1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T). 4 * 5 * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/) 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/i2c.h> 13 #include <linux/mutex.h> 14 #include <asm/div64.h> 15 16 #include <linux/int_log.h> 17 18 #include <media/dvb_frontend.h> 19 20 #include "dib8000.h" 21 22 #define LAYER_ALL -1 23 #define LAYER_A 1 24 #define LAYER_B 2 25 #define LAYER_C 3 26 27 #define MAX_NUMBER_OF_FRONTENDS 6 28 /* #define DIB8000_AGC_FREEZE */ 29 30 static int debug; 31 module_param(debug, int, 0644); 32 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); 33 34 #define dprintk(fmt, arg...) do { \ 35 if (debug) \ 36 printk(KERN_DEBUG pr_fmt("%s: " fmt), \ 37 __func__, ##arg); \ 38 } while (0) 39 40 struct i2c_device { 41 struct i2c_adapter *adap; 42 u8 addr; 43 u8 *i2c_write_buffer; 44 u8 *i2c_read_buffer; 45 struct mutex *i2c_buffer_lock; 46 }; 47 48 enum param_loop_step { 49 LOOP_TUNE_1, 50 LOOP_TUNE_2 51 }; 52 53 enum dib8000_autosearch_step { 54 AS_START = 0, 55 AS_SEARCHING_FFT, 56 AS_SEARCHING_GUARD, 57 AS_DONE = 100, 58 }; 59 60 enum timeout_mode { 61 SYMBOL_DEPENDENT_OFF = 0, 62 SYMBOL_DEPENDENT_ON, 63 }; 64 65 struct dib8000_state { 66 struct dib8000_config cfg; 67 68 struct i2c_device i2c; 69 70 struct dibx000_i2c_master i2c_master; 71 72 u16 wbd_ref; 73 74 u8 current_band; 75 u32 current_bandwidth; 76 struct dibx000_agc_config *current_agc; 77 u32 timf; 78 u32 timf_default; 79 80 u8 div_force_off:1; 81 u8 div_state:1; 82 u16 div_sync_wait; 83 84 u8 agc_state; 85 u8 differential_constellation; 86 u8 diversity_onoff; 87 88 s16 ber_monitored_layer; 89 u16 gpio_dir; 90 u16 gpio_val; 91 92 u16 revision; 93 u8 isdbt_cfg_loaded; 94 enum frontend_tune_state tune_state; 95 s32 status; 96 97 struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; 98 99 /* for the I2C transfer */ 100 struct i2c_msg msg[2]; 101 u8 i2c_write_buffer[4]; 102 u8 i2c_read_buffer[2]; 103 struct mutex i2c_buffer_lock; 104 u8 input_mode_mpeg; 105 106 u16 tuner_enable; 107 struct i2c_adapter dib8096p_tuner_adap; 108 u16 current_demod_bw; 109 110 u16 seg_mask; 111 u16 seg_diff_mask; 112 u16 mode; 113 u8 layer_b_nb_seg; 114 u8 layer_c_nb_seg; 115 116 u8 channel_parameters_set; 117 u16 autosearch_state; 118 u16 found_nfft; 119 u16 found_guard; 120 u8 subchannel; 121 u8 symbol_duration; 122 unsigned long timeout; 123 u8 longest_intlv_layer; 124 u16 output_mode; 125 126 /* for DVBv5 stats */ 127 s64 init_ucb; 128 unsigned long per_jiffies_stats; 129 unsigned long ber_jiffies_stats; 130 unsigned long ber_jiffies_stats_layer[3]; 131 132 #ifdef DIB8000_AGC_FREEZE 133 u16 agc1_max; 134 u16 agc1_min; 135 u16 agc2_max; 136 u16 agc2_min; 137 #endif 138 }; 139 140 enum dib8000_power_mode { 141 DIB8000_POWER_ALL = 0, 142 DIB8000_POWER_INTERFACE_ONLY, 143 }; 144 145 static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg) 146 { 147 u16 ret; 148 struct i2c_msg msg[2] = { 149 {.addr = i2c->addr >> 1, .flags = 0, .len = 2}, 150 {.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2}, 151 }; 152 153 if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { 154 dprintk("could not acquire lock\n"); 155 return 0; 156 } 157 158 msg[0].buf = i2c->i2c_write_buffer; 159 msg[0].buf[0] = reg >> 8; 160 msg[0].buf[1] = reg & 0xff; 161 msg[1].buf = i2c->i2c_read_buffer; 162 163 if (i2c_transfer(i2c->adap, msg, 2) != 2) 164 dprintk("i2c read error on %d\n", reg); 165 166 ret = (msg[1].buf[0] << 8) | msg[1].buf[1]; 167 mutex_unlock(i2c->i2c_buffer_lock); 168 return ret; 169 } 170 171 static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg) 172 { 173 u16 ret; 174 175 state->i2c_write_buffer[0] = reg >> 8; 176 state->i2c_write_buffer[1] = reg & 0xff; 177 178 memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); 179 state->msg[0].addr = state->i2c.addr >> 1; 180 state->msg[0].flags = 0; 181 state->msg[0].buf = state->i2c_write_buffer; 182 state->msg[0].len = 2; 183 state->msg[1].addr = state->i2c.addr >> 1; 184 state->msg[1].flags = I2C_M_RD; 185 state->msg[1].buf = state->i2c_read_buffer; 186 state->msg[1].len = 2; 187 188 if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2) 189 dprintk("i2c read error on %d\n", reg); 190 191 ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; 192 193 return ret; 194 } 195 196 static u16 dib8000_read_word(struct dib8000_state *state, u16 reg) 197 { 198 u16 ret; 199 200 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { 201 dprintk("could not acquire lock\n"); 202 return 0; 203 } 204 205 ret = __dib8000_read_word(state, reg); 206 207 mutex_unlock(&state->i2c_buffer_lock); 208 209 return ret; 210 } 211 212 static u32 dib8000_read32(struct dib8000_state *state, u16 reg) 213 { 214 u16 rw[2]; 215 216 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { 217 dprintk("could not acquire lock\n"); 218 return 0; 219 } 220 221 rw[0] = __dib8000_read_word(state, reg + 0); 222 rw[1] = __dib8000_read_word(state, reg + 1); 223 224 mutex_unlock(&state->i2c_buffer_lock); 225 226 return ((rw[0] << 16) | (rw[1])); 227 } 228 229 static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) 230 { 231 struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4}; 232 int ret = 0; 233 234 if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { 235 dprintk("could not acquire lock\n"); 236 return -EINVAL; 237 } 238 239 msg.buf = i2c->i2c_write_buffer; 240 msg.buf[0] = (reg >> 8) & 0xff; 241 msg.buf[1] = reg & 0xff; 242 msg.buf[2] = (val >> 8) & 0xff; 243 msg.buf[3] = val & 0xff; 244 245 ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0; 246 mutex_unlock(i2c->i2c_buffer_lock); 247 248 return ret; 249 } 250 251 static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val) 252 { 253 int ret; 254 255 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { 256 dprintk("could not acquire lock\n"); 257 return -EINVAL; 258 } 259 260 state->i2c_write_buffer[0] = (reg >> 8) & 0xff; 261 state->i2c_write_buffer[1] = reg & 0xff; 262 state->i2c_write_buffer[2] = (val >> 8) & 0xff; 263 state->i2c_write_buffer[3] = val & 0xff; 264 265 memset(&state->msg[0], 0, sizeof(struct i2c_msg)); 266 state->msg[0].addr = state->i2c.addr >> 1; 267 state->msg[0].flags = 0; 268 state->msg[0].buf = state->i2c_write_buffer; 269 state->msg[0].len = 4; 270 271 ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ? 272 -EREMOTEIO : 0); 273 mutex_unlock(&state->i2c_buffer_lock); 274 275 return ret; 276 } 277 278 static const s16 coeff_2k_sb_1seg_dqpsk[8] = { 279 (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c, 280 (920 << 5) | 0x09 281 }; 282 283 static const s16 coeff_2k_sb_1seg[8] = { 284 (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f 285 }; 286 287 static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = { 288 (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11, 289 (-931 << 5) | 0x0f 290 }; 291 292 static const s16 coeff_2k_sb_3seg_0dqpsk[8] = { 293 (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e, 294 (982 << 5) | 0x0c 295 }; 296 297 static const s16 coeff_2k_sb_3seg_1dqpsk[8] = { 298 (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12, 299 (-720 << 5) | 0x0d 300 }; 301 302 static const s16 coeff_2k_sb_3seg[8] = { 303 (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e, 304 (-610 << 5) | 0x0a 305 }; 306 307 static const s16 coeff_4k_sb_1seg_dqpsk[8] = { 308 (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f, 309 (-922 << 5) | 0x0d 310 }; 311 312 static const s16 coeff_4k_sb_1seg[8] = { 313 (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d, 314 (-655 << 5) | 0x0a 315 }; 316 317 static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = { 318 (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14, 319 (-958 << 5) | 0x13 320 }; 321 322 static const s16 coeff_4k_sb_3seg_0dqpsk[8] = { 323 (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12, 324 (-568 << 5) | 0x0f 325 }; 326 327 static const s16 coeff_4k_sb_3seg_1dqpsk[8] = { 328 (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14, 329 (-848 << 5) | 0x13 330 }; 331 332 static const s16 coeff_4k_sb_3seg[8] = { 333 (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12, 334 (-869 << 5) | 0x13 335 }; 336 337 static const s16 coeff_8k_sb_1seg_dqpsk[8] = { 338 (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13, 339 (-598 << 5) | 0x10 340 }; 341 342 static const s16 coeff_8k_sb_1seg[8] = { 343 (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f, 344 (585 << 5) | 0x0f 345 }; 346 347 static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = { 348 (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18, 349 (0 << 5) | 0x14 350 }; 351 352 static const s16 coeff_8k_sb_3seg_0dqpsk[8] = { 353 (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15, 354 (-877 << 5) | 0x15 355 }; 356 357 static const s16 coeff_8k_sb_3seg_1dqpsk[8] = { 358 (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18, 359 (-921 << 5) | 0x14 360 }; 361 362 static const s16 coeff_8k_sb_3seg[8] = { 363 (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15, 364 (690 << 5) | 0x14 365 }; 366 367 static const s16 ana_fe_coeff_3seg[24] = { 368 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017 369 }; 370 371 static const s16 ana_fe_coeff_1seg[24] = { 372 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003 373 }; 374 375 static const s16 ana_fe_coeff_13seg[24] = { 376 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1 377 }; 378 379 static u16 fft_to_mode(struct dib8000_state *state) 380 { 381 u16 mode; 382 switch (state->fe[0]->dtv_property_cache.transmission_mode) { 383 case TRANSMISSION_MODE_2K: 384 mode = 1; 385 break; 386 case TRANSMISSION_MODE_4K: 387 mode = 2; 388 break; 389 default: 390 case TRANSMISSION_MODE_AUTO: 391 case TRANSMISSION_MODE_8K: 392 mode = 3; 393 break; 394 } 395 return mode; 396 } 397 398 static void dib8000_set_acquisition_mode(struct dib8000_state *state) 399 { 400 u16 nud = dib8000_read_word(state, 298); 401 nud |= (1 << 3) | (1 << 0); 402 dprintk("acquisition mode activated\n"); 403 dib8000_write_word(state, 298, nud); 404 } 405 static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode) 406 { 407 struct dib8000_state *state = fe->demodulator_priv; 408 u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */ 409 410 state->output_mode = mode; 411 outreg = 0; 412 fifo_threshold = 1792; 413 smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); 414 415 dprintk("-I- Setting output mode for demod %p to %d\n", 416 &state->fe[0], mode); 417 418 switch (mode) { 419 case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock 420 outreg = (1 << 10); /* 0x0400 */ 421 break; 422 case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock 423 outreg = (1 << 10) | (1 << 6); /* 0x0440 */ 424 break; 425 case OUTMODE_MPEG2_SERIAL: // STBs with serial input 426 outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ 427 break; 428 case OUTMODE_DIVERSITY: 429 if (state->cfg.hostbus_diversity) { 430 outreg = (1 << 10) | (4 << 6); /* 0x0500 */ 431 sram &= 0xfdff; 432 } else 433 sram |= 0x0c00; 434 break; 435 case OUTMODE_MPEG2_FIFO: // e.g. USB feeding 436 smo_mode |= (3 << 1); 437 fifo_threshold = 512; 438 outreg = (1 << 10) | (5 << 6); 439 break; 440 case OUTMODE_HIGH_Z: // disable 441 outreg = 0; 442 break; 443 444 case OUTMODE_ANALOG_ADC: 445 outreg = (1 << 10) | (3 << 6); 446 dib8000_set_acquisition_mode(state); 447 break; 448 449 default: 450 dprintk("Unhandled output_mode passed to be set for demod %p\n", 451 &state->fe[0]); 452 return -EINVAL; 453 } 454 455 if (state->cfg.output_mpeg2_in_188_bytes) 456 smo_mode |= (1 << 5); 457 458 dib8000_write_word(state, 299, smo_mode); 459 dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */ 460 dib8000_write_word(state, 1286, outreg); 461 dib8000_write_word(state, 1291, sram); 462 463 return 0; 464 } 465 466 static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff) 467 { 468 struct dib8000_state *state = fe->demodulator_priv; 469 u16 tmp, sync_wait = dib8000_read_word(state, 273) & 0xfff0; 470 471 dprintk("set diversity input to %i\n", onoff); 472 if (!state->differential_constellation) { 473 dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1 474 dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2 475 } else { 476 dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0 477 dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0 478 } 479 state->diversity_onoff = onoff; 480 481 switch (onoff) { 482 case 0: /* only use the internal way - not the diversity input */ 483 dib8000_write_word(state, 270, 1); 484 dib8000_write_word(state, 271, 0); 485 break; 486 case 1: /* both ways */ 487 dib8000_write_word(state, 270, 6); 488 dib8000_write_word(state, 271, 6); 489 break; 490 case 2: /* only the diversity input */ 491 dib8000_write_word(state, 270, 0); 492 dib8000_write_word(state, 271, 1); 493 break; 494 } 495 496 if (state->revision == 0x8002) { 497 tmp = dib8000_read_word(state, 903); 498 dib8000_write_word(state, 903, tmp & ~(1 << 3)); 499 msleep(30); 500 dib8000_write_word(state, 903, tmp | (1 << 3)); 501 } 502 return 0; 503 } 504 505 static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode) 506 { 507 /* by default everything is going to be powered off */ 508 u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff, 509 reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, 510 reg_1280; 511 512 if (state->revision != 0x8090) 513 reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00; 514 else 515 reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80; 516 517 /* now, depending on the requested mode, we power on */ 518 switch (mode) { 519 /* power up everything in the demod */ 520 case DIB8000_POWER_ALL: 521 reg_774 = 0x0000; 522 reg_775 = 0x0000; 523 reg_776 = 0x0000; 524 reg_900 &= 0xfffc; 525 if (state->revision != 0x8090) 526 reg_1280 &= 0x00ff; 527 else 528 reg_1280 &= 0x707f; 529 break; 530 case DIB8000_POWER_INTERFACE_ONLY: 531 if (state->revision != 0x8090) 532 reg_1280 &= 0x00ff; 533 else 534 reg_1280 &= 0xfa7b; 535 break; 536 } 537 538 dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774, reg_775, reg_776, reg_900, reg_1280); 539 dib8000_write_word(state, 774, reg_774); 540 dib8000_write_word(state, 775, reg_775); 541 dib8000_write_word(state, 776, reg_776); 542 dib8000_write_word(state, 900, reg_900); 543 dib8000_write_word(state, 1280, reg_1280); 544 } 545 546 static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no) 547 { 548 int ret = 0; 549 u16 reg, reg_907 = dib8000_read_word(state, 907); 550 u16 reg_908 = dib8000_read_word(state, 908); 551 552 switch (no) { 553 case DIBX000_SLOW_ADC_ON: 554 if (state->revision != 0x8090) { 555 reg_908 |= (1 << 1) | (1 << 0); 556 ret |= dib8000_write_word(state, 908, reg_908); 557 reg_908 &= ~(1 << 1); 558 } else { 559 reg = dib8000_read_word(state, 1925); 560 /* en_slowAdc = 1 & reset_sladc = 1 */ 561 dib8000_write_word(state, 1925, reg | 562 (1<<4) | (1<<2)); 563 564 /* read access to make it works... strange ... */ 565 reg = dib8000_read_word(state, 1925); 566 msleep(20); 567 /* en_slowAdc = 1 & reset_sladc = 0 */ 568 dib8000_write_word(state, 1925, reg & ~(1<<4)); 569 570 reg = dib8000_read_word(state, 921) & ~((0x3 << 14) 571 | (0x3 << 12)); 572 /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; 573 (Vin2 = Vcm) */ 574 dib8000_write_word(state, 921, reg | (1 << 14) 575 | (3 << 12)); 576 } 577 break; 578 579 case DIBX000_SLOW_ADC_OFF: 580 if (state->revision == 0x8090) { 581 reg = dib8000_read_word(state, 1925); 582 /* reset_sladc = 1 en_slowAdc = 0 */ 583 dib8000_write_word(state, 1925, 584 (reg & ~(1<<2)) | (1<<4)); 585 } 586 reg_908 |= (1 << 1) | (1 << 0); 587 break; 588 589 case DIBX000_ADC_ON: 590 reg_907 &= 0x0fff; 591 reg_908 &= 0x0003; 592 break; 593 594 case DIBX000_ADC_OFF: // leave the VBG voltage on 595 reg_907 = (1 << 13) | (1 << 12); 596 reg_908 = (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1); 597 break; 598 599 case DIBX000_VBG_ENABLE: 600 reg_907 &= ~(1 << 15); 601 break; 602 603 case DIBX000_VBG_DISABLE: 604 reg_907 |= (1 << 15); 605 break; 606 607 default: 608 break; 609 } 610 611 ret |= dib8000_write_word(state, 907, reg_907); 612 ret |= dib8000_write_word(state, 908, reg_908); 613 614 return ret; 615 } 616 617 static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw) 618 { 619 struct dib8000_state *state = fe->demodulator_priv; 620 u32 timf; 621 622 if (bw == 0) 623 bw = 6000; 624 625 if (state->timf == 0) { 626 dprintk("using default timf\n"); 627 timf = state->timf_default; 628 } else { 629 dprintk("using updated timf\n"); 630 timf = state->timf; 631 } 632 633 dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff)); 634 dib8000_write_word(state, 30, (u16) ((timf) & 0xffff)); 635 636 return 0; 637 } 638 639 static int dib8000_sad_calib(struct dib8000_state *state) 640 { 641 u8 sad_sel = 3; 642 643 if (state->revision == 0x8090) { 644 dib8000_write_word(state, 922, (sad_sel << 2)); 645 dib8000_write_word(state, 923, 2048); 646 647 dib8000_write_word(state, 922, (sad_sel << 2) | 0x1); 648 dib8000_write_word(state, 922, (sad_sel << 2)); 649 } else { 650 /* internal */ 651 dib8000_write_word(state, 923, (0 << 1) | (0 << 0)); 652 dib8000_write_word(state, 924, 776); 653 654 /* do the calibration */ 655 dib8000_write_word(state, 923, (1 << 0)); 656 dib8000_write_word(state, 923, (0 << 0)); 657 } 658 659 msleep(1); 660 return 0; 661 } 662 663 static int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value) 664 { 665 struct dib8000_state *state = fe->demodulator_priv; 666 if (value > 4095) 667 value = 4095; 668 state->wbd_ref = value; 669 