xref: /linux/drivers/media/dvb-frontends/drxd_hard.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4  *
5  * Copyright (C) 2003-2007 Micronas
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/moduleparam.h>
11 #include <linux/init.h>
12 #include <linux/delay.h>
13 #include <linux/firmware.h>
14 #include <linux/i2c.h>
15 #include <asm/div64.h>
16 
17 #include <media/dvb_frontend.h>
18 #include "drxd.h"
19 #include "drxd_firm.h"
20 
21 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
22 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
23 
24 #define CHUNK_SIZE 48
25 
26 #define DRX_I2C_RMW           0x10
27 #define DRX_I2C_BROADCAST     0x20
28 #define DRX_I2C_CLEARCRC      0x80
29 #define DRX_I2C_SINGLE_MASTER 0xC0
30 #define DRX_I2C_MODEFLAGS     0xC0
31 #define DRX_I2C_FLAGS         0xF0
32 
33 #define DEFAULT_LOCK_TIMEOUT    1100
34 
35 #define DRX_CHANNEL_AUTO 0
36 #define DRX_CHANNEL_HIGH 1
37 #define DRX_CHANNEL_LOW  2
38 
39 #define DRX_LOCK_MPEG  1
40 #define DRX_LOCK_FEC   2
41 #define DRX_LOCK_DEMOD 4
42 
43 /****************************************************************************/
44 
45 enum CSCDState {
46 	CSCD_INIT = 0,
47 	CSCD_SET,
48 	CSCD_SAVED
49 };
50 
51 enum CDrxdState {
52 	DRXD_UNINITIALIZED = 0,
53 	DRXD_STOPPED,
54 	DRXD_STARTED
55 };
56 
57 enum AGC_CTRL_MODE {
58 	AGC_CTRL_AUTO = 0,
59 	AGC_CTRL_USER,
60 	AGC_CTRL_OFF
61 };
62 
63 enum OperationMode {
64 	OM_Default,
65 	OM_DVBT_Diversity_Front,
66 	OM_DVBT_Diversity_End
67 };
68 
69 struct SCfgAgc {
70 	enum AGC_CTRL_MODE ctrlMode;
71 	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
72 	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
73 	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
74 	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
75 	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
76 
77 	u16 R1;
78 	u16 R2;
79 	u16 R3;
80 };
81 
82 struct SNoiseCal {
83 	int cpOpt;
84 	short cpNexpOfs;
85 	short tdCal2k;
86 	short tdCal8k;
87 };
88 
89 enum app_env {
90 	APPENV_STATIC = 0,
91 	APPENV_PORTABLE = 1,
92 	APPENV_MOBILE = 2
93 };
94 
95 enum EIFFilter {
96 	IFFILTER_SAW = 0,
97 	IFFILTER_DISCRETE = 1
98 };
99 
100 struct drxd_state {
101 	struct dvb_frontend frontend;
102 	struct dvb_frontend_ops ops;
103 	struct dtv_frontend_properties props;
104 
105 	const struct firmware *fw;
106 	struct device *dev;
107 
108 	struct i2c_adapter *i2c;
109 	void *priv;
110 	struct drxd_config config;
111 
112 	int i2c_access;
113 	int init_done;
114 	struct mutex mutex;
115 
116 	u8 chip_adr;
117 	u16 hi_cfg_timing_div;
118 	u16 hi_cfg_bridge_delay;
119 	u16 hi_cfg_wakeup_key;
120 	u16 hi_cfg_ctrl;
121 
122 	u16 intermediate_freq;
123 	u16 osc_clock_freq;
124 
125 	enum CSCDState cscd_state;
126 	enum CDrxdState drxd_state;
127 
128 	u16 sys_clock_freq;
129 	s16 osc_clock_deviation;
130 	u16 expected_sys_clock_freq;
131 
132 	u16 insert_rs_byte;
133 	u16 enable_parallel;
134 
135 	int operation_mode;
136 
137 	struct SCfgAgc if_agc_cfg;
138 	struct SCfgAgc rf_agc_cfg;
139 
140 	struct SNoiseCal noise_cal;
141 
142 	u32 fe_fs_add_incr;
143 	u32 org_fe_fs_add_incr;
144 	u16 current_fe_if_incr;
145 
146 	u16 m_FeAgRegAgPwd;
147 	u16 m_FeAgRegAgAgcSio;
148 
149 	u16 m_EcOcRegOcModeLop;
150 	u16 m_EcOcRegSncSncLvl;
151 	u8 *m_InitAtomicRead;
152 	u8 *m_HiI2cPatch;
153 
154 	u8 *m_ResetCEFR;
155 	u8 *m_InitFE_1;
156 	u8 *m_InitFE_2;
157 	u8 *m_InitCP;
158 	u8 *m_InitCE;
159 	u8 *m_InitEQ;
160 	u8 *m_InitSC;
161 	u8 *m_InitEC;
162 	u8 *m_ResetECRAM;
163 	u8 *m_InitDiversityFront;
164 	u8 *m_InitDiversityEnd;
165 	u8 *m_DisableDiversity;
166 	u8 *m_StartDiversityFront;
167 	u8 *m_StartDiversityEnd;
168 
169 	u8 *m_DiversityDelay8MHZ;
170 	u8 *m_DiversityDelay6MHZ;
171 
172 	u8 *microcode;
173 	u32 microcode_length;
174 
175 	int type_A;
176 	int PGA;
177 	int diversity;
178 	int tuner_mirrors;
179 
180 	enum app_env app_env_default;
181 	enum app_env app_env_diversity;
182 
183 };
184 
185 /****************************************************************************/
186 /* I2C **********************************************************************/
187 /****************************************************************************/
188 
189 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
190 {
191 	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
192 
193 	if (i2c_transfer(adap, &msg, 1) != 1)
194 		return -1;
195 	return 0;
196 }
197 
198 static int i2c_read(struct i2c_adapter *adap,
199 		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
200 {
201 	struct i2c_msg msgs[2] = {
202 		{
203 			.addr = adr, .flags = 0,
204 			.buf = msg, .len = len
205 		}, {
206 			.addr = adr, .flags = I2C_M_RD,
207 			.buf = answ, .len = alen
208 		}
209 	};
210 	if (i2c_transfer(adap, msgs, 2) != 2)
211 		return -1;
212 	return 0;
213 }
214 
215 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
216 {
217 	u64 tmp64;
218 
219 	tmp64 = (u64)a * (u64)b;
220 	do_div(tmp64, c);
221 
222 	return (u32) tmp64;
223 }
224 
225 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
226 {
227 	u8 adr = state->config.demod_address;
228 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
229 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
230 	};
231 	u8 mm2[2];
232 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
233 		return -1;
234 	if (data)
235 		*data = mm2[0] | (mm2[1] << 8);
236 	return mm2[0] | (mm2[1] << 8);
237 }
238 
239 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
240 {
241 	u8 adr = state->config.demod_address;
242 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
243 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
244 	};
245 	u8 mm2[4];
246 
247 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
248 		return -1;
249 	if (data)
250 		*data =
251 		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
252 	return 0;
253 }
254 
255 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
256 {
257 	u8 adr = state->config.demod_address;
258 	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
259 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
260 		data & 0xff, (data >> 8) & 0xff
261 	};
262 
263 	if (i2c_write(state->i2c, adr, mm, 6) < 0)
264 		return -1;
265 	return 0;
266 }
267 
268 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
269 {
270 	u8 adr = state->config.demod_address;
271 	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
272 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
273 		data & 0xff, (data >> 8) & 0xff,
274 		(data >> 16) & 0xff, (data >> 24) & 0xff
275 	};
276 
277 	if (i2c_write(state->i2c, adr, mm, 8) < 0)
278 		return -1;
279 	return 0;
280 }
281 
282 static int write_chunk(struct drxd_state *state,
283 		       u32 reg, u8 *data, u32 len, u8 flags)
284 {
285 	u8 adr = state->config.demod_address;
286 	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
287 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
288 	};
289 	int i;
290 
291 	for (i = 0; i < len; i++)
292 		mm[4 + i] = data[i];
293 	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
294 		printk(KERN_ERR "error in write_chunk\n");
295 		return -1;
296 	}
297 	return 0;
298 }
299 
300 static int WriteBlock(struct drxd_state *state,
301 		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
302 {
303 	while (BlockSize > 0) {
304 		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
305 
306 		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
307 			return -1;
308 		pBlock += Chunk;
309 		Address += (Chunk >> 1);
310 		BlockSize -= Chunk;
311 	}
312 	return 0;
313 }
314 
315 static int WriteTable(struct drxd_state *state, u8 * pTable)
316 {
317 	int status = 0;
318 
319 	if (!pTable)
320 		return 0;
321 
322 	while (!status) {
323 		u16 Length;
324 		u32 Address = pTable[0] | (pTable[1] << 8) |
325 		    (pTable[2] << 16) | (pTable[3] << 24);
326 
327 		if (Address == 0xFFFFFFFF)
328 			break;
329 		pTable += sizeof(u32);
330 
331 		Length = pTable[0] | (pTable[1] << 8);
332 		pTable += sizeof(u16);
333 		if (!Length)
334 			break;
335 		status = WriteBlock(state, Address, Length * 2, pTable, 0);
336 		pTable += (Length * 2);
337 	}
338 	return status;
339 }
340 
341 /****************************************************************************/
342 /****************************************************************************/
343 /****************************************************************************/
344 
345 static int ResetCEFR(struct drxd_state *state)
346 {
347 	return WriteTable(state, state->m_ResetCEFR);
348 }
349 
350 static int InitCP(struct drxd_state *state)
351 {
352 	return WriteTable(state, state->m_InitCP);
353 }
354 
355 static int InitCE(struct drxd_state *state)
356 {
357 	int status;
358 	enum app_env AppEnv = state->app_env_default;
359 
360 	do {
361 		status = WriteTable(state, state->m_InitCE);
362 		if (status < 0)
363 			break;
364 
365 		if (state->operation_mode == OM_DVBT_Diversity_Front ||
366 		    state->operation_mode == OM_DVBT_Diversity_End) {
367 			AppEnv = state->app_env_diversity;
368 		}
369 		if (AppEnv == APPENV_STATIC) {
370 			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
371 			if (status < 0)
372 				break;
373 		} else if (AppEnv == APPENV_PORTABLE) {
374 			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
375 			if (status < 0)
376 				break;
377 		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
378 			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
379 			if (status < 0)
380 				break;
381 		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
382 			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
383 			if (status < 0)
384 				break;
385 		}
386 
387 		/* start ce */
388 		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
389 		if (status < 0)
390 			break;
391 	} while (0);
392 	return status;
393 }
394 
395 static int StopOC(struct drxd_state *state)
396 {
397 	int status = 0;
398 	u16 ocSyncLvl = 0;
399 	u16 ocModeLop = state->m_EcOcRegOcModeLop;
400 	u16 dtoIncLop = 0;
401 	u16 dtoIncHip = 0;
402 
403 	do {
404 		/* Store output configuration */
405 		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
406 		if (status < 0)
407 			break;
408 		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
409 		state->m_EcOcRegSncSncLvl = ocSyncLvl;
