1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1 4 * 5 * Copyright (C) 2003-2007 Micronas 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/moduleparam.h> 11 #include <linux/init.h> 12 #include <linux/delay.h> 13 #include <linux/firmware.h> 14 #include <linux/i2c.h> 15 #include <asm/div64.h> 16 17 #include <media/dvb_frontend.h> 18 #include "drxd.h" 19 #include "drxd_firm.h" 20 21 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw" 22 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw" 23 24 #define CHUNK_SIZE 48 25 26 #define DRX_I2C_RMW 0x10 27 #define DRX_I2C_BROADCAST 0x20 28 #define DRX_I2C_CLEARCRC 0x80 29 #define DRX_I2C_SINGLE_MASTER 0xC0 30 #define DRX_I2C_MODEFLAGS 0xC0 31 #define DRX_I2C_FLAGS 0xF0 32 33 #define DEFAULT_LOCK_TIMEOUT 1100 34 35 #define DRX_CHANNEL_AUTO 0 36 #define DRX_CHANNEL_HIGH 1 37 #define DRX_CHANNEL_LOW 2 38 39 #define DRX_LOCK_MPEG 1 40 #define DRX_LOCK_FEC 2 41 #define DRX_LOCK_DEMOD 4 42 43 /****************************************************************************/ 44 45 enum CSCDState { 46 CSCD_INIT = 0, 47 CSCD_SET, 48 CSCD_SAVED 49 }; 50 51 enum CDrxdState { 52 DRXD_UNINITIALIZED = 0, 53 DRXD_STOPPED, 54 DRXD_STARTED 55 }; 56 57 enum AGC_CTRL_MODE { 58 AGC_CTRL_AUTO = 0, 59 AGC_CTRL_USER, 60 AGC_CTRL_OFF 61 }; 62 63 enum OperationMode { 64 OM_Default, 65 OM_DVBT_Diversity_Front, 66 OM_DVBT_Diversity_End 67 }; 68 69 struct SCfgAgc { 70 enum AGC_CTRL_MODE ctrlMode; 71 u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 72 u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 73 u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 74 u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ 75 u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */ 76 77 u16 R1; 78 u16 R2; 79 u16 R3; 80 }; 81 82 struct SNoiseCal { 83 int cpOpt; 84 short cpNexpOfs; 85 short tdCal2k; 86 short tdCal8k; 87 }; 88 89 enum app_env { 90 APPENV_STATIC = 0, 91 APPENV_PORTABLE = 1, 92 APPENV_MOBILE = 2 93 }; 94 95 enum EIFFilter { 96 IFFILTER_SAW = 0, 97 IFFILTER_DISCRETE = 1 98 }; 99 100 struct drxd_state { 101 struct dvb_frontend frontend; 102 struct dvb_frontend_ops ops; 103 struct dtv_frontend_properties props; 104 105 const struct firmware *fw; 106 struct device *dev; 107 108 struct i2c_adapter *i2c; 109 void *priv; 110 struct drxd_config config; 111 112 int i2c_access; 113 int init_done; 114 struct mutex mutex; 115 116 u8 chip_adr; 117 u16 hi_cfg_timing_div; 118 u16 hi_cfg_bridge_delay; 119 u16 hi_cfg_wakeup_key; 120 u16 hi_cfg_ctrl; 121 122 u16 intermediate_freq; 123 u16 osc_clock_freq; 124 125 enum CSCDState cscd_state; 126 enum CDrxdState drxd_state; 127 128 u16 sys_clock_freq; 129 s16 osc_clock_deviation; 130 u16 expected_sys_clock_freq; 131 132 u16 insert_rs_byte; 133 u16 enable_parallel; 134 135 int operation_mode; 136 137 struct SCfgAgc if_agc_cfg; 138 struct SCfgAgc rf_agc_cfg; 139 140 struct SNoiseCal noise_cal; 141 142 u32 fe_fs_add_incr; 143 u32 org_fe_fs_add_incr; 144 u16 current_fe_if_incr; 145 146 u16 m_FeAgRegAgPwd; 147 u16 m_FeAgRegAgAgcSio; 148 149 u16 m_EcOcRegOcModeLop; 150 u16 m_EcOcRegSncSncLvl; 151 u8 *m_InitAtomicRead; 152 u8 *m_HiI2cPatch; 153 154 u8 *m_ResetCEFR; 155 u8 *m_InitFE_1; 156 u8 *m_InitFE_2; 157 u8 *m_InitCP; 158 u8 *m_InitCE; 159 u8 *m_InitEQ; 160 u8 *m_InitSC; 161 u8 *m_InitEC; 162 u8 *m_ResetECRAM; 163 u8 *m_InitDiversityFront; 164 u8 *m_InitDiversityEnd; 165 u8 *m_DisableDiversity; 166 u8 *m_StartDiversityFront; 167 u8 *m_StartDiversityEnd; 168 169 u8 *m_DiversityDelay8MHZ; 170 u8 *m_DiversityDelay6MHZ; 171 172 u8 *microcode; 173 u32 microcode_length; 174 175 int type_A; 176 int PGA; 177 int diversity; 178 int tuner_mirrors; 179 180 enum app_env app_env_default; 181 enum app_env app_env_diversity; 182 183 }; 184 185 /****************************************************************************/ 186 /* I2C **********************************************************************/ 187 /****************************************************************************/ 188 189 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len) 190 { 191 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len }; 192 193 if (i2c_transfer(adap, &msg, 1) != 1) 194 return -1; 195 return 0; 196 } 197 198 static int i2c_read(struct i2c_adapter *adap, 199 u8 adr, u8 *msg, int len, u8 *answ, int alen) 200 { 201 struct i2c_msg msgs[2] = { 202 { 203 .addr = adr, .flags = 0, 204 .buf = msg, .len = len 205 }, { 206 .addr = adr, .flags = I2C_M_RD, 207 .buf = answ, .len = alen 208 } 209 }; 210 if (i2c_transfer(adap, msgs, 2) != 2) 211 return -1; 212 return 0; 213 } 214 215 static inline u32 MulDiv32(u32 a, u32 b, u32 c) 216 { 217 u64 tmp64; 218 219 tmp64 = (u64)a * (u64)b; 220 do_div(tmp64, c); 221 222 return (u32) tmp64; 223 } 224 225 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags) 226 { 227 u8 adr = state->config.demod_address; 228 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, 229 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff 230 }; 231 u8 mm2[2]; 232 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0) 233 return -1; 234 if (data) 235 *data = mm2[0] | (mm2[1] << 8); 236 return mm2[0] | (mm2[1] << 8); 237 } 238 239 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags) 240 { 241 u8 adr = state->config.demod_address; 242 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, 243 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff 244 }; 245 u8 mm2[4]; 246 247 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0) 248 return -1; 249 if (data) 250 *data = 251 mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24); 252 return 0; 253 } 254 255 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags) 256 { 257 u8 adr = state->config.demod_address; 258 u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff, 259 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, 260 data & 0xff, (data >> 8) & 0xff 261 }; 262 263 if (i2c_write(state->i2c, adr, mm, 6) < 0) 264 return -1; 265 return 0; 266 } 267 268 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags) 269 { 270 u8 adr = state->config.demod_address; 271 u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff, 272 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, 273 data & 0xff, (data >> 8) & 0xff, 274 (data >> 16) & 0xff, (data >> 24) & 0xff 275 }; 276 277 if (i2c_write(state->i2c, adr, mm, 8) < 0) 278 return -1; 279 return 0; 280 } 281 282 static int write_chunk(struct drxd_state *state, 283 u32 reg, u8 *data, u32 len, u8 flags) 284 { 285 u8 adr = state->config.demod_address; 286 u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff, 287 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff 288 }; 289 int i; 290 291 for (i = 0; i < len; i++) 292 mm[4 + i] = data[i]; 293 if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) { 294 printk(KERN_ERR "error in write_chunk\n"); 295 return -1; 296 } 297 return 0; 298 } 299 300 static int WriteBlock(struct drxd_state *state, 301 u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags) 302 { 303 while (BlockSize > 0) { 304 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize; 305 306 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0) 307 return -1; 308 pBlock += Chunk; 309 Address += (Chunk >> 1); 310 BlockSize -= Chunk; 311 } 312 return 0; 313 } 314 315 static int WriteTable(struct drxd_state *state, u8 * pTable) 316 { 317 int status = 0; 318 319 if (!pTable) 320 return 0; 321 322 while (!status) { 323 u16 Length; 324 u32 Address = pTable[0] | (pTable[1] << 8) | 325 (pTable[2] << 16) | (pTable[3] << 24); 326 327 if (Address == 0xFFFFFFFF) 328 break; 329 pTable += sizeof(u32); 330 331 Length = pTable[0] | (pTable[1] << 8); 332 pTable += sizeof(u16); 333 if (!Length) 334 break; 335 status = WriteBlock(state, Address, Length * 2, pTable, 0); 336 pTable += (Length * 2); 337 } 338 return status; 339 } 340 341 /****************************************************************************/ 342 /****************************************************************************/ 343 /****************************************************************************/ 344 345 static int ResetCEFR(struct drxd_state *state) 346 { 347 return WriteTable(state, state->m_ResetCEFR); 348 } 349 350 static int InitCP(struct drxd_state *state) 351 { 352 return WriteTable(state, state->m_InitCP); 353 } 354 355 static int InitCE(struct drxd_state *state) 356 { 357 int status; 358 enum app_env AppEnv = state->app_env_default; 359 360 do { 361 status = WriteTable(state, state->m_InitCE); 362 if (status < 0) 363 break; 364 365 if (state->operation_mode == OM_DVBT_Diversity_Front || 366 state->operation_mode == OM_DVBT_Diversity_End) { 367 AppEnv = state->app_env_diversity; 368 } 369 if (AppEnv == APPENV_STATIC) { 370 status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0); 371 if (status < 0) 372 break; 373 } else if (AppEnv == APPENV_PORTABLE) { 374 status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0); 375 if (status < 0) 376 break; 377 } else if (AppEnv == APPENV_MOBILE && state->type_A) { 378 status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0); 379 if (status < 0) 380 break; 381 } else if (AppEnv == APPENV_MOBILE && !state->type_A) { 382 status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0); 383 if (status < 0) 384 break; 385 } 386 387 /* start ce */ 388 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0); 389 if (status < 0) 390 break; 391 } while (0); 392 return status; 393 } 394 395 static int StopOC(struct drxd_state *state) 396 { 397 int status = 0; 398 u16 ocSyncLvl = 0; 399 u16 ocModeLop = state->m_EcOcRegOcModeLop; 400 u16 dtoIncLop = 0; 401 u16 dtoIncHip = 0; 402 403 do { 404 /* Store output configuration */ 405 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0); 406 if (status < 0) 407 break; 408 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */ 409 state->m_EcOcRegSncSncLvl = ocSyncLvl; 410 /* m_EcOcRegOcModeLop = ocModeLop; */ 411 412 /* Flush FIFO (byte-boundary) at fixed rate */ 413 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0); 414 if (status < 0) 415 break; 416 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0); 417 if (status < 0) 418 break; 419 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0); 420 if (status < 0) 421 break; 422 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0); 423 if (status < 0) 424 break; 425 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M); 426 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC; 427 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); 428 if (status < 0) 429 break; 430 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); 431 if (status < 0) 432 break; 433 434 msleep(1); 435 /* Output pins to '0' */ 436 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0); 437 if (status < 0) 438 break; 439 440 /* Force the OC out of sync */ 441 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M); 442 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0); 443 if (status < 0) 444 break; 445 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M); 446 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE; 447 ocModeLop |= 0x2; /* Magically-out-of-sync */ 448 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); 449 if (status < 0) 450 break; 451 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0); 452 if (status < 0) 453 break; 454 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); 455 if (status < 0) 456 break; 457 } while (0); 458 459 return status; 460 } 461 462 static int StartOC(struct drxd_state *state) 463 { 464 int status = 0; 465 466 do { 467 /* Stop OC */ 468 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); 469 if (status < 0) 470 break; 471 472 /* Restore output configuration */ 473 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0); 474 if (status < 0) 475 break; 476 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0); 477 if (status < 0) 478 break; 479 480 /* Output pins active again */ 481 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0); 482 if (status < 0) 483 break; 484 485 /* Start OC */ 486 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); 487 if (status < 0) 488 break; 489 } while (0); 490 return status; 491 } 492 493 static int InitEQ(struct drxd_state *state) 494 { 495 return WriteTable(state, state->m_InitEQ); 496 } 497 498 static int InitEC(struct drxd_state *state) 499 { 500 return WriteTable(state, state->m_InitEC); 501 } 502 503 static int InitSC(struct drxd_state *state) 504 { 505 return WriteTable(state, state->m_InitSC); 506 } 507 508 static int InitAtomicRead(struct drxd_state *state) 509 { 510 return WriteTable(state, state->m_InitAtomicRead); 511 } 512 513 static int CorrectSysClockDeviation(struct drxd_state *state); 514 515 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus) 516 { 517 u16 ScRaRamLock = 0; 518 const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M | 519 SC_RA_RAM_LOCK_FEC__M | 520 SC_RA_RAM_LOCK_DEMOD__M); 521 const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M | 522 SC_RA_RAM_LOCK_DEMOD__M); 523 const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M; 524 525 int status; 526 527 *pLockStatus = 0; 528 529 status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000); 530 if (status < 0) { 531 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status); 532 return status; 533 } 534 535 if (state->drxd_state != DRXD_STARTED) 536 return 0; 537 538 if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) { 539 *pLockStatus |= DRX_LOCK_MPEG; 540 CorrectSysClockDeviation(state); 541 } 542 543 if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask) 544 *pLockStatus |= DRX_LOCK_FEC; 545 546 if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask) 547 *pLockStatus |= DRX_LOCK_DEMOD; 548 return 0; 549 } 550 551 /****************************************************************************/ 552 553 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg) 554 { 555 int status; 556 557 if (cfg->outputLevel > DRXD_FE_CTRL_MAX) 558 return -1; 559 560 if (cfg->ctrlMode == AGC_CTRL_USER) { 561 do { 562 u16 FeAgRegPm1AgcWri; 563 u16 FeAgRegAgModeLop; 564 565 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); 566 if (status < 0) 567 break; 568 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); 569 FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC; 570 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); 571 if (status < 0) 572 break; 573 574 FeAgRegPm1AgcWri = (u16) (cfg->outputLevel & 575 FE_AG_REG_PM1_AGC_WRI__M); 576 status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0); 577 if (status < 0) 578 break; 579 } while (0); 580 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { 581 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) || 582 ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) || 583 ((cfg->speed) > DRXD_FE_CTRL_MAX) || 584 ((cfg->settleLevel) > DRXD_FE_CTRL_MAX) 585 ) 586 return -1; 587 do { 588 u16 FeAgRegAgModeLop; 589 u16 FeAgRegEgcSetLvl; 590 u16 slope, offset; 591 592 /* == Mode == */ 593 594 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); 595 if (status < 0) 596 break; 597 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); 598 FeAgRegAgModeLop |= 599 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC; 600 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); 601 if (status < 0) 602 break; 603 604 /* == Settle level == */ 605 606 FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) & 607 FE_AG_REG_EGC_SET_LVL__M); 608 status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0); 609 if (status < 0) 610 break; 611 612 /* == Min/Max == */ 613 614 slope = (u16) ((cfg->maxOutputLevel - 615 cfg->minOutputLevel) / 2); 616 offset = (u16) ((cfg->maxOutputLevel + 617 cfg->minOutputLevel) / 2 - 511); 618 619 status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0); 620 if (status < 0) 621 break; 622 status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0); 623 if (status < 0) 624 break; 625 626 /* == Speed == */ 627 { 628 const u16 maxRur = 8; 629 static const u16 slowIncrDecLUT[] = { 630 3, 4, 4, 5, 6 }; 631 static const u16 fastIncrDecLUT[] = { 632 14, 15, 15, 16, 633 17, 18, 18, 19, 634 20, 21, 22, 23, 635 24, 26, 27, 28, 636 29, 31 637 }; 638 639 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) / 640 (maxRur + 1); 641 u16 fineSpeed = (u16) (cfg->speed - 642 ((cfg->speed / 643 fineSteps) * 644 fineSteps)); 645 u16 invRurCount = (u16) (cfg->speed / 646 fineSteps); 647 u16 rurCount; 648 if (invRurCount > maxRur) { 649 rurCount = 0; 650 fineSpeed += fineSteps; 651 } else { 652 rurCount = maxRur - invRurCount; 653 } 654 655 /* 656 fastInc = default * 657 (2^(fineSpeed/fineSteps)) 658 => range[default...2*default> 659 slowInc = default * 660 (2^(fineSpeed/fineSteps)) 661 */ 662 { 663 u16 fastIncrDec = 664 fastIncrDecLUT[fineSpeed / 665 ((fineSteps / 666 (14 + 1)) + 1)]; 667 u16 slowIncrDec = 668 slowIncrDecLUT[fineSpeed / 669 (fineSteps / 670 (3 + 1))]; 671 672 status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0); 673 if (status < 0) 674 break; 675 status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0); 676 if (status < 0) 677 break; 678 status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0); 679 if (status < 0) 680 break; 681 status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0); 682 if (status < 0) 683 break; 684 status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0); 685 if (status < 0) 686 break; 687 } 688 } 689 } while (0); 690 691 } else { 692 /* No OFF mode for IF control */ 693 return -1; 694 } 695 return status; 696 } 697 698 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg) 699 { 700 int status = 0; 701 702 if (cfg->outputLevel > DRXD_FE_CTRL_MAX) 703 return -1; 704 705 if (cfg->ctrlMode == AGC_CTRL_USER) { 706 do { 707 u16 AgModeLop = 0; 708 u16 level = (cfg->outputLevel); 709 710 if (level == DRXD_FE_CTRL_MAX) 711 level++; 712 713 status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000); 714 if (status < 0) 715 break; 716 717 /*==== Mode ====*/ 718 719 /* Powerdown PD2, WRI source */ 720 state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M); 721 state->m_FeAgRegAgPwd |= 722 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; 723 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); 724 if (status < 0) 725 break; 726 727 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 728 if (status < 0) 729 break; 730 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | 731 FE_AG_REG_AG_MODE_LOP_MODE_E__M)); 732 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | 733 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); 734 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 735 if (status < 0) 736 break; 737 738 /* enable AGC2 pin */ 739 { 740 u16 FeAgRegAgAgcSio = 0; 741 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); 742 if (status < 0) 743 break; 744 FeAgRegAgAgcSio &= 745 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); 746 FeAgRegAgAgcSio |= 747 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; 748 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); 749 if (status < 0) 750 break; 751 } 752 753 } while (0); 754 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { 755 u16 AgModeLop = 0; 756 757 do { 758 u16 level; 759 /* Automatic control */ 760 /* Powerup PD2, AGC2 as output, TGC source */ 761 (state->m_FeAgRegAgPwd) &= 762 ~(FE_AG_REG_AG_PWD_PWD_PD2__M); 763 (state->m_FeAgRegAgPwd) |= 764 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; 765 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); 766 if (status < 0) 767 break; 768 769 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 770 if (status < 0) 771 break; 772 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | 773 FE_AG_REG_AG_MODE_LOP_MODE_E__M)); 774 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | 775 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC); 776 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 777 if (status < 0) 778 break; 779 /* Settle level */ 780 level = (((cfg->settleLevel) >> 4) & 781 FE_AG_REG_TGC_SET_LVL__M); 782 status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000); 783 if (status < 0) 784 break; 785 786 /* Min/max: don't care */ 787 788 /* Speed: TODO */ 789 790 /* enable AGC2 pin */ 791 { 792 u16 FeAgRegAgAgcSio = 0; 793 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); 794 if (status < 0) 795 break; 796 FeAgRegAgAgcSio &= 797 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); 798 FeAgRegAgAgcSio |= 799 