xref: /linux/drivers/media/dvb-frontends/mb86a16.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2 	Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3 
4 	Copyright (C) Manu Abraham (abraham.manu@gmail.com)
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, write to the Free Software
18 	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/slab.h>
26 
27 #include "dvb_frontend.h"
28 #include "mb86a16.h"
29 #include "mb86a16_priv.h"
30 
31 static unsigned int verbose = 5;
32 module_param(verbose, int, 0644);
33 
34 #define ABS(x)		((x) < 0 ? (-x) : (x))
35 
36 struct mb86a16_state {
37 	struct i2c_adapter		*i2c_adap;
38 	const struct mb86a16_config	*config;
39 	struct dvb_frontend		frontend;
40 
41 	/* tuning parameters */
42 	int				frequency;
43 	int				srate;
44 
45 	/* Internal stuff */
46 	int				master_clk;
47 	int				deci;
48 	int				csel;
49 	int				rsel;
50 };
51 
52 #define MB86A16_ERROR		0
53 #define MB86A16_NOTICE		1
54 #define MB86A16_INFO		2
55 #define MB86A16_DEBUG		3
56 
57 #define dprintk(x, y, z, format, arg...) do {						\
58 	if (z) {									\
59 		if	((x > MB86A16_ERROR) && (x > y))				\
60 			printk(KERN_ERR "%s: " format "\n", __func__, ##arg);		\
61 		else if ((x > MB86A16_NOTICE) && (x > y))				\
62 			printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);	\
63 		else if ((x > MB86A16_INFO) && (x > y))					\
64 			printk(KERN_INFO "%s: " format "\n", __func__, ##arg);		\
65 		else if ((x > MB86A16_DEBUG) && (x > y))				\
66 			printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);		\
67 	} else {									\
68 		if (x > y)								\
69 			printk(format, ##arg);						\
70 	}										\
71 } while (0)
72 
73 #define TRACE_IN	dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
74 #define TRACE_OUT	dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
75 
76 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
77 {
78 	int ret;
79 	u8 buf[] = { reg, val };
80 
81 	struct i2c_msg msg = {
82 		.addr = state->config->demod_address,
83 		.flags = 0,
84 		.buf = buf,
85 		.len = 2
86 	};
87 
88 	dprintk(verbose, MB86A16_DEBUG, 1,
89 		"writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
90 		state->config->demod_address, buf[0], buf[1]);
91 
92 	ret = i2c_transfer(state->i2c_adap, &msg, 1);
93 
94 	return (ret != 1) ? -EREMOTEIO : 0;
95 }
96 
97 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
98 {
99 	int ret;
100 	u8 b0[] = { reg };
101 	u8 b1[] = { 0 };
102 
103 	struct i2c_msg msg[] = {
104 		{
105 			.addr = state->config->demod_address,
106 			.flags = 0,
107 			.buf = b0,
108 			.len = 1
109 		}, {
110 			.addr = state->config->demod_address,
111 			.flags = I2C_M_RD,
112 			.buf = b1,
113 			.len = 1
114 		}
115 	};
116 	ret = i2c_transfer(state->i2c_adap, msg, 2);
117 	if (ret != 2) {
118 		dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)",
119 			reg, ret);
120 
121 		if (ret < 0)
122 			return ret;
123 		return -EREMOTEIO;
124 	}
125 	*val = b1[0];
126 
127 	return ret;
128 }
129 
130 static int CNTM_set(struct mb86a16_state *state,
131 		    unsigned char timint1,
132 		    unsigned char timint2,
133 		    unsigned char cnext)
134 {
135 	unsigned char val;
136 
137 	val = (timint1 << 4) | (timint2 << 2) | cnext;
138 	if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
139 		goto err;
140 
141 	return 0;
142 
143 err:
144 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
145 	return -EREMOTEIO;
146 }
147 
148 static int smrt_set(struct mb86a16_state *state, int rate)
149 {
150 	int tmp ;
151 	int m ;
152 	unsigned char STOFS0, STOFS1;
153 
154 	m = 1 << state->deci;
155 	tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
156 
157 	STOFS0 = tmp & 0x0ff;
158 	STOFS1 = (tmp & 0xf00) >> 8;
159 
160 	if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
161 				       (state->csel << 1) |
162 					state->rsel) < 0)
163 		goto err;
164 	if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
165 		goto err;
166 	if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
167 		goto err;
168 
169 	return 0;
170 err:
171 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
172 	return -1;
173 }
174 
175 static int srst(struct mb86a16_state *state)
176 {
177 	if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
178 		goto err;
179 
180 	return 0;
181 err:
182 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
183 	return -EREMOTEIO;
184 
185 }
186 
187 static int afcex_data_set(struct mb86a16_state *state,
188 			  unsigned char AFCEX_L,
189 			  unsigned char AFCEX_H)
190 {
191 	if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
192 		goto err;
193 	if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
194 		goto err;
195 
196 	return 0;
197 err:
198 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
199 
200 	return -1;
201 }
202 
203 static int afcofs_data_set(struct mb86a16_state *state,
204 			   unsigned char AFCEX_L,
205 			   unsigned char AFCEX_H)
206 {
207 	if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
208 		goto err;
209 	if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
210 		goto err;
211 
212 	return 0;
213 err:
214 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
215 	return -EREMOTEIO;
216 }
217 
218 static int stlp_set(struct mb86a16_state *state,
219 		    unsigned char STRAS,
220 		    unsigned char STRBS)
221 {
222 	if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
223 		goto err;
224 
225 	return 0;
226 err:
227 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
228 	return -EREMOTEIO;
229 }
230 
231 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
232 {
233 	if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
234 		goto err;
235 	if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
236 		goto err;
237 
238 	return 0;
239 err:
240 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
241 	return -EREMOTEIO;
242 }
243 
244 static int initial_set(struct mb86a16_state *state)
245 {
246 	if (stlp_set(state, 5, 7))
247 		goto err;
248 
249 	udelay(100);
250 	if (afcex_data_set(state, 0, 0))
251 		goto err;
252 
253 	udelay(100);
254 	if (afcofs_data_set(state, 0, 0))
255 		goto err;
256 
257 	udelay(100);
258 	if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
259 		goto err;
260 	if (mb86a16_write(state, 0x2f, 0x21) < 0)
261 		goto err;
262 	if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
263 		goto err;
264 	if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
265 		goto err;
266 	if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
267 		goto err;
268 	if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
269 		goto err;
270 	if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
271 		goto err;
272 	if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
273 		goto err;
274 	if (mb86a16_write(state, 0x54, 0xff) < 0)
275 		goto err;
