1 /* 2 * Linux-DVB Driver for DiBcom's DiB7000M and 3 * first generation DiB7000P-demodulator-family. 4 * 5 * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation, version 2. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/i2c.h> 14 #include <linux/mutex.h> 15 16 #include "dvb_frontend.h" 17 18 #include "dib7000m.h" 19 20 static int debug; 21 module_param(debug, int, 0644); 22 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); 23 24 #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000M: "); printk(args); printk("\n"); } } while (0) 25 26 struct dib7000m_state { 27 struct dvb_frontend demod; 28 struct dib7000m_config cfg; 29 30 u8 i2c_addr; 31 struct i2c_adapter *i2c_adap; 32 33 struct dibx000_i2c_master i2c_master; 34 35 /* offset is 1 in case of the 7000MC */ 36 u8 reg_offs; 37 38 u16 wbd_ref; 39 40 u8 current_band; 41 u32 current_bandwidth; 42 struct dibx000_agc_config *current_agc; 43 u32 timf; 44 u32 timf_default; 45 u32 internal_clk; 46 47 u8 div_force_off : 1; 48 u8 div_state : 1; 49 u16 div_sync_wait; 50 51 u16 revision; 52 53 u8 agc_state; 54 55 /* for the I2C transfer */ 56 struct i2c_msg msg[2]; 57 u8 i2c_write_buffer[4]; 58 u8 i2c_read_buffer[2]; 59 struct mutex i2c_buffer_lock; 60 }; 61 62 enum dib7000m_power_mode { 63 DIB7000M_POWER_ALL = 0, 64 65 DIB7000M_POWER_NO, 66 DIB7000M_POWER_INTERF_ANALOG_AGC, 67 DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, 68 DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD, 69 DIB7000M_POWER_INTERFACE_ONLY, 70 }; 71 72 static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg) 73 { 74 u16 ret; 75 76 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { 77 dprintk("could not acquire lock"); 78 return 0; 79 } 80 81 state->i2c_write_buffer[0] = (reg >> 8) | 0x80; 82 state->i2c_write_buffer[1] = reg & 0xff; 83 84 memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); 85 state->msg[0].addr = state->i2c_addr >> 1; 86 state->msg[0].flags = 0; 87 state->msg[0].buf = state->i2c_write_buffer; 88 state->msg[0].len = 2; 89 state->msg[1].addr = state->i2c_addr >> 1; 90 state->msg[1].flags = I2C_M_RD; 91 state->msg[1].buf = state->i2c_read_buffer; 92 state->msg[1].len = 2; 93 94 if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2) 95 dprintk("i2c read error on %d",reg); 96 97 ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; 98 mutex_unlock(&state->i2c_buffer_lock); 99 100 return ret; 101 } 102 103 static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val) 104 { 105 int ret; 106 107 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { 108 dprintk("could not acquire lock"); 109 return -EINVAL; 110 } 111 112 state->i2c_write_buffer[0] = (reg >> 8) & 0xff; 113 state->i2c_write_buffer[1] = reg & 0xff; 114 state->i2c_write_buffer[2] = (val >> 8) & 0xff; 115 state->i2c_write_buffer[3] = val & 0xff; 116 117 memset(&state->msg[0], 0, sizeof(struct i2c_msg)); 118 state->msg[0].addr = state->i2c_addr >> 1; 119 state->msg[0].flags = 0; 120 state->msg[0].buf = state->i2c_write_buffer; 121 state->msg[0].len = 4; 122 123 ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ? 124 -EREMOTEIO : 0); 125 mutex_unlock(&state->i2c_buffer_lock); 126 return ret; 127 } 128 static void dib7000m_write_tab(struct dib7000m_state *state, u16 *buf) 129 { 130 u16 l = 0, r, *n; 131 n = buf; 132 l = *n++; 133 while (l) { 134 r = *n++; 135 136 if (state->reg_offs && (r >= 112 && r <= 331)) // compensate for 7000MC 137 r++; 138 139 do { 140 dib7000m_write_word(state, r, *n++); 141 r++; 142 } while (--l); 143 l = *n++; 144 } 145 } 146 147 static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode) 148 { 149 int ret = 0; 150 u16 outreg, fifo_threshold, smo_mode, 151 sram = 0x0005; /* by default SRAM output is disabled */ 152 153 outreg = 0; 154 fifo_threshold = 1792; 155 smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1); 156 157 dprintk( "setting output mode for demod %p to %d", &state->demod, mode); 158 159 switch (mode) { 160 case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock 161 outreg = (1 << 10); /* 0x0400 */ 162 break; 163 case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock 164 outreg = (1 << 10) | (1 << 6); /* 0x0440 */ 165 break; 166 case OUTMODE_MPEG2_SERIAL: // STBs with serial input 167 outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ 168 break; 169 case OUTMODE_DIVERSITY: 170 if (state->cfg.hostbus_diversity) 171 outreg = (1 << 10) | (4 << 6); /* 0x0500 */ 172 else 173 sram |= 0x0c00; 174 break; 175 case OUTMODE_MPEG2_FIFO: // e.g. USB feeding 176 smo_mode |= (3 << 1); 177 fifo_threshold = 512; 178 outreg = (1 << 10) | (5 << 6); 179 break; 180 case OUTMODE_HIGH_Z: // disable 181 outreg = 0; 182 break; 183 default: 184 dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod); 185 break; 186 } 187 188 if (state->cfg.output_mpeg2_in_188_bytes) 189 smo_mode |= (1 << 5) ; 190 191 ret |= dib7000m_write_word(state, 294 + state->reg_offs, smo_mode); 192 ret |= dib7000m_write_word(state, 295 + state->reg_offs, fifo_threshold); /* synchronous fread */ 193 ret |= dib7000m_write_word(state, 1795, outreg); 194 ret |= dib7000m_write_word(state, 1805, sram); 195 196 if (state->revision == 0x4003) { 197 u16 clk_cfg1 = dib7000m_read_word(state, 909) & 0xfffd; 198 if (mode == OUTMODE_DIVERSITY) 199 clk_cfg1 |= (1 << 1); // P_O_CLK_en 200 dib7000m_write_word(state, 909, clk_cfg1); 201 } 202 return ret; 203 } 204 205 static void dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode) 206 { 207 /* by default everything is going to be powered off */ 208 