xref: /linux/drivers/media/dvb-frontends/dib0090.c (revision a2071cd765637002523798358d2ca441306d708b)
1 /*
2  * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
3  *
4  * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * This code is more or less generated from another driver, please
23  * excuse some codingstyle oddities.
24  *
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/mutex.h>
31 
32 #include "dvb_frontend.h"
33 
34 #include "dib0090.h"
35 #include "dibx000_common.h"
36 
37 static int debug;
38 module_param(debug, int, 0644);
39 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
40 
41 #define dprintk(args...) do { \
42 	if (debug) { \
43 		printk(KERN_DEBUG "DiB0090: "); \
44 		printk(args); \
45 		printk("\n"); \
46 	} \
47 } while (0)
48 
49 #define CONFIG_SYS_DVBT
50 #define CONFIG_SYS_ISDBT
51 #define CONFIG_BAND_CBAND
52 #define CONFIG_BAND_VHF
53 #define CONFIG_BAND_UHF
54 #define CONFIG_DIB0090_USE_PWM_AGC
55 
56 #define EN_LNA0      0x8000
57 #define EN_LNA1      0x4000
58 #define EN_LNA2      0x2000
59 #define EN_LNA3      0x1000
60 #define EN_MIX0      0x0800
61 #define EN_MIX1      0x0400
62 #define EN_MIX2      0x0200
63 #define EN_MIX3      0x0100
64 #define EN_IQADC     0x0040
65 #define EN_PLL       0x0020
66 #define EN_TX        0x0010
67 #define EN_BB        0x0008
68 #define EN_LO        0x0004
69 #define EN_BIAS      0x0001
70 
71 #define EN_IQANA     0x0002
72 #define EN_DIGCLK    0x0080	/* not in the 0x24 reg, only in 0x1b */
73 #define EN_CRYSTAL   0x0002
74 
75 #define EN_UHF		 0x22E9
76 #define EN_VHF		 0x44E9
77 #define EN_LBD		 0x11E9
78 #define EN_SBD		 0x44E9
79 #define EN_CAB		 0x88E9
80 
81 /* Calibration defines */
82 #define      DC_CAL 0x1
83 #define     WBD_CAL 0x2
84 #define    TEMP_CAL 0x4
85 #define CAPTRIM_CAL 0x8
86 
87 #define KROSUS_PLL_LOCKED   0x800
88 #define KROSUS              0x2
89 
90 /* Use those defines to identify SOC version */
91 #define SOC               0x02
92 #define SOC_7090_P1G_11R1 0x82
93 #define SOC_7090_P1G_21R1 0x8a
94 #define SOC_8090_P1G_11R1 0x86
95 #define SOC_8090_P1G_21R1 0x8e
96 
97 /* else use thos ones to check */
98 #define P1A_B      0x0
99 #define P1C	   0x1
100 #define P1D_E_F    0x3
101 #define P1G	   0x7
102 #define P1G_21R2   0xf
103 
104 #define MP001 0x1		/* Single 9090/8096 */
105 #define MP005 0x4		/* Single Sband */
106 #define MP008 0x6		/* Dual diversity VHF-UHF-LBAND */
107 #define MP009 0x7		/* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
108 
109 #define pgm_read_word(w) (*w)
110 
111 struct dc_calibration;
112 
113 struct dib0090_tuning {
114 	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */
115 	u8 switch_trim;
116 	u8 lna_tune;
117 	u16 lna_bias;
118 	u16 v2i;
119 	u16 mix;
120 	u16 load;
121 	u16 tuner_enable;
122 };
123 
124 struct dib0090_pll {
125 	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */
126 	u8 vco_band;
127 	u8 hfdiv_code;
128 	u8 hfdiv;
129 	u8 topresc;
130 };
131 
132 struct dib0090_identity {
133 	u8 version;
134 	u8 product;
135 	u8 p1g;
136 	u8 in_soc;
137 };
138 
139 struct dib0090_state {
140 	struct i2c_adapter *i2c;
141 	struct dvb_frontend *fe;
142 	const struct dib0090_config *config;
143 
144 	u8 current_band;
145 	enum frontend_tune_state tune_state;
146 	u32 current_rf;
147 
148 	u16 wbd_offset;
149 	s16 wbd_target;		/* in dB */
150 
151 	s16 rf_gain_limit;	/* take-over-point: where to split between bb and rf gain */
152 	s16 current_gain;	/* keeps the currently programmed gain */
153 	u8 agc_step;		/* new binary search */
154 
155 	u16 gain[2];		/* for channel monitoring */
156 
157 	const u16 *rf_ramp;
158 	const u16 *bb_ramp;
159 
160 	/* for the software AGC ramps */
161 	u16 bb_1_def;
162 	u16 rf_lt_def;
163 	u16 gain_reg[4];
164 
165 	/* for the captrim/dc-offset search */
166 	s8 step;
167 	s16 adc_diff;
168 	s16 min_adc_diff;
169 
170 	s8 captrim;
171 	s8 fcaptrim;
172 
173 	const struct dc_calibration *dc;
174 	u16 bb6, bb7;
175 
176 	const struct dib0090_tuning *current_tune_table_index;
177 	const struct dib0090_pll *current_pll_table_index;
178 
179 	u8 tuner_is_tuned;
180 	u8 agc_freeze;
181 
182 	struct dib0090_identity identity;
183 
184 	u32 rf_request;
185 	u8 current_standard;
186 
187 	u8 calibrate;
188 	u32 rest;
189 	u16 bias;
190 	s16 temperature;
191 
192 	u8 wbd_calibration_gain;
193 	const struct dib0090_wbd_slope *current_wbd_table;
194 	u16 wbdmux;
195 
196 	/* for the I2C transfer */
197 	struct i2c_msg msg[2];
198 	u8 i2c_write_buffer[3];
199 	u8 i2c_read_buffer[2];
200 	struct mutex i2c_buffer_lock;
201 };
202 
203 struct dib0090_fw_state {
204 	struct i2c_adapter *i2c;
205 	struct dvb_frontend *fe;
206 	struct dib0090_identity identity;
207 	const struct dib0090_config *config;
208 
209 	/* for the I2C transfer */
210 	struct i2c_msg msg;
211 	u8 i2c_write_buffer[2];
212 	u8 i2c_read_buffer[2];
213 	struct mutex i2c_buffer_lock;
214 };
215 
216 static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
217 {
218 	u16 ret;
219 
220 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
221 		dprintk("could not acquire lock");
222 		return 0;
223 	}
224 
225 	state->i2c_write_buffer[0] = reg;
226 
227 	memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
228 	state->msg[0].addr = state->config->i2c_address;
229 	state->msg[0].flags = 0;
230 	state->msg[0].buf = state->i2c_write_buffer;
231 	state->msg[0].len = 1;
232 	state->msg[1].addr = state->config->i2c_address;
233 	state->msg[1].flags = I2C_M_RD;
234 	state->msg[1].buf = state->i2c_read_buffer;
235 	state->msg[1].len = 2;
236 
237 	if (i2c_transfer(state->i2c, state->msg, 2) != 2) {
238 		printk(KERN_WARNING "DiB0090 I2C read failed\n");
239 		ret = 0;
240 	} else
241 		ret = (state->i2c_read_buffer[0] << 8)
242 			| state->i2c_read_buffer[1];
243 
244 	mutex_unlock(&state->i2c_buffer_lock);
245 	return ret;
246 }
247 
248 static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
249 {
250 	int ret;
251 
252 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
253 		dprintk("could not acquire lock");
254 		return -EINVAL;
255 	}
256 
257 	state->i2c_write_buffer[0] = reg & 0xff;
258 	state->i2c_write_buffer[1] = val >> 8;
259 	state->i2c_write_buffer[2] = val & 0xff;
260 
261 	memset(state->msg, 0, sizeof(struct i2c_msg));
262 	state->msg[0].addr = state->config->i2c_address;
263 	state->msg[0].flags = 0;
264 	state->msg[0].buf = state->i2c_write_buffer;
265 	state->msg[0].len = 3;
266 
267 	if (i2c_transfer(state->i2c, state->msg, 1) != 1) {
268 		printk(KERN_WARNING "DiB0090 I2C write failed\n");
269 		ret = -EREMOTEIO;
270 	} else
271 		ret = 0;
272 
273 	mutex_unlock(&state->i2c_buffer_lock);
274 	return ret;
275 }
276 
277 static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
278 {
279 	u16 ret;
280 
281 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
282 		dprintk("could not acquire lock");
283 		return 0;
284 	}
285 
286 	state->i2c_write_buffer[0] = reg;
287 
288 	memset(&state->msg, 0, sizeof(struct i2c_msg));
289 	state->msg.addr = reg;
290 	state->msg.flags = I2C_M_RD;
291 	state->msg.buf = state->i2c_read_buffer;
292 	state->msg.len = 2;
293 	if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
294 		printk(KERN_WARNING "DiB0090 I2C read failed\n");
295 		ret = 0;
296 	} else
297 		ret = (state->i2c_read_buffer[0] << 8)
298 			| state->i2c_read_buffer[1];
299 
300 	mutex_unlock(&state->i2c_buffer_lock);
301 	return ret;
302 }
303 
304 static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
305 {
306 	int ret;
307 
308 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
309 		dprintk("could not acquire lock");
310 		return -EINVAL;
311 	}
312 
313 	state->i2c_write_buffer[0] = val >> 8;
314 	state->i2c_write_buffer[1] = val & 0xff;
315 
316 	memset(&state->msg, 0, sizeof(struct i2c_msg));
317 	state->msg.addr = reg;
318 	state->msg.flags = 0;
319 	state->msg.buf = state->i2c_write_buffer;
320 	state->msg.len = 2;
321 	if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
322 		printk(KERN_WARNING "DiB0090 I2C write failed\n");
323 		ret = -EREMOTEIO;
324 	} else
325 		ret = 0;
326 
327 	mutex_unlock(&state->i2c_buffer_lock);
328 	return ret;
329 }
330 
331 #define HARD_RESET(state) do {  if (cfg->reset) {  if (cfg->sleep) cfg->sleep(fe, 0); msleep(10);  cfg->reset(fe, 1); msleep(10);  cfg->reset(fe, 0); msleep(10);  }  } while (0)
332 #define ADC_TARGET -220
333 #define GAIN_ALPHA 5
334 #define WBD_ALPHA 6
335 #define LPF	100
336 static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
337 {
338 	do {
339 		dib0090_write_reg(state, r++, *b++);
340 	} while (--c);
341 }
342 
343 static int dib0090_identify(struct dvb_frontend *fe)
344 {
345 	struct dib0090_state *state = fe->tuner_priv;
346 	u16 v;
347 	struct dib0090_identity *identity = &state->identity;
348 
349 	v = dib0090_read_reg(state, 0x1a);
350 
351 	identity->p1g = 0;
352 	identity->in_soc = 0;
353 
354 	dprintk("Tuner identification (Version = 0x%04x)", v);
355 
356 	/* without PLL lock info */
357 	v &= ~KROSUS_PLL_LOCKED;
358 
359 	identity->version = v & 0xff;
360 	identity->product = (v >> 8) & 0xf;
361 
362 	if (identity->product != KROSUS)
363 		goto identification_error;
364 
365 	if ((identity->version & 0x3) == SOC) {
366 		identity->in_soc = 1;
367 		switch (identity->version) {
368 		case SOC_8090_P1G_11R1:
369 			dprintk("SOC 8090 P1-G11R1 Has been detected");
370 			identity->p1g = 1;
371 			break;
372 		case SOC_8090_P1G_21R1:
373 			dprintk("SOC 8090 P1-G21R1 Has been detected");
374 			identity->p1g = 1;
375 			break;
376 		case SOC_7090_P1G_11R1:
377 			dprintk("SOC 7090 P1-G11R1 Has been detected");
378 			identity->p1g = 1;
379 			break;
380 		case SOC_7090_P1G_21R1:
381 			dprintk("SOC 7090 P1-G21R1 Has been detected");
382 			identity->p1g = 1;
383 			break;