276 	if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
277 		goto err;
278 
279 	return 0;
280 
281 err:
282 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
283 	return -EREMOTEIO;
284 }
285 
286 static int S01T_set(struct mb86a16_state *state,
287 		    unsigned char s1t,
288 		    unsigned s0t)
289 {
290 	if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
291 		goto err;
292 
293 	return 0;
294 err:
295 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
296 	return -EREMOTEIO;
297 }
298 
299 
300 static int EN_set(struct mb86a16_state *state,
301 		  int cren,
302 		  int afcen)
303 {
304 	unsigned char val;
305 
306 	val = 0x7a | (cren << 7) | (afcen << 2);
307 	if (mb86a16_write(state, 0x49, val) < 0)
308 		goto err;
309 
310 	return 0;
311 err:
312 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
313 	return -EREMOTEIO;
314 }
315 
316 static int AFCEXEN_set(struct mb86a16_state *state,
317 		       int afcexen,
318 		       int smrt)
319 {
320 	unsigned char AFCA ;
321 
322 	if (smrt > 18875)
323 		AFCA = 4;
324 	else if (smrt > 9375)
325 		AFCA = 3;
326 	else if (smrt > 2250)
327 		AFCA = 2;
328 	else
329 		AFCA = 1;
330 
331 	if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
332 		goto err;
333 
334 	return 0;
335 
336 err:
337 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
338 	return -EREMOTEIO;
339 }
340 
341 static int DAGC_data_set(struct mb86a16_state *state,
342 			 unsigned char DAGCA,
343 			 unsigned char DAGCW)
344 {
345 	if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
346 		goto err;
347 
348 	return 0;
349 
350 err:
351 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
352 	return -EREMOTEIO;
353 }
354 
355 static void smrt_info_get(struct mb86a16_state *state, int rate)
356 {
357 	if (rate >= 37501) {
358 		state->deci = 0; state->csel = 0; state->rsel = 0;
359 	} else if (rate >= 30001) {
360 		state->deci = 0; state->csel = 0; state->rsel = 1;
361 	} else if (rate >= 26251) {
362 		state->deci = 0; state->csel = 1; state->rsel = 0;
363 	} else if (rate >= 22501) {
364 		state->deci = 0; state->csel = 1; state->rsel = 1;
365 	} else if (rate >= 18751) {
366 		state->deci = 1; state->csel = 0; state->rsel = 0;
367 	} else if (rate >= 15001) {
368 		state->deci = 1; state->csel = 0; state->rsel = 1;
369 	} else if (rate >= 13126) {
370 		state->deci = 1; state->csel = 1; state->rsel = 0;
371 	} else if (rate >= 11251) {
372 		state->deci = 1; state->csel = 1; state->rsel = 1;
373 	} else if (rate >= 9376) {
374 		state->deci = 2; state->csel = 0; state->rsel = 0;
375 	} else if (rate >= 7501) {
376 		state->deci = 2; state->csel = 0; state->rsel = 1;
377 	} else if (rate >= 6563) {
378 		state->deci = 2; state->csel = 1; state->rsel = 0;
379 	} else if (rate >= 5626) {
380 		state->deci = 2; state->csel = 1; state->rsel = 1;
381 	} else if (rate >= 4688) {
382 		state->deci = 3; state->csel = 0; state->rsel = 0;
383 	} else if (rate >= 3751) {
384 		state->deci = 3; state->csel = 0; state->rsel = 1;
385 	} else if (rate >= 3282) {
386 		state->deci = 3; state->csel = 1; state->rsel = 0;
387 	} else if (rate >= 2814) {
388 		state->deci = 3; state->csel = 1; state->rsel = 1;
389 	} else if (rate >= 2344) {
390 		state->deci = 4; state->csel = 0; state->rsel = 0;
391 	} else if (rate >= 1876) {
392 		state->deci = 4; state->csel = 0; state->rsel = 1;
393 	} else if (rate >= 1641) {
394 		state->deci = 4; state->csel = 1; state->rsel = 0;
395 	} else if (rate >= 1407) {
396 		state->deci = 4; state->csel = 1; state->rsel = 1;
397 	} else if (rate >= 1172) {
398 		state->deci = 5; state->csel = 0; state->rsel = 0;
399 	} else if (rate >=  939) {
400 		state->deci = 5; state->csel = 0; state->rsel = 1;
401 	} else if (rate >=  821) {
402 		state->deci = 5; state->csel = 1; state->rsel = 0;
403 	} else {
404 		state->deci = 5; state->csel = 1; state->rsel = 1;
405 	}
406 
407 	if (state->csel == 0)
408 		state->master_clk = 92000;
409 	else
410 		state->master_clk = 61333;
411 
412 }
413 
414 static int signal_det(struct mb86a16_state *state,
415 		      int smrt,
416 		      unsigned char *SIG)
417 {
418 
419 	int ret ;
420 	int smrtd ;
421 	int wait_sym ;
422 
423 	u32 wait_t;
424 	unsigned char S[3] ;
425 	int i ;
426 
427 	if (*SIG > 45) {
428 		if (CNTM_set(state, 2, 1, 2) < 0) {
429 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
430 			return -1;
431 		}
432 		wait_sym = 40000;
433 	} else {
434 		if (CNTM_set(state, 3, 1, 2) < 0) {
435 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
436 			return -1;
437 		}
438 		wait_sym = 80000;
439 	}
440 	for (i = 0; i < 3; i++) {
441 		if (i == 0)
442 			smrtd = smrt * 98 / 100;
443 		else if (i == 1)
444 			smrtd = smrt;
445 		else
446 			smrtd = smrt * 102 / 100;
447 		smrt_info_get(state, smrtd);
448 		smrt_set(state, smrtd);
449 		srst(state);
450 		wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
451 		if (wait_t == 0)
452 			wait_t = 1;
453 		msleep_interruptible(10);
454 		if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
455 			dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
456 			return -EREMOTEIO;
457 		}
458 	}
459 	if ((S[1] > S[0] * 112 / 100) &&
460 	    (S[1] > S[2] * 112 / 100)) {
461 
462 		ret = 1;
463 	} else {
464 		ret = 0;
465 	}
466 	*SIG = S[1];
467 
468 	if (CNTM_set(state, 0, 1, 2) < 0) {
469 		dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
470 		return -1;
471 	}
472 
473 	return ret;
474 }
475 
476 static int rf_val_set(struct mb86a16_state *state,
477 		      int f,
478 		      int smrt,
479 		      unsigned char R)
480 {
481 	unsigned char C, F, B;
482 	int M;
483 	unsigned char rf_val[5];
484 	int ack = -1;
485 
486 	if (smrt > 37750)
487 		C = 1;
488 	else if (smrt > 18875)
489 		C = 2;
490 	else if (smrt > 5500)
491 		C = 3;
492 	else
493 		C = 4;
494 
495 	if (smrt > 30500)
496 		F = 3;
497 	else if (smrt > 9375)
498 		F = 1;
499 	else if (smrt > 4625)
500 		F = 0;
501 	else
502 		F = 2;
503 
504 	if (f < 1060)
505 		B = 0;
506 	else if (f < 1175)
507 		B = 1;
508 	else if (f < 1305)
509 		B = 2;
510 	else if (f < 1435)
511 		B = 3;
512 	else if (f < 1570)
513 		B = 4;
514 	else if (f < 1715)
515 		B = 5;
516 	else if (f < 1845)
517 		B = 6;
518 	else if (f < 1980)
519 		B = 7;
520 	else if (f < 2080)
521 		B = 8;
522 	else
523 		B = 9;
524 
525 	M = f * (1 << R) / 2;
526 
527 	rf_val[0] = 0x01 | (C << 3) | (F << 1);
528 	rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
529 	rf_val[2] = (M & 0x00ff0) >> 4;
530 	rf_val[3] = ((M & 0x0000f) << 4) | B;
531 
532 	/* Frequency Set */
533 	if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
534 		ack = 0;
535 	if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
536 		ack = 0;
537 	if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
538 		ack = 0;
539 	if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
540 		ack = 0;