return dib8000_write_word(state, 106, value); 670 } 671 672 static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw) 673 { 674 dprintk("ifreq: %d %x, inversion: %d\n", bw->ifreq, bw->ifreq, bw->ifreq >> 25); 675 if (state->revision != 0x8090) { 676 dib8000_write_word(state, 23, 677 (u16) (((bw->internal * 1000) >> 16) & 0xffff)); 678 dib8000_write_word(state, 24, 679 (u16) ((bw->internal * 1000) & 0xffff)); 680 } else { 681 dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff)); 682 dib8000_write_word(state, 24, 683 (u16) ((bw->internal / 2 * 1000) & 0xffff)); 684 } 685 dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff)); 686 dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff)); 687 dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003)); 688 689 if (state->revision != 0x8090) 690 dib8000_write_word(state, 922, bw->sad_cfg); 691 } 692 693 static void dib8000_reset_pll(struct dib8000_state *state) 694 { 695 const struct dibx000_bandwidth_config *pll = state->cfg.pll; 696 u16 clk_cfg1, reg; 697 698 if (state->revision != 0x8090) { 699 dib8000_write_word(state, 901, 700 (pll->pll_prediv << 8) | (pll->pll_ratio << 0)); 701 702 clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) | 703 (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | 704 (1 << 3) | (pll->pll_range << 1) | 705 (pll->pll_reset << 0); 706 707 dib8000_write_word(state, 902, clk_cfg1); 708 clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3); 709 dib8000_write_word(state, 902, clk_cfg1); 710 711 dprintk("clk_cfg1: 0x%04x\n", clk_cfg1); 712 713 /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */ 714 if (state->cfg.pll->ADClkSrc == 0) 715 dib8000_write_word(state, 904, 716 (0 << 15) | (0 << 12) | (0 << 10) | 717 (pll->modulo << 8) | 718 (pll->ADClkSrc << 7) | (0 << 1)); 719 else if (state->cfg.refclksel != 0) 720 dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | 721 ((state->cfg.refclksel & 0x3) << 10) | 722 (pll->modulo << 8) | 723 (pll->ADClkSrc << 7) | (0 << 1)); 724 else 725 dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | 726 (3 << 10) | (pll->modulo << 8) | 727 (pll->ADClkSrc << 7) | (0 << 1)); 728 } else { 729 dib8000_write_word(state, 1856, (!pll->pll_reset<<13) | 730 (pll->pll_range<<12) | (pll->pll_ratio<<6) | 731 (pll->pll_prediv)); 732 733 reg = dib8000_read_word(state, 1857); 734 dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15)); 735 736 reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */ 737 dib8000_write_word(state, 1858, reg | 1); 738 739 dib8000_write_word(state, 904, (pll->modulo << 8)); 740 } 741 742 dib8000_reset_pll_common(state, pll); 743 } 744 745 static int dib8000_update_pll(struct dvb_frontend *fe, 746 struct dibx000_bandwidth_config *pll, u32 bw, u8 ratio) 747 { 748 struct dib8000_state *state = fe->demodulator_priv; 749 u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856); 750 u8 loopdiv, prediv, oldprediv = state->cfg.pll->pll_prediv ; 751 u32 internal, xtal; 752 753 /* get back old values */ 754 prediv = reg_1856 & 0x3f; 755 loopdiv = (reg_1856 >> 6) & 0x3f; 756 757 if ((pll == NULL) || (pll->pll_prediv == prediv && 758 pll->pll_ratio == loopdiv)) 759 return -EINVAL; 760 761 dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio); 762 if (state->revision == 0x8090) { 763 reg_1856 &= 0xf000; 764 reg_1857 = dib8000_read_word(state, 1857); 765 /* disable PLL */ 766 dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15)); 767 768 dib8000_write_word(state, 1856, reg_1856 | 769 ((pll->pll_ratio & 0x3f) << 6) | 770 (pll->pll_prediv & 0x3f)); 771 772 /* write new system clk into P_sec_len */ 773 internal = dib8000_read32(state, 23) / 1000; 774 dprintk("Old Internal = %d\n", internal); 775 xtal = 2 * (internal / loopdiv) * prediv; 776 internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio; 777 dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal, internal/1000, internal/2000, internal/8000); 778 dprintk("New Internal = %d\n", internal); 779 780 dib8000_write_word(state, 23, 781 (u16) (((internal / 2) >> 16) & 0xffff)); 782 dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff)); 783 /* enable PLL */ 784 dib8000_write_word(state, 1857, reg_1857 | (1 << 15)); 785 786 while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1) 787 dprintk("Waiting for PLL to lock\n"); 788 789 /* verify */ 790 reg_1856 = dib8000_read_word(state, 1856); 791 dprintk("PLL Updated with prediv = %d and loopdiv = %d\n", 792 reg_1856&0x3f, (reg_1856>>6)&0x3f); 793 } else { 794 if (bw != state->current_demod_bw) { 795 /** Bandwidth change => force PLL update **/ 796 dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state->current_demod_bw / 1000, bw / 1000, oldprediv, state->cfg.pll->pll_prediv); 797 798 if (state->cfg.pll->pll_prediv != oldprediv) { 799 /** Full PLL change only if prediv is changed **/ 800 801 /** full update => bypass and reconfigure **/ 802 dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw/1000, state->cfg.pll->pll_prediv, state->cfg.pll->pll_ratio); 803 dib8000_write_word(state, 902, dib8000_read_word(state, 902) | (1<<3)); /* bypass PLL */ 804 dib8000_reset_pll(state); 805 dib8000_write_word(state, 898, 0x0004); /* sad */ 806 } else 807 ratio = state->cfg.pll->pll_ratio; 808 809 state->current_demod_bw = bw; 810 } 811 812 if (ratio != 0) { 813 /** ratio update => only change ratio **/ 814 dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state->cfg.pll->pll_prediv, ratio); 815 dib8000_write_word(state, 901, (state->cfg.pll->pll_prediv << 8) | (ratio << 0)); /* only the PLL ratio is updated. */ 816 } 817 } 818 819 return 0; 820 } 821 822 static int dib8000_reset_gpio(struct dib8000_state *st) 823 { 824 /* reset the GPIOs */ 825 dib8000_write_word(st, 1029, st->cfg.gpio_dir); 826 dib8000_write_word(st, 1030, st->cfg.gpio_val); 827 828 /* TODO 782 is P_gpio_od */ 829 830 dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos); 831 832 dib8000_write_word(st, 1037, st->cfg.pwm_freq_div); 833 return 0; 834 } 835 836 static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val) 837 { 838 st->cfg.gpio_dir = dib8000_read_word(st, 1029); 839 st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */ 840 st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */ 841 dib8000_write_word(st, 1029, st->cfg.gpio_dir); 842 843 st->cfg.gpio_val = dib8000_read_word(st, 1030); 844 st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */ 845 st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */ 846 dib8000_write_word(st, 1030, st->cfg.gpio_val); 847 848 dprintk("gpio dir: %x: gpio val: %x\n", st->cfg.gpio_dir, st->cfg.gpio_val); 849 850 return 0; 851 } 852 853 static int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) 854 { 855 struct dib8000_state *state = fe->demodulator_priv; 856 return dib8000_cfg_gpio(state, num, dir, val); 857 } 858 859 static const u16 dib8000_defaults[] = { 860 /* auto search configuration - lock0 by default waiting 861 * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */ 862 3, 7, 863 0x0004, 864 0x0400, 865 0x0814, 866 867 12, 11, 868 0x001b, 869 0x7740, 870 0x005b, 871 0x8d80, 872 0x01c9, 873 0xc380, 874 0x0000, 875 0x0080, 876 0x0000, 877 0x0090, 878 0x0001, 879 0xd4c0, 880 881 /*1, 32, 882 0x6680 // P_corm_thres Lock algorithms configuration */ 883 884 11, 80, /* set ADC level to -16 */ 885 (1 << 13) - 825 - 117, 886 (1 << 13) - 837 - 117, 887 (1 << 13) - 811 - 117, 888 (1 << 13) - 766 - 117, 889 (1 << 13) - 737 - 117, 890 (1 << 13) - 693 - 117, 891 (1 << 13) - 648 - 117, 892 (1 << 13) - 619 - 117, 893 (1 << 13) - 575 - 117, 894 (1 << 13) - 531 - 117, 895 (1 << 13) - 501 - 117, 896 897 4, 108, 898 0, 899 0, 900 0, 901 0, 902 903 1, 175, 904 0x0410, 905 1, 179, 906 8192, // P_fft_nb_to_cut 907 908 6, 181, 909 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800 910 0x2800, 911 0x2800, 912 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800 913 0x2800, 914 0x2800, 915 916 2, 193, 917 0x0666, // P_pha3_thres 918 0x0000, // P_cti_use_cpe, P_cti_use_prog 919 920 2, 205, 921 0x200f, // P_cspu_regul, P_cspu_win_cut 922 0x000f, // P_des_shift_work 923 924 5, 215, 925 0x023d, // P_adp_regul_cnt 926 0x00a4, // P_adp_noise_cnt 927 0x00a4, // P_adp_regul_ext 928 0x7ff0, // P_adp_noise_ext 929 0x3ccc, // P_adp_fil 930 931 1, 230, 932 0x0000, // P_2d_byp_ti_num 933 934 1, 263, 935 0x800, //P_equal_thres_wgn 936 937 1, 268, 938 (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode 939 940 1, 270, 941 0x0001, // P_div_lock0_wait 942 1, 285, 943 0x0020, //p_fec_ 944 1, 299, 945 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */ 946 947 1, 338, 948 (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1 949 (1 << 10) | 950 (0 << 9) | /* P_ctrl_pre_freq_inh=0 */ 951 (3 << 5) | /* P_ctrl_pre_freq_step=3 */ 952 (1 << 0), /* P_pre_freq_win_len=1 */ 953 954 0, 955 }; 956 957 static u16 dib8000_identify(struct i2c_device *client) 958 { 959 u16 value; 960 961 //because of glitches sometimes 962 value = dib8000_i2c_read16(client, 896); 963 964 if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) { 965 dprintk("wrong Vendor ID (read=0x%x)\n", value); 966 return 0; 967 } 968 969 value = dib8000_i2c_read16(client, 897); 970 if (value != 0x8000 && value != 0x8001 && 971 value != 0x8002 && value != 0x8090) { 972 dprintk("wrong Device ID (%x)\n", value); 973 return 0; 974 } 975 976 switch (value) { 977 case 0x8000: 978 dprintk("found DiB8000A\n"); 979 break; 980 case 0x8001: 981 dprintk("found DiB8000B\n"); 982 break; 983 case 0x8002: 984 dprintk("found DiB8000C\n"); 985 break; 986 case 0x8090: 987 dprintk("found DiB8096P\n"); 988 break; 989 } 990 return value; 991 } 992 993 static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 *unc); 994 995 static void dib8000_reset_stats(struct dvb_frontend *fe) 996 { 997 struct dib8000_state *state = fe->demodulator_priv; 998 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 999 u32 ucb; 1000 1001 memset(&c->strength, 0, sizeof(c->strength)); 1002 memset(&c->cnr, 0, sizeof(c->cnr)); 1003 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); 1004 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); 1005 memset(&c->block_error, 0, sizeof(c->block_error)); 1006 1007 c->strength.len = 1; 1008 c->cnr.len = 1; 1009 c->block_error.len = 1; 1010 c->block_count.len = 1; 1011 c->post_bit_error.len = 1; 1012 c->post_bit_count.len = 1; 1013 1014 c->strength.stat[0].scale = FE_SCALE_DECIBEL; 1015 c->strength.stat[0].uvalue = 0; 1016 1017 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1018 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1019 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1020 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1021 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1022 1023 dib8000_read_unc_blocks(fe, &ucb); 1024 1025 state->init_ucb = -ucb; 1026 state->ber_jiffies_stats = 0; 1027 state->per_jiffies_stats = 0; 1028 memset(&state->ber_jiffies_stats_layer, 0, 1029 sizeof(state->ber_jiffies_stats_layer)); 1030 } 1031 1032 static int dib8000_reset(struct dvb_frontend *fe) 1033 { 1034 struct dib8000_state *state = fe->demodulator_priv; 1035 1036 if ((state->revision = dib8000_identify(&state->i2c)) == 0) 1037 return -EINVAL; 1038 1039 /* sram lead in, rdy */ 1040 if (state->revision != 0x8090) 1041 dib8000_write_word(state, 1287, 0x0003); 1042 1043 if (state->revision == 0x8000) 1044 dprintk("error : dib8000 MA not supported\n"); 1045 1046 dibx000_reset_i2c_master(&state->i2c_master); 1047 1048 dib8000_set_power_mode(state, DIB8000_POWER_ALL); 1049 1050 /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ 1051 dib8000_set_adc_state(state, DIBX000_ADC_OFF); 1052 1053 /* restart all parts */ 1054 dib8000_write_word(state, 770, 0xffff); 1055 dib8000_write_word(state, 771, 0xffff); 1056 dib8000_write_word(state, 772, 0xfffc); 1057 dib8000_write_word(state, 898, 0x000c); /* restart sad */ 1058 if (state->revision == 0x8090) 1059 dib8000_write_word(state, 1280, 0x0045); 1060 else 1061 dib8000_write_word(state, 1280, 0x004d); 1062 dib8000_write_word(state, 1281, 0x000c); 1063 1064 dib8000_write_word(state, 770, 0x0000); 1065 dib8000_write_word(state, 771, 0x0000); 1066 dib8000_write_word(state, 772, 0x0000); 1067 dib8000_write_word(state, 898, 0x0004); // sad 1068 dib8000_write_word(state, 1280, 0x0000); 1069 dib8000_write_word(state, 1281, 0x0000); 1070 1071 /* drives */ 1072 if (state->revision != 0x8090) { 1073 if (state->cfg.drives) 1074 dib8000_write_word(state, 906, state->cfg.drives); 1075 else { 1076 dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n"); 1077 /* min drive SDRAM - not optimal - adjust */ 1078 dib8000_write_word(state, 906, 0x2d98); 1079 } 1080 } 1081 1082 dib8000_reset_pll(state); 1083 if (state->revision != 0x8090) 1084 dib8000_write_word(state, 898, 0x0004); 1085 1086 if (dib8000_reset_gpio(state) != 0) 1087 dprintk("GPIO reset was not successful.\n"); 1088 1089 if ((state->revision != 0x8090) && 1090 (dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0)) 1091 dprintk("OUTPUT_MODE could not be reset.\n"); 1092 1093 state->current_agc = NULL; 1094 1095 // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... 1096 /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */ 1097 if (state->cfg.pll->ifreq == 0) 1098 dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */ 1099 else 1100 dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */ 1101 1102 { 1103 u16 l = 0, r; 1104 const u16 *n; 1105 n = dib8000_defaults; 1106 l = *n++; 1107 while (l) { 1108 r = *n++; 1109 do { 1110 dib8000_write_word(state, r, *n++); 1111 r++; 1112 } while (--l); 1113 l = *n++; 1114 } 1115 } 1116 1117 state->isdbt_cfg_loaded = 0; 1118 1119 //div_cfg override for special configs 1120 if ((state->revision != 8090) && (state->cfg.div_cfg != 0)) 1121 dib8000_write_word(state, 903, state->cfg.div_cfg); 1122 1123 /* unforce divstr regardless whether i2c enumeration was done or not */ 1124 dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1)); 1125 1126 dib8000_set_bandwidth(fe, 6000); 1127 1128 dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON); 1129 dib8000_sad_calib(state); 1130 if (state->revision != 0x8090) 1131 dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF); 1132 1133 /* ber_rs_len = 3 */ 1134 dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); 1135 1136 dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); 1137 1138 dib8000_reset_stats(fe); 1139 1140 return 0; 1141 } 1142 1143 static void dib8000_restart_agc(struct dib8000_state *state) 1144 { 1145 // P_restart_iqc & P_restart_agc 1146 dib8000_write_word(state, 770, 0x0a00); 1147 dib8000_write_word(state, 770, 0x0000); 1148 } 1149 1150 static int dib8000_update_lna(struct dib8000_state *state) 1151 { 1152 u16 dyn_gain; 1153 1154 if (state->cfg.update_lna) { 1155 // read dyn_gain here (because it is demod-dependent and not tuner) 1156 dyn_gain = dib8000_read_word(state, 390); 1157 1158 if (state->cfg.update_lna(state->fe[0], dyn_gain)) { 1159 dib8000_restart_agc(state); 1160 return 1; 1161 } 1162 } 1163 return 0; 1164 } 1165 1166 static int dib8000_set_agc_config(struct dib8000_state *state, u8 band) 1167 { 1168 struct dibx000_agc_config *agc = NULL; 1169 int i; 1170 u16 reg; 1171 1172 if (state->current_band == band && state->current_agc != NULL) 1173 return 0; 1174 state->current_band = band; 1175 1176 for (i = 0; i < state->cfg.agc_config_count; i++) 1177 if (state->cfg.agc[i].band_caps & band) { 1178 agc = &state->cfg.agc[i]; 1179 break; 1180 } 1181 1182 if (agc == NULL) { 1183 dprintk("no valid AGC configuration found for band 0x%02x\n", band); 1184 return -EINVAL; 1185 } 1186 1187 state->current_agc = agc; 1188 1189 /* AGC */ 1190 dib8000_write_word(state, 76, agc->setup); 1191 dib8000_write_word(state, 77, agc->inv_gain); 1192 dib8000_write_word(state, 78, agc->time_stabiliz); 1193 dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock); 1194 1195 // Demod AGC loop configuration 1196 dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp); 1197 dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp); 1198 1199 dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", 1200 state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); 1201 1202 /* AGC continued */ 1203 if (state->wbd_ref != 0) 1204 dib8000_write_word(state, 106, state->wbd_ref); 1205 else // use default 1206 dib8000_write_word(state, 106, agc->wbd_ref); 1207 1208 if (state->revision == 0x8090) { 1209 reg = dib8000_read_word(state, 922) & (0x3 << 2); 1210 dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2)); 1211 } 1212 1213 dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); 1214 dib8000_write_word(state, 108, agc->agc1_max); 1215 dib8000_write_word(state, 109, agc->agc1_min); 1216 dib8000_write_word(state, 110, agc->agc2_max); 1217 dib8000_write_word(state, 111, agc->agc2_min); 1218 dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2); 1219 dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); 1220 dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); 1221 dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); 1222 1223 dib8000_write_word(state, 75, agc->agc1_pt3); 1224 if (state->revision != 0x8090) 1225 dib8000_write_word(state, 923, 1226 (dib8000_read_word(state, 923) & 0xffe3) | 1227 (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); 1228 1229 return 0; 1230 } 1231 1232 static void dib8000_pwm_agc_reset(struct dvb_frontend *fe) 1233 { 1234 struct dib8000_state *state = fe->demodulator_priv; 1235 dib8000_set_adc_state(state, DIBX000_ADC_ON); 1236 dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))); 1237 } 1238 1239 static int dib8000_agc_soft_split(struct dib8000_state *state) 1240 { 1241 u16 agc, split_offset; 1242 1243 if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) 1244 return 0; 1245 1246 // n_agc_global 1247 agc = dib8000_read_word(state, 390); 1248 1249 if (agc > state->current_agc->split.min_thres) 1250 split_offset = state->current_agc->split.min; 1251 else if (agc < state->current_agc->split.max_thres) 1252 split_offset = state->current_agc->split.max; 1253 else 1254 split_offset = state->current_agc->split.max * 1255 (agc - state->current_agc->split.min_thres) / 1256 (state->current_agc->split.max_thres - state->current_agc->split.min_thres); 1257 1258 dprintk("AGC split_offset: %d\n", split_offset); 1259 1260 // P_agc_force_split and P_agc_split_offset 1261 dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset); 1262 return 5000; 1263 } 1264 1265 static int dib8000_agc_startup(struct dvb_frontend *fe) 1266 { 1267 struct dib8000_state *state = fe->demodulator_priv; 1268 enum frontend_tune_state *tune_state = &state->tune_state; 1269 int ret = 0; 1270 u16 reg; 1271 u32 upd_demod_gain_period = 0x8000; 1272 1273 switch (*tune_state) { 1274 case CT_AGC_START: 1275 // set power-up level: interf+analog+AGC 1276 1277 if (state->revision != 0x8090) 1278 dib8000_set_adc_state(state, DIBX000_ADC_ON); 1279 else { 1280 dib8000_set_power_mode(state, DIB8000_POWER_ALL); 1281 1282 reg = dib8000_read_word(state, 1947)&0xff00; 1283 dib8000_write_word(state, 1946, 1284 upd_demod_gain_period & 0xFFFF); 1285 /* bit 14 = enDemodGain */ 1286 dib8000_write_word(state, 1947, reg | (1<<14) | 1287 ((upd_demod_gain_period >> 16) & 0xFF)); 1288 1289 /* enable adc i & q */ 1290 reg = dib8000_read_word(state, 1920); 1291 dib8000_write_word(state, 1920, (reg | 0x3) & 1292 (~(1 << 7))); 1293 } 1294 1295 if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) { 1296 *tune_state = CT_AGC_STOP; 1297 state->status = FE_STATUS_TUNE_FAILED; 1298 break; 1299 } 1300 1301 ret = 70; 1302 *tune_state = CT_AGC_STEP_0; 1303 break; 1304 1305 case CT_AGC_STEP_0: 1306 //AGC initialization 1307 if (state->cfg.agc_control) 1308 state->cfg.agc_control(fe, 1); 1309 1310 dib8000_restart_agc(state); 1311 1312 // wait AGC rough lock time 1313 ret = 50; 1314 *tune_state = CT_AGC_STEP_1; 1315 break; 1316 1317 case CT_AGC_STEP_1: 1318 // wait AGC accurate lock time 1319 ret = 70; 1320 1321 if (dib8000_update_lna(state)) 1322 // wait only AGC rough lock time 1323 ret = 50; 1324 else 1325 *tune_state = CT_AGC_STEP_2; 1326 break; 1327 1328 case CT_AGC_STEP_2: 1329 dib8000_agc_soft_split(state); 1330 1331 if (state->cfg.agc_control) 1332 state->cfg.agc_control(fe, 0); 1333 1334 *tune_state = CT_AGC_STOP; 1335 break; 1336 default: 1337 ret = dib8000_agc_soft_split(state); 1338 break; 1339 } 1340 return ret; 1341 1342 } 1343 1344 static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive) 1345 { 1346 u16 reg; 1347 1348 drive &= 0x7; 1349 1350 /* drive host bus 2, 3, 4 */ 1351 reg = dib8000_read_word(state, 1798) & 1352 ~(0x7 | (0x7 << 6) | (0x7 << 12)); 1353 reg |= (drive<<12) | (drive<<6) | drive; 1354 dib8000_write_word(state, 1798, reg); 1355 1356 /* drive host bus 5,6 */ 1357 reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); 1358 reg |= (drive<<8) | (drive<<2); 1359 dib8000_write_word(state, 1799, reg); 1360 1361 /* drive host bus 7, 8, 9 */ 1362 reg = dib8000_read_word(state, 1800) & 1363 ~(0x7 | (0x7 << 6) | (0x7 << 12)); 1364 reg |= (drive<<12) | (drive<<6) | drive; 1365 dib8000_write_word(state, 1800, reg); 1366 1367 /* drive host bus 10, 11 */ 1368 reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); 1369 reg |= (drive<<8) | (drive<<2); 1370 dib8000_write_word(state, 1801, reg); 1371 1372 /* drive host bus 12, 13, 14 */ 1373 reg = dib8000_read_word(state, 1802) & 1374 ~(0x7 | (0x7 << 6) | (0x7 << 12)); 1375 reg |= (drive<<12) | (drive<<6) | drive; 1376 dib8000_write_word(state, 1802, reg); 1377 } 1378 1379 static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout, 1380 u32 insertExtSynchro, u32 syncSize) 1381 { 1382 u32 quantif = 3; 1383 u32 nom = (insertExtSynchro * P_Kin+syncSize); 1384 u32 denom = P_Kout; 1385 u32 syncFreq = ((nom << quantif) / denom); 1386 1387 if ((syncFreq & ((1 << quantif) - 1)) != 0) 1388 syncFreq = (syncFreq >> quantif) + 1; 1389 else 1390 syncFreq = (syncFreq >> quantif); 1391 1392 if (syncFreq != 0) 1393 syncFreq = syncFreq - 1; 1394 1395 return syncFreq; 1396 } 1397 1398 static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin, 1399 u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, 1400 u32 syncWord, u32 syncSize) 1401 { 1402 dprintk("Configure DibStream Tx\n"); 1403 1404 dib8000_write_word(state, 1615, 1); 1405 dib8000_write_word(state, 1603, P_Kin); 1406 dib8000_write_word(state, 1605, P_Kout); 1407 dib8000_write_word(state, 1606, insertExtSynchro); 1408 dib8000_write_word(state, 1608, synchroMode); 1409 dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff); 1410 dib8000_write_word(state, 1610, syncWord & 0xffff); 1411 dib8000_write_word(state, 1612, syncSize); 1412 dib8000_write_word(state, 1615, 0); 1413 } 1414 1415 static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin, 1416 u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, 1417 u32 syncWord, u32 syncSize, u32 dataOutRate) 1418 { 1419 u32 syncFreq; 1420 1421 dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode); 1422 1423 if ((P_Kin != 0) && (P_Kout != 0)) { 1424 syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout, 1425 insertExtSynchro, syncSize); 1426 dib8000_write_word(state, 1542, syncFreq); 1427 } 1428 1429 dib8000_write_word(state, 1554, 1); 1430 dib8000_write_word(state, 1536, P_Kin); 1431 dib8000_write_word(state, 1537, P_Kout); 1432 dib8000_write_word(state, 1539, synchroMode); 1433 dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff); 1434 dib8000_write_word(state, 1541, syncWord & 0xffff); 1435 dib8000_write_word(state, 1543, syncSize); 1436 dib8000_write_word(state, 1544, dataOutRate); 1437 dib8000_write_word(state, 1554, 0); 1438 } 1439 1440 static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff) 1441 { 1442 u16 reg_1287; 1443 1444 reg_1287 = dib8000_read_word(state, 1287); 1445 1446 switch (onoff) { 1447 case 1: 1448 reg_1287 &= ~(1 << 8); 1449 break; 1450 case 0: 1451 reg_1287 |= (1 << 8); 1452 break; 1453 } 1454 1455 dib8000_write_word(state, 1287, reg_1287); 1456 } 1457 1458 static void dib8096p_configMpegMux(struct dib8000_state *state, 1459 u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) 1460 { 1461 u16 reg_1287; 1462 1463 dprintk("Enable Mpeg mux\n"); 1464 1465 dib8096p_enMpegMux(state, 0); 1466 1467 /* If the input mode is MPEG do not divide the serial clock */ 1468 if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) 1469 enSerialClkDiv2 = 0; 1470 1471 reg_1287 = ((pulseWidth & 0x1f) << 3) | 1472 ((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1); 1473 dib8000_write_word(state, 1287, reg_1287); 1474 1475 dib8096p_enMpegMux(state, 1); 1476 } 1477 1478 static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode) 1479 { 1480 u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7); 1481 1482 switch (mode) { 1483 case MPEG_ON_DIBTX: 1484 dprintk("SET MPEG ON DIBSTREAM TX\n"); 1485 dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); 1486 reg_1288 |= (1 << 9); break; 1487 case DIV_ON_DIBTX: 1488 dprintk("SET DIV_OUT ON DIBSTREAM TX\n"); 1489 dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); 1490 reg_1288 |= (1 << 8); break; 1491 case ADC_ON_DIBTX: 1492 dprintk("SET ADC_OUT ON DIBSTREAM TX\n"); 1493 dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); 1494 reg_1288 |= (1 << 7); break; 1495 default: 1496 break; 1497 } 1498 dib8000_write_word(state, 1288, reg_1288); 1499 } 1500 1501 static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode) 1502 { 1503 u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4); 1504 1505 switch (mode) { 1506 case DEMOUT_ON_HOSTBUS: 1507 dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n"); 1508 dib8096p_enMpegMux(state, 0); 1509 reg_1288 |= (1 << 6); 1510 break; 1511 case DIBTX_ON_HOSTBUS: 1512 dprintk("SET DIBSTREAM TX ON HOST BUS\n"); 1513 dib8096p_enMpegMux(state, 0); 1514 reg_1288 |= (1 << 5); 1515 break; 1516 case MPEG_ON_HOSTBUS: 1517 dprintk("SET MPEG MUX ON HOST BUS\n"); 1518 reg_1288 |= (1 << 4); 1519 break; 1520 default: 1521 break; 1522 } 1523 dib8000_write_word(state, 1288, reg_1288); 1524 } 1525 1526 static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff) 1527 { 1528 struct dib8000_state *state = fe->demodulator_priv; 1529 u16 reg_1287; 1530 1531 switch (onoff) { 1532 case 0: /* only use the internal way - not the diversity input */ 1533 dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", 1534 __func__); 1535 /* outputRate = 8 */ 1536 dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); 1537 1538 /* Do not divide the serial clock of MPEG MUX in 1539 SERIAL MODE in case input mode MPEG is used */ 1540 reg_1287 = dib8000_read_word(state, 1287); 1541 /* enSerialClkDiv2 == 1 ? */ 1542 if ((reg_1287 & 0x1) == 1) { 1543 /* force enSerialClkDiv2 = 0 */ 1544 reg_1287 &= ~0x1; 1545 dib8000_write_word(state, 1287, reg_1287); 1546 } 1547 state->input_mode_mpeg = 1; 1548 break; 1549 case 1: /* both ways */ 1550 case 2: /* only the diversity input */ 1551 dprintk("%s ON : Enable diversity INPUT\n", __func__); 1552 dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); 1553 state->input_mode_mpeg = 0; 1554 break; 1555 } 1556 1557 dib8000_set_diversity_in(state->fe[0], onoff); 1558 return 0; 1559 } 1560 1561 static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode) 1562 { 1563 struct dib8000_state *state = fe->demodulator_priv; 1564 u16 outreg, smo_mode, fifo_threshold; 1565 u8 prefer_mpeg_mux_use = 1; 1566 int ret = 0; 1567 1568 state->output_mode = mode; 1569 dib8096p_host_bus_drive(state, 1); 1570 1571 fifo_threshold = 1792; 1572 smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); 1573 outreg = dib8000_read_word(state, 1286) & 1574 ~((1 << 10) | (0x7 << 6) | (1 << 1)); 1575 1576 switch (mode) { 1577 case OUTMODE_HIGH_Z: 1578 outreg = 0; 1579 break; 1580 1581 case OUTMODE_MPEG2_SERIAL: 1582 if (prefer_mpeg_mux_use) { 1583 dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n"); 1584 dib8096p_configMpegMux(state, 3, 1, 1); 1585 dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); 1586 } else {/* Use Smooth block */ 1587 dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n"); 1588 dib8096p_setHostBusMux(state, 1589 DEMOUT_ON_HOSTBUS); 1590 outreg |= (2 << 6) | (0 << 1); 1591 } 1592 break; 1593 1594 case OUTMODE_MPEG2_PAR_GATED_CLK: 1595 if (prefer_mpeg_mux_use) { 1596 dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n"); 1597 dib8096p_configMpegMux(state, 2, 0, 0); 1598 dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); 1599 } else { /* Use Smooth block */ 1600 dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n"); 1601 dib8096p_setHostBusMux(state, 1602 DEMOUT_ON_HOSTBUS); 1603 outreg |= (0 << 6); 1604 } 1605 break; 1606 1607 case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ 1608 dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n"); 1609 dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 1610 outreg |= (1 << 6); 1611 break; 1612 1613 case OUTMODE_MPEG2_FIFO: 1614 /* Using Smooth block because not supported 1615 by new Mpeg Mux bloc */ 1616 dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n"); 1617 dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 1618 outreg |= (5 << 6); 1619 smo_mode |= (3 << 1); 1620 fifo_threshold = 512; 1621 break; 1622 1623 case OUTMODE_DIVERSITY: 1624 dprintk("dib8096P setting output mode MODE_DIVERSITY\n"); 1625 dib8096p_setDibTxMux(state, DIV_ON_DIBTX); 1626 dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); 1627 break; 1628 1629 case OUTMODE_ANALOG_ADC: 1630 dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n"); 1631 dib8096p_setDibTxMux(state, ADC_ON_DIBTX); 1632 dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); 1633 break; 1634 } 1635 1636 if (mode != OUTMODE_HIGH_Z) 1637 outreg |= (1<<10); 1638 1639 dprintk("output_mpeg2_in_188_bytes = %d\n", 1640 state->cfg.output_mpeg2_in_188_bytes); 1641 if (state->cfg.output_mpeg2_in_188_bytes) 1642 smo_mode |= (1 << 5); 1643 1644 ret |= dib8000_write_word(state, 299, smo_mode); 1645 /* synchronous fread */ 1646 ret |= dib8000_write_word(state, 299 + 1, fifo_threshold); 1647 ret |= dib8000_write_word(state, 1286, outreg); 1648 1649 return ret; 1650 } 1651 1652 static int map_addr_to_serpar_number(struct i2c_msg *msg) 1653 { 1654 if (msg->buf[0] <= 15) 1655 msg->buf[0] -= 1; 1656 else if (msg->buf[0] == 17) 1657 msg->buf[0] = 15; 1658 else if (msg->buf[0] == 16) 1659 msg->buf[0] = 17; 1660 else if (msg->buf[0] == 19) 1661 msg->buf[0] = 16; 1662 else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) 1663 msg->buf[0] -= 3; 1664 else if (msg->buf[0] == 28) 1665 msg->buf[0] = 23; 1666 else if (msg->buf[0] == 99) 1667 msg->buf[0] = 99; 1668 else 1669 return -EINVAL; 1670 return 0; 1671 } 1672 1673 static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap, 1674 struct i2c_msg msg[], int num) 1675 { 1676 struct dib8000_state *state = i2c_get_adapdata(i2c_adap); 1677 u8 n_overflow = 1; 1678 u16 i = 1000; 1679 u16 serpar_num = msg[0].buf[0]; 1680 1681 while (n_overflow == 1 && i) { 1682 n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; 1683 i--; 1684 if (i == 0) 1685 dprintk("Tuner ITF: write busy (overflow)\n"); 1686 } 1687 dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); 1688 dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); 1689 1690 return num; 1691 } 1692 1693 static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap, 1694 struct i2c_msg msg[], int num) 1695 { 1696 struct dib8000_state *state = i2c_get_adapdata(i2c_adap); 1697 u8 n_overflow = 1, n_empty = 1; 1698 u16 i = 1000; 1699 u16 serpar_num = msg[0].buf[0]; 1700 u16 read_word; 1701 1702 while (n_overflow == 1 && i) { 1703 n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; 1704 i--; 1705 if (i == 0) 1706 dprintk("TunerITF: read busy (overflow)\n"); 1707 } 1708 dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f)); 1709 1710 i = 1000; 1711 while (n_empty == 1 && i) { 1712 n_empty = dib8000_read_word(state, 1984)&0x1; 1713 i--; 1714 if (i == 0) 1715 dprintk("TunerITF: read busy (empty)\n"); 1716 } 1717 1718 read_word = dib8000_read_word(state, 1987); 1719 msg[1].buf[0] = (read_word >> 8) & 0xff; 1720 msg[1].buf[1] = (read_word) & 0xff; 1721 1722 return num; 1723 } 1724 1725 static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, 1726 struct i2c_msg msg[], int num) 1727 { 1728 if (map_addr_to_serpar_number(&msg[0]) == 0) { 1729 if (num == 1) /* write */ 1730 return dib8096p_tuner_write_serpar(i2c_adap, msg, 1); 1731 else /* read */ 1732 return dib8096p_tuner_read_serpar(i2c_adap, msg, 2); 1733 } 1734 return num; 1735 } 1736 1737 static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap, 1738 struct i2c_msg msg[], int num, u16 apb_address) 1739 { 1740 struct dib8000_state *state = i2c_get_adapdata(i2c_adap); 1741 u16 word; 1742 1743 if (num == 1) { /* write */ 1744 dib8000_write_word(state, apb_address, 1745 ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); 1746 } else { 1747 word = dib8000_read_word(state, apb_address); 1748 msg[1].buf[0] = (word >> 8) & 0xff; 1749 msg[1].buf[1] = (word) & 0xff; 1750 } 1751 return num; 1752 } 1753 1754 static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap, 1755 struct i2c_msg msg[], int num) 1756 { 1757 struct dib8000_state *state = i2c_get_adapdata(i2c_adap); 1758 u16 apb_address = 0, word; 1759 int i = 0; 1760 1761 switch (msg[0].buf[0]) { 1762 case 0x12: 1763 apb_address = 1920; 1764 break; 1765 case 0x14: 1766 apb_address = 1921; 1767 break; 1768 case 0x24: 1769 apb_address = 1922; 1770 break; 1771 case 0x1a: 1772 apb_address = 1923; 1773 break; 1774 case 0x22: 1775 apb_address = 1924; 1776 break; 1777 case 0x33: 1778 apb_address = 1926; 1779 break; 1780 case 0x34: 1781 apb_address = 1927; 1782 break; 1783 case 0x35: 1784 apb_address = 1928; 1785 break; 1786 case 0x36: 1787 apb_address = 1929; 1788 break; 1789 case 0x37: 1790 apb_address = 1930; 1791 break; 1792 case 0x38: 1793 apb_address = 1931; 1794 break; 1795 case 0x39: 1796 apb_address = 1932; 1797 break; 1798 case 0x2a: 1799 apb_address = 1935; 1800 break; 1801 case 0x2b: 1802 apb_address = 1936; 1803 break; 1804 case 0x2c: 1805 apb_address = 1937; 1806 break; 1807 case 0x2d: 1808 apb_address = 1938; 1809 break; 1810 case 0x2e: 1811 apb_address = 1939; 1812 break; 1813 case 0x2f: 1814 apb_address = 1940; 1815 break; 1816 case 0x30: 1817 apb_address = 1941; 1818 break; 1819 case 0x31: 1820 apb_address = 1942; 1821 break; 1822 case 0x32: 1823 apb_address = 1943; 1824 break; 1825 case 0x3e: 1826 apb_address = 1944; 1827 break; 1828 case 0x3f: 1829 apb_address = 1945; 1830 break; 1831 case 0x40: 1832 apb_address = 1948; 1833 break; 1834 case 0x25: 1835 apb_address = 936; 1836 break; 1837 case 0x26: 1838 apb_address = 937; 1839 break; 1840 case 0x27: 1841 apb_address = 938; 1842 break; 1843 case 0x28: 1844 apb_address = 939; 1845 break; 1846 case 0x1d: 1847 /* get sad sel request */ 1848 i = ((dib8000_read_word(state, 921) >> 12)&0x3); 1849 word = dib8000_read_word(state, 924+i); 1850 msg[1].buf[0] = (word >> 8) & 0xff; 1851 msg[1].buf[1] = (word) & 0xff; 1852 return num; 1853 case 0x1f: 1854 if (num == 1) { /* write */ 1855 word = (u16) ((msg[0].buf[1] << 8) | 1856 msg[0].buf[2]); 1857 /* in the VGAMODE Sel are located on bit 0/1 */ 1858 word &= 0x3; 1859 word = (dib8000_read_word(state, 921) & 1860 ~(3<<12)) | (word<<12); 1861 /* Set the proper input */ 1862 dib8000_write_word(state, 921, word); 1863 return num; 1864 } 1865 } 1866 1867 if (apb_address != 0) /* R/W access via APB */ 1868 return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address); 1869 else /* R/W access via SERPAR */ 1870 return dib8096p_tuner_rw_serpar(i2c_adap, msg, num); 1871 1872 return 0; 1873 } 1874 1875 static u32 dib8096p_i2c_func(struct i2c_adapter *adapter) 1876 { 1877 return I2C_FUNC_I2C; 1878 } 1879 1880 static const struct i2c_algorithm dib8096p_tuner_xfer_algo = { 1881 .master_xfer = dib8096p_tuner_xfer, 1882 .functionality = dib8096p_i2c_func, 1883 }; 1884 1885 static struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe) 1886 { 1887 struct dib8000_state *st = fe->demodulator_priv; 1888 return &st->dib8096p_tuner_adap; 1889 } 1890 1891 static int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff) 1892 { 1893 struct dib8000_state *state = fe->demodulator_priv; 1894 u16 en_cur_state; 1895 1896 dprintk("sleep dib8096p: %d\n", onoff); 1897 1898 en_cur_state = dib8000_read_word(state, 1922); 1899 1900 /* LNAs and MIX are ON and therefore it is a valid configuration */ 1901 if (en_cur_state > 0xff) 1902 state->tuner_enable = en_cur_state ; 1903 1904 if (onoff) 1905 en_cur_state &= 0x00ff; 1906 else { 1907 if (state->tuner_enable != 0) 1908 en_cur_state = state->tuner_enable; 1909 } 1910 1911 dib8000_write_word(state, 1922, en_cur_state); 1912 1913 return 0; 1914 } 1915 1916 static const s32 lut_1000ln_mant[] = 1917 { 1918 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600 1919 }; 1920 1921 static s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode) 1922 { 1923 struct dib8000_state *state = fe->demodulator_priv; 1924 u32 ix = 0, tmp_val = 0, exp = 0, mant = 0; 1925 s32 val; 1926 1927 val = dib8000_read32(state, 384); 1928 if (mode) { 1929 tmp_val = val; 1930 while (tmp_val >>= 1) 1931 exp++; 1932 mant = (val * 1000 / (1<<exp)); 1933 ix = (u8)((mant-1000)/100); /* index of the LUT */ 1934 val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908); 1935 val = (val*256)/1000; 1936 } 1937 return val; 1938 } 1939 1940 static int dib8090p_get_dc_power(struct dvb_frontend *fe, u8 IQ) 1941 { 1942 struct dib8000_state *state = fe->demodulator_priv; 1943 int val = 0; 1944 1945 switch (IQ) { 1946 case 1: 1947 val = dib8000_read_word(state, 403); 1948 break; 1949 case 0: 1950 val = dib8000_read_word(state, 404); 1951 break; 1952 } 1953 if (val & 0x200) 1954 val -= 1024; 1955 1956 return val; 1957 } 1958 1959 static void dib8000_update_timf(struct dib8000_state *state) 1960 { 1961 u32 timf = state->timf = dib8000_read32(state, 435); 1962 1963 dib8000_write_word(state, 29, (u16) (timf >> 16)); 1964 dib8000_write_word(state, 30, (u16) (timf & 0xffff)); 1965 dprintk("Updated timing frequency: %d (default: %d)\n", state->timf, state->timf_default); 1966 } 1967 1968 static u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf) 1969 { 1970 struct dib8000_state *state = fe->demodulator_priv; 1971 1972 switch (op) { 1973 case DEMOD_TIMF_SET: 1974 state->timf = timf; 1975 break; 1976 case DEMOD_TIMF_UPDATE: 1977 dib8000_update_timf(state); 1978 break; 1979 case DEMOD_TIMF_GET: 1980 break; 1981 } 1982 dib8000_set_bandwidth(state->fe[0], 6000); 1983 1984 return state->timf; 1985 } 1986 1987 static const u16 adc_target_16dB[11] = { 1988 7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574 1989 }; 1990 1991 static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 }; 1992 1993 static u16 dib8000_set_layer(struct dib8000_state *state, u8 layer_index, u16 max_constellation) 1994 { 1995 u8 cr, constellation, time_intlv; 1996 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 1997 1998 switch (c->layer[layer_index].modulation) { 1999 case DQPSK: 2000 constellation = 0; 2001 break; 2002 case QPSK: 2003 constellation = 1; 2004 break; 2005 case QAM_16: 2006 constellation = 2; 2007 break; 2008 case QAM_64: 2009 default: 2010 constellation = 3; 2011 break; 2012 } 2013 2014 switch (c->layer[layer_index].fec) { 2015 case FEC_1_2: 2016 cr = 1; 2017 break; 2018 case FEC_2_3: 2019 cr = 2; 2020 break; 2021 case FEC_3_4: 2022 cr = 3; 2023 break; 2024 case FEC_5_6: 2025 cr = 5; 2026 break; 2027 case FEC_7_8: 2028 default: 2029 cr = 7; 2030 break; 2031 } 2032 2033 time_intlv = fls(c->layer[layer_index].interleaving); 2034 if (time_intlv > 3 && !(time_intlv == 4 && c->isdbt_sb_mode == 1)) 2035 time_intlv = 0; 2036 2037 dib8000_write_word(state, 2 + layer_index, (constellation << 10) | ((c->layer[layer_index].segment_count & 0xf) << 6) | (cr << 3) | time_intlv); 2038 if (c->layer[layer_index].segment_count > 0) { 2039 switch (max_constellation) { 2040 case DQPSK: 2041 case QPSK: 2042 if (c->layer[layer_index].modulation == QAM_16 || c->layer[layer_index].modulation == QAM_64) 2043 max_constellation = c->layer[layer_index].modulation; 2044 break; 2045 case QAM_16: 2046 if (c->layer[layer_index].modulation == QAM_64) 2047 max_constellation = c->layer[layer_index].modulation; 2048 break; 2049 } 2050 } 2051 2052 return max_constellation; 2053 } 2054 2055 static const u16 adp_Q64[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */ 2056 static const u16 adp_Q16[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */ 2057 static const u16 adp_Qdefault[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3, P_adp_noise_cnt -0.01, P_adp_regul_ext 0.1, P_adp_noise_ext -0.002 */ 2058 static u16 dib8000_adp_fine_tune(struct dib8000_state *state, u16 max_constellation) 2059 { 2060 u16 i, ana_gain = 0; 2061 const u16 *adp; 2062 2063 /* channel estimation fine configuration */ 2064 switch (max_constellation) { 2065 case QAM_64: 2066 ana_gain = 0x7; 2067 adp = &adp_Q64[0]; 2068 break; 2069 case QAM_16: 2070 ana_gain = 0x7; 2071 adp = &adp_Q16[0]; 2072 break; 2073 default: 2074 ana_gain = 0; 2075 adp = &adp_Qdefault[0]; 2076 break; 2077 } 2078 2079 for (i = 0; i < 4; i++) 2080 dib8000_write_word(state, 215 + i, adp[i]); 2081 2082 return ana_gain; 2083 } 2084 2085 static void dib8000_update_ana_gain(struct dib8000_state *state, u16 ana_gain) 2086 { 2087 u16 i; 2088 2089 dib8000_write_word(state, 116, ana_gain); 2090 2091 /* update ADC target depending on ana_gain */ 2092 if (ana_gain) { /* set -16dB ADC target for ana_gain=-1 */ 2093 for (i = 0; i < 10; i++) 2094 dib8000_write_word(state, 80 + i, adc_target_16dB[i]); 2095 } else { /* set -22dB ADC target for ana_gain=0 */ 2096 for (i = 0; i < 10; i++) 2097 dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355); 2098 } 2099 } 2100 2101 static void dib8000_load_ana_fe_coefs(struct dib8000_state *state, const s16 *ana_fe) 2102 { 2103 u16 mode = 0; 2104 2105 if (state->isdbt_cfg_loaded == 0) 2106 for (mode = 0; mode < 24; mode++) 2107 dib8000_write_word(state, 117 + mode, ana_fe[mode]); 2108 } 2109 2110 static const u16 lut_prbs_2k[13] = { 2111 0x423, 0x009, 0x5C7, 2112 0x7A6, 0x3D8, 0x527, 2113 0x7FF, 0x79B, 0x3D6, 2114 0x3A2, 0x53B, 0x2F4, 2115 0x213 2116 }; 2117 2118 static const u16 lut_prbs_4k[13] = { 2119 0x208, 0x0C3, 0x7B9, 2120 0x423, 0x5C7, 0x3D8, 2121 0x7FF, 0x3D6, 0x53B, 2122 0x213, 0x029, 0x0D0, 2123 0x48E 2124 }; 2125 2126 static const u16 lut_prbs_8k[13] = { 2127 0x740, 0x069, 0x7DD, 2128 0x208, 0x7B9, 0x5C7, 2129 0x7FF, 0x53B, 0x029, 2130 0x48E, 0x4C4, 0x367, 2131 0x684 2132 }; 2133 2134 static u16 dib8000_get_init_prbs(struct dib8000_state *state, u16 subchannel) 2135 { 2136 int sub_channel_prbs_group = 0; 2137 int prbs_group; 2138 2139 sub_channel_prbs_group = subchannel / 3; 2140 if (sub_channel_prbs_group >= ARRAY_SIZE(lut_prbs_2k)) 2141 return 0; 2142 2143 switch (state->fe[0]->dtv_property_cache.transmission_mode) { 2144 case TRANSMISSION_MODE_2K: 2145 prbs_group = lut_prbs_2k[sub_channel_prbs_group]; 2146 break; 2147 case TRANSMISSION_MODE_4K: 2148 prbs_group = lut_prbs_4k[sub_channel_prbs_group]; 2149 break; 2150 default: 2151 case TRANSMISSION_MODE_8K: 2152 prbs_group = lut_prbs_8k[sub_channel_prbs_group]; 2153 } 2154 2155 dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n", 2156 sub_channel_prbs_group, subchannel, prbs_group); 2157 2158 return prbs_group; 2159 } 2160 2161 static void dib8000_set_13seg_channel(struct dib8000_state *state) 2162 { 2163 u16 i; 2164 u16 coff_pow = 0x2800; 2165 2166 state->seg_mask = 0x1fff; /* All 13 segments enabled */ 2167 2168 /* ---- COFF ---- Carloff, the most robust --- */ 2169 if (state->isdbt_cfg_loaded == 0) { /* if not Sound Broadcasting mode : put default values for 13 segments */ 2170 dib8000_write_word(state, 180, (16 << 6) | 9); 2171 dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2); 2172 coff_pow = 0x2800; 2173 for (i = 0; i < 6; i++) 2174 dib8000_write_word(state, 181+i, coff_pow); 2175 2176 /* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */ 2177 /* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */ 2178 dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1); 2179 2180 /* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */ 2181 dib8000_write_word(state, 340, (8 << 6) | (6 << 0)); 2182 /* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */ 2183 dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0)); 2184 2185 dib8000_write_word(state, 228, 0); /* default value */ 2186 dib8000_write_word(state, 265, 31); /* default value */ 2187 dib8000_write_word(state, 205, 0x200f); /* init value */ 2188 } 2189 2190 /* 2191 * make the cpil_coff_lock more robust but slower p_coff_winlen 2192 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) 2193 */ 2194 2195 if (state->cfg.pll->ifreq == 0) 2196 dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */ 2197 2198 dib8000_load_ana_fe_coefs(state, ana_fe_coeff_13seg); 2199 } 2200 2201 static void dib8000_set_subchannel_prbs(struct dib8000_state *state, u16 init_prbs) 2202 { 2203 u16 reg_1; 2204 2205 reg_1 = dib8000_read_word(state, 1); 2206 dib8000_write_word(state, 1, (init_prbs << 2) | (reg_1 & 0x3)); /* ADDR 1 */ 2207 } 2208 2209 static void dib8000_small_fine_tune(struct dib8000_state *state) 2210 { 2211 u16 i; 2212 const s16 *ncoeff; 2213 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 2214 2215 dib8000_write_word(state, 352, state->seg_diff_mask); 2216 dib8000_write_word(state, 353, state->seg_mask); 2217 2218 /* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */ 2219 dib8000_write_word(state, 351, (c->isdbt_sb_mode << 9) | (c->isdbt_sb_mode << 8) | (13 << 4) | 5); 2220 2221 if (c->isdbt_sb_mode) { 2222 /* ---- SMALL ---- */ 2223 switch (c->transmission_mode) { 2224 case TRANSMISSION_MODE_2K: 2225 if (c->isdbt_partial_reception == 0) { /* 1-seg */ 2226 if (c->layer[0].modulation == DQPSK) /* DQPSK */ 2227 ncoeff = coeff_2k_sb_1seg_dqpsk; 2228 else /* QPSK or QAM */ 2229 ncoeff = coeff_2k_sb_1seg; 2230 } else { /* 3-segments */ 2231 if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ 2232 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ 2233 ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk; 2234 else /* QPSK or QAM on external segments */ 2235 ncoeff = coeff_2k_sb_3seg_0dqpsk; 2236 } else { /* QPSK or QAM on central segment */ 2237 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ 2238 ncoeff = coeff_2k_sb_3seg_1dqpsk; 2239 else /* QPSK or QAM on external segments */ 2240 ncoeff = coeff_2k_sb_3seg; 2241 } 2242 } 2243 break; 2244 case TRANSMISSION_MODE_4K: 2245 if (c->isdbt_partial_reception == 0) { /* 1-seg */ 2246 if (c->layer[0].modulation == DQPSK) /* DQPSK */ 2247 ncoeff = coeff_4k_sb_1seg_dqpsk; 2248 else /* QPSK or QAM */ 2249 ncoeff = coeff_4k_sb_1seg; 2250 } else { /* 3-segments */ 2251 if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ 2252 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ 2253 ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk; 2254 else /* QPSK or QAM on external segments */ 2255 ncoeff = coeff_4k_sb_3seg_0dqpsk; 2256 } else { /* QPSK or QAM on central segment */ 2257 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ 2258 ncoeff = coeff_4k_sb_3seg_1dqpsk; 2259 else /* QPSK or QAM on external segments */ 2260 ncoeff = coeff_4k_sb_3seg; 2261 } 2262 } 2263 break; 2264 case TRANSMISSION_MODE_AUTO: 2265 case TRANSMISSION_MODE_8K: 2266 default: 2267 if (c->isdbt_partial_reception == 0) { /* 1-seg */ 2268 if (c->layer[0].modulation == DQPSK) /* DQPSK */ 2269 ncoeff = coeff_8k_sb_1seg_dqpsk; 2270 else /* QPSK or QAM */ 2271 ncoeff = coeff_8k_sb_1seg; 2272 } else { /* 3-segments */ 2273 if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ 2274 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ 2275 ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk; 2276 else /* QPSK or QAM on external segments */ 2277 ncoeff = coeff_8k_sb_3seg_0dqpsk; 2278 } else { /* QPSK or QAM on central segment */ 2279 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ 2280 ncoeff = coeff_8k_sb_3seg_1dqpsk; 2281 else /* QPSK or QAM on external segments */ 2282 ncoeff = coeff_8k_sb_3seg; 2283 } 2284 } 2285 break; 2286 } 2287 2288 for (i = 0; i < 8; i++) 2289 dib8000_write_word(state, 343 + i, ncoeff[i]); 2290 } 2291 } 2292 2293 static const u16 coff_thres_1seg[3] = {300, 150, 80}; 2294 static const u16 coff_thres_3seg[3] = {350, 300, 250}; 2295 static void dib8000_set_sb_channel(struct dib8000_state *state) 2296 { 2297 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 2298 const u16 *coff; 2299 u16 i; 2300 2301 if (c->transmission_mode == TRANSMISSION_MODE_2K || c->transmission_mode == TRANSMISSION_MODE_4K) { 2302 dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); /* adp_pass =1 */ 2303 dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */ 2304 } else { 2305 dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); /* adp_pass =0 */ 2306 dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */ 2307 } 2308 2309 if (c->isdbt_partial_reception == 1) /* 3-segments */ 2310 state->seg_mask = 0x00E0; 2311 else /* 1-segment */ 2312 state->seg_mask = 0x0040; 2313 2314 dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); 2315 2316 /* ---- COFF ---- Carloff, the most robust --- */ 2317 /* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */ 2318 dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c->isdbt_partial_reception & 1) << 2) | 0x3); 2319 2320 dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */ 2321 dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */ 2322 2323 /* Sound Broadcasting mode 1 seg */ 2324 if (c->isdbt_partial_reception == 0) { 2325 /* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */ 2326 if (state->mode == 3) 2327 dib8000_write_word(state, 180, 0x1fcf | ((state->mode - 1) << 14)); 2328 else 2329 dib8000_write_word(state, 180, 0x0fcf | ((state->mode - 1) << 14)); 2330 2331 /* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */ 2332 dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4); 2333 coff = &coff_thres_1seg[0]; 2334 } else { /* Sound Broadcasting mode 3 seg */ 2335 dib8000_write_word(state, 180, 0x1fcf | (1 << 14)); 2336 /* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */ 2337 dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4); 2338 coff = &coff_thres_3seg[0]; 2339 } 2340 2341 dib8000_write_word(state, 228, 1); /* P_2d_mode_byp=1 */ 2342 dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); /* P_cspu_win_cut = 0 */ 2343 2344 if (c->isdbt_partial_reception == 0 && c->transmission_mode == TRANSMISSION_MODE_2K) 2345 dib8000_write_word(state, 265, 15); /* P_equal_noise_sel = 15 */ 2346 2347 /* Write COFF thres */ 2348 for (i = 0 ; i < 3; i++) { 2349 dib8000_write_word(state, 181+i, coff[i]); 2350 dib8000_write_word(state, 184+i, coff[i]); 2351 } 2352 2353 /* 2354 * make the cpil_coff_lock more robust but slower p_coff_winlen 2355 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) 2356 */ 2357 2358 dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask); /* P_equal_noise_seg_inh */ 2359 2360 if (c->isdbt_partial_reception == 0) 2361 dib8000_write_word(state, 178, 64); /* P_fft_powrange = 64 */ 2362 else 2363 dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ 2364 } 2365 2366 static void dib8000_set_isdbt_common_channel(struct dib8000_state *state, u8 seq, u8 autosearching) 2367 { 2368 u16 p_cfr_left_edge = 0, p_cfr_right_edge = 0; 2369 u16 tmcc_pow = 0, ana_gain = 0, tmp = 0, i = 0, nbseg_diff = 0 ; 2370 u16 max_constellation = DQPSK; 2371 int init_prbs; 2372 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 2373 2374 if (autosearching) 2375 c->isdbt_partial_reception = 1; 2376 2377 /* P_mode */ 2378 dib8000_write_word(state, 10, (seq << 4)); 2379 2380 /* init mode */ 2381 state->mode = fft_to_mode(state); 2382 2383 /* set guard */ 2384 tmp = dib8000_read_word(state, 1); 2385 dib8000_write_word(state, 1, (tmp&0xfffc) | (c->guard_interval & 0x3)); 2386 2387 dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((c->isdbt_partial_reception & 1) << 5) | ((c->isdbt_sb_mode & 1) << 4)); 2388 2389 /* signal optimization parameter */ 2390 if (c->isdbt_partial_reception) { 2391 state->seg_diff_mask = (c->layer[0].modulation == DQPSK) << permu_seg[0]; 2392 for (i = 1; i < 3; i++) 2393 nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; 2394 for (i = 0; i < nbseg_diff; i++) 2395 state->seg_diff_mask |= 1 << permu_seg[i+1]; 2396 } else { 2397 for (i = 0; i < 3; i++) 2398 nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; 2399 for (i = 0; i < nbseg_diff; i++) 2400 state->seg_diff_mask |= 1 << permu_seg[i]; 2401 } 2402 2403 if (state->seg_diff_mask) 2404 dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); 2405 else 2406 dib8000_write_word(state, 268, (2 << 9) | 39); /*init value */ 2407 2408 for (i = 0; i < 3; i++) 2409 max_constellation = dib8000_set_layer(state, i, max_constellation); 2410 if (autosearching == 0) { 2411 state->layer_b_nb_seg = c->layer[1].segment_count; 2412 state->layer_c_nb_seg = c->layer[2].segment_count; 2413 } 2414 2415 /* WRITE: Mode & Diff mask */ 2416 dib8000_write_word(state, 0, (state->mode << 13) | state->seg_diff_mask); 2417 2418 state->differential_constellation = (state->seg_diff_mask != 0); 2419 2420 /* channel estimation fine configuration */ 2421 ana_gain = dib8000_adp_fine_tune(state, max_constellation); 2422 2423 /* update ana_gain depending on max constellation */ 2424 dib8000_update_ana_gain(state, ana_gain); 2425 2426 /* ---- ANA_FE ---- */ 2427 if (c->isdbt_partial_reception) /* 3-segments */ 2428 dib8000_load_ana_fe_coefs(state, ana_fe_coeff_3seg); 2429 else 2430 dib8000_load_ana_fe_coefs(state, ana_fe_coeff_1seg); /* 1-segment */ 2431 2432 /* TSB or ISDBT ? apply it now */ 2433 if (c->isdbt_sb_mode) { 2434 dib8000_set_sb_channel(state); 2435 init_prbs = dib8000_get_init_prbs(state, 2436 c->isdbt_sb_subchannel); 2437 } else { 2438 dib8000_set_13seg_channel(state); 2439 init_prbs = 0xfff; 2440 } 2441 2442 /* SMALL */ 2443 dib8000_small_fine_tune(state); 2444 2445 dib8000_set_subchannel_prbs(state, init_prbs); 2446 2447 /* ---- CHAN_BLK ---- */ 2448 for (i = 0; i < 13; i++) { 2449 if ((((~state->seg_diff_mask) >> i) & 1) == 1) { 2450 p_cfr_left_edge += (1 << i) * ((i == 0) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i - 1)) & 1) == 0)); 2451 p_cfr_right_edge += (1 << i) * ((i == 12) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i + 1)) & 1) == 0)); 2452 } 2453 } 2454 dib8000_write_word(state, 222, p_cfr_left_edge); /* p_cfr_left_edge */ 2455 dib8000_write_word(state, 223, p_cfr_right_edge); /* p_cfr_right_edge */ 2456 /* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */ 2457 2458 dib8000_write_word(state, 189, ~state->seg_mask | state->seg_diff_mask); /* P_lmod4_seg_inh */ 2459 dib8000_write_word(state, 192, ~state->seg_mask | state->seg_diff_mask); /* P_pha3_seg_inh */ 2460 dib8000_write_word(state, 225, ~state->seg_mask | state->seg_diff_mask); /* P_tac_seg_inh */ 2461 2462 if (!autosearching) 2463 dib8000_write_word(state, 288, (~state->seg_mask | state->seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */ 2464 else 2465 dib8000_write_word(state, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */ 2466 2467 dib8000_write_word(state, 211, state->seg_mask & (~state->seg_diff_mask)); /* P_des_seg_enabled */ 2468 dib8000_write_word(state, 287, ~state->seg_mask | 0x1000); /* P_tmcc_seg_inh */ 2469 2470 dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ 2471 2472 /* ---- TMCC ---- */ 2473 for (i = 0; i < 3; i++) 2474 tmcc_pow += (((c->layer[i].modulation == DQPSK) * 4 + 1) * c->layer[i].segment_count) ; 2475 2476 /* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */ 2477 /* Threshold is set at 1/4 of max power. */ 2478 tmcc_pow *= (1 << (9-2)); 2479 dib8000_write_word(state, 290, tmcc_pow); /* P_tmcc_dec_thres_2k */ 2480 dib8000_write_word(state, 291, tmcc_pow); /* P_tmcc_dec_thres_4k */ 2481 dib8000_write_word(state, 292, tmcc_pow); /* P_tmcc_dec_thres_8k */ 2482 /*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */ 2483 2484 /* ---- PHA3 ---- */ 2485 if (state->isdbt_cfg_loaded == 0) 2486 dib8000_write_word(state, 250, 3285); /* p_2d_hspeed_thr0 */ 2487 2488 state->isdbt_cfg_loaded = 0; 2489 } 2490 2491 static u32 dib8000_wait_lock(struct dib8000_state *state, u32 internal, 2492 u32 wait0_ms, u32 wait1_ms, u32 wait2_ms) 2493 { 2494 u32 value = 0; /* P_search_end0 wait time */ 2495 u16 reg = 11; /* P_search_end0 start addr */ 2496 2497 for (reg = 11; reg < 16; reg += 2) { 2498 if (reg == 11) { 2499 if (state->revision == 0x8090) 2500 value = internal * wait1_ms; 2501 else 2502 value = internal * wait0_ms; 2503 } else if (reg == 13) 2504 value = internal * wait1_ms; 2505 else if (reg == 15) 2506 value = internal * wait2_ms; 2507 dib8000_write_word(state, reg, (u16)((value >> 16) & 0xffff)); 2508 dib8000_write_word(state, (reg + 1), (u16)(value & 0xffff)); 2509 } 2510 return value; 2511 } 2512 2513 static int dib8000_autosearch_start(struct dvb_frontend *fe) 2514 { 2515 struct dib8000_state *state = fe->demodulator_priv; 2516 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 2517 u8 slist = 0; 2518 u32 value, internal = state->cfg.pll->internal; 2519 2520 if (state->revision == 0x8090) 2521 internal = dib8000_read32(state, 23) / 1000; 2522 2523 if ((state->revision >= 0x8002) && 2524 (state->autosearch_state == AS_SEARCHING_FFT)) { 2525 dib8000_write_word(state, 37, 0x0065); /* P_ctrl_pha_off_max default values */ 2526 dib8000_write_word(state, 116, 0x0000); /* P_ana_gain to 0 */ 2527 2528 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */ 2529 dib8000_write_word(state, 1, (dib8000_read_word(state, 1) & 0xfffc) | 0); /* P_guard = 0 */ 2530 dib8000_write_word(state, 6, 0); /* P_lock0_mask = 0 */ 2531 dib8000_write_word(state, 7, 0); /* P_lock1_mask = 0 */ 2532 dib8000_write_word(state, 8, 0); /* P_lock2_mask = 0 */ 2533 dib8000_write_word(state, 10, (dib8000_read_word(state, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */ 2534 2535 if (state->revision == 0x8090) 2536 value = dib8000_wait_lock(state, internal, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ 2537 else 2538 value = dib8000_wait_lock(state, internal, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ 2539 2540 dib8000_write_word(state, 17, 0); 2541 dib8000_write_word(state, 18, 200); /* P_search_rstst = 200 */ 2542 dib8000_write_word(state, 19, 0); 2543 dib8000_write_word(state, 20, 400); /* P_search_rstend = 400 */ 2544 dib8000_write_word(state, 21, (value >> 16) & 0xffff); /* P_search_checkst */ 2545 dib8000_write_word(state, 22, value & 0xffff); 2546 2547 if (state->revision == 0x8090) 2548 dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */ 2549 else 2550 dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */ 2551 dib8000_write_word(state, 355, 2); /* P_search_param_max = 2 */ 2552 2553 /* P_search_param_select = (1 | 1<<4 | 1 << 8) */ 2554 dib8000_write_word(state, 356, 0); 2555 dib8000_write_word(state, 357, 0x111); 2556 2557 dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */ 2558 dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */ 2559 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */ 2560 } else if ((state->revision >= 0x8002) && 2561 (state->autosearch_state == AS_SEARCHING_GUARD)) { 2562 c->transmission_mode = TRANSMISSION_MODE_8K; 2563 c->guard_interval = GUARD_INTERVAL_1_8; 2564 c->inversion = 0; 2565 c->layer[0].modulation = QAM_64; 2566 c->layer[0].fec = FEC_2_3; 2567 c->layer[0].interleaving = 0; 2568 c->layer[0].segment_count = 13; 2569 2570 slist = 16; 2571 c->transmission_mode = state->found_nfft; 2572 2573 dib8000_set_isdbt_common_channel(state, slist, 1); 2574 2575 /* set lock_mask values */ 2576 dib8000_write_word(state, 6, 0x4); 2577 if (state->revision == 0x8090) 2578 dib8000_write_word(state, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */ 2579 else 2580 dib8000_write_word(state, 7, 0x8); 2581 dib8000_write_word(state, 8, 0x1000); 2582 2583 /* set lock_mask wait time values */ 2584 if (state->revision == 0x8090) 2585 dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ 2586 else 2587 dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ 2588 2589 dib8000_write_word(state, 355, 3); /* P_search_param_max = 3 */ 2590 2591 /* P_search_param_select = 0xf; look for the 4 different guard intervals */ 2592 dib8000_write_word(state, 356, 0); 2593 dib8000_write_word(state, 357, 0xf); 2594 2595 value = dib8000_read_word(state, 0); 2596 dib8000_write_word(state, 0, (u16)((1 << 15) | value)); 2597 dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */ 2598 dib8000_write_word(state, 0, (u16)value); 2599 } else { 2600 c->inversion = 0; 2601 c->layer[0].modulation = QAM_64; 2602 c->layer[0].fec = FEC_2_3; 2603 c->layer[0].interleaving = 0; 2604 c->layer[0].segment_count = 13; 2605 if (!c->isdbt_sb_mode) 2606 c->layer[0].segment_count = 13; 2607 2608 /* choose the right list, in sb, always do everything */ 2609 if (c->isdbt_sb_mode) { 2610 slist = 7; 2611 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); 2612 } else { 2613 if (c->guard_interval == GUARD_INTERVAL_AUTO) { 2614 if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { 2615 c->transmission_mode = TRANSMISSION_MODE_8K; 2616 c->guard_interval = GUARD_INTERVAL_1_8; 2617 slist = 7; 2618 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 to have autosearch start ok with mode2 */ 2619 } else { 2620 c->guard_interval = GUARD_INTERVAL_1_8; 2621 slist = 3; 2622 } 2623 } else { 2624 if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { 2625 c->transmission_mode = TRANSMISSION_MODE_8K; 2626 slist = 2; 2627 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 */ 2628 } else 2629 slist = 0; 2630 } 2631 } 2632 dprintk("Using list for autosearch : %d\n", slist); 2633 2634 dib8000_set_isdbt_common_channel(state, slist, 1); 2635 2636 /* set lock_mask values */ 2637 dib8000_write_word(state, 6, 0x4); 2638 if (state->revision == 0x8090) 2639 dib8000_write_word(state, 7, (1 << 12) | (1 << 11) | (1 << 10)); 2640 else 2641 dib8000_write_word(state, 7, 0x8); 2642 dib8000_write_word(state, 8, 0x1000); 2643 2644 /* set lock_mask wait time values */ 2645 if (state->revision == 0x8090) 2646 dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ 2647 else 2648 dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ 2649 2650 value = dib8000_read_word(state, 0); 2651 dib8000_write_word(state, 0, (u16)((1 << 15) | value)); 2652 dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */ 2653 dib8000_write_word(state, 0, (u16)value); 2654 } 2655 return 0; 2656 } 2657 2658 static int dib8000_autosearch_irq(struct dvb_frontend *fe) 2659 { 2660 struct dib8000_state *state = fe->demodulator_priv; 2661 u16 irq_pending = dib8000_read_word(state, 1284); 2662 2663 if ((state->revision >= 0x8002) && 2664 (state->autosearch_state == AS_SEARCHING_FFT)) { 2665 if (irq_pending & 0x1) { 2666 dprintk("dib8000_autosearch_irq: max correlation result available\n"); 2667 return 3; 2668 } 2669 } else { 2670 if (irq_pending & 0x1) { /* failed */ 2671 dprintk("dib8000_autosearch_irq failed\n"); 2672 return 1; 2673 } 2674 2675 if (irq_pending & 0x2) { /* succeeded */ 2676 dprintk("dib8000_autosearch_irq succeeded\n"); 2677 return 2; 2678 } 2679 } 2680 2681 return 0; // still pending 2682 } 2683 2684 static void dib8000_viterbi_state(struct dib8000_state *state, u8 onoff) 2685 { 2686 u16 tmp; 2687 2688 tmp = dib8000_read_word(state, 771); 2689 if (onoff) /* start P_restart_chd : channel_decoder */ 2690 dib8000_write_word(state, 771, tmp & 0xfffd); 2691 else /* stop P_restart_chd : channel_decoder */ 2692 dib8000_write_word(state, 771, tmp | (1<<1)); 2693 } 2694 2695 static void dib8000_set_dds(struct dib8000_state *state, s32 offset_khz) 2696 { 2697 s16 unit_khz_dds_val; 2698 u32 abs_offset_khz = abs(offset_khz); 2699 u32 dds = state->cfg.pll->ifreq & 0x1ffffff; 2700 u8 invert = !!(state->cfg.pll->ifreq & (1 << 25)); 2701 u8 ratio; 2702 2703 if (state->revision == 0x8090) { 2704 u32 internal = dib8000_read32(state, 23) / 1000; 2705 2706 ratio = 4; 2707 2708 unit_khz_dds_val = (1<<26) / (internal ?: 1); 2709 if (offset_khz < 0) 2710 dds = (1 << 26) - (abs_offset_khz * unit_khz_dds_val); 2711 else 2712 dds = (abs_offset_khz * unit_khz_dds_val); 2713 2714 if (invert) 2715 dds = (1<<26) - dds; 2716 } else { 2717 ratio = 2; 2718 unit_khz_dds_val = (u16) (67108864 / state->cfg.pll->internal); 2719 2720 if (offset_khz < 0) 2721 unit_khz_dds_val *= -1; 2722 2723 /* IF tuner */ 2724 if (invert) 2725 dds -= abs_offset_khz * unit_khz_dds_val; 2726 else 2727 dds += abs_offset_khz * unit_khz_dds_val; 2728 } 2729 2730 dprintk("setting a DDS frequency offset of %c%dkHz\n", invert ? '-' : ' ', dds / unit_khz_dds_val); 2731 2732 if (abs_offset_khz <= (state->cfg.pll->internal / ratio)) { 2733 /* Max dds offset is the half of the demod freq */ 2734 dib8000_write_word(state, 26, invert); 2735 dib8000_write_word(state, 27, (u16)(dds >> 16) & 0x1ff); 2736 dib8000_write_word(state, 28, (u16)(dds & 0xffff)); 2737 } 2738 } 2739 2740 static void dib8000_set_frequency_offset(struct dib8000_state *state) 2741 { 2742 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 2743 int i; 2744 u32 current_rf; 2745 int total_dds_offset_khz; 2746 2747 if (state->fe[0]->ops.tuner_ops.get_frequency) 2748 state->fe[0]->ops.tuner_ops.get_frequency(state->fe[0], ¤t_rf); 2749 else 2750 current_rf = c->frequency; 2751 current_rf /= 1000; 2752 total_dds_offset_khz = (int)current_rf - (int)c->frequency / 1000; 2753 2754 if (c->isdbt_sb_mode) { 2755 state->subchannel = c->isdbt_sb_subchannel; 2756 2757 i = dib8000_read_word(state, 26) & 1; /* P_dds_invspec */ 2758 dib8000_write_word(state, 26, c->inversion ^ i); 2759 2760 if (state->cfg.pll->ifreq == 0) { /* low if tuner */ 2761 if ((c->inversion ^ i) == 0) 2762 dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1); 2763 } else { 2764 if ((c->inversion ^ i) == 0) 2765 total_dds_offset_khz *= -1; 2766 } 2767 } 2768 2769 dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c->frequency - current_rf, c->frequency, current_rf, total_dds_offset_khz); 2770 2771 /* apply dds offset now */ 2772 dib8000_set_dds(state, total_dds_offset_khz); 2773 } 2774 2775 static u16 LUT_isdbt_symbol_duration[4] = { 26, 101, 63 }; 2776 2777 static u32 dib8000_get_symbol_duration(struct dib8000_state *state) 2778 { 2779 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 2780 u16 i; 2781 2782 switch (c->transmission_mode) { 2783 case TRANSMISSION_MODE_2K: 2784 i = 0; 2785 break; 2786 case TRANSMISSION_MODE_4K: 2787 i = 2; 2788 break; 2789 default: 2790 case TRANSMISSION_MODE_AUTO: 2791 case TRANSMISSION_MODE_8K: 2792 i = 1; 2793 break; 2794 } 2795 2796 return (LUT_isdbt_symbol_duration[i] / (c->bandwidth_hz / 1000)) + 1; 2797 } 2798 2799 static void dib8000_set_isdbt_loop_params(struct dib8000_state *state, enum param_loop_step loop_step) 2800 { 2801 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 2802 u16 reg_32 = 0, reg_37 = 0; 2803 2804 switch (loop_step) { 2805 case LOOP_TUNE_1: 2806 if (c->isdbt_sb_mode) { 2807 if (c->isdbt_partial_reception == 0) { 2808 reg_32 = ((11 - state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */ 2809 reg_37 = (3 << 5) | (0 << 4) | (10 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */ 2810 } else { /* Sound Broadcasting mode 3 seg */ 2811 reg_32 = ((10 - state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */ 2812 reg_37 = (3 << 5) | (0 << 4) | (9 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (9-P_mode) */ 2813 } 2814 } else { /* 13-seg start conf offset loop parameters */ 2815 reg_32 = ((9 - state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */ 2816 reg_37 = (3 << 5) | (0 << 4) | (8 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */ 2817 } 2818 break; 2819 case LOOP_TUNE_2: 2820 if (c->isdbt_sb_mode) { 2821 if (c->isdbt_partial_reception == 0) { /* Sound Broadcasting mode 1 seg */ 2822 reg_32 = ((13-state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/ 2823 reg_37 = (12-state->mode) | ((5 + state->mode) << 5); 2824 } else { /* Sound Broadcasting mode 3 seg */ 2825 reg_32 = ((12-state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */ 2826 reg_37 = (11-state->mode) | ((5 + state->mode) << 5); 2827 } 2828 } else { /* 13 seg */ 2829 reg_32 = ((11-state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */ 2830 reg_37 = ((5+state->mode) << 5) | (10 - state->mode); 2831 } 2832 break; 2833 } 2834 dib8000_write_word(state, 32, reg_32); 2835 dib8000_write_word(state, 37, reg_37); 2836 } 2837 2838 static void dib8000_demod_restart(struct dib8000_state *state) 2839 { 2840 dib8000_write_word(state, 770, 0x4000); 2841 dib8000_write_word(state, 770, 0x0000); 2842 return; 2843 } 2844 2845 static void dib8000_set_sync_wait(struct dib8000_state *state) 2846 { 2847 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 2848 u16 sync_wait = 64; 2849 2850 /* P_dvsy_sync_wait - reuse mode */ 2851 switch (c->transmission_mode) { 2852 case TRANSMISSION_MODE_8K: 2853 sync_wait = 256; 2854 break; 2855 case TRANSMISSION_MODE_4K: 2856 sync_wait = 128; 2857 break; 2858 default: 2859 case TRANSMISSION_MODE_2K: 2860 sync_wait = 64; 2861 break; 2862 } 2863 2864 if (state->cfg.diversity_delay == 0) 2865 sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */ 2866 else 2867 sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + state->cfg.diversity_delay; /* add 50% SFN margin + compensate for DVSY-fifo */ 2868 2869 dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | (sync_wait << 4)); 2870 } 2871 2872 static unsigned long dib8000_get_timeout(struct dib8000_state *state, u32 delay, enum timeout_mode mode) 2873 { 2874 if (mode == SYMBOL_DEPENDENT_ON) 2875 delay *= state->symbol_duration; 2876 2877 return jiffies + usecs_to_jiffies(delay * 100); 2878 } 2879 2880 static s32 dib8000_get_status(struct dvb_frontend *fe) 2881 { 2882 struct dib8000_state *state = fe->demodulator_priv; 2883 return state->status; 2884 } 2885 2886 static enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe) 2887 { 2888 struct dib8000_state *state = fe->demodulator_priv; 2889 return state->tune_state; 2890 } 2891 2892 static int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) 2893 { 2894 struct dib8000_state *state = fe->demodulator_priv; 2895 2896 state->tune_state = tune_state; 2897 return 0; 2898 } 2899 2900 static int dib8000_tune_restart_from_demod(struct dvb_frontend *fe) 2901 { 2902 struct dib8000_state *state = fe->demodulator_priv; 2903 2904 state->status = FE_STATUS_TUNE_PENDING; 2905 state->tune_state = CT_DEMOD_START; 2906 return 0; 2907 } 2908 2909 static u16 dib8000_read_lock(struct dvb_frontend *fe) 2910 { 2911 struct dib8000_state *state = fe->demodulator_priv; 2912 2913 if (state->revision == 0x8090) 2914 return dib8000_read_word(state, 570); 2915 return dib8000_read_word(state, 568); 2916 } 2917 2918 static int dib8090p_init_sdram(struct dib8000_state *state) 2919 { 2920 u16 reg = 0; 2921 dprintk("init sdram\n"); 2922 2923 reg = dib8000_read_word(state, 274) & 0xfff0; 2924 dib8000_write_word(state, 274, reg | 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */ 2925 2926 dib8000_write_word(state, 1803, (7 << 2)); 2927 2928 reg = dib8000_read_word(state, 1280); 2929 dib8000_write_word(state, 1280, reg | (1 << 2)); /* force restart P_restart_sdram */ 2930 dib8000_write_word(state, 1280, reg); /* release restart P_restart_sdram */ 2931 2932 return 0; 2933 } 2934 2935 /** 2936 * is_manual_mode - Check if TMCC should be used for parameters settings 2937 * @c: struct dvb_frontend_properties 2938 * 2939 * By default, TMCC table should be used for parameter settings on most 2940 * usercases. However, sometimes it is desirable to lock the demod to 2941 * use the manual parameters. 