
105 			reg, ret);
106 
107 		if (ret < 0)
108 			return ret;
109 		return -EREMOTEIO;
110 	}
111 	*val = b1[0];
112 
113 	return ret;
114 }
115 
116 static int CNTM_set(struct mb86a16_state *state,
117 		    unsigned char timint1,
118 		    unsigned char timint2,
119 		    unsigned char cnext)
120 {
121 	unsigned char val;
122 
123 	val = (timint1 << 4) | (timint2 << 2) | cnext;
124 	if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
125 		goto err;
126 
127 	return 0;
128 
129 err:
130 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
131 	return -EREMOTEIO;
132 }
133 
134 static int smrt_set(struct mb86a16_state *state, int rate)
135 {
136 	int tmp ;
137 	int m ;
138 	unsigned char STOFS0, STOFS1;
139 
140 	m = 1 << state->deci;
141 	tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
142 
143 	STOFS0 = tmp & 0x0ff;
144 	STOFS1 = (tmp & 0xf00) >> 8;
145 
146 	if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
147 				       (state->csel << 1) |
148 					state->rsel) < 0)
149 		goto err;
150 	if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
151 		goto err;
152 	if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
153 		goto err;
154 
155 	return 0;
156 err:
157 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
158 	return -1;
159 }
160 
161 static int srst(struct mb86a16_state *state)
162 {
163 	if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
164 		goto err;
165 
166 	return 0;
167 err:
168 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
169 	return -EREMOTEIO;
170 
171 }
172 
173 static int afcex_data_set(struct mb86a16_state *state,
174 			  unsigned char AFCEX_L,
175 			  unsigned char AFCEX_H)
176 {
177 	if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
178 		goto err;
179 	if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
180 		goto err;
181 
182 	return 0;
183 err:
184 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
185 
186 	return -1;
187 }
188 
189 static int afcofs_data_set(struct mb86a16_state *state,
190 			   unsigned char AFCEX_L,
191 			   unsigned char AFCEX_H)
192 {
193 	if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
194 		goto err;
195 	if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
196 		goto err;
197 
198 	return 0;
199 err:
200 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
201 	return -EREMOTEIO;
202 }
203 
204 static int stlp_set(struct mb86a16_state *state,
205 		    unsigned char STRAS,
206 		    unsigned char STRBS)
207 {
208 	if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
209 		goto err;
210 
211 	return 0;
212 err:
213 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
214 	return -EREMOTEIO;
215 }
216 
217 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
218 {
219 	if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
220 		goto err;
221 	if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
222 		goto err;
223 
224 	return 0;
225 err:
226 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
227 	return -EREMOTEIO;
228 }
229 
230 static int initial_set(struct mb86a16_state *state)
231 {
232 	if (stlp_set(state, 5, 7))
233 		goto err;
234 
235 	udelay(100);
236 	if (afcex_data_set(state, 0, 0))
237 		goto err;
238 
239 	udelay(100);
240 	if (afcofs_data_set(state, 0, 0))
241 		goto err;
242 
243 	udelay(100);
244 	if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
245 		goto err;
246 	if (mb86a16_write(state, 0x2f, 0x21) < 0)
247 		goto err;
248 	if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
249 		goto err;
250 	if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
251 		goto err;
252 	if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
253 		goto err;
254 	if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
255 		goto err;
256 	if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
257 		goto err;
258 	if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
259 		goto err;
260 	if (mb86a16_write(state, 0x54, 0xff) < 0)
261 		goto err;
262 	if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
263 		goto err;
264 
265 	return 0;
266 
267 err:
268 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
269 	return -EREMOTEIO;
270 }
271 
272 static int S01T_set(struct mb86a16_state *state,
273 		    unsigned char s1t,
274 		    unsigned s0t)
275 {
276 	if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
277 		goto err;
278 
279 	return 0;
280 err:
281 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
282 	return -EREMOTEIO;
283 }
284 
285 
286 static int EN_set(struct mb86a16_state *state,
287 		  int cren,
288 		  int afcen)
289 {
290 	unsigned char val;
291 
292 	val = 0x7a | (cren << 7) | (afcen << 2);
293 	if (mb86a16_write(state, 0x49, val) < 0)
294 		goto err;
295 
296 	return 0;
297 err:
298 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
299 	return -EREMOTEIO;
300 }
301 
302 static int AFCEXEN_set(struct mb86a16_state *state,
303 		       int afcexen,
304 		       int smrt)
305 {
306 	unsigned char AFCA ;
307 
308 	if (smrt > 18875)
309 		AFCA = 4;
310 	else if (smrt > 9375)
311 		AFCA = 3;
312 	else if (smrt > 2250)
313 		AFCA = 2;
314 	else
315 		AFCA = 1;
316 
317 	if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
318 		goto err;
319 
320 	return 0;
321 
322 err:
323 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
324 	return -EREMOTEIO;
325 }
326 
327 static int DAGC_data_set(struct mb86a16_state *state,
328 			 unsigned char DAGCA,
329 			 unsigned char DAGCW)
330 {
331 	if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
332 		goto err;
333 
334 	return 0;
335 
336 err:
337 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
338 	return -EREMOTEIO;
339 }
340 
341 static void smrt_info_get(struct mb86a16_state *state, int rate)
342 {
343 	if (rate >= 37501) {
344 		state->deci = 0; state->csel = 0; state->rsel = 0;
345 	} else if (rate >= 30001) {
346 		state->deci = 0; state->csel = 0; state->rsel = 1;
347 	} else if (rate >= 26251) {
348 		state->deci = 0; state->csel = 1; state->rsel = 0;
349 	} else if (rate >= 22501) {
350 		state->deci = 0; state->csel = 1; state->rsel = 1;
351 	} else if (rate >= 18751) {
352 		state->deci = 1; state->csel = 0; state->rsel = 0;
353 	} else if (rate >= 15001) {
354 		state->deci = 1; state->csel = 0; state->rsel = 1;
355 	} else if (rate >= 13126) {
356 		state->deci = 1; state->csel = 1; state->rsel = 0;
357 	} else if (rate >= 11251) {
358 		state->deci = 1; state->csel = 1; state->rsel = 1;