541 	if (mb86a16_write(state, 0x25, 0x01) < 0)
542 		ack = 0;
543 	if (ack == 0) {
544 		dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
545 		return -EREMOTEIO;
546 	}
547 
548 	return 0;
549 }
550 
551 static int afcerr_chk(struct mb86a16_state *state)
552 {
553 	unsigned char AFCM_L, AFCM_H ;
554 	int AFCM ;
555 	int afcm, afcerr ;
556 
557 	if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
558 		goto err;
559 	if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
560 		goto err;
561 
562 	AFCM = (AFCM_H << 8) + AFCM_L;
563 
564 	if (AFCM > 2048)
565 		afcm = AFCM - 4096;
566 	else
567 		afcm = AFCM;
568 	afcerr = afcm * state->master_clk / 8192;
569 
570 	return afcerr;
571 
572 err:
573 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
574 	return -EREMOTEIO;
575 }
576 
577 static int dagcm_val_get(struct mb86a16_state *state)
578 {
579 	int DAGCM;
580 	unsigned char DAGCM_H, DAGCM_L;
581 
582 	if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
583 		goto err;
584 	if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
585 		goto err;
586 
587 	DAGCM = (DAGCM_H << 8) + DAGCM_L;
588 
589 	return DAGCM;
590 
591 err:
592 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
593 	return -EREMOTEIO;
594 }
595 
596 static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status)
597 {
598 	u8 stat, stat2;
599 	struct mb86a16_state *state = fe->demodulator_priv;
600 
601 	*status = 0;
602 
603 	if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
604 		goto err;
605 	if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
606 		goto err;
607 	if ((stat > 25) && (stat2 > 25))
608 		*status |= FE_HAS_SIGNAL;
609 	if ((stat > 45) && (stat2 > 45))
610 		*status |= FE_HAS_CARRIER;
611 
612 	if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
613 		goto err;
614 
615 	if (stat & 0x01)
616 		*status |= FE_HAS_SYNC;
617 	if (stat & 0x01)
618 		*status |= FE_HAS_VITERBI;
619 
620 	if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
621 		goto err;
622 
623 	if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
624 		*status |= FE_HAS_LOCK;
625 
626 	return 0;
627 
628 err:
629 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
630 	return -EREMOTEIO;
631 }
632 
633 static int sync_chk(struct mb86a16_state *state,
634 		    unsigned char *VIRM)
635 {
636 	unsigned char val;
637 	int sync;
638 
639 	if (mb86a16_read(state, 0x0d, &val) != 2)
640 		goto err;
641 
642 	dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
643 	sync = val & 0x01;
644 	*VIRM = (val & 0x1c) >> 2;
645 
646 	return sync;
647 err:
648 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
649 	return -EREMOTEIO;
650 
651 }
652 
653 static int freqerr_chk(struct mb86a16_state *state,
654 		       int fTP,
655 		       int smrt,
656 		       int unit)
657 {
658 	unsigned char CRM, AFCML, AFCMH;
659 	unsigned char temp1, temp2, temp3;
660 	int crm, afcm, AFCM;
661 	int crrerr, afcerr;		/* kHz */
662 	int frqerr;			/* MHz */
663 	int afcen, afcexen = 0;
664 	int R, M, fOSC, fOSC_OFS;
665 
666 	if (mb86a16_read(state, 0x43, &CRM) != 2)
667 		goto err;
668 
669 	if (CRM > 127)
670 		crm = CRM - 256;
671 	else
672 		crm = CRM;
673 
674 	crrerr = smrt * crm / 256;
675 	if (mb86a16_read(state, 0x49, &temp1) != 2)
676 		goto err;
677 
678 	afcen = (temp1 & 0x04) >> 2;
679 	if (afcen == 0) {
680 		if (mb86a16_read(state, 0x2a, &temp1) != 2)
681 			goto err;
682 		afcexen = (temp1 & 0x20) >> 5;
683 	}
684 
685 	if (afcen == 1) {
686 		if (mb86a16_read(state, 0x0e, &AFCML) != 2)
687 			goto err;
688 		if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
689 			goto err;
690 	} else if (afcexen == 1) {
691 		if (mb86a16_read(state, 0x2b, &AFCML) != 2)
692 			goto err;
693 		if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
694 			goto err;
695 	}
696 	if ((afcen == 1) || (afcexen == 1)) {
697 		smrt_info_get(state, smrt);
698 		AFCM = ((AFCMH & 0x01) << 8) + AFCML;
699 		if (AFCM > 255)
700 			afcm = AFCM - 512;
701 		else
702 			afcm = AFCM;
703 
704 		afcerr = afcm * state->master_clk / 8192;
705 	} else
706 		afcerr = 0;
707 
708 	if (mb86a16_read(state, 0x22, &temp1) != 2)
709 		goto err;
710 	if (mb86a16_read(state, 0x23, &temp2) != 2)
711 		goto err;
712 	if (mb86a16_read(state, 0x24, &temp3) != 2)
713 		goto err;
714 
715 	R = (temp1 & 0xe0) >> 5;
716 	M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
717 	if (R == 0)
718 		fOSC = 2 * M;
719 	else
720 		fOSC = M;
721 
722 	fOSC_OFS = fOSC - fTP;
723 
724 	if (unit == 0) {	/* MHz */
725 		if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
726 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
727 		else
728 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
729 	} else {	/* kHz */
730 		frqerr = crrerr + afcerr + fOSC_OFS * 1000;
731 	}
732 
733 	return frqerr;
734 err:
735 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
736 	return -EREMOTEIO;
737 }
738 
739 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
740 {
741 	unsigned char R;
742 
743 	if (smrt > 9375)
744 		R = 0;
745 	else
746 		R = 1;
747 
748 	return R;
749 }
750 
751 static void swp_info_get(struct mb86a16_state *state,
752 			 int fOSC_start,
753 			 int smrt,
754 			 int v, int R,
755 			 int swp_ofs,
756 			 int *fOSC,
757 			 int *afcex_freq,
758 			 unsigned char *AFCEX_L,
759 			 unsigned char *AFCEX_H)
760 {
761 	int AFCEX ;
762 	int crnt_swp_freq ;
763 
764 	crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
765 
766 	if (R == 0)
767 		*fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
768 	else
769 		*fOSC = (crnt_swp_freq + 500) / 1000;
770 
771 	if (*fOSC >= crnt_swp_freq)
772 		*afcex_freq = *fOSC * 1000 - crnt_swp_freq;
773 	else
774 		*afcex_freq = crnt_swp_freq - *fOSC * 1000;
775 
776 	AFCEX = *afcex_freq * 8192 / state->master_clk;
777 	*AFCEX_L =  AFCEX & 0x00ff;
778 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
779 }
780 
781 
782 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
783 			       int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
784 {
785 	int swp_freq ;
786 
787 	if ((i % 2 == 1) && (v <= vmax)) {
788 		/* positive v (case 1) */
789 		if ((v - 1 == vmin)				&&
790 		    (*(V + 30 + v) >= 0)			&&
791 		    (*(V + 30 + v - 1) >= 0)			&&
792 		    (*(V + 30 + v - 1) > *(V + 30 + v))		&&
793 		    (*(V + 30 + v - 1) > SIGMIN)) {
794 
795 			swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
796 			*SIG1 = *(V + 30 + v - 1);
797 		} else if ((v == vmax)				&&
798 			   (*(V + 30 + v) >= 0)			&&
799 			   (*(V + 30 + v - 1) >= 0)		&&
800 			   (*(V + 30 + v) > *(V + 30 + v - 1))	&&
801 			   (*(V + 30 + v) > SIGMIN)) {
802 			/* (case 2) */
803 			swp_freq = fOSC * 1000 + afcex_freq;
804 			*SIG1 = *(V + 30 + v);
805 		} else if ((*(V + 30 + v) > 0)			&&
806 			   (*(V + 30 + v - 1) > 0)		&&
807 			   (*(V + 30 + v - 2) > 0)		&&