2942 * 2943 * On manual mode, the current dib8000_tune state machine is very restrict: 2944 * It requires that both per-layer and per-transponder parameters to be 2945 * properly specified, otherwise the device won't lock. 2946 * 2947 * Check if all those conditions are properly satisfied before allowing 2948 * the device to use the manual frequency lock mode. 2949 */ 2950 static int is_manual_mode(struct dtv_frontend_properties *c) 2951 { 2952 int i, n_segs = 0; 2953 2954 /* Use auto mode on DVB-T compat mode */ 2955 if (c->delivery_system != SYS_ISDBT) 2956 return 0; 2957 2958 /* 2959 * Transmission mode is only detected on auto mode, currently 2960 */ 2961 if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { 2962 dprintk("transmission mode auto\n"); 2963 return 0; 2964 } 2965 2966 /* 2967 * Guard interval is only detected on auto mode, currently 2968 */ 2969 if (c->guard_interval == GUARD_INTERVAL_AUTO) { 2970 dprintk("guard interval auto\n"); 2971 return 0; 2972 } 2973 2974 /* 2975 * If no layer is enabled, assume auto mode, as at least one 2976 * layer should be enabled 2977 */ 2978 if (!c->isdbt_layer_enabled) { 2979 dprintk("no layer modulation specified\n"); 2980 return 0; 2981 } 2982 2983 /* 2984 * Check if the per-layer parameters aren't auto and 2985 * disable a layer if segment count is 0 or invalid. 2986 */ 2987 for (i = 0; i < 3; i++) { 2988 if (!(c->isdbt_layer_enabled & 1 << i)) 2989 continue; 2990 2991 if ((c->layer[i].segment_count > 13) || 2992 (c->layer[i].segment_count == 0)) { 2993 c->isdbt_layer_enabled &= ~(1 << i); 2994 continue; 2995 } 2996 2997 n_segs += c->layer[i].segment_count; 2998 2999 if ((c->layer[i].modulation == QAM_AUTO) || 3000 (c->layer[i].fec == FEC_AUTO)) { 3001 dprintk("layer %c has either modulation or FEC auto\n", 3002 'A' + i); 3003 return 0; 3004 } 3005 } 3006 3007 /* 3008 * Userspace specified a wrong number of segments. 3009 * fallback to auto mode. 3010 */ 3011 if (n_segs == 0 || n_segs > 13) { 3012 dprintk("number of segments is invalid\n"); 3013 return 0; 3014 } 3015 3016 /* Everything looks ok for manual mode */ 3017 return 1; 3018 } 3019 3020 static int dib8000_tune(struct dvb_frontend *fe) 3021 { 3022 struct dib8000_state *state = fe->demodulator_priv; 3023 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 3024 enum frontend_tune_state *tune_state = &state->tune_state; 3025 3026 u16 locks, deeper_interleaver = 0, i; 3027 int ret = 1; /* 1 symbol duration (in 100us unit) delay most of the time */ 3028 3029 unsigned long *timeout = &state->timeout; 3030 unsigned long now = jiffies; 3031 u16 init_prbs; 3032 #ifdef DIB8000_AGC_FREEZE 3033 u16 agc1, agc2; 3034 #endif 3035 3036 u32 corm[4] = {0, 0, 0, 0}; 3037 u8 find_index, max_value; 3038 3039 #if 0 3040 if (*tune_state < CT_DEMOD_STOP) 3041 dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n", 3042 state->channel_parameters_set, *tune_state, state->autosearch_state, now); 3043 #endif 3044 3045 switch (*tune_state) { 3046 case CT_DEMOD_START: /* 30 */ 3047 dib8000_reset_stats(fe); 3048 3049 if (state->revision == 0x8090) 3050 dib8090p_init_sdram(state); 3051 state->status = FE_STATUS_TUNE_PENDING; 3052 state->channel_parameters_set = is_manual_mode(c); 3053 3054 dprintk("Tuning channel on %s search mode\n", 3055 state->channel_parameters_set ? "manual" : "auto"); 3056 3057 dib8000_viterbi_state(state, 0); /* force chan dec in restart */ 3058 3059 /* Layer monitor */ 3060 dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60); 3061 3062 dib8000_set_frequency_offset(state); 3063 dib8000_set_bandwidth(fe, c->bandwidth_hz / 1000); 3064 3065 if (state->channel_parameters_set == 0) { /* The channel struct is unknown, search it ! */ 3066 #ifdef DIB8000_AGC_FREEZE 3067 if (state->revision != 0x8090) { 3068 state->agc1_max = dib8000_read_word(state, 108); 3069 state->agc1_min = dib8000_read_word(state, 109); 3070 state->agc2_max = dib8000_read_word(state, 110); 3071 state->agc2_min = dib8000_read_word(state, 111); 3072 agc1 = dib8000_read_word(state, 388); 3073 agc2 = dib8000_read_word(state, 389); 3074 dib8000_write_word(state, 108, agc1); 3075 dib8000_write_word(state, 109, agc1); 3076 dib8000_write_word(state, 110, agc2); 3077 dib8000_write_word(state, 111, agc2); 3078 } 3079 #endif 3080 state->autosearch_state = AS_SEARCHING_FFT; 3081 state->found_nfft = TRANSMISSION_MODE_AUTO; 3082 state->found_guard = GUARD_INTERVAL_AUTO; 3083 *tune_state = CT_DEMOD_SEARCH_NEXT; 3084 } else { /* we already know the channel struct so TUNE only ! */ 3085 state->autosearch_state = AS_DONE; 3086 *tune_state = CT_DEMOD_STEP_3; 3087 } 3088 state->symbol_duration = dib8000_get_symbol_duration(state); 3089 break; 3090 3091 case CT_DEMOD_SEARCH_NEXT: /* 51 */ 3092 dib8000_autosearch_start(fe); 3093 if (state->revision == 0x8090) 3094 ret = 50; 3095 else 3096 ret = 15; 3097 *tune_state = CT_DEMOD_STEP_1; 3098 break; 3099 3100 case CT_DEMOD_STEP_1: /* 31 */ 3101 switch (dib8000_autosearch_irq(fe)) { 3102 case 1: /* fail */ 3103 state->status = FE_STATUS_TUNE_FAILED; 3104 state->autosearch_state = AS_DONE; 3105 *tune_state = CT_DEMOD_STOP; /* else we are done here */ 3106 break; 3107 case 2: /* Success */ 3108 state->status = FE_STATUS_FFT_SUCCESS; /* signal to the upper layer, that there was a channel found and the parameters can be read */ 3109 *tune_state = CT_DEMOD_STEP_3; 3110 if (state->autosearch_state == AS_SEARCHING_GUARD) 3111 *tune_state = CT_DEMOD_STEP_2; 3112 else 3113 state->autosearch_state = AS_DONE; 3114 break; 3115 case 3: /* Autosearch FFT max correlation endded */ 3116 *tune_state = CT_DEMOD_STEP_2; 3117 break; 3118 } 3119 break; 3120 3121 case CT_DEMOD_STEP_2: 3122 switch (state->autosearch_state) { 3123 case AS_SEARCHING_FFT: 3124 /* searching for the correct FFT */ 3125 if (state->revision == 0x8090) { 3126 corm[2] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); 3127 corm[1] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); 3128 corm[0] = (dib8000_read_word(state, 600) << 16) | (dib8000_read_word(state, 601)); 3129 } else { 3130 corm[2] = (dib8000_read_word(state, 594) << 16) | (dib8000_read_word(state, 595)); 3131 corm[1] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); 3132 corm[0] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); 3133 } 3134 /* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */ 3135 3136 max_value = 0; 3137 for (find_index = 1 ; find_index < 3 ; find_index++) { 3138 if (corm[max_value] < corm[find_index]) 3139 max_value = find_index ; 3140 } 3141 3142 switch (max_value) { 3143 case 0: 3144 state->found_nfft = TRANSMISSION_MODE_2K; 3145 break; 3146 case 1: 3147 state->found_nfft = TRANSMISSION_MODE_4K; 3148 break; 3149 case 2: 3150 default: 3151 state->found_nfft = TRANSMISSION_MODE_8K; 3152 break; 3153 } 3154 /* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */ 3155 3156 *tune_state = CT_DEMOD_SEARCH_NEXT; 3157 state->autosearch_state = AS_SEARCHING_GUARD; 3158 if (state->revision == 0x8090) 3159 ret = 50; 3160 else 3161 ret = 10; 3162 break; 3163 case AS_SEARCHING_GUARD: 3164 /* searching for the correct guard interval */ 3165 if (state->revision == 0x8090) 3166 state->found_guard = dib8000_read_word(state, 572) & 0x3; 3167 else 3168 state->found_guard = dib8000_read_word(state, 570) & 0x3; 3169 /* dprintk("guard interval found=%i\n", state->found_guard); */ 3170 3171 *tune_state = CT_DEMOD_STEP_3; 3172 break; 3173 default: 3174 /* the demod should never be in this state */ 3175 state->status = FE_STATUS_TUNE_FAILED; 3176 state->autosearch_state = AS_DONE; 3177 *tune_state = CT_DEMOD_STOP; /* else we are done here */ 3178 break; 3179 } 3180 break; 3181 3182 case CT_DEMOD_STEP_3: /* 33 */ 3183 dib8000_set_isdbt_loop_params(state, LOOP_TUNE_1); 3184 dib8000_set_isdbt_common_channel(state, 0, 0);/* setting the known channel parameters here */ 3185 *tune_state = CT_DEMOD_STEP_4; 3186 break; 3187 3188 case CT_DEMOD_STEP_4: /* (34) */ 3189 dib8000_demod_restart(state); 3190 3191 dib8000_set_sync_wait(state); 3192 dib8000_set_diversity_in(state->fe[0], state->diversity_onoff); 3193 3194 locks = (dib8000_read_word(state, 180) >> 6) & 0x3f; /* P_coff_winlen ? */ 3195 /* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */ 3196 *timeout = dib8000_get_timeout(state, 2 * locks, SYMBOL_DEPENDENT_ON); 3197 *tune_state = CT_DEMOD_STEP_5; 3198 break; 3199 3200 case CT_DEMOD_STEP_5: /* (35) */ 3201 locks = dib8000_read_lock(fe); 3202 if (locks & (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */ 3203 dib8000_update_timf(state); /* we achieved a coff_cpil_lock - it's time to update the timf */ 3204 if (!state->differential_constellation) { 3205 /* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */ 3206 *timeout = dib8000_get_timeout(state, (20 * ((dib8000_read_word(state, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON); 3207 *tune_state = CT_DEMOD_STEP_7; 3208 } else { 3209 *tune_state = CT_DEMOD_STEP_8; 3210 } 3211 } else if (time_after(now, *timeout)) { 3212 *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ 3213 } 3214 break; 3215 3216 case CT_DEMOD_STEP_6: /* (36) if there is an input (diversity) */ 3217 if ((state->fe[1] != NULL) && (state->output_mode != OUTMODE_DIVERSITY)) { 3218 /* if there is a diversity fe in input and this fe is has not already failed : wait here until this fe has succeeded or failed */ 3219 if (dib8000_get_status(state->fe[1]) <= FE_STATUS_STD_SUCCESS) /* Something is locked on the input fe */ 3220 *tune_state = CT_DEMOD_STEP_8; /* go for mpeg */ 3221 else if (dib8000_get_status(state->fe[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT) { /* fe in input failed also, break the current one */ 3222 *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ 3223 dib8000_viterbi_state(state, 1); /* start viterbi chandec */ 3224 dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); 3225 state->status = FE_STATUS_TUNE_FAILED; 3226 } 3227 } else { 3228 dib8000_viterbi_state(state, 1); /* start viterbi chandec */ 3229 dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); 3230 *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ 3231 state->status = FE_STATUS_TUNE_FAILED; 3232 } 3233 break; 3234 3235 case CT_DEMOD_STEP_7: /* 37 */ 3236 locks = dib8000_read_lock(fe); 3237 if (locks & (1<<10)) { /* lmod4_lock */ 3238 ret = 14; /* wait for 14 symbols */ 3239 *tune_state = CT_DEMOD_STEP_8; 3240 } else if (time_after(now, *timeout)) 3241 *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ 3242 break; 3243 3244 case CT_DEMOD_STEP_8: /* 38 */ 3245 dib8000_viterbi_state(state, 1); /* start viterbi chandec */ 3246 dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); 3247 3248 /* mpeg will never lock on this condition because init_prbs is not set : search for it !*/ 3249 if (c->isdbt_sb_mode 3250 && c->isdbt_sb_subchannel < 14 3251 && !state->differential_constellation) { 3252 state->subchannel = 0; 3253 *tune_state = CT_DEMOD_STEP_11; 3254 } else { 3255 *tune_state = CT_DEMOD_STEP_9; 3256 state->status = FE_STATUS_LOCKED; 3257 } 3258 break; 3259 3260 case CT_DEMOD_STEP_9: /* 39 */ 3261 if ((state->revision == 0x8090) || ((dib8000_read_word(state, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */ 3262 /* defines timeout for mpeg lock depending on interleaver length of longest layer */ 3263 for (i = 0; i < 3; i++) { 3264 if (c->layer[i].interleaving >= deeper_interleaver) { 3265 dprintk("layer%i: time interleaver = %d\n", i, c->layer[i].interleaving); 3266 if (c->layer[i].segment_count > 0) { /* valid layer */ 3267 deeper_interleaver = c->layer[0].interleaving; 3268 state->longest_intlv_layer = i; 3269 } 3270 } 3271 } 3272 3273 if (deeper_interleaver == 0) 3274 locks = 2; /* locks is the tmp local variable name */ 3275 else if (deeper_interleaver == 3) 3276 locks = 8; 3277 else 3278 locks = 2 * deeper_interleaver; 3279 3280 if (state->diversity_onoff != 0) /* because of diversity sync */ 3281 locks *= 2; 3282 3283 *timeout = now + msecs_to_jiffies(200 * locks); /* give the mpeg lock 800ms if sram is present */ 3284 dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n", 3285 deeper_interleaver, state->longest_intlv_layer, locks, *timeout); 3286 3287 *tune_state = CT_DEMOD_STEP_10; 3288 } else 3289 *tune_state = CT_DEMOD_STOP; 3290 break; 3291 3292 case CT_DEMOD_STEP_10: /* 40 */ 3293 locks = dib8000_read_lock(fe); 3294 if (locks&(1<<(7-state->longest_intlv_layer))) { /* mpeg lock : check the longest one */ 3295 dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n", 3296 c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", 3297 c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", 3298 c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); 3299 if (c->isdbt_sb_mode 3300 && c->isdbt_sb_subchannel < 14 3301 && !state->differential_constellation) 3302 /* signal to the upper layer, that there was a channel found and the parameters can be read */ 3303 state->status = FE_STATUS_DEMOD_SUCCESS; 3304 else 3305 state->status = FE_STATUS_DATA_LOCKED; 3306 *tune_state = CT_DEMOD_STOP; 3307 } else if (time_after(now, *timeout)) { 3308 if (c->isdbt_sb_mode 3309 && c->isdbt_sb_subchannel < 14 3310 && !state->differential_constellation) { /* continue to try init prbs autosearch */ 3311 state->subchannel += 3; 3312 *tune_state = CT_DEMOD_STEP_11; 3313 } else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */ 3314 if (locks & (0x7 << 5)) { 3315 dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n", 3316 jiffies_to_msecs(now - *timeout), 3317 c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", 3318 c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", 3319 c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); 3320 3321 state->status = FE_STATUS_DATA_LOCKED; 3322 } else 3323 state->status = FE_STATUS_TUNE_FAILED; 3324 *tune_state = CT_DEMOD_STOP; 3325 } 3326 } 3327 break; 3328 3329 case CT_DEMOD_STEP_11: /* 41 : init prbs autosearch */ 3330 init_prbs = dib8000_get_init_prbs(state, state->subchannel); 3331 3332 if (init_prbs) { 3333 dib8000_set_subchannel_prbs(state, init_prbs); 3334 *tune_state = CT_DEMOD_STEP_9; 3335 } else { 3336 *tune_state = CT_DEMOD_STOP; 3337 state->status = FE_STATUS_TUNE_FAILED; 3338 } 3339 break; 3340 3341 default: 3342 break; 3343 } 3344 3345 /* tuning is finished - cleanup the demod */ 3346 switch (*tune_state) { 3347 case CT_DEMOD_STOP: /* (42) */ 3348 #ifdef DIB8000_AGC_FREEZE 3349 if ((state->revision != 0x8090) && (state->agc1_max != 0)) { 3350 dib8000_write_word(state, 108, state->agc1_max); 3351 dib8000_write_word(state, 109, state->agc1_min); 3352 dib8000_write_word(state, 110, state->agc2_max); 3353 dib8000_write_word(state, 111, state->agc2_min); 3354 state->agc1_max = 0; 3355 state->agc1_min = 0; 3356 state->agc2_max = 0; 3357 state->agc2_min = 0; 3358 } 3359 #endif 3360 ret = 0; 3361 break; 3362 default: 3363 break; 3364 } 3365 3366 if ((ret > 0) && (*tune_state > CT_DEMOD_STEP_3)) 3367 return ret * state->symbol_duration; 3368 if ((ret > 0) && (ret < state->symbol_duration)) 3369 return state->symbol_duration; /* at least one symbol */ 3370 return ret; 3371 } 3372 3373 static int dib8000_wakeup(struct dvb_frontend *fe) 3374 { 3375 struct dib8000_state *state = fe->demodulator_priv; 3376 u8 index_frontend; 3377 int ret; 3378 3379 dib8000_set_power_mode(state, DIB8000_POWER_ALL); 3380 dib8000_set_adc_state(state, DIBX000_ADC_ON); 3381 if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) 3382 dprintk("could not start Slow ADC\n"); 3383 3384 if (state->revision == 0x8090) 3385 dib8000_sad_calib(state); 3386 3387 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3388 ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]); 3389 if (ret < 0) 3390 return ret; 3391 } 3392 3393 return 0; 3394 } 3395 3396 static int dib8000_sleep(struct dvb_frontend *fe) 3397 { 3398 struct dib8000_state *state = fe->demodulator_priv; 3399 u8 index_frontend; 3400 int ret; 3401 3402 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3403 ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); 3404 if (ret < 0) 3405 return ret; 3406 } 3407 3408 if (state->revision != 0x8090) 3409 dib8000_set_output_mode(fe, OUTMODE_HIGH_Z); 3410 dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); 3411 return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF); 3412 } 3413 3414 static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat); 3415 3416 static int dib8000_get_frontend(struct dvb_frontend *fe, 3417 struct dtv_frontend_properties *c) 3418 { 3419 struct dib8000_state *state = fe->demodulator_priv; 3420 u16 i, val = 0; 3421 enum fe_status stat = 0; 3422 u8 index_frontend, sub_index_frontend; 3423 3424 c->bandwidth_hz = 6000000; 3425 3426 /* 3427 * If called to early, get_frontend makes dib8000_tune to either 3428 * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail. 3429 * So, let's just return if frontend 0 has not locked. 