384 		default:
385 			goto identification_error;
386 		}
387 	} else {
388 		switch ((identity->version >> 5) & 0x7) {
389 		case MP001:
390 			dprintk("MP001 : 9090/8096");
391 			break;
392 		case MP005:
393 			dprintk("MP005 : Single Sband");
394 			break;
395 		case MP008:
396 			dprintk("MP008 : diversity VHF-UHF-LBAND");
397 			break;
398 		case MP009:
399 			dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
400 			break;
401 		default:
402 			goto identification_error;
403 		}
404 
405 		switch (identity->version & 0x1f) {
406 		case P1G_21R2:
407 			dprintk("P1G_21R2 detected");
408 			identity->p1g = 1;
409 			break;
410 		case P1G:
411 			dprintk("P1G detected");
412 			identity->p1g = 1;
413 			break;
414 		case P1D_E_F:
415 			dprintk("P1D/E/F detected");
416 			break;
417 		case P1C:
418 			dprintk("P1C detected");
419 			break;
420 		case P1A_B:
421 			dprintk("P1-A/B detected: driver is deactivated - not available");
422 			goto identification_error;
423 			break;
424 		default:
425 			goto identification_error;
426 		}
427 	}
428 
429 	return 0;
430 
431 identification_error:
432 	return -EIO;
433 }
434 
435 static int dib0090_fw_identify(struct dvb_frontend *fe)
436 {
437 	struct dib0090_fw_state *state = fe->tuner_priv;
438 	struct dib0090_identity *identity = &state->identity;
439 
440 	u16 v = dib0090_fw_read_reg(state, 0x1a);
441 	identity->p1g = 0;
442 	identity->in_soc = 0;
443 
444 	dprintk("FE: Tuner identification (Version = 0x%04x)", v);
445 
446 	/* without PLL lock info */
447 	v &= ~KROSUS_PLL_LOCKED;
448 
449 	identity->version = v & 0xff;
450 	identity->product = (v >> 8) & 0xf;
451 
452 	if (identity->product != KROSUS)
453 		goto identification_error;
454 
455 	if ((identity->version & 0x3) == SOC) {
456 		identity->in_soc = 1;
457 		switch (identity->version) {
458 		case SOC_8090_P1G_11R1:
459 			dprintk("SOC 8090 P1-G11R1 Has been detected");
460 			identity->p1g = 1;
461 			break;
462 		case SOC_8090_P1G_21R1:
463 			dprintk("SOC 8090 P1-G21R1 Has been detected");
464 			identity->p1g = 1;
465 			break;
466 		case SOC_7090_P1G_11R1:
467 			dprintk("SOC 7090 P1-G11R1 Has been detected");
468 			identity->p1g = 1;
469 			break;
470 		case SOC_7090_P1G_21R1:
471 			dprintk("SOC 7090 P1-G21R1 Has been detected");
472 			identity->p1g = 1;
473 			break;
474 		default:
475 			goto identification_error;
476 		}
477 	} else {
478 		switch ((identity->version >> 5) & 0x7) {
479 		case MP001:
480 			dprintk("MP001 : 9090/8096");
481 			break;
482 		case MP005:
483 			dprintk("MP005 : Single Sband");
484 			break;
485 		case MP008:
486 			dprintk("MP008 : diversity VHF-UHF-LBAND");
487 			break;
488 		case MP009:
489 			dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
490 			break;
491 		default:
492 			goto identification_error;
493 		}
494 
495 		switch (identity->version & 0x1f) {
496 		case P1G_21R2:
497 			dprintk("P1G_21R2 detected");
498 			identity->p1g = 1;
499 			break;
500 		case P1G:
501 			dprintk("P1G detected");
502 			identity->p1g = 1;
503 			break;
504 		case P1D_E_F:
505 			dprintk("P1D/E/F detected");
506 			break;
507 		case P1C:
508 			dprintk("P1C detected");
509 			break;
510 		case P1A_B:
511 			dprintk("P1-A/B detected: driver is deactivated - not available");
512 			goto identification_error;
513 			break;
514 		default:
515 			goto identification_error;
516 		}
517 	}
518 
519 	return 0;
520 
521 identification_error:
522 	return -EIO;
523 }
524 
525 static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
526 {
527 	struct dib0090_state *state = fe->tuner_priv;
528 	u16 PllCfg, i, v;
529 
530 	HARD_RESET(state);
531 	dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
532 	if (cfg->in_soc)
533 		return;
534 
535 	dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);	/* PLL, DIG_CLK and CRYSTAL remain */
536 	/* adcClkOutRatio=8->7, release reset */
537 	dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
538 	if (cfg->clkoutdrive != 0)
539 		dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
540 				| (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
541 	else
542 		dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
543 				| (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
544 
545 	/* Read Pll current config * */
546 	PllCfg = dib0090_read_reg(state, 0x21);
547 
548 	/** Reconfigure PLL if current setting is different from default setting **/
549 	if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc)
550 			&& !cfg->io.pll_bypass) {
551 
552 		/* Set Bypass mode */
553 		PllCfg |= (1 << 15);
554 		dib0090_write_reg(state, 0x21, PllCfg);
555 
556 		/* Set Reset Pll */
557 		PllCfg &= ~(1 << 13);
558 		dib0090_write_reg(state, 0x21, PllCfg);
559 
560 	/*** Set new Pll configuration in bypass and reset state ***/
561 		PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
562 		dib0090_write_reg(state, 0x21, PllCfg);
563 
564 		/* Remove Reset Pll */
565 		PllCfg |= (1 << 13);
566 		dib0090_write_reg(state, 0x21, PllCfg);
567 
568 	/*** Wait for PLL lock ***/
569 		i = 100;
570 		do {
571 			v = !!(dib0090_read_reg(state, 0x1a) & 0x800);
572 			if (v)
573 				break;
574 		} while (--i);
575 
576 		if (i == 0) {
577 			dprintk("Pll: Unable to lock Pll");
578 			return;
579 		}
580 
581 		/* Finally Remove Bypass mode */
582 		PllCfg &= ~(1 << 15);
583 		dib0090_write_reg(state, 0x21, PllCfg);
584 	}
585 
586 	if (cfg->io.pll_bypass) {
587 		PllCfg |= (cfg->io.pll_bypass << 15);
588 		dib0090_write_reg(state, 0x21, PllCfg);
589 	}
590 }
591 
592 static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
593 {
594 	struct dib0090_fw_state *state = fe->tuner_priv;
595 	u16 PllCfg;
596 	u16 v;
597 	int i;
598 
599 	dprintk("fw reset digital");
600 	HARD_RESET(state);
601 
602 	dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
603 	dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);	/* PLL, DIG_CLK and CRYSTAL remain */
604 
605 	dib0090_fw_write_reg(state, 0x20,
606 			((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv);
607 
608 	v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0);
609 	if (cfg->clkoutdrive != 0)
610 		v |= cfg->clkoutdrive << 5;
611 	else
612 		v |= 7 << 5;
613 
614 	v |= 2 << 10;
615 	dib0090_fw_write_reg(state, 0x23, v);
616 
617 	/* Read Pll current config * */
618 	PllCfg = dib0090_fw_read_reg(state, 0x21);
619 
620 	/** Reconfigure PLL if current setting is different from default setting **/
621 	if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) {
622 
623 		/* Set Bypass mode */
624 		PllCfg |= (1 << 15);
625 		dib0090_fw_write_reg(state, 0x21, PllCfg);
626 
627 		/* Set Reset Pll */
628 		PllCfg &= ~(1 << 13);
629 		dib0090_fw_write_reg(state, 0x21, PllCfg);
630 
631 	/*** Set new Pll configuration in bypass and reset state ***/
632 		PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
633 		dib0090_fw_write_reg(state, 0x21, PllCfg);
634 
635 		/* Remove Reset Pll */
636 		PllCfg |= (1 << 13);
637 		dib0090_fw_write_reg(state, 0x21, PllCfg);
638 
639 	/*** Wait for PLL lock ***/
640 		i = 100;
641 		do {
642 			v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800);
643 			if (v)
644 				break;
645 		} while (--i);
646 
647 		if (i == 0) {
648 			dprintk("Pll: Unable to lock Pll");
649 			return -EIO;
650 		}
651 
652 		/* Finally Remove Bypass mode */
653 		PllCfg &= ~(1 << 15);
654 		dib0090_fw_write_reg(state, 0x21, PllCfg);
655 	}
656 
657 	if (cfg->io.pll_bypass) {
658 		PllCfg |= (cfg->io.pll_bypass << 15);
659 		dib0090_fw_write_reg(state, 0x21, PllCfg);
660 	}
661 
662 	return dib0090_fw_identify(fe);
663 }
664 
665 static int dib0090_wakeup(struct dvb_frontend *fe)
666 {
667 	struct dib0090_state *state = fe->tuner_priv;
668 	if (state->config->sleep)
669 		state->config->sleep(fe, 0);
670 
671 	/* enable dataTX in case we have been restarted in the wrong moment */
672 	dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
673 	return 0;
674 }
675 
676 static int dib0090_sleep(struct dvb_frontend *fe)
677 {
678 	struct dib0090_state *state = fe->tuner_priv;
679 	if (state->config->sleep)
680 		state->config->sleep(fe, 1);
681 	return 0;
682 }
683 
684 void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
685 {
686 	struct dib0090_state *state = fe->tuner_priv;
687 	if (fast)
688 		dib0090_write_reg(state, 0x04, 0);
689 	else
690 		dib0090_write_reg(state, 0x04, 1);
691 }
692 
693 EXPORT_SYMBOL(dib0090_dcc_freq);
694 
695 static const u16 bb_ramp_pwm_normal_socs[] = {
696 	550, /* max BB gain in 10th of dB */
697 	(1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
698 	440,
699 	(4  << 9) | 0, /* BB_RAMP3 = 26dB */
700 	(0  << 9) | 208, /* BB_RAMP4 */
701 	(4  << 9) | 208, /* BB_RAMP5 = 29dB */
702 	(0  << 9) | 440, /* BB_RAMP6 */
703 };
704 
705 static const u16 rf_ramp_pwm_cband_7090p[] = {
706 	280, /* max RF gain in 10th of dB */
707 	18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
708 	504, /* ramp_max = maximum X used on the ramp */
709 	(29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
710 	(0  << 10) | 504, /* RF_RAMP6, LNA 1 */
711 	(60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
712 	(0  << 10) | 364, /* RF_RAMP8, LNA 2 */
713 	(34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
714 	(0  << 10) | 228, /* GAIN_4_2, LNA 3 */
715 	(37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
716 	(0  << 10) | 109, /* RF_RAMP4, LNA 4 */
717 };
718 
719 static const u16 rf_ramp_pwm_cband_7090e_sensitivity[] = {
720 	186, /* max RF gain in 10th of dB */
721 	40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
722 	746, /* ramp_max = maximum X used on the ramp */
723 	(10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */
724 	(0  << 10) | 746, /* RF_RAMP6, LNA 1 */
725 	(0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