808 			   (*(V + 30 + v - 3) > 0)		&&
809 			   (*(V + 30 + v - 1) > *(V + 30 + v))	&&
810 			   (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
811 			   ((*(V + 30 + v - 1) > SIGMIN)	||
812 			   (*(V + 30 + v - 2) > SIGMIN))) {
813 			/* (case 3) */
814 			if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
815 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
816 				*SIG1 = *(V + 30 + v - 1);
817 			} else {
818 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
819 				*SIG1 = *(V + 30 + v - 2);
820 			}
821 		} else if ((v == vmax)				&&
822 			   (*(V + 30 + v) >= 0)			&&
823 			   (*(V + 30 + v - 1) >= 0)		&&
824 			   (*(V + 30 + v - 2) >= 0)		&&
825 			   (*(V + 30 + v) > *(V + 30 + v - 2))	&&
826 			   (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
827 			   ((*(V + 30 + v) > SIGMIN)		||
828 			   (*(V + 30 + v - 1) > SIGMIN))) {
829 			/* (case 4) */
830 			if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
831 				swp_freq = fOSC * 1000 + afcex_freq;
832 				*SIG1 = *(V + 30 + v);
833 			} else {
834 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
835 				*SIG1 = *(V + 30 + v - 1);
836 			}
837 		} else  {
838 			swp_freq = -1 ;
839 		}
840 	} else if ((i % 2 == 0) && (v >= vmin)) {
841 		/* Negative v (case 1) */
842 		if ((*(V + 30 + v) > 0)				&&
843 		    (*(V + 30 + v + 1) > 0)			&&
844 		    (*(V + 30 + v + 2) > 0)			&&
845 		    (*(V + 30 + v + 1) > *(V + 30 + v))		&&
846 		    (*(V + 30 + v + 1) > *(V + 30 + v + 2))	&&
847 		    (*(V + 30 + v + 1) > SIGMIN)) {
848 
849 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
850 			*SIG1 = *(V + 30 + v + 1);
851 		} else if ((v + 1 == vmax)			&&
852 			   (*(V + 30 + v) >= 0)			&&
853 			   (*(V + 30 + v + 1) >= 0)		&&
854 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
855 			   (*(V + 30 + v + 1) > SIGMIN)) {
856 			/* (case 2) */
857 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
858 			*SIG1 = *(V + 30 + v);
859 		} else if ((v == vmin)				&&
860 			   (*(V + 30 + v) > 0)			&&
861 			   (*(V + 30 + v + 1) > 0)		&&
862 			   (*(V + 30 + v + 2) > 0)		&&
863 			   (*(V + 30 + v) > *(V + 30 + v + 1))	&&
864 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
865 			   (*(V + 30 + v) > SIGMIN)) {
866 			/* (case 3) */
867 			swp_freq = fOSC * 1000 + afcex_freq;
868 			*SIG1 = *(V + 30 + v);
869 		} else if ((*(V + 30 + v) >= 0)			&&
870 			   (*(V + 30 + v + 1) >= 0)		&&
871 			   (*(V + 30 + v + 2) >= 0)		&&
872 			   (*(V + 30 + v + 3) >= 0)		&&
873 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
874 			   (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
875 			   ((*(V + 30 + v + 1) > SIGMIN)	||
876 			    (*(V + 30 + v + 2) > SIGMIN))) {
877 			/* (case 4) */
878 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
879 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
880 				*SIG1 = *(V + 30 + v + 1);
881 			} else {
882 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
883 				*SIG1 = *(V + 30 + v + 2);
884 			}
885 		} else if ((*(V + 30 + v) >= 0)			&&
886 			   (*(V + 30 + v + 1) >= 0)		&&
887 			   (*(V + 30 + v + 2) >= 0)		&&
888 			   (*(V + 30 + v + 3) >= 0)		&&
889 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
890 			   (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
891 			   (*(V + 30 + v) > *(V + 30 + v + 3))	&&
892 			   (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
893 			   ((*(V + 30 + v) > SIGMIN)		||
894 			    (*(V + 30 + v + 1) > SIGMIN))) {
895 			/* (case 5) */
896 			if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
897 				swp_freq = fOSC * 1000 + afcex_freq;
898 				*SIG1 = *(V + 30 + v);
899 			} else {
900 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
901 				*SIG1 = *(V + 30 + v + 1);
902 			}
903 		} else if ((v + 2 == vmin)			&&
904 			   (*(V + 30 + v) >= 0)			&&
905 			   (*(V + 30 + v + 1) >= 0)		&&
906 			   (*(V + 30 + v + 2) >= 0)		&&
907 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
908 			   (*(V + 30 + v + 2) > *(V + 30 + v))	&&
909 			   ((*(V + 30 + v + 1) > SIGMIN)	||
910 			    (*(V + 30 + v + 2) > SIGMIN))) {
911 			/* (case 6) */
912 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
913 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
914 				*SIG1 = *(V + 30 + v + 1);
915 			} else {
916 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
917 				*SIG1 = *(V + 30 + v + 2);
918 			}
919 		} else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
920 			swp_freq = fOSC * 1000;
921 			*SIG1 = *(V + 30 + v);
922 		} else
923 			swp_freq = -1;
924 	} else
925 		swp_freq = -1;
926 
927 	return swp_freq;
928 }
929 
930 static void swp_info_get2(struct mb86a16_state *state,
931 			  int smrt,
932 			  int R,
933 			  int swp_freq,
934 			  int *afcex_freq,
935 			  int *fOSC,
936 			  unsigned char *AFCEX_L,
937 			  unsigned char *AFCEX_H)
938 {
939 	int AFCEX ;
940 
941 	if (R == 0)
942 		*fOSC = (swp_freq + 1000) / 2000 * 2;
943 	else
944 		*fOSC = (swp_freq + 500) / 1000;
945 
946 	if (*fOSC >= swp_freq)
947 		*afcex_freq = *fOSC * 1000 - swp_freq;
948 	else
949 		*afcex_freq = swp_freq - *fOSC * 1000;
950 
951 	AFCEX = *afcex_freq * 8192 / state->master_clk;
952 	*AFCEX_L =  AFCEX & 0x00ff;
953 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
954 }
955 
956 static void afcex_info_get(struct mb86a16_state *state,
957 			   int afcex_freq,
958 			   unsigned char *AFCEX_L,
959 			   unsigned char *AFCEX_H)
960 {
961 	int AFCEX ;
962 
963 	AFCEX = afcex_freq * 8192 / state->master_clk;
964 	*AFCEX_L =  AFCEX & 0x00ff;
965 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
966 }
967 
968 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
969 {
970 	/* SLOCK0 = 0 */
971 	if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
972 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
973 		return -EREMOTEIO;
974 	}
975 
976 	return 0;
977 }
978 
979 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
980 {
981 	/* Viterbi Rate, IQ Settings */
982 	if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
983 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
984 		return -EREMOTEIO;
985 	}
986 
987 	return 0;
988 }
989 
990 static int FEC_srst(struct mb86a16_state *state)
991 {
992 	if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
993 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
994 		return -EREMOTEIO;
995 	}
996 
997 	return 0;
998 }
999 
1000 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
1001 {
1002 	if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
1003 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1004 		return -EREMOTEIO;
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
1011 {
1012 	if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
1013 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1014 		return -EREMOTEIO;