u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff; 209 u8 offset = 0; 210 211 /* now, depending on the requested mode, we power on */ 212 switch (mode) { 213 /* power up everything in the demod */ 214 case DIB7000M_POWER_ALL: 215 reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000; 216 break; 217 218 /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ 219 case DIB7000M_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ 220 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); 221 break; 222 223 case DIB7000M_POWER_INTERF_ANALOG_AGC: 224 reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); 225 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); 226 reg_906 &= ~((1 << 0)); 227 break; 228 229 case DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: 230 reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 = 0x0000; 231 break; 232 233 case DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD: 234 reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 = 0x0000; 235 break; 236 case DIB7000M_POWER_NO: 237 break; 238 } 239 240 /* always power down unused parts */ 241 if (!state->cfg.mobile_mode) 242 reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); 243 244 /* P_sdio_select_clk = 0 on MC and after*/ 245 if (state->revision != 0x4000) 246 reg_906 <<= 1; 247 248 if (state->revision == 0x4003) 249 offset = 1; 250 251 dib7000m_write_word(state, 903 + offset, reg_903); 252 dib7000m_write_word(state, 904 + offset, reg_904); 253 dib7000m_write_word(state, 905 + offset, reg_905); 254 dib7000m_write_word(state, 906 + offset, reg_906); 255 } 256 257 static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no) 258 { 259 int ret = 0; 260 u16 reg_913 = dib7000m_read_word(state, 913), 261 reg_914 = dib7000m_read_word(state, 914); 262 263 switch (no) { 264 case DIBX000_SLOW_ADC_ON: 265 reg_914 |= (1 << 1) | (1 << 0); 266 ret |= dib7000m_write_word(state, 914, reg_914); 267 reg_914 &= ~(1 << 1); 268 break; 269 270 case DIBX000_SLOW_ADC_OFF: 271 reg_914 |= (1 << 1) | (1 << 0); 272 break; 273 274 case DIBX000_ADC_ON: 275 if (state->revision == 0x4000) { // workaround for PA/MA 276 // power-up ADC 277 dib7000m_write_word(state, 913, 0); 278 dib7000m_write_word(state, 914, reg_914 & 0x3); 279 // power-down bandgag 280 dib7000m_write_word(state, 913, (1 << 15)); 281 dib7000m_write_word(state, 914, reg_914 & 0x3); 282 } 283 284 reg_913 &= 0x0fff; 285 reg_914 &= 0x0003; 286 break; 287 288 case DIBX000_ADC_OFF: // leave the VBG voltage on 289 reg_913 |= (1 << 14) | (1 << 13) | (1 << 12); 290 reg_914 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); 291 break; 292 293 case DIBX000_VBG_ENABLE: 294 reg_913 &= ~(1 << 15); 295 break; 296 297 case DIBX000_VBG_DISABLE: 298 reg_913 |= (1 << 15); 299 break; 300 301 default: 302 break; 303 } 304 305 // dprintk( "913: %x, 914: %x", reg_913, reg_914); 306 ret |= dib7000m_write_word(state, 913, reg_913); 307 ret |= dib7000m_write_word(state, 914, reg_914); 308 309 return ret; 310 } 311 312 static int dib7000m_set_bandwidth(struct dib7000m_state *state, u32 bw) 313 { 314 u32 timf; 315 316 if (!bw) 317 bw = 8000; 318 319 // store the current bandwidth for later use 320 state->current_bandwidth = bw; 321 322 if (state->timf == 0) { 323 dprintk( "using default timf"); 324 timf = state->timf_default; 325 } else { 326 dprintk( "using updated timf"); 327 timf = state->timf; 328 } 329 330 timf = timf * (bw / 50) / 160; 331 332 dib7000m_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); 333 dib7000m_write_word(state, 24, (u16) ((timf ) & 0xffff)); 334 335 return 0; 336 } 337 338 static int dib7000m_set_diversity_in(struct dvb_frontend *demod, int onoff) 339 { 340 struct dib7000m_state *state = demod->demodulator_priv; 341 342 if (state->div_force_off) { 343 dprintk( "diversity combination deactivated - forced by COFDM parameters"); 344 onoff = 0; 345 } 346 state->div_state = (u8)onoff; 347 348 if (onoff) { 349 dib7000m_write_word(state, 263 + state->reg_offs, 6); 350 dib7000m_write_word(state, 264 + state->reg_offs, 6); 351 dib7000m_write_word(state, 266 + state->reg_offs, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); 352 } else { 353 dib7000m_write_word(state, 263 + state->reg_offs, 1); 354 dib7000m_write_word(state, 264 + state->reg_offs, 0); 355 dib7000m_write_word(state, 266 + state->reg_offs, 0); 356 } 357 358 return 0; 359 } 360 361 static int dib7000m_sad_calib(struct dib7000m_state *state) 362 { 363 364 /* internal */ 365 // dib7000m_write_word(state, 928, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth 366 dib7000m_write_word(state, 929, (0 << 1) | (0 << 0)); 367 dib7000m_write_word(state, 930, 776); // 0.625*3.3 / 4096 368 369 /* do the calibration */ 370 dib7000m_write_word(state, 929, (1 << 0)); 371 dib7000m_write_word(state, 929, (0 << 0)); 372 373 msleep(1); 374 375 return 0; 376 } 377 378 static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw) 379 { 380 dib7000m_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff)); 381 dib7000m_write_word(state, 19, (u16) ( (bw->internal*1000) & 0xffff)); 382 dib7000m_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff)); 383 dib7000m_write_word(state, 22, (u16) ( bw->ifreq & 0xffff)); 384 385 dib7000m_write_word(state, 928, bw->sad_cfg); 386 } 387 388 static void dib7000m_reset_pll(struct dib7000m_state *state) 389 { 390 const struct dibx000_bandwidth_config *bw = state->cfg.bw; 391 u16 reg_907,reg_910; 392 393 /* default */ 394 reg_907 = (bw->pll_bypass << 15) | (bw->modulo << 7) | 395 (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | 396 (bw->enable_refdiv << 1) | (0 << 0); 397 reg_910 = (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset; 398 399 // for this oscillator frequency should be 30 MHz for the Master (default values in the board_parameters give that value) 400 // this is only working only for 30 MHz crystals 401 if (!state->cfg.quartz_direct) { 402 reg_910 |= (1 << 5); // forcing the predivider to 1 403 404 // if the previous front-end is baseband, its output frequency is 15 MHz (prev freq divided by 2) 405 if(state->cfg.input_clk_is_div_2) 406 reg_907 |= (16 << 9); 407 else // otherwise the previous front-end puts out its input (default 30MHz) - no extra division necessary 408 reg_907 |= (8 << 9); 409 } else { 410 reg_907 |= (bw->pll_ratio & 0x3f) << 9; 411 reg_910 |= (bw->pll_prediv << 5); 412 } 413 414 dib7000m_write_word(state, 910, reg_910); // pll cfg 415 dib7000m_write_word(state, 907, reg_907); // clk cfg0 416 dib7000m_write_word(state, 908, 0x0006); // clk_cfg1 417 418 dib7000m_reset_pll_common(state, bw); 419 } 420 421 static void dib7000mc_reset_pll(struct dib7000m_state *state) 422 { 423 const struct dibx000_bandwidth_config *bw = state->cfg.bw; 424 u16 clk_cfg1; 425 426 // clk_cfg0 427 dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0)); 428 429 // clk_cfg1 430 //dib7000m_write_word(state, 908, (1 << 14) | (3 << 12) |(0 << 11) | 431 clk_cfg1 = (0 << 14) | (3 << 12) |(0 << 11) | 432 (bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) | 433 (1 << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0); 434 dib7000m_write_word(state, 908, clk_cfg1); 435 clk_cfg1 = (clk_cfg1 & 0xfff7) | (bw->pll_bypass << 3); 436 dib7000m_write_word(state, 908, clk_cfg1); 437 438 // smpl_cfg 439 dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7)); 440 441 dib7000m_reset_pll_common(state, bw); 442 } 443 444 static int dib7000m_reset_gpio(struct dib7000m_state *st) 445 { 446 /* reset the GPIOs */ 447 dib7000m_write_word(st, 773, st->cfg.gpio_dir); 448 dib7000m_write_word(st, 774, st->cfg.gpio_val); 449 450 /* TODO 782 is P_gpio_od */ 451 452 dib7000m_write_word(st, 775, st->cfg.gpio_pwm_pos); 453 454 dib7000m_write_word(st, 780, st->cfg.pwm_freq_div); 455 return 0; 456 } 457 458 static u16 dib7000m_defaults_common[] = 459 460 { 461 // auto search configuration 462 3, 2, 463 0x0004, 464 0x1000, 465 0x0814, 466 467 12, 6, 468 0x001b, 469 0x7740, 470 0x005b, 471 0x8d80, 472 0x01c9, 473 0xc380, 474 0x0000, 475 0x0080, 476 0x0000, 477 0x0090, 478 0x0001, 479 0xd4c0, 480 481 1, 26, 482 0x6680, // P_corm_thres Lock algorithms configuration 483 484 1, 170, 485 0x0410, // P_palf_alpha_regul, P_palf_filter_freeze, P_palf_filter_on 486 487 8, 173, 488 0, 489 0, 490 0, 491 0, 492 0, 493 0, 494 0, 495 0, 496 497 1, 182, 498 8192, // P_fft_nb_to_cut 499 500 2, 195, 501 0x0ccd, // P_pha3_thres 502 0, // P_cti_use_cpe, P_cti_use_prog 503 504 1, 205, 505 0x200f, // P_cspu_regul, P_cspu_win_cut 506 507 5, 214, 508 0x023d, // P_adp_regul_cnt 509 0x00a4, // P_adp_noise_cnt 510 0x00a4, // P_adp_regul_ext 511 0x7ff0, // P_adp_noise_ext 512 0x3ccc, // P_adp_fil 513 514 1, 226, 515 0, // P_2d_byp_ti_num 516 517 1, 255, 518 0x800, // P_equal_thres_wgn 519 520 1, 263, 521 0x0001, 522 523 1, 281, 524 0x0010, // P_fec_* 525 526 1, 294, 527 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard 528 529 0 530 }; 531 532 static u16 dib7000m_defaults[] = 533 534 { 535 /* set ADC level to -16 */ 536 11, 76, 537 (1 << 13) - 825 - 117, 538 (1 << 13) - 837 - 117, 539 (1 << 13) - 811 - 117, 540 (1 << 13) - 766 - 117, 541 (1 << 13) - 737 - 117, 542 (1 << 13) - 693 - 117, 543 (1 << 13) - 648 - 117, 544 (1 << 13) - 619 - 117, 545 (1 << 13) - 575 - 117, 546 (1 << 13) - 531 - 117, 547 (1 << 13) - 501 - 117, 548 549 // Tuner IO bank: max drive (14mA) 550 1, 912, 551 0x2c8a, 552 553 1, 1817, 554 1, 555 556 0, 557 }; 558 559 static int dib7000m_demod_reset(struct dib7000m_state *state) 560 { 561 dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); 562 563 /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ 564 dib7000m_set_adc_state(state, DIBX000_VBG_ENABLE); 565 566 /* restart all parts */ 567 dib7000m_write_word(state, 898, 0xffff); 568 dib7000m_write_word(state, 899, 0xffff); 569 dib7000m_write_word(state, 900, 0xff0f); 570 dib7000m_write_word(state, 901, 0xfffc); 571 572 dib7000m_write_word(state, 898, 0); 573 dib7000m_write_word(state, 899, 0); 574 dib7000m_write_word(state, 900, 0); 575 dib7000m_write_word(state, 901, 0); 576 577 if (state->revision == 0x4000) 578 dib7000m_reset_pll(state); 579 else 580 dib7000mc_reset_pll(state); 581 582 if (dib7000m_reset_gpio(state) != 0) 583 dprintk( "GPIO reset was not successful."); 584 585 if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0) 586 dprintk( "OUTPUT_MODE could not be reset."); 587 588 /* unforce divstr regardless whether i2c enumeration was done or not */ 589 dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) ); 590 591 dib7000m_set_bandwidth(state, 8000); 592 593 dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON); 594 dib7000m_sad_calib(state); 595 dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF); 596 597 if (state->cfg.dvbt_mode) 598 dib7000m_write_word(state, 1796, 0x0); // select DVB-T output 599 600 if (state->cfg.mobile_mode) 601 dib7000m_write_word(state, 261 + state->reg_offs, 2); 602 else 603 dib7000m_write_word(state, 224 + state->reg_offs, 1); 604 605 // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... 