726 	(0  << 10) | 0, /* RF_RAMP8, LNA 2 */
727 	(28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
728 	(0  << 10) | 345, /* GAIN_4_2, LNA 3 */
729 	(20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
730 	(0  << 10) | 200, /* RF_RAMP4, LNA 4 */
731 };
732 
733 static const u16 rf_ramp_pwm_cband_7090e_aci[] = {
734 	86, /* max RF gain in 10th of dB */
735 	40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
736 	345, /* ramp_max = maximum X used on the ramp */
737 	(0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */
738 	(0 << 10) | 0, /* RF_RAMP6, LNA 1 */
739 	(0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
740 	(0 << 10) | 0, /* RF_RAMP8, LNA 2 */
741 	(28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
742 	(0  << 10) | 345, /* GAIN_4_2, LNA 3 */
743 	(20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
744 	(0  << 10) | 200, /* RF_RAMP4, LNA 4 */
745 };
746 
747 static const u16 rf_ramp_pwm_cband_8090[] = {
748 	345, /* max RF gain in 10th of dB */
749 	29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
750 	1000, /* ramp_max = maximum X used on the ramp */
751 	(35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
752 	(0  << 10) | 1000, /* RF_RAMP4, LNA 1 */
753 	(58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
754 	(0  << 10) | 772, /* RF_RAMP6, LNA 2 */
755 	(27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
756 	(0  << 10) | 496, /* RF_RAMP8, LNA 3 */
757 	(40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
758 	(0  << 10) | 200, /* GAIN_4_2, LNA 4 */
759 };
760 
761 static const u16 rf_ramp_pwm_uhf_7090[] = {
762 	407, /* max RF gain in 10th of dB */
763 	13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
764 	529, /* ramp_max = maximum X used on the ramp */
765 	(23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
766 	(0  << 10) | 176, /* RF_RAMP4, LNA 1 */
767 	(63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
768 	(0  << 10) | 529, /* RF_RAMP6, LNA 2 */
769 	(48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
770 	(0  << 10) | 400, /* RF_RAMP8, LNA 3 */
771 	(29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
772 	(0  << 10) | 316, /* GAIN_4_2, LNA 4 */
773 };
774 
775 static const u16 rf_ramp_pwm_uhf_8090[] = {
776 	388, /* max RF gain in 10th of dB */
777 	26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
778 	1008, /* ramp_max = maximum X used on the ramp */
779 	(11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
780 	(0  << 10) | 369, /* RF_RAMP4, LNA 1 */
781 	(41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
782 	(0  << 10) | 1008, /* RF_RAMP6, LNA 2 */
783 	(27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
784 	(0  << 10) | 809, /* RF_RAMP8, LNA 3 */
785 	(14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
786 	(0  << 10) | 659, /* GAIN_4_2, LNA 4 */
787 };
788 
789 /* GENERAL PWM ramp definition for all other Krosus */
790 static const u16 bb_ramp_pwm_normal[] = {
791 	500, /* max BB gain in 10th of dB */
792 	8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
793 	400,
794 	(2  << 9) | 0, /* BB_RAMP3 = 21dB */
795 	(0  << 9) | 168, /* BB_RAMP4 */
796 	(2  << 9) | 168, /* BB_RAMP5 = 29dB */
797 	(0  << 9) | 400, /* BB_RAMP6 */
798 };
799 
800 #if 0
801 /* Currently unused */
802 static const u16 bb_ramp_pwm_boost[] = {
803 	550, /* max BB gain in 10th of dB */
804 	8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
805 	440,
806 	(2  << 9) | 0, /* BB_RAMP3 = 26dB */
807 	(0  << 9) | 208, /* BB_RAMP4 */
808 	(2  << 9) | 208, /* BB_RAMP5 = 29dB */
809 	(0  << 9) | 440, /* BB_RAMP6 */
810 };
811 #endif
812 
813 static const u16 rf_ramp_pwm_cband[] = {
814 	314, /* max RF gain in 10th of dB */
815 	33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
816 	1023, /* ramp_max = maximum X used on the ramp */
817 	(8  << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */
818 	(0  << 10) | 1023, /* RF_RAMP4, LNA 1 */
819 	(15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */
820 	(0  << 10) | 742, /* RF_RAMP6, LNA 2 */
821 	(9  << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */
822 	(0  << 10) | 468, /* RF_RAMP8, LNA 3 */
823 	(9  << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
824 	(0  << 10) | 233, /* GAIN_4_2, LNA 4 */
825 };
826 
827 static const u16 rf_ramp_pwm_vhf[] = {
828 	398, /* max RF gain in 10th of dB */
829 	24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
830 	954, /* ramp_max = maximum X used on the ramp */
831 	(7  << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
832 	(0  << 10) | 290, /* RF_RAMP4, LNA 1 */
833 	(16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
834 	(0  << 10) | 954, /* RF_RAMP6, LNA 2 */
835 	(17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
836 	(0  << 10) | 699, /* RF_RAMP8, LNA 3 */
837 	(7  << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
838 	(0  << 10) | 580, /* GAIN_4_2, LNA 4 */
839 };
840 
841 static const u16 rf_ramp_pwm_uhf[] = {
842 	398, /* max RF gain in 10th of dB */
843 	24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
844 	954, /* ramp_max = maximum X used on the ramp */
845 	(7  << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
846 	(0  << 10) | 290, /* RF_RAMP4, LNA 1 */
847 	(16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
848 	(0  << 10) | 954, /* RF_RAMP6, LNA 2 */
849 	(17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
850 	(0  << 10) | 699, /* RF_RAMP8, LNA 3 */
851 	(7  << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
852 	(0  << 10) | 580, /* GAIN_4_2, LNA 4 */
853 };
854 
855 #if 0
856 /* Currently unused */
857 static const u16 rf_ramp_pwm_sband[] = {
858 	253, /* max RF gain in 10th of dB */
859 	38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
860 	961,
861 	(4  << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */
862 	(0  << 10) | 508, /* RF_RAMP4, LNA 1 */
863 	(9  << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */
864 	(0  << 10) | 961, /* RF_RAMP6, LNA 2 */
865 	(0  << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */
866 	(0  << 10) | 0, /* RF_RAMP8, LNA 3 */
867 	(0  << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
868 	(0  << 10) | 0, /* GAIN_4_2, LNA 4 */
869 };
870 #endif
871 
872 struct slope {
873 	s16 range;
874 	s16 slope;
875 };
876 static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
877 {
878 	u8 i;
879 	u16 rest;
880 	u16 ret = 0;
881 	for (i = 0; i < num; i++) {
882 		if (val > slopes[i].range)
883 			rest = slopes[i].range;
884 		else
885 			rest = val;
886 		ret += (rest * slopes[i].slope) / slopes[i].range;
887 		val -= rest;
888 	}
889 	return ret;
890 }
891 
892 static const struct slope dib0090_wbd_slopes[3] = {
893 	{66, 120},		/* -64,-52: offset -   65 */
894 	{600, 170},		/* -52,-35: 65     -  665 */
895 	{170, 250},		/* -45,-10: 665    - 835 */
896 };
897 
898 static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
899 {
900 	wbd &= 0x3ff;
901 	if (wbd < state->wbd_offset)
902 		wbd = 0;
903 	else
904 		wbd -= state->wbd_offset;
905 	/* -64dB is the floor */
906 	return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
907 }
908 
909 static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
910 {
911 	u16 offset = 250;
912 
913 	/* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
914 
915 	if (state->current_band == BAND_VHF)
916 		offset = 650;
917 #ifndef FIRMWARE_FIREFLY
918 	if (state->current_band == BAND_VHF)
919 		offset = state->config->wbd_vhf_offset;
920 	if (state->current_band == BAND_CBAND)
921 		offset = state->config->wbd_cband_offset;
922 #endif
923 
924 	state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
925 	dprintk("wbd-target: %d dB", (u32) state->wbd_target);
926 }
927 
928 static const int gain_reg_addr[4] = {
929 	0x08, 0x0a, 0x0f, 0x01
930 };
931 
932 static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
933 {
934 	u16 rf, bb, ref;
935 	u16 i, v, gain_reg[4] = { 0 }, gain;
936 	const u16 *g;
937 
938 	if (top_delta < -511)
939 		top_delta = -511;
940 	if (top_delta > 511)
941 		top_delta = 511;
942 
943 	if (force) {
944 		top_delta *= (1 << WBD_ALPHA);
945 		gain_delta *= (1 << GAIN_ALPHA);
946 	}
947 
948 	if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit))	/* overflow */
949 		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
950 	else
951 		state->rf_gain_limit += top_delta;
952 
953 	if (state->rf_gain_limit < 0)	/*underflow */
954 		state->rf_gain_limit = 0;
955 
956 	/* use gain as a temporary variable and correct current_gain */
957 	gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
958 	if (gain_delta >= ((s16) gain - state->current_gain))	/* overflow */
959 		state->current_gain = gain;
960 	else
961 		state->current_gain += gain_delta;
962 	/* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
963 	if (state->current_gain < 0)
964 		state->current_gain = 0;
965 
966 	/* now split total gain to rf and bb gain */
967 	gain = state->current_gain >> GAIN_ALPHA;
968 
969 	/* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
970 	if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
971 		rf = state->rf_gain_limit >> WBD_ALPHA;
972 		bb = gain - rf;
973 		if (bb > state->bb_ramp[0])
974 			bb = state->bb_ramp[0];
975 	} else {		/* high signal level -> all gains put on RF */
976 		rf = gain;
977 		bb = 0;
978 	}
979 
980 	state->gain[0] = rf;
981 	state->gain[1] = bb;
982 
983 	/* software ramp */
984 	/* Start with RF gains */
985 	g = state->rf_ramp + 1;	/* point on RF LNA1 max gain */
986 	ref = rf;
987 	for (i = 0; i < 7; i++) {	/* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
988 		if (g[0] == 0 || ref < (g[1] - g[0]))	/* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
989 			v = 0;	/* force the gain to write for the current amp to be null */