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 
1021 static int mb86a16_set_fe(struct mb86a16_state *state)
1022 {
1023 	u8 agcval, cnmval;
1024 
1025 	int i, j;
1026 	int fOSC = 0;
1027 	int fOSC_start = 0;
1028 	int wait_t;
1029 	int fcp;
1030 	int swp_ofs;
1031 	int V[60];
1032 	u8 SIG1MIN;
1033 
1034 	unsigned char CREN, AFCEN, AFCEXEN;
1035 	unsigned char SIG1;
1036 	unsigned char TIMINT1, TIMINT2, TIMEXT;
1037 	unsigned char S0T, S1T;
1038 	unsigned char S2T;
1039 /*	unsigned char S2T, S3T; */
1040 	unsigned char S4T, S5T;
1041 	unsigned char AFCEX_L, AFCEX_H;
1042 	unsigned char R;
1043 	unsigned char VIRM;
1044 	unsigned char ETH, VIA;
1045 	unsigned char junk;
1046 
1047 	int loop;
1048 	int ftemp;
1049 	int v, vmax, vmin;
1050 	int vmax_his, vmin_his;
1051 	int swp_freq, prev_swp_freq[20];
1052 	int prev_freq_num;
1053 	int signal_dupl;
1054 	int afcex_freq;
1055 	int signal;
1056 	int afcerr;
1057 	int temp_freq, delta_freq;
1058 	int dagcm[4];
1059 	int smrt_d;
1060 /*	int freq_err; */
1061 	int n;
1062 	int ret = -1;
1063 	int sync;
1064 
1065 	dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1066 
1067 	fcp = 3000;
1068 	swp_ofs = state->srate / 4;
1069 
1070 	for (i = 0; i < 60; i++)
1071 		V[i] = -1;
1072 
1073 	for (i = 0; i < 20; i++)
1074 		prev_swp_freq[i] = 0;
1075 
1076 	SIG1MIN = 25;
1077 
1078 	for (n = 0; ((n < 3) && (ret == -1)); n++) {
1079 		SEQ_set(state, 0);
1080 		iq_vt_set(state, 0);
1081 
1082 		CREN = 0;
1083 		AFCEN = 0;
1084 		AFCEXEN = 1;
1085 		TIMINT1 = 0;
1086 		TIMINT2 = 1;
1087 		TIMEXT = 2;
1088 		S1T = 0;
1089 		S0T = 0;
1090 
1091 		if (initial_set(state) < 0) {
1092 			dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1093 			return -1;
1094 		}
1095 		if (DAGC_data_set(state, 3, 2) < 0) {
1096 			dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1097 			return -1;
1098 		}
1099 		if (EN_set(state, CREN, AFCEN) < 0) {
1100 			dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1101 			return -1; /* (0, 0) */
1102 		}
1103 		if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1104 			dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1105 			return -1; /* (1, smrt) = (1, symbolrate) */
1106 		}
1107 		if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1108 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1109 			return -1; /* (0, 1, 2) */
1110 		}
1111 		if (S01T_set(state, S1T, S0T) < 0) {
1112 			dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1113 			return -1; /* (0, 0) */
1114 		}
1115 		smrt_info_get(state, state->srate);
1116 		if (smrt_set(state, state->srate) < 0) {
1117 			dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1118 			return -1;
1119 		}
1120 
1121 		R = vco_dev_get(state, state->srate);
1122 		if (R == 1)
1123 			fOSC_start = state->frequency;
1124 
1125 		else if (R == 0) {
1126 			if (state->frequency % 2 == 0) {
1127 				fOSC_start = state->frequency;
1128 			} else {
1129 				fOSC_start = state->frequency + 1;
1130 				if (fOSC_start > 2150)
1131 					fOSC_start = state->frequency - 1;
1132 			}
1133 		}
1134 		loop = 1;
1135 		ftemp = fOSC_start * 1000;
1136 		vmax = 0 ;
1137 		while (loop == 1) {
1138 			ftemp = ftemp + swp_ofs;
1139 			vmax++;
1140 
1141 			/* Upper bound */
1142 			if (ftemp > 2150000) {
1143 				loop = 0;
1144 				vmax--;
1145 			} else {
1146 				if ((ftemp == 2150000) ||
1147 				    (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1148 					loop = 0;
1149 			}
1150 		}
1151 
1152 		loop = 1;
1153 		ftemp = fOSC_start * 1000;
1154 		vmin = 0 ;
1155 		while (loop == 1) {
1156 			ftemp = ftemp - swp_ofs;
1157 			vmin--;
1158 
1159 			/* Lower bound */
1160 			if (ftemp < 950000) {
1161 				loop = 0;
1162 				vmin++;
1163 			} else {
1164 				if ((ftemp == 950000) ||
1165 				    (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1166 					loop = 0;
1167 			}
1168 		}
1169 
1170 		wait_t = (8000 + state->srate / 2) / state->srate;
1171 		if (wait_t == 0)
1172 			wait_t = 1;
1173 
1174 		i = 0;
1175 		j = 0;
1176 		prev_freq_num = 0;
1177 		loop = 1;
1178 		signal = 0;
1179 		vmax_his = 0;
1180 		vmin_his = 0;
1181 		v = 0;
1182 
1183 		while (loop == 1) {
1184 			swp_info_get(state, fOSC_start, state->srate,
1185 				     v, R, swp_ofs, &fOSC,
1186 				     &afcex_freq, &AFCEX_L, &AFCEX_H);
1187 
1188 			udelay(100);
1189 			if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1190 				dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1191 				return -1;
1192 			}
1193 			udelay(100);
1194 			if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1195 				dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1196 				return -1;
1197 			}
1198 			if (srst(state) < 0) {
1199 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1200 				return -1;
1201 			}
1202 			msleep_interruptible(wait_t);
1203 
1204 			if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1205 				dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1206 				return -1;
1207 			}
1208 			V[30 + v] = SIG1 ;
1209 			swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1210 						      SIG1MIN, fOSC, afcex_freq,
1211 						      swp_ofs, &SIG1);	/* changed */
1212 
1213 			signal_dupl = 0;
1214 			for (j = 0; j < prev_freq_num; j++) {
1215 				if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1216 					signal_dupl = 1;
1217 					dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1218 				}
1219 			}
1220 			if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1221 				dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1222 				prev_swp_freq[prev_freq_num] = swp_freq;
1223 				prev_freq_num++;
1224 				swp_info_get2(state, state->srate, R, swp_freq,
1225 					      &afcex_freq, &fOSC,
1226 					      &AFCEX_L, &AFCEX_H);
1227 
1228 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1229 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1230 					return -1;
1231 				}
1232 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1233 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1234 					return -1;
1235 				}
1236 				signal = signal_det(state, state->srate, &SIG1);
1237 				if (signal == 1) {
1238 					dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1239 					loop = 0;
1240 				} else {
1241 					dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1242 					smrt_info_get(state, state->srate);
1243 					if (smrt_set(state, state->srate) < 0) {
1244 						dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1245 						return -1;
1246 					}
1247 				}
1248 			}
1249 			if (v > vmax)
1250 				vmax_his = 1 ;
1251 			if (v < vmin)
1252 				vmin_his = 1 ;
1253 			i++;
1254 
1255 			if ((i % 2 == 1) && (vmax_his == 1))
1256 				i++;
1257 			if ((i % 2 == 0) && (vmin_his == 1))
1258 				i++;
1259 
1260 			if (i % 2 == 1)
1261 				v = (i + 1) / 2;
1262 			else
1263 				v = -i / 2;
1264 
