1 /* 2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1 3 * 4 * Copyright (C) 2003-2007 Micronas 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * version 2 only, as published by the Free Software Foundation. 9 * 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 20 * 02110-1301, USA 21 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/moduleparam.h> 27 #include <linux/init.h> 28 #include <linux/delay.h> 29 #include <linux/firmware.h> 30 #include <linux/i2c.h> 31 #include <asm/div64.h> 32 33 #include "dvb_frontend.h" 34 #include "drxd.h" 35 #include "drxd_firm.h" 36 37 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw" 38 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw" 39 40 #define CHUNK_SIZE 48 41 42 #define DRX_I2C_RMW 0x10 43 #define DRX_I2C_BROADCAST 0x20 44 #define DRX_I2C_CLEARCRC 0x80 45 #define DRX_I2C_SINGLE_MASTER 0xC0 46 #define DRX_I2C_MODEFLAGS 0xC0 47 #define DRX_I2C_FLAGS 0xF0 48 49 #define DEFAULT_LOCK_TIMEOUT 1100 50 51 #define DRX_CHANNEL_AUTO 0 52 #define DRX_CHANNEL_HIGH 1 53 #define DRX_CHANNEL_LOW 2 54 55 #define DRX_LOCK_MPEG 1 56 #define DRX_LOCK_FEC 2 57 #define DRX_LOCK_DEMOD 4 58 59 /****************************************************************************/ 60 61 enum CSCDState { 62 CSCD_INIT = 0, 63 CSCD_SET, 64 CSCD_SAVED 65 }; 66 67 enum CDrxdState { 68 DRXD_UNINITIALIZED = 0, 69 DRXD_STOPPED, 70 DRXD_STARTED 71 }; 72 73 enum AGC_CTRL_MODE { 74 AGC_CTRL_AUTO = 0, 75 AGC_CTRL_USER, 76 AGC_CTRL_OFF 77 }; 78 79 enum OperationMode { 80 OM_Default, 81 OM_DVBT_Diversity_Front, 82 OM_DVBT_Diversity_End 83 }; 84 85 struct SCfgAgc { 86 enum AGC_CTRL_MODE ctrlMode; 87 u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 88 u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 89 u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 90 u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 91 u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */ 92 93 u16 R1; 94 u16 R2; 95 u16 R3; 96 }; 97 98 struct SNoiseCal { 99 int cpOpt; 100 short cpNexpOfs; 101 short tdCal2k; 102 short tdCal8k; 103 }; 104 105 enum app_env { 106 APPENV_STATIC = 0, 107 APPENV_PORTABLE = 1, 108 APPENV_MOBILE = 2 109 }; 110 111 enum EIFFilter { 112 IFFILTER_SAW = 0, 113 IFFILTER_DISCRETE = 1 114 }; 115 116 struct drxd_state { 117 struct dvb_frontend frontend; 118 struct dvb_frontend_ops ops; 119 struct dtv_frontend_properties props; 120 121 const struct firmware *fw; 122 struct device *dev; 123 124 struct i2c_adapter *i2c; 125 void *priv; 126 struct drxd_config config; 127 128 int i2c_access; 129 int init_done; 130 struct mutex mutex; 131 132 u8 chip_adr; 133 u16 hi_cfg_timing_div; 134 u16 hi_cfg_bridge_delay; 135 u16 hi_cfg_wakeup_key; 136 u16 hi_cfg_ctrl; 137 138 u16 intermediate_freq; 139 u16 osc_clock_freq; 140 141 enum CSCDState cscd_state; 142 enum CDrxdState drxd_state; 143 144 u16 sys_clock_freq; 145 s16 osc_clock_deviation; 146 u16 expected_sys_clock_freq; 147 148 u16 insert_rs_byte; 149 u16 enable_parallel; 150 151 int operation_mode; 152 153 struct SCfgAgc if_agc_cfg; 154 struct SCfgAgc rf_agc_cfg; 155 156 struct SNoiseCal noise_cal; 157 158 u32 fe_fs_add_incr; 159 u32 org_fe_fs_add_incr; 160 u16 current_fe_if_incr; 161 162 u16 m_FeAgRegAgPwd; 163 u16 m_FeAgRegAgAgcSio; 164 165 u16 m_EcOcRegOcModeLop; 166 u16 m_EcOcRegSncSncLvl; 167 u8 *m_InitAtomicRead; 168 u8 *m_HiI2cPatch; 169 170 u8 *m_ResetCEFR; 171 u8 *m_InitFE_1; 172 u8 *m_InitFE_2; 173 u8 *m_InitCP; 174 u8 *m_InitCE; 175 u8 *m_InitEQ; 176 u8 *m_InitSC; 177 u8 *m_InitEC; 178 u8 *m_ResetECRAM; 179 u8 *m_InitDiversityFront; 180 u8 *m_InitDiversityEnd; 181 u8 *m_DisableDiversity; 182 u8 *m_StartDiversityFront; 183 u8 *m_StartDiversityEnd; 184 185 u8 *m_DiversityDelay8MHZ; 186 u8 *m_DiversityDelay6MHZ; 187 188 u8 *microcode; 189 u32 microcode_length; 190 191 int type_A; 192 int PGA; 193 int diversity; 194 int tuner_mirrors; 195 196 enum app_env app_env_default; 197 enum app_env app_env_diversity; 198 199 }; 200 201 /****************************************************************************/ 202 /* I2C **********************************************************************/ 203 /****************************************************************************/ 204 205 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len) 206 { 207 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len }; 208 209 if (i2c_transfer(adap, &msg, 1) != 1) 210 return -1; 211 return 0; 212 } 213 214 static int i2c_read(struct i2c_adapter *adap, 215 u8 adr, u8 *msg, int len, u8 *answ, int alen) 216 { 217 struct i2c_msg msgs[2] = { 218 { 219 .addr = adr, .flags = 0, 220 .buf = msg, .len = len 221 }, { 222 .addr = adr, .flags = I2C_M_RD, 223 .buf = answ, .len = alen 224 } 225 }; 226 if (i2c_transfer(adap, msgs, 2) != 2) 227 return -1; 228 return 0; 229 } 230 231 static inline u32 MulDiv32(u32 a, u32 b, u32 c) 232 { 233 u64 tmp64; 234 235 tmp64 = (u64)a * (u64)b; 236 do_div(tmp64, c); 237 238 return (u32) tmp64; 239 } 240 241 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags) 242 { 243 u8 adr = state->config.demod_address; 244 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, 245 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff 246 }; 247 u8 mm2[2]; 248 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0) 249 return -1; 250 if (data) 251 *data = mm2[0] | (mm2[1] << 8); 252 return mm2[0] | (mm2[1] << 8); 253 } 254 255 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags) 256 { 257 u8 adr = state->config.demod_address; 258 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, 259 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff 260 }; 261 u8 mm2[4]; 262 263 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0) 264 return -1; 265 if (data) 266 *data = 267 mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24); 268 return 0; 269 } 270 271 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags) 272 { 273 u8 adr = state->config.demod_address; 274 u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff, 275 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, 276 data & 0xff, (data >> 8) & 0xff 277 }; 278 279 if (i2c_write(state->i2c, adr, mm, 6) < 0) 280 return -1; 281 return 0; 282 } 283 284 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags) 285 { 286 u8 adr = state->config.demod_address; 287 u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff, 288 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, 289 data & 0xff, (data >> 8) & 0xff, 290 (data >> 16) & 0xff, (data >> 24) & 0xff 291 }; 292 293 if (i2c_write(state->i2c, adr, mm, 8) < 0) 294 return -1; 295 return 0; 296 } 297 298 static int write_chunk(struct drxd_state *state, 299 u32 reg, u8 *data, u32 len, u8 flags) 300 { 301 u8 adr = state->config.demod_address; 302 u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff, 303 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff 304 }; 305 int i; 306 307 for (i = 0; i < len; i++) 308 mm[4 + i] = data[i]; 309 if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) { 310 printk(KERN_ERR "error in write_chunk\n"); 311 return -1; 312 } 313 return 0; 314 } 315 316 static int WriteBlock(struct drxd_state *state, 317 u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags) 318 { 319 while (BlockSize > 0) { 320 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize; 321 322 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0) 323 return -1; 324 pBlock += Chunk; 325 Address += (Chunk >> 1); 326 BlockSize -= Chunk; 327 } 328 return 0; 329 } 330 331 static int WriteTable(struct drxd_state *state, u8 * pTable) 332 { 333 int status = 0; 334 335 if (pTable == NULL) 336 return 0; 337 338 while (!status) { 339 u16 Length; 340 u32 Address = pTable[0] | (pTable[1] << 8) | 341 (pTable[2] << 16) | (pTable[3] << 24); 342 343 if (Address == 0xFFFFFFFF) 344 break; 345 pTable += sizeof(u32); 346 347 Length = pTable[0] | (pTable[1] << 8); 348 pTable += sizeof(u16); 349 if (!Length) 350 break; 351 status = WriteBlock(state, Address, Length * 2, pTable, 0); 352 pTable += (Length * 2); 353 } 354 return status; 355 } 356 357 /****************************************************************************/ 358 /****************************************************************************/ 359 /****************************************************************************/ 360 361 static int ResetCEFR(struct drxd_state *state) 362 { 363 return WriteTable(state, state->m_ResetCEFR); 364 } 365 366 static int InitCP(struct drxd_state *state) 367 { 368 return WriteTable(state, state->m_InitCP); 369 } 370 371 static int InitCE(struct drxd_state *state) 372 { 373 int status; 374 enum app_env AppEnv = state->app_env_default; 375 376 do { 377 status = WriteTable(state, state->m_InitCE); 378 if (status < 0) 379 break; 380 381 if (state->operation_mode == OM_DVBT_Diversity_Front || 382 state->operation_mode == OM_DVBT_Diversity_End) { 383 AppEnv = state->app_env_diversity; 384 } 385 if (AppEnv == APPENV_STATIC) { 386 status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0); 387 if (status < 0) 388 break; 389 } else if (AppEnv == APPENV_PORTABLE) { 390 status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0); 391 if (status < 0) 392 break; 393 } else if (AppEnv == APPENV_MOBILE && state->type_A) { 394 status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0); 395 if (status < 0) 396 break; 397 } else if (AppEnv == APPENV_MOBILE && !state->type_A) { 398 status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0); 399 if (status < 0) 400 break; 401 } 402 403 /* start ce */ 404 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0); 405 if (status < 0) 406 break; 407 } while (0); 408 return status; 409 } 410 411 static int StopOC(struct drxd_state *state) 412 { 413 int status = 0; 414 u16 ocSyncLvl = 0; 415 u16 ocModeLop = state->m_EcOcRegOcModeLop; 416 u16 dtoIncLop = 0; 417 u16 dtoIncHip = 0; 418 419 do { 420 /* Store output configuration */ 421 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0); 422 if (status < 0) 423 break; 424 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */ 425 state->m_EcOcRegSncSncLvl = ocSyncLvl; 426 /* m_EcOcRegOcModeLop = ocModeLop; */ 427 428 /* Flush FIFO (byte-boundary) at fixed rate */ 429 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0); 430 if (status < 0) 431 break; 432 