606 if(state->cfg.tuner_is_baseband) 607 dib7000m_write_word(state, 36, 0x0755); 608 else 609 dib7000m_write_word(state, 36, 0x1f55); 610 611 // P_divclksel=3 P_divbitsel=1 612 if (state->revision == 0x4000) 613 dib7000m_write_word(state, 909, (3 << 10) | (1 << 6)); 614 else 615 dib7000m_write_word(state, 909, (3 << 4) | 1); 616 617 dib7000m_write_tab(state, dib7000m_defaults_common); 618 dib7000m_write_tab(state, dib7000m_defaults); 619 620 dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY); 621 622 state->internal_clk = state->cfg.bw->internal; 623 624 return 0; 625 } 626 627 static void dib7000m_restart_agc(struct dib7000m_state *state) 628 { 629 // P_restart_iqc & P_restart_agc 630 dib7000m_write_word(state, 898, 0x0c00); 631 dib7000m_write_word(state, 898, 0x0000); 632 } 633 634 static int dib7000m_agc_soft_split(struct dib7000m_state *state) 635 { 636 u16 agc,split_offset; 637 638 if(!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) 639 return 0; 640 641 // n_agc_global 642 agc = dib7000m_read_word(state, 390); 643 644 if (agc > state->current_agc->split.min_thres) 645 split_offset = state->current_agc->split.min; 646 else if (agc < state->current_agc->split.max_thres) 647 split_offset = state->current_agc->split.max; 648 else 649 split_offset = state->current_agc->split.max * 650 (agc - state->current_agc->split.min_thres) / 651 (state->current_agc->split.max_thres - state->current_agc->split.min_thres); 652 653 dprintk( "AGC split_offset: %d",split_offset); 654 655 // P_agc_force_split and P_agc_split_offset 656 return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset); 657 } 658 659 static int dib7000m_update_lna(struct dib7000m_state *state) 660 { 661 u16 dyn_gain; 662 663 if (state->cfg.update_lna) { 664 // read dyn_gain here (because it is demod-dependent and not fe) 665 dyn_gain = dib7000m_read_word(state, 390); 666 667 if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed 668 dib7000m_restart_agc(state); 669 return 1; 670 } 671 } 672 return 0; 673 } 674 675 static int dib7000m_set_agc_config(struct dib7000m_state *state, u8 band) 676 { 677 struct dibx000_agc_config *agc = NULL; 678 int i; 679 if (state->current_band == band && state->current_agc != NULL) 680 return 0; 681 state->current_band = band; 682 683 for (i = 0; i < state->cfg.agc_config_count; i++) 684 if (state->cfg.agc[i].band_caps & band) { 685 agc = &state->cfg.agc[i]; 686 break; 687 } 688 689 if (agc == NULL) { 690 dprintk( "no valid AGC configuration found for band 0x%02x",band); 691 return -EINVAL; 692 } 693 694 state->current_agc = agc; 695 696 /* AGC */ 697 dib7000m_write_word(state, 72 , agc->setup); 698 dib7000m_write_word(state, 73 , agc->inv_gain); 699 dib7000m_write_word(state, 74 , agc->time_stabiliz); 700 dib7000m_write_word(state, 97 , (agc->alpha_level << 12) | agc->thlock); 701 702 // Demod AGC loop configuration 703 dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp); 704 dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp); 705 706 dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d", 707 state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); 708 709 /* AGC continued */ 710 if (state->wbd_ref != 0) 711 dib7000m_write_word(state, 102, state->wbd_ref); 712 else // use default 713 dib7000m_write_word(state, 102, agc->wbd_ref); 714 715 dib7000m_write_word(state, 103, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) ); 716 dib7000m_write_word(state, 104, agc->agc1_max); 717 dib7000m_write_word(state, 105, agc->agc1_min); 718 dib7000m_write_word(state, 106, agc->agc2_max); 719 dib7000m_write_word(state, 107, agc->agc2_min); 720 dib7000m_write_word(state, 108, (agc->agc1_pt1 << 8) | agc->agc1_pt2 ); 721 dib7000m_write_word(state, 109, (agc->agc1_slope1 << 8) | agc->agc1_slope2); 722 dib7000m_write_word(state, 110, (agc->agc2_pt1 << 8) | agc->agc2_pt2); 723 dib7000m_write_word(state, 111, (agc->agc2_slope1 << 8) | agc->agc2_slope2); 724 725 if (state->revision > 0x4000) { // settings for the MC 726 dib7000m_write_word(state, 71, agc->agc1_pt3); 727 // dprintk( "929: %x %d %d", 728 // (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2), agc->wbd_inv, agc->wbd_sel); 729 dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); 730 } else { 731 // wrong default values 732 u16 b[9] = { 676, 696, 717, 737, 758, 778, 799, 819, 840 }; 733 for (i = 0; i < 9; i++) 734 dib7000m_write_word(state, 88 + i, b[i]); 735 } 736 return 0; 737 } 738 739 static void dib7000m_update_timf(struct dib7000m_state *state) 740 { 741 u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437); 742 state->timf = timf * 160 / (state->current_bandwidth / 50); 743 dib7000m_write_word(state, 23, (u16) (timf >> 16)); 744 dib7000m_write_word(state, 24, (u16) (timf & 0xffff)); 745 dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->timf_default); 746 } 747 748 static int dib7000m_agc_startup(struct dvb_frontend *demod) 749 { 750 struct dtv_frontend_properties *ch = &demod->dtv_property_cache; 751 struct dib7000m_state *state = demod->demodulator_priv; 752 u16 cfg_72 = dib7000m_read_word(state, 72); 753 int ret = -1; 754 u8 *agc_state = &state->agc_state; 755 u8 agc_split; 756 757 switch (state->agc_state) { 758 case 0: 759 // set power-up level: interf+analog+AGC 760 dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC); 761 dib7000m_set_adc_state(state, DIBX000_ADC_ON); 762 763 if (dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0) 764 return -1; 765 766 ret = 7; /* ADC power up */ 767 (*agc_state)++; 768 break; 769 770 case 1: 771 /* AGC initialization */ 772 if (state->cfg.agc_control) 773 state->cfg.agc_control(&state->demod, 1); 774 