1265 			if ((vmax_his == 1) && (vmin_his == 1))
1266 				loop = 0 ;
1267 		}
1268 
1269 		if (signal == 1) {
1270 			dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1271 			S1T = 7 ;
1272 			S0T = 1 ;
1273 			CREN = 0 ;
1274 			AFCEN = 1 ;
1275 			AFCEXEN = 0 ;
1276 
1277 			if (S01T_set(state, S1T, S0T) < 0) {
1278 				dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1279 				return -1;
1280 			}
1281 			smrt_info_get(state, state->srate);
1282 			if (smrt_set(state, state->srate) < 0) {
1283 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1284 				return -1;
1285 			}
1286 			if (EN_set(state, CREN, AFCEN) < 0) {
1287 				dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1288 				return -1;
1289 			}
1290 			if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1291 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1292 				return -1;
1293 			}
1294 			afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1295 			if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1296 				dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1297 				return -1;
1298 			}
1299 			if (srst(state) < 0) {
1300 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1301 				return -1;
1302 			}
1303 			/* delay 4~200 */
1304 			wait_t = 200000 / state->master_clk + 200000 / state->srate;
1305 			msleep(wait_t);
1306 			afcerr = afcerr_chk(state);
1307 			if (afcerr == -1)
1308 				return -1;
1309 
1310 			swp_freq = fOSC * 1000 + afcerr ;
1311 			AFCEXEN = 1 ;
1312 			if (state->srate >= 1500)
1313 				smrt_d = state->srate / 3;
1314 			else
1315 				smrt_d = state->srate / 2;
1316 			smrt_info_get(state, smrt_d);
1317 			if (smrt_set(state, smrt_d) < 0) {
1318 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1319 				return -1;
1320 			}
1321 			if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1322 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1323 				return -1;
1324 			}
1325 			R = vco_dev_get(state, smrt_d);
1326 			if (DAGC_data_set(state, 2, 0) < 0) {
1327 				dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1328 				return -1;
1329 			}
1330 			for (i = 0; i < 3; i++) {
1331 				temp_freq = swp_freq + (i - 1) * state->srate / 8;
1332 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1333 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1334 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1335 					return -1;
1336 				}
1337 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1338 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1339 					return -1;
1340 				}
1341 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1342 				msleep(wait_t);
1343 				dagcm[i] = dagcm_val_get(state);
1344 			}
1345 			if ((dagcm[0] > dagcm[1]) &&
1346 			    (dagcm[0] > dagcm[2]) &&
1347 			    (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1348 
1349 				temp_freq = swp_freq - 2 * state->srate / 8;
1350 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1351 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1352 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1353 					return -1;
1354 				}
1355 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1356 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1357 					return -1;
1358 				}
1359 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1360 				msleep(wait_t);
1361 				dagcm[3] = dagcm_val_get(state);
1362 				if (dagcm[3] > dagcm[1])
1363 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1364 				else
1365 					delta_freq = 0;
1366 			} else if ((dagcm[2] > dagcm[1]) &&
1367 				   (dagcm[2] > dagcm[0]) &&
1368 				   (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1369 
1370 				temp_freq = swp_freq + 2 * state->srate / 8;
1371 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1372 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1373 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1374 					return -1;
1375 				}
1376 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1377 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1378 					return -1;
1379 				}
1380 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1381 				msleep(wait_t);
1382 				dagcm[3] = dagcm_val_get(state);
1383 				if (dagcm[3] > dagcm[1])
1384 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1385 				else
1386 					delta_freq = 0 ;
1387 
1388 			} else {
1389 				delta_freq = 0 ;
1390 			}
1391 			dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1392 			swp_freq += delta_freq;
1393 			dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1394 			if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1395 				dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1396 			} else {
1397 
1398 				S1T = 0;
1399 				S0T = 3;
1400 				CREN = 1;
1401 				AFCEN = 0;
1402 				AFCEXEN = 1;
1403 
1404 				if (S01T_set(state, S1T, S0T) < 0) {
1405 					dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1406 					return -1;
1407 				}
1408 				if (DAGC_data_set(state, 0, 0) < 0) {
1409 					dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1410 					return -1;
1411 				}
1412 				R = vco_dev_get(state, state->srate);
1413 				smrt_info_get(state, state->srate);
1414 				if (smrt_set(state, state->srate) < 0) {
1415 					dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1416 					return -1;
1417 				}
1418 				if (EN_set(state, CREN, AFCEN) < 0) {
1419 					dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1420 					return -1;
1421 				}
1422 				if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1423 					dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1424 					return -1;
1425 				}
1426 				swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1427 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1428 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1429 					return -1;
1430 				}
1431 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1432 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1433 					return -1;
1434 				}
1435 				if (srst(state) < 0) {
1436 					dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1437 					return -1;
1438 				}
1439 				wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1440 				if (wait_t == 0)
1441 					wait_t = 1;
1442 				msleep_interruptible(wait_t);
1443 				if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1444 					dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1445 					return -EREMOTEIO;
1446 				}
1447 
1448 				if (SIG1 > 110) {
1449 					S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1450 					wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1451 				} else if (SIG1 > 105) {
1452 					S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1453 					wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1454 				} else if (SIG1 > 85) {
1455 					S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1456 					wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1457 				} else if (SIG1 > 65) {