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0); 433 if (status < 0) 434 break; 435 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0); 436 if (status < 0) 437 break; 438 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0); 439 if (status < 0) 440 break; 441 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M); 442 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC; 443 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); 444 if (status < 0) 445 break; 446 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); 447 if (status < 0) 448 break; 449 450 msleep(1); 451 /* Output pins to '0' */ 452 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0); 453 if (status < 0) 454 break; 455 456 /* Force the OC out of sync */ 457 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M); 458 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0); 459 if (status < 0) 460 break; 461 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M); 462 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE; 463 ocModeLop |= 0x2; /* Magically-out-of-sync */ 464 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); 465 if (status < 0) 466 break; 467 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0); 468 if (status < 0) 469 break; 470 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); 471 if (status < 0) 472 break; 473 } while (0); 474 475 return status; 476 } 477 478 static int StartOC(struct drxd_state *state) 479 { 480 int status = 0; 481 482 do { 483 /* Stop OC */ 484 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); 485 if (status < 0) 486 break; 487 488 /* Restore output configuration */ 489 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0); 490 if (status < 0) 491 break; 492 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0); 493 if (status < 0) 494 break; 495 496 /* Output pins active again */ 497 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0); 498 if (status < 0) 499 break; 500 501 /* Start OC */ 502 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); 503 if (status < 0) 504 break; 505 } while (0); 506 return status; 507 } 508 509 static int InitEQ(struct drxd_state *state) 510 { 511 return WriteTable(state, state->m_InitEQ); 512 } 513 514 static int InitEC(struct drxd_state *state) 515 { 516 return WriteTable(state, state->m_InitEC); 517 } 518 519 static int InitSC(struct drxd_state *state) 520 { 521 return WriteTable(state, state->m_InitSC); 522 } 523 524 static int InitAtomicRead(struct drxd_state *state) 525 { 526 return WriteTable(state, state->m_InitAtomicRead); 527 } 528 529 static int CorrectSysClockDeviation(struct drxd_state *state); 530 531 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus) 532 { 533 u16 ScRaRamLock = 0; 534 const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M | 535 SC_RA_RAM_LOCK_FEC__M | 536 SC_RA_RAM_LOCK_DEMOD__M); 537 const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M | 538 SC_RA_RAM_LOCK_DEMOD__M); 539 const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M; 540 541 int status; 542 543 *pLockStatus = 0; 544 545 status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000); 546 if (status < 0) { 547 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status); 548 return status; 549 } 550 551 if (state->drxd_state != DRXD_STARTED) 552 return 0; 553 554 if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) { 555 *pLockStatus |= DRX_LOCK_MPEG; 556 CorrectSysClockDeviation(state); 557 } 558 559 if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask) 560 *pLockStatus |= DRX_LOCK_FEC; 561 562 if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask) 563 *pLockStatus |= DRX_LOCK_DEMOD; 564 return 0; 565 } 566 567 /****************************************************************************/ 568 569 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg) 570 { 571 int status; 572 573 if (cfg->outputLevel > DRXD_FE_CTRL_MAX) 574 return -1; 575 576 if (cfg->ctrlMode == AGC_CTRL_USER) { 577 do { 578 u16 FeAgRegPm1AgcWri; 579 u16 FeAgRegAgModeLop; 580 581 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); 582 if (status < 0) 583 break; 584 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); 585 FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC; 586 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); 587 if (status < 0) 588 break; 589 590 FeAgRegPm1AgcWri = (u16) (cfg->outputLevel & 591 FE_AG_REG_PM1_AGC_WRI__M); 592 status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0); 593 if (status < 0) 594 break; 595 } while (0); 596 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { 597 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) || 598 ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) || 599 ((cfg->speed) > DRXD_FE_CTRL_MAX) || 600 ((cfg->settleLevel) > DRXD_FE_CTRL_MAX) 601 ) 602 return -1; 603 do { 604 u16 FeAgRegAgModeLop; 605 u16 FeAgRegEgcSetLvl; 606 u16 slope, offset; 607 608 /* == Mode == */ 609 610 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); 611 if (status < 0) 612 break; 613 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); 614 FeAgRegAgModeLop |= 615 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC; 616 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); 617 if (status < 0) 618 break; 619 620 /* == Settle level == */ 621 622 FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) & 623 FE_AG_REG_EGC_SET_LVL__M); 624 status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0); 625 if (status < 0) 626 break; 627 628 /* == Min/Max == */ 629 630 slope = (u16) ((cfg->maxOutputLevel - 631 cfg->minOutputLevel) / 2); 632 offset = (u16) ((cfg->maxOutputLevel + 633 cfg->minOutputLevel) / 2 - 511); 634 635 status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0); 636 if (status < 0) 637 break; 638 status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0); 639 if (status < 0) 640 break; 641 642 /* == Speed == */ 643 { 644 const u16 maxRur = 8; 645 const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 }; 646 const u16 fastIncrDecLUT[] = { 14, 15, 15, 16, 647 17, 18, 18, 19, 648 20, 21, 22, 23, 649 24, 26, 27, 28, 650 29, 31 651 }; 652 653 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) / 654 (maxRur + 1); 655 u16 fineSpeed = (u16) (cfg->speed - 656 ((cfg->speed / 657 fineSteps) * 658 fineSteps)); 659 u16 invRurCount = (u16) (cfg->speed / 660 fineSteps); 661 u16 rurCount; 662 if (invRurCount > maxRur) { 663 rurCount = 0; 664 fineSpeed += fineSteps; 665 } else { 666 rurCount = maxRur - invRurCount; 667 } 668 669 /* 670 fastInc = default * 671 (2^(fineSpeed/fineSteps)) 672 => range[default...2*default> 673 slowInc = default * 674 (2^(fineSpeed/fineSteps)) 675 */ 676 { 677 u16 fastIncrDec = 678 fastIncrDecLUT[fineSpeed / 679 ((fineSteps / 680 (14 + 1)) + 1)]; 681 u16 slowIncrDec = 682 slowIncrDecLUT[fineSpeed / 683 (fineSteps / 684 (3 + 1))]; 685 686 status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0); 687 if (status < 0) 688 break; 689 status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0); 690 if (status < 0) 691 break; 692 status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0); 693 if (status < 0) 694 break; 695 status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0); 696 if (status < 0) 697 break; 698 status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0); 699 if (status < 0) 700 break; 701 } 702 } 703 } while (0); 704 705 } else { 706 /* No OFF mode for IF control */ 707 return -1; 708 } 709 return status; 710 } 711 712 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg) 713 { 714 int status = 0; 715 716 if (cfg->outputLevel > DRXD_FE_CTRL_MAX) 717 return -1; 718 719 if (cfg->ctrlMode == AGC_CTRL_USER) { 720 do { 721 u16 AgModeLop = 0; 722 u16 level = (cfg->outputLevel); 723 724 if (level == DRXD_FE_CTRL_MAX) 725 level++; 726 727 status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000); 728 if (status < 0) 729 break; 730 731 /*==== Mode ====*/ 732 733 /* Powerdown PD2, WRI source */ 734 state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M); 735 state->m_FeAgRegAgPwd |= 736 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; 737 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); 738 if (status < 0) 739 break; 740 741 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 742 if (status < 0) 743 break; 744 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | 745 FE_AG_REG_AG_MODE_LOP_MODE_E__M)); 746 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | 747 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); 748 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 749 if (status < 0) 750 break; 751 752 /* enable AGC2 pin */ 753 { 754 u16 FeAgRegAgAgcSio = 0; 755 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); 756 if (status < 0) 757 break; 758 FeAgRegAgAgcSio &= 759 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); 760 FeAgRegAgAgcSio |= 761 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; 762 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); 763 if (status < 0) 764 break; 765 } 766 767 } while (0); 768 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { 769 u16 AgModeLop = 0; 770 771 do { 772 u16 level; 773 /* Automatic control */ 774 /* Powerup PD2, AGC2 as output, TGC source */ 775 (state->m_FeAgRegAgPwd) &= 776 ~(FE_AG_REG_AG_PWD_PWD_PD2__M); 777 (state->m_FeAgRegAgPwd) |= 778 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; 779 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); 780 if (status < 0) 781 break; 782 783 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 784 if (status < 0) 785 break; 786 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | 787 FE_AG_REG_AG_MODE_LOP_MODE_E__M)); 788 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | 789 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC); 790 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 791 if (status < 0) 792 break; 793 /* Settle level */ 794 level = (((cfg->settleLevel) >> 4) & 795 FE_AG_REG_TGC_SET_LVL__M); 796 status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000); 797 if (status < 0) 798 break; 799 800 /* Min/max: don't care */ 801 802 /* Speed: TODO */ 803 804 /* enable AGC2 pin */ 805 { 806 u16 FeAgRegAgAgcSio = 0; 807 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); 808 if (status < 0) 809 break; 810 FeAgRegAgAgcSio &= 811 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); 