359 	} else if (rate >= 9376) {
360 		state->deci = 2; state->csel = 0; state->rsel = 0;
361 	} else if (rate >= 7501) {
362 		state->deci = 2; state->csel = 0; state->rsel = 1;
363 	} else if (rate >= 6563) {
364 		state->deci = 2; state->csel = 1; state->rsel = 0;
365 	} else if (rate >= 5626) {
366 		state->deci = 2; state->csel = 1; state->rsel = 1;
367 	} else if (rate >= 4688) {
368 		state->deci = 3; state->csel = 0; state->rsel = 0;
369 	} else if (rate >= 3751) {
370 		state->deci = 3; state->csel = 0; state->rsel = 1;
371 	} else if (rate >= 3282) {
372 		state->deci = 3; state->csel = 1; state->rsel = 0;
373 	} else if (rate >= 2814) {
374 		state->deci = 3; state->csel = 1; state->rsel = 1;
375 	} else if (rate >= 2344) {
376 		state->deci = 4; state->csel = 0; state->rsel = 0;
377 	} else if (rate >= 1876) {
378 		state->deci = 4; state->csel = 0; state->rsel = 1;
379 	} else if (rate >= 1641) {
380 		state->deci = 4; state->csel = 1; state->rsel = 0;
381 	} else if (rate >= 1407) {
382 		state->deci = 4; state->csel = 1; state->rsel = 1;
383 	} else if (rate >= 1172) {
384 		state->deci = 5; state->csel = 0; state->rsel = 0;
385 	} else if (rate >=  939) {
386 		state->deci = 5; state->csel = 0; state->rsel = 1;
387 	} else if (rate >=  821) {
388 		state->deci = 5; state->csel = 1; state->rsel = 0;
389 	} else {
390 		state->deci = 5; state->csel = 1; state->rsel = 1;
391 	}
392 
393 	if (state->csel == 0)
394 		state->master_clk = 92000;
395 	else
396 		state->master_clk = 61333;
397 
398 }
399 
400 static int signal_det(struct mb86a16_state *state,
401 		      int smrt,
402 		      unsigned char *SIG)
403 {
404 	int ret;
405 	int smrtd;
406 	unsigned char S[3];
407 	int i;
408 
409 	if (*SIG > 45) {
410 		if (CNTM_set(state, 2, 1, 2) < 0) {
411 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
412 			return -1;
413 		}
414 	} else {
415 		if (CNTM_set(state, 3, 1, 2) < 0) {
416 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
417 			return -1;
418 		}
419 	}
420 	for (i = 0; i < 3; i++) {
421 		if (i == 0)
422 			smrtd = smrt * 98 / 100;
423 		else if (i == 1)
424 			smrtd = smrt;
425 		else
426 			smrtd = smrt * 102 / 100;
427 		smrt_info_get(state, smrtd);
428 		smrt_set(state, smrtd);
429 		srst(state);
430 		msleep_interruptible(10);
431 		if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
432 			dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
433 			return -EREMOTEIO;
434 		}
435 	}
436 	if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100))
437 		ret = 1;
438 	else
439 		ret = 0;
440 
441 	*SIG = S[1];
442 
443 	if (CNTM_set(state, 0, 1, 2) < 0) {
444 		dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
445 		return -1;
446 	}
447 
448 	return ret;
449 }
450 
451 static int rf_val_set(struct mb86a16_state *state,
452 		      int f,
453 		      int smrt,
454 		      unsigned char R)
455 {
456 	unsigned char C, F, B;
457 	int M;
458 	unsigned char rf_val[5];
459 	int ack = -1;
460 
461 	if (smrt > 37750)
462 		C = 1;
463 	else if (smrt > 18875)
464 		C = 2;
465 	else if (smrt > 5500)
466 		C = 3;
467 	else
468 		C = 4;
469 
470 	if (smrt > 30500)
471 		F = 3;
472 	else if (smrt > 9375)
473 		F = 1;
474 	else if (smrt > 4625)
475 		F = 0;
476 	else
477 		F = 2;
478 
479 	if (f < 1060)
480 		B = 0;
481 	else if (f < 1175)
482 		B = 1;
483 	else if (f < 1305)
484 		B = 2;
485 	else if (f < 1435)
486 		B = 3;
487 	else if (f < 1570)
488 		B = 4;
489 	else if (f < 1715)
490 		B = 5;
491 	else if (f < 1845)
492 		B = 6;
493 	else if (f < 1980)
494 		B = 7;
495 	else if (f < 2080)
496 		B = 8;
497 	else
498 		B = 9;
499 
500 	M = f * (1 << R) / 2;
501 
502 	rf_val[0] = 0x01 | (C << 3) | (F << 1);
503 	rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
504 	rf_val[2] = (M & 0x00ff0) >> 4;
505 	rf_val[3] = ((M & 0x0000f) << 4) | B;
506 
507 	/* Frequency Set */
508 	if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
509 		ack = 0;
510 	if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
511 		ack = 0;
512 	if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
513 		ack = 0;
514 	if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
515 		ack = 0;
516 	if (mb86a16_write(state, 0x25, 0x01) < 0)
517 		ack = 0;
518 	if (ack == 0) {
519 		dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
520 		return -EREMOTEIO;
521 	}
522 
523 	return 0;
524 }
525 
526 static int afcerr_chk(struct mb86a16_state *state)
527 {
528 	unsigned char AFCM_L, AFCM_H ;
529 	int AFCM ;
530 	int afcm, afcerr ;
531 
532 	if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
533 		goto err;
534 	if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
535 		goto err;
536 
537 	AFCM = (AFCM_H << 8) + AFCM_L;
538 
539 	if (AFCM > 2048)
540 		afcm = AFCM - 4096;
541 	else
542 		afcm = AFCM;
543 	afcerr = afcm * state->master_clk / 8192;
544 
545 	return afcerr;
546 
547 err:
548 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
549 	return -EREMOTEIO;
550 }
551 
552 static int dagcm_val_get(struct mb86a16_state *state)
553 {
554 	int DAGCM;
555 	unsigned char DAGCM_H, DAGCM_L;
556 
557 	if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
558 		goto err;
559 	if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
560 		goto err;
561 
562 	DAGCM = (DAGCM_H << 8) + DAGCM_L;
563 
564 	return DAGCM;
565 
566 err:
567 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
568 	return -EREMOTEIO;
569 }
570 
571 static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status)
572 {
573 	u8 stat, stat2;
574 	struct mb86a16_state *state = fe->demodulator_priv;
575 
576 	*status = 0;
577 
578 	if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
579 		goto err;
580 	if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
581 		goto err;
582 	if ((stat > 25) && (stat2 > 25))
583 		*status |= FE_HAS_SIGNAL;
584 	if ((stat > 45) && (stat2 > 45))
585 		*status |= FE_HAS_CARRIER;
586 
587 	if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
588 		goto err;
589 
590 	if (stat & 0x01)
591 		*status |= FE_HAS_SYNC;
592 	if (stat & 0x01)
593 		*status |= FE_HAS_VITERBI;
594 
595 	if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
596 		goto err;
597 
598 	if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
599 		*status |= FE_HAS_LOCK;
600 
601 	return 0;
602 
603 err:
604 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
605 	return -EREMOTEIO;
606 }
607 
