1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1 4 * 5 * Copyright (C) 2003-2007 Micronas 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/moduleparam.h> 11 #include <linux/init.h> 12 #include <linux/delay.h> 13 #include <linux/firmware.h> 14 #include <linux/i2c.h> 15 #include <asm/div64.h> 16 17 #include <media/dvb_frontend.h> 18 #include "drxd.h" 19 #include "drxd_firm.h" 20 21 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw" 22 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw" 23 24 #define CHUNK_SIZE 48 25 26 #define DRX_I2C_RMW 0x10 27 #define DRX_I2C_BROADCAST 0x20 28 #define DRX_I2C_CLEARCRC 0x80 29 #define DRX_I2C_SINGLE_MASTER 0xC0 30 #define DRX_I2C_MODEFLAGS 0xC0 31 #define DRX_I2C_FLAGS 0xF0 32 33 #define DEFAULT_LOCK_TIMEOUT 1100 34 35 #define DRX_CHANNEL_AUTO 0 36 #define DRX_CHANNEL_HIGH 1 37 #define DRX_CHANNEL_LOW 2 38 39 #define DRX_LOCK_MPEG 1 40 #define DRX_LOCK_FEC 2 41 #define DRX_LOCK_DEMOD 4 42 43 /****************************************************************************/ 44 45 enum CSCDState { 46 CSCD_INIT = 0, 47 CSCD_SET, 48 CSCD_SAVED 49 }; 50 51 enum CDrxdState { 52 DRXD_UNINITIALIZED = 0, 53 DRXD_STOPPED, 54 DRXD_STARTED 55 }; 56 57 enum AGC_CTRL_MODE { 58 AGC_CTRL_AUTO = 0, 59 AGC_CTRL_USER, 60 AGC_CTRL_OFF 61 }; 62 63 enum OperationMode { 64 OM_Default, 65 OM_DVBT_Diversity_Front, 66 OM_DVBT_Diversity_End 67 }; 68 69 struct SCfgAgc { 70 enum AGC_CTRL_MODE ctrlMode; 71 u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 72 u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 73 u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 74 u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 75 u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */ 76 77 u16 R1; 78 u16 R2; 79 u16 R3; 80 }; 81 82 struct SNoiseCal { 83 int cpOpt; 84 short cpNexpOfs; 85 short tdCal2k; 86 short tdCal8k; 87 }; 88 89 enum app_env { 90 APPENV_STATIC = 0, 91 APPENV_PORTABLE = 1, 92 APPENV_MOBILE = 2 93 }; 94 95 enum EIFFilter { 96 IFFILTER_SAW = 0, 97 IFFILTER_DISCRETE = 1 98 }; 99 100 struct drxd_state { 101 struct dvb_frontend frontend; 102 struct dvb_frontend_ops ops; 103 struct dtv_frontend_properties props; 104 105 const struct firmware *fw; 106 struct device *dev; 107 108 struct i2c_adapter *i2c; 109 void *priv; 110 struct drxd_config config; 111 112 int i2c_access; 113 int init_done; 114 struct mutex mutex; 115 116 u8 chip_adr; 117 u16 hi_cfg_timing_div; 118 u16 hi_cfg_bridge_delay; 119 u16 hi_cfg_wakeup_key; 120 u16 hi_cfg_ctrl; 121 122 u16 intermediate_freq; 123 u16 osc_clock_freq; 124 125 enum CSCDState cscd_state; 126 enum CDrxdState drxd_state; 127 128 u16 sys_clock_freq; 129 s16 osc_clock_deviation; 130 u16 expected_sys_clock_freq; 131 132 u16 insert_rs_byte; 133 u16 enable_parallel; 134 135 int operation_mode; 136 137 struct SCfgAgc if_agc_cfg; 138 struct SCfgAgc rf_agc_cfg; 139 140 struct SNoiseCal noise_cal; 141 142 u32 fe_fs_add_incr; 143 u32 org_fe_fs_add_incr; 144 u16 current_fe_if_incr; 145 146 u16 m_FeAgRegAgPwd; 147 u16 m_FeAgRegAgAgcSio; 148 149 u16 m_EcOcRegOcModeLop; 150 u16 m_EcOcRegSncSncLvl; 151 u8 *m_InitAtomicRead; 152 u8 *m_HiI2cPatch; 153 154 u8 *m_ResetCEFR; 155 u8 *m_InitFE_1; 156 u8 *m_InitFE_2; 157 u8 *m_InitCP; 158 u8 *m_InitCE; 159 u8 *m_InitEQ; 160 u8 *m_InitSC; 161 u8 *m_InitEC; 162 u8 *m_ResetECRAM; 163 u8 *m_InitDiversityFront; 164 u8 *m_InitDiversityEnd; 165 u8 *m_DisableDiversity; 166 u8 *m_StartDiversityFront; 167 u8 *m_StartDiversityEnd; 168 169 u8 *m_DiversityDelay8MHZ; 170 u8 *m_DiversityDelay6MHZ; 171 172 u8 *microcode; 173 u32 microcode_length; 174 175 int type_A; 176 int PGA; 177 int diversity; 178 int tuner_mirrors; 179 180 enum app_env app_env_default; 181 enum app_env app_env_diversity; 182 183 }; 184 185 /****************************************************************************/ 186 /* I2C **********************************************************************/ 187 /****************************************************************************/ 188 189 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len) 190 { 191 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len }; 192 193 if (i2c_transfer(adap, &msg, 1) != 1) 194 return -1; 195 return 0; 196 } 197 198 static int i2c_read(struct i2c_adapter *adap, 199 u8 adr, u8 *msg, int len, u8 *answ, int alen) 200 { 201 struct i2c_msg msgs[2] = { 202 { 203 .addr = adr, .flags = 0, 204 .buf = msg, .len = len 205 }, { 206 .addr = adr, .flags = I2C_M_RD, 207 .buf = answ, .len = alen 208 } 209 }; 210 if (i2c_transfer(adap, msgs, 2) != 2) 211 return -1; 212 return 0; 213 } 214 215 static inline u32 MulDiv32(u32 a, u32 b, u32 c) 216 { 217 u64 tmp64; 218 219 tmp64 = (u64)a * (u64)b; 220 do_div(tmp64, c); 221 222 return (u32) tmp64; 223 } 224 225 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags) 226 { 227 u8 adr = state->config.demod_address; 228 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, 229 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff 230 }; 231 u8 mm2[2]; 232 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0) 233 return -1; 234 if (data) 235 *data = mm2[0] | (mm2[1] << 8); 236 return mm2[0] | (mm2[1] << 8); 237 } 238 239 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags) 240 { 241 u8 adr = state->config.demod_address; 242 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, 243 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff 244 }; 245 u8 mm2[4]; 246 247 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0) 248 return -1; 249 if (data) 250 *data = 251 mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24); 252 return 0; 253 } 254 255 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags) 256 { 257 u8 adr = state->config.demod_address; 258 u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff, 259 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, 260 data & 0xff, (data >> 8) & 0xff 261 }; 262 263 if (i2c_write(state->i2c, adr, mm, 6) < 0) 264 return -1; 265 return 0; 266 } 267 268 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags) 269 { 270 u8 adr = state->config.demod_address; 271 u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff, 272 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, 273 data & 0xff, (data >> 8) & 0xff, 274 (data >> 16) & 0xff, (data >> 24) & 0xff 275 }; 276 277 if (i2c_write(state->i2c, adr, mm, 8) < 0) 278 return -1; 279 return 0; 280 } 281 282 static int write_chunk(struct drxd_state *state, 283 u32 reg, u8 *data, u32 len, u8 flags) 284 { 285 u8 adr = state->config.demod_address; 286 u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff, 287 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff 288 }; 289 int i; 290 291 for (i = 0; i < len; i++) 292 mm[4 + i] = data[i]; 293 if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) { 294 printk(KERN_ERR "error in write_chunk\n"); 295 return -1; 296 } 297 return 0; 298 } 299 300 static int WriteBlock(struct drxd_state *state, 301 u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags) 302 { 303 while (BlockSize > 0) { 304 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize; 305 306 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0) 307 return -1; 308 pBlock += Chunk; 309 Address += (Chunk >> 1); 310 BlockSize -= Chunk; 311 } 312 return 0; 313 } 314 315 static int WriteTable(struct drxd_state *state, u8 * pTable) 316 { 317 int status = 0; 318 319 if (!pTable) 320 return 0; 321 322 while (!status) { 323 u16 Length; 324 u32 Address = pTable[0] | (pTable[1] << 8) | 325 (pTable[2] << 16) | (pTable[3] << 24); 326 327 if (Address == 0xFFFFFFFF) 328 break; 329 pTable += sizeof(u32); 330 331 Length = pTable[0] | (pTable[1] << 8); 332 pTable += sizeof(u16); 333 if (!Length) 334 break; 335 status = WriteBlock(state, Address, Length * 2, pTable, 0); 336 pTable += (Length * 2); 337 } 338 return status; 339 } 340 341 /****************************************************************************/ 342 /****************************************************************************/ 343 /****************************************************************************/ 344 345 static int ResetCEFR(struct drxd_state *state) 346 { 347 return WriteTable(state, state->m_ResetCEFR); 348 } 349 350 static int InitCP(struct drxd_state *state) 351 { 352 return WriteTable(state, state->m_InitCP); 353 } 354 355 static int InitCE(struct drxd_state *state) 356 { 357 int status; 358 enum app_env AppEnv = state->app_env_default; 359 360 do { 361 status = WriteTable(state, state->m_InitCE); 362 if (status < 0) 363 break; 364 365 if (state->operation_mode == OM_DVBT_Diversity_Front || 366 state->operation_mode == OM_DVBT_Diversity_End) { 367 AppEnv = state->app_env_diversity; 368 } 369 if (AppEnv == APPENV_STATIC) { 370 status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0); 371 if (status < 0) 372 break; 373 } else if (AppEnv == APPENV_PORTABLE) { 374 status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0); 375 if (status < 0) 376 break; 377 } else if (AppEnv == APPENV_MOBILE && state->type_A) { 378 status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0); 379 if (status < 0) 380 break; 381 } else if (AppEnv == APPENV_MOBILE && !state->type_A) { 382 status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0); 383 if (status < 0) 384 break; 385 } 386 387 /* start ce */ 388 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0); 389 if (status < 0) 390 break; 391 } while (0); 392 return status; 393 } 394 395 static int StopOC(struct drxd_state *state) 396 { 397 int status = 0; 398 u16 ocSyncLvl = 0; 399 u16 ocModeLop = state->m_EcOcRegOcModeLop; 400 u16 dtoIncLop = 0; 401 u16 dtoIncHip = 0; 402 403 do { 404 /* Store output configuration */ 405 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0); 406 if (status < 0) 407 break; 408 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */ 409 state->m_EcOcRegSncSncLvl = ocSyncLvl; 410 /* m_EcOcRegOcModeLop = ocModeLop; */ 411 412 /* Flush FIFO (byte-boundary) at fixed rate */ 413 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0); 414 if (status < 0) 415 break; 416 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0); 417 if (status < 0) 418 break; 419 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0); 420 if (status < 0) 421 break; 422 