990 		else if (ref >= g[1])	/* Gain to set is higher than the high working point of this amp */
991 			v = g[2];	/* force this amp to be full gain */
992 		else		/* compute the value to set to this amp because we are somewhere in his range */
993 			v = ((ref - (g[1] - g[0])) * g[2]) / g[0];
994 
995 		if (i == 0)	/* LNA 1 reg mapping */
996 			gain_reg[0] = v;
997 		else if (i == 1)	/* LNA 2 reg mapping */
998 			gain_reg[0] |= v << 7;
999 		else if (i == 2)	/* LNA 3 reg mapping */
1000 			gain_reg[1] = v;
1001 		else if (i == 3)	/* LNA 4 reg mapping */
1002 			gain_reg[1] |= v << 7;
1003 		else if (i == 4)	/* CBAND LNA reg mapping */
1004 			gain_reg[2] = v | state->rf_lt_def;
1005 		else if (i == 5)	/* BB gain 1 reg mapping */
1006 			gain_reg[3] = v << 3;
1007 		else if (i == 6)	/* BB gain 2 reg mapping */
1008 			gain_reg[3] |= v << 8;
1009 
1010 		g += 3;		/* go to next gain bloc */
1011 
1012 		/* When RF is finished, start with BB */
1013 		if (i == 4) {
1014 			g = state->bb_ramp + 1;	/* point on BB gain 1 max gain */
1015 			ref = bb;
1016 		}
1017 	}
1018 	gain_reg[3] |= state->bb_1_def;
1019 	gain_reg[3] |= ((bb % 10) * 100) / 125;
1020 
1021 #ifdef DEBUG_AGC
1022 	dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb,
1023 		gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
1024 #endif
1025 
1026 	/* Write the amplifier regs */
1027 	for (i = 0; i < 4; i++) {
1028 		v = gain_reg[i];
1029 		if (force || state->gain_reg[i] != v) {
1030 			state->gain_reg[i] = v;
1031 			dib0090_write_reg(state, gain_reg_addr[i], v);
1032 		}
1033 	}
1034 }
1035 
1036 static void dib0090_set_boost(struct dib0090_state *state, int onoff)
1037 {
1038 	state->bb_1_def &= 0xdfff;
1039 	state->bb_1_def |= onoff << 13;
1040 }
1041 
1042 static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
1043 {
1044 	state->rf_ramp = cfg;
1045 }
1046 
1047 static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
1048 {
1049 	state->rf_ramp = cfg;
1050 
1051 	dib0090_write_reg(state, 0x2a, 0xffff);
1052 
1053 	dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a));
1054 
1055 	dib0090_write_regs(state, 0x2c, cfg + 3, 6);
1056 	dib0090_write_regs(state, 0x3e, cfg + 9, 2);
1057 }
1058 
1059 static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
1060 {
1061 	state->bb_ramp = cfg;
1062 	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */
1063 }
1064 
1065 static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
1066 {
1067 	state->bb_ramp = cfg;
1068 
1069 	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */
1070 
1071 	dib0090_write_reg(state, 0x33, 0xffff);
1072 	dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33));
1073 	dib0090_write_regs(state, 0x35, cfg + 3, 4);
1074 }
1075 
1076 void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
1077 {
1078 	struct dib0090_state *state = fe->tuner_priv;
1079 	u16 *bb_ramp = (u16 *)&bb_ramp_pwm_normal; /* default baseband config */
1080 	u16 *rf_ramp = NULL;
1081 	u8 en_pwm_rf_mux = 1;
1082 
1083 	/* reset the AGC */
1084 	if (state->config->use_pwm_agc) {
1085 		if (state->current_band == BAND_CBAND) {
1086 			if (state->identity.in_soc) {
1087 				bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
1088 				if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
1089 					rf_ramp = (u16 *)&rf_ramp_pwm_cband_8090;
1090 				else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) {
1091 					if (state->config->is_dib7090e) {
1092 						if (state->rf_ramp == NULL)
1093 							rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090e_sensitivity;
1094 						else
1095 							rf_ramp = (u16 *)state->rf_ramp;
1096 					} else
1097 						rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090p;
1098 				}
1099 			} else
1100 				rf_ramp = (u16 *)&rf_ramp_pwm_cband;
1101 		} else
1102 
1103 			if (state->current_band == BAND_VHF) {
1104 				if (state->identity.in_soc) {
1105 					bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
1106 					/* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */
1107 				} else
1108 					rf_ramp = (u16 *)&rf_ramp_pwm_vhf;
1109 			} else if (state->current_band == BAND_UHF) {
1110 				if (state->identity.in_soc) {
1111 					bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
1112 					if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
1113 						rf_ramp = (u16 *)&rf_ramp_pwm_uhf_8090;
1114 					else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
1115 						rf_ramp = (u16 *)&rf_ramp_pwm_uhf_7090;
1116 				} else
1117 					rf_ramp = (u16 *)&rf_ramp_pwm_uhf;
1118 			}
1119 		if (rf_ramp)
1120 			dib0090_set_rframp_pwm(state, rf_ramp);
1121 		dib0090_set_bbramp_pwm(state, bb_ramp);
1122 
1123 		/* activate the ramp generator using PWM control */
1124 		if (state->rf_ramp)
1125 			dprintk("ramp RF gain = %d BAND = %s version = %d",
1126 				state->rf_ramp[0],
1127 				(state->current_band == BAND_CBAND) ? "CBAND" : "NOT CBAND",
1128 				state->identity.version & 0x1f);
1129 
1130 		if (rf_ramp && ((state->rf_ramp && state->rf_ramp[0] == 0) ||
1131 		    (state->current_band == BAND_CBAND &&
1132 		    (state->identity.version & 0x1f) <= P1D_E_F))) {
1133 			dprintk("DE-Engage mux for direct gain reg control");
1134 			en_pwm_rf_mux = 0;
1135 		} else
1136 			dprintk("Engage mux for PWM control");
1137 
1138 		dib0090_write_reg(state, 0x32, (en_pwm_rf_mux << 12) | (en_pwm_rf_mux << 11));
1139 
1140 		/* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/
1141 		if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
1142 			dib0090_write_reg(state, 0x04, 3);
1143 		else
1144 			dib0090_write_reg(state, 0x04, 1);
1145 		dib0090_write_reg(state, 0x39, (1 << 10)); /* 0 gain by default */
1146 	}
1147 }
1148 EXPORT_SYMBOL(dib0090_pwm_gain_reset);
1149 
1150 void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff)
1151 {
1152 	struct dib0090_state *state = fe->tuner_priv;
1153 	if (DC_servo_cutoff < 4)
1154 		dib0090_write_reg(state, 0x04, DC_servo_cutoff);
1155 }
1156 EXPORT_SYMBOL(dib0090_set_dc_servo);
1157 
1158 static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
1159 {
1160 	u16 adc_val = dib0090_read_reg(state, 0x1d);
1161 	if (state->identity.in_soc)
1162 		adc_val >>= 2;
1163 	return adc_val;
1164 }
1165 
1166 int dib0090_gain_control(struct dvb_frontend *fe)
1167 {
1168 	struct dib0090_state *state = fe->tuner_priv;
1169 	enum frontend_tune_state *tune_state = &state->tune_state;
1170 	int ret = 10;
1171 
1172 	u16 wbd_val = 0;
1173 	u8 apply_gain_immediatly = 1;
1174 	s16 wbd_error = 0, adc_error = 0;
1175 
1176 	if (*tune_state == CT_AGC_START) {
1177 		state->agc_freeze = 0;
1178 		dib0090_write_reg(state, 0x04, 0x0);
1179 
1180 #ifdef CONFIG_BAND_SBAND
1181 		if (state->current_band == BAND_SBAND) {
1182 			dib0090_set_rframp(state, rf_ramp_sband);
1183 			dib0090_set_bbramp(state, bb_ramp_boost);
1184 		} else
1185 #endif
1186 #ifdef CONFIG_BAND_VHF
1187 		if (state->current_band == BAND_VHF && !state->identity.p1g) {
1188 			dib0090_set_rframp(state, rf_ramp_pwm_vhf);
1189 			dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1190 		} else
1191 #endif
1192 #ifdef CONFIG_BAND_CBAND
1193 		if (state->current_band == BAND_CBAND && !state->identity.p1g) {
1194 			dib0090_set_rframp(state, rf_ramp_pwm_cband);
1195 			dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1196 		} else
1197 #endif
1198 		if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) {
1199 			dib0090_set_rframp(state, rf_ramp_pwm_cband_7090p);
1200 			dib0090_set_bbramp(state, bb_ramp_pwm_normal_socs);
1201 		} else {
1202 			dib0090_set_rframp(state, rf_ramp_pwm_uhf);
1203 			dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1204 		}
1205 
1206 		dib0090_write_reg(state, 0x32, 0);
1207 		dib0090_write_reg(state, 0x39, 0);
1208 
1209 		dib0090_wbd_target(state, state->current_rf);
1210 
1211 		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
1212 		state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;
1213 
1214 		*tune_state = CT_AGC_STEP_0;
1215 	} else if (!state->agc_freeze) {
1216 		s16 wbd = 0, i, cnt;
1217 
1218 		int adc;
1219 		wbd_val = dib0090_get_slow_adc_val(state);
1220 
1221 		if (*tune_state == CT_AGC_STEP_0)
1222 			cnt = 5;
1223 		else
1224 			cnt = 1;
1225 
1226 		for (i = 0; i < cnt; i++) {
1227 			wbd_val = dib0090_get_slow_adc_val(state);
1228 			wbd += dib0090_wbd_to_db(state, wbd_val);
1229 		}
1230 		wbd /= cnt;
1231 		wbd_error = state->wbd_target - wbd;
1232 
1233 		if (*tune_state == CT_AGC_STEP_0) {
1234 			if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) {
1235 #ifdef CONFIG_BAND_CBAND
1236 				/* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1237 				u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
1238 				if (state->current_band == BAND_CBAND && ltg2) {
1239 					ltg2 >>= 1;
1240 					state->rf_lt_def &= ltg2 << 10;	/* reduce in 3 steps from 7 to 0 */
1241 				}
1242 #endif
1243 			} else {
1244 				state->agc_step = 0;
1245 				*tune_state = CT_AGC_STEP_1;
1246 			}
1247 		} else {
1248 			/* calc the adc power */
1249 			adc = state->config->get_adc_power(fe);
1250 			adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21;	/* included in [0:-700] */
1251 
1252 			adc_error = (s16) (((s32) ADC_TARGET) - adc);
1253 #ifdef CONFIG_STANDARD_DAB
1254 			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
1255 				adc_error -= 10;
1256 #endif
1257 #ifdef CONFIG_STANDARD_DVBT
1258 			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
1259 					(state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
1260 				adc_error += 60;
1261 #endif
1262 #ifdef CONFIG_SYS_ISDBT
1263 			if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
1264 								0)
1265 							&&
1266 							((state->fe->dtv_property_cache.layer[0].modulation ==
1267 							  QAM_64)
1268 							 || (state->fe->dtv_property_cache.