608 static int sync_chk(struct mb86a16_state *state,
609 		    unsigned char *VIRM)
610 {
611 	unsigned char val;
612 	int sync;
613 
614 	if (mb86a16_read(state, 0x0d, &val) != 2)
615 		goto err;
616 
617 	dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
618 	sync = val & 0x01;
619 	*VIRM = (val & 0x1c) >> 2;
620 
621 	return sync;
622 err:
623 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
624 	*VIRM = 0;
625 	return -EREMOTEIO;
626 
627 }
628 
629 static int freqerr_chk(struct mb86a16_state *state,
630 		       int fTP,
631 		       int smrt,
632 		       int unit)
633 {
634 	unsigned char CRM, AFCML, AFCMH;
635 	unsigned char temp1, temp2, temp3;
636 	int crm, afcm, AFCM;
637 	int crrerr, afcerr;		/* kHz */
638 	int frqerr;			/* MHz */
639 	int afcen, afcexen = 0;
640 	int R, M, fOSC, fOSC_OFS;
641 
642 	if (mb86a16_read(state, 0x43, &CRM) != 2)
643 		goto err;
644 
645 	if (CRM > 127)
646 		crm = CRM - 256;
647 	else
648 		crm = CRM;
649 
650 	crrerr = smrt * crm / 256;
651 	if (mb86a16_read(state, 0x49, &temp1) != 2)
652 		goto err;
653 
654 	afcen = (temp1 & 0x04) >> 2;
655 	if (afcen == 0) {
656 		if (mb86a16_read(state, 0x2a, &temp1) != 2)
657 			goto err;
658 		afcexen = (temp1 & 0x20) >> 5;
659 	}
660 
661 	if (afcen == 1) {
662 		if (mb86a16_read(state, 0x0e, &AFCML) != 2)
663 			goto err;
664 		if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
665 			goto err;
666 	} else if (afcexen == 1) {
667 		if (mb86a16_read(state, 0x2b, &AFCML) != 2)
668 			goto err;
669 		if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
670 			goto err;
671 	}
672 	if ((afcen == 1) || (afcexen == 1)) {
673 		smrt_info_get(state, smrt);
674 		AFCM = ((AFCMH & 0x01) << 8) + AFCML;
675 		if (AFCM > 255)
676 			afcm = AFCM - 512;
677 		else
678 			afcm = AFCM;
679 
680 		afcerr = afcm * state->master_clk / 8192;
681 	} else
682 		afcerr = 0;
683 
684 	if (mb86a16_read(state, 0x22, &temp1) != 2)
685 		goto err;
686 	if (mb86a16_read(state, 0x23, &temp2) != 2)
687 		goto err;
688 	if (mb86a16_read(state, 0x24, &temp3) != 2)
689 		goto err;
690 
691 	R = (temp1 & 0xe0) >> 5;
692 	M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
693 	if (R == 0)
694 		fOSC = 2 * M;
695 	else
696 		fOSC = M;
697 
698 	fOSC_OFS = fOSC - fTP;
699 
700 	if (unit == 0) {	/* MHz */
701 		if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
702 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
703 		else
704 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
705 	} else {	/* kHz */
706 		frqerr = crrerr + afcerr + fOSC_OFS * 1000;
707 	}
708 
709 	return frqerr;
710 err:
711 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
712 	return -EREMOTEIO;
713 }
714 
715 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
716 {
717 	unsigned char R;
718 
719 	if (smrt > 9375)
720 		R = 0;
721 	else
722 		R = 1;
723 
724 	return R;
725 }
726 
727 static void swp_info_get(struct mb86a16_state *state,
728 			 int fOSC_start,
729 			 int smrt,
730 			 int v, int R,
731 			 int swp_ofs,
732 			 int *fOSC,
733 			 int *afcex_freq,
734 			 unsigned char *AFCEX_L,
735 			 unsigned char *AFCEX_H)
736 {
737 	int AFCEX ;
738 	int crnt_swp_freq ;
739 
740 	crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
741 
742 	if (R == 0)
743 		*fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
744 	else
745 		*fOSC = (crnt_swp_freq + 500) / 1000;
746 
747 	if (*fOSC >= crnt_swp_freq)
748 		*afcex_freq = *fOSC * 1000 - crnt_swp_freq;
749 	else
750 		*afcex_freq = crnt_swp_freq - *fOSC * 1000;
751 
752 	AFCEX = *afcex_freq * 8192 / state->master_clk;
753 	*AFCEX_L =  AFCEX & 0x00ff;
754 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
755 }
756 
757 
758 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
759 			       int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
760 {
761 	int swp_freq ;
762 
763 	if ((i % 2 == 1) && (v <= vmax)) {
764 		/* positive v (case 1) */
765 		if ((v - 1 == vmin)				&&
766 		    (*(V + 30 + v) >= 0)			&&
767 		    (*(V + 30 + v - 1) >= 0)			&&
768 		    (*(V + 30 + v - 1) > *(V + 30 + v))		&&
769 		    (*(V + 30 + v - 1) > SIGMIN)) {
770 
771 			swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
772 			*SIG1 = *(V + 30 + v - 1);
773 		} else if ((v == vmax)				&&
774 			   (*(V + 30 + v) >= 0)			&&
775 			   (*(V + 30 + v - 1) >= 0)		&&
776 			   (*(V + 30 + v) > *(V + 30 + v - 1))	&&
777 			   (*(V + 30 + v) > SIGMIN)) {
778 			/* (case 2) */
779 			swp_freq = fOSC * 1000 + afcex_freq;
780 			*SIG1 = *(V + 30 + v);
781 		} else if ((*(V + 30 + v) > 0)			&&
782 			   (*(V + 30 + v - 1) > 0)		&&
783 			   (*(V + 30 + v - 2) > 0)		&&
784 			   (*(V + 30 + v - 3) > 0)		&&
785 			   (*(V + 30 + v - 1) > *(V + 30 + v))	&&
786 			   (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
787 			   ((*(V + 30 + v - 1) > SIGMIN)	||
788 			   (*(V + 30 + v - 2) > SIGMIN))) {
789 			/* (case 3) */
790 			if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
791 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
792 				*SIG1 = *(V + 30 + v - 1);
793 			} else {
794 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
795 				*SIG1 = *(V + 30 + v - 2);
796 			}
797 		} else if ((v == vmax)				&&
798 			   (*(V + 30 + v) >= 0)			&&
799 			   (*(V + 30 + v - 1) >= 0)		&&
800 			   (*(V + 30 + v - 2) >= 0)		&&
801 			   (*(V + 30 + v) > *(V + 30 + v - 2))	&&
802 			   (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
803 			   ((*(V + 30 + v) > SIGMIN)		||
804 			   (*(V + 30 + v - 1) > SIGMIN))) {
805 			/* (case 4) */
806 			if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
807 				swp_freq = fOSC * 1000 + afcex_freq;
808 				*SIG1 = *(V + 30 + v);
809 			} else {
810 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
811 				*SIG1 = *(V + 30 + v - 1);
812 			}
813 		} else  {
814 			swp_freq = -1 ;
815 		}
816 	} else if ((i % 2 == 0) && (v >= vmin)) {
817 		/* Negative v (case 1) */
818 		if ((*(V + 30 + v) > 0)				&&
819 		    (*(V + 30 + v + 1) > 0)			&&
820 		    (*(V + 30 + v + 2) > 0)			&&
821 		    (*(V + 30 + v + 1) > *(V + 30 + v))		&&
822 		    (*(V + 30 + v + 1) > *(V + 30 + v + 2))	&&
823 		    (*(V + 30 + v + 1) > SIGMIN)) {
824 
825 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
826 			*SIG1 = *(V + 30 + v + 1);
827 		} else if ((v + 1 == vmax)			&&
828 			   (*(V + 30 + v) >= 0)			&&
829 			   (*(V + 30 + v + 1) >= 0)		&&
830 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