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0); 423 if (status < 0) 424 break; 425 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M); 426 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC; 427 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); 428 if (status < 0) 429 break; 430 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); 431 if (status < 0) 432 break; 433 434 msleep(1); 435 /* Output pins to '0' */ 436 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0); 437 if (status < 0) 438 break; 439 440 /* Force the OC out of sync */ 441 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M); 442 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0); 443 if (status < 0) 444 break; 445 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M); 446 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE; 447 ocModeLop |= 0x2; /* Magically-out-of-sync */ 448 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); 449 if (status < 0) 450 break; 451 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0); 452 if (status < 0) 453 break; 454 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); 455 if (status < 0) 456 break; 457 } while (0); 458 459 return status; 460 } 461 462 static int StartOC(struct drxd_state *state) 463 { 464 int status = 0; 465 466 do { 467 /* Stop OC */ 468 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); 469 if (status < 0) 470 break; 471 472 /* Restore output configuration */ 473 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0); 474 if (status < 0) 475 break; 476 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0); 477 if (status < 0) 478 break; 479 480 /* Output pins active again */ 481 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0); 482 if (status < 0) 483 break; 484 485 /* Start OC */ 486 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); 487 if (status < 0) 488 break; 489 } while (0); 490 return status; 491 } 492 493 static int InitEQ(struct drxd_state *state) 494 { 495 return WriteTable(state, state->m_InitEQ); 496 } 497 498 static int InitEC(struct drxd_state *state) 499 { 500 return WriteTable(state, state->m_InitEC); 501 } 502 503 static int InitSC(struct drxd_state *state) 504 { 505 return WriteTable(state, state->m_InitSC); 506 } 507 508 static int InitAtomicRead(struct drxd_state *state) 509 { 510 return WriteTable(state, state->m_InitAtomicRead); 511 } 512 513 static int CorrectSysClockDeviation(struct drxd_state *state); 514 515 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus) 516 { 517 u16 ScRaRamLock = 0; 518 const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M | 519 SC_RA_RAM_LOCK_FEC__M | 520 SC_RA_RAM_LOCK_DEMOD__M); 521 const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M | 522 SC_RA_RAM_LOCK_DEMOD__M); 523 const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M; 524 525 int status; 526 527 *pLockStatus = 0; 528 529 status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000); 530 if (status < 0) { 531 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status); 532 return status; 533 } 534 535 if (state->drxd_state != DRXD_STARTED) 536 return 0; 537 538 if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) { 539 *pLockStatus |= DRX_LOCK_MPEG; 540 CorrectSysClockDeviation(state); 541 } 542 543 if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask) 544 *pLockStatus |= DRX_LOCK_FEC; 545 546 if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask) 547 *pLockStatus |= DRX_LOCK_DEMOD; 548 return 0; 549 } 550 551 /****************************************************************************/ 552 553 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg) 554 { 555 int status; 556 557 if (cfg->outputLevel > DRXD_FE_CTRL_MAX) 558 return -1; 559 560 if (cfg->ctrlMode == AGC_CTRL_USER) { 561 do { 562 u16 FeAgRegPm1AgcWri; 563 u16 FeAgRegAgModeLop; 564 565 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); 566 if (status < 0) 567 break; 568 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); 569 FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC; 570 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); 571 if (status < 0) 572 break; 573 574 FeAgRegPm1AgcWri = (u16) (cfg->outputLevel & 575 FE_AG_REG_PM1_AGC_WRI__M); 576 status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0); 577 if (status < 0) 578 break; 579 } while (0); 580 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { 581 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) || 582 ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) || 583 ((cfg->speed) > DRXD_FE_CTRL_MAX) || 584 ((cfg->settleLevel) > DRXD_FE_CTRL_MAX) 585 ) 586 return -1; 587 do { 588 u16 FeAgRegAgModeLop; 589 u16 FeAgRegEgcSetLvl; 590 u16 slope, offset; 591 592 /* == Mode == */ 593 594 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); 595 if (status < 0) 596 break; 597 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); 598 FeAgRegAgModeLop |= 599 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC; 600 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); 601 if (status < 0) 602 break; 603 604 /* == Settle level == */ 605 606 FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) & 607 FE_AG_REG_EGC_SET_LVL__M); 608 status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0); 609 if (status < 0) 610 break; 611 612 /* == Min/Max == */ 613 614 slope = (u16) ((cfg->maxOutputLevel - 615 cfg->minOutputLevel) / 2); 616 offset = (u16) ((cfg->maxOutputLevel + 617 cfg->minOutputLevel) / 2 - 511); 618 619 status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0); 620 if (status < 0) 621 break; 622 status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0); 623 if (status < 0) 624 break; 625 626 /* == Speed == */ 627 { 628 const u16 maxRur = 8; 629 static const u16 slowIncrDecLUT[] = { 630 3, 4, 4, 5, 6 }; 631 static const u16 fastIncrDecLUT[] = { 632 14, 15, 15, 16, 633 17, 18, 18, 19, 634 20, 21, 22, 23, 635 24, 26, 27, 28, 636 29, 31 637 }; 638 639 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) / 640 (maxRur + 1); 641 u16 fineSpeed = (u16) (cfg->speed - 642 ((cfg->speed / 643 fineSteps) * 644 fineSteps)); 645 u16 invRurCount = (u16) (cfg->speed / 646 fineSteps); 647 u16 rurCount; 648 if (invRurCount > maxRur) { 649 rurCount = 0; 650 fineSpeed += fineSteps; 651 } else { 652 rurCount = maxRur - invRurCount; 653 } 654 655 /* 656 fastInc = default * 657 (2^(fineSpeed/fineSteps)) 658 => range[default...2*default> 659 slowInc = default * 660 (2^(fineSpeed/fineSteps)) 661 */ 662 { 663 u16 fastIncrDec = 664 fastIncrDecLUT[fineSpeed / 665 ((fineSteps / 666 (14 + 1)) + 1)]; 667 u16 slowIncrDec = 668 slowIncrDecLUT[fineSpeed / 669 (fineSteps / 670 (3 + 1))]; 671 672 status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0); 673 if (status < 0) 674 break; 675 status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0); 676 if (status < 0) 677 break; 678 status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0); 679 if (status < 0) 680 break; 681 status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0); 682 if (status < 0) 683 break; 684 status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0); 685 if (status < 0) 686 break; 687 } 688 } 689 } while (0); 690 691 } else { 692 /* No OFF mode for IF control */ 693 return -1; 694 } 695 return status; 696 } 697 698 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg) 699 { 700 int status = 0; 701 702 if (cfg->outputLevel > DRXD_FE_CTRL_MAX) 703 return -1; 704 705 if (cfg->ctrlMode == AGC_CTRL_USER) { 706 do { 707 u16 AgModeLop = 0; 708 u16 level = (cfg->outputLevel); 709 710 if (level == DRXD_FE_CTRL_MAX) 711 level++; 712 713 status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000); 714 if (status < 0) 715 break; 716 717 /*==== Mode ====*/ 718 719 /* Powerdown PD2, WRI source */ 720 state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M); 721 state->m_FeAgRegAgPwd |= 722 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; 723 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); 724 if (status < 0) 725 break; 726 727 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 728 if (status < 0) 729 break; 730 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | 731 FE_AG_REG_AG_MODE_LOP_MODE_E__M)); 732 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | 733 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); 734 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 735 if (status < 0) 736 break; 737 738 /* enable AGC2 pin */ 739 { 740 u16 FeAgRegAgAgcSio = 0; 741 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); 742 if (status < 0) 743 break; 744 FeAgRegAgAgcSio &= 745 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); 746 FeAgRegAgAgcSio |= 747 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; 748 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); 749 if (status < 0) 750 break; 751 } 752 753 } while (0); 754 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { 755 u16 AgModeLop = 0; 756 757 do { 758 u16 level; 759 /* Automatic control */ 760 /* Powerup PD2, AGC2 as output, TGC source */ 761 (state->m_FeAgRegAgPwd) &= 762 ~(FE_AG_REG_AG_PWD_PWD_PD2__M); 763 (state->m_FeAgRegAgPwd) |= 764 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; 765 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); 766 if (status < 0) 767 break; 768 769 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 770 if (status < 0) 771 break; 772 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | 773 FE_AG_REG_AG_MODE_LOP_MODE_E__M)); 774 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | 775 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC); 776 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 777 if (status < 0) 778 break; 779 /* Settle level */ 780 level = (((cfg->settleLevel) >> 4) & 781 FE_AG_REG_TGC_SET_LVL__M); 782 status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000); 783 if (status < 0) 784 break; 785 786 /* Min/max: don't care */ 787 788 /* Speed: TODO */ 789 790 /* enable AGC2 pin */ 791 { 792 u16 FeAgRegAgAgcSio = 0; 793 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); 794 if (status < 0) 795 break; 796 FeAgRegAgAgcSio &= 797 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); 798 FeAgRegAgAgcSio |= 799 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; 