1269 								 layer[0].modulation == QAM_16)))
1270 						||
1271 						((state->fe->dtv_property_cache.layer[1].segment_count >
1272 						  0)
1273 						 &&
1274 						 ((state->fe->dtv_property_cache.layer[1].modulation ==
1275 						   QAM_64)
1276 						  || (state->fe->dtv_property_cache.
1277 							  layer[1].modulation == QAM_16)))
1278 						||
1279 						((state->fe->dtv_property_cache.layer[2].segment_count >
1280 						  0)
1281 						 &&
1282 						 ((state->fe->dtv_property_cache.layer[2].modulation ==
1283 						   QAM_64)
1284 						  || (state->fe->dtv_property_cache.
1285 							  layer[2].modulation == QAM_16)))
1286 						)
1287 				)
1288 				adc_error += 60;
1289 #endif
1290 
1291 			if (*tune_state == CT_AGC_STEP_1) {	/* quickly go to the correct range of the ADC power */
1292 				if (ABS(adc_error) < 50 || state->agc_step++ > 5) {
1293 
1294 #ifdef CONFIG_STANDARD_DAB
1295 					if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
1296 						dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63));	/* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1297 						dib0090_write_reg(state, 0x04, 0x0);
1298 					} else
1299 #endif
1300 					{
1301 						dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1302 						dib0090_write_reg(state, 0x04, 0x01);	/*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1303 					}
1304 
1305 					*tune_state = CT_AGC_STOP;
1306 				}
1307 			} else {
1308 				/* everything higher than or equal to CT_AGC_STOP means tracking */
1309 				ret = 100;	/* 10ms interval */
1310 				apply_gain_immediatly = 0;
1311 			}
1312 		}
1313 #ifdef DEBUG_AGC
1314 		dprintk
1315 			("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
1316 			 (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
1317 			 (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
1318 #endif
1319 	}
1320 
1321 	/* apply gain */
1322 	if (!state->agc_freeze)
1323 		dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
1324 	return ret;
1325 }
1326 
1327 EXPORT_SYMBOL(dib0090_gain_control);
1328 
1329 void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
1330 {
1331 	struct dib0090_state *state = fe->tuner_priv;
1332 	if (rf)
1333 		*rf = state->gain[0];
1334 	if (bb)
1335 		*bb = state->gain[1];
1336 	if (rf_gain_limit)
1337 		*rf_gain_limit = state->rf_gain_limit;
1338 	if (rflt)
1339 		*rflt = (state->rf_lt_def >> 10) & 0x7;
1340 }
1341 
1342 EXPORT_SYMBOL(dib0090_get_current_gain);
1343 
1344 u16 dib0090_get_wbd_target(struct dvb_frontend *fe)
1345 {
1346 	struct dib0090_state *state = fe->tuner_priv;
1347 	u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000;
1348 	s32 current_temp = state->temperature;
1349 	s32 wbd_thot, wbd_tcold;
1350 	const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1351 
1352 	while (f_MHz > wbd->max_freq)
1353 		wbd++;
1354 
1355 	dprintk("using wbd-table-entry with max freq %d", wbd->max_freq);
1356 
1357 	if (current_temp < 0)
1358 		current_temp = 0;
1359 	if (current_temp > 128)
1360 		current_temp = 128;
1361 
1362 	state->wbdmux &= ~(7 << 13);
1363 	if (wbd->wbd_gain != 0)
1364 		state->wbdmux |= (wbd->wbd_gain << 13);
1365 	else
1366 		state->wbdmux |= (4 << 13);
1367 
1368 	dib0090_write_reg(state, 0x10, state->wbdmux);
1369 
1370 	wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
1371 	wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);
1372 
1373 	wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;
1374 
1375 	state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);
1376 	dprintk("wbd-target: %d dB", (u32) state->wbd_target);
1377 	dprintk("wbd offset applied is %d", wbd_tcold);
1378 
1379 	return state->wbd_offset + wbd_tcold;
1380 }
1381 EXPORT_SYMBOL(dib0090_get_wbd_target);
1382 
1383 u16 dib0090_get_wbd_offset(struct dvb_frontend *fe)
1384 {
1385 	struct dib0090_state *state = fe->tuner_priv;
1386 	return state->wbd_offset;
1387 }
1388 EXPORT_SYMBOL(dib0090_get_wbd_offset);
1389 
1390 int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3)
1391 {
1392 	struct dib0090_state *state = fe->tuner_priv;
1393 
1394 	dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8)
1395 			| ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1));
1396 
1397 	return 0;
1398 }
1399 EXPORT_SYMBOL(dib0090_set_switch);
1400 
1401 int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff)
1402 {
1403 	struct dib0090_state *state = fe->tuner_priv;
1404 
1405 	dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff)
1406 			| ((onoff & 1) << 15));
1407 	return 0;
1408 }
1409 EXPORT_SYMBOL(dib0090_set_vga);
1410 
1411 int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity)
1412 {
1413 	struct dib0090_state *state = fe->tuner_priv;
1414 
1415 	if ((!state->identity.p1g) || (!state->identity.in_soc)
1416 			|| ((state->identity.version != SOC_7090_P1G_21R1)
1417 				&& (state->identity.version != SOC_7090_P1G_11R1))) {
1418 		dprintk("%s() function can only be used for dib7090P", __func__);
1419 		return -ENODEV;
1420 	}
1421 
1422 	if (cfg_sensitivity)
1423 		state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_sensitivity;
1424 	else
1425 		state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_aci;
1426 	dib0090_pwm_gain_reset(fe);
1427 
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL(dib0090_update_rframp_7090);
1431 
1432 static const u16 dib0090_defaults[] = {
1433 
1434 	25, 0x01,
1435 	0x0000,
1436 	0x99a0,
1437 	0x6008,
1438 	0x0000,
1439 	0x8bcb,
1440 	0x0000,
1441 	0x0405,
1442 	0x0000,
1443 	0x0000,
1444 	0x0000,
1445 	0xb802,
1446 	0x0300,
1447 	0x2d12,
1448 	0xbac0,
1449 	0x7c00,
1450 	0xdbb9,
1451 	0x0954,
1452 	0x0743,
1453 	0x8000,
1454 	0x0001,
1455 	0x0040,
1456 	0x0100,
1457 	0x0000,
1458 	0xe910,
1459 	0x149e,
1460 
1461 	1, 0x1c,
1462 	0xff2d,
1463 
1464 	1, 0x39,
1465 	0x0000,
1466 
1467 	2, 0x1e,
1468 	0x07FF,
1469 	0x0007,
1470 
1471 	1, 0x24,
1472 	EN_UHF | EN_CRYSTAL,
1473 
1474 	2, 0x3c,
1475 	0x3ff,
1476 	0x111,
1477 	0
1478 };
1479 
1480 static const u16 dib0090_p1g_additionnal_defaults[] = {
1481 	1, 0x05,
1482 	0xabcd,
1483 
1484 	1, 0x11,
1485 	0x00b4,
1486 
1487 	1, 0x1c,
1488 	0xfffd,
1489 
1490 	1, 0x40,
1491 	0x108,
1492 	0
1493 };
1494 
1495 static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n)
1496 {
1497 	u16 l, r;
1498 
1499 	l = pgm_read_word(n++);
1500 	while (l) {
1501 		r = pgm_read_word(n++);
1502 		do {
1503 			dib0090_write_reg(state, r, pgm_read_word(n++));
1504 			r++;
1505 		} while (--l);
1506 		l = pgm_read_word(n++);
1507 	}
1508 }
1509 
1510 #define CAP_VALUE_MIN (u8)  9
1511 #define CAP_VALUE_MAX (u8) 40
1512 #define HR_MIN	      (u8) 25
1513 #define HR_MAX	      (u8) 40
1514 #define POLY_MIN      (u8)  0
1515 #define POLY_MAX      (u8)  8
1516 
1517 static void dib0090_set_EFUSE(struct dib0090_state *state)
1518 {
1519 	u8 c, h, n;
1520 	u16 e2, e4;
1521 	u16 cal;
1522 
1523 	e2 = dib0090_read_reg(state, 0x26);
1524 	e4 = dib0090_read_reg(state, 0x28);
1525 
1526 	if ((state->identity.version == P1D_E_F) ||
1527 			(state->identity.version == P1G) || (e2 == 0xffff)) {
1528 
1529 		dib0090_write_reg(state, 0x22, 0x10);
1530 		cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff;
1531 
1532 		if ((cal < 670) || (cal == 1023))
1533 			cal = 850;
1534 		n = 165 - ((cal * 10)>>6) ;
1535 		e2 = e4 = (3<<12) | (34<<6) | (n);
1536 	}
1537 
1538 	if (e2 != e4)
1539 		e2 &= e4; /* Remove the redundancy  */
1540 
1541 	if (e2 != 0xffff) {
1542 		c = e2 & 0x3f;
1543 		n = (e2 >> 12) & 0xf;
1544 		h = (e2 >> 6) & 0x3f;
1545 
1546 		if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
1547 			c = 32;
1548 		else
1549 			c += 14;
1550 		if ((h >= HR_MAX) || (h <= HR_MIN))
1551 			h = 34;
1552 		if ((n >= POLY_MAX) || (n <= POLY_MIN))
1553 			n = 3;
1554 
1555 		dib0090_write_reg(state, 0x13, (h << 10));
1556 		e2 = (n << 11) | ((h >> 2)<<6) | c;
1557 		dib0090_write_reg(state, 0x2, e2); /* Load the BB_2 */
1558 	}
1559 }
1560 
1561 static int dib0090_reset(struct dvb_frontend *fe)
1562 {
1563 	struct dib0090_state *state = fe->tuner_priv;
1564 
1565 	dib0090_reset_digital(fe, state->config);
1566 	if (dib0090_identify(fe) < 0)
1567 		return -EIO;
1568 
1569 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1570 	if (!(state->identity.version & 0x1))	/* it is P1B - reset is already done */
1571 		return 0;
1572 #endif
1573 
1574 	if (!state->identity.in_soc) {
1575 		if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2)
1576 			dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1577 		else
1578 			dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1579 	}
1580 
1581 	dib0090_set_default_config(state, dib0090_defaults);
1582 
1583 	if (state->identity.in_soc)
1584 		dib0090_write_reg(state, 0x18, 0x2910);  /* charge pump current = 0 */
1585 
1586 	if (state->identity.p1g)
1587 		dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);
1588 
1589 	/* Update the efuse : Only available for KROSUS > P1C  and SOC as well*/
1590 	if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc))
1591 		dib0090_set_EFUSE(state);
1592 
1593 	/* Congigure in function of the crystal */
1594 	if (state->config->force_crystal_mode != 0)
1595 		dib0090_write_reg(state, 0x14,
1596 				state->config->force_crystal_mode & 3);
1597 	else if (state->config->io.clock_khz >= 24000)
1598 		dib0090_write_reg(state, 0x14, 1);
1599 	else
1600 		dib0090_write_reg(state, 0x14, 2);
1601 	dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);
1602 
1603 	state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL;	/* enable iq-offset-calibration and wbd-calibration when tuning next time */
1604 
1605 	return 0;
1606 }
1607 
1608 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
1609 #define INTERN_WAIT 10
1610 static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1611 {
1612 	int ret = INTERN_WAIT * 10;
1613 