812 FeAgRegAgAgcSio |= 813 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; 814 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); 815 if (status < 0) 816 break; 817 } 818 819 } while (0); 820 } else { 821 u16 AgModeLop = 0; 822 823 do { 824 /* No RF AGC control */ 825 /* Powerdown PD2, AGC2 as output, WRI source */ 826 (state->m_FeAgRegAgPwd) &= 827 ~(FE_AG_REG_AG_PWD_PWD_PD2__M); 828 (state->m_FeAgRegAgPwd) |= 829 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE; 830 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); 831 if (status < 0) 832 break; 833 834 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 835 if (status < 0) 836 break; 837 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | 838 FE_AG_REG_AG_MODE_LOP_MODE_E__M)); 839 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | 840 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); 841 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 842 if (status < 0) 843 break; 844 845 /* set FeAgRegAgAgcSio AGC2 (RF) as input */ 846 { 847 u16 FeAgRegAgAgcSio = 0; 848 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); 849 if (status < 0) 850 break; 851 FeAgRegAgAgcSio &= 852 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); 853 FeAgRegAgAgcSio |= 854 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT; 855 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); 856 if (status < 0) 857 break; 858 } 859 } while (0); 860 } 861 return status; 862 } 863 864 static int ReadIFAgc(struct drxd_state *state, u32 * pValue) 865 { 866 int status = 0; 867 868 *pValue = 0; 869 if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) { 870 u16 Value; 871 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0); 872 Value &= FE_AG_REG_GC1_AGC_DAT__M; 873 if (status >= 0) { 874 /* 3.3V 875 | 876 R1 877 | 878 Vin - R3 - * -- Vout 879 | 880 R2 881 | 882 GND 883 */ 884 u32 R1 = state->if_agc_cfg.R1; 885 u32 R2 = state->if_agc_cfg.R2; 886 u32 R3 = state->if_agc_cfg.R3; 887 888 u32 Vmax, Rpar, Vmin, Vout; 889 890 if (R2 == 0 && (R1 == 0 || R3 == 0)) 891 return 0; 892 893 Vmax = (3300 * R2) / (R1 + R2); 894 Rpar = (R2 * R3) / (R3 + R2); 895 Vmin = (3300 * Rpar) / (R1 + Rpar); 896 Vout = Vmin + ((Vmax - Vmin) * Value) / 1024; 897 898 *pValue = Vout; 899 } 900 } 901 return status; 902 } 903 904 static int load_firmware(struct drxd_state *state, const char *fw_name) 905 { 906 const struct firmware *fw; 907 908 if (request_firmware(&fw, fw_name, state->dev) < 0) { 909 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name); 910 return -EIO; 911 } 912 913 state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL); 914 if (state->microcode == NULL) { 915 release_firmware(fw); 916 printk(KERN_ERR "drxd: firmware load failure: no memory\n"); 917 return -ENOMEM; 918 } 919 920 state->microcode_length = fw->size; 921 release_firmware(fw); 922 return 0; 923 } 924 925 static int DownloadMicrocode(struct drxd_state *state, 926 const u8 *pMCImage, u32 Length) 927 { 928 u8 *pSrc; 929 u32 Address; 930 u16 nBlocks; 931 u16 BlockSize; 932 u32 offset = 0; 933 int i, status = 0; 934 935 pSrc = (u8 *) pMCImage; 936 /* We're not using Flags */ 937 /* Flags = (pSrc[0] << 8) | pSrc[1]; */ 938 pSrc += sizeof(u16); 939 offset += sizeof(u16); 940 nBlocks = (pSrc[0] << 8) | pSrc[1]; 941 pSrc += sizeof(u16); 942 offset += sizeof(u16); 943 944 for (i = 0; i < nBlocks; i++) { 945 Address = (pSrc[0] << 24) | (pSrc[1] << 16) | 946 (pSrc[2] << 8) | pSrc[3]; 947 pSrc += sizeof(u32); 948 offset += sizeof(u32); 949 950 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16); 951 pSrc += sizeof(u16); 952 offset += sizeof(u16); 953 954 /* We're not using Flags */ 955 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */ 956 pSrc += sizeof(u16); 957 offset += sizeof(u16); 958 959 /* We're not using BlockCRC */ 960 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */ 961 pSrc += sizeof(u16); 962 offset += sizeof(u16); 963 964 status = WriteBlock(state, Address, BlockSize, 965 pSrc, DRX_I2C_CLEARCRC); 966 if (status < 0) 967 break; 968 pSrc += BlockSize; 969 offset += BlockSize; 970 } 971 972 return status; 973 } 974 975 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult) 976 { 977 u32 nrRetries = 0; 978 u16 waitCmd; 979 int status; 980 981 status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0); 982 if (status < 0) 983 return status; 984 985 do { 986 nrRetries += 1; 987 if (nrRetries > DRXD_MAX_RETRIES) { 988 status = -1; 989 break; 990 } 991 status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0); 992 } while (waitCmd != 0); 993 994 if (status >= 0) 995 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0); 996 return status; 997 } 998 999 static int HI_CfgCommand(struct drxd_state *state) 1000 { 1001 int status = 0; 1002 1003 mutex_lock(&state->mutex); 1004 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); 1005 Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0); 1006 Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0); 1007 Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0); 1008 Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0); 1009 1010 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); 1011 1012 if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) == 1013 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) 1014 status = Write16(state, HI_RA_RAM_SRV_CMD__A, 1015 HI_RA_RAM_SRV_CMD_CONFIG, 0); 1016 else 1017 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL); 1018 mutex_unlock(&state->mutex); 1019 return status; 1020 } 1021 1022 static int InitHI(struct drxd_state *state) 1023 { 1024 state->hi_cfg_wakeup_key = (state->chip_adr); 1025 /* port/bridge/power down ctrl */ 1026 state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON; 1027 return HI_CfgCommand(state); 1028 } 1029 1030 static int HI_ResetCommand(struct drxd_state *state) 1031 { 1032 int status; 1033 1034 mutex_lock(&state->mutex); 1035 status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A, 1036 HI_RA_RAM_SRV_RST_KEY_ACT, 0); 1037 if (status == 0) 1038 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL); 1039 mutex_unlock(&state->mutex); 1040 msleep(1); 1041 return status; 1042 } 1043 1044 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge) 1045 { 1046 state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M); 1047 if (bEnableBridge) 1048 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON; 1049 else 1050 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF; 1051 1052 return HI_CfgCommand(state); 1053 } 1054 1055 #define HI_TR_WRITE 0x9 1056 #define HI_TR_READ 0xA 1057 #define HI_TR_READ_WRITE 0xB 1058 #define HI_TR_BROADCAST 0x4 1059 1060 #if 0 1061 static int AtomicReadBlock(struct drxd_state *state, 1062 u32 Addr, u16 DataSize, u8 *pData, u8 Flags) 1063 { 1064 int status; 1065 int i = 0; 1066 1067 /* Parameter check */ 1068 if ((!pData) || ((DataSize & 1) != 0)) 1069 return -1; 1070 1071 mutex_lock(&state->mutex); 1072 1073 do { 1074 /* Instruct HI to read n bytes */ 1075 /* TODO use proper names forthese egisters */ 1076 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0); 1077 if (status < 0) 1078 break; 1079 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0); 1080 if (status < 0) 1081 break; 1082 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0); 1083 if (status < 0) 1084 break; 1085 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0); 1086 if (status < 0) 1087 break; 1088 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0); 1089 if (status < 0) 1090 break; 1091 1092 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0); 1093 if (status < 0) 1094 break; 1095 1096 } while (0); 1097 1098 if (status >= 0) { 1099 for (i = 0; i < (DataSize / 2); i += 1) { 1100 u16 word; 1101 1102 status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i), 1103 &word, 0); 1104 if (status < 0) 1105 break; 1106 pData[2 * i] = (u8) (word & 0xFF); 1107 pData[(2 * i) + 1] = (u8) (word >> 8); 1108 } 1109 } 1110 mutex_unlock(&state->mutex); 1111 return status; 1112 } 1113 1114 static int AtomicReadReg32(struct drxd_state *state, 1115 u32 Addr, u32 *pData, u8 Flags) 1116 { 1117 u8 buf[sizeof(u32)]; 1118 int status; 1119 1120 if (!pData) 1121 return -1; 1122 status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags); 1123 *pData = (((u32) buf[0]) << 0) + 1124 (((u32) buf[1]) << 8) + 1125 (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24); 1126 return status; 1127 } 1128 #endif 1129 1130 static int StopAllProcessors(struct drxd_state *state) 1131 { 1132 return Write16(state, HI_COMM_EXEC__A, 1133 SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST); 1134 } 1135 1136 static int EnableAndResetMB(struct drxd_state *state) 1137 { 1138 if (state->type_A) { 1139 /* disable? monitor bus observe @ EC_OC */ 1140 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000); 1141 } 1142 1143 /* do inverse broadcast, followed by explicit write to HI */ 1144 Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST); 1145 Write16(state, HI_COMM_MB__A, 0x0000, 0x0000); 1146 return 0; 1147 } 1148 1149 static int InitCC(struct drxd_state *state) 1150 { 1151 if (state->osc_clock_freq == 0 || 1152 state->osc_clock_freq > 20000 || 1153 (state->osc_clock_freq % 4000) != 0) { 1154 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq); 1155 return -1; 1156 } 1157 1158 Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0); 1159 Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL | 1160 CC_REG_PLL_MODE_PUMP_CUR_12, 0); 1161 Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0); 1162 Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0); 1163 Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0); 1164 1165 return 0; 1166 } 1167 1168 static int ResetECOD(struct drxd_state *state) 1169 { 1170 int status = 0; 1171 1172 if (state->type_A) 1173 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0); 1174 else 1175 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0); 1176 1177 if (!(status < 0)) 1178 status = WriteTable(state, state->m_ResetECRAM); 1179 if (!