831 			   (*(V + 30 + v + 1) > SIGMIN)) {
832 			/* (case 2) */
833 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
834 			*SIG1 = *(V + 30 + v);
835 		} else if ((v == vmin)				&&
836 			   (*(V + 30 + v) > 0)			&&
837 			   (*(V + 30 + v + 1) > 0)		&&
838 			   (*(V + 30 + v + 2) > 0)		&&
839 			   (*(V + 30 + v) > *(V + 30 + v + 1))	&&
840 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
841 			   (*(V + 30 + v) > SIGMIN)) {
842 			/* (case 3) */
843 			swp_freq = fOSC * 1000 + afcex_freq;
844 			*SIG1 = *(V + 30 + v);
845 		} else if ((*(V + 30 + v) >= 0)			&&
846 			   (*(V + 30 + v + 1) >= 0)		&&
847 			   (*(V + 30 + v + 2) >= 0)		&&
848 			   (*(V + 30 + v + 3) >= 0)		&&
849 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
850 			   (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
851 			   ((*(V + 30 + v + 1) > SIGMIN)	||
852 			    (*(V + 30 + v + 2) > SIGMIN))) {
853 			/* (case 4) */
854 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
855 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
856 				*SIG1 = *(V + 30 + v + 1);
857 			} else {
858 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
859 				*SIG1 = *(V + 30 + v + 2);
860 			}
861 		} else if ((*(V + 30 + v) >= 0)			&&
862 			   (*(V + 30 + v + 1) >= 0)		&&
863 			   (*(V + 30 + v + 2) >= 0)		&&
864 			   (*(V + 30 + v + 3) >= 0)		&&
865 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
866 			   (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
867 			   (*(V + 30 + v) > *(V + 30 + v + 3))	&&
868 			   (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
869 			   ((*(V + 30 + v) > SIGMIN)		||
870 			    (*(V + 30 + v + 1) > SIGMIN))) {
871 			/* (case 5) */
872 			if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
873 				swp_freq = fOSC * 1000 + afcex_freq;
874 				*SIG1 = *(V + 30 + v);
875 			} else {
876 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
877 				*SIG1 = *(V + 30 + v + 1);
878 			}
879 		} else if ((v + 2 == vmin)			&&
880 			   (*(V + 30 + v) >= 0)			&&
881 			   (*(V + 30 + v + 1) >= 0)		&&
882 			   (*(V + 30 + v + 2) >= 0)		&&
883 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
884 			   (*(V + 30 + v + 2) > *(V + 30 + v))	&&
885 			   ((*(V + 30 + v + 1) > SIGMIN)	||
886 			    (*(V + 30 + v + 2) > SIGMIN))) {
887 			/* (case 6) */
888 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
889 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
890 				*SIG1 = *(V + 30 + v + 1);
891 			} else {
892 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
893 				*SIG1 = *(V + 30 + v + 2);
894 			}
895 		} else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
896 			swp_freq = fOSC * 1000;
897 			*SIG1 = *(V + 30 + v);
898 		} else
899 			swp_freq = -1;
900 	} else
901 		swp_freq = -1;
902 
903 	return swp_freq;
904 }
905 
906 static void swp_info_get2(struct mb86a16_state *state,
907 			  int smrt,
908 			  int R,
909 			  int swp_freq,
910 			  int *afcex_freq,
911 			  int *fOSC,
912 			  unsigned char *AFCEX_L,
913 			  unsigned char *AFCEX_H)
914 {
915 	int AFCEX ;
916 
917 	if (R == 0)
918 		*fOSC = (swp_freq + 1000) / 2000 * 2;
919 	else
920 		*fOSC = (swp_freq + 500) / 1000;
921 
922 	if (*fOSC >= swp_freq)
923 		*afcex_freq = *fOSC * 1000 - swp_freq;
924 	else
925 		*afcex_freq = swp_freq - *fOSC * 1000;
926 
927 	AFCEX = *afcex_freq * 8192 / state->master_clk;
928 	*AFCEX_L =  AFCEX & 0x00ff;
929 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
930 }
931 
932 static void afcex_info_get(struct mb86a16_state *state,
933 			   int afcex_freq,
934 			   unsigned char *AFCEX_L,
935 			   unsigned char *AFCEX_H)
936 {
937 	int AFCEX ;
938 
939 	AFCEX = afcex_freq * 8192 / state->master_clk;
940 	*AFCEX_L =  AFCEX & 0x00ff;
941 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
942 }
943 
944 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
945 {
946 	/* SLOCK0 = 0 */
947 	if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
948 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
949 		return -EREMOTEIO;
950 	}
951 
952 	return 0;
953 }
954 
955 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
956 {
957 	/* Viterbi Rate, IQ Settings */
958 	if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
959 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
960 		return -EREMOTEIO;
961 	}
962 
963 	return 0;
964 }
965 
966 static int FEC_srst(struct mb86a16_state *state)
967 {
968 	if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
969 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
970 		return -EREMOTEIO;
971 	}
972 
973 	return 0;
974 }
975 
976 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
977 {
978 	if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
979 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
980 		return -EREMOTEIO;
981 	}
982 
983 	return 0;
984 }
985 
986 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
987 {
988 	if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
989 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
990 		return -EREMOTEIO;
991 	}
992 
993 	return 0;
994 }
995 
996 
997 static int mb86a16_set_fe(struct mb86a16_state *state)
998 {
999 	u8 agcval, cnmval;
1000 
1001 	int i, j;
1002 	int fOSC = 0;
1003 	int fOSC_start = 0;
1004 	int wait_t;
1005 	int fcp;
1006 	int swp_ofs;
1007 	int V[60];
1008 	u8 SIG1MIN;
1009 
1010 	unsigned char CREN, AFCEN, AFCEXEN;
1011 	unsigned char SIG1;
1012 	unsigned char TIMINT1, TIMINT2, TIMEXT;
1013 	unsigned char S0T, S1T;
1014 	unsigned char S2T;
1015 /*	unsigned char S2T, S3T; */
1016 	unsigned char S4T, S5T;
1017 	unsigned char AFCEX_L, AFCEX_H;
1018 	unsigned char R;
1019 	unsigned char VIRM;
1020 	unsigned char ETH, VIA;
1021 	unsigned char junk;
1022 
1023 	int loop;
1024 	int ftemp;
1025 	int v, vmax, vmin;
1026 	int vmax_his, vmin_his;
1027 	int swp_freq, prev_swp_freq[20];
1028 	int prev_freq_num;
1029 	int signal_dupl;
1030 	int afcex_freq;
1031 	int signal;
1032 	int afcerr;
1033 	int temp_freq, delta_freq;
1034 	int dagcm[4];
1035 	int smrt_d;
1036 /*	int freq_err; */
1037 	int n;
1038 	int ret = -1;
1039 	int sync;
1040 
1041 	dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1042 
1043 	fcp = 3000;
1044 	swp_ofs = state->srate / 4;
1045 
1046 	for (i = 0; i < 60; i++)
1047 		V[i] = -1;
1048 
1049 	for (i = 0; i < 20; i++)
1050 		prev_swp_freq[i] = 0;
1051 
1052 	SIG1MIN = 25;
1053 