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; 800 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); 801 if (status < 0) 802 break; 803 } 804 805 } while (0); 806 } else { 807 u16 AgModeLop = 0; 808 809 do { 810 /* No RF AGC control */ 811 /* Powerdown PD2, AGC2 as output, WRI source */ 812 (state->m_FeAgRegAgPwd) &= 813 ~(FE_AG_REG_AG_PWD_PWD_PD2__M); 814 (state->m_FeAgRegAgPwd) |= 815 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE; 816 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); 817 if (status < 0) 818 break; 819 820 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 821 if (status < 0) 822 break; 823 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | 824 FE_AG_REG_AG_MODE_LOP_MODE_E__M)); 825 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | 826 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); 827 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 828 if (status < 0) 829 break; 830 831 /* set FeAgRegAgAgcSio AGC2 (RF) as input */ 832 { 833 u16 FeAgRegAgAgcSio = 0; 834 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); 835 if (status < 0) 836 break; 837 FeAgRegAgAgcSio &= 838 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); 839 FeAgRegAgAgcSio |= 840 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT; 841 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); 842 if (status < 0) 843 break; 844 } 845 } while (0); 846 } 847 return status; 848 } 849 850 static int ReadIFAgc(struct drxd_state *state, u32 * pValue) 851 { 852 int status = 0; 853 854 *pValue = 0; 855 if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) { 856 u16 Value; 857 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0); 858 Value &= FE_AG_REG_GC1_AGC_DAT__M; 859 if (status >= 0) { 860 /* 3.3V 861 | 862 R1 863 | 864 Vin - R3 - * -- Vout 865 | 866 R2 867 | 868 GND 869 */ 870 u32 R1 = state->if_agc_cfg.R1; 871 u32 R2 = state->if_agc_cfg.R2; 872 u32 R3 = state->if_agc_cfg.R3; 873 874 u32 Vmax, Rpar, Vmin, Vout; 875 876 if (R2 == 0 && (R1 == 0 || R3 == 0)) 877 return 0; 878 879 Vmax = (3300 * R2) / (R1 + R2); 880 Rpar = (R2 * R3) / (R3 + R2); 881 Vmin = (3300 * Rpar) / (R1 + Rpar); 882 Vout = Vmin + ((Vmax - Vmin) * Value) / 1024; 883 884 *pValue = Vout; 885 } 886 } 887 return status; 888 } 889 890 static int load_firmware(struct drxd_state *state, const char *fw_name) 891 { 892 const struct firmware *fw; 893 894 if (request_firmware(&fw, fw_name, state->dev) < 0) { 895 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name); 896 return -EIO; 897 } 898 899 state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL); 900 if (!state->microcode) { 901 release_firmware(fw); 902 return -ENOMEM; 903 } 904 905 state->microcode_length = fw->size; 906 release_firmware(fw); 907 return 0; 908 } 909 910 static int DownloadMicrocode(struct drxd_state *state, 911 const u8 *pMCImage, u32 Length) 912 { 913 u8 *pSrc; 914 u32 Address; 915 u16 nBlocks; 916 u16 BlockSize; 917 int i, status = 0; 918 919 pSrc = (u8 *) pMCImage; 920 /* We're not using Flags */ 921 /* Flags = (pSrc[0] << 8) | pSrc[1]; */ 922 pSrc += sizeof(u16); 923 nBlocks = (pSrc[0] << 8) | pSrc[1]; 924 pSrc += sizeof(u16); 925 926 for (i = 0; i < nBlocks; i++) { 927 Address = (pSrc[0] << 24) | (pSrc[1] << 16) | 928 (pSrc[2] << 8) | pSrc[3]; 929 pSrc += sizeof(u32); 930 931 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16); 932 pSrc += sizeof(u16); 933 934 /* We're not using Flags */ 935 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */ 936 pSrc += sizeof(u16); 937 938 /* We're not using BlockCRC */ 939 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */ 940 pSrc += sizeof(u16); 941 942 status = WriteBlock(state, Address, BlockSize, 943 pSrc, DRX_I2C_CLEARCRC); 944 if (status < 0) 945 break; 946 pSrc += BlockSize; 947 } 948 949 return status; 950 } 951 952 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult) 953 { 954 u32 nrRetries = 0; 955 int status; 956 957 status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0); 958 if (status < 0) 959 return status; 960 961 do { 962 nrRetries += 1; 963 if (nrRetries > DRXD_MAX_RETRIES) { 964 status = -1; 965 break; 966 } 967 status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0); 968 } while (status != 0); 969 970 if (status >= 0) 971 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0); 972 return status; 973 } 974 975 static int HI_CfgCommand(struct drxd_state *state) 976 { 977 int status = 0; 978 979 mutex_lock(&state->mutex); 980 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); 981 Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0); 982 Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0); 983 Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0); 984 Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0); 985 986 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); 987 988 if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) == 989 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) 990 status = Write16(state, HI_RA_RAM_SRV_CMD__A, 991 HI_RA_RAM_SRV_CMD_CONFIG, 0); 992 else 993 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL); 994 mutex_unlock(&state->mutex); 995 return status; 996 } 997 998 static int InitHI(struct drxd_state *state) 999 { 1000 state->hi_cfg_wakeup_key = (state->chip_adr); 1001 /* port/bridge/power down ctrl */ 1002 state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON; 1003 return HI_CfgCommand(state); 1004 } 1005 1006 static int HI_ResetCommand(struct drxd_state *state) 1007 { 1008 int status; 1009 1010 mutex_lock(&state->mutex); 1011 status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A, 1012 HI_RA_RAM_SRV_RST_KEY_ACT, 0); 1013 if (status == 0) 1014 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL); 1015 mutex_unlock(&state->mutex); 1016 msleep(1); 1017 return status; 1018 } 1019 1020 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge) 1021 { 1022 state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M); 1023 if (bEnableBridge) 1024 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON; 1025 else 1026 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF; 1027 1028 return HI_CfgCommand(state); 1029 } 1030 1031 #define HI_TR_WRITE 0x9 1032 #define HI_TR_READ 0xA 1033 #define HI_TR_READ_WRITE 0xB 1034 #define HI_TR_BROADCAST 0x4 1035 1036 #if 0 1037 static int AtomicReadBlock(struct drxd_state *state, 1038 u32 Addr, u16 DataSize, u8 *pData, u8 Flags) 1039 { 1040 int status; 1041 int i = 0; 1042 1043 /* Parameter check */ 1044 if ((!pData) || ((DataSize & 1) != 0)) 1045 return -1; 1046 1047 mutex_lock(&state->mutex); 1048 1049 do { 1050 /* Instruct HI to read n bytes */ 1051 /* TODO use proper names forthese egisters */ 1052 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0); 1053 if (status < 0) 1054 break; 1055 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0); 1056 if (status < 0) 1057 break; 1058 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0); 1059 if (status < 0) 1060 break; 1061 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0); 1062 if (status < 0) 1063 break; 1064 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0); 1065 if (status < 0) 1066 break; 1067 1068 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0); 1069 if (status < 0) 1070 break; 1071 1072 } while (0); 1073 1074 if (status >= 0) { 1075 for (i = 0; i < (DataSize / 2); i += 1) { 1076 u16 word; 1077 1078 status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i), 1079 &word, 0); 1080 if (status < 0) 1081 break; 1082 pData[2 * i] = (u8) (word & 0xFF); 1083 pData[(2 * i) + 1] = (u8) (word >> 8); 1084 } 1085 } 1086 mutex_unlock(&state->mutex); 1087 return status; 1088 } 1089 1090 static int AtomicReadReg32(struct drxd_state *state, 1091 u32 Addr, u32 *pData, u8 Flags) 1092 { 1093 u8 buf[sizeof(u32)]; 1094 int status; 1095 1096 if (!pData) 1097 return -1; 1098 status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags); 1099 *pData = (((u32) buf[0]) << 0) + 1100 (((u32) buf[1]) << 8) + 1101 (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24); 1102 return status; 1103 } 1104 #endif 1105 1106 static int StopAllProcessors(struct drxd_state *state) 1107 { 1108 return Write16(state, HI_COMM_EXEC__A, 1109 SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST); 1110 } 1111 1112 static int EnableAndResetMB(struct drxd_state *state) 1113 { 1114 if (state->type_A) { 1115 /* disable? monitor bus observe @ EC_OC */ 1116 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000); 1117 } 1118 1119 /* do inverse broadcast, followed by explicit write to HI */ 1120 Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST); 1121 Write16(state, HI_COMM_MB__A, 0x0000, 0x0000); 1122 return 0; 1123 } 1124 1125 static int InitCC(struct drxd_state *state) 1126 { 1127 int status = 0; 1128 1129 if (state->osc_clock_freq == 0 || 1130 state->osc_clock_freq > 20000 || 1131 (state->osc_clock_freq % 4000) != 0) { 1132 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq); 1133 return -1; 1134 } 1135 1136 status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0); 1137 status |= Write16(state, CC_REG_PLL_MODE__A, 1138 CC_REG_PLL_MODE_BYPASS_PLL | 1139 CC_REG_PLL_MODE_PUMP_CUR_12, 0); 1140 status |= Write16(state, CC_REG_REF_DIVIDE__A, 1141 state->osc_clock_freq / 4000, 0); 1142 status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 1143 0); 1144 status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0); 1145 1146 return status; 1147 } 1148 1149 static int ResetECOD(struct drxd_state *state) 1150 { 1151 int status = 0; 1152 1153 if (state->type_A) 1154 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0); 1155 else 1156 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0); 1157 1158 if (!(status < 0)) 1159 status = WriteTable(state, state->m_ResetECRAM); 1160 if (!