410 		/* m_EcOcRegOcModeLop = ocModeLop; */
411 
412 		/* Flush FIFO (byte-boundary) at fixed rate */
413 		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
414 		if (status < 0)
415 			break;
416 		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
417 		if (status < 0)
418 			break;
419 		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
420 		if (status < 0)
421 			break;
422 		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
423 		if (status < 0)
424 			break;
425 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
426 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
427 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
428 		if (status < 0)
429 			break;
430 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
431 		if (status < 0)
432 			break;
433 
434 		msleep(1);
435 		/* Output pins to '0' */
436 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
437 		if (status < 0)
438 			break;
439 
440 		/* Force the OC out of sync */
441 		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
442 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
443 		if (status < 0)
444 			break;
445 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
446 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
447 		ocModeLop |= 0x2;	/* Magically-out-of-sync */
448 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
449 		if (status < 0)
450 			break;
451 		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
452 		if (status < 0)
453 			break;
454 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
455 		if (status < 0)
456 			break;
457 	} while (0);
458 
459 	return status;
460 }
461 
462 static int StartOC(struct drxd_state *state)
463 {
464 	int status = 0;
465 
466 	do {
467 		/* Stop OC */
468 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
469 		if (status < 0)
470 			break;
471 
472 		/* Restore output configuration */
473 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
474 		if (status < 0)
475 			break;
476 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
477 		if (status < 0)
478 			break;
479 
480 		/* Output pins active again */
481 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
482 		if (status < 0)
483 			break;
484 
485 		/* Start OC */
486 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
487 		if (status < 0)
488 			break;
489 	} while (0);
490 	return status;
491 }
492 
493 static int InitEQ(struct drxd_state *state)
494 {
495 	return WriteTable(state, state->m_InitEQ);
496 }
497 
498 static int InitEC(struct drxd_state *state)
499 {
500 	return WriteTable(state, state->m_InitEC);
501 }
502 
503 static int InitSC(struct drxd_state *state)
504 {
505 	return WriteTable(state, state->m_InitSC);
506 }
507 
508 static int InitAtomicRead(struct drxd_state *state)
509 {
510 	return WriteTable(state, state->m_InitAtomicRead);
511 }
512 
513 static int CorrectSysClockDeviation(struct drxd_state *state);
514 
515 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
516 {
517 	u16 ScRaRamLock = 0;
518 	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
519 				    SC_RA_RAM_LOCK_FEC__M |
520 				    SC_RA_RAM_LOCK_DEMOD__M);
521 	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
522 				   SC_RA_RAM_LOCK_DEMOD__M);
523 	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
524 
525 	int status;
526 
527 	*pLockStatus = 0;
528 
529 	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
530 	if (status < 0) {
531 		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
532 		return status;
533 	}
534 
535 	if (state->drxd_state != DRXD_STARTED)
536 		return 0;
537 
538 	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
539 		*pLockStatus |= DRX_LOCK_MPEG;
540 		CorrectSysClockDeviation(state);
541 	}
542 
543 	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
544 		*pLockStatus |= DRX_LOCK_FEC;
545 
546 	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
547 		*pLockStatus |= DRX_LOCK_DEMOD;
548 	return 0;
549 }
550 
551 /****************************************************************************/
552 
553 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
554 {
555 	int status;
556 
557 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
558 		return -1;
559 
560 	if (cfg->ctrlMode == AGC_CTRL_USER) {
561 		do {
562 			u16 FeAgRegPm1AgcWri;
563 			u16 FeAgRegAgModeLop;
564 
565 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
566 			if (status < 0)
567 				break;
568 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
569 			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
570 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
571 			if (status < 0)
572 				break;
573 
574 			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
575 						  FE_AG_REG_PM1_AGC_WRI__M);
576 			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
577 			if (status < 0)
578 				break;
579 		} while (0);
580 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
581 		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
582 		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
583 		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
584 		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
585 		    )
586 			return -1;
587 		do {
588 			u16 FeAgRegAgModeLop;
589 			u16 FeAgRegEgcSetLvl;
590 			u16 slope, offset;
591 
592 			/* == Mode == */
593 
594 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
595 			if (status < 0)
596 				break;
597 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
598 			FeAgRegAgModeLop |=
599 			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
600 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
601 			if (status < 0)
602 				break;
603 
604 			/* == Settle level == */
605 
606 			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
607 						  FE_AG_REG_EGC_SET_LVL__M);
608 			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
609 			if (status < 0)
610 				break;
611 
612 			/* == Min/Max == */
613 
614 			slope = (u16) ((cfg->maxOutputLevel -
615 					cfg->minOutputLevel) / 2);
616 			offset = (u16) ((cfg->maxOutputLevel +
617 					 cfg->minOutputLevel) / 2 - 511);
618 
619 			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
620 			if (status < 0)
621 				break;
622 			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
623 			if (status < 0)
624 				break;
625 
626 			/* == Speed == */
627 			{
628 				const u16 maxRur = 8;
629 				static const u16 slowIncrDecLUT[] = {
630 					3, 4, 4, 5, 6 };
631 				static const u16 fastIncrDecLUT[] = {
632 					14, 15, 15, 16,
633 					17, 18, 18, 19,
634 					20, 21, 22, 23,
635 					24, 26, 27, 28,
636 					29, 31
637 				};
638 
639 				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
640 				    (maxRur + 1);
641 				u16 fineSpeed = (u16) (cfg->speed -
642 						       ((cfg->speed /
643 							 fineSteps) *
644 							fineSteps));
645 				u16 invRurCount = (u16) (cfg->speed /
646 							 fineSteps);
647 				u16 rurCount;
648 				if (invRurCount > maxRur) {
649 					rurCount = 0;
650 					fineSpeed += fineSteps;
651 				} else {
652 					rurCount = maxRur - invRurCount;
653 				}
654 
655 				/*
656 				   fastInc = default *
657 				   (2^(fineSpeed/fineSteps))
658 				   => range[default...2*default>
659 				   slowInc = default *
660 				   (2^(fineSpeed/fineSteps))
661 				 */
662 				{
663 					u16 fastIncrDec =
664 					    fastIncrDecLUT[fineSpeed /
665 							   ((fineSteps /
666 							     (14 + 1)) + 1)];
667 					u16 slowIncrDec =
668 					    slowIncrDecLUT[fineSpeed /
669 							   (fineSteps /
670 							    (3 + 1))];
671 
672 					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
673 					if (status < 0)
674 						break;
675 					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
676 					if (status < 0)
677 						break;
678 					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
679 					if (status < 0)
680 						break;
681 					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
682 					if (status < 0)
683 						break;
684 					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
685 					if (status < 0)
686 						break;
687 				}
688 			}
689 		} while (0);
690 
691 	} else {
692 		/* No OFF mode for IF control */
693 		return -1;
694 	}
695 	return status;
696 }
697 
698 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
699 {
700 	int status = 0;
701 
702 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
703 		return -1;
704 
705 	if (cfg->ctrlMode == AGC_CTRL_USER) {
706 		do {
707 			u16 AgModeLop = 0;
708 			u16 level = (cfg->outputLevel);
709 
710 			if (level == DRXD_FE_CTRL_MAX)
711 				level++;
712 
713 			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
714 			if (status < 0)
715 				break;
716 
717 			/*==== Mode ====*/
718 
719 			/* Powerdown PD2, WRI source */
720 			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
721 			state->m_FeAgRegAgPwd |=
722 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
723 			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
724 			if (status < 0)
725 				break;
726 
727 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
728 			if (status < 0)
729 				break;
730 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
731 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
732 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
733 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
734 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
735 			if (status < 0)
736 				break;
737 
738 			/* enable AGC2 pin */
739 			{
740 				u16 FeAgRegAgAgcSio = 0;
741 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
742 				if (status < 0)
743 					break;
744 				FeAgRegAgAgcSio &=
745 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
746 				FeAgRegAgAgcSio |=
747 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
748 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
749 				if (status < 0)
750 					break;
751 			}
752 
753 		} while (0);
754 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
755 		u16 AgModeLop = 0;
756 
757 		do {
758 			u16 level;
759 			/* Automatic control */
760 			/* Powerup PD2, AGC2 as output, TGC source */
761 			(state->m_FeAgRegAgPwd) &=
762 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
763 			(state->m_FeAgRegAgPwd) |=
764 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