1054 	for (n = 0; ((n < 3) && (ret == -1)); n++) {
1055 		SEQ_set(state, 0);
1056 		iq_vt_set(state, 0);
1057 
1058 		CREN = 0;
1059 		AFCEN = 0;
1060 		AFCEXEN = 1;
1061 		TIMINT1 = 0;
1062 		TIMINT2 = 1;
1063 		TIMEXT = 2;
1064 		S1T = 0;
1065 		S0T = 0;
1066 
1067 		if (initial_set(state) < 0) {
1068 			dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1069 			return -1;
1070 		}
1071 		if (DAGC_data_set(state, 3, 2) < 0) {
1072 			dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1073 			return -1;
1074 		}
1075 		if (EN_set(state, CREN, AFCEN) < 0) {
1076 			dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1077 			return -1; /* (0, 0) */
1078 		}
1079 		if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1080 			dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1081 			return -1; /* (1, smrt) = (1, symbolrate) */
1082 		}
1083 		if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1084 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1085 			return -1; /* (0, 1, 2) */
1086 		}
1087 		if (S01T_set(state, S1T, S0T) < 0) {
1088 			dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1089 			return -1; /* (0, 0) */
1090 		}
1091 		smrt_info_get(state, state->srate);
1092 		if (smrt_set(state, state->srate) < 0) {
1093 			dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1094 			return -1;
1095 		}
1096 
1097 		R = vco_dev_get(state, state->srate);
1098 		if (R == 1)
1099 			fOSC_start = state->frequency;
1100 
1101 		else if (R == 0) {
1102 			if (state->frequency % 2 == 0) {
1103 				fOSC_start = state->frequency;
1104 			} else {
1105 				fOSC_start = state->frequency + 1;
1106 				if (fOSC_start > 2150)
1107 					fOSC_start = state->frequency - 1;
1108 			}
1109 		}
1110 		loop = 1;
1111 		ftemp = fOSC_start * 1000;
1112 		vmax = 0 ;
1113 		while (loop == 1) {
1114 			ftemp = ftemp + swp_ofs;
1115 			vmax++;
1116 
1117 			/* Upper bound */
1118 			if (ftemp > 2150000) {
1119 				loop = 0;
1120 				vmax--;
1121 			} else {
1122 				if ((ftemp == 2150000) ||
1123 				    (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1124 					loop = 0;
1125 			}
1126 		}
1127 
1128 		loop = 1;
1129 		ftemp = fOSC_start * 1000;
1130 		vmin = 0 ;
1131 		while (loop == 1) {
1132 			ftemp = ftemp - swp_ofs;
1133 			vmin--;
1134 
1135 			/* Lower bound */
1136 			if (ftemp < 950000) {
1137 				loop = 0;
1138 				vmin++;
1139 			} else {
1140 				if ((ftemp == 950000) ||
1141 				    (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1142 					loop = 0;
1143 			}
1144 		}
1145 
1146 		wait_t = (8000 + state->srate / 2) / state->srate;
1147 		if (wait_t == 0)
1148 			wait_t = 1;
1149 
1150 		i = 0;
1151 		j = 0;
1152 		prev_freq_num = 0;
1153 		loop = 1;
1154 		signal = 0;
1155 		vmax_his = 0;
1156 		vmin_his = 0;
1157 		v = 0;
1158 
1159 		while (loop == 1) {
1160 			swp_info_get(state, fOSC_start, state->srate,
1161 				     v, R, swp_ofs, &fOSC,
1162 				     &afcex_freq, &AFCEX_L, &AFCEX_H);
1163 
1164 			udelay(100);
1165 			if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1166 				dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1167 				return -1;
1168 			}
1169 			udelay(100);
1170 			if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1171 				dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1172 				return -1;
1173 			}
1174 			if (srst(state) < 0) {
1175 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1176 				return -1;
1177 			}
1178 			msleep_interruptible(wait_t);
1179 
1180 			if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1181 				dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1182 				return -1;
1183 			}
1184 			V[30 + v] = SIG1 ;
1185 			swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1186 						      SIG1MIN, fOSC, afcex_freq,
1187 						      swp_ofs, &SIG1);	/* changed */
1188 
1189 			signal_dupl = 0;
1190 			for (j = 0; j < prev_freq_num; j++) {
1191 				if ((abs(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1192 					signal_dupl = 1;
1193 					dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1194 				}
1195 			}
1196 			if ((signal_dupl == 0) && (swp_freq > 0) && (abs(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1197 				dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1198 				prev_swp_freq[prev_freq_num] = swp_freq;
1199 				prev_freq_num++;
1200 				swp_info_get2(state, state->srate, R, swp_freq,
1201 					      &afcex_freq, &fOSC,
1202 					      &AFCEX_L, &AFCEX_H);
1203 
1204 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1205 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1206 					return -1;
1207 				}
1208 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1209 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1210 					return -1;
1211 				}
1212 				signal = signal_det(state, state->srate, &SIG1);
1213 				if (signal == 1) {
1214 					dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1215 					loop = 0;
1216 				} else {
1217 					dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1218 					smrt_info_get(state, state->srate);
1219 					if (smrt_set(state, state->srate) < 0) {
1220 						dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1221 						return -1;
1222 					}
1223 				}
1224 			}
1225 			if (v > vmax)
1226 				vmax_his = 1 ;
1227 			if (v < vmin)
1228 				vmin_his = 1 ;
1229 			i++;
1230 
1231 			if ((i % 2 == 1) && (vmax_his == 1))
1232 				i++;
1233 			if ((i % 2 == 0) && (vmin_his == 1))
1234 				i++;
1235 
1236 			if (i % 2 == 1)
1237 				v = (i + 1) / 2;
1238 			else
1239 				v = -i / 2;
1240 
1241 			if ((vmax_his == 1) && (vmin_his == 1))
1242 				loop = 0 ;
1243 		}
1244 
1245 		if (signal == 1) {
1246 			dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1247 			S1T = 7 ;
1248 			S0T = 1 ;
1249 			CREN = 0 ;
1250 			AFCEN = 1 ;
1251 			AFCEXEN = 0 ;
1252 
1253 			if (S01T_set(state, S1T, S0T) < 0) {
1254 				dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1255 				return -1;
1256 			}
1257 			smrt_info_get(state, state->srate);
1258 			if (smrt_set(state, state->srate) < 0) {
1259 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1260 				return -1;
1261 			}
1262 			if (EN_set(state, CREN, AFCEN) < 0) {
1263 				dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1264 				return -1;
1265 			}
1266 			if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1267 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1268 				return -1;
1269 			}