(status < 0)) 1161 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0); 1162 return status; 1163 } 1164 1165 /* Configure PGA switch */ 1166 1167 static int SetCfgPga(struct drxd_state *state, int pgaSwitch) 1168 { 1169 int status; 1170 u16 AgModeLop = 0; 1171 u16 AgModeHip = 0; 1172 do { 1173 if (pgaSwitch) { 1174 /* PGA on */ 1175 /* fine gain */ 1176 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 1177 if (status < 0) 1178 break; 1179 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); 1180 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC; 1181 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 1182 if (status < 0) 1183 break; 1184 1185 /* coarse gain */ 1186 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); 1187 if (status < 0) 1188 break; 1189 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); 1190 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC; 1191 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); 1192 if (status < 0) 1193 break; 1194 1195 /* enable fine and coarse gain, enable AAF, 1196 no ext resistor */ 1197 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000); 1198 if (status < 0) 1199 break; 1200 } else { 1201 /* PGA off, bypass */ 1202 1203 /* fine gain */ 1204 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); 1205 if (status < 0) 1206 break; 1207 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); 1208 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC; 1209 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); 1210 if (status < 0) 1211 break; 1212 1213 /* coarse gain */ 1214 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); 1215 if (status < 0) 1216 break; 1217 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); 1218 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC; 1219 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); 1220 if (status < 0) 1221 break; 1222 1223 /* disable fine and coarse gain, enable AAF, 1224 no ext resistor */ 1225 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000); 1226 if (status < 0) 1227 break; 1228 } 1229 } while (0); 1230 return status; 1231 } 1232 1233 static int InitFE(struct drxd_state *state) 1234 { 1235 int status; 1236 1237 do { 1238 status = WriteTable(state, state->m_InitFE_1); 1239 if (status < 0) 1240 break; 1241 1242 if (state->type_A) { 1243 status = Write16(state, FE_AG_REG_AG_PGA_MODE__A, 1244 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 1245 0); 1246 } else { 1247 if (state->PGA) 1248 status = SetCfgPga(state, 0); 1249 else 1250 status = 1251 Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, 1252 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 1253 0); 1254 } 1255 1256 if (status < 0) 1257 break; 1258 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000); 1259 if (status < 0) 1260 break; 1261 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); 1262 if (status < 0) 1263 break; 1264 1265 status = WriteTable(state, state->m_InitFE_2); 1266 if (status < 0) 1267 break; 1268 1269 } while (0); 1270 1271 return status; 1272 } 1273 1274 static int InitFT(struct drxd_state *state) 1275 { 1276 /* 1277 norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk 1278 SC stuff 1279 */ 1280 return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000); 1281 } 1282 1283 static int SC_WaitForReady(struct drxd_state *state) 1284 { 1285 int i; 1286 1287 for (i = 0; i < DRXD_MAX_RETRIES; i += 1) { 1288 int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0); 1289 if (status == 0) 1290 return status; 1291 } 1292 return -1; 1293 } 1294 1295 static int SC_SendCommand(struct drxd_state *state, u16 cmd) 1296 { 1297 int status = 0, ret; 1298 u16 errCode; 1299 1300 status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0); 1301 if (status < 0) 1302 return status; 1303 1304 SC_WaitForReady(state); 1305 1306 ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0); 1307 1308 if (ret < 0 || errCode == 0xFFFF) { 1309 printk(KERN_ERR "Command Error\n"); 1310 status = -1; 1311 } 1312 1313 return status; 1314 } 1315 1316 static int SC_ProcStartCommand(struct drxd_state *state, 1317 u16 subCmd, u16 param0, u16 param1) 1318 { 1319 int ret, status = 0; 1320 u16 scExec; 1321 1322 mutex_lock(&state->mutex); 1323 do { 1324 ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0); 1325 if (ret < 0 || scExec != 1) { 1326 status = -1; 1327 break; 1328 } 1329 SC_WaitForReady(state); 1330 status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); 1331 status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); 1332 status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); 1333 1334 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START); 1335 } while (0); 1336 mutex_unlock(&state->mutex); 1337 return status; 1338 } 1339 1340 static int SC_SetPrefParamCommand(struct drxd_state *state, 1341 u16 subCmd, u16 param0, u16 param1) 1342 { 1343 int status; 1344 1345 mutex_lock(&state->mutex); 1346 do { 1347 status = SC_WaitForReady(state); 1348 if (status < 0) 1349 break; 1350 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); 1351 if (status < 0) 1352 break; 1353 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); 1354 if (status < 0) 1355 break; 1356 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); 1357 if (status < 0) 1358 break; 1359 1360 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM); 1361 if (status < 0) 1362 break; 1363 } while (0); 1364 mutex_unlock(&state->mutex); 1365 return status; 1366 } 1367 1368 #if 0 1369 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result) 1370 { 1371 int status = 0; 1372 1373 mutex_lock(&state->mutex); 1374 do { 1375 status = SC_WaitForReady(state); 1376 if (status < 0) 1377 break; 1378 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM); 1379 if (status < 0) 1380 break; 1381 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0); 1382 if (status < 0) 1383 break; 1384 } while (0); 1385 mutex_unlock(&state->mutex); 1386 return status; 1387 } 1388 #endif 1389 1390 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput) 1391 { 1392 int status; 1393 1394 do { 1395 u16 EcOcRegIprInvMpg = 0; 1396 u16 EcOcRegOcModeLop = 0; 1397 u16 EcOcRegOcModeHip = 0; 1398 u16 EcOcRegOcMpgSio = 0; 1399 1400 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */ 1401 1402 if (state->operation_mode == OM_DVBT_Diversity_Front) { 1403 if (bEnableOutput) { 1404 EcOcRegOcModeHip |= 1405 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR; 1406 } else 1407 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; 1408 EcOcRegOcModeLop |= 1409 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; 1410 } else { 1411 EcOcRegOcModeLop = state->m_EcOcRegOcModeLop; 1412 1413 if (bEnableOutput) 1414 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M)); 1415 else 1416 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; 1417 1418 /* Don't Insert RS Byte */ 1419 if (state->insert_rs_byte) { 1420 EcOcRegOcModeLop &= 1421 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M)); 1422 EcOcRegOcModeHip &= 1423 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); 1424 EcOcRegOcModeHip |= 1425 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE; 1426 } else { 1427 EcOcRegOcModeLop |= 1428 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; 1429 EcOcRegOcModeHip &= 1430 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); 1431 EcOcRegOcModeHip |= 1432 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE; 1433 } 1434 1435 /* Mode = Parallel */ 1436 if (state->enable_parallel) 1437 EcOcRegOcModeLop &= 1438 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M)); 1439 else 1440 EcOcRegOcModeLop |= 1441 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL; 1442 } 1443 /* Invert Data */ 1444 /* EcOcRegIprInvMpg |= 0x00FF; */ 1445 EcOcRegIprInvMpg &= (~(0x00FF)); 1446 1447 /* Invert Error ( we don't use the pin ) */ 1448 /* EcOcRegIprInvMpg |= 0x0100; */ 1449 EcOcRegIprInvMpg &= (~(0x0100)); 1450 1451 /* Invert Start ( we don't use the pin ) */ 1452 /* EcOcRegIprInvMpg |= 0x0200; */ 1453 EcOcRegIprInvMpg &= (~(0x0200)); 1454 1455 /* Invert Valid ( we don't use the pin ) */ 1456 /* EcOcRegIprInvMpg |= 0x0400; */ 1457 EcOcRegIprInvMpg &= (~(0x0400)); 1458 1459 /* Invert Clock */ 1460 /* EcOcRegIprInvMpg |= 0x0800; */ 1461 EcOcRegIprInvMpg &= (~(0x0800)); 1462 1463 /* EcOcRegOcModeLop =0x05; */ 1464 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0); 1465 if (status < 0) 1466 break; 1467 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0); 1468 if (status < 0) 1469 break; 1470 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000); 1471 if (status < 0) 1472 break; 1473 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0); 1474 if (status < 0) 1475 break; 1476 } while (0); 1477 return status; 1478 } 1479 1480 static int SetDeviceTypeId(struct drxd_state *state) 1481 { 1482 int status = 0; 1483 u16 deviceId = 0; 1484 1485 do { 1486 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); 1487 if (status < 0) 1488 break; 1489 /* TODO: why twice? */ 1490 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); 1491 if (status < 0) 1492 break; 1493 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId); 1494 1495 state->type_A = 0; 1496 state->PGA = 0; 1497 state->diversity = 0; 1498 if (deviceId == 0) { /* on A2 only 3975 available */ 1499 state->type_A = 1; 1500 printk(KERN_INFO "DRX3975D-A2\n"); 1501 } else { 1502 deviceId >>= 12; 1503 printk(KERN_INFO "DRX397%dD-B1\n", deviceId); 1504 switch (deviceId) { 1505 case 4: 1506 state->diversity = 1; 1507 fallthrough; 1508 case 3: 1509 case 7: 1510 state->PGA = 1; 1511 break; 1512 case 6: 1513 state->diversity = 1; 1514 fallthrough; 1515 case 5: 1516 case 8: 1517 break; 1518 default: 1519 status = -1; 1520 break; 1521 } 1522 } 1523 } while (0); 1524 1525 if (status < 0) 1526 return status; 1527 1528 /* Init Table selection */ 1529 state->m_InitAtomicRead = DRXD_InitAtomicRead; 1530 state->m_InitSC = DRXD_InitSC; 1531 state->m_ResetECRAM = DRXD_ResetECRAM; 1532 if (state->type_A) { 1533 state->m_ResetCEFR = DRXD_ResetCEFR; 1534 state->m_InitFE_1 = DRXD_InitFEA2_1; 1535 state->m_InitFE_2 = DRXD_InitFEA2_2; 1536 state->m_InitCP = DRXD_InitCPA2; 1537 state->m_InitCE = DRXD_InitCEA2; 1538 state->m_InitEQ = DRXD_InitEQA2; 1539 state->m_InitEC = DRXD_InitECA2; 1540 if (load_firmware(state, DRX_FW_FILENAME_A2)) 1541 return -EIO; 1542 } else { 1543 state->m_ResetCEFR = NULL; 1544 state->m_InitFE_1 = DRXD_InitFEB1_1; 1545 state->m_InitFE_2 = DRXD_InitFEB1_2; 1546 state->m_InitCP = DRXD_InitCPB1; 1547 state->m_InitCE = DRXD_InitCEB1; 1548 state->m_InitEQ = DRXD_InitEQB1; 1549 state->m_InitEC = DRXD_InitECB1; 1550 if (load_firmware(state, DRX_FW_FILENAME_B1)) 1551 return -EIO; 1552 } 1553 if (state->diversity) { 1554 state->m_InitDiversityFront = DRXD_InitDiversityFront; 1555 state->m_InitDiversityEnd = DRXD_InitDiversityEnd; 1556 state->m_DisableDiversity = DRXD_DisableDiversity; 1557 state->m_StartDiversityFront = DRXD_StartDiversityFront; 1558 state->m_StartDiversityEnd = DRXD_StartDiversityEnd; 1559 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ; 1560 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ; 1561 } else { 1562 state->m_InitDiversityFront = NULL; 1563 state->m_InitDiversityEnd = NULL; 1564 state->m_DisableDiversity = NULL; 1565 state->m_StartDiversityFront = NULL; 1566 state->m_StartDiversityEnd = NULL; 1567 state->m_DiversityDelay8MHZ = NULL; 1568 state->m_DiversityDelay6MHZ = NULL; 1569 } 1570 1571 return status; 1572 } 1573 1574 static int CorrectSysClockDeviation(struct drxd_state *state) 1575 { 1576 int status; 1577 s32 incr = 0; 1578 s32 nomincr = 0; 1579 u32 bandwidth = 0; 1580 u32 sysClockInHz = 0; 1581 u32 sysClockFreq = 0; /* in kHz */ 1582 s16 oscClockDeviation; 1583 s16 Diff; 1584 1585 do { 1586 /* Retrieve bandwidth and incr, sanity check */ 1587 1588 /* These accesses should be AtomicReadReg32, but that 1589 causes trouble (at least for diversity */ 1590 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0); 1591 if (status < 0) 1592 break; 1593 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0); 1594 if (status < 0) 1595 break; 1596 1597 if (state->type_A) { 1598 if ((nomincr - incr < -500) || (nomincr - incr > 500)) 1599 break; 1600 } else { 1601 if ((nomincr - incr < -2000) || (nomincr - incr > 2000)) 1602 break; 1603 } 1604 1605 switch (state->props.bandwidth_hz) { 1606 case 8000000: 1607 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; 1608 break; 1609 case 7000000: 1610 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; 1611 break; 1612 case 6000000: 1613 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; 1614 break; 1615 default: 1616 return -1; 1617 } 1618 1619 /* Compute new sysclock value 1620 sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */ 1621 incr += (1 << 23); 1622 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21); 1623 sysClockFreq = (u32) (sysClockInHz / 1000); 1624 /* rounding */ 1625 if ((sysClockInHz % 1000) > 500) 1626 sysClockFreq++; 1627 1628 /* Compute clock deviation in ppm */ 1629 oscClockDeviation = (u16) ((((s32) (sysClockFreq) - 1630 (s32) 1631 (state->expected_sys_clock_freq)) * 1632 1000000L) / 1633 (s32) 1634 (state->expected_sys_clock_freq)); 1635 1636 Diff = oscClockDeviation - state->osc_clock_deviation; 1637 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */ 1638 if (Diff >= -200 && Diff <= 200) { 1639 state->sys_clock_freq = (u16) sysClockFreq; 1640 if (oscClockDeviation != state->osc_clock_deviation) { 1641 if (state->config.osc_deviation) { 1642 state->config.osc_deviation(state->priv, 1643 oscClockDeviation, 1644 1); 1645 state->osc_clock_deviation = 1646 oscClockDeviation; 1647 } 1648 } 1649 /* switch OFF SRMM scan in SC */ 1650 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0); 1651 if (status < 0) 1652 break; 1653 /* overrule FE_IF internal value for 1654 proper re-locking */ 1655 status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0); 1656 if (status < 0) 1657 break; 1658 state->cscd_state = CSCD_SAVED; 1659 } 1660 } while (0); 1661 1662 return status; 1663 } 1664 1665 static int DRX_Stop(struct drxd_state *state) 1666 { 1667 int status; 1668 1669 if (state->drxd_state != DRXD_STARTED) 1670 return 0; 1671 1672 do { 1673 if (state->cscd_state != CSCD_SAVED) { 1674 u32 lock; 1675 status = DRX_GetLockStatus(state, &lock); 1676 if (status < 0) 1677 break; 1678 } 1679 1680 status = StopOC(state); 1681 if (status < 0) 1682 break; 1683 1684 state->drxd_state = DRXD_STOPPED; 1685 1686 status = ConfigureMPEGOutput(state, 0); 1687 if (status < 0) 1688 break; 1689 1690 if (state->type_A) { 1691 /* Stop relevant processors off the device */ 1692 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000); 1693 if (status < 0) 1694 break; 1695 1696 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1697 if (status < 0) 1698 break; 1699 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1700 if (status < 0) 1701 break; 1702 } else { 1703 /* Stop all processors except HI & CC & FE */ 1704 status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1705 if (status < 0) 1706 break; 1707 status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1708 if (status < 0) 1709 break; 1710 status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1711 if (status < 0) 1712 break; 1713 status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1714 if (status < 0) 1715 break; 1716 status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1717 if (status < 0) 1718 break; 1719 status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 1720 if (status < 0) 1721 break; 1722 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0); 1723 if (status < 0) 1724 break; 1725 } 1726 1727 } while (0); 1728 return status; 1729 } 1730 1731 #if 0 /* Currently unused */ 1732 static int SetOperationMode(struct drxd_state *state, int oMode) 1733 { 1734 int status; 1735 1736 do { 1737 if (state->drxd_state != DRXD_STOPPED) { 1738 status = -1; 1739 break; 1740 } 1741 1742 if (oMode == state->operation_mode) { 1743 status = 0; 1744 break; 1745 } 1746 1747 if (oMode != OM_Default && !state->diversity) { 1748 status = -1; 1749 break; 1750 } 1751 1752 switch (oMode) { 1753 case OM_DVBT_Diversity_Front: 1754 status = WriteTable(state, state->m_InitDiversityFront); 1755 break; 1756 case OM_DVBT_Diversity_End: 1757 status = WriteTable(state, state->m_InitDiversityEnd); 1758 break; 1759 case OM_Default: 1760 /* We need to check how to 1761 get DRXD out of diversity */ 1762 default: 1763 status = WriteTable(state, state->m_DisableDiversity); 1764 break; 1765 } 1766 } while (0); 1767 1768 if (!status) 1769 state->operation_mode = oMode; 1770 return status; 1771 } 1772 #endif 1773 1774 static int StartDiversity(struct drxd_state *state) 1775 { 1776 int status = 0; 1777 u16 rcControl; 1778 1779 do { 1780 if (state->operation_mode == OM_DVBT_Diversity_Front) { 1781 status = WriteTable(state, state->m_StartDiversityFront); 1782 if (status < 0) 1783 break; 1784 } else if (state->operation_mode == OM_DVBT_Diversity_End) { 1785 status = WriteTable(state, state->m_StartDiversityEnd); 1786 if (status < 0) 1787 break; 1788 if (state->props.bandwidth_hz == 8000000) { 1789 status = WriteTable(state, state->m_DiversityDelay8MHZ); 1790 if (status < 0) 1791 break; 1792 } else { 1793 status = WriteTable(state, state->m_DiversityDelay6MHZ); 1794 if (status < 0) 1795 break; 1796 } 1797 1798 status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0); 1799 if (status < 0) 1800 break; 1801 rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M); 1802 rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON | 1803 /* combining enabled */ 1804 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC | 1805 B_EQ_REG_RC_SEL_CAR_PASS_A_CC | 1806 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC; 1807 status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0); 1808 if (status < 0) 1809 break; 1810 } 1811 } while (0); 1812 return status; 1813 } 1814 1815 static int SetFrequencyShift(struct drxd_state *state, 1816 u32 offsetFreq, int channelMirrored) 1817 { 1818 int negativeShift = (state->tuner_mirrors == channelMirrored); 1819 1820 /* Handle all mirroring 1821 * 1822 * Note: ADC mirroring (aliasing) is implictly handled by limiting 1823 * feFsRegAddInc to 28 bits below 1824 * (if the result before masking is more than 28 bits, this means 1825 * that the ADC is mirroring. 1826 * The masking is in fact the aliasing of the ADC) 1827 * 1828 */ 1829 1830 /* Compute register value, unsigned computation */ 1831 state->fe_fs_add_incr = MulDiv32(state->intermediate_freq + 1832 offsetFreq, 1833 1 << 28, state->sys_clock_freq); 1834 /* Remove integer part */ 1835 state->fe_fs_add_incr &= 0x0FFFFFFFL; 1836 if (negativeShift) 1837 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr); 1838 1839 /* Save the frequency shift without tunerOffset compensation 1840 for CtrlGetChannel. */ 1841 state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq, 1842 1 << 28, state->sys_clock_freq); 1843 /* Remove integer part */ 1844 state->org_fe_fs_add_incr &= 0x0FFFFFFFL; 1845 if (negativeShift) 1846 state->org_fe_fs_add_incr = ((1L << 28) - 1847 state->org_fe_fs_add_incr); 1848 1849 return Write32(state, FE_FS_REG_ADD_INC_LOP__A, 1850 state->fe_fs_add_incr, 0); 1851 } 1852 1853 static int SetCfgNoiseCalibration(struct drxd_state *state, 1854 struct SNoiseCal *noiseCal) 1855 { 1856 u16 beOptEna; 1857 int status = 0; 1858 1859 do { 1860 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0); 1861 if (status < 0) 1862 break; 1863 if (noiseCal->cpOpt) { 1864 beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); 1865 } else { 1866 beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); 1867 status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0); 1868 if (status < 0) 1869 break; 1870 } 1871 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0); 1872 if (status < 0) 1873 break; 1874 1875 if (!state->type_A) { 1876 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0); 1877 if (status < 0) 1878 break; 1879 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0); 1880 if (status < 0) 1881 break; 1882 } 1883 } while (0); 1884 1885 return status; 1886 } 1887 1888 static int DRX_Start(struct drxd_state *state, s32 off) 1889 { 1890 struct dtv_frontend_properties *p = &state->props; 1891 int status; 1892 1893 u16 transmissionParams = 0; 1894 u16 operationMode = 0; 1895 u16 qpskTdTpsPwr = 0; 1896 u16 qam16TdTpsPwr = 0; 1897 u16 qam64TdTpsPwr = 0; 1898 u32 feIfIncr = 0; 1899 u32 bandwidth = 0; 1900 int mirrorFreqSpect; 1901 1902 u16 qpskSnCeGain = 0; 1903 u16 qam16SnCeGain = 0; 1904 u16 qam64SnCeGain = 0; 1905 u16 qpskIsGainMan = 0; 1906 u16 qam16IsGainMan = 0; 1907 u16 qam64IsGainMan = 0; 1908 u16 qpskIsGainExp = 0; 1909 u16 qam16IsGainExp = 0; 1910 u16 qam64IsGainExp = 0; 1911 u16 bandwidthParam = 0; 1912 1913 if (off < 0) 1914 off = (off - 500) / 1000; 1915 else 1916 off = (off + 500) / 1000; 1917 