765 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
766 			if (status < 0)
767 				break;
768 
769 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
770 			if (status < 0)
771 				break;
772 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
773 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
774 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
775 				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
776 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
777 			if (status < 0)
778 				break;
779 			/* Settle level */
780 			level = (((cfg->settleLevel) >> 4) &
781 				 FE_AG_REG_TGC_SET_LVL__M);
782 			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
783 			if (status < 0)
784 				break;
785 
786 			/* Min/max: don't care */
787 
788 			/* Speed: TODO */
789 
790 			/* enable AGC2 pin */
791 			{
792 				u16 FeAgRegAgAgcSio = 0;
793 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
794 				if (status < 0)
795 					break;
796 				FeAgRegAgAgcSio &=
797 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
798 				FeAgRegAgAgcSio |=
799 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
800 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
801 				if (status < 0)
802 					break;
803 			}
804 
805 		} while (0);
806 	} else {
807 		u16 AgModeLop = 0;
808 
809 		do {
810 			/* No RF AGC control */
811 			/* Powerdown PD2, AGC2 as output, WRI source */
812 			(state->m_FeAgRegAgPwd) &=
813 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
814 			(state->m_FeAgRegAgPwd) |=
815 			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
816 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
817 			if (status < 0)
818 				break;
819 
820 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
821 			if (status < 0)
822 				break;
823 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
824 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
825 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
826 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
827 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
828 			if (status < 0)
829 				break;
830 
831 			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
832 			{
833 				u16 FeAgRegAgAgcSio = 0;
834 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
835 				if (status < 0)
836 					break;
837 				FeAgRegAgAgcSio &=
838 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
839 				FeAgRegAgAgcSio |=
840 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
841 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
842 				if (status < 0)
843 					break;
844 			}
845 		} while (0);
846 	}
847 	return status;
848 }
849 
850 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
851 {
852 	int status = 0;
853 
854 	*pValue = 0;
855 	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
856 		u16 Value;
857 		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
858 		Value &= FE_AG_REG_GC1_AGC_DAT__M;
859 		if (status >= 0) {
860 			/*           3.3V
861 			   |
862 			   R1
863 			   |
864 			   Vin - R3 - * -- Vout
865 			   |
866 			   R2
867 			   |
868 			   GND
869 			 */
870 			u32 R1 = state->if_agc_cfg.R1;
871 			u32 R2 = state->if_agc_cfg.R2;
872 			u32 R3 = state->if_agc_cfg.R3;
873 
874 			u32 Vmax, Rpar, Vmin, Vout;
875 
876 			if (R2 == 0 && (R1 == 0 || R3 == 0))
877 				return 0;
878 
879 			Vmax = (3300 * R2) / (R1 + R2);
880 			Rpar = (R2 * R3) / (R3 + R2);
881 			Vmin = (3300 * Rpar) / (R1 + Rpar);
882 			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
883 
884 			*pValue = Vout;
885 		}
886 	}
887 	return status;
888 }
889 
890 static int load_firmware(struct drxd_state *state, const char *fw_name)
891 {
892 	const struct firmware *fw;
893 
894 	if (request_firmware(&fw, fw_name, state->dev) < 0) {
895 		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
896 		return -EIO;
897 	}
898 
899 	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
900 	if (!state->microcode) {
901 		release_firmware(fw);
902 		return -ENOMEM;
903 	}
904 
905 	state->microcode_length = fw->size;
906 	release_firmware(fw);
907 	return 0;
908 }
909 
910 static int DownloadMicrocode(struct drxd_state *state,
911 			     const u8 *pMCImage, u32 Length)
912 {
913 	u8 *pSrc;
914 	u32 Address;
915 	u16 nBlocks;
916 	u16 BlockSize;
917 	int i, status = 0;
918 
919 	pSrc = (u8 *) pMCImage;
920 	/* We're not using Flags */
921 	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
922 	pSrc += sizeof(u16);
923 	nBlocks = (pSrc[0] << 8) | pSrc[1];
924 	pSrc += sizeof(u16);
925 
926 	for (i = 0; i < nBlocks; i++) {
927 		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
928 		    (pSrc[2] << 8) | pSrc[3];
929 		pSrc += sizeof(u32);
930 
931 		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
932 		pSrc += sizeof(u16);
933 
934 		/* We're not using Flags */
935 		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
936 		pSrc += sizeof(u16);
937 
938 		/* We're not using BlockCRC */
939 		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
940 		pSrc += sizeof(u16);
941 
942 		status = WriteBlock(state, Address, BlockSize,
943 				    pSrc, DRX_I2C_CLEARCRC);
944 		if (status < 0)
945 			break;
946 		pSrc += BlockSize;
947 	}
948 
949 	return status;
950 }
951 
952 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
953 {
954 	u32 nrRetries = 0;
955 	int status;
956 
957 	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
958 	if (status < 0)
959 		return status;
960 
961 	do {
962 		nrRetries += 1;
963 		if (nrRetries > DRXD_MAX_RETRIES) {
964 			status = -1;
965 			break;
966 		}
967 		status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
968 	} while (status != 0);
969 
970 	if (status >= 0)
971 		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
972 	return status;
973 }
974 
975 static int HI_CfgCommand(struct drxd_state *state)
976 {
977 	int status = 0;
978 
979 	mutex_lock(&state->mutex);
980 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
981 	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
982 	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
983 	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
984 	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
985 
986 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
987 
988 	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
989 	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
990 		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
991 				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
992 	else
993 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
994 	mutex_unlock(&state->mutex);
995 	return status;
996 }
997 
998 static int InitHI(struct drxd_state *state)
999 {
1000 	state->hi_cfg_wakeup_key = (state->chip_adr);
1001 	/* port/bridge/power down ctrl */
1002 	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1003 	return HI_CfgCommand(state);
1004 }
1005 
1006 static int HI_ResetCommand(struct drxd_state *state)
1007 {
1008 	int status;
1009 
1010 	mutex_lock(&state->mutex);
1011 	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1012 			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1013 	if (status == 0)
1014 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1015 	mutex_unlock(&state->mutex);
1016 	msleep(1);
1017 	return status;
1018 }
1019 
1020 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1021 {
1022 	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1023 	if (bEnableBridge)
1024 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1025 	else
1026 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1027 
1028 	return HI_CfgCommand(state);
1029 }
1030 
1031 #define HI_TR_WRITE      0x9
1032 #define HI_TR_READ       0xA
1033 #define HI_TR_READ_WRITE 0xB
1034 #define HI_TR_BROADCAST  0x4
1035 
1036 #if 0
1037 static int AtomicReadBlock(struct drxd_state *state,
1038 			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1039 {
1040 	int status;
1041 	int i = 0;
1042 
1043 	/* Parameter check */
1044 	if ((!pData) || ((DataSize & 1) != 0))
1045 		return -1;
1046 
1047 	mutex_lock(&state->mutex);
1048 
1049 	do {
1050 		/* Instruct HI to read n bytes */
1051 		/* TODO use proper names forthese egisters */
1052 		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1053 		if (status < 0)
1054 			break;
1055 		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1056 		if (status < 0)
1057 			break;
1058 		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1059 		if (status < 0)
1060 			break;
1061 		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1062 		if (status < 0)
1063 			break;
1064 		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1065 		if (status < 0)
1066 			break;
1067 
1068 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1069 		if (status < 0)
1070 			break;
1071 
1072 	} while (0);
1073 
1074 	if (status >= 0) {
1075 		for (i = 0; i < (DataSize / 2); i += 1) {
1076 			u16 word;
1077 
1078 			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1079 					&word, 0);
1080 			if (status < 0)
1081 				break;
1082 			pData[2 * i] = (u8) (word & 0xFF);
1083 			pData[(2 * i) + 1] = (u8) (word >> 8);
1084 		}
1085 	}
1086 	mutex_unlock(&state->mutex);
1087 	return status;
1088 }
1089 
1090 static int AtomicReadReg32(struct drxd_state *state,
1091 			   u32 Addr, u32 *pData, u8 Flags)
1092 {
1093 	u8 buf[sizeof(u32)];
1094 	int status;
1095 
1096 	if (!pData)
1097 		return -1;
1098 	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1099 	*pData = (((u32) buf[0]) << 0) +
1100 	    (((u32) buf[1]) << 8) +
1101 	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1102 	return status;
1103 }
1104 #endif
1105 
1106 static int StopAllProcessors(struct drxd_state *state)
1107 {
1108 	return Write16(state, HI_COMM_EXEC__A,
1109 		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1110 }
1111 
1112 static int EnableAndResetMB(struct drxd_state *state)
1113 {
1114 	if (state->type_A) {
1115 		/* disable? monitor bus observe @ EC_OC */
1116 		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1117 	}
1118 
1119 	/* do inverse broadcast, followed by explicit write to HI */
1120 	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1121 	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1122 	return 0;
1123 }
1124 