(status < 0)) 1180 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0); 1181 return status; 1182 } 1183 1184 /* Configure PGA switch */ 1185 1186 static int SetCfgPga(struct drxd_state *state, int pgaSwitch) 1187 { 1188 int status; 1189 u16 AgModeLop = 0; 1190 u16 AgModeHip = 0; 1191 do { 1192 if (pgaSwitch) { 1193 /* PGA on */ 1194 /* fine gain */ 1195 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 1196 if (status < 0) 1197 break; 1198 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); 1199 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC; 1200 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 1201 if (status < 0) 1202 break; 1203 1204 /* coarse gain */ 1205 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); 1206 if (status < 0) 1207 break; 1208 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); 1209 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC; 1210 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); 1211 if (status < 0) 1212 break; 1213 1214 /* enable fine and coarse gain, enable AAF, 1215 no ext resistor */ 1216 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000); 1217 if (status < 0) 1218 break; 1219 } else { 1220 /* PGA off, bypass */ 1221 1222 /* fine gain */ 1223 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 1224 if (status < 0) 1225 break; 1226 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); 1227 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC; 1228 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 1229 if (status < 0) 1230 break; 1231 1232 /* coarse gain */ 1233 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); 1234 if (status < 0) 1235 break; 1236 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); 1237 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC; 1238 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); 1239 if (status < 0) 1240 break; 1241 1242 /* disable fine and coarse gain, enable AAF, 1243 no ext resistor */ 1244 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000); 1245 if (status < 0) 1246 break; 1247 } 1248 } while (0); 1249 return status; 1250 } 1251 1252 static int InitFE(struct drxd_state *state) 1253 { 1254 int status; 1255 1256 do { 1257 status = WriteTable(state, state->m_InitFE_1); 1258 if (status < 0) 1259 break; 1260 1261 if (state->type_A) { 1262 status = Write16(state, FE_AG_REG_AG_PGA_MODE__A, 1263 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 1264 0); 1265 } else { 1266 if (state->PGA) 1267 status = SetCfgPga(state, 0); 1268 else 1269 status = 1270 Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, 1271 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 1272 0); 1273 } 1274 1275 if (status < 0) 1276 break; 1277 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000); 1278 if (status < 0) 1279 break; 1280 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); 1281 if (status < 0) 1282 break; 1283 1284 status = WriteTable(state, state->m_InitFE_2); 1285 if (status < 0) 1286 break; 1287 1288 } while (0); 1289 1290 return status; 1291 } 1292 1293 static int InitFT(struct drxd_state *state) 1294 { 1295 /* 1296 norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk 1297 SC stuff 1298 */ 1299 return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000); 1300 } 1301 1302 static int SC_WaitForReady(struct drxd_state *state) 1303 { 1304 u16 curCmd; 1305 int i; 1306 1307 for (i = 0; i < DRXD_MAX_RETRIES; i += 1) { 1308 int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0); 1309 if (status == 0 || curCmd == 0) 1310 return status; 1311 } 1312 return -1; 1313 } 1314 1315 static int SC_SendCommand(struct drxd_state *state, u16 cmd) 1316 { 1317 int status = 0; 1318 u16 errCode; 1319 1320 Write16(state, SC_RA_RAM_CMD__A, cmd, 0); 1321 SC_WaitForReady(state); 1322 1323 Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0); 1324 1325 if (errCode == 0xFFFF) { 1326 printk(KERN_ERR "Command Error\n"); 1327 status = -1; 1328 } 1329 1330 return status; 1331 } 1332 1333 static int SC_ProcStartCommand(struct drxd_state *state, 1334 u16 subCmd, u16 param0, u16 param1) 1335 { 1336 int status = 0; 1337 u16 scExec; 1338 1339 mutex_lock(&state->mutex); 1340 do { 1341 Read16(state, SC_COMM_EXEC__A, &scExec, 0); 1342 if (scExec != 1) { 1343 status = -1; 1344 break; 1345 } 1346 SC_WaitForReady(state); 1347 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); 1348 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); 1349 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); 1350 1351 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START); 1352 } while (0); 1353 mutex_unlock(&state->mutex); 1354 return status; 1355 } 1356 1357 static int SC_SetPrefParamCommand(struct drxd_state *state, 1358 u16 subCmd, u16 param0, u16 param1) 1359 { 1360 int status; 1361 1362 mutex_lock(&state->mutex); 1363 do { 1364 status = SC_WaitForReady(state); 1365 if (status < 0) 1366 break; 1367 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); 1368 if (status < 0) 1369 break; 1370 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); 1371 if (status < 0) 1372 break; 1373 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); 1374 if (status < 0) 1375 break; 1376 1377 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM); 1378 if (status < 0) 1379 break; 1380 } while (0); 1381 mutex_unlock(&state->mutex); 1382 return status; 1383 } 1384 1385 #if 0 1386 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result) 1387 { 1388 int status = 0; 1389 1390 mutex_lock(&state->mutex); 1391 do { 1392 status = SC_WaitForReady(state); 1393 if (status < 0) 1394 break; 1395 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM); 1396 if (status < 0) 1397 break; 1398 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0); 1399 if (status < 0) 1400 break; 1401 } while (0); 1402 mutex_unlock(&state->mutex); 1403 return status; 1404 } 1405 #endif 1406 1407 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput) 1408 { 1409 int status; 1410 1411 do { 1412 u16 EcOcRegIprInvMpg = 0; 1413 u16 EcOcRegOcModeLop = 0; 1414 u16 EcOcRegOcModeHip = 0; 1415 u16 EcOcRegOcMpgSio = 0; 1416 1417 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */ 1418 1419 if (state->operation_mode == OM_DVBT_Diversity_Front) { 1420 if (bEnableOutput) { 1421 EcOcRegOcModeHip |= 1422 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR; 1423 } else 1424 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; 1425 EcOcRegOcModeLop |= 1426 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; 1427 } else { 1428 EcOcRegOcModeLop = state->m_EcOcRegOcModeLop; 1429 1430 if (bEnableOutput) 1431 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M)); 1432 else 1433 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; 1434 1435 /* Don't Insert RS Byte */ 1436 if (state->insert_rs_byte) { 1437 EcOcRegOcModeLop &= 1438 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M)); 1439 EcOcRegOcModeHip &= 1440 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); 1441 EcOcRegOcModeHip |= 1442 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE; 1443 } else { 1444 EcOcRegOcModeLop |= 1445 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; 1446 EcOcRegOcModeHip &= 1447 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); 1448 EcOcRegOcModeHip |= 1449 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE; 1450 } 1451 1452 /* Mode = Parallel */ 1453 if (state->enable_parallel) 1454 EcOcRegOcModeLop &= 1455 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M)); 1456 else 1457 EcOcRegOcModeLop |= 1458 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL; 1459 } 1460 /* Invert Data */ 1461 /* EcOcRegIprInvMpg |= 0x00FF; */ 1462 EcOcRegIprInvMpg &= (~(0x00FF)); 1463 1464 /* Invert Error ( we don't use the pin ) */ 1465 /* EcOcRegIprInvMpg |= 0x0100; */ 1466 EcOcRegIprInvMpg &= (~(0x0100)); 1467 1468 /* Invert Start ( we don't use the pin ) */ 1469 /* EcOcRegIprInvMpg |= 0x0200; */ 1470 EcOcRegIprInvMpg &= (~(0x0200)); 1471 1472 /* Invert Valid ( we don't use the pin ) */ 1473 /* EcOcRegIprInvMpg |= 0x0400; */ 1474 EcOcRegIprInvMpg &= (~(0x0400)); 1475 1476 /* Invert Clock */ 1477 /* EcOcRegIprInvMpg |= 0x0800; */ 1478 EcOcRegIprInvMpg &= (~(0x0800)); 1479 1480 /* EcOcRegOcModeLop =0x05; */ 1481 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0); 1482 if (status < 0) 1483 break; 1484 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0); 1485 if (status < 0) 1486 break; 1487 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000); 1488 if (status < 0) 1489 break; 1490 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0); 1491 if (status < 0) 1492 break; 1493 } while (0); 1494 return status; 1495 } 1496 1497 static int SetDeviceTypeId(struct drxd_state *state) 1498 { 1499 int status = 0; 1500 u16 deviceId = 0; 1501 1502 do { 1503 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); 1504 if (status < 0) 1505 break; 1506 /* TODO: why twice? */ 1507 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); 1508 if (status < 0) 1509 break; 1510 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId); 1511 1512 state->type_A = 0; 1513 state->PGA = 0; 1514 state->diversity = 0; 1515 if (deviceId == 0) { /* on A2 only 3975 available */ 1516 state->type_A = 1; 1517 printk(KERN_INFO "DRX3975D-A2\n"); 1518 } else { 1519 deviceId >>= 12; 1520 printk(KERN_INFO "DRX397%dD-B1\n", deviceId); 1521 switch (deviceId) { 1522 case 4: 1523 state->diversity = 1; 1524 case 3: 1525 case 7: 1526 state->PGA = 1; 1527 break; 1528 case 6: 1529 state->diversity = 1; 1530 case 5: 1531 case 8: 1532 break; 1533 default: 1534 status = -1; 1535 break; 1536 } 1537 } 1538 } while (0); 1539 1540 if (status < 0) 1541 return status; 1542 1543 /* Init Table selection */ 1544 state->m_InitAtomicRead = DRXD_InitAtomicRead; 1545 state->m_InitSC = DRXD_InitSC; 1546 state->m_ResetECRAM = DRXD_ResetECRAM; 1547 if (state->type_A) { 1548 state->m_ResetCEFR = DRXD_ResetCEFR; 1549 state->m_InitFE_1 = DRXD_InitFEA2_1; 1550 state->m_InitFE_2 = DRXD_InitFEA2_2; 1551 state->m_InitCP = DRXD_InitCPA2; 1552 state->m_InitCE = DRXD_InitCEA2; 1553 state->m_InitEQ = DRXD_InitEQA2; 1554 state->m_InitEC = DRXD_InitECA2; 1555 if (load_firmware(state, DRX_FW_FILENAME_A2)) 1556 return -EIO; 1557 } else { 1558 state->m_ResetCEFR = NULL; 1559 state->m_InitFE_1 = DRXD_InitFEB1_1; 1560 state->m_InitFE_2 = DRXD_InitFEB1_2; 1561 state->m_InitCP = DRXD_InitCPB1; 1562 state->m_InitCE = DRXD_InitCEB1; 1563 state->m_InitEQ = DRXD_InitEQB1; 1564 state->m_InitEC = DRXD_InitECB1; 1565 if (load_firmware(state, DRX_FW_FILENAME_B1)) 1566 return -EIO; 1567 } 1568 if (state->diversity) { 1569 