800 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); 801 if (status < 0) 802 break; 803 } 804 805 } while (0); 806 } else { 807 u16 AgModeLop = 0; 808 809 do { 810 /* No RF AGC control */ 811 /* Powerdown PD2, AGC2 as output, WRI source */ 812 (state->m_FeAgRegAgPwd) &= 813 ~(FE_AG_REG_AG_PWD_PWD_PD2__M); 814 (state->m_FeAgRegAgPwd) |= 815 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE; 816 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); 817 if (status < 0) 818 break; 819 820 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 821 if (status < 0) 822 break; 823 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | 824 FE_AG_REG_AG_MODE_LOP_MODE_E__M)); 825 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | 826 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); 827 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 828 if (status < 0) 829 break; 830 831 /* set FeAgRegAgAgcSio AGC2 (RF) as input */ 832 { 833 u16 FeAgRegAgAgcSio = 0; 834 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); 835 if (status < 0) 836 break; 837 FeAgRegAgAgcSio &= 838 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); 839 FeAgRegAgAgcSio |= 840 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT; 841 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); 842 if (status < 0) 843 break; 844 } 845 } while (0); 846 } 847 return status; 848 } 849 850 static int ReadIFAgc(struct drxd_state *state, u32 * pValue) 851 { 852 int status = 0; 853 854 *pValue = 0; 855 if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) { 856 u16 Value; 857 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0); 858 Value &= FE_AG_REG_GC1_AGC_DAT__M; 859 if (status >= 0) { 860 /* 3.3V 861 | 862 R1 863 | 864 Vin - R3 - * -- Vout 865 | 866 R2 867 | 868 GND 869 */ 870 u32 R1 = state->if_agc_cfg.R1; 871 u32 R2 = state->if_agc_cfg.R2; 872 u32 R3 = state->if_agc_cfg.R3; 873 874 u32 Vmax, Rpar, Vmin, Vout; 875 876 if (R2 == 0 && (R1 == 0 || R3 == 0)) 877 return 0; 878 879 Vmax = (3300 * R2) / (R1 + R2); 880 Rpar = (R2 * R3) / (R3 + R2); 881 Vmin = (3300 * Rpar) / (R1 + Rpar); 882 Vout = Vmin + ((Vmax - Vmin) * Value) / 1024; 883 884 *pValue = Vout; 885 } 886 } 887 return status; 888 } 889 890 static int load_firmware(struct drxd_state *state, const char *fw_name) 891 { 892 const struct firmware *fw; 893 894 if (request_firmware(&fw, fw_name, state->dev) < 0) { 895 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name); 896 return -EIO; 897 } 898 899 state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL); 900 if (!state->microcode) { 901 release_firmware(fw); 902 return -ENOMEM; 903 } 904 905 state->microcode_length = fw->size; 906 release_firmware(fw); 907 return 0; 908 } 909 910 static int DownloadMicrocode(struct drxd_state *state, 911 const u8 *pMCImage, u32 Length) 912 { 913 u8 *pSrc; 914 u32 Address; 915 u16 nBlocks; 916 u16 BlockSize; 917 u32 offset = 0; 918 int i, status = 0; 919 920 pSrc = (u8 *) pMCImage; 921 /* We're not using Flags */ 922 /* Flags = (pSrc[0] << 8) | pSrc[1]; */ 923 pSrc += sizeof(u16); 924 offset += sizeof(u16); 925 nBlocks = (pSrc[0] << 8) | pSrc[1]; 926 pSrc += sizeof(u16); 927 offset += sizeof(u16); 928 929 for (i = 0; i < nBlocks; i++) { 930 Address = (pSrc[0] << 24) | (pSrc[1] << 16) | 931 (pSrc[2] << 8) | pSrc[3]; 932 pSrc += sizeof(u32); 933 offset += sizeof(u32); 934 935 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16); 936 pSrc += sizeof(u16); 937 offset += sizeof(u16); 938 939 /* We're not using Flags */ 940 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */ 941 pSrc += sizeof(u16); 942 offset += sizeof(u16); 943 944 /* We're not using BlockCRC */ 945 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */ 946 pSrc += sizeof(u16); 947 offset += sizeof(u16); 948 949 status = WriteBlock(state, Address, BlockSize, 950 pSrc, DRX_I2C_CLEARCRC); 951 if (status < 0) 952 break; 953 pSrc += BlockSize; 954 offset += BlockSize; 955 } 956 957 return status; 958 } 959 960 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult) 961 { 962 u32 nrRetries = 0; 963 int status; 964 965 status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0); 966 if (status < 0) 967 return status; 968 969 do { 970 nrRetries += 1; 971 if (nrRetries > DRXD_MAX_RETRIES) { 972 status = -1; 973 break; 974 } 975 status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0); 976 } while (status != 0); 977 978 if (status >= 0) 979 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0); 980 return status; 981 } 982 983 static int HI_CfgCommand(struct drxd_state *state) 984 { 985 int status = 0; 986 987 mutex_lock(&state->mutex); 988 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); 989 Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0); 990 Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0); 991 Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0); 992 Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0); 993 994 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); 995 996 if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) == 997 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) 998 status = Write16(state, HI_RA_RAM_SRV_CMD__A, 999 HI_RA_RAM_SRV_CMD_CONFIG, 0); 1000 else 1001 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL); 1002 mutex_unlock(&state->mutex); 1003 return status; 1004 } 1005 1006 static int InitHI(struct drxd_state *state) 1007 { 1008 state->hi_cfg_wakeup_key = (state->chip_adr); 1009 /* port/bridge/power down ctrl */ 1010 state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON; 1011 return HI_CfgCommand(state); 1012 } 1013 1014 static int HI_ResetCommand(struct drxd_state *state) 1015 { 1016 int status; 1017 1018 mutex_lock(&state->mutex); 1019 status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A, 1020 HI_RA_RAM_SRV_RST_KEY_ACT, 0); 1021 if (status == 0) 1022 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL); 1023 mutex_unlock(&state->mutex); 1024 msleep(1); 1025 return status; 1026 } 1027 1028 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge) 1029 { 1030 state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M); 1031 if (bEnableBridge) 1032 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON; 1033 else 1034 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF; 1035 1036 return HI_CfgCommand(state); 1037 } 1038 1039 #define HI_TR_WRITE 0x9 1040 #define HI_TR_READ 0xA 1041 #define HI_TR_READ_WRITE 0xB 1042 #define HI_TR_BROADCAST 0x4 1043 1044 #if 0 1045 static int AtomicReadBlock(struct drxd_state *state, 1046 u32 Addr, u16 DataSize, u8 *pData, u8 Flags) 1047 { 1048 int status; 1049 int i = 0; 1050 1051 /* Parameter check */ 1052 if ((!pData) || ((DataSize & 1) != 0)) 1053 return -1; 1054 1055 mutex_lock(&state->mutex); 1056 1057 do { 1058 /* Instruct HI to read n bytes */ 1059 /* TODO use proper names forthese egisters */ 1060 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0); 1061 if (status < 0) 1062 break; 1063 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0); 1064 if (status < 0) 1065 break; 1066 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0); 1067 if (status < 0) 1068 break; 1069 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0); 1070 if (status < 0) 1071 break; 1072 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0); 1073 if (status < 0) 1074 break; 1075 1076 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0); 1077 if (status < 0) 1078 break; 1079 1080 } while (0); 1081 1082 if (status >= 0) { 1083 for (i = 0; i < (DataSize / 2); i += 1) { 1084 u16 word; 1085 1086 status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i), 1087 &word, 0); 1088 if (status < 0) 1089 break; 1090 pData[2 * i] = (u8) (word & 0xFF); 1091 pData[(2 * i) + 1] = (u8) (word >> 8); 1092 } 1093 } 1094 mutex_unlock(&state->mutex); 1095 return status; 1096 } 1097 1098 static int AtomicReadReg32(struct drxd_state *state, 1099 u32 Addr, u32 *pData, u8 Flags) 1100 { 1101 u8 buf[sizeof(u32)]; 1102 int status; 1103 1104 if (!pData) 1105 return -1; 1106 status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags); 1107 *pData = (((u32) buf[0]) << 0) + 1108 (((u32) buf[1]) << 8) + 1109 (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24); 1110 return status; 1111 } 1112 #endif 1113 1114 static int StopAllProcessors(struct drxd_state *state) 1115 { 1116 return Write16(state, HI_COMM_EXEC__A, 1117 SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST); 1118 } 1119 1120 static int EnableAndResetMB(struct drxd_state *state) 1121 { 1122 if (state->type_A) { 1123 /* disable? monitor bus observe @ EC_OC */ 1124 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000); 1125 } 1126 1127 /* do inverse broadcast, followed by explicit write to HI */ 1128 Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST); 1129 Write16(state, HI_COMM_MB__A, 0x0000, 0x0000); 1130 return 0; 1131 } 1132 1133 static int InitCC(struct drxd_state *state) 1134 { 1135 int status = 0; 1136 1137 if (state->osc_clock_freq == 0 || 1138 state->osc_clock_freq > 20000 || 1139 (state->osc_clock_freq % 4000) != 0) { 1140 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq); 1141 return -1; 1142 } 1143 1144 status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0); 1145 status |= Write16(state, CC_REG_PLL_MODE__A, 1146 CC_REG_PLL_MODE_BYPASS_PLL | 1147 CC_REG_PLL_MODE_PUMP_CUR_12, 0); 1148 status |= Write16(state, CC_REG_REF_DIVIDE__A, 1149 state->osc_clock_freq / 4000, 0); 1150 status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 1151 0); 1152 status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0); 1153 1154 return status; 1155 } 1156 1157 static int ResetECOD(struct drxd_state *state) 1158 { 1159 int status = 0; 1160 1161 if (state->type_A) 1162 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0); 1163 else 1164 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0); 1165 1166 if (!(status < 0)) 1167 status = WriteTable(state, state->m_ResetECRAM); 1168 if (!