1125 static int InitCC(struct drxd_state *state)
1126 {
1127 	int status = 0;
1128 
1129 	if (state->osc_clock_freq == 0 ||
1130 	    state->osc_clock_freq > 20000 ||
1131 	    (state->osc_clock_freq % 4000) != 0) {
1132 		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1133 		return -1;
1134 	}
1135 
1136 	status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1137 	status |= Write16(state, CC_REG_PLL_MODE__A,
1138 				CC_REG_PLL_MODE_BYPASS_PLL |
1139 				CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1140 	status |= Write16(state, CC_REG_REF_DIVIDE__A,
1141 				state->osc_clock_freq / 4000, 0);
1142 	status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1143 				0);
1144 	status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1145 
1146 	return status;
1147 }
1148 
1149 static int ResetECOD(struct drxd_state *state)
1150 {
1151 	int status = 0;
1152 
1153 	if (state->type_A)
1154 		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1155 	else
1156 		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1157 
1158 	if (!(status < 0))
1159 		status = WriteTable(state, state->m_ResetECRAM);
1160 	if (!(status < 0))
1161 		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1162 	return status;
1163 }
1164 
1165 /* Configure PGA switch */
1166 
1167 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1168 {
1169 	int status;
1170 	u16 AgModeLop = 0;
1171 	u16 AgModeHip = 0;
1172 	do {
1173 		if (pgaSwitch) {
1174 			/* PGA on */
1175 			/* fine gain */
1176 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1177 			if (status < 0)
1178 				break;
1179 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1180 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1181 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1182 			if (status < 0)
1183 				break;
1184 
1185 			/* coarse gain */
1186 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1187 			if (status < 0)
1188 				break;
1189 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1190 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1191 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1192 			if (status < 0)
1193 				break;
1194 
1195 			/* enable fine and coarse gain, enable AAF,
1196 			   no ext resistor */
1197 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1198 			if (status < 0)
1199 				break;
1200 		} else {
1201 			/* PGA off, bypass */
1202 
1203 			/* fine gain */
1204 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1205 			if (status < 0)
1206 				break;
1207 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1208 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1209 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1210 			if (status < 0)
1211 				break;
1212 
1213 			/* coarse gain */
1214 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1215 			if (status < 0)
1216 				break;
1217 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1218 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1219 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1220 			if (status < 0)
1221 				break;
1222 
1223 			/* disable fine and coarse gain, enable AAF,
1224 			   no ext resistor */
1225 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1226 			if (status < 0)
1227 				break;
1228 		}
1229 	} while (0);
1230 	return status;
1231 }
1232 
1233 static int InitFE(struct drxd_state *state)
1234 {
1235 	int status;
1236 
1237 	do {
1238 		status = WriteTable(state, state->m_InitFE_1);
1239 		if (status < 0)
1240 			break;
1241 
1242 		if (state->type_A) {
1243 			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1244 					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1245 					 0);
1246 		} else {
1247 			if (state->PGA)
1248 				status = SetCfgPga(state, 0);
1249 			else
1250 				status =
1251 				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1252 					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1253 					    0);
1254 		}
1255 
1256 		if (status < 0)
1257 			break;
1258 		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1259 		if (status < 0)
1260 			break;
1261 		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1262 		if (status < 0)
1263 			break;
1264 
1265 		status = WriteTable(state, state->m_InitFE_2);
1266 		if (status < 0)
1267 			break;
1268 
1269 	} while (0);
1270 
1271 	return status;
1272 }
1273 
1274 static int InitFT(struct drxd_state *state)
1275 {
1276 	/*
1277 	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1278 	   SC stuff
1279 	 */
1280 	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1281 }
1282 
1283 static int SC_WaitForReady(struct drxd_state *state)
1284 {
1285 	int i;
1286 
1287 	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1288 		int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1289 		if (status == 0)
1290 			return status;
1291 	}
1292 	return -1;
1293 }
1294 
1295 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1296 {
1297 	int status = 0, ret;
1298 	u16 errCode;
1299 
1300 	status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1301 	if (status < 0)
1302 		return status;
1303 
1304 	SC_WaitForReady(state);
1305 
1306 	ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1307 
1308 	if (ret < 0 || errCode == 0xFFFF) {
1309 		printk(KERN_ERR "Command Error\n");
1310 		status = -1;
1311 	}
1312 
1313 	return status;
1314 }
1315 
1316 static int SC_ProcStartCommand(struct drxd_state *state,
1317 			       u16 subCmd, u16 param0, u16 param1)
1318 {
1319 	int ret, status = 0;
1320 	u16 scExec;
1321 
1322 	mutex_lock(&state->mutex);
1323 	do {
1324 		ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1325 		if (ret < 0 || scExec != 1) {
1326 			status = -1;
1327 			break;
1328 		}
1329 		SC_WaitForReady(state);
1330 		status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1331 		status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1332 		status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1333 
1334 		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1335 	} while (0);
1336 	mutex_unlock(&state->mutex);
1337 	return status;
1338 }
1339 
1340 static int SC_SetPrefParamCommand(struct drxd_state *state,
1341 				  u16 subCmd, u16 param0, u16 param1)
1342 {
1343 	int status;
1344 
1345 	mutex_lock(&state->mutex);
1346 	do {
1347 		status = SC_WaitForReady(state);
1348 		if (status < 0)
1349 			break;
1350 		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1351 		if (status < 0)
1352 			break;
1353 		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1354 		if (status < 0)
1355 			break;
1356 		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1357 		if (status < 0)
1358 			break;
1359 
1360 		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1361 		if (status < 0)
1362 			break;
1363 	} while (0);
1364 	mutex_unlock(&state->mutex);
1365 	return status;
1366 }
1367 
1368 #if 0
1369 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1370 {
1371 	int status = 0;
1372 
1373 	mutex_lock(&state->mutex);
1374 	do {
1375 		status = SC_WaitForReady(state);
1376 		if (status < 0)
1377 			break;
1378 		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1379 		if (status < 0)
1380 			break;
1381 		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1382 		if (status < 0)
1383 			break;
1384 	} while (0);
1385 	mutex_unlock(&state->mutex);
1386 	return status;
1387 }
1388 #endif
1389 
1390 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1391 {
1392 	int status;
1393 
1394 	do {
1395 		u16 EcOcRegIprInvMpg = 0;
1396 		u16 EcOcRegOcModeLop = 0;
1397 		u16 EcOcRegOcModeHip = 0;
1398 		u16 EcOcRegOcMpgSio = 0;
1399 
1400 		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1401 
1402 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1403 			if (bEnableOutput) {
1404 				EcOcRegOcModeHip |=
1405 				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1406 			} else
1407 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1408 			EcOcRegOcModeLop |=
1409 			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1410 		} else {
1411 			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1412 
1413 			if (bEnableOutput)
1414 				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1415 			else
1416 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1417 
1418 			/* Don't Insert RS Byte */
1419 			if (state->insert_rs_byte) {
1420 				EcOcRegOcModeLop &=
1421 				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1422 				EcOcRegOcModeHip &=
1423 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1424 				EcOcRegOcModeHip |=
1425 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1426 			} else {
1427 				EcOcRegOcModeLop |=
1428 				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1429 				EcOcRegOcModeHip &=
1430 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1431 				EcOcRegOcModeHip |=
1432 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1433 			}
1434 
1435 			/* Mode = Parallel */
1436 			if (state->enable_parallel)
1437 				EcOcRegOcModeLop &=
1438 				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1439 			else
1440 				EcOcRegOcModeLop |=
1441 				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1442 		}
1443 		/* Invert Data */
1444 		/* EcOcRegIprInvMpg |= 0x00FF; */
1445 		EcOcRegIprInvMpg &= (~(0x00FF));
1446 
1447 		/* Invert Error ( we don't use the pin ) */
1448 		/*  EcOcRegIprInvMpg |= 0x0100; */
1449 		EcOcRegIprInvMpg &= (~(0x0100));
1450 
1451 		/* Invert Start ( we don't use the pin ) */
1452 		/* EcOcRegIprInvMpg |= 0x0200; */
1453 		EcOcRegIprInvMpg &= (~(0x0200));
1454 
1455 		/* Invert Valid ( we don't use the pin ) */
1456 		/* EcOcRegIprInvMpg |= 0x0400; */
1457 		EcOcRegIprInvMpg &= (~(0x0400));
1458 
1459 		/* Invert Clock */
1460 		/* EcOcRegIprInvMpg |= 0x0800; */
1461 		EcOcRegIprInvMpg &= (~(0x0800));
1462 
1463 		/* EcOcRegOcModeLop =0x05; */
1464 		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1465 		if (status < 0)
1466 			break;
1467 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1468 		if (status < 0)
1469 			break;
1470 		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1471 		if (status < 0)
1472 			break;
1473 		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1474 		if (status < 0)
1475 			break;
1476 	} while (0);
1477 	return status;
1478 }
1479 