state->m_InitDiversityFront = DRXD_InitDiversityFront; 1570 state->m_InitDiversityEnd = DRXD_InitDiversityEnd; 1571 state->m_DisableDiversity = DRXD_DisableDiversity; 1572 state->m_StartDiversityFront = DRXD_StartDiversityFront; 1573 state->m_StartDiversityEnd = DRXD_StartDiversityEnd; 1574 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ; 1575 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ; 1576 } else { 1577 state->m_InitDiversityFront = NULL; 1578 state->m_InitDiversityEnd = NULL; 1579 state->m_DisableDiversity = NULL; 1580 state->m_StartDiversityFront = NULL; 1581 state->m_StartDiversityEnd = NULL; 1582 state->m_DiversityDelay8MHZ = NULL; 1583 state->m_DiversityDelay6MHZ = NULL; 1584 } 1585 1586 return status; 1587 } 1588 1589 static int CorrectSysClockDeviation(struct drxd_state *state) 1590 { 1591 int status; 1592 s32 incr = 0; 1593 s32 nomincr = 0; 1594 u32 bandwidth = 0; 1595 u32 sysClockInHz = 0; 1596 u32 sysClockFreq = 0; /* in kHz */ 1597 s16 oscClockDeviation; 1598 s16 Diff; 1599 1600 do { 1601 /* Retrieve bandwidth and incr, sanity check */ 1602 1603 /* These accesses should be AtomicReadReg32, but that 1604 causes trouble (at least for diversity */ 1605 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0); 1606 if (status < 0) 1607 break; 1608 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0); 1609 if (status < 0) 1610 break; 1611 1612 if (state->type_A) { 1613 if ((nomincr - incr < -500) || (nomincr - incr > 500)) 1614 break; 1615 } else { 1616 if ((nomincr - incr < -2000) || (nomincr - incr > 2000)) 1617 break; 1618 } 1619 1620 switch (state->props.bandwidth_hz) { 1621 case 8000000: 1622 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; 1623 break; 1624 case 7000000: 1625 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; 1626 break; 1627 case 6000000: 1628 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; 1629 break; 1630 default: 1631 return -1; 1632 break; 1633 } 1634 1635 /* Compute new sysclock value 1636 sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */ 1637 incr += (1 << 23); 1638 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21); 1639 sysClockFreq = (u32) (sysClockInHz / 1000); 1640 /* rounding */ 1641 if ((sysClockInHz % 1000) > 500) 1642 sysClockFreq++; 1643 1644 /* Compute clock deviation in ppm */ 1645 oscClockDeviation = (u16) ((((s32) (sysClockFreq) - 1646 (s32) 1647 (state->expected_sys_clock_freq)) * 1648 1000000L) / 1649 (s32) 1650 (state->expected_sys_clock_freq)); 1651 1652 Diff = oscClockDeviation - state->osc_clock_deviation; 1653 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */ 1654 if (Diff >= -200 && Diff <= 200) { 1655 state->sys_clock_freq = (u16) sysClockFreq; 1656 if (oscClockDeviation != state->osc_clock_deviation) { 1657 if (state->config.osc_deviation) { 1658 state->config.osc_deviation(state->priv, 1659 oscClockDeviation, 1660 1); 1661 state->osc_clock_deviation = 1662 oscClockDeviation; 1663 } 1664 } 1665 /* switch OFF SRMM scan in SC */ 1666 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0); 1667 if (status < 0) 1668 break; 1669 /* overrule FE_IF internal value for 1670 proper re-locking */ 1671 status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0); 1672 if (status < 0) 1673 break; 1674 state->cscd_state = CSCD_SAVED; 1675 } 1676 } while (0); 1677 1678 return status; 1679 } 1680 1681 static int DRX_Stop(struct drxd_state *state) 1682 { 1683 int status; 1684 1685 if (state->drxd_state != DRXD_STARTED) 1686 return 0; 1687 1688 do { 1689 if (state->cscd_state != CSCD_SAVED) { 1690 u32 lock; 1691 status = DRX_GetLockStatus(state, &lock); 1692 if (status < 0) 1693 break; 1694 } 1695 1696 status = StopOC(state); 1697 if (status < 0) 1698 break; 1699 1700 state->drxd_state = DRXD_STOPPED; 1701 1702 status = ConfigureMPEGOutput(state, 0); 1703 if (status < 0) 1704 break; 1705 1706 if (state->type_A) { 1707 /* Stop relevant processors off the device */ 1708 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000); 1709 if (status < 0) 1710 break; 1711 1712 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1713 if (status < 0) 1714 break; 1715 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1716 if (status < 0) 1717 break; 1718 } else { 1719 /* Stop all processors except HI & CC & FE */ 1720 status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1721 if (status < 0) 1722 break; 1723 status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1724 if (status < 0) 1725 break; 1726 status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1727 if (status < 0) 1728 break; 1729 status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1730 if (status < 0) 1731 break; 1732 status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1733 if (status < 0) 1734 break; 1735 status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1736 if (status < 0) 1737 break; 1738 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0); 1739 if (status < 0) 1740 break; 1741 } 1742 1743 } while (0); 1744 return status; 1745 } 1746 1747 #if 0 /* Currently unused */ 1748 static int SetOperationMode(struct drxd_state *state, int oMode) 1749 { 1750 int status; 1751 1752 do { 1753 if (state->drxd_state != DRXD_STOPPED) { 1754 status = -1; 1755 break; 1756 } 1757 1758 if (oMode == state->operation_mode) { 1759 status = 0; 1760 break; 1761 } 1762 1763 if (oMode != OM_Default && !state->diversity) { 1764 status = -1; 1765 break; 1766 } 1767 1768 switch (oMode) { 1769 case OM_DVBT_Diversity_Front: 1770 status = WriteTable(state, state->m_InitDiversityFront); 1771 break; 1772 case OM_DVBT_Diversity_End: 1773 status = WriteTable(state, state->m_InitDiversityEnd); 1774 break; 1775 case OM_Default: 1776 /* We need to check how to 1777 get DRXD out of diversity */ 1778 default: 1779 status = WriteTable(state, state->m_DisableDiversity); 1780 break; 1781 } 1782 } while (0); 1783 1784 if (!status) 1785 state->operation_mode = oMode; 1786 return status; 1787 } 1788 #endif 1789 1790 static int StartDiversity(struct drxd_state *state) 1791 { 1792 int status = 0; 1793 u16 rcControl; 1794 1795 do { 1796 if (state->operation_mode == OM_DVBT_Diversity_Front) { 1797 status = WriteTable(state, state->m_StartDiversityFront); 1798 if (status < 0) 1799 break; 1800 } else if (state->operation_mode == OM_DVBT_Diversity_End) { 1801 status = WriteTable(state, state->m_StartDiversityEnd); 1802 if (status < 0) 1803 break; 1804 if (state->props.bandwidth_hz == 8000000) { 1805 status = WriteTable(state, state->m_DiversityDelay8MHZ); 1806 if (status < 0) 1807 break; 1808 } else { 1809 status = WriteTable(state, state->m_DiversityDelay6MHZ); 1810 if (status < 0) 1811 break; 1812 } 1813 1814 status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0); 1815 if (status < 0) 1816 break; 1817 rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M); 1818 rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON | 1819 /* combining enabled */ 1820 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC | 1821 B_EQ_REG_RC_SEL_CAR_PASS_A_CC | 1822 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC; 1823 status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0); 1824 if (status < 0) 1825 break; 1826 } 1827 } while (0); 1828 return status; 1829 } 1830 1831 static int SetFrequencyShift(struct drxd_state *state, 1832 u32 offsetFreq, int channelMirrored) 1833 { 1834 int negativeShift = (state->tuner_mirrors == channelMirrored); 1835 1836 /* Handle all mirroring 1837 * 1838 * Note: ADC mirroring (aliasing) is implictly handled by limiting 1839 * feFsRegAddInc to 28 bits below 1840 * (if the result before masking is more than 28 bits, this means 1841 * that the ADC is mirroring. 1842 * The masking is in fact the aliasing of the ADC) 1843 * 1844 */ 1845 1846 /* Compute register value, unsigned computation */ 1847 state->fe_fs_add_incr = MulDiv32(state->intermediate_freq + 1848 offsetFreq, 1849 1 << 28, state->sys_clock_freq); 1850 /* Remove integer part */ 1851 state->fe_fs_add_incr &= 0x0FFFFFFFL; 1852 if (negativeShift) 1853 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr); 1854 1855 /* Save the frequency shift without tunerOffset compensation 1856 for CtrlGetChannel. */ 1857 state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq, 1858 1 << 28, state->sys_clock_freq); 1859 /* Remove integer part */ 1860 state->org_fe_fs_add_incr &= 0x0FFFFFFFL; 1861 if (negativeShift) 1862 state->org_fe_fs_add_incr = ((1L << 28) - 1863 state->org_fe_fs_add_incr); 1864 1865 return Write32(state, FE_FS_REG_ADD_INC_LOP__A, 1866 state->fe_fs_add_incr, 0); 1867 } 1868 1869 static int SetCfgNoiseCalibration(struct drxd_state *state, 1870 struct SNoiseCal *noiseCal) 1871 { 1872 u16 beOptEna; 1873 int status = 0; 1874 1875 do { 1876 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0); 1877 if (status < 0) 1878 break; 1879 if (noiseCal->cpOpt) { 1880 beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); 1881 } else { 1882 beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); 1883 status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0); 1884 if (status < 0) 1885 break; 1886 } 1887 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0); 1888 if (status < 0) 1889 break; 1890 1891 if (!state->type_A) { 1892 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0); 1893 if (status < 0) 1894 break; 1895 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0); 1896 if (status < 0) 1897 break; 1898 } 1899 } while (0); 1900 1901 return status; 1902 } 1903 1904 static int DRX_Start(struct drxd_state *state, s32 off) 1905 { 1906 struct dtv_frontend_properties *p = &state->props; 1907 int status; 1908 1909 u16 transmissionParams = 0; 1910 u16 operationMode = 0; 1911 u16 qpskTdTpsPwr = 0; 1912 u16 qam16TdTpsPwr = 0; 1913 u16 qam64TdTpsPwr = 0; 1914 u32 feIfIncr = 0; 1915 u32 bandwidth = 0; 1916 int mirrorFreqSpect; 1917 1918 u16 qpskSnCeGain = 0; 1919 u16 qam16SnCeGain = 0; 1920 u16 qam64SnCeGain = 0; 1921 u16 qpskIsGainMan = 0; 1922 u16 qam16IsGainMan = 0; 1923 u16 qam64IsGainMan = 0; 1924 u16 qpskIsGainExp = 0; 1925 u16 qam16IsGainExp = 0; 1926 u16 qam64IsGainExp = 0; 1927 u16 bandwidthParam = 0; 1928 1929 if (off < 0) 1930 off = (off - 500) / 1000; 1931 else 1932 off = (off + 500) / 1000; 1933 1934 do { 1935 if (state->drxd_state != DRXD_STOPPED) 1936 return -1; 1937 status = ResetECOD(state); 1938 if (status < 0) 1939 break; 1940 if (state->type_A) { 1941 status = InitSC(state); 1942 if (status < 0) 1943 break; 1944 } else { 1945 status = InitFT(state); 1946 if (status < 0) 1947 break; 1948 status = InitCP(state); 1949 if (status < 0) 1950 break; 1951 status = InitCE(state); 1952 if (status < 0) 1953 break; 1954 status = InitEQ(state); 1955 if (status < 0) 1956 break; 1957 status = InitSC(state); 1958 if (status < 0) 1959 break; 1960 } 1961 1962 /* Restore current IF & RF AGC settings */ 1963 1964 status = SetCfgIfAgc(state, &state->if_agc_cfg); 1965 if (status < 0) 1966 break; 1967 status = SetCfgRfAgc(state, &state->rf_agc_cfg); 1968 if (status < 0) 1969 break; 1970 1971 mirrorFreqSpect = (state->props.inversion == INVERSION_ON); 1972 1973 switch (p->transmission_mode) { 1974 default: /* Not set, detect it automatically */ 1975 operationMode |= SC_RA_RAM_OP_AUTO_MODE__M; 1976 /* fall through , try first guess DRX_FFTMODE_8K */ 1977 case TRANSMISSION_MODE_8K: 1978 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K; 1979 if (state->type_A) { 1980 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000); 1981 if (status < 0) 1982 break; 1983 qpskSnCeGain = 99; 1984 qam16SnCeGain = 83; 1985 qam64SnCeGain = 67; 1986 } 1987 break; 1988 case TRANSMISSION_MODE_2K: 1989 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K; 1990 if (state->type_A) { 1991 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000); 1992 if (status < 0) 1993 break; 1994 qpskSnCeGain = 97; 1995 qam16SnCeGain = 71; 1996 qam64SnCeGain = 65; 1997 } 1998 break; 1999 } 2000 2001 switch (p->guard_interval) { 2002 case GUARD_INTERVAL_1_4: 2003 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; 2004 break; 2005 case GUARD_INTERVAL_1_8: 2006 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8; 2007 break; 2008 case GUARD_INTERVAL_1_16: 2009 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16; 2010 break; 2011 case GUARD_INTERVAL_1_32: 2012 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32; 2013 break; 2014 default: /* Not set, detect it automatically */ 2015 operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M; 2016 /* try first guess 1/4 */ 2017 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; 2018 break; 2019 } 2020 2021 switch (p->hierarchy) { 2022 case HIERARCHY_1: 2023 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1; 2024 if (state->type_A) { 2025 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000); 2026 if (status < 0) 2027 break; 2028 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000); 2029 if (status < 0) 2030 break; 2031 2032 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; 2033 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1; 2034 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1; 2035 2036 qpskIsGainMan = 2037 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; 2038 qam16IsGainMan = 2039 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; 2040 qam64IsGainMan = 2041 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; 2042 2043 qpskIsGainExp = 2044 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; 2045 qam16IsGainExp = 2046 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; 2047 qam64IsGainExp = 2048 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; 2049 } 2050 break; 2051 2052 case HIERARCHY_2: 2053 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2; 2054 if (state->type_A) { 2055 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000); 2056 if (status < 0) 2057 break; 2058 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000); 2059 if (status < 0) 2060 break; 2061 2062 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; 2063 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2; 2064 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2; 2065 2066 qpskIsGainMan = 2067 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; 2068 qam16IsGainMan = 2069 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE; 2070 qam64IsGainMan = 2071 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE; 2072 2073 qpskIsGainExp = 2074 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; 2075 qam16IsGainExp = 2076 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE; 2077 qam64IsGainExp = 2078 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE; 2079 } 2080 break; 2081 case HIERARCHY_4: 2082 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4; 2083 if (state->type_A) { 2084 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000); 2085 if (status < 0) 2086 break; 2087 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000); 2088 if (status < 0) 2089 break; 2090 2091 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; 2092 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4; 2093 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4; 2094 2095 qpskIsGainMan = 2096 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; 2097 qam16IsGainMan = 2098 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE; 2099 qam64IsGainMan = 2100 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE; 2101 2102 qpskIsGainExp = 2103 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; 2104 qam16IsGainExp = 2105 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE; 2106 qam64IsGainExp = 2107 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE; 2108 } 2109 break; 2110 case HIERARCHY_AUTO: 2111 default: 2112 /* Not set, detect it automatically, start with none */ 2113 operationMode |= SC_RA_RAM_OP_AUTO_HIER__M; 2114 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO; 2115 if (state->type_A) { 2116 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000); 2117 if (status < 0) 2118 break; 2119 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000); 2120 if (status < 0) 2121 break; 2122 2123 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK; 2124 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN; 2125 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN; 2126 2127 qpskIsGainMan = 2128 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE; 2129 qam16IsGainMan = 2130 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; 2131 qam64IsGainMan = 2132 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; 2133 2134 qpskIsGainExp = 2135 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE; 2136 qam16IsGainExp = 2137 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; 2138 qam64IsGainExp = 2139 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; 2140 } 2141 break; 2142 } 2143 status = status; 2144 if (status < 0) 2145 break; 2146 2147 switch (p->modulation) { 2148 default: 2149 operationMode |= SC_RA_RAM_OP_AUTO_CONST__M; 2150 /* fall through , try first guess 2151 DRX_CONSTELLATION_QAM64 */ 2152 case QAM_64: 2153 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64; 2154 if (state->type_A) { 2155 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000); 2156 if (status < 0) 2157 break; 2158 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000); 2159 if (status < 0) 2160 break; 2161 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000); 2162 if (status < 0) 2163 break; 2164 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000); 2165 if (status < 0) 2166 break; 2167 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000); 2168 if (status < 0) 2169 break; 2170 2171 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000); 2172 if (status < 0) 2173 break; 2174 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000); 2175 if (status < 0) 2176 break; 2177 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000); 2178 if (status < 0) 2179 break; 2180 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000); 2181 if (status < 0) 2182 break; 2183 } 2184 break; 2185 case QPSK: 2186 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK; 2187 if (state->type_A) { 2188 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000); 2189 if (status < 0) 2190 break; 2191 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000); 2192 if (status < 0) 2193 break; 2194 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); 2195 if (status < 0) 2196 break; 2197 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000); 2198 if (status < 0) 2199 break; 2200 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); 2201 if (status < 0) 2202 break; 2203 2204 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000); 2205 if (status < 0) 2206 break; 2207 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000); 2208 if (status < 0) 2209 break; 2210 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000); 2211 if (status < 0) 2212 break; 2213 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000); 2214 if (status < 0) 2215 break; 2216 } 2217 break; 2218 2219 case QAM_16: 2220 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16; 2221 if (state->type_A) { 2222 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000); 2223 if (status < 0) 2224 break; 2225 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000); 2226 if (status < 0) 2227 break; 2228 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); 2229 if (status < 0) 2230 break; 2231 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000); 2232 if (status < 0) 2233 break; 2234 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); 2235 if (status < 0) 2236 break; 2237 2238 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000); 2239 if (status < 0) 2240 break; 2241 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000); 2242 if (status < 0) 2243 break; 2244 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000); 2245 if (status < 0) 2246 break; 2247 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000); 2248 if (status < 0) 2249 break; 2250 } 2251 break; 2252 2253 } 2254 status = status; 2255 if (status < 0) 2256 break; 2257 2258 switch (DRX_CHANNEL_HIGH) { 2259 default: 2260 case DRX_CHANNEL_AUTO: 2261 case DRX_CHANNEL_LOW: 2262 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO; 2263 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000); 2264 if (status < 0) 2265 break; 2266 break; 2267 case DRX_CHANNEL_HIGH: 2268 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI; 2269 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000); 2270 if (status < 0) 2271 break; 2272 break; 2273 2274 } 2275 2276 switch (p->code_rate_HP) { 2277 case FEC_1_2: 2278 