775 dib7000m_write_word(state, 75, 32768); 776 if (!state->current_agc->perform_agc_softsplit) { 777 /* we are using the wbd - so slow AGC startup */ 778 dib7000m_write_word(state, 103, 1 << 8); /* force 0 split on WBD and restart AGC */ 779 (*agc_state)++; 780 ret = 5; 781 } else { 782 /* default AGC startup */ 783 (*agc_state) = 4; 784 /* wait AGC rough lock time */ 785 ret = 7; 786 } 787 788 dib7000m_restart_agc(state); 789 break; 790 791 case 2: /* fast split search path after 5sec */ 792 dib7000m_write_word(state, 72, cfg_72 | (1 << 4)); /* freeze AGC loop */ 793 dib7000m_write_word(state, 103, 2 << 9); /* fast split search 0.25kHz */ 794 (*agc_state)++; 795 ret = 14; 796 break; 797 798 case 3: /* split search ended */ 799 agc_split = (u8)dib7000m_read_word(state, 392); /* store the split value for the next time */ 800 dib7000m_write_word(state, 75, dib7000m_read_word(state, 390)); /* set AGC gain start value */ 801 802 dib7000m_write_word(state, 72, cfg_72 & ~(1 << 4)); /* std AGC loop */ 803 dib7000m_write_word(state, 103, (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ 804 805 dib7000m_restart_agc(state); 806 807 dprintk( "SPLIT %p: %hd", demod, agc_split); 808 809 (*agc_state)++; 810 ret = 5; 811 break; 812 813 case 4: /* LNA startup */ 814 /* wait AGC accurate lock time */ 815 ret = 7; 816 817 if (dib7000m_update_lna(state)) 818 // wait only AGC rough lock time 819 ret = 5; 820 else 821 (*agc_state)++; 822 break; 823 824 case 5: 825 dib7000m_agc_soft_split(state); 826 827 if (state->cfg.agc_control) 828 state->cfg.agc_control(&state->demod, 0); 829 830 (*agc_state)++; 831 break; 832 833 default: 834 break; 835 } 836 return ret; 837 } 838 839 static void dib7000m_set_channel(struct dib7000m_state *state, struct dtv_frontend_properties *ch, 840 u8 seq) 841 { 842 u16 value, est[4]; 843 844 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); 845 846 /* nfft, guard, qam, alpha */ 847 value = 0; 848 switch (ch->transmission_mode) { 849 case TRANSMISSION_MODE_2K: value |= (0 << 7); break; 850 case TRANSMISSION_MODE_4K: value |= (2 << 7); break; 851 default: 852 case TRANSMISSION_MODE_8K: value |= (1 << 7); break; 853 } 854 switch (ch->guard_interval) { 855 case GUARD_INTERVAL_1_32: value |= (0 << 5); break; 856 case GUARD_INTERVAL_1_16: value |= (1 << 5); break; 857 case GUARD_INTERVAL_1_4: value |= (3 << 5); break; 858 default: 859 case GUARD_INTERVAL_1_8: value |= (2 << 5); break; 860 } 861 switch (ch->modulation) { 862 case QPSK: value |= (0 << 3); break; 863 case QAM_16: value |= (1 << 3); break; 864 default: 865 case QAM_64: value |= (2 << 3); break; 866 } 867 switch (HIERARCHY_1) { 868 case HIERARCHY_2: value |= 2; break; 869 case HIERARCHY_4: value |= 4; break; 870 default: 871 case HIERARCHY_1: value |= 1; break; 872 } 873 dib7000m_write_word(state, 0, value); 874 dib7000m_write_word(state, 5, (seq << 4)); 875 876 /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ 877 value = 0; 878 if (1 != 0) 879 value |= (1 << 6); 880 if (ch->hierarchy == 1) 881 value |= (1 << 4); 882 if (1 == 1) 883 value |= 1; 884 switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) { 885 case FEC_2_3: value |= (2 << 1); break; 886 case FEC_3_4: value |= (3 << 1); break; 887 case FEC_5_6: value |= (5 << 1); break; 888 case FEC_7_8: value |= (7 << 1); break; 889 default: 890 case FEC_1_2: value |= (1 << 1); break; 891 } 892 dib7000m_write_word(state, 267 + state->reg_offs, value); 893 894 /* offset loop parameters */ 895 896 /* P_timf_alpha = 6, P_corm_alpha=6, P_corm_thres=0x80 */ 897 dib7000m_write_word(state, 26, (6 << 12) | (6 << 8) | 0x80); 898 899 /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=1, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ 900 dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (1 << 9) | (3 << 5) | (1 << 4) | (0x3)); 901 902 /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max=3 */ 903 dib7000m_write_word(state, 32, (0 << 4) | 0x3); 904 905 /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step=5 */ 906 dib7000m_write_word(state, 33, (0 << 4) | 0x5); 907 908 /* P_dvsy_sync_wait */ 909 switch (ch->transmission_mode) { 910 case TRANSMISSION_MODE_8K: value = 256; break; 911 case TRANSMISSION_MODE_4K: value = 128; break; 912 case TRANSMISSION_MODE_2K: 913 default: value = 64; break; 914 } 915 switch (ch->guard_interval) { 916 case GUARD_INTERVAL_1_16: value *= 2; break; 917 case GUARD_INTERVAL_1_8: value *= 4; break; 918 case GUARD_INTERVAL_1_4: value *= 8; break; 919 default: 920 case GUARD_INTERVAL_1_32: value *= 1; break; 921 } 922 state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO 923 924 /* deactive the possibility of diversity reception if extended interleave - not for 7000MC */ 925 /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ 926 if (1 == 1 || state->revision > 0x4000) 927 state->div_force_off = 0; 928 else 929 state->div_force_off = 1; 930 dib7000m_set_diversity_in(&state->demod, state->div_state); 931 932 /* channel estimation fine configuration */ 933 switch (ch->modulation) { 934 case QAM_64: 935 est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ 936 est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ 937 est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ 938 est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ 939 break; 940 case QAM_16: 941 est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ 942 est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ 943 est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ 944 est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ 945 break; 946 default: 947 est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ 948 est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ 949 est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ 950 est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ 951 break; 952 } 953 for (value = 0; value < 4; value++) 954 dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]); 955 956 // set power-up level: autosearch 957 dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD); 958 } 959 960 static int dib7000m_autosearch_start(struct dvb_frontend *demod) 961 { 962 struct dtv_frontend_properties *ch = &demod->dtv_property_cache; 963 struct dib7000m_state *state = demod->demodulator_priv; 964 struct dtv_frontend_properties schan; 965 int ret = 0; 966 u32 value, factor; 967 968 schan = *ch; 969 970 schan.modulation = QAM_64; 971 schan.guard_interval = GUARD_INTERVAL_1_32; 972 schan.transmission_mode = TRANSMISSION_MODE_8K; 973 schan.code_rate_HP = FEC_2_3; 974 schan.code_rate_LP = FEC_3_4; 975 schan.hierarchy = 0; 976 977 dib7000m_set_channel(state, &schan, 7); 978 979 factor = BANDWIDTH_TO_KHZ(schan.bandwidth_hz); 980 if (factor >= 5000) 981 factor = 1; 982 else 983 factor = 6; 984 985 // always use the setting for 8MHz here lock_time for 7,6 MHz are longer 986 value = 30 * state->internal_clk * factor; 987 ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time 988 ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time 989 value = 100 * state->internal_clk * factor; 990 ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time 991 ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time 992 value = 500 * state->internal_clk * factor; 993 ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time 994 ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time 995 996 // start search 997 value = dib7000m_read_word(state, 0); 998 ret |= dib7000m_write_word(state, 0, (u16) (value | (1 << 9))); 999 1000 /* clear n_irq_pending */ 1001 if (state->revision == 0x4000) 1002 dib7000m_write_word(state, 1793, 0); 1003 else 1004 dib7000m_read_word(state, 537); 1005 1006 ret |= dib7000m_write_word(state, 0, (u16) value); 1007 1008 return ret; 1009 } 1010 1011 static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg) 1012 { 1013 u16 irq_pending = dib7000m_read_word(state, reg); 1014 1015 if (irq_pending & 0x1) { // failed 1016 dprintk( "autosearch failed"); 1017 return 1; 1018 } 1019 1020 if (irq_pending & 0x2) { // succeeded 1021 dprintk( "autosearch succeeded"); 1022 return 2; 1023 } 1024 return 0; // still pending 1025 } 1026 1027 static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod) 1028 { 1029 struct dib7000m_state *state = demod->demodulator_priv; 1030 if (state->revision == 0x4000) 1031 return dib7000m_autosearch_irq(state, 1793); 1032 else 1033 return dib7000m_autosearch_irq(state, 537); 1034 } 1035 1036 static int dib7000m_tune(struct dvb_frontend *demod) 1037 { 1038 struct dtv_frontend_properties *ch = &demod->dtv_property_cache; 1039 struct dib7000m_state *state = demod->demodulator_priv; 1040 int ret = 0; 1041 u16 value; 1042 1043 // we are already tuned - just resuming from suspend 1044 dib7000m_set_channel(state, ch, 0); 1045 1046 // restart demod 1047 ret |= dib7000m_write_word(state, 898, 0x4000); 1048 ret |= dib7000m_write_word(state, 898, 0x0000); 1049 msleep(45); 1050 1051 dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD); 1052 /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ 1053 ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3)); 1054 1055 // never achieved a lock before - wait for timfreq to update 1056 if (state->timf == 0) 1057 msleep(200); 1058 1059 //dump_reg(state); 1060 /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ 1061 value = (6 << 8) | 0x80; 1062 switch (ch->transmission_mode) { 1063 case TRANSMISSION_MODE_2K: value |= (7 << 12); break; 1064 case TRANSMISSION_MODE_4K: value |= (8 << 12); break; 1065 default: 1066 case TRANSMISSION_MODE_8K: value |= (9 << 12); break; 1067 } 1068 ret |= dib7000m_write_word(state, 26, value); 1069 1070 /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ 1071 value = (0 << 4); 1072 switch (ch->transmission_mode) { 1073 case TRANSMISSION_MODE_2K: value |= 0x6; break; 1074 case TRANSMISSION_MODE_4K: value |= 0x7; break; 1075 default: 1076 case TRANSMISSION_MODE_8K: value |= 0x8; break; 1077 } 1078 ret |= dib7000m_write_word(state, 32, value); 1079 1080 /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ 1081 value = (0 << 4); 1082 switch (ch->transmission_mode) { 1083 case TRANSMISSION_MODE_2K: value |= 0x6; break; 1084 case TRANSMISSION_MODE_4K: value |= 0x7; break; 1085 default: 1086 case TRANSMISSION_MODE_8K: value |= 0x8; break; 1087 } 1088 ret |= dib7000m_write_word(state, 33, value); 1089 1090 // we achieved a lock - it's time to update the timf freq 1091 if ((dib7000m_read_word(state, 535) >> 6) & 0x1) 1092 dib7000m_update_timf(state); 1093 1094 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); 1095 return ret; 1096 } 1097 1098 static int dib7000m_wakeup(struct dvb_frontend *demod) 1099 { 1100 struct dib7000m_state *state = demod->demodulator_priv; 1101 1102 dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); 1103 1104 if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) 1105 dprintk( "could not start Slow ADC"); 1106 1107 return 0; 1108 } 1109 1110 static int dib7000m_sleep(struct dvb_frontend *demod) 1111 { 1112 struct dib7000m_state *st = demod->demodulator_priv; 1113 dib7000m_set_output_mode(st, OUTMODE_HIGH_Z); 