(status < 0)) 1169 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0); 1170 return status; 1171 } 1172 1173 /* Configure PGA switch */ 1174 1175 static int SetCfgPga(struct drxd_state *state, int pgaSwitch) 1176 { 1177 int status; 1178 u16 AgModeLop = 0; 1179 u16 AgModeHip = 0; 1180 do { 1181 if (pgaSwitch) { 1182 /* PGA on */ 1183 /* fine gain */ 1184 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 1185 if (status < 0) 1186 break; 1187 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); 1188 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC; 1189 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 1190 if (status < 0) 1191 break; 1192 1193 /* coarse gain */ 1194 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); 1195 if (status < 0) 1196 break; 1197 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); 1198 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC; 1199 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); 1200 if (status < 0) 1201 break; 1202 1203 /* enable fine and coarse gain, enable AAF, 1204 no ext resistor */ 1205 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000); 1206 if (status < 0) 1207 break; 1208 } else { 1209 /* PGA off, bypass */ 1210 1211 /* fine gain */ 1212 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 1213 if (status < 0) 1214 break; 1215 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); 1216 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC; 1217 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 1218 if (status < 0) 1219 break; 1220 1221 /* coarse gain */ 1222 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); 1223 if (status < 0) 1224 break; 1225 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); 1226 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC; 1227 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); 1228 if (status < 0) 1229 break; 1230 1231 /* disable fine and coarse gain, enable AAF, 1232 no ext resistor */ 1233 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000); 1234 if (status < 0) 1235 break; 1236 } 1237 } while (0); 1238 return status; 1239 } 1240 1241 static int InitFE(struct drxd_state *state) 1242 { 1243 int status; 1244 1245 do { 1246 status = WriteTable(state, state->m_InitFE_1); 1247 if (status < 0) 1248 break; 1249 1250 if (state->type_A) { 1251 status = Write16(state, FE_AG_REG_AG_PGA_MODE__A, 1252 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 1253 0); 1254 } else { 1255 if (state->PGA) 1256 status = SetCfgPga(state, 0); 1257 else 1258 status = 1259 Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, 1260 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 1261 0); 1262 } 1263 1264 if (status < 0) 1265 break; 1266 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000); 1267 if (status < 0) 1268 break; 1269 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); 1270 if (status < 0) 1271 break; 1272 1273 status = WriteTable(state, state->m_InitFE_2); 1274 if (status < 0) 1275 break; 1276 1277 } while (0); 1278 1279 return status; 1280 } 1281 1282 static int InitFT(struct drxd_state *state) 1283 { 1284 /* 1285 norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk 1286 SC stuff 1287 */ 1288 return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000); 1289 } 1290 1291 static int SC_WaitForReady(struct drxd_state *state) 1292 { 1293 int i; 1294 1295 for (i = 0; i < DRXD_MAX_RETRIES; i += 1) { 1296 int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0); 1297 if (status == 0) 1298 return status; 1299 } 1300 return -1; 1301 } 1302 1303 static int SC_SendCommand(struct drxd_state *state, u16 cmd) 1304 { 1305 int status = 0, ret; 1306 u16 errCode; 1307 1308 status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0); 1309 if (status < 0) 1310 return status; 1311 1312 SC_WaitForReady(state); 1313 1314 ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0); 1315 1316 if (ret < 0 || errCode == 0xFFFF) { 1317 printk(KERN_ERR "Command Error\n"); 1318 status = -1; 1319 } 1320 1321 return status; 1322 } 1323 1324 static int SC_ProcStartCommand(struct drxd_state *state, 1325 u16 subCmd, u16 param0, u16 param1) 1326 { 1327 int ret, status = 0; 1328 u16 scExec; 1329 1330 mutex_lock(&state->mutex); 1331 do { 1332 ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0); 1333 if (ret < 0 || scExec != 1) { 1334 status = -1; 1335 break; 1336 } 1337 SC_WaitForReady(state); 1338 status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); 1339 status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); 1340 status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); 1341 1342 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START); 1343 } while (0); 1344 mutex_unlock(&state->mutex); 1345 return status; 1346 } 1347 1348 static int SC_SetPrefParamCommand(struct drxd_state *state, 1349 u16 subCmd, u16 param0, u16 param1) 1350 { 1351 int status; 1352 1353 mutex_lock(&state->mutex); 1354 do { 1355 status = SC_WaitForReady(state); 1356 if (status < 0) 1357 break; 1358 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); 1359 if (status < 0) 1360 break; 1361 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); 1362 if (status < 0) 1363 break; 1364 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); 1365 if (status < 0) 1366 break; 1367 1368 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM); 1369 if (status < 0) 1370 break; 1371 } while (0); 1372 mutex_unlock(&state->mutex); 1373 return status; 1374 } 1375 1376 #if 0 1377 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result) 1378 { 1379 int status = 0; 1380 1381 mutex_lock(&state->mutex); 1382 do { 1383 status = SC_WaitForReady(state); 1384 if (status < 0) 1385 break; 1386 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM); 1387 if (status < 0) 1388 break; 1389 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0); 1390 if (status < 0) 1391 break; 1392 } while (0); 1393 mutex_unlock(&state->mutex); 1394 return status; 1395 } 1396 #endif 1397 1398 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput) 1399 { 1400 int status; 1401 1402 do { 1403 u16 EcOcRegIprInvMpg = 0; 1404 u16 EcOcRegOcModeLop = 0; 1405 u16 EcOcRegOcModeHip = 0; 1406 u16 EcOcRegOcMpgSio = 0; 1407 1408 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */ 1409 1410 if (state->operation_mode == OM_DVBT_Diversity_Front) { 1411 if (bEnableOutput) { 1412 EcOcRegOcModeHip |= 1413 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR; 1414 } else 1415 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; 1416 EcOcRegOcModeLop |= 1417 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; 1418 } else { 1419 EcOcRegOcModeLop = state->m_EcOcRegOcModeLop; 1420 1421 if (bEnableOutput) 1422 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M)); 1423 else 1424 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; 1425 1426 /* Don't Insert RS Byte */ 1427 if (state->insert_rs_byte) { 1428 EcOcRegOcModeLop &= 1429 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M)); 1430 EcOcRegOcModeHip &= 1431 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); 1432 EcOcRegOcModeHip |= 1433 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE; 1434 } else { 1435 EcOcRegOcModeLop |= 1436 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; 1437 EcOcRegOcModeHip &= 1438 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); 1439 EcOcRegOcModeHip |= 1440 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE; 1441 } 1442 1443 /* Mode = Parallel */ 1444 if (state->enable_parallel) 1445 EcOcRegOcModeLop &= 1446 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M)); 1447 else 1448 EcOcRegOcModeLop |= 1449 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL; 1450 } 1451 /* Invert Data */ 1452 /* EcOcRegIprInvMpg |= 0x00FF; */ 1453 EcOcRegIprInvMpg &= (~(0x00FF)); 1454 1455 /* Invert Error ( we don't use the pin ) */ 1456 /* EcOcRegIprInvMpg |= 0x0100; */ 1457 EcOcRegIprInvMpg &= (~(0x0100)); 1458 1459 /* Invert Start ( we don't use the pin ) */ 1460 /* EcOcRegIprInvMpg |= 0x0200; */ 1461 EcOcRegIprInvMpg &= (~(0x0200)); 1462 1463 /* Invert Valid ( we don't use the pin ) */ 1464 /* EcOcRegIprInvMpg |= 0x0400; */ 1465 EcOcRegIprInvMpg &= (~(0x0400)); 1466 1467 /* Invert Clock */ 1468 /* EcOcRegIprInvMpg |= 0x0800; */ 1469 EcOcRegIprInvMpg &= (~(0x0800)); 1470 1471 /* EcOcRegOcModeLop =0x05; */ 1472 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0); 1473 if (status < 0) 1474 break; 1475 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0); 1476 if (status < 0) 1477 break; 1478 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000); 1479 if (status < 0) 1480 break; 1481 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0); 1482 if (status < 0) 1483 break; 1484 } while (0); 1485 return status; 1486 } 1487 1488 static int SetDeviceTypeId(struct drxd_state *state) 1489 { 1490 int status = 0; 1491 u16 deviceId = 0; 1492 1493 do { 1494 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); 1495 if (status < 0) 1496 break; 1497 /* TODO: why twice? */ 1498 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); 1499 if (status < 0) 1500 break; 1501 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId); 1502 1503 state->type_A = 0; 1504 state->PGA = 0; 1505 state->diversity = 0; 1506 if (deviceId == 0) { /* on A2 only 3975 available */ 1507 state->type_A = 1; 1508 printk(KERN_INFO "DRX3975D-A2\n"); 1509 } else { 1510 deviceId >>= 12; 1511 printk(KERN_INFO "DRX397%dD-B1\n", deviceId); 1512 switch (deviceId) { 1513 case 4: 1514 state->diversity = 1; 1515 fallthrough; 1516 case 3: 1517 case 7: 1518 state->PGA = 1; 1519 break; 1520 case 6: 1521 state->diversity = 1; 1522 fallthrough; 1523 case 5: 1524 case 8: 1525 break; 1526 default: 1527 status = -1; 1528 break; 1529 } 1530 } 1531 } while (0); 1532 1533 if (status < 0) 1534 return status; 1535 1536 /* Init Table selection */ 1537 state->m_InitAtomicRead = DRXD_InitAtomicRead; 1538 state->m_InitSC = DRXD_InitSC; 1539 state->m_ResetECRAM = DRXD_ResetECRAM; 1540 if (state->type_A) { 1541 state->m_ResetCEFR = DRXD_ResetCEFR; 1542 state->m_InitFE_1 = DRXD_InitFEA2_1; 1543 state->m_InitFE_2 = DRXD_InitFEA2_2; 1544 state->m_InitCP = DRXD_InitCPA2; 1545 state->m_InitCE = DRXD_InitCEA2; 1546 state->m_InitEQ = DRXD_InitEQA2; 1547 state->m_InitEC = DRXD_InitECA2; 1548 if (load_firmware(state, DRX_FW_FILENAME_A2)) 1549 return -EIO; 1550 } else { 1551 state->m_ResetCEFR = NULL; 1552 state->m_InitFE_1 = DRXD_InitFEB1_1; 1553 state->m_InitFE_2 = DRXD_InitFEB1_2; 1554 state->m_InitCP = DRXD_InitCPB1; 1555 state->m_InitCE = DRXD_InitCEB1; 1556 state->m_InitEQ = DRXD_InitEQB1; 