1270 			afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1271 			if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1272 				dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1273 				return -1;
1274 			}
1275 			if (srst(state) < 0) {
1276 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1277 				return -1;
1278 			}
1279 			/* delay 4~200 */
1280 			wait_t = 200000 / state->master_clk + 200000 / state->srate;
1281 			msleep(wait_t);
1282 			afcerr = afcerr_chk(state);
1283 			if (afcerr == -1)
1284 				return -1;
1285 
1286 			swp_freq = fOSC * 1000 + afcerr ;
1287 			AFCEXEN = 1 ;
1288 			if (state->srate >= 1500)
1289 				smrt_d = state->srate / 3;
1290 			else
1291 				smrt_d = state->srate / 2;
1292 			smrt_info_get(state, smrt_d);
1293 			if (smrt_set(state, smrt_d) < 0) {
1294 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1295 				return -1;
1296 			}
1297 			if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1298 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1299 				return -1;
1300 			}
1301 			R = vco_dev_get(state, smrt_d);
1302 			if (DAGC_data_set(state, 2, 0) < 0) {
1303 				dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1304 				return -1;
1305 			}
1306 			for (i = 0; i < 3; i++) {
1307 				temp_freq = swp_freq + (i - 1) * state->srate / 8;
1308 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1309 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1310 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1311 					return -1;
1312 				}
1313 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1314 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1315 					return -1;
1316 				}
1317 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1318 				msleep(wait_t);
1319 				dagcm[i] = dagcm_val_get(state);
1320 			}
1321 			if ((dagcm[0] > dagcm[1]) &&
1322 			    (dagcm[0] > dagcm[2]) &&
1323 			    (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1324 
1325 				temp_freq = swp_freq - 2 * state->srate / 8;
1326 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1327 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1328 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1329 					return -1;
1330 				}
1331 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1332 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1333 					return -1;
1334 				}
1335 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1336 				msleep(wait_t);
1337 				dagcm[3] = dagcm_val_get(state);
1338 				if (dagcm[3] > dagcm[1])
1339 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1340 				else
1341 					delta_freq = 0;
1342 			} else if ((dagcm[2] > dagcm[1]) &&
1343 				   (dagcm[2] > dagcm[0]) &&
1344 				   (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1345 
1346 				temp_freq = swp_freq + 2 * state->srate / 8;
1347 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1348 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1349 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1350 					return -1;
1351 				}
1352 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1353 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1354 					return -1;
1355 				}
1356 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1357 				msleep(wait_t);
1358 				dagcm[3] = dagcm_val_get(state);
1359 				if (dagcm[3] > dagcm[1])
1360 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1361 				else
1362 					delta_freq = 0 ;
1363 
1364 			} else {
1365 				delta_freq = 0 ;
1366 			}
1367 			dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1368 			swp_freq += delta_freq;
1369 			dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1370 			if (abs(state->frequency * 1000 - swp_freq) > 3800) {
1371 				dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1372 			} else {
1373 
1374 				S1T = 0;
1375 				S0T = 3;
1376 				CREN = 1;
1377 				AFCEN = 0;
1378 				AFCEXEN = 1;
1379 
1380 				if (S01T_set(state, S1T, S0T) < 0) {
1381 					dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1382 					return -1;
1383 				}
1384 				if (DAGC_data_set(state, 0, 0) < 0) {
1385 					dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1386 					return -1;
1387 				}
1388 				R = vco_dev_get(state, state->srate);
1389 				smrt_info_get(state, state->srate);
1390 				if (smrt_set(state, state->srate) < 0) {
1391 					dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1392 					return -1;
1393 				}
1394 				if (EN_set(state, CREN, AFCEN) < 0) {
1395 					dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1396 					return -1;
1397 				}
1398 				if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1399 					dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1400 					return -1;
1401 				}
1402 				swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1403 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1404 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1405 					return -1;
1406 				}
1407 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1408 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1409 					return -1;
1410 				}
1411 				if (srst(state) < 0) {
1412 					dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1413 					return -1;
1414 				}
1415 				wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1416 				if (wait_t == 0)
1417 					wait_t = 1;
1418 				msleep_interruptible(wait_t);
1419 				if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1420 					dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1421 					return -EREMOTEIO;
1422 				}
1423 
1424 				if (SIG1 > 110) {
1425 					S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1426 					wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1427 				} else if (SIG1 > 105) {
1428 					S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1429 					wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1430 				} else if (SIG1 > 85) {
1431 					S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1432 					wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1433 				} else if (SIG1 > 65) {
1434 					S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1435 					wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1436 				} else {
1437 					S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1438 					wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1439 				}
1440 				wait_t *= 2; /* FOS */
1441 				S2T_set(state, S2T);
1442 				S45T_set(state, S4T, S5T);