1918 do { 1919 if (state->drxd_state != DRXD_STOPPED) 1920 return -1; 1921 status = ResetECOD(state); 1922 if (status < 0) 1923 break; 1924 if (state->type_A) { 1925 status = InitSC(state); 1926 if (status < 0) 1927 break; 1928 } else { 1929 status = InitFT(state); 1930 if (status < 0) 1931 break; 1932 status = InitCP(state); 1933 if (status < 0) 1934 break; 1935 status = InitCE(state); 1936 if (status < 0) 1937 break; 1938 status = InitEQ(state); 1939 if (status < 0) 1940 break; 1941 status = InitSC(state); 1942 if (status < 0) 1943 break; 1944 } 1945 1946 /* Restore current IF & RF AGC settings */ 1947 1948 status = SetCfgIfAgc(state, &state->if_agc_cfg); 1949 if (status < 0) 1950 break; 1951 status = SetCfgRfAgc(state, &state->rf_agc_cfg); 1952 if (status < 0) 1953 break; 1954 1955 mirrorFreqSpect = (state->props.inversion == INVERSION_ON); 1956 1957 switch (p->transmission_mode) { 1958 default: /* Not set, detect it automatically */ 1959 operationMode |= SC_RA_RAM_OP_AUTO_MODE__M; 1960 fallthrough; /* try first guess DRX_FFTMODE_8K */ 1961 case TRANSMISSION_MODE_8K: 1962 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K; 1963 if (state->type_A) { 1964 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000); 1965 if (status < 0) 1966 break; 1967 qpskSnCeGain = 99; 1968 qam16SnCeGain = 83; 1969 qam64SnCeGain = 67; 1970 } 1971 break; 1972 case TRANSMISSION_MODE_2K: 1973 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K; 1974 if (state->type_A) { 1975 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000); 1976 if (status < 0) 1977 break; 1978 qpskSnCeGain = 97; 1979 qam16SnCeGain = 71; 1980 qam64SnCeGain = 65; 1981 } 1982 break; 1983 } 1984 1985 switch (p->guard_interval) { 1986 case GUARD_INTERVAL_1_4: 1987 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; 1988 break; 1989 case GUARD_INTERVAL_1_8: 1990 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8; 1991 break; 1992 case GUARD_INTERVAL_1_16: 1993 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16; 1994 break; 1995 case GUARD_INTERVAL_1_32: 1996 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32; 1997 break; 1998 default: /* Not set, detect it automatically */ 1999 operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M; 2000 /* try first guess 1/4 */ 2001 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; 2002 break; 2003 } 2004 2005 switch (p->hierarchy) { 2006 case HIERARCHY_1: 2007 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1; 2008 if (state->type_A) { 2009 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000); 2010 if (status < 0) 2011 break; 2012 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000); 2013 if (status < 0) 2014 break; 2015 2016 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; 2017 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1; 2018 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1; 2019 2020 qpskIsGainMan = 2021 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; 2022 qam16IsGainMan = 2023 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; 2024 qam64IsGainMan = 2025 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; 2026 2027 qpskIsGainExp = 2028 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; 2029 qam16IsGainExp = 2030 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; 2031 qam64IsGainExp = 2032 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; 2033 } 2034 break; 2035 2036 case HIERARCHY_2: 2037 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2; 2038 if (state->type_A) { 2039 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000); 2040 if (status < 0) 2041 break; 2042 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000); 2043 if (status < 0) 2044 break; 2045 2046 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; 2047 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2; 2048 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2; 2049 2050 qpskIsGainMan = 2051 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; 2052 qam16IsGainMan = 2053 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE; 2054 qam64IsGainMan = 2055 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE; 2056 2057 qpskIsGainExp = 2058 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; 2059 qam16IsGainExp = 2060 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE; 2061 qam64IsGainExp = 2062 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE; 2063 } 2064 break; 2065 case HIERARCHY_4: 2066 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4; 2067 if (state->type_A) { 2068 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000); 2069 if (status < 0) 2070 break; 2071 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000); 2072 if (status < 0) 2073 break; 2074 2075 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; 2076 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4; 2077 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4; 2078 2079 qpskIsGainMan = 2080 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; 2081 qam16IsGainMan = 2082 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE; 2083 qam64IsGainMan = 2084 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE; 2085 2086 qpskIsGainExp = 2087 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; 2088 qam16IsGainExp = 2089 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE; 2090 qam64IsGainExp = 2091 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE; 2092 } 2093 break; 2094 case HIERARCHY_AUTO: 2095 default: 2096 /* Not set, detect it automatically, start with none */ 2097 operationMode |= SC_RA_RAM_OP_AUTO_HIER__M; 2098 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO; 2099 if (state->type_A) { 2100 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000); 2101 if (status < 0) 2102 break; 2103 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000); 2104 if (status < 0) 2105 break; 2106 2107 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK; 2108 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN; 2109 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN; 2110 2111 qpskIsGainMan = 2112 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE; 2113 qam16IsGainMan = 2114 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; 2115 qam64IsGainMan = 2116 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; 2117 2118 qpskIsGainExp = 2119 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE; 2120 qam16IsGainExp = 2121 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; 2122 qam64IsGainExp = 2123 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; 2124 } 2125 break; 2126 } 2127 if (status < 0) 2128 break; 2129 2130 switch (p->modulation) { 2131 default: 2132 operationMode |= SC_RA_RAM_OP_AUTO_CONST__M; 2133 fallthrough; /* try first guess DRX_CONSTELLATION_QAM64 */ 2134 case QAM_64: 2135 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64; 2136 if (state->type_A) { 2137 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000); 2138 if (status < 0) 2139 break; 2140 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000); 2141 if (status < 0) 2142 break; 2143 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000); 2144 if (status < 0) 2145 break; 2146 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000); 2147 if (status < 0) 2148 break; 2149 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000); 2150 if (status < 0) 2151 break; 2152 2153 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000); 2154 if (status < 0) 2155 break; 2156 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000); 2157 if (status < 0) 2158 break; 2159 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000); 2160 if (status < 0) 2161 break; 2162 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000); 2163 if (status < 0) 2164 break; 2165 } 2166 break; 2167 case QPSK: 2168 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK; 2169 if (state->type_A) { 2170 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000); 2171 if (status < 0) 2172 break; 2173 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000); 2174 if (status < 0) 2175 break; 2176 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); 2177 if (status < 0) 2178 break; 2179 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000); 2180 if (status < 0) 2181 break; 2182 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); 2183 if (status < 0) 2184 break; 2185 2186 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000); 2187 if (status < 0) 2188 break; 2189 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000); 2190 if (status < 0) 2191 break; 2192 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000); 2193 if (status < 0) 2194 break; 2195 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000); 2196 if (status < 0) 2197 break; 2198 } 2199 break; 2200 2201 case QAM_16: 2202 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16; 2203 if (state->type_A) { 2204 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000); 2205 if (status < 0) 2206 break; 2207 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000); 2208 if (status < 0) 2209 break; 2210 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); 2211 if (status < 0) 2212 break; 2213 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000); 2214 if (status < 0) 2215 break; 2216 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); 2217 if (status < 0) 2218 break; 2219 2220 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000); 2221 if (status < 0) 2222 break; 2223 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000); 2224 if (status < 0) 2225 break; 2226 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000); 2227 if (status < 0) 2228 break; 2229 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000); 2230 if (status < 0) 2231 break; 2232 } 2233 break; 2234 2235 } 2236 if (status < 0) 2237 break; 2238 2239 switch (DRX_CHANNEL_HIGH) { 2240 default: 2241 case DRX_CHANNEL_AUTO: 2242 case DRX_CHANNEL_LOW: 2243 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO; 2244 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000); 2245 break; 2246 case DRX_CHANNEL_HIGH: 2247 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI; 2248 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000); 2249 break; 2250 } 2251 2252 switch (p->code_rate_HP) { 2253 case FEC_1_2: 2254 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2; 2255 if (state->type_A) 2256 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000); 2257 break; 2258 default: 2259 operationMode |= SC_RA_RAM_OP_AUTO_RATE__M; 2260 fallthrough; 2261 case FEC_2_3: 2262 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3; 2263 if (state->type_A) 2264 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000); 2265 break; 2266 case FEC_3_4: 2267 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4; 2268 if (state->type_A) 2269 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000); 2270 break; 2271 case FEC_5_6: 2272 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6; 2273 if (state->type_A) 2274 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000); 2275 break; 2276 case FEC_7_8: 2277 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8; 2278 if (state->type_A) 2279 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000); 2280 break; 2281 } 2282 if (status < 0) 2283 break; 2284 2285 /* First determine real bandwidth (Hz) */ 2286 /* Also set delay for impulse noise cruncher (only A2) */ 2287 /* Also set parameters for EC_OC fix, note 2288 EC_OC_REG_TMD_HIL_MAR is changed 2289 by SC for fix for some 8K,1/8 guard but is restored by 2290 InitEC and ResetEC 2291 functions */ 2292 switch (p->bandwidth_hz) { 2293 case 0: 2294 p->bandwidth_hz = 8000000; 2295 fallthrough; 2296 case 8000000: 2297 /* (64/7)*(8/8)*1000000 */ 2298 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; 2299 2300 bandwidthParam = 0; 2301 status = Write16(state, 2302 FE_AG_REG_IND_DEL__A, 50, 0x0000); 2303 break; 2304 case 7000000: 2305 /* (64/7)*(7/8)*1000000 */ 2306 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; 2307 bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */ 2308 status = Write16(state, 2309 FE_AG_REG_IND_DEL__A, 59, 0x0000); 2310 break; 2311 case 6000000: 2312 /* (64/7)*(6/8)*1000000 */ 2313 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; 2314 bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */ 2315 status = Write16(state, 2316 FE_AG_REG_IND_DEL__A, 71, 0x0000); 2317 break; 2318 default: 2319 status = -EINVAL; 2320 } 2321 if (status < 0) 2322 break; 2323 2324 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000); 2325 if (status < 0) 2326 break; 2327 2328 { 2329 u16 sc_config; 2330 status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0); 2331 if (status < 0) 2332 break; 2333 2334 /* enable SLAVE mode in 2k 1/32 to 2335 prevent timing change glitches */ 2336 if ((p->transmission_mode == TRANSMISSION_MODE_2K) && 2337 (p->guard_interval == GUARD_INTERVAL_1_32)) { 2338 /* enable slave */ 2339 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M; 2340 } else { 2341 /* disable slave */ 2342 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M; 2343 } 2344 status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0); 2345 if (status < 0) 2346 break; 2347 } 2348 2349 status = SetCfgNoiseCalibration(state, &state->noise_cal); 2350 if (status < 0) 2351 break; 2352 2353 if (state->cscd_state == CSCD_INIT) { 2354 /* switch on SRMM scan in SC */ 2355 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000); 2356 if (status < 0) 2357 break; 2358 /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/ 2359 state->cscd_state = CSCD_SET; 2360 } 2361 2362 /* Now compute FE_IF_REG_INCR */ 2363 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) => 2364 ((SysFreq / BandWidth) * (2^21) ) - (2^23) */ 2365 feIfIncr = MulDiv32(state->sys_clock_freq * 1000, 2366 (1ULL << 21), bandwidth) - (1 << 23); 2367 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000); 2368 if (status < 0) 2369 break; 2370 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000); 2371 if (status < 0) 2372 break; 2373 /* Bandwidth setting done */ 2374 2375 /* Mirror & frequency offset */ 2376 SetFrequencyShift(state, off, mirrorFreqSpect); 2377 2378 /* Start SC, write channel settings to SC */ 2379 2380 /* Enable SC after setting all other parameters */ 2381 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000); 2382 if (status < 0) 2383 break; 2384 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000); 2385 if (status < 0) 2386 break; 2387 2388 /* Write SC parameter registers, operation mode */ 2389 #if 1 2390 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M | 2391 SC_RA_RAM_OP_AUTO_GUARD__M | 2392 SC_RA_RAM_OP_AUTO_CONST__M | 2393 SC_RA_RAM_OP_AUTO_HIER__M | 2394 SC_RA_RAM_OP_AUTO_RATE__M); 2395 #endif 2396 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode); 2397 if (status < 0) 2398 break; 2399 2400 /* Start correct processes to get in lock */ 2401 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN); 2402 if (status < 0) 2403 break; 2404 2405 status = StartOC(state); 2406 if (status < 0) 2407 break; 2408 2409 if (state->operation_mode != OM_Default) { 2410 status = StartDiversity(state); 2411 if (status < 0) 2412 break; 2413 } 2414 2415 state->drxd_state = DRXD_STARTED; 2416 } while (0); 2417 2418 return status; 2419 } 2420 2421 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency) 2422 { 2423 u32 ulRfAgcOutputLevel = 0xffffffff; 2424 u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */ 2425 u32 ulRfAgcMinLevel = 0; /* Currently unused */ 2426 u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */ 2427 u32 ulRfAgcSpeed = 0; /* Currently unused */ 2428 u32 ulRfAgcMode = 0; /*2; Off */ 2429 u32 ulRfAgcR1 = 820; 2430 u32 ulRfAgcR2 = 2200; 2431 u32 ulRfAgcR3 = 150; 2432 u32 ulIfAgcMode = 0; /* Auto */ 2433 u32 ulIfAgcOutputLevel = 0xffffffff; 2434 u32 ulIfAgcSettleLevel = 0xffffffff; 2435 u32 ulIfAgcMinLevel = 0xffffffff; 2436 u32 ulIfAgcMaxLevel = 0xffffffff; 2437 u32 ulIfAgcSpeed = 0xffffffff; 2438 u32 ulIfAgcR1 = 820; 2439 u32 ulIfAgcR2 = 2200; 2440 u32 ulIfAgcR3 = 150; 2441 u32 ulClock = state->config.clock; 2442 u32 ulSerialMode = 0; 2443 u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */ 2444 u32 ulHiI2cDelay = HI_I2C_DELAY; 2445 u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY; 2446 u32 ulHiI2cPatch = 0; 2447 u32 ulEnvironment = APPENV_PORTABLE; 2448 u32 ulEnvironmentDiversity = APPENV_MOBILE; 2449 u32 ulIFFilter = IFFILTER_SAW; 2450 2451 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2452 state->if_agc_cfg.outputLevel = 0; 2453 state->if_agc_cfg.settleLevel = 140; 2454 state->if_agc_cfg.minOutputLevel = 0; 2455 state->if_agc_cfg.maxOutputLevel = 1023; 2456 state->if_agc_cfg.speed = 904; 2457 2458 if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { 2459 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER; 2460 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel); 2461 } 2462 2463 if (ulIfAgcMode == 0 && 2464 ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX && 2465 ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX && 2466 ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX && 2467 ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) { 2468 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2469 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel); 2470 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel); 2471 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel); 2472 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed); 2473 } 2474 2475 state->if_agc_cfg.R1 = (u16) (ulIfAgcR1); 2476 state->if_agc_cfg.R2 = (u16) (ulIfAgcR2); 2477 state->if_agc_cfg.R3 = (u16) (ulIfAgcR3); 2478 2479 state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1); 2480 state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2); 2481 state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3); 2482 2483 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2484 /* rest of the RFAgcCfg structure currently unused */ 2485 if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { 2486 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER; 2487 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel); 2488 } 2489 2490 if (ulRfAgcMode == 0 && 2491 ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX && 2492 ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX && 2493 ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX && 2494 ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) { 2495 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; 2496 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel); 2497 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel); 2498 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel); 2499 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed); 2500 } 2501 2502 if (ulRfAgcMode == 2) 2503 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF; 2504 2505 if (ulEnvironment <= 2) 2506 state->app_env_default = (enum app_env) 2507 (ulEnvironment); 2508 if (ulEnvironmentDiversity <= 2) 2509 state->app_env_diversity = (enum app_env) 2510 (ulEnvironmentDiversity); 2511 2512 if (ulIFFilter == IFFILTER_DISCRETE) { 2513 /* discrete filter */ 2514 state->noise_cal.cpOpt = 0; 2515 state->noise_cal.cpNexpOfs = 40; 2516 state->noise_cal.tdCal2k = -40; 2517 state->noise_cal.tdCal8k = -24; 2518 } else { 2519 /* SAW filter */ 2520 state->noise_cal.cpOpt = 1; 2521 state->noise_cal.cpNexpOfs = 0; 2522 state->noise_cal.tdCal2k = -21; 2523 state->noise_cal.tdCal8k = -24; 2524 } 2525 state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop); 2526 2527 state->chip_adr = (state->config.demod_address << 1) | 1; 2528 switch (ulHiI2cPatch) { 2529 case 1: 2530 state->m_HiI2cPatch = DRXD_HiI2cPatch_1; 2531 break; 2532 case 3: 2533 state->m_HiI2cPatch = DRXD_HiI2cPatch_3; 2534 break; 2535 default: 2536 state->m_HiI2cPatch = NULL; 2537 } 2538 2539 /* modify tuner and clock attributes */ 2540 state->intermediate_freq = (u16) (IntermediateFrequency / 1000); 2541 /* expected system clock frequency in kHz */ 2542 state->expected_sys_clock_freq = 48000; 2543 /* real system clock frequency in kHz */ 2544 state->sys_clock_freq = 48000; 2545 state->osc_clock_freq = (u16) ulClock; 2546 state->osc_clock_deviation = 0; 2547 state->cscd_state = CSCD_INIT; 2548 state->drxd_state = DRXD_UNINITIALIZED; 2549 2550 state->PGA = 0; 2551 state->type_A = 0; 2552 state->tuner_mirrors = 0; 2553 2554 /* modify MPEG output attributes */ 2555 state->insert_rs_byte = state->config.insert_rs_byte; 2556 state->enable_parallel = (ulSerialMode != 1); 2557 2558 /* Timing div, 250ns/Psys */ 2559 /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */ 2560 2561 state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) * 2562 ulHiI2cDelay) / 1000; 2563 /* Bridge delay, uses oscilator clock */ 2564 /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */ 2565 state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) * 2566 ulHiI2cBridgeDelay) / 1000; 2567 2568 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; 2569 /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */ 2570 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; 2571 return 0; 2572 } 2573 2574 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size) 2575 { 2576 int status = 0; 2577 u32 driverVersion; 2578 2579 if (state->init_done) 2580 return 0; 2581 2582 CDRXD(state, state->config.IF ? state->config.IF : 36000000); 2583 2584 do { 2585 state->operation_mode = OM_Default; 2586 2587 status = SetDeviceTypeId(state); 2588 if (status < 0) 2589 break; 2590 2591 /* Apply I2c address patch to B1 */ 2592 if (!state->type_A && state->m_HiI2cPatch) { 2593 status = WriteTable(state, state->m_HiI2cPatch); 2594 if (status < 0) 2595 break; 2596 } 2597 2598 if (state->type_A) { 2599 /* HI firmware patch for UIO readout, 2600 avoid clearing of result register */ 2601 status = Write16(state, 0x43012D, 0x047f, 0); 2602 if (status < 0) 2603 break; 2604 } 2605 2606 status = HI_ResetCommand(state); 2607 if (status < 0) 2608 break; 2609 2610 status = StopAllProcessors(state); 2611 if (status < 0) 2612 break; 2613 status = InitCC(state); 2614 if (status < 0) 2615 break; 2616 2617 state->osc_clock_deviation = 0; 2618 2619 if (state->config.osc_deviation) 2620 state->osc_clock_deviation = 2621 state->config.osc_deviation(state->priv, 0, 0); 2622 { 2623 /* Handle clock deviation */ 2624 s32 devB; 2625 s32 devA = (s32) (state->osc_clock_deviation) * 2626 (s32) (state->expected_sys_clock_freq); 2627 /* deviation in kHz */ 2628 s32 deviation = (devA / (1000000L)); 2629 /* rounding, signed */ 2630 if (devA > 0) 2631 devB = (2); 2632 else 2633 devB = (-2); 2634 if ((devB * (devA % 1000000L) > 1000000L)) { 2635 /* add +1 or -1 */ 2636 deviation += (devB / 2); 2637 } 2638 2639 state->sys_clock_freq = 2640 (u16) ((state->expected_sys_clock_freq) + 2641 deviation); 2642 } 2643 status = InitHI(state); 2644 if (status < 0) 2645 break; 2646 status = InitAtomicRead(state); 2647 if (status < 0) 2648 break; 2649 2650 status = EnableAndResetMB(state); 2651 if (status < 0) 2652 break; 2653 if (state->type_A) { 2654 status = ResetCEFR(state); 2655 if (status < 0) 2656 break; 2657 } 2658 if (fw) { 2659 status = DownloadMicrocode(state, fw, fw_size); 2660 if (status < 0) 2661 break; 2662 } else { 2663 status = DownloadMicrocode(state, state->microcode, state->microcode_length); 2664 if (status < 0) 2665 break; 2666 } 2667 2668 if (state->PGA) { 2669 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; 2670 SetCfgPga(state, 0); /* PGA = 0 dB */ 2671 } else { 2672 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; 2673 } 2674 2675 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; 2676 2677 status = InitFE(state); 2678 if (status < 0) 2679 break; 2680 status = InitFT(state); 2681 if (status < 0) 2682 break; 2683 status = InitCP(state); 2684 if (status < 0) 2685 break; 2686 status = InitCE(state); 2687 if (status < 0) 2688 break; 2689 status = InitEQ(state); 2690 if (status < 0) 2691 break; 2692 status = InitEC(state); 2693 if (status < 0) 2694 break; 2695 status = InitSC(state); 2696 if (status < 0) 2697 break; 2698 2699 status = SetCfgIfAgc(state, &state->if_agc_cfg); 2700 if (status < 0) 2701 break; 2702 status = SetCfgRfAgc(state, &state->rf_agc_cfg); 2703 if (status < 0) 2704 break; 2705 2706 state->cscd_state = CSCD_INIT; 2707 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 2708 if (status < 0) 2709 break; 2710 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); 2711 if (status < 0) 2712 break; 2713 2714 driverVersion = (((VERSION_MAJOR / 10) << 4) + 2715 (VERSION_MAJOR % 10)) << 24; 2716 driverVersion += (((VERSION_MINOR / 10) << 4) + 2717 (VERSION_MINOR % 10)) << 16; 2718 driverVersion += ((VERSION_PATCH / 1000) << 12) + 2719 ((VERSION_PATCH / 100) << 8) + 2720 ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10); 2721 2722 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0); 2723 if (status < 0) 2724 break; 2725 2726 status = StopOC(state); 2727 if (status < 0) 2728 break; 2729 2730 state->drxd_state = DRXD_STOPPED; 2731 state->init_done = 1; 2732 status = 0; 2733 } while (0); 2734 return status; 2735 } 2736 2737 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus) 2738 { 2739 DRX_GetLockStatus(state, pLockStatus); 2740 2741 /*if (*pLockStatus&DRX_LOCK_MPEG) */ 2742 if (*pLockStatus & DRX_LOCK_FEC) { 2743 ConfigureMPEGOutput(state, 1); 2744 /* Get status again, in case we have MPEG lock now */ 2745 /*DRX_GetLockStatus(state, pLockStatus); */ 2746 } 2747 2748 return 0; 2749 } 2750 2751 /****************************************************************************/ 2752 /****************************************************************************/ 2753 /****************************************************************************/ 2754 2755 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength) 2756 { 2757 struct drxd_state *state = fe->demodulator_priv; 2758 u32 value; 2759 int res; 2760 2761 res = ReadIFAgc(state, &value); 2762 if (res < 0) 2763 *strength = 0; 2764 else 2765 *strength = 0xffff - (value << 4); 2766 return 0; 2767 } 2768 2769 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status) 2770 { 2771 struct drxd_state *state = fe->demodulator_priv; 2772 u32 lock; 2773 2774 DRXD_status(state, &lock); 2775 *status = 0; 2776 /* No MPEG lock in V255 firmware, bug ? */ 2777 #if 1 2778 if (lock & DRX_LOCK_MPEG) 2779 *status |= FE_HAS_LOCK; 2780 #else 2781 if (lock & DRX_LOCK_FEC) 2782 *status |= FE_HAS_LOCK; 2783 #endif 2784 if (lock & DRX_LOCK_FEC) 2785 *status |= FE_HAS_VITERBI | FE_HAS_SYNC; 2786 if (lock & DRX_LOCK_DEMOD) 2787 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; 2788 2789 return 0; 2790 } 2791 2792 static int drxd_init(struct dvb_frontend *fe) 2793 { 2794 struct drxd_state *state = fe->demodulator_priv; 2795 2796 return DRXD_init(state, NULL, 0); 2797 } 2798 2799 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff) 2800 { 2801 struct drxd_state *state = fe->demodulator_priv; 2802 2803 if (state->config.disable_i2c_gate_ctrl == 1) 2804 return 0; 2805 2806 return DRX_ConfigureI2CBridge(state, onoff); 2807 } 2808 2809 static int drxd_get_tune_settings(struct dvb_frontend *fe, 2810 struct dvb_frontend_tune_settings *sets) 2811 { 2812 sets->min_delay_ms = 10000; 2813 sets->max_drift = 0; 2814 sets->step_size = 0; 2815 return 0; 2816 } 2817 2818 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber) 2819 { 2820 *ber = 0; 2821 return 0; 2822 } 2823 2824 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr) 2825 { 2826 *snr = 0; 2827 return 0; 2828 } 2829 2830 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks) 2831 { 2832 *ucblocks = 0; 2833 return 0; 2834 } 2835 2836 static int drxd_sleep(struct dvb_frontend *fe) 2837 { 2838 struct drxd_state *state = fe->demodulator_priv; 2839 2840 ConfigureMPEGOutput(state, 0); 2841 return 0; 2842 } 2843 2844 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) 2845 { 2846 return drxd_config_i2c(fe, enable); 2847 } 2848 2849 static int drxd_set_frontend(struct dvb_frontend *fe) 2850 { 2851 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 2852 struct drxd_state *state = fe->demodulator_priv; 2853 s32 off = 0; 2854 2855 state->props = *p; 2856 DRX_Stop(state); 2857 2858 if (fe->ops.tuner_ops.set_params) { 2859 fe->ops.tuner_ops.set_params(fe); 2860 if (fe->ops.i2c_gate_ctrl) 2861 fe->ops.i2c_gate_ctrl(fe, 0); 2862 } 2863 2864 msleep(200); 2865 2866 return DRX_Start(state, off); 2867 } 2868 2869 static void drxd_release(struct dvb_frontend *fe) 2870 { 2871 struct drxd_state *state = fe->demodulator_priv; 2872 2873 kfree(state); 2874 } 2875 2876 static const struct dvb_frontend_ops drxd_ops = { 2877 .delsys = { SYS_DVBT}, 2878 .info = { 2879 .name = "Micronas DRXD DVB-T", 2880 .frequency_min_hz = 47125 * kHz, 2881 .frequency_max_hz = 855250 * kHz, 2882 .frequency_stepsize_hz = 166667, 2883 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | 2884 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | 2885 FE_CAN_FEC_AUTO | 2886 FE_CAN_QAM_16 | FE_CAN_QAM_64 | 2887 FE_CAN_QAM_AUTO | 2888 FE_CAN_TRANSMISSION_MODE_AUTO | 2889 FE_CAN_GUARD_INTERVAL_AUTO | 2890 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS}, 2891 2892 .release = drxd_release, 2893 .init = drxd_init, 2894 .sleep = drxd_sleep, 2895 .i2c_gate_ctrl = drxd_i2c_gate_ctrl, 2896 2897 .set_frontend = drxd_set_frontend, 2898 .get_tune_settings = drxd_get_tune_settings, 2899 2900 .read_status = drxd_read_status, 2901 .read_ber = drxd_read_ber, 2902 .read_signal_strength = drxd_read_signal_strength, 2903 .read_snr = drxd_read_snr, 2904 .read_ucblocks = drxd_read_ucblocks, 2905 }; 2906 2907 struct dvb_frontend *drxd_attach(const struct drxd_config *config, 2908 void *priv, struct i2c_adapter *i2c, 2909 struct device *dev) 2910 { 2911 struct drxd_state *state = NULL; 2912 2913 state = kzalloc(sizeof(*state), GFP_KERNEL); 2914 if (!state) 2915 return NULL; 2916 2917 state->ops = drxd_ops; 2918 state->dev = dev; 2919 state->config = *config; 2920 state->i2c = i2c; 2921 state->priv = priv; 2922 2923 mutex_init(&state->mutex); 2924 2925 if (Read16(state, 0, NULL, 0) < 0) 2926 goto error; 2927 2928 state->frontend.ops = drxd_ops; 2929 state->frontend.demodulator_priv = state; 2930 ConfigureMPEGOutput(state, 0); 2931 /* add few initialization to allow gate control */ 2932 CDRXD(state, state->config.IF ? state->config.IF : 36000000); 2933 InitHI(state); 2934 2935 return &state->frontend; 2936 2937 error: 2938 printk(KERN_ERR "drxd: not found\n"); 2939 kfree(state); 2940 return NULL; 2941 } 2942 EXPORT_SYMBOL_GPL(drxd_attach); 2943 2944 MODULE_DESCRIPTION("DRXD driver"); 2945 MODULE_AUTHOR("Micronas"); 2946 MODULE_LICENSE("GPL"); 2947