1458 					S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1459 					wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1460 				} else {
1461 					S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1462 					wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1463 				}
1464 				wait_t *= 2; /* FOS */
1465 				S2T_set(state, S2T);
1466 				S45T_set(state, S4T, S5T);
1467 				Vi_set(state, ETH, VIA);
1468 				srst(state);
1469 				msleep_interruptible(wait_t);
1470 				sync = sync_chk(state, &VIRM);
1471 				dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1472 				if (VIRM) {
1473 					if (VIRM == 4) {
1474 						/* 5/6 */
1475 						if (SIG1 > 110)
1476 							wait_t = (786432 + state->srate / 2) / state->srate;
1477 						else
1478 							wait_t = (1572864 + state->srate / 2) / state->srate;
1479 						if (state->srate < 5000)
1480 							/* FIXME ! , should be a long wait ! */
1481 							msleep_interruptible(wait_t);
1482 						else
1483 							msleep_interruptible(wait_t);
1484 
1485 						if (sync_chk(state, &junk) == 0) {
1486 							iq_vt_set(state, 1);
1487 							FEC_srst(state);
1488 						}
1489 					}
1490 					/* 1/2, 2/3, 3/4, 7/8 */
1491 					if (SIG1 > 110)
1492 						wait_t = (786432 + state->srate / 2) / state->srate;
1493 					else
1494 						wait_t = (1572864 + state->srate / 2) / state->srate;
1495 					msleep_interruptible(wait_t);
1496 					SEQ_set(state, 1);
1497 				} else {
1498 					dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1499 					SEQ_set(state, 1);
1500 					ret = -1;
1501 				}
1502 			}
1503 		} else {
1504 			dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1505 			ret = -1;
1506 		}
1507 
1508 		sync = sync_chk(state, &junk);
1509 		if (sync) {
1510 			dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1511 			freqerr_chk(state, state->frequency, state->srate, 1);
1512 			ret = 0;
1513 			break;
1514 		}
1515 	}
1516 
1517 	mb86a16_read(state, 0x15, &agcval);
1518 	mb86a16_read(state, 0x26, &cnmval);
1519 	dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1520 
1521 	return ret;
1522 }
1523 
1524 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1525 				   struct dvb_diseqc_master_cmd *cmd)
1526 {
1527 	struct mb86a16_state *state = fe->demodulator_priv;
1528 	int i;
1529 	u8 regs;
1530 
1531 	if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1532 		goto err;
1533 	if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1534 		goto err;
1535 	if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1536 		goto err;
1537 
1538 	regs = 0x18;
1539 
1540 	if (cmd->msg_len > 5 || cmd->msg_len < 4)
1541 		return -EINVAL;
1542 
1543 	for (i = 0; i < cmd->msg_len; i++) {
1544 		if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1545 			goto err;
1546 
1547 		regs++;
1548 	}
1549 	i += 0x90;
1550 
1551 	msleep_interruptible(10);
1552 
1553 	if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1554 		goto err;
1555 	if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1556 		goto err;
1557 
1558 	return 0;
1559 
1560 err:
1561 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1562 	return -EREMOTEIO;
1563 }
1564 
1565 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe,
1566 				     enum fe_sec_mini_cmd burst)
1567 {
1568 	struct mb86a16_state *state = fe->demodulator_priv;
1569 
1570 	switch (burst) {
1571 	case SEC_MINI_A:
1572 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1573 						       MB86A16_DCC1_TBEN  |
1574 						       MB86A16_DCC1_TBO) < 0)
1575 			goto err;
1576 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1577 			goto err;
1578 		break;
1579 	case SEC_MINI_B:
1580 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1581 						       MB86A16_DCC1_TBEN) < 0)
1582 			goto err;
1583 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1584 			goto err;
1585 		break;
1586 	}
1587 
1588 	return 0;
1589 err:
1590 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1591 	return -EREMOTEIO;
1592 }
1593 
1594 static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1595 {
1596 	struct mb86a16_state *state = fe->demodulator_priv;
1597 
1598 	switch (tone) {
1599 	case SEC_TONE_ON:
1600 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1601 			goto err;
1602 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1603 						       MB86A16_DCC1_CTOE) < 0)
1604 
1605 			goto err;
1606 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1607 			goto err;
1608 		break;
1609 	case SEC_TONE_OFF:
1610 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1611 			goto err;
1612 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1613 			goto err;
1614 		if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1615 			goto err;
1616 		break;
1617 	default:
1618 		return -EINVAL;
1619 	}
1620 	return 0;
1621 
1622 err:
1623 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1624 	return -EREMOTEIO;
1625 }
1626 
1627 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
1628 {
1629 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1630 	struct mb86a16_state *state = fe->demodulator_priv;
1631 
1632 	state->frequency = p->frequency / 1000;
1633 	state->srate = p->symbol_rate / 1000;
1634 
1635 	if (!mb86a16_set_fe(state)) {
1636 		dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
1637 		return DVBFE_ALGO_SEARCH_SUCCESS;
1638 	}
1639 
1640 	dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1641 	return DVBFE_ALGO_SEARCH_FAILED;
1642 }
1643 
1644 static void mb86a16_release(struct dvb_frontend *fe)
1645 {
1646 	struct mb86a16_state *state = fe->demodulator_priv;
1647 	kfree(state);
1648 }
1649 
1650 static int mb86a16_init(struct dvb_frontend *fe)
1651 {
1652 	return 0;
1653 }
1654 
1655 static int mb86a16_sleep(struct dvb_frontend *fe)
1656 {
1657 	return 0;
1658 }
1659 
1660 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1661 {
1662 	u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1663 	u32 timer;
1664 
1665 	struct mb86a16_state *state = fe->demodulator_priv;
1666 
1667 	*ber = 0;
1668 	if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1669 		goto err;
1670 	if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1671 		goto err;
1672 	if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1673 		goto err;
1674 	if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1675 		goto err;
1676 	if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1677 		goto err;
1678 	/* BER monitor invalid when BER_EN = 0	*/
1679 	if (ber_mon & 0x04) {
1680 		/* coarse, fast calculation	*/
1681 		*ber = ber_tab & 0x1f;
1682 		dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1683 		if (ber_mon & 0x01) {
1684 			/*
1685 			 * BER_SEL = 1, The monitored BER is the estimated
1686 			 * value with a Reed-Solomon decoder error amount at
1687 			 * the deinterleaver output.