1443 				Vi_set(state, ETH, VIA);
1444 				srst(state);
1445 				msleep_interruptible(wait_t);
1446 				sync = sync_chk(state, &VIRM);
1447 				dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1448 				if (VIRM) {
1449 					if (VIRM == 4) {
1450 						/* 5/6 */
1451 						if (SIG1 > 110)
1452 							wait_t = (786432 + state->srate / 2) / state->srate;
1453 						else
1454 							wait_t = (1572864 + state->srate / 2) / state->srate;
1455 
1456 						msleep_interruptible(wait_t);
1457 
1458 						if (sync_chk(state, &junk) == 0) {
1459 							iq_vt_set(state, 1);
1460 							FEC_srst(state);
1461 						}
1462 					}
1463 					/* 1/2, 2/3, 3/4, 7/8 */
1464 					if (SIG1 > 110)
1465 						wait_t = (786432 + state->srate / 2) / state->srate;
1466 					else
1467 						wait_t = (1572864 + state->srate / 2) / state->srate;
1468 					msleep_interruptible(wait_t);
1469 					SEQ_set(state, 1);
1470 				} else {
1471 					dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1472 					SEQ_set(state, 1);
1473 					ret = -1;
1474 				}
1475 			}
1476 		} else {
1477 			dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1478 			ret = -1;
1479 		}
1480 
1481 		sync = sync_chk(state, &junk);
1482 		if (sync) {
1483 			dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1484 			freqerr_chk(state, state->frequency, state->srate, 1);
1485 			ret = 0;
1486 			break;
1487 		}
1488 	}
1489 
1490 	if (mb86a16_read(state, 0x15, &agcval) != 2 ||	mb86a16_read(state, 0x26, &cnmval) != 2) {
1491 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1492 		ret = -EREMOTEIO;
1493 	} else {
1494 		dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1495 	}
1496 	return ret;
1497 }
1498 
1499 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1500 				   struct dvb_diseqc_master_cmd *cmd)
1501 {
1502 	struct mb86a16_state *state = fe->demodulator_priv;
1503 	int ret = -EREMOTEIO;
1504 	int i;
1505 	u8 regs;
1506 
1507 	if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1508 		goto err;
1509 	if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1510 		goto err;
1511 	if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1512 		goto err;
1513 
1514 	regs = 0x18;
1515 
1516 	if (cmd->msg_len > 5 || cmd->msg_len < 4) {
1517 		ret = -EINVAL;
1518 		goto err;
1519 	}
1520 
1521 	for (i = 0; i < cmd->msg_len; i++) {
1522 		if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1523 			goto err;
1524 
1525 		regs++;
1526 	}
1527 	i += 0x90;
1528 
1529 	msleep_interruptible(10);
1530 
1531 	if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1532 		goto err;
1533 	if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1534 		goto err;
1535 
1536 	return 0;
1537 
1538 err:
1539 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1540 	return ret;
1541 }
1542 
1543 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe,
1544 				     enum fe_sec_mini_cmd burst)
1545 {
1546 	struct mb86a16_state *state = fe->demodulator_priv;
1547 
1548 	switch (burst) {
1549 	case SEC_MINI_A:
1550 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1551 						       MB86A16_DCC1_TBEN  |
1552 						       MB86A16_DCC1_TBO) < 0)
1553 			goto err;
1554 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1555 			goto err;
1556 		break;
1557 	case SEC_MINI_B:
1558 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1559 						       MB86A16_DCC1_TBEN) < 0)
1560 			goto err;
1561 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1562 			goto err;
1563 		break;
1564 	}
1565 
1566 	return 0;
1567 err:
1568 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1569 	return -EREMOTEIO;
1570 }
1571 
1572 static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1573 {
1574 	struct mb86a16_state *state = fe->demodulator_priv;
1575 
1576 	switch (tone) {
1577 	case SEC_TONE_ON:
1578 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1579 			goto err;
1580 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1581 						       MB86A16_DCC1_CTOE) < 0)
1582 
1583 			goto err;
1584 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1585 			goto err;
1586 		break;
1587 	case SEC_TONE_OFF:
1588 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1589 			goto err;
1590 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1591 			goto err;
1592 		if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1593 			goto err;
1594 		break;
1595 	default:
1596 		return -EINVAL;
1597 	}
1598 	return 0;
1599 
1600 err:
1601 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1602 	return -EREMOTEIO;
1603 }
1604 
1605 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
1606 {
1607 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1608 	struct mb86a16_state *state = fe->demodulator_priv;
1609 
1610 	state->frequency = p->frequency / 1000;
1611 	state->srate = p->symbol_rate / 1000;
1612 
1613 	if (!mb86a16_set_fe(state)) {
1614 		dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
1615 		return DVBFE_ALGO_SEARCH_SUCCESS;
1616 	}
1617 
1618 	dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1619 	return DVBFE_ALGO_SEARCH_FAILED;
1620 }
1621 
1622 static void mb86a16_release(struct dvb_frontend *fe)
1623 {
1624 	struct mb86a16_state *state = fe->demodulator_priv;
1625 	kfree(state);
1626 }
1627 
1628 static int mb86a16_init(struct dvb_frontend *fe)
1629 {
1630 	return 0;
1631 }
1632 
1633 static int mb86a16_sleep(struct dvb_frontend *fe)
1634 {
1635 	return 0;
1636 }
1637 
1638 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1639 {
1640 	u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1641 	u32 timer;
1642 
1643 	struct mb86a16_state *state = fe->demodulator_priv;
1644 
1645 	*ber = 0;
1646 	if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1647 		goto err;
1648 	if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1649 		goto err;
1650 	if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1651 		goto err;
1652 	if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1653 		goto err;
1654 	if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1655 		goto err;
1656 	/* BER monitor invalid when BER_EN = 0	*/
1657 	if (ber_mon & 0x04) {
1658 		/* coarse, fast calculation	*/
1659 		*ber = ber_tab & 0x1f;
1660 		dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1661 		if (ber_mon & 0x01) {
1662 			/*
1663 			 * BER_SEL = 1, The monitored BER is the estimated
1664 			 * value with a Reed-Solomon decoder error amount at
1665 			 * the deinterleaver output.