1114 dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY); 1115 return dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) | 1116 dib7000m_set_adc_state(st, DIBX000_ADC_OFF); 1117 } 1118 1119 static int dib7000m_identify(struct dib7000m_state *state) 1120 { 1121 u16 value; 1122 1123 if ((value = dib7000m_read_word(state, 896)) != 0x01b3) { 1124 dprintk( "wrong Vendor ID (0x%x)",value); 1125 return -EREMOTEIO; 1126 } 1127 1128 state->revision = dib7000m_read_word(state, 897); 1129 if (state->revision != 0x4000 && 1130 state->revision != 0x4001 && 1131 state->revision != 0x4002 && 1132 state->revision != 0x4003) { 1133 dprintk( "wrong Device ID (0x%x)",value); 1134 return -EREMOTEIO; 1135 } 1136 1137 /* protect this driver to be used with 7000PC */ 1138 if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) { 1139 dprintk( "this driver does not work with DiB7000PC"); 1140 return -EREMOTEIO; 1141 } 1142 1143 switch (state->revision) { 1144 case 0x4000: dprintk( "found DiB7000MA/PA/MB/PB"); break; 1145 case 0x4001: state->reg_offs = 1; dprintk( "found DiB7000HC"); break; 1146 case 0x4002: state->reg_offs = 1; dprintk( "found DiB7000MC"); break; 1147 case 0x4003: state->reg_offs = 1; dprintk( "found DiB9000"); break; 1148 } 1149 1150 return 0; 1151 } 1152 1153 1154 static int dib7000m_get_frontend(struct dvb_frontend* fe) 1155 { 1156 struct dtv_frontend_properties *fep = &fe->dtv_property_cache; 1157 struct dib7000m_state *state = fe->demodulator_priv; 1158 u16 tps = dib7000m_read_word(state,480); 1159 1160 fep->inversion = INVERSION_AUTO; 1161 1162 fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth); 1163 1164 switch ((tps >> 8) & 0x3) { 1165 case 0: fep->transmission_mode = TRANSMISSION_MODE_2K; break; 1166 case 1: fep->transmission_mode = TRANSMISSION_MODE_8K; break; 1167 /* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */ 1168 } 1169 1170 switch (tps & 0x3) { 1171 case 0: fep->guard_interval = GUARD_INTERVAL_1_32; break; 1172 case 1: fep->guard_interval = GUARD_INTERVAL_1_16; break; 1173 case 2: fep->guard_interval = GUARD_INTERVAL_1_8; break; 1174 case 3: fep->guard_interval = GUARD_INTERVAL_1_4; break; 1175 } 1176 1177 switch ((tps >> 14) & 0x3) { 1178 case 0: fep->modulation = QPSK; break; 1179 case 1: fep->modulation = QAM_16; break; 1180 case 2: 1181 default: fep->modulation = QAM_64; break; 1182 } 1183 1184 /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ 1185 /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ 1186 1187 fep->hierarchy = HIERARCHY_NONE; 1188 switch ((tps >> 5) & 0x7) { 1189 case 1: fep->code_rate_HP = FEC_1_2; break; 1190 case 2: fep->code_rate_HP = FEC_2_3; break; 1191 case 3: fep->code_rate_HP = FEC_3_4; break; 1192 case 5: fep->code_rate_HP = FEC_5_6; break; 1193 case 7: 1194 default: fep->code_rate_HP = FEC_7_8; break; 1195 1196 } 1197 1198 switch ((tps >> 2) & 0x7) { 1199 case 1: fep->code_rate_LP = FEC_1_2; break; 1200 case 2: fep->code_rate_LP = FEC_2_3; break; 1201 case 3: fep->code_rate_LP = FEC_3_4; break; 1202 case 5: fep->code_rate_LP = FEC_5_6; break; 1203 case 7: 1204 default: fep->code_rate_LP = FEC_7_8; break; 1205 } 1206 1207 /* native interleaver: (dib7000m_read_word(state, 481) >> 5) & 0x1 */ 1208 1209 return 0; 1210 } 1211 1212 static int dib7000m_set_frontend(struct dvb_frontend *fe) 1213 { 1214 struct dtv_frontend_properties *fep = &fe->dtv_property_cache; 1215 struct dib7000m_state *state = fe->demodulator_priv; 1216 int time, ret; 1217 1218 dib7000m_set_output_mode(state, OUTMODE_HIGH_Z); 1219 1220 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->bandwidth_hz)); 1221 1222 if (fe->ops.tuner_ops.set_params) 1223 fe->ops.tuner_ops.set_params(fe); 1224 1225 /* start up the AGC */ 1226 state->agc_state = 0; 1227 do { 1228 time = dib7000m_agc_startup(fe); 1229 if (time != -1) 1230 msleep(time); 1231 } while (time != -1); 1232 1233 if (fep->transmission_mode == TRANSMISSION_MODE_AUTO || 1234 fep->guard_interval == GUARD_INTERVAL_AUTO || 1235 fep->modulation == QAM_AUTO || 1236 fep->code_rate_HP == FEC_AUTO) { 1237 int i = 800, found; 1238 1239 dib7000m_autosearch_start(fe); 1240 do { 1241 msleep(1); 1242 found = dib7000m_autosearch_is_irq(fe); 1243 } while (found == 0 && i--); 1244 1245 dprintk("autosearch returns: %d",found); 1246 if (found == 0 || found == 1) 1247 return 0; // no channel found 1248 1249 dib7000m_get_frontend(fe); 1250 } 1251 1252 ret = dib7000m_tune(fe); 1253 1254 /* make this a config parameter */ 1255 dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO); 1256 return ret; 1257 } 1258 1259 static int dib7000m_read_status(struct dvb_frontend *fe, enum fe_status *stat) 1260 { 1261 struct dib7000m_state *state = fe->demodulator_priv; 1262 u16 lock = dib7000m_read_word(state, 535); 1263 1264 *stat = 0; 1265 1266 if (lock & 0x8000) 1267 *stat |= FE_HAS_SIGNAL; 1268 if (lock & 0x3000) 1269 *stat |= FE_HAS_CARRIER; 1270 if (lock & 0x0100) 1271 *stat |= FE_HAS_VITERBI; 1272 if (lock & 0x0010) 1273 *stat |= FE_HAS_SYNC; 1274 if (lock & 0x0008) 1275 *stat |= FE_HAS_LOCK; 1276 1277 return 0; 1278 } 1279 1280 static int dib7000m_read_ber(struct dvb_frontend *fe, u32 *ber) 1281 { 1282 struct dib7000m_state *state = fe->demodulator_priv; 1283 *ber = (dib7000m_read_word(state, 526) << 16) | dib7000m_read_word(state, 527); 1284 return 0; 1285 } 1286 1287 static int dib7000m_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) 1288 { 1289 struct dib7000m_state *state = fe->demodulator_priv; 1290 *unc = dib7000m_read_word(state, 534); 1291 return 0; 1292 } 1293 1294 static