1688 			 * monitored BER is expressed as a 20 bit output in total
1689 			 */
1690 			ber_rst = ber_mon >> 3;
1691 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1692 			if (ber_rst == 0)
1693 				timer =  12500000;
1694 			if (ber_rst == 1)
1695 				timer =  25000000;
1696 			if (ber_rst == 2)
1697 				timer =  50000000;
1698 			if (ber_rst == 3)
1699 				timer = 100000000;
1700 
1701 			*ber /= timer;
1702 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1703 		} else {
1704 			/*
1705 			 * BER_SEL = 0, The monitored BER is the estimated
1706 			 * value with a Viterbi decoder error amount at the
1707 			 * QPSK demodulator output.
1708 			 * monitored BER is expressed as a 24 bit output in total
1709 			 */
1710 			ber_tim = ber_mon >> 1;
1711 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1712 			if (ber_tim == 0)
1713 				timer = 16;
1714 			if (ber_tim == 1)
1715 				timer = 24;
1716 
1717 			*ber /= 2 ^ timer;
1718 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1719 		}
1720 	}
1721 	return 0;
1722 err:
1723 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1724 	return -EREMOTEIO;
1725 }
1726 
1727 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1728 {
1729 	u8 agcm = 0;
1730 	struct mb86a16_state *state = fe->demodulator_priv;
1731 
1732 	*strength = 0;
1733 	if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1734 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1735 		return -EREMOTEIO;
1736 	}
1737 
1738 	*strength = ((0xff - agcm) * 100) / 256;
1739 	dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1740 	*strength = (0xffff - 0xff) + agcm;
1741 
1742 	return 0;
1743 }
1744 
1745 struct cnr {
1746 	u8 cn_reg;
1747 	u8 cn_val;
1748 };
1749 
1750 static const struct cnr cnr_tab[] = {
1751 	{  35,  2 },
1752 	{  40,  3 },
1753 	{  50,  4 },
1754 	{  60,  5 },
1755 	{  70,  6 },
1756 	{  80,  7 },
1757 	{  92,  8 },
1758 	{ 103,  9 },
1759 	{ 115, 10 },
1760 	{ 138, 12 },
1761 	{ 162, 15 },
1762 	{ 180, 18 },
1763 	{ 185, 19 },
1764 	{ 189, 20 },
1765 	{ 195, 22 },
1766 	{ 199, 24 },
1767 	{ 201, 25 },
1768 	{ 202, 26 },
1769 	{ 203, 27 },
1770 	{ 205, 28 },
1771 	{ 208, 30 }
1772 };
1773 
1774 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1775 {
1776 	struct mb86a16_state *state = fe->demodulator_priv;
1777 	int i = 0;
1778 	int low_tide = 2, high_tide = 30, q_level;
1779 	u8  cn;
1780 
1781 	*snr = 0;
1782 	if (mb86a16_read(state, 0x26, &cn) != 2) {
1783 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1784 		return -EREMOTEIO;
1785 	}
1786 
1787 	for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1788 		if (cn < cnr_tab[i].cn_reg) {
1789 			*snr = cnr_tab[i].cn_val;
1790 			break;
1791 		}
1792 	}
1793 	q_level = (*snr * 100) / (high_tide - low_tide);
1794 	dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1795 	*snr = (0xffff - 0xff) + *snr;
1796 
1797 	return 0;
1798 }
1799 
1800 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1801 {
1802 	u8 dist;
1803 	struct mb86a16_state *state = fe->demodulator_priv;
1804 
1805 	if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1806 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1807 		return -EREMOTEIO;
1808 	}
1809 	*ucblocks = dist;
1810 
1811 	return 0;
1812 }
1813 
1814 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1815 {
1816 	return DVBFE_ALGO_CUSTOM;
1817 }
1818 
1819 static struct dvb_frontend_ops mb86a16_ops = {
1820 	.delsys = { SYS_DVBS },
1821 	.info = {
1822 		.name			= "Fujitsu MB86A16 DVB-S",
1823 		.frequency_min		= 950000,
1824 		.frequency_max		= 2150000,
1825 		.frequency_stepsize	= 3000,
1826 		.frequency_tolerance	= 0,
1827 		.symbol_rate_min	= 1000000,
1828 		.symbol_rate_max	= 45000000,
1829 		.symbol_rate_tolerance	= 500,
1830 		.caps			= FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1831 					  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1832 					  FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1833 					  FE_CAN_FEC_AUTO
1834 	},
1835 	.release			= mb86a16_release,
1836 
1837 	.get_frontend_algo		= mb86a16_frontend_algo,
1838 	.search				= mb86a16_search,
1839 	.init				= mb86a16_init,
1840 	.sleep				= mb86a16_sleep,
1841 	.read_status			= mb86a16_read_status,
1842 
1843 	.read_ber			= mb86a16_read_ber,
1844 	.read_signal_strength		= mb86a16_read_signal_strength,
1845 	.read_snr			= mb86a16_read_snr,
1846 	.read_ucblocks			= mb86a16_read_ucblocks,
1847 
1848 	.diseqc_send_master_cmd		= mb86a16_send_diseqc_msg,
1849 	.diseqc_send_burst		= mb86a16_send_diseqc_burst,
1850 	.set_tone			= mb86a16_set_tone,
1851 };
1852 
1853 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1854 				    struct i2c_adapter *i2c_adap)
1855 {
1856 	u8 dev_id = 0;
1857 	struct mb86a16_state *state = NULL;
1858 
1859 	state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1860 	if (state == NULL)
1861 		goto error;
1862 
1863 	state->config = config;
1864 	state->i2c_adap = i2c_adap;
1865 
1866 	mb86a16_read(state, 0x7f, &dev_id);
1867 	if (dev_id != 0xfe)
1868 		goto error;
1869 
1870 	memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1871 	state->frontend.demodulator_priv = state;
1872 	state->frontend.ops.set_voltage = state->config->set_voltage;
1873 
1874 	return &state->frontend;
1875 error:
1876 	kfree(state);
1877 	return NULL;
1878 }
1879 EXPORT_SYMBOL(mb86a16_attach);
1880 MODULE_LICENSE("GPL");
1881 MODULE_AUTHOR("Manu Abraham");
1882