1614 	switch (*tune_state) {
1615 	case CT_TUNER_STEP_2:
1616 		/* Turns to positive */
1617 		dib0090_write_reg(state, 0x1f, 0x7);
1618 		*tune_state = CT_TUNER_STEP_3;
1619 		break;
1620 
1621 	case CT_TUNER_STEP_3:
1622 		state->adc_diff = dib0090_read_reg(state, 0x1d);
1623 
1624 		/* Turns to negative */
1625 		dib0090_write_reg(state, 0x1f, 0x4);
1626 		*tune_state = CT_TUNER_STEP_4;
1627 		break;
1628 
1629 	case CT_TUNER_STEP_4:
1630 		state->adc_diff -= dib0090_read_reg(state, 0x1d);
1631 		*tune_state = CT_TUNER_STEP_5;
1632 		ret = 0;
1633 		break;
1634 
1635 	default:
1636 		break;
1637 	}
1638 
1639 	return ret;
1640 }
1641 
1642 struct dc_calibration {
1643 	u8 addr;
1644 	u8 offset;
1645 	u8 pga:1;
1646 	u16 bb1;
1647 	u8 i:1;
1648 };
1649 
1650 static const struct dc_calibration dc_table[] = {
1651 	/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1652 	{0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1653 	{0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1654 	/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1655 	{0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1656 	{0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1657 	{0},
1658 };
1659 
1660 static const struct dc_calibration dc_p1g_table[] = {
1661 	/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1662 	/* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
1663 	{0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
1664 	{0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
1665 	/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1666 	{0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
1667 	{0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
1668 	{0},
1669 };
1670 
1671 static void dib0090_set_trim(struct dib0090_state *state)
1672 {
1673 	u16 *val;
1674 
1675 	if (state->dc->addr == 0x07)
1676 		val = &state->bb7;
1677 	else
1678 		val = &state->bb6;
1679 
1680 	*val &= ~(0x1f << state->dc->offset);
1681 	*val |= state->step << state->dc->offset;
1682 
1683 	dib0090_write_reg(state, state->dc->addr, *val);
1684 }
1685 
1686 static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1687 {
1688 	int ret = 0;
1689 	u16 reg;
1690 
1691 	switch (*tune_state) {
1692 	case CT_TUNER_START:
1693 		dprintk("Start DC offset calibration");
1694 
1695 		/* force vcm2 = 0.8V */
1696 		state->bb6 = 0;
1697 		state->bb7 = 0x040d;
1698 
1699 		/* the LNA AND LO are off */
1700 		reg = dib0090_read_reg(state, 0x24) & 0x0ffb;	/* shutdown lna and lo */
1701 		dib0090_write_reg(state, 0x24, reg);
1702 
1703 		state->wbdmux = dib0090_read_reg(state, 0x10);
1704 		dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);
1705 		dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
1706 
1707 		state->dc = dc_table;
1708 
1709 		if (state->identity.p1g)
1710 			state->dc = dc_p1g_table;
1711 
1712 		/* fall through */
1713 	case CT_TUNER_STEP_0:
1714 		dprintk("Start/continue DC calibration for %s path", (state->dc->i == 1) ? "I" : "Q");
1715 		dib0090_write_reg(state, 0x01, state->dc->bb1);
1716 		dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));
1717 
1718 		state->step = 0;
1719 		state->min_adc_diff = 1023;
1720 		*tune_state = CT_TUNER_STEP_1;
1721 		ret = 50;
1722 		break;
1723 
1724 	case CT_TUNER_STEP_1:
1725 		dib0090_set_trim(state);
1726 		*tune_state = CT_TUNER_STEP_2;
1727 		break;
1728 
1729 	case CT_TUNER_STEP_2:
1730 	case CT_TUNER_STEP_3:
1731 	case CT_TUNER_STEP_4:
1732 		ret = dib0090_get_offset(state, tune_state);
1733 		break;
1734 
1735 	case CT_TUNER_STEP_5:	/* found an offset */
1736 		dprintk("adc_diff = %d, current step= %d", (u32) state->adc_diff, state->step);
1737 		if (state->step == 0 && state->adc_diff < 0) {
1738 			state->min_adc_diff = -1023;
1739 			dprintk("Change of sign of the minimum adc diff");
1740 		}
1741 
1742 		dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state->adc_diff, state->min_adc_diff, state->step);
1743 
1744 		/* first turn for this frequency */
1745 		if (state->step == 0) {
1746 			if (state->dc->pga && state->adc_diff < 0)
1747 				state->step = 0x10;
1748 			if (state->dc->pga == 0 && state->adc_diff > 0)
1749 				state->step = 0x10;
1750 		}
1751 
1752 		/* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1753 		if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
1754 			/* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1755 			state->step++;
1756 			state->min_adc_diff = state->adc_diff;
1757 			*tune_state = CT_TUNER_STEP_1;
1758 		} else {
1759 			/* the minimum was what we have seen in the step before */
1760 			if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) {
1761 				dprintk("Since adc_diff N = %d  > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff);
1762 				state->step--;
1763 			}
1764 
1765 			dib0090_set_trim(state);
1766 			dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->dc->addr, state->adc_diff, state->step);
1767 
1768 			state->dc++;
1769 			if (state->dc->addr == 0)	/* done */
1770 				*tune_state = CT_TUNER_STEP_6;
1771 			else
1772 				*tune_state = CT_TUNER_STEP_0;
1773 
1774 		}
1775 		break;
1776 
1777 	case CT_TUNER_STEP_6:
1778 		dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
1779 		dib0090_write_reg(state, 0x1f, 0x7);
1780 		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */
1781 		state->calibrate &= ~DC_CAL;
1782 	default:
1783 		break;
1784 	}
1785 	return ret;
1786 }
1787 
1788 static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1789 {
1790 	u8 wbd_gain;
1791 	const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1792 
1793 	switch (*tune_state) {
1794 	case CT_TUNER_START:
1795 		while (state->current_rf / 1000 > wbd->max_freq)
1796 			wbd++;
1797 		if (wbd->wbd_gain != 0)
1798 			wbd_gain = wbd->wbd_gain;
1799 		else {
1800 			wbd_gain = 4;
1801 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1802 			if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND))
1803 				wbd_gain = 2;
1804 #endif
1805 		}
1806 
1807 		if (wbd_gain == state->wbd_calibration_gain) {	/* the WBD calibration has already been done */
1808 			*tune_state = CT_TUNER_START;
1809 			state->calibrate &= ~WBD_CAL;
1810 			return 0;
1811 		}
1812 
1813 		dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));
1814 
1815 		dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));
1816 		*tune_state = CT_TUNER_STEP_0;
1817 		state->wbd_calibration_gain = wbd_gain;
1818 		return 90;	/* wait for the WBDMUX to switch and for the ADC to sample */
1819 
1820 	case CT_TUNER_STEP_0:
1821 		state->wbd_offset = dib0090_get_slow_adc_val(state);
1822 		dprintk("WBD calibration offset = %d", state->wbd_offset);
1823 		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */
1824 		state->calibrate &= ~WBD_CAL;
1825 		break;
1826 
1827 	default:
1828 		break;
1829 	}
1830 	return 0;
1831 }
1832 
1833 static void dib0090_set_bandwidth(struct dib0090_state *state)
1834 {
1835 	u16 tmp;
1836 
1837 	if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
1838 		tmp = (3 << 14);
1839 	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
1840 		tmp = (2 << 14);
1841 	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
1842 		tmp = (1 << 14);
1843 	else
1844 		tmp = (0 << 14);
1845 
1846 	state->bb_1_def &= 0x3fff;
1847 	state->bb_1_def |= tmp;
1848 
1849 	dib0090_write_reg(state, 0x01, state->bb_1_def);	/* be sure that we have the right bb-filter */
1850 
1851 	dib0090_write_reg(state, 0x03, 0x6008);	/* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1852 	dib0090_write_reg(state, 0x04, 0x1);	/* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1853 	if (state->identity.in_soc) {
1854 		dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1855 	} else {
1856 		dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f));	/* 22 = cap_value */
1857 		dib0090_write_reg(state, 0x05, 0xabcd);	/* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1858 	}
1859 }
1860 
1861 static const struct dib0090_pll dib0090_pll_table[] = {
1862 #ifdef CONFIG_BAND_CBAND
1863 	{56000, 0, 9, 48, 6},
1864 	{70000, 1, 9, 48, 6},
1865 	{87000, 0, 8, 32, 4},
1866 	{105000, 1, 8, 32, 4},
1867 	{115000, 0, 7, 24, 6},
1868 	{140000, 1, 7, 24, 6},
1869 	{170000, 0, 6, 16, 4},
1870 #endif
1871 #ifdef CONFIG_BAND_VHF
1872 	{200000, 1, 6, 16, 4},
1873 	{230000, 0, 5, 12, 6},
1874 	{280000, 1, 5, 12, 6},
1875 	{340000, 0, 4, 8, 4},
1876 	{380000, 1, 4, 8, 4},
1877 	{450000, 0, 3, 6, 6},
1878 #endif
1879 #ifdef CONFIG_BAND_UHF
1880 	{580000, 1, 3, 6, 6},
1881 	{700000, 0, 2, 4, 4},
1882 	{860000, 1, 2, 4, 4},
1883 #endif
1884 #ifdef CONFIG_BAND_LBAND
1885 	{1800000, 1, 0, 2, 4},
1886 #endif
1887 #ifdef CONFIG_BAND_SBAND
1888 	{2900000, 0, 14, 1, 4},
1889 #endif
1890 };
1891 
1892 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {
1893 
1894 #ifdef CONFIG_BAND_CBAND
1895 	{184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1896 	{227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1897 	{380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1898 #endif
1899 #ifdef CONFIG_BAND_UHF
1900 	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1901 	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1902 	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1903 	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1904 	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1905 	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1906 #endif
1907 #ifdef CONFIG_BAND_LBAND
1908 	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1909 	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1910 	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1911 #endif
1912 #ifdef CONFIG_BAND_SBAND
1913 	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1914 	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1915 #endif
1916 };
1917 