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2; 2279 if (state->type_A) { 2280 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000); 2281 if (status < 0) 2282 break; 2283 } 2284 break; 2285 default: 2286 operationMode |= SC_RA_RAM_OP_AUTO_RATE__M; 2287 case FEC_2_3: 2288 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3; 2289 if (state->type_A) { 2290 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000); 2291 if (status < 0) 2292 break; 2293 } 2294 break; 2295 case FEC_3_4: 2296 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4; 2297 if (state->type_A) { 2298 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000); 2299 if (status < 0) 2300 break; 2301 } 2302 break; 2303 case FEC_5_6: 2304 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6; 2305 if (state->type_A) { 2306 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000); 2307 if (status < 0) 2308 break; 2309 } 2310 break; 2311 case FEC_7_8: 2312 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8; 2313 if (state->type_A) { 2314 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000); 2315 if (status < 0) 2316 break; 2317 } 2318 break; 2319 } 2320 status = status; 2321 if (status < 0) 2322 break; 2323 2324 /* First determine real bandwidth (Hz) */ 2325 /* Also set delay for impulse noise cruncher (only A2) */ 2326 /* Also set parameters for EC_OC fix, note 2327 EC_OC_REG_TMD_HIL_MAR is changed 2328 by SC for fix for some 8K,1/8 guard but is restored by 2329 InitEC and ResetEC 2330 functions */ 2331 switch (p->bandwidth_hz) { 2332 case 0: 2333 p->bandwidth_hz = 8000000; 2334 /* fall through */ 2335 case 8000000: 2336 /* (64/7)*(8/8)*1000000 */ 2337 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; 2338 2339 bandwidthParam = 0; 2340 status = Write16(state, 2341 FE_AG_REG_IND_DEL__A, 50, 0x0000); 2342 break; 2343 case 7000000: 2344 /* (64/7)*(7/8)*1000000 */ 2345 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; 2346 bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */ 2347 status = Write16(state, 2348 FE_AG_REG_IND_DEL__A, 59, 0x0000); 2349 break; 2350 case 6000000: 2351 /* (64/7)*(6/8)*1000000 */ 2352 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; 2353 bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */ 2354 status = Write16(state, 2355 FE_AG_REG_IND_DEL__A, 71, 0x0000); 2356 break; 2357 default: 2358 status = -EINVAL; 2359 } 2360 if (status < 0) 2361 break; 2362 2363 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000); 2364 if (status < 0) 2365 break; 2366 2367 { 2368 u16 sc_config; 2369 status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0); 2370 if (status < 0) 2371 break; 2372 2373 /* enable SLAVE mode in 2k 1/32 to 2374 prevent timing change glitches */ 2375 if ((p->transmission_mode == TRANSMISSION_MODE_2K) && 2376 (p->guard_interval == GUARD_INTERVAL_1_32)) { 2377 /* enable slave */ 2378 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M; 2379 } else { 2380 /* disable slave */ 2381 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M; 2382 } 2383 status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0); 2384 if (status < 0) 2385 break; 2386 } 2387 2388 status = SetCfgNoiseCalibration(state, &state->noise_cal); 2389 if (status < 0) 2390 break; 2391 2392 if (state->cscd_state == CSCD_INIT) { 2393 /* switch on SRMM scan in SC */ 2394 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000); 2395 if (status < 0) 2396 break; 2397 /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/ 2398 state->cscd_state = CSCD_SET; 2399 } 2400 2401 /* Now compute FE_IF_REG_INCR */ 2402 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) => 2403 ((SysFreq / BandWidth) * (2^21) ) - (2^23) */ 2404 feIfIncr = MulDiv32(state->sys_clock_freq * 1000, 2405 (1ULL << 21), bandwidth) - (1 << 23); 2406 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000); 2407 if (status < 0) 2408 break; 2409 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000); 2410 if (status < 0) 2411 break; 2412 /* Bandwidth setting done */ 2413 2414 /* Mirror & frequency offset */ 2415 SetFrequencyShift(state, off, mirrorFreqSpect); 2416 2417 /* Start SC, write channel settings to SC */ 2418 2419 /* Enable SC after setting all other parameters */ 2420 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000); 2421 if (status < 0) 2422 break; 2423 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000); 2424 if (status < 0) 2425 break; 2426 2427 /* Write SC parameter registers, operation mode */ 2428 #if 1 2429 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M | 2430 SC_RA_RAM_OP_AUTO_GUARD__M | 2431 SC_RA_RAM_OP_AUTO_CONST__M | 2432 SC_RA_RAM_OP_AUTO_HIER__M | 2433 SC_RA_RAM_OP_AUTO_RATE__M); 2434 #endif 2435 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode); 2436 if (status < 0) 2437 break; 2438 2439 /* Start correct processes to get in lock */ 2440 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN); 2441 if (status < 0) 2442 break; 2443 2444 status = StartOC(state); 2445 if (status < 0) 2446 break; 2447 2448 if (state->operation_mode != OM_Default) { 2449 status = StartDiversity(state); 2450 if (status < 0) 2451 break; 2452 } 2453 2454 state->drxd_state = DRXD_STARTED; 2455 } while (0); 2456 2457 return status; 2458 } 2459 2460 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency) 2461 { 2462 u32 ulRfAgcOutputLevel = 0xffffffff; 2463 u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */ 2464 u32 ulRfAgcMinLevel = 0; /* Currently unused */ 2465 u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */ 2466 u32 ulRfAgcSpeed = 0; /* Currently unused */ 2467 u32 ulRfAgcMode = 0; /*2; Off */ 2468 u32 ulRfAgcR1 = 820; 2469 u32 ulRfAgcR2 = 2200; 2470 u32 ulRfAgcR3 = 150; 2471 u32 ulIfAgcMode = 0; /* Auto */ 2472 u32 ulIfAgcOutputLevel = 0xffffffff; 2473 u32 ulIfAgcSettleLevel = 0xffffffff; 2474 u32 ulIfAgcMinLevel = 0xffffffff; 2475 u32 ulIfAgcMaxLevel = 0xffffffff; 2476 u32 ulIfAgcSpeed = 0xffffffff; 2477 u32 ulIfAgcR1 = 820; 2478 u32 ulIfAgcR2 = 2200; 2479 u32 ulIfAgcR3 = 150; 2480 u32 ulClock = state->config.clock; 2481 u32 ulSerialMode = 0; 2482 u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */ 2483 u32 ulHiI2cDelay = HI_I2C_DELAY; 2484 u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY; 2485 u32 ulHiI2cPatch = 0; 2486 u32 ulEnvironment = APPENV_PORTABLE; 2487 u32 ulEnvironmentDiversity = APPENV_MOBILE; 2488 u32 ulIFFilter = IFFILTER_SAW; 2489 2490 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2491 state->if_agc_cfg.outputLevel = 0; 2492 state->if_agc_cfg.settleLevel = 140; 2493 state->if_agc_cfg.minOutputLevel = 0; 2494 state->if_agc_cfg.maxOutputLevel = 1023; 2495 state->if_agc_cfg.speed = 904; 2496 2497 if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { 2498 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER; 2499 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel); 2500 } 2501 2502 if (ulIfAgcMode == 0 && 2503 ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX && 2504 ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX && 2505 ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX && 2506 ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) { 2507 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2508 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel); 2509 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel); 2510 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel); 2511 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed); 2512 } 2513 2514 state->if_agc_cfg.R1 = (u16) (ulIfAgcR1); 2515 state->if_agc_cfg.R2 = (u16) (ulIfAgcR2); 2516 state->if_agc_cfg.R3 = (u16) (ulIfAgcR3); 2517 2518 state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1); 2519 state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2); 2520 state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3); 2521 2522 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2523 /* rest of the RFAgcCfg structure currently unused */ 2524 if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { 2525 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER; 2526 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel); 2527 } 2528 2529 if (ulRfAgcMode == 0 && 2530 ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX && 2531 ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX && 2532 ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX && 2533 ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) { 2534 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2535 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel); 2536 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel); 2537 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel); 2538 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed); 2539 } 2540 2541 if (ulRfAgcMode == 2) 2542 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF; 2543 2544 if (ulEnvironment <= 2) 2545 state->app_env_default = (enum app_env) 2546 (ulEnvironment); 2547 if (ulEnvironmentDiversity <= 2) 2548 state->app_env_diversity = (enum app_env) 2549 (ulEnvironmentDiversity); 2550 2551 if (ulIFFilter == IFFILTER_DISCRETE) { 2552 /* discrete filter */ 2553 state->noise_cal.cpOpt = 0; 2554 state->noise_cal.cpNexpOfs = 40; 2555 state->noise_cal.tdCal2k = -40; 2556 state->noise_cal.tdCal8k = -24; 2557 } else { 2558 /* SAW filter */ 2559 state->noise_cal.cpOpt = 1; 2560 state->noise_cal.cpNexpOfs = 0; 2561 state->noise_cal.tdCal2k = -21; 2562 state->noise_cal.tdCal8k = -24; 2563 } 2564 state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop); 2565 2566 state->chip_adr = (state->config.demod_address << 1) | 1; 2567 switch (ulHiI2cPatch) { 2568 case 1: 2569 state->m_HiI2cPatch = DRXD_HiI2cPatch_1; 2570 break; 2571 case 3: 2572 state->m_HiI2cPatch = DRXD_HiI2cPatch_3; 2573 break; 2574 default: 2575 state->m_HiI2cPatch = NULL; 2576 } 2577 2578 /* modify tuner and clock attributes */ 2579 state->intermediate_freq = (u16) (IntermediateFrequency / 1000); 2580 /* expected system clock frequency in kHz */ 2581 state->expected_sys_clock_freq = 48000; 2582 /* real system clock frequency in kHz */ 2583 state->sys_clock_freq = 48000; 2584 state->osc_clock_freq = (u16) ulClock; 2585 state->osc_clock_deviation = 0; 2586 state->cscd_state = CSCD_INIT; 2587 state->drxd_state = DRXD_UNINITIALIZED; 2588 2589 state->PGA = 0; 2590 state->type_A = 0; 2591 state->tuner_mirrors = 0; 2592 