1666 			 * monitored BER is expressed as a 20 bit output in total
1667 			 */
1668 			ber_rst = (ber_mon >> 3) & 0x03;
1669 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1670 			if (ber_rst == 0)
1671 				timer =  12500000;
1672 			else if (ber_rst == 1)
1673 				timer =  25000000;
1674 			else if (ber_rst == 2)
1675 				timer =  50000000;
1676 			else /* ber_rst == 3 */
1677 				timer = 100000000;
1678 
1679 			*ber /= timer;
1680 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1681 		} else {
1682 			/*
1683 			 * BER_SEL = 0, The monitored BER is the estimated
1684 			 * value with a Viterbi decoder error amount at the
1685 			 * QPSK demodulator output.
1686 			 * monitored BER is expressed as a 24 bit output in total
1687 			 */
1688 			ber_tim = (ber_mon >> 1) & 0x01;
1689 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1690 			if (ber_tim == 0)
1691 				timer = 16;
1692 			else /* ber_tim == 1 */
1693 				timer = 24;
1694 
1695 			*ber /= 2 ^ timer;
1696 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1697 		}
1698 	}
1699 	return 0;
1700 err:
1701 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1702 	return -EREMOTEIO;
1703 }
1704 
1705 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1706 {
1707 	u8 agcm = 0;
1708 	struct mb86a16_state *state = fe->demodulator_priv;
1709 
1710 	*strength = 0;
1711 	if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1712 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1713 		return -EREMOTEIO;
1714 	}
1715 
1716 	*strength = ((0xff - agcm) * 100) / 256;
1717 	dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1718 	*strength = (0xffff - 0xff) + agcm;
1719 
1720 	return 0;
1721 }
1722 
1723 struct cnr {
1724 	u8 cn_reg;
1725 	u8 cn_val;
1726 };
1727 
1728 static const struct cnr cnr_tab[] = {
1729 	{  35,  2 },
1730 	{  40,  3 },
1731 	{  50,  4 },
1732 	{  60,  5 },
1733 	{  70,  6 },
1734 	{  80,  7 },
1735 	{  92,  8 },
1736 	{ 103,  9 },
1737 	{ 115, 10 },
1738 	{ 138, 12 },
1739 	{ 162, 15 },
1740 	{ 180, 18 },
1741 	{ 185, 19 },
1742 	{ 189, 20 },
1743 	{ 195, 22 },
1744 	{ 199, 24 },
1745 	{ 201, 25 },
1746 	{ 202, 26 },
1747 	{ 203, 27 },
1748 	{ 205, 28 },
1749 	{ 208, 30 }
1750 };
1751 
1752 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1753 {
1754 	struct mb86a16_state *state = fe->demodulator_priv;
1755 	int i = 0;
1756 	int low_tide = 2, high_tide = 30, q_level;
1757 	u8  cn;
1758 
1759 	*snr = 0;
1760 	if (mb86a16_read(state, 0x26, &cn) != 2) {
1761 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1762 		return -EREMOTEIO;
1763 	}
1764 
1765 	for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1766 		if (cn < cnr_tab[i].cn_reg) {
1767 			*snr = cnr_tab[i].cn_val;
1768 			break;
1769 		}
1770 	}
1771 	q_level = (*snr * 100) / (high_tide - low_tide);
1772 	dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1773 	*snr = (0xffff - 0xff) + *snr;
1774 
1775 	return 0;
1776 }
1777 
1778 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1779 {
1780 	u8 dist;
1781 	struct mb86a16_state *state = fe->demodulator_priv;
1782 
1783 	if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1784 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1785 		return -EREMOTEIO;
1786 	}
1787 	*ucblocks = dist;
1788 
1789 	return 0;
1790 }
1791 
1792 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1793 {
1794 	return DVBFE_ALGO_CUSTOM;
1795 }
1796 
1797 static const struct dvb_frontend_ops mb86a16_ops = {
1798 	.delsys = { SYS_DVBS },
1799 	.info = {
1800 		.name			= "Fujitsu MB86A16 DVB-S",
1801 		.frequency_min_hz	=  950 * MHz,
1802 		.frequency_max_hz	= 2150 * MHz,
1803 		.frequency_stepsize_hz	=    3 * MHz,
1804 		.symbol_rate_min	= 1000000,
1805 		.symbol_rate_max	= 45000000,
1806 		.symbol_rate_tolerance	= 500,
1807 		.caps			= FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1808 					  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1809 					  FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1810 					  FE_CAN_FEC_AUTO
1811 	},
1812 	.release			= mb86a16_release,
1813 
1814 	.get_frontend_algo		= mb86a16_frontend_algo,
1815 	.search				= mb86a16_search,
1816 	.init				= mb86a16_init,
1817 	.sleep				= mb86a16_sleep,
1818 	.read_status			= mb86a16_read_status,
1819 
1820 	.read_ber			= mb86a16_read_ber,
1821 	.read_signal_strength		= mb86a16_read_signal_strength,
1822 	.read_snr			= mb86a16_read_snr,
1823 	.read_ucblocks			= mb86a16_read_ucblocks,
1824 
1825 	.diseqc_send_master_cmd		= mb86a16_send_diseqc_msg,
1826 	.diseqc_send_burst		= mb86a16_send_diseqc_burst,
1827 	.set_tone			= mb86a16_set_tone,
1828 };
1829 
1830 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1831 				    struct i2c_adapter *i2c_adap)
1832 {
1833 	u8 dev_id = 0;
1834 	struct mb86a16_state *state = NULL;
1835 
1836 	state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1837 	if (state == NULL)
1838 		goto error;
1839 
1840 	state->config = config;
1841 	state->i2c_adap = i2c_adap;
1842 
1843 	mb86a16_read(state, 0x7f, &dev_id);
1844 	if (dev_id != 0xfe)
1845 		goto error;
1846 
1847 	memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1848 	state->frontend.demodulator_priv = state;
1849 	state->frontend.ops.set_voltage = state->config->set_voltage;
1850 
1851 	return &state->frontend;
1852 error:
1853 	kfree(state);
1854 	return NULL;
1855 }
1856 EXPORT_SYMBOL_GPL(mb86a16_attach);
1857 MODULE_LICENSE("GPL");
1858 MODULE_AUTHOR("Manu Abraham");
1859