3430 */ 3431 dib8000_read_status(fe, &stat); 3432 if (!(stat & FE_HAS_SYNC)) 3433 return 0; 3434 3435 dprintk("dib8000_get_frontend: TMCC lock\n"); 3436 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3437 state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); 3438 if (stat&FE_HAS_SYNC) { 3439 dprintk("TMCC lock on the slave%i\n", index_frontend); 3440 /* synchronize the cache with the other frontends */ 3441 state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c); 3442 for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) { 3443 if (sub_index_frontend != index_frontend) { 3444 state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; 3445 state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; 3446 state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; 3447 state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; 3448 state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; 3449 for (i = 0; i < 3; i++) { 3450 state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; 3451 state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; 3452 state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; 3453 state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; 3454 } 3455 } 3456 } 3457 return 0; 3458 } 3459 } 3460 3461 c->isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1; 3462 3463 if (state->revision == 0x8090) 3464 val = dib8000_read_word(state, 572); 3465 else 3466 val = dib8000_read_word(state, 570); 3467 c->inversion = (val & 0x40) >> 6; 3468 switch ((val & 0x30) >> 4) { 3469 case 1: 3470 c->transmission_mode = TRANSMISSION_MODE_2K; 3471 dprintk("dib8000_get_frontend: transmission mode 2K\n"); 3472 break; 3473 case 2: 3474 c->transmission_mode = TRANSMISSION_MODE_4K; 3475 dprintk("dib8000_get_frontend: transmission mode 4K\n"); 3476 break; 3477 case 3: 3478 default: 3479 c->transmission_mode = TRANSMISSION_MODE_8K; 3480 dprintk("dib8000_get_frontend: transmission mode 8K\n"); 3481 break; 3482 } 3483 3484 switch (val & 0x3) { 3485 case 0: 3486 c->guard_interval = GUARD_INTERVAL_1_32; 3487 dprintk("dib8000_get_frontend: Guard Interval = 1/32\n"); 3488 break; 3489 case 1: 3490 c->guard_interval = GUARD_INTERVAL_1_16; 3491 dprintk("dib8000_get_frontend: Guard Interval = 1/16\n"); 3492 break; 3493 case 2: 3494 dprintk("dib8000_get_frontend: Guard Interval = 1/8\n"); 3495 c->guard_interval = GUARD_INTERVAL_1_8; 3496 break; 3497 case 3: 3498 dprintk("dib8000_get_frontend: Guard Interval = 1/4\n"); 3499 c->guard_interval = GUARD_INTERVAL_1_4; 3500 break; 3501 } 3502 3503 val = dib8000_read_word(state, 505); 3504 c->isdbt_partial_reception = val & 1; 3505 dprintk("dib8000_get_frontend: partial_reception = %d\n", c->isdbt_partial_reception); 3506 3507 for (i = 0; i < 3; i++) { 3508 int show; 3509 3510 val = dib8000_read_word(state, 493 + i) & 0x0f; 3511 c->layer[i].segment_count = val; 3512 3513 if (val == 0 || val > 13) 3514 show = 0; 3515 else 3516 show = 1; 3517 3518 if (show) 3519 dprintk("dib8000_get_frontend: Layer %d segments = %d\n", 3520 i, c->layer[i].segment_count); 3521 3522 val = dib8000_read_word(state, 499 + i) & 0x3; 3523 /* Interleaving can be 0, 1, 2 or 4 */ 3524 if (val == 3) 3525 val = 4; 3526 c->layer[i].interleaving = val; 3527 if (show) 3528 dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n", 3529 i, c->layer[i].interleaving); 3530 3531 val = dib8000_read_word(state, 481 + i); 3532 switch (val & 0x7) { 3533 case 1: 3534 c->layer[i].fec = FEC_1_2; 3535 if (show) 3536 dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i); 3537 break; 3538 case 2: 3539 c->layer[i].fec = FEC_2_3; 3540 if (show) 3541 dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i); 3542 break; 3543 case 3: 3544 c->layer[i].fec = FEC_3_4; 3545 if (show) 3546 dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i); 3547 break; 3548 case 5: 3549 c->layer[i].fec = FEC_5_6; 3550 if (show) 3551 dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i); 3552 break; 3553 default: 3554 c->layer[i].fec = FEC_7_8; 3555 if (show) 3556 dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i); 3557 break; 3558 } 3559 3560 val = dib8000_read_word(state, 487 + i); 3561 switch (val & 0x3) { 3562 case 0: 3563 c->layer[i].modulation = DQPSK; 3564 if (show) 3565 dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i); 3566 break; 3567 case 1: 3568 c->layer[i].modulation = QPSK; 3569 if (show) 3570 dprintk("dib8000_get_frontend: Layer %d QPSK\n", i); 3571 break; 3572 case 2: 3573 c->layer[i].modulation = QAM_16; 3574 if (show) 3575 dprintk("dib8000_get_frontend: Layer %d QAM16\n", i); 3576 break; 3577 case 3: 3578 default: 3579 c->layer[i].modulation = QAM_64; 3580 if (show) 3581 dprintk("dib8000_get_frontend: Layer %d QAM64\n", i); 3582 break; 3583 } 3584 } 3585 3586 /* synchronize the cache with the other frontends */ 3587 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3588 state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = c->isdbt_sb_mode; 3589 state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion; 3590 state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode; 3591 state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval; 3592 state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = c->isdbt_partial_reception; 3593 for (i = 0; i < 3; i++) { 3594 state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = c->layer[i].segment_count; 3595 state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = c->layer[i].interleaving; 3596 state->fe[index_frontend]->dtv_property_cache.layer[i].fec = c->layer[i].fec; 3597 state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = c->layer[i].modulation; 3598 } 3599 } 3600 return 0; 3601 } 3602 3603 static int dib8000_set_frontend(struct dvb_frontend *fe) 3604 { 3605 struct dib8000_state *state = fe->demodulator_priv; 3606 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 3607 int l, i, active, time, time_slave = 0; 3608 u8 exit_condition, index_frontend; 3609 unsigned long delay, callback_time; 3610 3611 if (c->frequency == 0) { 3612 dprintk("dib8000: must at least specify frequency\n"); 3613 return 0; 3614 } 3615 3616 if (c->bandwidth_hz == 0) { 3617 dprintk("dib8000: no bandwidth specified, set to default\n"); 3618 c->bandwidth_hz = 6000000; 3619 } 3620 3621 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3622 /* synchronization of the cache */ 3623 state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT; 3624 memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); 3625 3626 /* set output mode and diversity input */ 3627 if (state->revision != 0x8090) { 3628 dib8000_set_diversity_in(state->fe[index_frontend], 1); 3629 if (index_frontend != 0) 3630 dib8000_set_output_mode(state->fe[index_frontend], 3631 OUTMODE_DIVERSITY); 3632 else 3633 dib8000_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); 3634 } else { 3635 dib8096p_set_diversity_in(state->fe[index_frontend], 1); 3636 if (index_frontend != 0) 3637 dib8096p_set_output_mode(state->fe[index_frontend], 3638 OUTMODE_DIVERSITY); 3639 else 3640 dib8096p_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); 3641 } 3642 3643 /* tune the tuner */ 3644 if (state->fe[index_frontend]->ops.tuner_ops.set_params) 3645 state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]); 3646 3647 dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START); 3648 } 3649 3650 /* turn off the diversity of the last chip */ 3651 if (state->revision != 0x8090) 3652 dib8000_set_diversity_in(state->fe[index_frontend - 1], 0); 3653 else 3654 dib8096p_set_diversity_in(state->fe[index_frontend - 1], 0); 3655 3656 /* start up the AGC */ 3657 do { 3658 time = dib8000_agc_startup(state->fe[0]); 3659 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3660 time_slave = dib8000_agc_startup(state->fe[index_frontend]); 3661 if (time == 0) 3662 time = time_slave; 3663 else if ((time_slave != 0) && (time_slave > time)) 3664 time = time_slave; 3665 } 3666 if (time == 0) 3667 break; 3668 3669 /* 3670 * Despite dib8000_agc_startup returns time at a 0.1 ms range, 3671 * the actual sleep time depends on CONFIG_HZ. The worse case 3672 * is when CONFIG_HZ=100. In such case, the minimum granularity 3673 * is 10ms. On some real field tests, the tuner sometimes don't 3674 * lock when this timer is lower than 10ms. So, enforce a 10ms 3675 * granularity. 3676 */ 3677 time = 10 * (time + 99)/100; 3678 usleep_range(time * 1000, (time + 1) * 1000); 3679 exit_condition = 1; 3680 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3681 if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) { 3682 exit_condition = 0; 3683 break; 3684 } 3685 } 3686 } while (exit_condition == 0); 3687 3688 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) 3689 dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); 3690 3691 active = 1; 3692 do { 3693 callback_time = 0; 3694 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3695 delay = dib8000_tune(state->fe[index_frontend]); 3696 if (delay != 0) { 3697 delay = jiffies + usecs_to_jiffies(100 * delay); 3698 if (!callback_time || delay < callback_time) 3699 callback_time = delay; 3700 } 3701 3702 /* we are in autosearch */ 3703 if (state->channel_parameters_set == 0) { /* searching */ 3704 if ((dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_DEMOD_SUCCESS) || (dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_FFT_SUCCESS)) { 3705 dprintk("autosearch succeeded on fe%i\n", index_frontend); 3706 dib8000_get_frontend(state->fe[index_frontend], c); /* we read the channel parameters from the frontend which was successful */ 3707 state->channel_parameters_set = 1; 3708 3709 for (l = 0; (l < MAX_NUMBER_OF_FRONTENDS) && (state->fe[l] != NULL); l++) { 3710 if (l != index_frontend) { /* and for all frontend except the successful one */ 3711 dprintk("Restarting frontend %d\n", l); 3712 dib8000_tune_restart_from_demod(state->fe[l]); 3713 3714 state->fe[l]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; 3715 state->fe[l]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; 3716 state->fe[l]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; 3717 state->fe[l]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; 3718 state->fe[l]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; 3719 for (i = 0; i < 3; i++) { 3720 state->fe[l]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; 3721 state->fe[l]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; 3722 state->fe[l]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; 3723 state->fe[l]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; 3724 } 3725 3726 } 3727 } 3728 } 3729 } 3730 } 3731 /* tuning is done when the master frontend is done (failed or success) */ 3732 if (dib8000_get_status(state->fe[0]) == FE_STATUS_TUNE_FAILED || 3733 dib8000_get_status(state->fe[0]) == FE_STATUS_LOCKED || 3734 dib8000_get_status(state->fe[0]) == FE_STATUS_DATA_LOCKED) { 3735 active = 0; 3736 /* we need to wait for all frontends to be finished */ 3737 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3738 if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_DEMOD_STOP) 3739 active = 1; 3740 } 3741 if (active == 0) 3742 dprintk("tuning done with status %d\n", dib8000_get_status(state->fe[0])); 3743 } 3744 3745 if ((active == 1) && (callback_time == 0)) { 3746 dprintk("strange callback time something went wrong\n"); 3747 active = 0; 3748 } 3749 3750 while ((active == 1) && (time_before(jiffies, callback_time))) 3751 msleep(100); 3752 } while (active); 3753 3754 /* set output mode */ 3755 if (state->revision != 0x8090) 3756 dib8000_set_output_mode(state->fe[0], state->cfg.output_mode); 3757 else { 3758 dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode); 3759 if (state->cfg.enMpegOutput == 0) { 3760 dib8096p_setDibTxMux(state, MPEG_ON_DIBTX); 3761 dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); 3762 } 3763 } 3764 3765 return 0; 3766 } 3767 3768 static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat); 3769 3770 static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat) 3771 { 3772 struct dib8000_state *state = fe->demodulator_priv; 3773 u16 lock_slave = 0, lock; 3774 u8 index_frontend; 3775 3776 lock = dib8000_read_lock(fe); 3777 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) 3778 lock_slave |= dib8000_read_lock(state->fe[index_frontend]); 3779 3780 *stat = 0; 3781 3782 if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1)) 3783 *stat |= FE_HAS_SIGNAL; 3784 3785 if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */ 3786 *stat |= FE_HAS_CARRIER; 3787 3788 if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */ 3789 *stat |= FE_HAS_SYNC; 3790 3791 if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */ 3792 *stat |= FE_HAS_LOCK; 3793 3794 if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) { 3795 lock = dib8000_read_word(state, 554); /* Viterbi Layer A */ 3796 if (lock & 0x01) 3797 *stat |= FE_HAS_VITERBI; 3798 3799 lock = dib8000_read_word(state, 555); /* Viterbi Layer B */ 3800 if (lock & 0x01) 3801 *stat |= FE_HAS_VITERBI; 3802 3803 lock = dib8000_read_word(state, 556); /* Viterbi Layer C */ 3804 if (lock & 0x01) 3805 *stat |= FE_HAS_VITERBI; 3806 } 3807 dib8000_get_stats(fe, *stat); 3808 3809 return 0; 3810 } 3811 3812 static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber) 3813 { 3814 struct dib8000_state *state = fe->demodulator_priv; 3815 3816 /* 13 segments */ 3817 if (state->revision == 0x8090) 3818 *ber = (dib8000_read_word(state, 562) << 16) | 3819 dib8000_read_word(state, 563); 3820 else 3821 *ber = (dib8000_read_word(state, 560) << 16) | 3822 dib8000_read_word(state, 561); 3823 return 0; 3824 } 3825 3826 static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) 3827 { 3828 struct dib8000_state *state = fe->demodulator_priv; 3829 3830 /* packet error on 13 seg */ 3831 if (state->revision == 0x8090) 3832 *unc = dib8000_read_word(state, 567); 3833 else 3834 *unc = dib8000_read_word(state, 565); 3835 return 0; 3836 } 3837 3838 static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) 3839 { 3840 struct dib8000_state *state = fe->demodulator_priv; 3841 u8 index_frontend; 3842 u16 val; 3843 3844 *strength = 0; 3845 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 3846 state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); 3847 if (val > 65535 - *strength) 3848 *strength = 65535; 3849 else 3850 *strength += val; 3851 } 3852 3853 val = 65535 - dib8000_read_word(state, 390); 3854 if (val > 65535 - *strength) 3855 *strength = 65535; 3856 else 3857 *strength += val; 3858 return 0; 3859 } 3860 3861 static u32 dib8000_get_snr(struct dvb_frontend *fe) 3862 { 3863 struct dib8000_state *state = fe->demodulator_priv; 3864 u32 n, s, exp; 3865 u16 val; 3866 3867 if (state->revision != 0x8090) 3868 val = dib8000_read_word(state, 542); 3869 else 3870 val = dib8000_read_word(state, 544); 3871 n = (val >> 6) & 0xff; 3872 exp = (val & 0x3f); 3873 if ((exp & 0x20) != 0) 3874 exp -= 0x40; 3875 n <<= exp+16; 3876 3877 if (state->revision != 0x8090) 3878 val = dib8000_read_word(state, 543); 3879 else 3880 val = dib8000_read_word(state, 545); 3881 s = (val >> 6) & 0xff; 3882 exp = (val & 0x3f); 3883 if ((exp & 0x20) != 0) 3884 exp -= 0x40; 3885 s <<= exp+16; 3886 3887 if (n > 0) { 3888 u32 t = (s/n) << 16; 3889 return t + ((s << 16) - n*t) / n; 3890 } 3891 return 0xffffffff; 3892 } 3893 3894 static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr) 3895 { 3896 struct dib8000_state *state = fe->demodulator_priv; 3897 u8 index_frontend; 3898 u32 snr_master; 3899 3900 snr_master = dib8000_get_snr(fe); 3901 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) 3902 snr_master += dib8000_get_snr(state->fe[index_frontend]); 3903 3904 if ((snr_master >> 16) != 0) { 3905 snr_master = 10*intlog10(snr_master>>16); 3906 *snr = snr_master / ((1 << 24) / 10); 3907 } 3908 else 3909 *snr = 0; 3910 3911 return 0; 3912 } 3913 3914 struct per_layer_regs { 3915 u16 lock, ber, per; 3916 }; 3917 3918 static const struct per_layer_regs per_layer_regs[] = { 3919 { 554, 560, 562 }, 3920 { 555, 576, 578 }, 3921 { 556, 581, 583 }, 3922 }; 3923 3924 struct linear_segments { 3925 unsigned x; 3926 signed y; 3927 }; 3928 3929 /* 3930 * Table to estimate signal strength in dBm. 3931 * This table was empirically determinated by measuring the signal 3932 * strength generated by a DTA-2111 RF generator directly connected into 3933 * a dib8076 device (a PixelView PV-D231U stick), using a good quality 3934 * 3 meters RC6 cable and good RC6 connectors. 