1918 static const struct dib0090_tuning dib0090_tuning_table[] = {
1919 
1920 #ifdef CONFIG_BAND_CBAND
1921 	{170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1922 #endif
1923 #ifdef CONFIG_BAND_VHF
1924 	{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1925 	{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1926 	{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1927 #endif
1928 #ifdef CONFIG_BAND_UHF
1929 	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1930 	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1931 	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1932 	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1933 	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1934 	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1935 #endif
1936 #ifdef CONFIG_BAND_LBAND
1937 	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1938 	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1939 	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1940 #endif
1941 #ifdef CONFIG_BAND_SBAND
1942 	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1943 	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1944 #endif
1945 };
1946 
1947 static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
1948 #ifdef CONFIG_BAND_CBAND
1949 	{170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},
1950 #endif
1951 #ifdef CONFIG_BAND_VHF
1952 	{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1953 	{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1954 	{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1955 #endif
1956 #ifdef CONFIG_BAND_UHF
1957 	{510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1958 	{540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1959 	{600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1960 	{630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1961 	{680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1962 	{720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1963 	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1964 #endif
1965 #ifdef CONFIG_BAND_LBAND
1966 	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1967 	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1968 	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1969 #endif
1970 #ifdef CONFIG_BAND_SBAND
1971 	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1972 	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1973 #endif
1974 };
1975 
1976 static const struct dib0090_pll dib0090_p1g_pll_table[] = {
1977 #ifdef CONFIG_BAND_CBAND
1978 	{57000, 0, 11, 48, 6},
1979 	{70000, 1, 11, 48, 6},
1980 	{86000, 0, 10, 32, 4},
1981 	{105000, 1, 10, 32, 4},
1982 	{115000, 0, 9, 24, 6},
1983 	{140000, 1, 9, 24, 6},
1984 	{170000, 0, 8, 16, 4},
1985 #endif
1986 #ifdef CONFIG_BAND_VHF
1987 	{200000, 1, 8, 16, 4},
1988 	{230000, 0, 7, 12, 6},
1989 	{280000, 1, 7, 12, 6},
1990 	{340000, 0, 6, 8, 4},
1991 	{380000, 1, 6, 8, 4},
1992 	{455000, 0, 5, 6, 6},
1993 #endif
1994 #ifdef CONFIG_BAND_UHF
1995 	{580000, 1, 5, 6, 6},
1996 	{680000, 0, 4, 4, 4},
1997 	{860000, 1, 4, 4, 4},
1998 #endif
1999 #ifdef CONFIG_BAND_LBAND
2000 	{1800000, 1, 2, 2, 4},
2001 #endif
2002 #ifdef CONFIG_BAND_SBAND
2003 	{2900000, 0, 1, 1, 6},
2004 #endif
2005 };
2006 
2007 static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
2008 #ifdef CONFIG_BAND_CBAND
2009 	{184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
2010 	{227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
2011 	{380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
2012 #endif
2013 #ifdef CONFIG_BAND_UHF
2014 	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2015 	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2016 	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2017 	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2018 	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2019 	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2020 #endif
2021 #ifdef CONFIG_BAND_LBAND
2022 	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2023 	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2024 	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2025 #endif
2026 #ifdef CONFIG_BAND_SBAND
2027 	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
2028 	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
2029 #endif
2030 };
2031 
2032 static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
2033 #ifdef CONFIG_BAND_CBAND
2034 	{300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2035 	{380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2036 	{570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2037 	{858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2038 #endif
2039 };
2040 
2041 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = {
2042 #ifdef CONFIG_BAND_CBAND
2043 	{ 300000,  0 ,  3,  0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2044 	{ 380000,  0 ,  10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2045 	{ 600000,  0 ,  10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2046 	{ 660000,  0 ,  5,  0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB },
2047 	{ 720000,  0 ,  5,  0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2048 	{ 860000,  0 ,  4,  0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB },
2049 #endif
2050 };
2051 
2052 int dib0090_update_tuning_table_7090(struct dvb_frontend *fe,
2053 		u8 cfg_sensitivity)
2054 {
2055 	struct dib0090_state *state = fe->tuner_priv;
2056 	const struct dib0090_tuning *tune =
2057 		dib0090_tuning_table_cband_7090e_sensitivity;
2058 	const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = {
2059 		{ 300000,  0 ,  3,  0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2060 		{ 650000,  0 ,  4,  0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB },
2061 		{ 860000,  0 ,  5,  0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB },
2062 	};
2063 
2064 	if ((!state->identity.p1g) || (!state->identity.in_soc)
2065 			|| ((state->identity.version != SOC_7090_P1G_21R1)
2066 				&& (state->identity.version != SOC_7090_P1G_11R1))) {
2067 		dprintk("%s() function can only be used for dib7090", __func__);
2068 		return -ENODEV;
2069 	}
2070 
2071 	if (cfg_sensitivity)
2072 		tune = dib0090_tuning_table_cband_7090e_sensitivity;
2073 	else
2074 		tune = dib0090_tuning_table_cband_7090e_aci;
2075 
2076 	while (state->rf_request > tune->max_freq)
2077 		tune++;
2078 
2079 	dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000)
2080 			| (tune->lna_bias & 0x7fff));
2081 	dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f)
2082 			| ((tune->lna_tune << 6) & 0x07c0));
2083 	return 0;
2084 }
2085 EXPORT_SYMBOL(dib0090_update_tuning_table_7090);
2086 
2087 static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2088 {
2089 	int ret = 0;
2090 	u16 lo4 = 0xe900;
2091 
2092 	s16 adc_target;
2093 	u16 adc;
2094 	s8 step_sign;
2095 	u8 force_soft_search = 0;
2096 
2097 	if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
2098 		force_soft_search = 1;
2099 
2100 	if (*tune_state == CT_TUNER_START) {
2101 		dprintk("Start Captrim search : %s", (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO");
2102 		dib0090_write_reg(state, 0x10, 0x2B1);
2103 		dib0090_write_reg(state, 0x1e, 0x0032);
2104 
2105 		if (!state->tuner_is_tuned) {
2106 			/* prepare a complete captrim */
2107 			if (!state->identity.p1g || force_soft_search)
2108 				state->step = state->captrim = state->fcaptrim = 64;
2109 
2110 			state->current_rf = state->rf_request;
2111 		} else {	/* we are already tuned to this frequency - the configuration is correct  */
2112 			if (!state->identity.p1g || force_soft_search) {
2113 				/* do a minimal captrim even if the frequency has not changed */
2114 				state->step = 4;
2115 				state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
2116 			}
2117 		}
2118 		state->adc_diff = 3000;
2119 		*tune_state = CT_TUNER_STEP_0;
2120 
2121 	} else if (*tune_state == CT_TUNER_STEP_0) {
2122 		if (state->identity.p1g && !force_soft_search) {
2123 			u8 ratio = 31;
2124 
2125 			dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
2126 			dib0090_read_reg(state, 0x40);
2127 			ret = 50;
2128 		} else {
2129 			state->step /= 2;
2130 			dib0090_write_reg(state, 0x18, lo4 | state->captrim);
2131 
2132 			if (state->identity.in_soc)
2133 				ret = 25;
2134 		}
2135 		*tune_state = CT_TUNER_STEP_1;
2136 
2137 	} else if (*tune_state == CT_TUNER_STEP_1) {
2138 		if (state->identity.p1g && !force_soft_search) {
2139 			dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0);
2140 			dib0090_read_reg(state, 0x40);
2141 
2142 			state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F;
2143 			dprintk("***Final Captrim= 0x%x", state->fcaptrim);
2144 			*tune_state = CT_TUNER_STEP_3;
2145 
2146 		} else {
2147 			/* MERGE for all krosus before P1G */
2148 			adc = dib0090_get_slow_adc_val(state);
2149 			dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024);
2150 
2151 			if (state->rest == 0 || state->identity.in_soc) {	/* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
2152 				adc_target = 200;
2153 			} else
2154 				adc_target = 400;
2155 
2156 			if (adc >= adc_target) {
2157 				adc -= adc_target;
2158 				step_sign = -1;
2159 			} else {
2160 				adc = adc_target - adc;
2161 				step_sign = 1;
2162 			}
2163 
2164 			if (adc < state->adc_diff) {
2165 				dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
2166 				state->adc_diff = adc;
2167 				state->fcaptrim = state->captrim;
2168 			}
2169 
2170 			state->captrim += step_sign * state->step;
2171 			if (state->step >= 1)
2172 				*tune_state = CT_TUNER_STEP_0;
2173 			else
2174 				*tune_state = CT_TUNER_STEP_2;
2175 
2176 			ret = 25;
2177 		}
2178 	} else if (*tune_state == CT_TUNER_STEP_2) {	/* this step is only used by krosus < P1G */
2179 		/*write the final cptrim config */