2593 /* modify MPEG output attributes */ 2594 state->insert_rs_byte = state->config.insert_rs_byte; 2595 state->enable_parallel = (ulSerialMode != 1); 2596 2597 /* Timing div, 250ns/Psys */ 2598 /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */ 2599 2600 state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) * 2601 ulHiI2cDelay) / 1000; 2602 /* Bridge delay, uses oscilator clock */ 2603 /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */ 2604 state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) * 2605 ulHiI2cBridgeDelay) / 1000; 2606 2607 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; 2608 /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */ 2609 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; 2610 return 0; 2611 } 2612 2613 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size) 2614 { 2615 int status = 0; 2616 u32 driverVersion; 2617 2618 if (state->init_done) 2619 return 0; 2620 2621 CDRXD(state, state->config.IF ? state->config.IF : 36000000); 2622 2623 do { 2624 state->operation_mode = OM_Default; 2625 2626 status = SetDeviceTypeId(state); 2627 if (status < 0) 2628 break; 2629 2630 /* Apply I2c address patch to B1 */ 2631 if (!state->type_A && state->m_HiI2cPatch != NULL) { 2632 status = WriteTable(state, state->m_HiI2cPatch); 2633 if (status < 0) 2634 break; 2635 } 2636 2637 if (state->type_A) { 2638 /* HI firmware patch for UIO readout, 2639 avoid clearing of result register */ 2640 status = Write16(state, 0x43012D, 0x047f, 0); 2641 if (status < 0) 2642 break; 2643 } 2644 2645 status = HI_ResetCommand(state); 2646 if (status < 0) 2647 break; 2648 2649 status = StopAllProcessors(state); 2650 if (status < 0) 2651 break; 2652 status = InitCC(state); 2653 if (status < 0) 2654 break; 2655 2656 state->osc_clock_deviation = 0; 2657 2658 if (state->config.osc_deviation) 2659 state->osc_clock_deviation = 2660 state->config.osc_deviation(state->priv, 0, 0); 2661 { 2662 /* Handle clock deviation */ 2663 s32 devB; 2664 s32 devA = (s32) (state->osc_clock_deviation) * 2665 (s32) (state->expected_sys_clock_freq); 2666 /* deviation in kHz */ 2667 s32 deviation = (devA / (1000000L)); 2668 /* rounding, signed */ 2669 if (devA > 0) 2670 devB = (2); 2671 else 2672 devB = (-2); 2673 if ((devB * (devA % 1000000L) > 1000000L)) { 2674 /* add +1 or -1 */ 2675 deviation += (devB / 2); 2676 } 2677 2678 state->sys_clock_freq = 2679 (u16) ((state->expected_sys_clock_freq) + 2680 deviation); 2681 } 2682 status = InitHI(state); 2683 if (status < 0) 2684 break; 2685 status = InitAtomicRead(state); 2686 if (status < 0) 2687 break; 2688 2689 status = EnableAndResetMB(state); 2690 if (status < 0) 2691 break; 2692 if (state->type_A) { 2693 status = ResetCEFR(state); 2694 if (status < 0) 2695 break; 2696 } 2697 if (fw) { 2698 status = DownloadMicrocode(state, fw, fw_size); 2699 if (status < 0) 2700 break; 2701 } else { 2702 status = DownloadMicrocode(state, state->microcode, state->microcode_length); 2703 if (status < 0) 2704 break; 2705 } 2706 2707 if (state->PGA) { 2708 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; 2709 SetCfgPga(state, 0); /* PGA = 0 dB */ 2710 } else { 2711 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; 2712 } 2713 2714 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; 2715 2716 status = InitFE(state); 2717 if (status < 0) 2718 break; 2719 status = InitFT(state); 2720 if (status < 0) 2721 break; 2722 status = InitCP(state); 2723 if (status < 0) 2724 break; 2725 status = InitCE(state); 2726 if (status < 0) 2727 break; 2728 status = InitEQ(state); 2729 if (status < 0) 2730 break; 2731 status = InitEC(state); 2732 if (status < 0) 2733 break; 2734 status = InitSC(state); 2735 if (status < 0) 2736 break; 2737 2738 status = SetCfgIfAgc(state, &state->if_agc_cfg); 2739 if (status < 0) 2740 break; 2741 status = SetCfgRfAgc(state, &state->rf_agc_cfg); 2742 if (status < 0) 2743 break; 2744 2745 state->cscd_state = CSCD_INIT; 2746 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 2747 if (status < 0) 2748 break; 2749 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 2750 if (status < 0) 2751 break; 2752 2753 driverVersion = (((VERSION_MAJOR / 10) << 4) + 2754 (VERSION_MAJOR % 10)) << 24; 2755 driverVersion += (((VERSION_MINOR / 10) << 4) + 2756 (VERSION_MINOR % 10)) << 16; 2757 driverVersion += ((VERSION_PATCH / 1000) << 12) + 2758 ((VERSION_PATCH / 100) << 8) + 2759 ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10); 2760 2761 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0); 2762 if (status < 0) 2763 break; 2764 2765 status = StopOC(state); 2766 if (status < 0) 2767 break; 2768 2769 state->drxd_state = DRXD_STOPPED; 2770 state->init_done = 1; 2771 status = 0; 2772 } while (0); 2773 return status; 2774 } 2775 2776 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus) 2777 { 2778 DRX_GetLockStatus(state, pLockStatus); 2779 2780 /*if (*pLockStatus&DRX_LOCK_MPEG) */ 2781 if (*pLockStatus & DRX_LOCK_FEC) { 2782 ConfigureMPEGOutput(state, 1); 2783 /* Get status again, in case we have MPEG lock now */ 2784 /*DRX_GetLockStatus(state, pLockStatus); */ 2785 } 2786 2787 return 0; 2788 } 2789 2790 /****************************************************************************/ 2791 /****************************************************************************/ 2792 /****************************************************************************/ 2793 2794 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength) 2795 { 2796 struct drxd_state *state = fe->demodulator_priv; 2797 u32 value; 2798 int res; 2799 2800 res = ReadIFAgc(state, &value); 2801 if (res < 0) 2802 *strength = 0; 2803 else 2804 *strength = 0xffff - (value << 4); 2805 return 0; 2806 } 2807 2808 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status) 2809 { 2810 struct drxd_state *state = fe->demodulator_priv; 2811 u32 lock; 2812 2813 DRXD_status(state, &lock); 2814 *status = 0; 2815 /* No MPEG lock in V255 firmware, bug ? */ 2816 #if 1 2817 if (lock & DRX_LOCK_MPEG) 2818 *status |= FE_HAS_LOCK; 2819 #else 2820 if (lock & DRX_LOCK_FEC) 2821 *status |= FE_HAS_LOCK; 2822 #endif 2823 if (lock & DRX_LOCK_FEC) 2824 *status |= FE_HAS_VITERBI | FE_HAS_SYNC; 2825 if (lock & DRX_LOCK_DEMOD) 2826 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; 2827 2828 return 0; 2829 } 2830 2831 static int drxd_init(struct dvb_frontend *fe) 2832 { 2833 struct drxd_state *state = fe->demodulator_priv; 2834 2835 return DRXD_init(state, NULL, 0); 2836 } 2837 2838 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff) 2839 { 2840 struct drxd_state *state = fe->demodulator_priv; 2841 2842 if (state->config.disable_i2c_gate_ctrl == 1) 2843 return 0; 2844 2845 return DRX_ConfigureI2CBridge(state, onoff); 2846 } 2847 2848 static int drxd_get_tune_settings(struct dvb_frontend *fe, 2849 struct dvb_frontend_tune_settings *sets) 2850 { 2851 sets->min_delay_ms = 10000; 2852 sets->max_drift = 0; 2853 sets->step_size = 0; 2854 return 0; 2855 } 2856 2857 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber) 2858 { 2859 *ber = 0; 2860 return 0; 2861 } 2862 2863 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr) 2864 { 2865 *snr = 0; 2866 return 0; 2867 } 2868 2869 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks) 2870 { 2871 *ucblocks = 0; 2872 return 0; 2873 } 2874 2875 static int drxd_sleep(struct dvb_frontend *fe) 2876 { 2877 struct drxd_state *state = fe->demodulator_priv; 2878 2879 ConfigureMPEGOutput(state, 0); 2880 return 0; 2881 } 2882 2883 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) 2884 { 2885 return drxd_config_i2c(fe, enable); 2886 } 2887 2888 static int drxd_set_frontend(struct dvb_frontend *fe) 2889 { 2890 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 2891 struct drxd_state *state = fe->demodulator_priv; 2892 s32 off = 0; 2893 2894 state->props = *p; 2895 DRX_Stop(state); 2896 2897 if (fe->ops.tuner_ops.set_params) { 2898 fe->ops.tuner_ops.set_params(fe); 2899 if (fe->ops.i2c_gate_ctrl) 2900 fe->ops.i2c_gate_ctrl(fe, 0); 2901 } 2902 2903 msleep(200); 2904 2905 return DRX_Start(state, off); 2906 } 2907 2908 static void drxd_release(struct dvb_frontend *fe) 2909 { 2910 struct drxd_state *state = fe->demodulator_priv; 2911 2912 kfree(state); 2913 } 2914 2915 static const struct dvb_frontend_ops drxd_ops = { 2916 .delsys = { SYS_DVBT}, 2917 .info = { 2918 .name = "Micronas DRXD DVB-T", 2919 .frequency_min = 47125000, 2920 .frequency_max = 855250000, 2921 .frequency_stepsize = 166667, 2922 .frequency_tolerance = 0, 2923 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | 2924 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | 2925 FE_CAN_FEC_AUTO | 2926 FE_CAN_QAM_16 | FE_CAN_QAM_64 | 2927 FE_CAN_QAM_AUTO | 2928 FE_CAN_TRANSMISSION_MODE_AUTO | 2929 FE_CAN_GUARD_INTERVAL_AUTO | 2930 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS}, 2931 2932 .release = drxd_release, 2933 .init = drxd_init, 2934 .sleep = drxd_sleep, 2935 .i2c_gate_ctrl = drxd_i2c_gate_ctrl, 2936 2937 .set_frontend = drxd_set_frontend, 2938 .get_tune_settings = drxd_get_tune_settings, 2939 2940 .read_status = drxd_read_status, 2941 .read_ber = drxd_read_ber, 2942 .read_signal_strength = drxd_read_signal_strength, 2943 .read_snr = drxd_read_snr, 2944 .read_ucblocks = drxd_read_ucblocks, 2945 }; 2946 2947 struct dvb_frontend *drxd_attach(const struct drxd_config *config, 2948 void *priv, struct i2c_adapter *i2c, 2949 struct device *dev) 2950 { 2951 struct drxd_state *state = NULL; 2952 2953 state = kzalloc(sizeof(*state), GFP_KERNEL); 2954 if (!state) 2955 return NULL; 2956 2957 state->ops = drxd_ops; 2958 state->dev = dev; 2959 state->config = *config; 2960 state->i2c = i2c; 2961 state->priv = priv; 2962 2963 mutex_init(&state->mutex); 2964 2965 if (Read16(state, 0, NULL, 0) < 0) 2966 goto error; 2967 2968 state->frontend.ops = drxd_ops; 2969 state->frontend.demodulator_priv = state; 2970 ConfigureMPEGOutput(state, 0); 2971 /* add few initialization to allow gate control */ 2972 CDRXD(state, state->config.IF ? state->config.IF : 36000000); 2973 InitHI(state); 2974 2975 return &state->frontend; 2976 2977 error: 2978 printk(KERN_ERR "drxd: not found\n"); 2979 kfree(state); 2980 return NULL; 2981 } 2982 EXPORT_SYMBOL(drxd_attach); 2983 2984 MODULE_DESCRIPTION("DRXD driver"); 2985 MODULE_AUTHOR("Micronas"); 2986 MODULE_LICENSE("GPL"); 2987