1480 static int SetDeviceTypeId(struct drxd_state *state)
1481 {
1482 	int status = 0;
1483 	u16 deviceId = 0;
1484 
1485 	do {
1486 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1487 		if (status < 0)
1488 			break;
1489 		/* TODO: why twice? */
1490 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1491 		if (status < 0)
1492 			break;
1493 		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1494 
1495 		state->type_A = 0;
1496 		state->PGA = 0;
1497 		state->diversity = 0;
1498 		if (deviceId == 0) {	/* on A2 only 3975 available */
1499 			state->type_A = 1;
1500 			printk(KERN_INFO "DRX3975D-A2\n");
1501 		} else {
1502 			deviceId >>= 12;
1503 			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1504 			switch (deviceId) {
1505 			case 4:
1506 				state->diversity = 1;
1507 				fallthrough;
1508 			case 3:
1509 			case 7:
1510 				state->PGA = 1;
1511 				break;
1512 			case 6:
1513 				state->diversity = 1;
1514 				fallthrough;
1515 			case 5:
1516 			case 8:
1517 				break;
1518 			default:
1519 				status = -1;
1520 				break;
1521 			}
1522 		}
1523 	} while (0);
1524 
1525 	if (status < 0)
1526 		return status;
1527 
1528 	/* Init Table selection */
1529 	state->m_InitAtomicRead = DRXD_InitAtomicRead;
1530 	state->m_InitSC = DRXD_InitSC;
1531 	state->m_ResetECRAM = DRXD_ResetECRAM;
1532 	if (state->type_A) {
1533 		state->m_ResetCEFR = DRXD_ResetCEFR;
1534 		state->m_InitFE_1 = DRXD_InitFEA2_1;
1535 		state->m_InitFE_2 = DRXD_InitFEA2_2;
1536 		state->m_InitCP = DRXD_InitCPA2;
1537 		state->m_InitCE = DRXD_InitCEA2;
1538 		state->m_InitEQ = DRXD_InitEQA2;
1539 		state->m_InitEC = DRXD_InitECA2;
1540 		if (load_firmware(state, DRX_FW_FILENAME_A2))
1541 			return -EIO;
1542 	} else {
1543 		state->m_ResetCEFR = NULL;
1544 		state->m_InitFE_1 = DRXD_InitFEB1_1;
1545 		state->m_InitFE_2 = DRXD_InitFEB1_2;
1546 		state->m_InitCP = DRXD_InitCPB1;
1547 		state->m_InitCE = DRXD_InitCEB1;
1548 		state->m_InitEQ = DRXD_InitEQB1;
1549 		state->m_InitEC = DRXD_InitECB1;
1550 		if (load_firmware(state, DRX_FW_FILENAME_B1))
1551 			return -EIO;
1552 	}
1553 	if (state->diversity) {
1554 		state->m_InitDiversityFront = DRXD_InitDiversityFront;
1555 		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1556 		state->m_DisableDiversity = DRXD_DisableDiversity;
1557 		state->m_StartDiversityFront = DRXD_StartDiversityFront;
1558 		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1559 		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1560 		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1561 	} else {
1562 		state->m_InitDiversityFront = NULL;
1563 		state->m_InitDiversityEnd = NULL;
1564 		state->m_DisableDiversity = NULL;
1565 		state->m_StartDiversityFront = NULL;
1566 		state->m_StartDiversityEnd = NULL;
1567 		state->m_DiversityDelay8MHZ = NULL;
1568 		state->m_DiversityDelay6MHZ = NULL;
1569 	}
1570 
1571 	return status;
1572 }
1573 
1574 static int CorrectSysClockDeviation(struct drxd_state *state)
1575 {
1576 	int status;
1577 	s32 incr = 0;
1578 	s32 nomincr = 0;
1579 	u32 bandwidth = 0;
1580 	u32 sysClockInHz = 0;
1581 	u32 sysClockFreq = 0;	/* in kHz */
1582 	s16 oscClockDeviation;
1583 	s16 Diff;
1584 
1585 	do {
1586 		/* Retrieve bandwidth and incr, sanity check */
1587 
1588 		/* These accesses should be AtomicReadReg32, but that
1589 		   causes trouble (at least for diversity */
1590 		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1591 		if (status < 0)
1592 			break;
1593 		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1594 		if (status < 0)
1595 			break;
1596 
1597 		if (state->type_A) {
1598 			if ((nomincr - incr < -500) || (nomincr - incr > 500))
1599 				break;
1600 		} else {
1601 			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1602 				break;
1603 		}
1604 
1605 		switch (state->props.bandwidth_hz) {
1606 		case 8000000:
1607 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1608 			break;
1609 		case 7000000:
1610 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1611 			break;
1612 		case 6000000:
1613 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1614 			break;
1615 		default:
1616 			return -1;
1617 		}
1618 
1619 		/* Compute new sysclock value
1620 		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1621 		incr += (1 << 23);
1622 		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1623 		sysClockFreq = (u32) (sysClockInHz / 1000);
1624 		/* rounding */
1625 		if ((sysClockInHz % 1000) > 500)
1626 			sysClockFreq++;
1627 
1628 		/* Compute clock deviation in ppm */
1629 		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1630 					     (s32)
1631 					     (state->expected_sys_clock_freq)) *
1632 					    1000000L) /
1633 					   (s32)
1634 					   (state->expected_sys_clock_freq));
1635 
1636 		Diff = oscClockDeviation - state->osc_clock_deviation;
1637 		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1638 		if (Diff >= -200 && Diff <= 200) {
1639 			state->sys_clock_freq = (u16) sysClockFreq;
1640 			if (oscClockDeviation != state->osc_clock_deviation) {
1641 				if (state->config.osc_deviation) {
1642 					state->config.osc_deviation(state->priv,
1643 								    oscClockDeviation,
1644 								    1);
1645 					state->osc_clock_deviation =
1646 					    oscClockDeviation;
1647 				}
1648 			}
1649 			/* switch OFF SRMM scan in SC */
1650 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1651 			if (status < 0)
1652 				break;
1653 			/* overrule FE_IF internal value for
1654 			   proper re-locking */
1655 			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1656 			if (status < 0)
1657 				break;
1658 			state->cscd_state = CSCD_SAVED;
1659 		}
1660 	} while (0);
1661 
1662 	return status;
1663 }
1664 
1665 static int DRX_Stop(struct drxd_state *state)
1666 {
1667 	int status;
1668 
1669 	if (state->drxd_state != DRXD_STARTED)
1670 		return 0;
1671 
1672 	do {
1673 		if (state->cscd_state != CSCD_SAVED) {
1674 			u32 lock;
1675 			status = DRX_GetLockStatus(state, &lock);
1676 			if (status < 0)
1677 				break;
1678 		}
1679 
1680 		status = StopOC(state);
1681 		if (status < 0)
1682 			break;
1683 
1684 		state->drxd_state = DRXD_STOPPED;
1685 
1686 		status = ConfigureMPEGOutput(state, 0);
1687 		if (status < 0)
1688 			break;
1689 
1690 		if (state->type_A) {
1691 			/* Stop relevant processors off the device */
1692 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1693 			if (status < 0)
1694 				break;
1695 
1696 			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1697 			if (status < 0)
1698 				break;
1699 			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1700 			if (status < 0)
1701 				break;
1702 		} else {
1703 			/* Stop all processors except HI & CC & FE */
1704 			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1705 			if (status < 0)
1706 				break;
1707 			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1708 			if (status < 0)
1709 				break;
1710 			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1711 			if (status < 0)
1712 				break;
1713 			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1714 			if (status < 0)
1715 				break;
1716 			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717 			if (status < 0)
1718 				break;
1719 			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720 			if (status < 0)
1721 				break;
1722 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1723 			if (status < 0)
1724 				break;
1725 		}
1726 
1727 	} while (0);
1728 	return status;
1729 }
1730 
1731 #if 0	/* Currently unused */
1732 static int SetOperationMode(struct drxd_state *state, int oMode)
1733 {
1734 	int status;
1735 
1736 	do {
1737 		if (state->drxd_state != DRXD_STOPPED) {
1738 			status = -1;
1739 			break;
1740 		}
1741 
1742 		if (oMode == state->operation_mode) {
1743 			status = 0;
1744 			break;
1745 		}
1746 
1747 		if (oMode != OM_Default && !state->diversity) {
1748 			status = -1;
1749 			break;
1750 		}
1751 
1752 		switch (oMode) {
1753 		case OM_DVBT_Diversity_Front:
1754 			status = WriteTable(state, state->m_InitDiversityFront);
1755 			break;
1756 		case OM_DVBT_Diversity_End:
1757 			status = WriteTable(state, state->m_InitDiversityEnd);
1758 			break;
1759 		case OM_Default:
1760 			/* We need to check how to
1761 			   get DRXD out of diversity */
1762 		default:
1763 			status = WriteTable(state, state->m_DisableDiversity);
1764 			break;
1765 		}
1766 	} while (0);
1767 
1768 	if (!status)
1769 		state->operation_mode = oMode;
1770 	return status;
1771 }
1772 #endif
1773 
1774 static int StartDiversity(struct drxd_state *state)
1775 {
1776 	int status = 0;
1777 	u16 rcControl;
1778 
1779 	do {
1780 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1781 			status = WriteTable(state, state->m_StartDiversityFront);
1782 			if (status < 0)
1783 				break;
1784 		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
1785 			status = WriteTable(state, state->m_StartDiversityEnd);
1786 			if (status < 0)
1787 				break;
1788 			if (state->props.bandwidth_hz == 8000000) {
1789 				status = WriteTable(state, state->m_DiversityDelay8MHZ);
1790 				if (status < 0)
1791 					break;
1792 			} else {
1793 				status = WriteTable(state, state->m_DiversityDelay6MHZ);
1794 				if (status < 0)
1795 					break;
1796 			}
1797 
1798 			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1799 			if (status < 0)
1800 				break;
1801 			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1802 			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1803 			    /*  combining enabled */
1804 			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1805 			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1806 			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1807 			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1808 			if (status < 0)
1809 				break;
1810 		}
1811 	} while (0);
1812 	return status;
1813 }
1814 
1815 static int SetFrequencyShift(struct drxd_state *state,
1816 			     u32 offsetFreq, int channelMirrored)
1817 {
1818 	int negativeShift = (state->tuner_mirrors == channelMirrored);
1819 
1820 	/* Handle all mirroring
1821 	 *
1822 	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1823 	 * feFsRegAddInc to 28 bits below
1824 	 * (if the result before masking is more than 28 bits, this means
1825 	 *  that the ADC is mirroring.