int dib7000m_read_signal_strength(struct dvb_frontend *fe, u16 *strength) 1295 { 1296 struct dib7000m_state *state = fe->demodulator_priv; 1297 u16 val = dib7000m_read_word(state, 390); 1298 *strength = 65535 - val; 1299 return 0; 1300 } 1301 1302 static int dib7000m_read_snr(struct dvb_frontend* fe, u16 *snr) 1303 { 1304 *snr = 0x0000; 1305 return 0; 1306 } 1307 1308 static int dib7000m_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) 1309 { 1310 tune->min_delay_ms = 1000; 1311 return 0; 1312 } 1313 1314 static void dib7000m_release(struct dvb_frontend *demod) 1315 { 1316 struct dib7000m_state *st = demod->demodulator_priv; 1317 dibx000_exit_i2c_master(&st->i2c_master); 1318 kfree(st); 1319 } 1320 1321 struct i2c_adapter * dib7000m_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) 1322 { 1323 struct dib7000m_state *st = demod->demodulator_priv; 1324 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); 1325 } 1326 EXPORT_SYMBOL(dib7000m_get_i2c_master); 1327 1328 int dib7000m_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) 1329 { 1330 struct dib7000m_state *state = fe->demodulator_priv; 1331 u16 val = dib7000m_read_word(state, 294 + state->reg_offs) & 0xffef; 1332 val |= (onoff & 0x1) << 4; 1333 dprintk("PID filter enabled %d", onoff); 1334 return dib7000m_write_word(state, 294 + state->reg_offs, val); 1335 } 1336 EXPORT_SYMBOL(dib7000m_pid_filter_ctrl); 1337 1338 int dib7000m_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) 1339 { 1340 struct dib7000m_state *state = fe->demodulator_priv; 1341 dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff); 1342 return dib7000m_write_word(state, 300 + state->reg_offs + id, 1343 onoff ? (1 << 13) | pid : 0); 1344 } 1345 EXPORT_SYMBOL(dib7000m_pid_filter); 1346 1347 #if 0 1348 /* used with some prototype boards */ 1349 int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, 1350 u8 default_addr, struct dib7000m_config cfg[]) 1351 { 1352 struct dib7000m_state st = { .i2c_adap = i2c }; 1353 int k = 0; 1354 u8 new_addr = 0; 1355 1356 for (k = no_of_demods-1; k >= 0; k--) { 1357 st.cfg = cfg[k]; 1358 1359 /* designated i2c address */ 1360 new_addr = (0x40 + k) << 1; 1361 st.i2c_addr = new_addr; 1362 if (dib7000m_identify(&st) != 0) { 1363 st.i2c_addr = default_addr; 1364 if (dib7000m_identify(&st) != 0) { 1365 dprintk("DiB7000M #%d: not identified", k); 1366 return -EIO; 1367 } 1368 } 1369 1370 /* start diversity to pull_down div_str - just for i2c-enumeration */ 1371 dib7000m_set_output_mode(&st, OUTMODE_DIVERSITY); 1372 1373 dib7000m_write_word(&st, 1796, 0x0); // select DVB-T output 1374 1375 /* set new i2c address and force divstart */ 1376 dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2); 1377 1378 dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); 1379 } 1380 1381 for (k = 0; k < no_of_demods; k++) { 1382 st.cfg = cfg[k]; 1383 st.i2c_addr = (0x40 + k) << 1; 1384 1385 // unforce divstr 1386 dib7000m_write_word(&st,1794, st.i2c_addr << 2); 1387 1388 /* deactivate div - it was just for i2c-enumeration */ 1389 dib7000m_set_output_mode(&st, OUTMODE_HIGH_Z); 1390 } 1391 1392 return 0; 1393 } 1394 EXPORT_SYMBOL(dib7000m_i2c_enumeration); 1395 #endif 1396 1397 static struct dvb_frontend_ops dib7000m_ops; 1398 struct dvb_frontend * dib7000m_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000m_config *cfg) 1399 { 1400 struct dvb_frontend *demod; 1401 struct dib7000m_state *st; 1402 st = kzalloc(sizeof(struct dib7000m_state), GFP_KERNEL); 1403 if (st == NULL) 1404 return NULL; 1405 1406 memcpy(&st->cfg, cfg, sizeof(struct dib7000m_config)); 1407 st->i2c_adap = i2c_adap; 1408 st->i2c_addr = i2c_addr; 1409 1410 demod = &st->demod; 1411 demod->demodulator_priv = st; 1412 memcpy(&st->demod.ops, &dib7000m_ops, sizeof(struct dvb_frontend_ops)); 1413 mutex_init(&st->i2c_buffer_lock); 1414 1415 st->timf_default = cfg->bw->timf; 1416 1417 if (dib7000m_identify(st) != 0) 1418 goto error; 1419 1420 if (st->revision == 0x4000) 1421 dibx000_init_i2c_master(&st->i2c_master, DIB7000, st->i2c_adap, st->i2c_addr); 1422 else 1423 dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c_adap, st->i2c_addr); 1424 1425 dib7000m_demod_reset(st); 1426 1427 return demod; 1428 1429 error: 1430 kfree(st); 1431 return NULL; 1432 } 1433 EXPORT_SYMBOL(dib7000m_attach); 1434 1435 static struct dvb_frontend_ops dib7000m_ops = { 1436 .delsys = { SYS_DVBT }, 1437 .info = { 1438 .name = "DiBcom 7000MA/MB/PA/PB/MC", 1439 .frequency_min = 44250000, 1440 .frequency_max = 867250000, 1441 .frequency_stepsize = 62500, 1442 .caps = FE_CAN_INVERSION_AUTO | 1443 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 1444 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 1445 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | 1446 FE_CAN_TRANSMISSION_MODE_AUTO | 1447 FE_CAN_GUARD_INTERVAL_AUTO | 1448 FE_CAN_RECOVER | 1449 FE_CAN_HIERARCHY_AUTO, 1450 }, 1451 1452 .release = dib7000m_release, 1453 1454 .init = dib7000m_wakeup, 1455 .sleep = dib7000m_sleep, 1456 1457 .set_frontend = dib7000m_set_frontend, 1458 .get_tune_settings = dib7000m_fe_get_tune_settings, 1459 .get_frontend = dib7000m_get_frontend, 1460 1461 .read_status = dib7000m_read_status, 1462 .read_ber = dib7000m_read_ber, 1463 .read_signal_strength = dib7000m_read_signal_strength, 1464 .read_snr = dib7000m_read_snr, 1465 .read_ucblocks = dib7000m_read_unc_blocks, 1466 }; 1467 1468 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); 1469 MODULE_DESCRIPTION("Driver for the DiBcom 7000MA/MB/PA/PB/MC COFDM demodulator"); 1470 MODULE_LICENSE("GPL"); 1471