1557 state->m_InitEC = DRXD_InitECB1; 1558 if (load_firmware(state, DRX_FW_FILENAME_B1)) 1559 return -EIO; 1560 } 1561 if (state->diversity) { 1562 state->m_InitDiversityFront = DRXD_InitDiversityFront; 1563 state->m_InitDiversityEnd = DRXD_InitDiversityEnd; 1564 state->m_DisableDiversity = DRXD_DisableDiversity; 1565 state->m_StartDiversityFront = DRXD_StartDiversityFront; 1566 state->m_StartDiversityEnd = DRXD_StartDiversityEnd; 1567 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ; 1568 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ; 1569 } else { 1570 state->m_InitDiversityFront = NULL; 1571 state->m_InitDiversityEnd = NULL; 1572 state->m_DisableDiversity = NULL; 1573 state->m_StartDiversityFront = NULL; 1574 state->m_StartDiversityEnd = NULL; 1575 state->m_DiversityDelay8MHZ = NULL; 1576 state->m_DiversityDelay6MHZ = NULL; 1577 } 1578 1579 return status; 1580 } 1581 1582 static int CorrectSysClockDeviation(struct drxd_state *state) 1583 { 1584 int status; 1585 s32 incr = 0; 1586 s32 nomincr = 0; 1587 u32 bandwidth = 0; 1588 u32 sysClockInHz = 0; 1589 u32 sysClockFreq = 0; /* in kHz */ 1590 s16 oscClockDeviation; 1591 s16 Diff; 1592 1593 do { 1594 /* Retrieve bandwidth and incr, sanity check */ 1595 1596 /* These accesses should be AtomicReadReg32, but that 1597 causes trouble (at least for diversity */ 1598 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0); 1599 if (status < 0) 1600 break; 1601 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0); 1602 if (status < 0) 1603 break; 1604 1605 if (state->type_A) { 1606 if ((nomincr - incr < -500) || (nomincr - incr > 500)) 1607 break; 1608 } else { 1609 if ((nomincr - incr < -2000) || (nomincr - incr > 2000)) 1610 break; 1611 } 1612 1613 switch (state->props.bandwidth_hz) { 1614 case 8000000: 1615 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; 1616 break; 1617 case 7000000: 1618 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; 1619 break; 1620 case 6000000: 1621 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; 1622 break; 1623 default: 1624 return -1; 1625 } 1626 1627 /* Compute new sysclock value 1628 sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */ 1629 incr += (1 << 23); 1630 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21); 1631 sysClockFreq = (u32) (sysClockInHz / 1000); 1632 /* rounding */ 1633 if ((sysClockInHz % 1000) > 500) 1634 sysClockFreq++; 1635 1636 /* Compute clock deviation in ppm */ 1637 oscClockDeviation = (u16) ((((s32) (sysClockFreq) - 1638 (s32) 1639 (state->expected_sys_clock_freq)) * 1640 1000000L) / 1641 (s32) 1642 (state->expected_sys_clock_freq)); 1643 1644 Diff = oscClockDeviation - state->osc_clock_deviation; 1645 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */ 1646 if (Diff >= -200 && Diff <= 200) { 1647 state->sys_clock_freq = (u16) sysClockFreq; 1648 if (oscClockDeviation != state->osc_clock_deviation) { 1649 if (state->config.osc_deviation) { 1650 state->config.osc_deviation(state->priv, 1651 oscClockDeviation, 1652 1); 1653 state->osc_clock_deviation = 1654 oscClockDeviation; 1655 } 1656 } 1657 /* switch OFF SRMM scan in SC */ 1658 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0); 1659 if (status < 0) 1660 break; 1661 /* overrule FE_IF internal value for 1662 proper re-locking */ 1663 status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0); 1664 if (status < 0) 1665 break; 1666 state->cscd_state = CSCD_SAVED; 1667 } 1668 } while (0); 1669 1670 return status; 1671 } 1672 1673 static int DRX_Stop(struct drxd_state *state) 1674 { 1675 int status; 1676 1677 if (state->drxd_state != DRXD_STARTED) 1678 return 0; 1679 1680 do { 1681 if (state->cscd_state != CSCD_SAVED) { 1682 u32 lock; 1683 status = DRX_GetLockStatus(state, &lock); 1684 if (status < 0) 1685 break; 1686 } 1687 1688 status = StopOC(state); 1689 if (status < 0) 1690 break; 1691 1692 state->drxd_state = DRXD_STOPPED; 1693 1694 status = ConfigureMPEGOutput(state, 0); 1695 if (status < 0) 1696 break; 1697 1698 if (state->type_A) { 1699 /* Stop relevant processors off the device */ 1700 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000); 1701 if (status < 0) 1702 break; 1703 1704 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1705 if (status < 0) 1706 break; 1707 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1708 if (status < 0) 1709 break; 1710 } else { 1711 /* Stop all processors except HI & CC & FE */ 1712 status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1713 if (status < 0) 1714 break; 1715 status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1716 if (status < 0) 1717 break; 1718 status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1719 if (status < 0) 1720 break; 1721 status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1722 if (status < 0) 1723 break; 1724 status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1725 if (status < 0) 1726 break; 1727 status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1728 if (status < 0) 1729 break; 1730 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0); 1731 if (status < 0) 1732 break; 1733 } 1734 1735 } while (0); 1736 return status; 1737 } 1738 1739 #if 0 /* Currently unused */ 1740 static int SetOperationMode(struct drxd_state *state, int oMode) 1741 { 1742 int status; 1743 1744 do { 1745 if (state->drxd_state != DRXD_STOPPED) { 1746 status = -1; 1747 break; 1748 } 1749 1750 if (oMode == state->operation_mode) { 1751 status = 0; 1752 break; 1753 } 1754 1755 if (oMode != OM_Default && !state->diversity) { 1756 status = -1; 1757 break; 1758 } 1759 1760 switch (oMode) { 1761 case OM_DVBT_Diversity_Front: 1762 status = WriteTable(state, state->m_InitDiversityFront); 1763 break; 1764 case OM_DVBT_Diversity_End: 1765 status = WriteTable(state, state->m_InitDiversityEnd); 1766 break; 1767 case OM_Default: 1768 /* We need to check how to 1769 get DRXD out of diversity */ 1770 default: 1771 status = WriteTable(state, state->m_DisableDiversity); 1772 break; 1773 } 1774 } while (0); 1775 1776 if (!status) 1777 state->operation_mode = oMode; 1778 return status; 1779 } 1780 #endif 1781 1782 static int StartDiversity(struct drxd_state *state) 1783 { 1784 int status = 0; 1785 u16 rcControl; 1786 1787 do { 1788 if (state->operation_mode == OM_DVBT_Diversity_Front) { 1789 status = WriteTable(state, state->m_StartDiversityFront); 1790 if (status < 0) 1791 break; 1792 } else if (state->operation_mode == OM_DVBT_Diversity_End) { 1793 status = WriteTable(state, state->m_StartDiversityEnd); 1794 if (status < 0) 1795 break; 1796 if (state->props.bandwidth_hz == 8000000) { 1797 status = WriteTable(state, state->m_DiversityDelay8MHZ); 1798 if (status < 0) 1799 break; 1800 } else { 1801 status = WriteTable(state, state->m_DiversityDelay6MHZ); 1802 if (status < 0) 1803 break; 1804 } 1805 1806 status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0); 1807 if (status < 0) 1808 break; 1809 rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M); 1810 rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON | 1811 /* combining enabled */ 1812 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC | 1813 B_EQ_REG_RC_SEL_CAR_PASS_A_CC | 1814 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC; 1815 status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0); 1816 if (status < 0) 1817 break; 1818 } 1819 } while (0); 1820 return status; 1821 } 1822 1823 static int SetFrequencyShift(struct drxd_state *state, 1824 u32 offsetFreq, int channelMirrored) 1825 { 1826 int negativeShift = (state->tuner_mirrors == channelMirrored); 1827 1828 /* Handle all mirroring 1829 * 1830 * Note: ADC mirroring (aliasing) is implictly handled by limiting 1831 * feFsRegAddInc to 28 bits below 1832 * (if the result before masking is more than 28 bits, this means 1833 * that the ADC is mirroring. 1834 * The masking is in fact the aliasing of the ADC) 1835 * 1836 */ 1837 1838 /* Compute register value, unsigned computation */ 1839 state->fe_fs_add_incr = MulDiv32(state->intermediate_freq + 1840 offsetFreq, 1841 1 << 28, state->sys_clock_freq); 1842 /* Remove integer part */ 1843 state->fe_fs_add_incr &= 0x0FFFFFFFL; 1844 if (negativeShift) 1845 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr); 1846 1847 /* Save the frequency shift without tunerOffset compensation 1848 for CtrlGetChannel. */ 1849 state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq, 1850 1 << 28, state->sys_clock_freq); 1851 /* Remove integer part */ 1852 state->org_fe_fs_add_incr &= 0x0FFFFFFFL; 1853 if (negativeShift) 1854 state->org_fe_fs_add_incr = ((1L << 28) - 1855 state->org_fe_fs_add_incr); 1856 1857 return Write32(state, FE_FS_REG_ADD_INC_LOP__A, 1858 state->fe_fs_add_incr, 0); 1859 } 1860 1861 static int SetCfgNoiseCalibration(struct drxd_state *state, 1862 struct SNoiseCal *noiseCal) 1863 { 1864 u16 beOptEna; 1865 int status = 0; 1866 1867 do { 1868 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0); 1869 if (status < 0) 1870 break; 1871 if (noiseCal->cpOpt) { 1872 beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); 1873 } else { 1874 beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); 1875 status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0); 1876 if (status < 0) 1877 break; 1878 } 1879 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0); 1880 if (status < 0) 1881 break; 1882 1883 if (!state->type_A) { 1884 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0); 1885 if (status < 0) 1886 break; 1887 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0); 1888 if (status < 0) 1889 break; 1890 } 1891 } while (0); 1892 1893 return status; 1894 } 1895 1896 static int DRX_Start(struct drxd_state *state, s32 off) 1897 { 1898 struct dtv_frontend_properties *p = &state->props; 1899 int status; 1900 1901 u16 transmissionParams = 0; 1902 u16 operationMode = 0; 1903 u16 qpskTdTpsPwr = 0; 1904 u16 qam16TdTpsPwr = 0; 1905 u16 qam64TdTpsPwr = 0; 1906 u32 feIfIncr = 0; 1907 u32 bandwidth = 0; 1908 int mirrorFreqSpect; 1909 1910 u16 qpskSnCeGain = 0; 1911 u16 qam16SnCeGain = 0; 1912 u16 qam64SnCeGain = 0; 1913 u16 qpskIsGainMan = 0; 1914 u16 qam16IsGainMan = 0; 1915 u16 qam64IsGainMan = 0; 1916 u16 qpskIsGainExp = 0; 1917 u16 qam16IsGainExp = 0; 1918 u16 qam64IsGainExp = 0; 1919 u16 bandwidthParam = 0; 1920 1921 if (off < 0) 1922 off = (off - 500) / 1000; 1923 else 1924 off = (off + 500) / 1000; 1925 1926 do { 1927 if (state->drxd_state != DRXD_STOPPED) 1928 return -1; 1929 status = ResetECOD(state); 1930 if (status < 0) 1931 break; 1932 if (state->type_A) { 1933 status = InitSC(state); 1934 if (status < 0) 1935 break; 1936 } else { 1937 status = InitFT(state); 1938 if (status < 0) 1939 break; 1940 status = InitCP(state); 1941 if (status < 0) 1942 break; 1943 status = InitCE(state); 1944 if (status < 0) 1945 break; 1946 status = InitEQ(state); 1947 if (status < 0) 1948 break; 1949 status = InitSC(state); 1950 if (status < 0) 1951 break; 1952 } 1953 1954 /* Restore current IF & RF AGC settings */ 1955 1956 status = SetCfgIfAgc(state, &state->if_agc_cfg); 1957 if (status < 0) 1958 break; 1959 status = SetCfgRfAgc(state, &state->rf_agc_cfg); 1960 if (status < 0) 1961 break; 1962 1963 mirrorFreqSpect = (state->props.inversion == INVERSION_ON); 1964 1965 switch (p->transmission_mode) { 1966 default: /* Not set, detect it automatically */ 1967 operationMode |= SC_RA_RAM_OP_AUTO_MODE__M; 1968 fallthrough; /* try first guess DRX_FFTMODE_8K */ 1969 case TRANSMISSION_MODE_8K: 1970 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K; 1971 if (state->type_A) { 1972 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000); 1973 if (status < 0) 1974 break; 1975 qpskSnCeGain = 99; 1976 qam16SnCeGain = 83; 1977 qam64SnCeGain = 67; 1978 } 1979 break; 1980 case TRANSMISSION_MODE_2K: 1981 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K; 1982 if (state->type_A) { 1983 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000); 1984 if (status < 0) 1985 break; 1986 qpskSnCeGain = 97; 1987 qam16SnCeGain = 71; 1988 qam64SnCeGain = 65; 1989 } 1990 break; 1991 } 1992 1993 switch (p->guard_interval) { 1994 case GUARD_INTERVAL_1_4: 1995 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; 1996 break; 1997 case GUARD_INTERVAL_1_8: 1998 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8; 1999 break; 2000 case GUARD_INTERVAL_1_16: 2001 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16; 2002 break; 2003 case GUARD_INTERVAL_1_32: 2004 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32; 2005 break; 2006 default: /* Not set, detect it automatically */ 2007 operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M; 2008 /* try first guess 1/4 */ 2009 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; 2010 break; 2011 } 2012 2013 switch (p->hierarchy) { 2014 case HIERARCHY_1: 2015 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1; 2016 if (state->type_A) { 2017 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000); 2018 if (status < 0) 2019 break; 2020 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000); 2021 if (status < 0) 2022 break; 2023 2024 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; 2025 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1; 2026 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1; 2027 2028 qpskIsGainMan = 2029 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; 2030 qam16IsGainMan = 2031 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; 2032 qam64IsGainMan = 2033 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; 2034 2035 qpskIsGainExp = 2036 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; 2037 qam16IsGainExp = 2038 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; 2039 qam64IsGainExp = 2040 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; 2041 } 2042 break; 2043 2044 case HIERARCHY_2: 2045 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2; 2046 if (state->type_A) { 2047 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000); 2048 if (status < 0) 2049 break; 2050 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000); 2051 if (status < 0) 2052 break; 2053 2054 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; 2055 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2; 2056 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2; 2057 2058 qpskIsGainMan = 2059 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; 2060 qam16IsGainMan = 2061 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE; 2062 qam64IsGainMan = 2063 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE; 2064 2065 qpskIsGainExp = 2066 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; 2067 qam16IsGainExp = 2068 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE; 2069 qam64IsGainExp = 2070 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE; 2071 } 2072 break; 2073 case HIERARCHY_4: 2074 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4; 2075 if (state->type_A) { 2076 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000); 2077 if (status < 0) 2078 break; 2079 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000); 2080 if (status < 0) 2081 break; 2082 2083 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; 2084 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4; 2085 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4; 2086 2087 qpskIsGainMan = 2088 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; 2089 qam16IsGainMan = 2090 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE; 2091 qam64IsGainMan = 2092 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE; 2093 2094 qpskIsGainExp = 2095 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; 2096 qam16IsGainExp = 2097 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE; 2098 qam64IsGainExp = 2099 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE; 2100 } 2101 break; 2102 case HIERARCHY_AUTO: 2103 default: 2104 /* Not set, detect it automatically, start with none */ 2105 operationMode |= SC_RA_RAM_OP_AUTO_HIER__M; 2106 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO; 2107 if (state->type_A) { 2108 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000); 2109 if (status < 0) 2110 break; 2111 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000); 2112 if (status < 0) 2113 break; 2114 2115 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK; 2116 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN; 2117 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN; 2118 2119 qpskIsGainMan = 2120 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE; 2121 qam16IsGainMan = 2122 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; 2123 qam64IsGainMan = 2124 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; 2125 2126 qpskIsGainExp = 2127 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE; 2128 qam16IsGainExp = 2129 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; 2130 qam64IsGainExp = 2131 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; 2132 } 2133 break; 2134 } 2135 if (status < 0) 2136 break; 2137 2138 switch (p->modulation) { 2139 default: 2140 operationMode |= SC_RA_RAM_OP_AUTO_CONST__M; 2141 fallthrough; /* try first guess DRX_CONSTELLATION_QAM64 */ 2142 case QAM_64: 2143 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64; 2144 if (state->type_A) { 2145 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000); 2146 if (status < 0) 2147 break; 2148 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000); 2149 if (status < 0) 2150 break; 2151 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000); 2152 if (status < 0) 2153 break; 2154 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000); 2155 if (status < 0) 2156 break; 2157 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000); 2158 if (status < 0) 2159 break; 2160 2161 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000); 2162 if (status < 0) 2163 break; 2164 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000); 2165 if (status < 0) 2166 break; 2167 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000); 2168 if (status < 0) 2169 break; 2170 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000); 2171 if (status < 0) 2172 break; 2173 } 2174 break; 2175 case QPSK: 2176 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK; 2177 if (state->type_A) { 2178 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000); 2179 if (status < 0) 2180 break; 2181 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000); 2182 if (status < 0) 2183 break; 2184 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); 2185 if (status < 0) 2186 break; 2187 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000); 2188 if (status < 0) 2189 break; 2190 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); 2191 if (status < 0) 2192 break; 2193 2194 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000); 2195 if (status < 0) 2196 break; 2197 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000); 2198 if (status < 0) 2199 break; 2200 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000); 2201 if (status < 0) 2202 break; 2203 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000); 2204 if (status < 0) 2205 break; 2206 } 2207 break; 2208 2209 case QAM_16: 2210 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16; 2211 if (state->type_A) { 2212 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000); 2213 if (status < 0) 2214 break; 2215 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000); 2216 if (status < 0) 2217 break; 2218 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); 2219 if (status < 0) 2220 break; 2221 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000); 2222 if (status < 0) 2223 break; 2224 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); 2225 if (status < 0) 2226 break; 2227 2228 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000); 2229 if (status < 0) 2230 break; 2231 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000); 2232 if (status < 0) 2233 break; 2234 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000); 2235 if (status < 0) 2236 break; 2237 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000); 2238 if (status < 0) 2239 break; 2240 } 2241 break; 2242 2243 } 2244 if (status < 0) 2245 break; 2246 2247 switch (DRX_CHANNEL_HIGH) { 2248 default: 2249 case DRX_CHANNEL_AUTO: 2250 case DRX_CHANNEL_LOW: 2251 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO; 2252 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000); 2253 break; 2254 case DRX_CHANNEL_HIGH: 2255 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI; 2256 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000); 