1826 	 * The masking is in fact the aliasing of the ADC)
1827 	 *
1828 	 */
1829 
1830 	/* Compute register value, unsigned computation */
1831 	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1832 					 offsetFreq,
1833 					 1 << 28, state->sys_clock_freq);
1834 	/* Remove integer part */
1835 	state->fe_fs_add_incr &= 0x0FFFFFFFL;
1836 	if (negativeShift)
1837 		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1838 
1839 	/* Save the frequency shift without tunerOffset compensation
1840 	   for CtrlGetChannel. */
1841 	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1842 					     1 << 28, state->sys_clock_freq);
1843 	/* Remove integer part */
1844 	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1845 	if (negativeShift)
1846 		state->org_fe_fs_add_incr = ((1L << 28) -
1847 					     state->org_fe_fs_add_incr);
1848 
1849 	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1850 		       state->fe_fs_add_incr, 0);
1851 }
1852 
1853 static int SetCfgNoiseCalibration(struct drxd_state *state,
1854 				  struct SNoiseCal *noiseCal)
1855 {
1856 	u16 beOptEna;
1857 	int status = 0;
1858 
1859 	do {
1860 		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1861 		if (status < 0)
1862 			break;
1863 		if (noiseCal->cpOpt) {
1864 			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1865 		} else {
1866 			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1867 			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1868 			if (status < 0)
1869 				break;
1870 		}
1871 		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1872 		if (status < 0)
1873 			break;
1874 
1875 		if (!state->type_A) {
1876 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1877 			if (status < 0)
1878 				break;
1879 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1880 			if (status < 0)
1881 				break;
1882 		}
1883 	} while (0);
1884 
1885 	return status;
1886 }
1887 
1888 static int DRX_Start(struct drxd_state *state, s32 off)
1889 {
1890 	struct dtv_frontend_properties *p = &state->props;
1891 	int status;
1892 
1893 	u16 transmissionParams = 0;
1894 	u16 operationMode = 0;
1895 	u16 qpskTdTpsPwr = 0;
1896 	u16 qam16TdTpsPwr = 0;
1897 	u16 qam64TdTpsPwr = 0;
1898 	u32 feIfIncr = 0;
1899 	u32 bandwidth = 0;
1900 	int mirrorFreqSpect;
1901 
1902 	u16 qpskSnCeGain = 0;
1903 	u16 qam16SnCeGain = 0;
1904 	u16 qam64SnCeGain = 0;
1905 	u16 qpskIsGainMan = 0;
1906 	u16 qam16IsGainMan = 0;
1907 	u16 qam64IsGainMan = 0;
1908 	u16 qpskIsGainExp = 0;
1909 	u16 qam16IsGainExp = 0;
1910 	u16 qam64IsGainExp = 0;
1911 	u16 bandwidthParam = 0;
1912 
1913 	if (off < 0)
1914 		off = (off - 500) / 1000;
1915 	else
1916 		off = (off + 500) / 1000;
1917 
1918 	do {
1919 		if (state->drxd_state != DRXD_STOPPED)
1920 			return -1;
1921 		status = ResetECOD(state);
1922 		if (status < 0)
1923 			break;
1924 		if (state->type_A) {
1925 			status = InitSC(state);
1926 			if (status < 0)
1927 				break;
1928 		} else {
1929 			status = InitFT(state);
1930 			if (status < 0)
1931 				break;
1932 			status = InitCP(state);
1933 			if (status < 0)
1934 				break;
1935 			status = InitCE(state);
1936 			if (status < 0)
1937 				break;
1938 			status = InitEQ(state);
1939 			if (status < 0)
1940 				break;
1941 			status = InitSC(state);
1942 			if (status < 0)
1943 				break;
1944 		}
1945 
1946 		/* Restore current IF & RF AGC settings */
1947 
1948 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
1949 		if (status < 0)
1950 			break;
1951 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1952 		if (status < 0)
1953 			break;
1954 
1955 		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1956 
1957 		switch (p->transmission_mode) {
1958 		default:	/* Not set, detect it automatically */
1959 			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1960 			fallthrough;	/* try first guess DRX_FFTMODE_8K */
1961 		case TRANSMISSION_MODE_8K:
1962 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1963 			if (state->type_A) {
1964 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1965 				if (status < 0)
1966 					break;
1967 				qpskSnCeGain = 99;
1968 				qam16SnCeGain = 83;
1969 				qam64SnCeGain = 67;
1970 			}
1971 			break;
1972 		case TRANSMISSION_MODE_2K:
1973 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1974 			if (state->type_A) {
1975 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1976 				if (status < 0)
1977 					break;
1978 				qpskSnCeGain = 97;
1979 				qam16SnCeGain = 71;
1980 				qam64SnCeGain = 65;
1981 			}
1982 			break;
1983 		}
1984 
1985 		switch (p->guard_interval) {
1986 		case GUARD_INTERVAL_1_4:
1987 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
1988 			break;
1989 		case GUARD_INTERVAL_1_8:
1990 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
1991 			break;
1992 		case GUARD_INTERVAL_1_16:
1993 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
1994 			break;
1995 		case GUARD_INTERVAL_1_32:
1996 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
1997 			break;
1998 		default:	/* Not set, detect it automatically */
1999 			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2000 			/* try first guess 1/4 */
2001 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2002 			break;
2003 		}
2004 
2005 		switch (p->hierarchy) {
2006 		case HIERARCHY_1:
2007 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2008 			if (state->type_A) {
2009 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2010 				if (status < 0)
2011 					break;
2012 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2013 				if (status < 0)
2014 					break;
2015 
2016 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2017 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2018 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2019 
2020 				qpskIsGainMan =
2021 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2022 				qam16IsGainMan =
2023 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2024 				qam64IsGainMan =
2025 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2026 
2027 				qpskIsGainExp =
2028 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2029 				qam16IsGainExp =
2030 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2031 				qam64IsGainExp =
2032 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2033 			}
2034 			break;
2035 
2036 		case HIERARCHY_2:
2037 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2038 			if (state->type_A) {
2039 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2040 				if (status < 0)
2041 					break;
2042 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2043 				if (status < 0)
2044 					break;
2045 
2046 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2047 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2048 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2049 
2050 				qpskIsGainMan =
2051 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2052 				qam16IsGainMan =
2053 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2054 				qam64IsGainMan =
2055 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2056 
2057 				qpskIsGainExp =
2058 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2059 				qam16IsGainExp =
2060 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2061 				qam64IsGainExp =
2062 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2063 			}
2064 			break;
2065 		case HIERARCHY_4:
2066 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2067 			if (state->type_A) {
2068 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2069 				if (status < 0)
2070 					break;
2071 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2072 				if (status < 0)
2073 					break;
2074 
2075 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2076 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2077 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2078 
2079 				qpskIsGainMan =
2080 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2081 				qam16IsGainMan =
2082 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2083 				qam64IsGainMan =
2084 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2085 
2086 				qpskIsGainExp =
2087 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2088 				qam16IsGainExp =
2089 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2090 				qam64IsGainExp =
2091 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2092 			}
2093 			break;
2094 		case HIERARCHY_AUTO:
2095 		default:
2096 			/* Not set, detect it automatically, start with none */
2097 			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2098 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2099 			if (state->type_A) {
2100 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2101 				if (status < 0)
2102 					break;
2103 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2104 				if (status < 0)
2105 					break;
2106 
2107 				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2108 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2109 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2110 
2111 				qpskIsGainMan =
2112 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2113 				qam16IsGainMan =
2114 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2115 				qam64IsGainMan =
2116 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2117 
2118 				qpskIsGainExp =
2119 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2120 				qam16IsGainExp =
2121 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2122 				qam64IsGainExp =
2123 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2124 			}
2125 			break;
2126 		}
2127 		if (status < 0)
2128 			break;
2129 
2130 		switch (p->modulation) {
2131 		default:
2132 			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2133 			fallthrough;	/* try first guess DRX_CONSTELLATION_QAM64 */
2134 		case QAM_64:
2135 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2136 			if (state->type_A) {
2137 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2138 				if (status < 0)
2139 					break;
2140 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2141 				if (status < 0)
2142 					break;
2143 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2144 				if (status < 0)
2145 					break;
2146 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2147 				if (status < 0)
2148 					break;
2149 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2150 				if (status < 0)
2151 					break;
2152 
2153 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2154 				if (status < 0)
2155 					break;
2156 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2157 				if (status < 0)
2158 					break;
2159 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2160 				if (status < 0)
2161 					break;
2162 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2163 				if (status < 0)
2164 					break;
2165 			}
2166 			break;
2167 		case QPSK:
2168 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2169 			if (state->type_A) {
2170 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2171 				if (status < 0)
2172 					break;
2173 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2174 				if (status < 0)
2175 					break;
2176 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2177 				if (status < 0)
2178 					break;
2179 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2180 				if (status < 0)
2181 					break;
2182 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2183 				if (status < 0)
2184 					break;
2185 
2186 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2187 				if (status < 0)
2188 					break;
2189 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2190 				if (status < 0)