3935 * The real value can actually be different on other devices, depending 3936 * on several factors, like if LNA is enabled or not, if diversity is 3937 * enabled, type of connectors, etc. 3938 * Yet, it is better to use this measure in dB than a random non-linear 3939 * percentage value, especially for antenna adjustments. 3940 * On my tests, the precision of the measure using this table is about 3941 * 0.5 dB, with sounds reasonable enough. 3942 */ 3943 static struct linear_segments strength_to_db_table[] = { 3944 { 55953, 108500 }, /* -22.5 dBm */ 3945 { 55394, 108000 }, 3946 { 53834, 107000 }, 3947 { 52863, 106000 }, 3948 { 52239, 105000 }, 3949 { 52012, 104000 }, 3950 { 51803, 103000 }, 3951 { 51566, 102000 }, 3952 { 51356, 101000 }, 3953 { 51112, 100000 }, 3954 { 50869, 99000 }, 3955 { 50600, 98000 }, 3956 { 50363, 97000 }, 3957 { 50117, 96000 }, /* -35 dBm */ 3958 { 49889, 95000 }, 3959 { 49680, 94000 }, 3960 { 49493, 93000 }, 3961 { 49302, 92000 }, 3962 { 48929, 91000 }, 3963 { 48416, 90000 }, 3964 { 48035, 89000 }, 3965 { 47593, 88000 }, 3966 { 47282, 87000 }, 3967 { 46953, 86000 }, 3968 { 46698, 85000 }, 3969 { 45617, 84000 }, 3970 { 44773, 83000 }, 3971 { 43845, 82000 }, 3972 { 43020, 81000 }, 3973 { 42010, 80000 }, /* -51 dBm */ 3974 { 0, 0 }, 3975 }; 3976 3977 static u32 interpolate_value(u32 value, struct linear_segments *segments, 3978 unsigned len) 3979 { 3980 u64 tmp64; 3981 u32 dx; 3982 s32 dy; 3983 int i, ret; 3984 3985 if (value >= segments[0].x) 3986 return segments[0].y; 3987 if (value < segments[len-1].x) 3988 return segments[len-1].y; 3989 3990 for (i = 1; i < len - 1; i++) { 3991 /* If value is identical, no need to interpolate */ 3992 if (value == segments[i].x) 3993 return segments[i].y; 3994 if (value > segments[i].x) 3995 break; 3996 } 3997 3998 /* Linear interpolation between the two (x,y) points */ 3999 dy = segments[i - 1].y - segments[i].y; 4000 dx = segments[i - 1].x - segments[i].x; 4001 4002 tmp64 = value - segments[i].x; 4003 tmp64 *= dy; 4004 do_div(tmp64, dx); 4005 ret = segments[i].y + tmp64; 4006 4007 return ret; 4008 } 4009 4010 static u32 dib8000_get_time_us(struct dvb_frontend *fe, int layer) 4011 { 4012 struct dib8000_state *state = fe->demodulator_priv; 4013 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 4014 int ini_layer, end_layer, i; 4015 u64 time_us, tmp64; 4016 u32 tmp, denom; 4017 int guard, rate_num, rate_denum = 1, bits_per_symbol, nsegs; 4018 int interleaving = 0, fft_div; 4019 4020 if (layer >= 0) { 4021 ini_layer = layer; 4022 end_layer = layer + 1; 4023 } else { 4024 ini_layer = 0; 4025 end_layer = 3; 4026 } 4027 4028 switch (c->guard_interval) { 4029 case GUARD_INTERVAL_1_4: 4030 guard = 4; 4031 break; 4032 case GUARD_INTERVAL_1_8: 4033 guard = 8; 4034 break; 4035 case GUARD_INTERVAL_1_16: 4036 guard = 16; 4037 break; 4038 default: 4039 case GUARD_INTERVAL_1_32: 4040 guard = 32; 4041 break; 4042 } 4043 4044 switch (c->transmission_mode) { 4045 case TRANSMISSION_MODE_2K: 4046 fft_div = 4; 4047 break; 4048 case TRANSMISSION_MODE_4K: 4049 fft_div = 2; 4050 break; 4051 default: 4052 case TRANSMISSION_MODE_8K: 4053 fft_div = 1; 4054 break; 4055 } 4056 4057 denom = 0; 4058 for (i = ini_layer; i < end_layer; i++) { 4059 nsegs = c->layer[i].segment_count; 4060 if (nsegs == 0 || nsegs > 13) 4061 continue; 4062 4063 switch (c->layer[i].modulation) { 4064 case DQPSK: 4065 case QPSK: 4066 bits_per_symbol = 2; 4067 break; 4068 case QAM_16: 4069 bits_per_symbol = 4; 4070 break; 4071 default: 4072 case QAM_64: 4073 bits_per_symbol = 6; 4074 break; 4075 } 4076 4077 switch (c->layer[i].fec) { 4078 case FEC_1_2: 4079 rate_num = 1; 4080 rate_denum = 2; 4081 break; 4082 case FEC_2_3: 4083 rate_num = 2; 4084 rate_denum = 3; 4085 break; 4086 case FEC_3_4: 4087 rate_num = 3; 4088 rate_denum = 4; 4089 break; 4090 case FEC_5_6: 4091 rate_num = 5; 4092 rate_denum = 6; 4093 break; 4094 default: 4095 case FEC_7_8: 4096 rate_num = 7; 4097 rate_denum = 8; 4098 break; 4099 } 4100 4101 interleaving = c->layer[i].interleaving; 4102 4103 denom += bits_per_symbol * rate_num * fft_div * nsegs * 384; 4104 } 4105 4106 /* If all goes wrong, wait for 1s for the next stats */ 4107 if (!denom) 4108 return 0; 4109 4110 /* Estimate the period for the total bit rate */ 4111 time_us = rate_denum * (1008 * 1562500L); 4112 tmp64 = time_us; 4113 do_div(tmp64, guard); 4114 time_us = time_us + tmp64; 4115 time_us += denom / 2; 4116 do_div(time_us, denom); 4117 4118 tmp = 1008 * 96 * interleaving; 4119 time_us += tmp + tmp / guard; 4120 4121 return time_us; 4122 } 4123 4124 static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat) 4125 { 4126 struct dib8000_state *state = fe->demodulator_priv; 4127 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; 4128 int i; 4129 int show_per_stats = 0; 4130 u32 time_us = 0, snr, val; 4131 u64 blocks; 4132 s32 db; 4133 u16 strength; 4134 4135 /* Get Signal strength */ 4136 dib8000_read_signal_strength(fe, &strength); 4137 val = strength; 4138 db = interpolate_value(val, 4139 strength_to_db_table, 4140 ARRAY_SIZE(strength_to_db_table)) - 131000; 4141 c->strength.stat[0].svalue = db; 4142 4143 /* UCB/BER/CNR measures require lock */ 4144 if (!(stat & FE_HAS_LOCK)) { 4145 c->cnr.len = 1; 4146 c->block_count.len = 1; 4147 c->block_error.len = 1; 4148 c->post_bit_error.len = 1; 4149 c->post_bit_count.len = 1; 4150 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 4151 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 4152 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 4153 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 4154 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 4155 return 0; 4156 } 4157 4158 /* Check if time for stats was elapsed */ 4159 if (time_after(jiffies, state->per_jiffies_stats)) { 4160 state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); 4161 4162 /* Get SNR */ 4163 snr = dib8000_get_snr(fe); 4164 for (i = 1; i < MAX_NUMBER_OF_FRONTENDS; i++) { 4165 if (state->fe[i]) 4166 snr += dib8000_get_snr(state->fe[i]); 4167 } 4168 snr = snr >> 16; 4169 4170 if (snr) { 4171 snr = 10 * intlog10(snr); 4172 snr = (1000L * snr) >> 24; 4173 } else { 4174 snr = 0; 4175 } 4176 c->cnr.stat[0].svalue = snr; 4177 c->cnr.stat[0].scale = FE_SCALE_DECIBEL; 4178 4179 /* Get UCB measures */ 4180 dib8000_read_unc_blocks(fe, &val); 4181 if (val < state->init_ucb) 4182 state->init_ucb += 0x100000000LL; 4183 4184 c->block_error.stat[0].scale = FE_SCALE_COUNTER; 4185 c->block_error.stat[0].uvalue = val + state->init_ucb; 4186 4187 /* Estimate the number of packets based on bitrate */ 4188 if (!time_us) 4189 time_us = dib8000_get_time_us(fe, -1); 4190 4191 if (time_us) { 4192 blocks = 1250000ULL * 1000000ULL; 4193 do_div(blocks, time_us * 8 * 204); 4194 c->block_count.stat[0].scale = FE_SCALE_COUNTER; 4195 c->block_count.stat[0].uvalue += blocks; 4196 } 4197 4198 show_per_stats = 1; 4199 } 4200 4201 /* Get post-BER measures */ 4202 if (time_after(jiffies, state->ber_jiffies_stats)) { 4203 time_us = dib8000_get_time_us(fe, -1); 4204 state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); 4205 4206 dprintk("Next all layers stats available in %u us.\n", time_us); 4207 4208 dib8000_read_ber(fe, &val); 4209 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; 4210 c->post_bit_error.stat[0].uvalue += val; 4211 4212 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 4213 c->post_bit_count.stat[0].uvalue += 100000000; 4214 } 4215 4216 if (state->revision < 0x8002) 4217 return 0; 4218 4219 c->block_error.len = 4; 4220 c->post_bit_error.len = 4; 4221 c->post_bit_count.len = 4; 4222 4223 for (i = 0; i < 3; i++) { 4224 unsigned nsegs = c->layer[i].segment_count; 4225 4226 if (nsegs == 0 || nsegs > 13) 4227 continue; 4228 4229 time_us = 0; 4230 4231 if (time_after(jiffies, state->ber_jiffies_stats_layer[i])) { 4232 time_us = dib8000_get_time_us(fe, i); 4233 4234 state->ber_jiffies_stats_layer[i] = jiffies + msecs_to_jiffies((time_us + 500) / 1000); 4235 dprintk("Next layer %c stats will be available in %u us\n", 4236 'A' + i, time_us); 4237 4238 val = dib8000_read_word(state, per_layer_regs[i].ber); 4239 c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER; 4240 c->post_bit_error.stat[1 + i].uvalue += val; 4241 4242 c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER; 4243 c->post_bit_count.stat[1 + i].uvalue += 100000000; 4244 } 4245 4246 if (show_per_stats) { 4247 val = dib8000_read_word(state, per_layer_regs[i].per); 4248 4249 c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER; 4250 c->block_error.stat[1 + i].uvalue += val; 4251 4252 if (!time_us) 4253 time_us = dib8000_get_time_us(fe, i); 4254 if (time_us) { 4255 blocks = 1250000ULL * 1000000ULL; 4256 do_div(blocks, time_us * 8 * 204); 4257 c->block_count.stat[0].scale = FE_SCALE_COUNTER; 4258 c->block_count.stat[0].uvalue += blocks; 4259 } 4260 } 4261 } 4262 return 0; 4263 } 4264 4265 static int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) 4266 { 4267 struct dib8000_state *state = fe->demodulator_priv; 4268 u8 index_frontend = 1; 4269 4270 while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) 4271 index_frontend++; 4272 if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { 4273 dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend); 4274 state->fe[index_frontend] = fe_slave; 4275 return 0; 4276 } 4277 4278 dprintk("too many slave frontend\n"); 4279 return -ENOMEM; 4280 } 4281 4282 static struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) 4283 { 4284 struct dib8000_state *state = fe->demodulator_priv; 4285 4286 if (slave_index >= MAX_NUMBER_OF_FRONTENDS) 4287 return NULL; 4288 return state->fe[slave_index]; 4289 } 4290 4291 static int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, 4292 u8 default_addr, u8 first_addr, u8 is_dib8096p) 4293 { 4294 int k = 0, ret = 0; 4295 u8 new_addr = 0; 4296 struct i2c_device client = {.adap = host }; 4297 4298 client.i2c_write_buffer = kzalloc(4, GFP_KERNEL); 4299 if (!client.i2c_write_buffer) { 4300 dprintk("%s: not enough memory\n", __func__); 4301 return -ENOMEM; 4302 } 4303 client.i2c_read_buffer = kzalloc(4, GFP_KERNEL); 4304 if (!client.i2c_read_buffer) { 4305 dprintk("%s: not enough memory\n", __func__); 4306 ret = -ENOMEM; 4307 goto error_memory_read; 4308 } 4309 client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL); 4310 if (!client.i2c_buffer_lock) { 4311 dprintk("%s: not enough memory\n", __func__); 4312 ret = -ENOMEM; 4313 goto error_memory_lock; 4314 } 4315 mutex_init(client.i2c_buffer_lock); 4316 4317 for (k = no_of_demods - 1; k >= 0; k--) { 4318 /* designated i2c address */ 4319 new_addr = first_addr + (k << 1); 4320 4321 client.addr = new_addr; 4322 if (!is_dib8096p) 4323 dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */ 4324 if (dib8000_identify(&client) == 0) { 4325 /* sram lead in, rdy */ 4326 if (!is_dib8096p) 4327 dib8000_i2c_write16(&client, 1287, 0x0003); 4328 client.addr = default_addr; 4329 if (dib8000_identify(&client) == 0) { 4330 dprintk("#%d: not identified\n", k); 4331 ret = -EINVAL; 4332 goto error; 4333 } 4334 } 4335 4336 /* start diversity to pull_down div_str - just for i2c-enumeration */ 4337 dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6)); 4338 4339 /* set new i2c address and force divstart */ 4340 dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2); 4341 client.addr = new_addr; 4342 dib8000_identify(&client); 4343 4344 dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); 4345 } 4346 4347 for (k = 0; k < no_of_demods; k++) { 4348 new_addr = first_addr | (k << 1); 4349 client.addr = new_addr; 4350 4351 // unforce divstr 4352 dib8000_i2c_write16(&client, 1285, new_addr << 2); 4353 4354 /* deactivate div - it was just for i2c-enumeration */ 4355 dib8000_i2c_write16(&client, 1286, 0); 4356 } 4357 4358 error: 4359 kfree(client.i2c_buffer_lock); 4360 error_memory_lock: 4361 kfree(client.i2c_read_buffer); 4362 error_memory_read: 4363 kfree(client.i2c_write_buffer); 4364 4365 return ret; 4366 } 4367 4368 static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) 4369 { 4370 tune->min_delay_ms = 1000; 4371 tune->step_size = 0; 4372 tune->max_drift = 0; 4373 return 0; 4374 } 4375 4376 static void dib8000_release(struct dvb_frontend *fe) 4377 { 4378 struct dib8000_state *st = fe->demodulator_priv; 4379 u8 index_frontend; 4380 4381 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) 4382 dvb_frontend_detach(st->fe[index_frontend]); 4383 4384 dibx000_exit_i2c_master(&st->i2c_master); 4385 i2c_del_adapter(&st->dib8096p_tuner_adap); 4386 kfree(st->fe[0]); 4387 kfree(st); 4388 } 4389 4390 static struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) 4391 { 4392 struct dib8000_state *st = fe->demodulator_priv; 4393 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); 4394 } 4395 4396 static int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) 4397 { 4398 struct dib8000_state *st = fe->demodulator_priv; 4399 u16 val = dib8000_read_word(st, 299) & 0xffef; 4400 val |= (onoff & 0x1) << 4; 4401 4402 dprintk("pid filter enabled %d\n", onoff); 4403 return dib8000_write_word(st, 299, val); 4404 } 4405 4406 static int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) 4407 { 4408 struct dib8000_state *st = fe->demodulator_priv; 4409 dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff); 4410 return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0); 4411 } 4412 4413 static const struct dvb_frontend_ops dib8000_ops = { 4414 .delsys = { SYS_ISDBT }, 4415 .info = { 4416 .name = "DiBcom 8000 ISDB-T", 4417 .frequency_min_hz = 44250 * kHz, 4418 .frequency_max_hz = 867250 * kHz, 4419 .frequency_stepsize_hz = 62500, 4420 .caps = FE_CAN_INVERSION_AUTO | 4421 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 4422 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 4423 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | 4424 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, 4425 }, 4426 4427 .release = dib8000_release, 4428 4429 .init = dib8000_wakeup, 4430 .sleep = dib8000_sleep, 4431 4432 .set_frontend = dib8000_set_frontend, 4433 .get_tune_settings = dib8000_fe_get_tune_settings, 4434 .get_frontend = dib8000_get_frontend, 4435 4436 .read_status = dib8000_read_status, 4437 .read_ber = dib8000_read_ber, 4438 .read_signal_strength = dib8000_read_signal_strength, 4439 .read_snr = dib8000_read_snr, 4440 .read_ucblocks = dib8000_read_unc_blocks, 4441 }; 4442 4443 static struct dvb_frontend *dib8000_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg) 4444 { 4445 struct dvb_frontend *fe; 4446 struct dib8000_state *state; 4447 4448 dprintk("dib8000_init\n"); 4449 4450 state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL); 4451 if (state == NULL) 4452 return NULL; 4453 fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); 4454 if (fe == NULL) 4455 goto error; 4456 4457 memcpy(&state->cfg, cfg, sizeof(struct dib8000_config)); 4458 state->i2c.adap = i2c_adap; 4459 state->i2c.addr = i2c_addr; 4460 state->i2c.i2c_write_buffer = state->i2c_write_buffer; 4461 state->i2c.i2c_read_buffer = state->i2c_read_buffer; 4462 mutex_init(&state->i2c_buffer_lock); 4463 state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock; 4464 state->gpio_val = cfg->gpio_val; 4465 state->gpio_dir = cfg->gpio_dir; 4466 4467 /* Ensure the output mode remains at the previous default if it's 4468 * not specifically set by the caller. 4469 */ 4470 if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) 4471 state->cfg.output_mode = OUTMODE_MPEG2_FIFO; 4472 4473 state->fe[0] = fe; 4474 fe->demodulator_priv = state; 4475 memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops)); 4476 4477 state->timf_default = cfg->pll->timf; 4478 4479 if (dib8000_identify(&state->i2c) == 0) { 4480 kfree(fe); 4481 goto error; 4482 } 4483 4484 dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr); 4485 4486 /* init 8096p tuner adapter */ 4487 strscpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface", 4488 sizeof(state->dib8096p_tuner_adap.name)); 4489 state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo; 4490 state->dib8096p_tuner_adap.algo_data = NULL; 4491 state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent; 4492 i2c_set_adapdata(&state->dib8096p_tuner_adap, state); 4493 i2c_add_adapter(&state->dib8096p_tuner_adap); 4494 4495 dib8000_reset(fe); 4496 4497 dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */ 4498 state->current_demod_bw = 6000; 4499 4500 return fe; 4501 4502 error: 4503 kfree(state); 4504 return NULL; 4505 } 4506 4507 void *dib8000_attach(struct dib8000_ops *ops) 4508 { 4509 if (!ops) 4510 return NULL; 4511 4512 ops->pwm_agc_reset = dib8000_pwm_agc_reset; 4513 ops->get_dc_power = dib8090p_get_dc_power; 4514 ops->set_gpio = dib8000_set_gpio; 4515 ops->get_slave_frontend = dib8000_get_slave_frontend; 4516 ops->set_tune_state = dib8000_set_tune_state; 4517 ops->pid_filter_ctrl = dib8000_pid_filter_ctrl; 4518 ops->get_adc_power = dib8000_get_adc_power; 4519 ops->update_pll = dib8000_update_pll; 4520 ops->tuner_sleep = dib8096p_tuner_sleep; 4521 ops->get_tune_state = dib8000_get_tune_state; 4522 ops->get_i2c_tuner = dib8096p_get_i2c_tuner; 4523 ops->set_slave_frontend = dib8000_set_slave_frontend; 4524 ops->pid_filter = dib8000_pid_filter; 4525 ops->ctrl_timf = dib8000_ctrl_timf; 4526 ops->init = dib8000_init; 4527 ops->get_i2c_master = dib8000_get_i2c_master; 4528 ops->i2c_enumeration = dib8000_i2c_enumeration; 4529 ops->set_wbd_ref = dib8000_set_wbd_ref; 4530 4531 return ops; 4532 } 4533 EXPORT_SYMBOL_GPL(dib8000_attach); 4534 4535 MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>"); 4536 MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator"); 4537 MODULE_LICENSE("GPL"); 4538