2257 break; 2258 } 2259 2260 switch (p->code_rate_HP) { 2261 case FEC_1_2: 2262 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2; 2263 if (state->type_A) 2264 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000); 2265 break; 2266 default: 2267 operationMode |= SC_RA_RAM_OP_AUTO_RATE__M; 2268 fallthrough; 2269 case FEC_2_3: 2270 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3; 2271 if (state->type_A) 2272 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000); 2273 break; 2274 case FEC_3_4: 2275 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4; 2276 if (state->type_A) 2277 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000); 2278 break; 2279 case FEC_5_6: 2280 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6; 2281 if (state->type_A) 2282 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000); 2283 break; 2284 case FEC_7_8: 2285 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8; 2286 if (state->type_A) 2287 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000); 2288 break; 2289 } 2290 if (status < 0) 2291 break; 2292 2293 /* First determine real bandwidth (Hz) */ 2294 /* Also set delay for impulse noise cruncher (only A2) */ 2295 /* Also set parameters for EC_OC fix, note 2296 EC_OC_REG_TMD_HIL_MAR is changed 2297 by SC for fix for some 8K,1/8 guard but is restored by 2298 InitEC and ResetEC 2299 functions */ 2300 switch (p->bandwidth_hz) { 2301 case 0: 2302 p->bandwidth_hz = 8000000; 2303 fallthrough; 2304 case 8000000: 2305 /* (64/7)*(8/8)*1000000 */ 2306 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; 2307 2308 bandwidthParam = 0; 2309 status = Write16(state, 2310 FE_AG_REG_IND_DEL__A, 50, 0x0000); 2311 break; 2312 case 7000000: 2313 /* (64/7)*(7/8)*1000000 */ 2314 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; 2315 bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */ 2316 status = Write16(state, 2317 FE_AG_REG_IND_DEL__A, 59, 0x0000); 2318 break; 2319 case 6000000: 2320 /* (64/7)*(6/8)*1000000 */ 2321 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; 2322 bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */ 2323 status = Write16(state, 2324 FE_AG_REG_IND_DEL__A, 71, 0x0000); 2325 break; 2326 default: 2327 status = -EINVAL; 2328 } 2329 if (status < 0) 2330 break; 2331 2332 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000); 2333 if (status < 0) 2334 break; 2335 2336 { 2337 u16 sc_config; 2338 status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0); 2339 if (status < 0) 2340 break; 2341 2342 /* enable SLAVE mode in 2k 1/32 to 2343 prevent timing change glitches */ 2344 if ((p->transmission_mode == TRANSMISSION_MODE_2K) && 2345 (p->guard_interval == GUARD_INTERVAL_1_32)) { 2346 /* enable slave */ 2347 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M; 2348 } else { 2349 /* disable slave */ 2350 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M; 2351 } 2352 status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0); 2353 if (status < 0) 2354 break; 2355 } 2356 2357 status = SetCfgNoiseCalibration(state, &state->noise_cal); 2358 if (status < 0) 2359 break; 2360 2361 if (state->cscd_state == CSCD_INIT) { 2362 /* switch on SRMM scan in SC */ 2363 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000); 2364 if (status < 0) 2365 break; 2366 /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/ 2367 state->cscd_state = CSCD_SET; 2368 } 2369 2370 /* Now compute FE_IF_REG_INCR */ 2371 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) => 2372 ((SysFreq / BandWidth) * (2^21) ) - (2^23) */ 2373 feIfIncr = MulDiv32(state->sys_clock_freq * 1000, 2374 (1ULL << 21), bandwidth) - (1 << 23); 2375 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000); 2376 if (status < 0) 2377 break; 2378 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000); 2379 if (status < 0) 2380 break; 2381 /* Bandwidth setting done */ 2382 2383 /* Mirror & frequency offset */ 2384 SetFrequencyShift(state, off, mirrorFreqSpect); 2385 2386 /* Start SC, write channel settings to SC */ 2387 2388 /* Enable SC after setting all other parameters */ 2389 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000); 2390 if (status < 0) 2391 break; 2392 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000); 2393 if (status < 0) 2394 break; 2395 2396 /* Write SC parameter registers, operation mode */ 2397 #if 1 2398 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M | 2399 SC_RA_RAM_OP_AUTO_GUARD__M | 2400 SC_RA_RAM_OP_AUTO_CONST__M | 2401 SC_RA_RAM_OP_AUTO_HIER__M | 2402 SC_RA_RAM_OP_AUTO_RATE__M); 2403 #endif 2404 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode); 2405 if (status < 0) 2406 break; 2407 2408 /* Start correct processes to get in lock */ 2409 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN); 2410 if (status < 0) 2411 break; 2412 2413 status = StartOC(state); 2414 if (status < 0) 2415 break; 2416 2417 if (state->operation_mode != OM_Default) { 2418 status = StartDiversity(state); 2419 if (status < 0) 2420 break; 2421 } 2422 2423 state->drxd_state = DRXD_STARTED; 2424 } while (0); 2425 2426 return status; 2427 } 2428 2429 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency) 2430 { 2431 u32 ulRfAgcOutputLevel = 0xffffffff; 2432 u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */ 2433 u32 ulRfAgcMinLevel = 0; /* Currently unused */ 2434 u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */ 2435 u32 ulRfAgcSpeed = 0; /* Currently unused */ 2436 u32 ulRfAgcMode = 0; /*2; Off */ 2437 u32 ulRfAgcR1 = 820; 2438 u32 ulRfAgcR2 = 2200; 2439 u32 ulRfAgcR3 = 150; 2440 u32 ulIfAgcMode = 0; /* Auto */ 2441 u32 ulIfAgcOutputLevel = 0xffffffff; 2442 u32 ulIfAgcSettleLevel = 0xffffffff; 2443 u32 ulIfAgcMinLevel = 0xffffffff; 2444 u32 ulIfAgcMaxLevel = 0xffffffff; 2445 u32 ulIfAgcSpeed = 0xffffffff; 2446 u32 ulIfAgcR1 = 820; 2447 u32 ulIfAgcR2 = 2200; 2448 u32 ulIfAgcR3 = 150; 2449 u32 ulClock = state->config.clock; 2450 u32 ulSerialMode = 0; 2451 u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */ 2452 u32 ulHiI2cDelay = HI_I2C_DELAY; 2453 u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY; 2454 u32 ulHiI2cPatch = 0; 2455 u32 ulEnvironment = APPENV_PORTABLE; 2456 u32 ulEnvironmentDiversity = APPENV_MOBILE; 2457 u32 ulIFFilter = IFFILTER_SAW; 2458 2459 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2460 state->if_agc_cfg.outputLevel = 0; 2461 state->if_agc_cfg.settleLevel = 140; 2462 state->if_agc_cfg.minOutputLevel = 0; 2463 state->if_agc_cfg.maxOutputLevel = 1023; 2464 state->if_agc_cfg.speed = 904; 2465 2466 if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { 2467 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER; 2468 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel); 2469 } 2470 2471 if (ulIfAgcMode == 0 && 2472 ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX && 2473 ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX && 2474 ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX && 2475 ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) { 2476 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2477 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel); 2478 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel); 2479 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel); 2480 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed); 2481 } 2482 2483 state->if_agc_cfg.R1 = (u16) (ulIfAgcR1); 2484 state->if_agc_cfg.R2 = (u16) (ulIfAgcR2); 2485 state->if_agc_cfg.R3 = (u16) (ulIfAgcR3); 2486 2487 state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1); 2488 state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2); 2489 state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3); 2490 2491 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2492 /* rest of the RFAgcCfg structure currently unused */ 2493 if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { 2494 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER; 2495 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel); 2496 } 2497 2498 if (ulRfAgcMode == 0 && 2499 ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX && 2500 ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX && 2501 ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX && 2502 ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) { 2503 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2504 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel); 2505 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel); 2506 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel); 2507 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed); 2508 } 2509 2510 if (ulRfAgcMode == 2) 2511 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF; 2512 2513 if (ulEnvironment <= 2) 2514 state->app_env_default = (enum app_env) 2515 (ulEnvironment); 2516 if (ulEnvironmentDiversity <= 2) 2517 state->app_env_diversity = (enum app_env) 2518 (ulEnvironmentDiversity); 2519 2520 if (ulIFFilter == IFFILTER_DISCRETE) { 2521 /* discrete filter */ 2522 state->noise_cal.cpOpt = 0; 2523 state->noise_cal.cpNexpOfs = 40; 2524 state->noise_cal.tdCal2k = -40; 2525 state->noise_cal.tdCal8k = -24; 2526 } else { 2527 /* SAW filter */ 2528 state->noise_cal.cpOpt = 1; 2529 state->noise_cal.cpNexpOfs = 0; 2530 state->noise_cal.tdCal2k = -21; 2531 state->noise_cal.tdCal8k = -24; 2532 } 2533 state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop); 2534 2535 state->chip_adr = (state->config.demod_address << 1) | 1; 2536 switch (ulHiI2cPatch) { 2537 case 1: 2538 state->m_HiI2cPatch = DRXD_HiI2cPatch_1; 2539 break; 2540 case 3: 2541 state->m_HiI2cPatch = DRXD_HiI2cPatch_3; 2542 break; 2543 default: 2544 state->m_HiI2cPatch = NULL; 2545 } 2546 2547 /* modify tuner and clock attributes */ 2548 state->intermediate_freq = (u16) (IntermediateFrequency / 1000); 2549 /* expected system clock frequency in kHz */ 2550 state->expected_sys_clock_freq = 48000; 2551 /* real system clock frequency in kHz */ 2552 state->sys_clock_freq = 48000; 2553 state->osc_clock_freq = (u16) ulClock; 2554 state->osc_clock_deviation = 0; 2555 state->cscd_state = CSCD_INIT; 2556 state->drxd_state = DRXD_UNINITIALIZED; 2557 2558 state->PGA = 0; 2559 state->type_A = 0; 2560 state->tuner_mirrors = 0; 2561 2562 /* modify MPEG output attributes */ 2563 state->insert_rs_byte = state->config.insert_rs_byte; 2564 state->enable_parallel = (ulSerialMode != 1); 2565 2566 /* Timing div, 250ns/Psys */ 2567 /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */ 2568 2569 state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) * 2570 ulHiI2cDelay) / 1000; 2571 /* Bridge delay, uses oscilator clock */ 2572 /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */ 2573 state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) * 2574 ulHiI2cBridgeDelay) / 1000; 2575 2576 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; 2577 /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */ 2578 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; 2579 return 0; 2580 } 2581 2582 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size) 2583 { 2584 int status = 0; 2585 u32 driverVersion; 2586 2587 if (state->init_done) 2588 return 0; 2589 2590 CDRXD(state, state->config.IF ? state->config.IF : 36000000); 2591 2592 do { 2593 state->operation_mode = OM_Default; 2594 2595 status = SetDeviceTypeId(state); 2596 if (status < 0) 2597 break; 2598 2599 /* Apply I2c address patch to B1 */ 2600 if (!state->type_A && state->m_HiI2cPatch) { 2601 status = WriteTable(state, state->m_HiI2cPatch); 2602 if (status < 0) 2603 break; 2604 } 2605 2606 if (state->type_A) { 2607 /* HI firmware patch for UIO readout, 2608 avoid clearing of result register */ 2609 status = Write16(state, 0x43012D, 0x047f, 0); 2610 if (status < 0) 2611 break; 2612 } 2613 2614 status = HI_ResetCommand(state); 2615 if (status < 0) 2616 break; 2617 2618 status = StopAllProcessors(state); 2619 if (status < 0) 2620 break; 2621 status = InitCC(state); 2622 if (status < 0) 2623 break; 2624 2625 state->osc_clock_deviation = 0; 2626 2627 if (state->config.osc_deviation) 2628 state->osc_clock_deviation = 2629 state->config.osc_deviation(state->priv, 0, 0); 2630 { 2631 /* Handle clock deviation */ 2632 s32 devB; 2633 s32 devA = (s32) (state->osc_clock_deviation) * 2634 (s32) (state->expected_sys_clock_freq); 2635 /* deviation in kHz */ 2636 s32 deviation = (devA / (1000000L)); 2637 /* rounding, signed */ 2638 if (devA > 0) 2639 devB = (2); 2640 else 2641 devB = (-2); 2642 if ((devB * (devA % 1000000L) > 1000000L)) { 2643 /* add +1 or -1 */ 2644 deviation += (devB / 2); 2645 } 2646 2647 state->sys_clock_freq = 2648 (u16) ((state->expected_sys_clock_freq) + 2649 deviation); 2650 } 2651 status = InitHI(state); 2652 if (status < 0) 2653 break; 2654 status = InitAtomicRead(state); 2655 if (status < 0) 2656 break; 2657 2658 status = EnableAndResetMB(state); 2659 if (status < 0) 2660 break; 2661 if (state->type_A) { 2662 status = ResetCEFR(state); 2663 if (status < 0) 2664 break; 2665 } 2666 if (fw) { 2667 status = DownloadMicrocode(state, fw, fw_size); 2668 if (status < 0) 2669 break; 2670 } else { 2671 status = DownloadMicrocode(state, state->microcode, state->microcode_length); 2672 if (status < 0) 2673 break; 2674 } 2675 2676 if (state->PGA) { 2677 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; 2678 SetCfgPga(state, 0); /* PGA = 0 dB */ 2679 } else { 2680 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; 2681 } 2682 2683 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; 2684 2685 status = InitFE(state); 2686 if (status < 0) 2687 break; 2688 status = InitFT(state); 2689 if (status < 0) 2690 break; 2691 status = InitCP(state); 2692 if (status < 0) 2693 break; 2694 status = InitCE(state); 2695 if (status < 0) 2696 break; 2697 status = InitEQ(state); 2698 if (status < 0) 2699 break; 2700 status = InitEC(state); 2701 if (status < 0) 2702 break; 2703 status = InitSC(state); 2704 if (status < 0) 2705 break; 2706 2707 status = SetCfgIfAgc(state, &state->if_agc_cfg); 2708 if (status < 0) 2709 break; 2710 status = SetCfgRfAgc(state, &state->rf_agc_cfg); 2711 if (status < 0) 2712 break; 2713 2714 state->cscd_state = CSCD_INIT; 2715 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 2716 if (status < 0) 2717 break; 2718 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 2719 if (status < 0) 2720 break; 2721 2722 driverVersion = (((VERSION_MAJOR / 10) << 4) + 2723 (VERSION_MAJOR % 10)) << 24; 2724 driverVersion += (((VERSION_MINOR / 10) << 4) + 2725 (VERSION_MINOR % 10)) << 16; 2726 driverVersion += ((VERSION_PATCH / 1000) << 12) + 2727 ((VERSION_PATCH / 100) << 8) + 2728 ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10); 2729 2730 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0); 2731 if (status < 0) 2732 break; 2733 2734 status = StopOC(state); 2735 if (status < 0) 2736 break; 2737 2738 state->drxd_state = DRXD_STOPPED; 2739 state->init_done = 1; 2740 status = 0; 2741 } while (0); 2742 return status; 2743 } 2744 2745 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus) 2746 { 2747 DRX_GetLockStatus(state, pLockStatus); 2748 2749 /*if (*pLockStatus&DRX_LOCK_MPEG) */ 2750 if (*pLockStatus & DRX_LOCK_FEC) { 2751 ConfigureMPEGOutput(state, 1); 2752 /* Get status again, in case we have MPEG lock now */ 2753 /*DRX_GetLockStatus(state, pLockStatus); */ 2754 } 2755 2756 return 0; 2757 } 2758 2759 /****************************************************************************/ 2760 /****************************************************************************/ 2761 /****************************************************************************/ 2762 2763 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength) 2764 { 2765 struct drxd_state *state = fe->demodulator_priv; 2766 u32 value; 2767 int res; 2768 2769 res = ReadIFAgc(state, &value); 2770 if (res < 0) 2771 *strength = 0; 2772 else 2773 *strength = 0xffff - (value << 4); 2774 return 0; 2775 } 2776 2777 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status) 2778 { 2779 struct drxd_state *state = fe->demodulator_priv; 2780 u32 lock; 2781 2782 DRXD_status(state, &lock); 2783 *status = 0; 2784 /* No MPEG lock in V255 firmware, bug ? */ 2785 #if 1 2786 if (lock & DRX_LOCK_MPEG) 2787 *status |= FE_HAS_LOCK; 2788 #else 2789 if (lock & DRX_LOCK_FEC) 2790 *status |= FE_HAS_LOCK; 2791 #endif 2792 if (lock & DRX_LOCK_FEC) 2793 *status |= FE_HAS_VITERBI | FE_HAS_SYNC; 2794 if (lock & DRX_LOCK_DEMOD) 2795 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; 2796 2797 return 0; 2798 } 2799 2800 static int drxd_init(struct dvb_frontend *fe) 2801 { 2802 struct drxd_state *state = fe->demodulator_priv; 2803 2804 return DRXD_init(state, NULL, 0); 2805 } 2806 2807 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff) 2808 { 2809 struct drxd_state *state = fe->demodulator_priv; 2810 2811 if (state->config.disable_i2c_gate_ctrl == 1) 2812 return 0; 2813 2814 return DRX_ConfigureI2CBridge(state, onoff); 2815 } 2816 2817 static int drxd_get_tune_settings(struct dvb_frontend *fe, 2818 struct dvb_frontend_tune_settings *sets) 2819 { 2820 sets->min_delay_ms = 10000; 2821 sets->max_drift = 0; 2822 sets->step_size = 0; 2823 return 0; 2824 } 2825 2826 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber) 2827 { 2828 *ber = 0; 2829 return 0; 2830 } 2831 2832 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr) 2833 { 2834 *snr = 0; 2835 return 0; 2836 } 2837 2838 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks) 2839 { 2840 *ucblocks = 0; 2841 return 0; 2842 } 2843 2844 static int drxd_sleep(struct dvb_frontend *fe) 2845 { 2846 struct drxd_state *state = fe->demodulator_priv; 2847 2848 ConfigureMPEGOutput(state, 0); 2849 return 0; 2850 } 2851 2852 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) 2853 { 2854 return drxd_config_i2c(fe, enable); 2855 } 2856 2857 static int drxd_set_frontend(struct dvb_frontend *fe) 2858 { 2859 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 2860 struct drxd_state *state = fe->demodulator_priv; 2861 s32 off = 0; 2862 2863 state->props = *p; 2864 DRX_Stop(state); 2865 2866 if (fe->ops.tuner_ops.set_params) { 2867 fe->ops.tuner_ops.set_params(fe); 2868 if (fe->ops.i2c_gate_ctrl) 2869 fe->ops.i2c_gate_ctrl(fe, 0); 2870 } 2871 2872 msleep(200); 2873 2874 return DRX_Start(state, off); 2875 } 2876 2877 static void drxd_release(struct dvb_frontend *fe) 2878 { 2879 struct drxd_state *state = fe->demodulator_priv; 2880 2881 kfree(state); 2882 } 2883 2884 static const struct dvb_frontend_ops drxd_ops = { 2885 .delsys = { SYS_DVBT}, 2886 .info = { 2887 .name = "Micronas DRXD DVB-T", 2888 .frequency_min_hz = 47125 * kHz, 2889 .frequency_max_hz = 855250 * kHz, 2890 .frequency_stepsize_hz = 166667, 2891 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | 2892 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | 2893 FE_CAN_FEC_AUTO | 2894 FE_CAN_QAM_16 | FE_CAN_QAM_64 | 2895 FE_CAN_QAM_AUTO | 2896 FE_CAN_TRANSMISSION_MODE_AUTO | 2897 FE_CAN_GUARD_INTERVAL_AUTO | 2898 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS}, 2899 2900 .release = drxd_release, 2901 .init = drxd_init, 2902 .sleep = drxd_sleep, 2903 .i2c_gate_ctrl = drxd_i2c_gate_ctrl, 2904 2905 .set_frontend = drxd_set_frontend, 2906 .get_tune_settings = drxd_get_tune_settings, 2907 2908 .read_status = drxd_read_status, 2909 .read_ber = drxd_read_ber, 2910 .read_signal_strength = drxd_read_signal_strength, 2911 .read_snr = drxd_read_snr, 2912 .read_ucblocks = drxd_read_ucblocks, 2913 }; 2914 2915 struct dvb_frontend *drxd_attach(const struct drxd_config *config, 2916 void *priv, struct i2c_adapter *i2c, 2917 struct device *dev) 2918 { 2919 struct drxd_state *state = NULL; 2920 2921 state = kzalloc(sizeof(*state), GFP_KERNEL); 2922 if (!state) 2923 return NULL; 2924 2925 state->ops = drxd_ops; 2926 state->dev = dev; 2927 state->config = *config; 2928 state->i2c = i2c; 2929 state->priv = priv; 2930 2931 mutex_init(&state->mutex); 2932 2933 if (Read16(state, 0, NULL, 0) < 0) 2934 goto error; 2935 2936 state->frontend.ops = drxd_ops; 2937 state->frontend.demodulator_priv = state; 2938 ConfigureMPEGOutput(state, 0); 2939 /* add few initialization to allow gate control */ 2940 CDRXD(state, state->config.IF ? state->config.IF : 36000000); 2941 InitHI(state); 2942 2943 return &state->frontend; 2944 2945 error: 2946 printk(KERN_ERR "drxd: not found\n"); 2947 kfree(state); 2948 return NULL; 2949 } 2950 EXPORT_SYMBOL(drxd_attach); 2951 2952 MODULE_DESCRIPTION("DRXD driver"); 2953 MODULE_AUTHOR("Micronas"); 2954 MODULE_LICENSE("GPL"); 2955