2191 					break;
2192 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2193 				if (status < 0)
2194 					break;
2195 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2196 				if (status < 0)
2197 					break;
2198 			}
2199 			break;
2200 
2201 		case QAM_16:
2202 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2203 			if (state->type_A) {
2204 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2205 				if (status < 0)
2206 					break;
2207 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2208 				if (status < 0)
2209 					break;
2210 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2211 				if (status < 0)
2212 					break;
2213 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2214 				if (status < 0)
2215 					break;
2216 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2217 				if (status < 0)
2218 					break;
2219 
2220 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2221 				if (status < 0)
2222 					break;
2223 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2224 				if (status < 0)
2225 					break;
2226 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2227 				if (status < 0)
2228 					break;
2229 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2230 				if (status < 0)
2231 					break;
2232 			}
2233 			break;
2234 
2235 		}
2236 		if (status < 0)
2237 			break;
2238 
2239 		switch (DRX_CHANNEL_HIGH) {
2240 		default:
2241 		case DRX_CHANNEL_AUTO:
2242 		case DRX_CHANNEL_LOW:
2243 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2244 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2245 			break;
2246 		case DRX_CHANNEL_HIGH:
2247 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2248 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2249 			break;
2250 		}
2251 
2252 		switch (p->code_rate_HP) {
2253 		case FEC_1_2:
2254 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2255 			if (state->type_A)
2256 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2257 			break;
2258 		default:
2259 			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2260 			fallthrough;
2261 		case FEC_2_3:
2262 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2263 			if (state->type_A)
2264 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2265 			break;
2266 		case FEC_3_4:
2267 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2268 			if (state->type_A)
2269 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2270 			break;
2271 		case FEC_5_6:
2272 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2273 			if (state->type_A)
2274 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2275 			break;
2276 		case FEC_7_8:
2277 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2278 			if (state->type_A)
2279 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2280 			break;
2281 		}
2282 		if (status < 0)
2283 			break;
2284 
2285 		/* First determine real bandwidth (Hz) */
2286 		/* Also set delay for impulse noise cruncher (only A2) */
2287 		/* Also set parameters for EC_OC fix, note
2288 		   EC_OC_REG_TMD_HIL_MAR is changed
2289 		   by SC for fix for some 8K,1/8 guard but is restored by
2290 		   InitEC and ResetEC
2291 		   functions */
2292 		switch (p->bandwidth_hz) {
2293 		case 0:
2294 			p->bandwidth_hz = 8000000;
2295 			fallthrough;
2296 		case 8000000:
2297 			/* (64/7)*(8/8)*1000000 */
2298 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2299 
2300 			bandwidthParam = 0;
2301 			status = Write16(state,
2302 					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2303 			break;
2304 		case 7000000:
2305 			/* (64/7)*(7/8)*1000000 */
2306 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2307 			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
2308 			status = Write16(state,
2309 					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2310 			break;
2311 		case 6000000:
2312 			/* (64/7)*(6/8)*1000000 */
2313 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2314 			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
2315 			status = Write16(state,
2316 					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2317 			break;
2318 		default:
2319 			status = -EINVAL;
2320 		}
2321 		if (status < 0)
2322 			break;
2323 
2324 		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2325 		if (status < 0)
2326 			break;
2327 
2328 		{
2329 			u16 sc_config;
2330 			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2331 			if (status < 0)
2332 				break;
2333 
2334 			/* enable SLAVE mode in 2k 1/32 to
2335 			   prevent timing change glitches */
2336 			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2337 			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
2338 				/* enable slave */
2339 				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2340 			} else {
2341 				/* disable slave */
2342 				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2343 			}
2344 			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2345 			if (status < 0)
2346 				break;
2347 		}
2348 
2349 		status = SetCfgNoiseCalibration(state, &state->noise_cal);
2350 		if (status < 0)
2351 			break;
2352 
2353 		if (state->cscd_state == CSCD_INIT) {
2354 			/* switch on SRMM scan in SC */
2355 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2356 			if (status < 0)
2357 				break;
2358 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2359 			state->cscd_state = CSCD_SET;
2360 		}
2361 
2362 		/* Now compute FE_IF_REG_INCR */
2363 		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2364 		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2365 		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2366 				    (1ULL << 21), bandwidth) - (1 << 23);
2367 		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2368 		if (status < 0)
2369 			break;
2370 		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2371 		if (status < 0)
2372 			break;
2373 		/* Bandwidth setting done */
2374 
2375 		/* Mirror & frequency offset */
2376 		SetFrequencyShift(state, off, mirrorFreqSpect);
2377 
2378 		/* Start SC, write channel settings to SC */
2379 
2380 		/* Enable SC after setting all other parameters */
2381 		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2382 		if (status < 0)
2383 			break;
2384 		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2385 		if (status < 0)
2386 			break;
2387 
2388 		/* Write SC parameter registers, operation mode */
2389 #if 1
2390 		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2391 				 SC_RA_RAM_OP_AUTO_GUARD__M |
2392 				 SC_RA_RAM_OP_AUTO_CONST__M |
2393 				 SC_RA_RAM_OP_AUTO_HIER__M |
2394 				 SC_RA_RAM_OP_AUTO_RATE__M);
2395 #endif
2396 		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2397 		if (status < 0)
2398 			break;
2399 
2400 		/* Start correct processes to get in lock */
2401 		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2402 		if (status < 0)
2403 			break;
2404 
2405 		status = StartOC(state);
2406 		if (status < 0)
2407 			break;
2408 
2409 		if (state->operation_mode != OM_Default) {
2410 			status = StartDiversity(state);
2411 			if (status < 0)
2412 				break;
2413 		}
2414 
2415 		state->drxd_state = DRXD_STARTED;
2416 	} while (0);
2417 
2418 	return status;
2419 }
2420 
2421 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2422 {
2423 	u32 ulRfAgcOutputLevel = 0xffffffff;
2424 	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
2425 	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
2426 	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
2427 	u32 ulRfAgcSpeed = 0;	/* Currently unused */
2428 	u32 ulRfAgcMode = 0;	/*2;   Off */
2429 	u32 ulRfAgcR1 = 820;
2430 	u32 ulRfAgcR2 = 2200;
2431 	u32 ulRfAgcR3 = 150;
2432 	u32 ulIfAgcMode = 0;	/* Auto */
2433 	u32 ulIfAgcOutputLevel = 0xffffffff;
2434 	u32 ulIfAgcSettleLevel = 0xffffffff;
2435 	u32 ulIfAgcMinLevel = 0xffffffff;
2436 	u32 ulIfAgcMaxLevel = 0xffffffff;
2437 	u32 ulIfAgcSpeed = 0xffffffff;
2438 	u32 ulIfAgcR1 = 820;
2439 	u32 ulIfAgcR2 = 2200;
2440 	u32 ulIfAgcR3 = 150;
2441 	u32 ulClock = state->config.clock;
2442 	u32 ulSerialMode = 0;
2443 	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
2444 	u32 ulHiI2cDelay = HI_I2C_DELAY;
2445 	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2446 	u32 ulHiI2cPatch = 0;
2447 	u32 ulEnvironment = APPENV_PORTABLE;
2448 	u32 ulEnvironmentDiversity = APPENV_MOBILE;
2449 	u32 ulIFFilter = IFFILTER_SAW;
2450 
2451 	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2452 	state->if_agc_cfg.outputLevel = 0;
2453 	state->if_agc_cfg.settleLevel = 140;
2454 	state->if_agc_cfg.minOutputLevel = 0;
2455 	state->if_agc_cfg.maxOutputLevel = 1023;
2456 	state->if_agc_cfg.speed = 904;
2457 
2458 	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2459 		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2460 		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2461 	}
2462 
2463 	if (ulIfAgcMode == 0 &&
2464 	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2465 	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2466 	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2467 	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2468 		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2469 		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2470 		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2471 		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2472 		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2473 	}
2474 
2475 	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2476 	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2477 	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2478 
2479 	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2480 	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2481 	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2482 
2483 	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2484 	/* rest of the RFAgcCfg structure currently unused */
2485 	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2486 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2487 		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2488 	}
2489 
2490 	if (ulRfAgcMode == 0 &&
2491 	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2492 	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2493 	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2494 	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2495 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2496 		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2497 		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2498 		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2499 		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2500 	}
2501 
2502 	if (ulRfAgcMode == 2)
2503 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2504 
2505 	if (ulEnvironment <= 2)
2506 		state->app_env_default = (enum app_env)
2507 		    (ulEnvironment);
2508 	if (ulEnvironmentDiversity <= 2)
2509 		state->app_env_diversity = (enum app_env)
2510 		    (ulEnvironmentDiversity);
2511 
2512 	if (ulIFFilter == IFFILTER_DISCRETE) {
2513 		/* discrete filter */
2514 		state->noise_cal.cpOpt = 0;
2515 		state->noise_cal.cpNexpOfs = 40;
2516 		state->noise_cal.tdCal2k = -40;
2517 		state->noise_cal.tdCal8k = -24;
2518 	} else {
2519 		/* SAW filter */
2520 		state->noise_cal.cpOpt = 1;
2521 		state->noise_cal.cpNexpOfs = 0;
2522 		state->noise_cal.tdCal2k = -21;
2523 		state->noise_cal.tdCal8k = -24;
2524 	}
2525 	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2526 
2527 	state->chip_adr = (state->config.demod_address << 1) | 1;
2528 	switch (ulHiI2cPatch) {
2529 	case 1:
2530 		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2531 		break;
2532 	case 3:
2533 		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2534 		break;
2535 	default:
2536 		state->m_HiI2cPatch = NULL;
2537 	}
2538 
2539 	/* modify tuner and clock attributes */
2540 	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2541 	/* expected system clock frequency in kHz */
2542 	state->expected_sys_clock_freq = 48000;
2543 	/* real system clock frequency in kHz */
2544 	state->sys_clock_freq = 48000;
2545 	state->osc_clock_freq = (u16) ulClock;
2546 	state->osc_clock_deviation = 0;
2547 	state->cscd_state = CSCD_INIT;
2548 	state->drxd_state = DRXD_UNINITIALIZED;
2549 
2550 	state->PGA = 0;
2551 	state->type_A = 0;
2552 	state->tuner_mirrors = 0;
2553 
2554 	/* modify MPEG output attributes */
2555 	state->insert_rs_byte = state->config.insert_rs_byte;
2556 	state->enable_parallel = (ulSerialMode != 1);
2557 
2558 	/* Timing div, 250ns/Psys */
2559 	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2560 
2561 	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2562 					  ulHiI2cDelay) / 1000;
2563 	/* Bridge delay, uses oscilator clock */
2564 	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2565 	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2566 					    ulHiI2cBridgeDelay) / 1000;
2567 
2568 	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2569 	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2570 	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2571 	return 0;
2572 }
2573 
2574 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2575 {
2576 	int status = 0;
2577 	u32 driverVersion;
2578 
2579 	if (state->init_done)
2580 		return 0;
2581 
2582 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2583 
2584 	do {
2585 		state->operation_mode = OM_Default;
2586 
2587 		status = SetDeviceTypeId(state);
2588 		if (status < 0)
2589 			break;
2590 
2591 		/* Apply I2c address patch to B1 */
2592 		if (!state->type_A && state->m_HiI2cPatch) {
2593 			status = WriteTable(state, state->m_HiI2cPatch);
2594 			if (status < 0)
2595 				break;
2596 		}
2597 
2598 		if (state->type_A) {
2599 			/* HI firmware patch for UIO readout,
2600 			   avoid clearing of result register */
2601 			status = Write16(state, 0x43012D, 0x047f, 0);
2602 			if (status < 0)
2603 				break;
2604 		}
2605 
2606 		status = HI_ResetCommand(state);
2607 		if (status < 0)
2608 			break;
2609 
2610 		status = StopAllProcessors(state);
2611 		if (status < 0)
2612 			break;
2613 		status = InitCC(state);
2614 		if (status < 0)
2615 			break;
2616 
2617 		state->osc_clock_deviation = 0;
2618 
2619 		if (state->config.osc_deviation)
2620 			state->osc_clock_deviation =
2621 			    state->config.osc_deviation(state->priv, 0, 0);
2622 		{
2623 			/* Handle clock deviation */
2624 			s32 devB;
2625 			s32 devA = (s32) (state->osc_clock_deviation) *
2626 			    (s32) (state->expected_sys_clock_freq);
2627 			/* deviation in kHz */
2628 			s32 deviation = (devA / (1000000L));
2629 			/* rounding, signed */
2630 			if (devA > 0)
2631 				devB = (2);
2632 			else
2633 				devB = (-2);
2634 			if ((devB * (devA % 1000000L) > 1000000L)) {
2635 				/* add +1 or -1 */
2636 				deviation += (devB / 2);
2637 			}
2638 
2639 			state->sys_clock_freq =
2640 			    (u16) ((state->expected_sys_clock_freq) +
2641 				   deviation);
2642 		}
2643 		status = InitHI(state);
2644 		if (status < 0)
2645 			break;
2646 		status = InitAtomicRead(state);
2647 		if (status < 0)
2648 			break;
2649 
2650 		status = EnableAndResetMB(state);
2651 		if (status < 0)
2652 			break;
2653 		if (state->type_A) {
2654 			status = ResetCEFR(state);
2655 			if (status < 0)
2656 				break;
2657 		}
2658 		if (fw) {
2659 			status = DownloadMicrocode(state, fw, fw_size);
2660 			if (status < 0)
2661 				break;
2662 		} else {
2663 			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2664 			if (status < 0)
2665 				break;
2666 		}
2667 
2668 		if (state->PGA) {
2669 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2670 			SetCfgPga(state, 0);	/* PGA = 0 dB */
2671 		} else {
2672 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2673 		}
2674 
2675 		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2676 
2677 		status = InitFE(state);
2678 		if (status < 0)
2679 			break;
2680 		status = InitFT(state);
2681 		if (status < 0)
2682 			break;
2683 		status = InitCP(state);
2684 		if (status < 0)
2685 			break;
2686 		status = InitCE(state);
2687 		if (status < 0)
2688 			break;
2689 		status = InitEQ(state);
2690 		if (status < 0)
2691 			break;
2692 		status = InitEC(state);
2693 		if (status < 0)
2694 			break;
2695 		status = InitSC(state);
2696 		if (status < 0)
2697 			break;
2698 
2699 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
2700 		if (status < 0)
2701 			break;
2702 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2703 		if (status < 0)
2704 			break;
2705 
2706 		state->cscd_state = CSCD_INIT;
2707 		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2708 		if (status < 0)
2709 			break;
2710 		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2711 		if (status < 0)
2712 			break;
2713 
2714 		driverVersion = (((VERSION_MAJOR / 10) << 4) +
2715 				 (VERSION_MAJOR % 10)) << 24;
2716 		driverVersion += (((VERSION_MINOR / 10) << 4) +
2717 				  (VERSION_MINOR % 10)) << 16;
2718 		driverVersion += ((VERSION_PATCH / 1000) << 12) +
2719 		    ((VERSION_PATCH / 100) << 8) +
2720 		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2721 
2722 		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2723 		if (status < 0)
2724 			break;
2725 
2726 		status = StopOC(state);
2727 		if (status < 0)
2728 			break;
2729 
2730 		state->drxd_state = DRXD_STOPPED;
2731 		state->init_done = 1;
2732 		status = 0;
2733 	} while (0);
2734 	return status;
2735 }
2736 
2737 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2738 {
2739 	DRX_GetLockStatus(state, pLockStatus);
2740 
2741 	/*if (*pLockStatus&DRX_LOCK_MPEG) */
2742 	if (*pLockStatus & DRX_LOCK_FEC) {
2743 		ConfigureMPEGOutput(state, 1);
2744 		/* Get status again, in case we have MPEG lock now */
2745 		/*DRX_GetLockStatus(state, pLockStatus); */
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 /****************************************************************************/
2752 /****************************************************************************/
2753 /****************************************************************************/
2754 
2755 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2756 {
2757 	struct drxd_state *state = fe->demodulator_priv;
2758 	u32 value;
2759 	int res;
2760 
2761 	res = ReadIFAgc(state, &value);
2762 	if (res < 0)
2763 		*strength = 0;
2764 	else
2765 		*strength = 0xffff - (value << 4);
2766 	return 0;
2767 }
2768 
2769 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2770 {
2771 	struct drxd_state *state = fe->demodulator_priv;
2772 	u32 lock;
2773 
2774 	DRXD_status(state, &lock);
2775 	*status = 0;
2776 	/* No MPEG lock in V255 firmware, bug ? */
2777 #if 1
2778 	if (lock & DRX_LOCK_MPEG)
2779 		*status |= FE_HAS_LOCK;
2780 #else
2781 	if (lock & DRX_LOCK_FEC)
2782 		*status |= FE_HAS_LOCK;
2783 #endif
2784 	if (lock & DRX_LOCK_FEC)
2785 		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2786 	if (lock & DRX_LOCK_DEMOD)
2787 		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2788 
2789 	return 0;
2790 }
2791 
2792 static int drxd_init(struct dvb_frontend *fe)
2793 {
2794 	struct drxd_state *state = fe->demodulator_priv;
2795 
2796 	return DRXD_init(state, NULL, 0);
2797 }
2798 
2799 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2800 {
2801 	struct drxd_state *state = fe->demodulator_priv;
2802 
2803 	if (state->config.disable_i2c_gate_ctrl == 1)
2804 		return 0;
2805 
2806 	return DRX_ConfigureI2CBridge(state, onoff);
2807 }
2808 
2809 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2810 				  struct dvb_frontend_tune_settings *sets)
2811 {
2812 	sets->min_delay_ms = 10000;
2813 	sets->max_drift = 0;
2814 	sets->step_size = 0;
2815 	return 0;
2816 }
2817 
2818 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2819 {
2820 	*ber = 0;
2821 	return 0;
2822 }
2823 
2824 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2825 {
2826 	*snr = 0;
2827 	return 0;
2828 }
2829 
2830 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2831 {
2832 	*ucblocks = 0;
2833 	return 0;
2834 }
2835 
2836 static int drxd_sleep(struct dvb_frontend *fe)
2837 {
2838 	struct drxd_state *state = fe->demodulator_priv;
2839 
2840 	ConfigureMPEGOutput(state, 0);
2841 	return 0;
2842 }
2843 
2844 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2845 {
2846 	return drxd_config_i2c(fe, enable);
2847 }
2848 
2849 static int drxd_set_frontend(struct dvb_frontend *fe)
2850 {
2851 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2852 	struct drxd_state *state = fe->demodulator_priv;
2853 	s32 off = 0;
2854 
2855 	state->props = *p;
2856 	DRX_Stop(state);
2857 
2858 	if (fe->ops.tuner_ops.set_params) {
2859 		fe->ops.tuner_ops.set_params(fe);
2860 		if (fe->ops.i2c_gate_ctrl)
2861 			fe->ops.i2c_gate_ctrl(fe, 0);
2862 	}
2863 
2864 	msleep(200);
2865 
2866 	return DRX_Start(state, off);
2867 }
2868 
2869 static void drxd_release(struct dvb_frontend *fe)
2870 {
2871 	struct drxd_state *state = fe->demodulator_priv;
2872 
2873 	kfree(state);
2874 }
2875 
2876 static const struct dvb_frontend_ops drxd_ops = {
2877 	.delsys = { SYS_DVBT},
2878 	.info = {
2879 		 .name = "Micronas DRXD DVB-T",
2880 		 .frequency_min_hz =  47125 * kHz,
2881 		 .frequency_max_hz = 855250 * kHz,
2882 		 .frequency_stepsize_hz = 166667,
2883 		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2884 		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2885 		 FE_CAN_FEC_AUTO |
2886 		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2887 		 FE_CAN_QAM_AUTO |
2888 		 FE_CAN_TRANSMISSION_MODE_AUTO |
2889 		 FE_CAN_GUARD_INTERVAL_AUTO |
2890 		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2891 
2892 	.release = drxd_release,
2893 	.init = drxd_init,
2894 	.sleep = drxd_sleep,
2895 	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2896 
2897 	.set_frontend = drxd_set_frontend,
2898 	.get_tune_settings = drxd_get_tune_settings,
2899 
2900 	.read_status = drxd_read_status,
2901 	.read_ber = drxd_read_ber,
2902 	.read_signal_strength = drxd_read_signal_strength,
2903 	.read_snr = drxd_read_snr,
2904 	.read_ucblocks = drxd_read_ucblocks,
2905 };
2906 
2907 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2908 				 void *priv, struct i2c_adapter *i2c,
2909 				 struct device *dev)
2910 {
2911 	struct drxd_state *state = NULL;
2912 
2913 	state = kzalloc(sizeof(*state), GFP_KERNEL);
2914 	if (!state)
2915 		return NULL;
2916 
2917 	state->ops = drxd_ops;
2918 	state->dev = dev;
2919 	state->config = *config;
2920 	state->i2c = i2c;
2921 	state->priv = priv;
2922 
2923 	mutex_init(&state->mutex);
2924 
2925 	if (Read16(state, 0, NULL, 0) < 0)
2926 		goto error;
2927 
2928 	state->frontend.ops = drxd_ops;
2929 	state->frontend.demodulator_priv = state;
2930 	ConfigureMPEGOutput(state, 0);
2931 	/* add few initialization to allow gate control */
2932 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2933 	InitHI(state);
2934 
2935 	return &state->frontend;
2936 
2937 error:
2938 	printk(KERN_ERR "drxd: not found\n");
2939 	kfree(state);
2940 	return NULL;
2941 }
2942 EXPORT_SYMBOL(drxd_attach);
2943 
2944 MODULE_DESCRIPTION("DRXD driver");
2945 MODULE_AUTHOR("Micronas");
2946 MODULE_LICENSE("GPL");
2947