2180 		dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);
2181 
2182 		*tune_state = CT_TUNER_STEP_3;
2183 
2184 	} else if (*tune_state == CT_TUNER_STEP_3) {
2185 		state->calibrate &= ~CAPTRIM_CAL;
2186 		*tune_state = CT_TUNER_STEP_0;
2187 	}
2188 
2189 	return ret;
2190 }
2191 
2192 static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2193 {
2194 	int ret = 15;
2195 	s16 val;
2196 
2197 	switch (*tune_state) {
2198 	case CT_TUNER_START:
2199 		state->wbdmux = dib0090_read_reg(state, 0x10);
2200 		dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));
2201 
2202 		state->bias = dib0090_read_reg(state, 0x13);
2203 		dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));
2204 
2205 		*tune_state = CT_TUNER_STEP_0;
2206 		/* wait for the WBDMUX to switch and for the ADC to sample */
2207 		break;
2208 
2209 	case CT_TUNER_STEP_0:
2210 		state->adc_diff = dib0090_get_slow_adc_val(state);
2211 		dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));
2212 		*tune_state = CT_TUNER_STEP_1;
2213 		break;
2214 
2215 	case CT_TUNER_STEP_1:
2216 		val = dib0090_get_slow_adc_val(state);
2217 		state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;
2218 
2219 		dprintk("temperature: %d C", state->temperature - 30);
2220 
2221 		*tune_state = CT_TUNER_STEP_2;
2222 		break;
2223 
2224 	case CT_TUNER_STEP_2:
2225 		dib0090_write_reg(state, 0x13, state->bias);
2226 		dib0090_write_reg(state, 0x10, state->wbdmux);	/* write back original WBDMUX */
2227 
2228 		*tune_state = CT_TUNER_START;
2229 		state->calibrate &= ~TEMP_CAL;
2230 		if (state->config->analog_output == 0)
2231 			dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
2232 
2233 		break;
2234 
2235 	default:
2236 		ret = 0;
2237 		break;
2238 	}
2239 	return ret;
2240 }
2241 
2242 #define WBD     0x781		/* 1 1 1 1 0000 0 0 1 */
2243 static int dib0090_tune(struct dvb_frontend *fe)
2244 {
2245 	struct dib0090_state *state = fe->tuner_priv;
2246 	const struct dib0090_tuning *tune = state->current_tune_table_index;
2247 	const struct dib0090_pll *pll = state->current_pll_table_index;
2248 	enum frontend_tune_state *tune_state = &state->tune_state;
2249 
2250 	u16 lo5, lo6, Den, tmp;
2251 	u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
2252 	int ret = 10;		/* 1ms is the default delay most of the time */
2253 	u8 c, i;
2254 
2255 	/************************* VCO ***************************/
2256 	/* Default values for FG                                 */
2257 	/* from these are needed :                               */
2258 	/* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv             */
2259 
2260 	/* in any case we first need to do a calibration if needed */
2261 	if (*tune_state == CT_TUNER_START) {
2262 		/* deactivate DataTX before some calibrations */
2263 		if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
2264 			dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
2265 		else
2266 			/* Activate DataTX in case a calibration has been done before */
2267 			if (state->config->analog_output == 0)
2268 				dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
2269 	}
2270 
2271 	if (state->calibrate & DC_CAL)
2272 		return dib0090_dc_offset_calibration(state, tune_state);
2273 	else if (state->calibrate & WBD_CAL) {
2274 		if (state->current_rf == 0)
2275 			state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
2276 		return dib0090_wbd_calibration(state, tune_state);
2277 	} else if (state->calibrate & TEMP_CAL)
2278 		return dib0090_get_temperature(state, tune_state);
2279 	else if (state->calibrate & CAPTRIM_CAL)
2280 		return dib0090_captrim_search(state, tune_state);
2281 
2282 	if (*tune_state == CT_TUNER_START) {
2283 		/* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2284 		if (state->config->use_pwm_agc && state->identity.in_soc) {
2285 			tmp = dib0090_read_reg(state, 0x39);
2286 			if ((tmp >> 10) & 0x1)
2287 				dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));
2288 		}
2289 
2290 		state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
2291 		state->rf_request =
2292 			state->fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
2293 					BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->
2294 					freq_offset_khz_vhf);
2295 
2296 		/* in ISDB-T 1seg we shift tuning frequency */
2297 		if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1
2298 					&& state->fe->dtv_property_cache.isdbt_partial_reception == 0)) {
2299 			const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if;
2300 			u8 found_offset = 0;
2301 			u32 margin_khz = 100;
2302 
2303 			if (LUT_offset != NULL) {
2304 				while (LUT_offset->RF_freq != 0xffff) {
2305 					if (((state->rf_request > (LUT_offset->RF_freq - margin_khz))
2306 								&& (state->rf_request < (LUT_offset->RF_freq + margin_khz)))
2307 							&& LUT_offset->std == state->fe->dtv_property_cache.delivery_system) {
2308 						state->rf_request += LUT_offset->offset_khz;
2309 						found_offset = 1;
2310 						break;
2311 					}
2312 					LUT_offset++;
2313 				}
2314 			}
2315 
2316 			if (found_offset == 0)
2317 				state->rf_request += 400;
2318 		}
2319 		if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) {
2320 			state->tuner_is_tuned = 0;
2321 			state->current_rf = 0;
2322 			state->current_standard = 0;
2323 
2324 			tune = dib0090_tuning_table;
2325 			if (state->identity.p1g)
2326 				tune = dib0090_p1g_tuning_table;
2327 
2328 			tmp = (state->identity.version >> 5) & 0x7;
2329 
2330 			if (state->identity.in_soc) {
2331 				if (state->config->force_cband_input) {	/* Use the CBAND input for all band */
2332 					if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF
2333 							|| state->current_band & BAND_UHF) {
2334 						state->current_band = BAND_CBAND;
2335 						if (state->config->is_dib7090e)
2336 							tune = dib0090_tuning_table_cband_7090e_sensitivity;
2337 						else
2338 							tune = dib0090_tuning_table_cband_7090;
2339 					}
2340 				} else {	/* Use the CBAND input for all band under UHF */
2341 					if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) {
2342 						state->current_band = BAND_CBAND;
2343 						if (state->config->is_dib7090e)
2344 							tune = dib0090_tuning_table_cband_7090e_sensitivity;
2345 						else
2346 							tune = dib0090_tuning_table_cband_7090;
2347 					}
2348 				}
2349 			} else
2350 			 if (tmp == 0x4 || tmp == 0x7) {
2351 				/* CBAND tuner version for VHF */
2352 				if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) {
2353 					state->current_band = BAND_CBAND;	/* Force CBAND */
2354 
2355 					tune = dib0090_tuning_table_fm_vhf_on_cband;
2356 					if (state->identity.p1g)
2357 						tune = dib0090_p1g_tuning_table_fm_vhf_on_cband;
2358 				}
2359 			}
2360 
2361 			pll = dib0090_pll_table;
2362 			if (state->identity.p1g)
2363 				pll = dib0090_p1g_pll_table;
2364 
2365 			/* Look for the interval */
2366 			while (state->rf_request > tune->max_freq)
2367 				tune++;
2368 			while (state->rf_request > pll->max_freq)
2369 				pll++;
2370 
2371 			state->current_tune_table_index = tune;
2372 			state->current_pll_table_index = pll;
2373 
2374 			dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
2375 
2376 			VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;
2377 
2378 			FREF = state->config->io.clock_khz;
2379 			if (state->config->fref_clock_ratio != 0)
2380 				FREF /= state->config->fref_clock_ratio;
2381 
2382 			FBDiv = (VCOF_kHz / pll->topresc / FREF);
2383 			Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
2384 
2385 			if (Rest < LPF)
2386 				Rest = 0;
2387 			else if (Rest < 2 * LPF)
2388 				Rest = 2 * LPF;
2389 			else if (Rest > (FREF - LPF)) {
2390 				Rest = 0;
2391 				FBDiv += 1;
2392 			} else if (Rest > (FREF - 2 * LPF))
2393 				Rest = FREF - 2 * LPF;
2394 			Rest = (Rest * 6528) / (FREF / 10);
2395 			state->rest = Rest;
2396 
2397 			/* external loop filter, otherwise:
2398 			 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2399 			 * lo6 = 0x0e34 */
2400 
2401 			if (Rest == 0) {
2402 				if (pll->vco_band)
2403 					lo5 = 0x049f;
2404 				else
2405 					lo5 = 0x041f;
2406 			} else {
2407 				if (pll->vco_band)
2408 					lo5 = 0x049e;
2409 				else if (state->config->analog_output)
2410 					lo5 = 0x041d;
2411 				else
2412 					lo5 = 0x041c;
2413 			}
2414 
2415 			if (state->identity.p1g) {	/* Bias is done automatically in P1G */
2416 				if (state->identity.in_soc) {
2417 					if (state->identity.version == SOC_8090_P1G_11R1)
2418 						lo5 = 0x46f;
2419 					else
2420 						lo5 = 0x42f;
2421 				} else
2422 					lo5 = 0x42c;
2423 			}
2424 
2425 			lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7);	/* bit 15 is the split to the slave, we do not do it here */
2426 
2427 			if (!state->config->io.pll_int_loop_filt) {
2428 				if (state->identity.in_soc)
2429 					lo6 = 0xff98;
2430 				else if (state->identity.p1g || (Rest == 0))
2431 					lo6 = 0xfff8;
2432 				else
2433 					lo6 = 0xff28;
2434 			} else
2435 				lo6 = (state->config->io.pll_int_loop_filt << 3);
2436 
2437 			Den = 1;
2438 
2439 			if (Rest > 0) {
2440 				if (state->config->analog_output)
2441 					lo6 |= (1 << 2) | 2;
2442 				else {
2443 					if (state->identity.in_soc)
2444 						lo6 |= (1 << 2) | 2;
2445 					else
2446 						lo6 |= (1 << 2) | 2;
2447 				}
2448 				Den = 255;
2449 			}
2450 			dib0090_write_reg(state, 0x15, (u16) FBDiv);
2451 			if (state->config->fref_clock_ratio != 0)
2452 				dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
2453 			else
2454 				dib0090_write_reg(state, 0x16, (Den << 8) | 1);
2455 			dib0090_write_reg(state, 0x17, (u16) Rest);
2456 			dib0090_write_reg(state, 0x19, lo5);
2457 			dib0090_write_reg(state, 0x1c, lo6);
2458 
2459 			lo6 = tune->tuner_enable;
2460 			if (state->config->analog_output)
2461 				lo6 = (lo6 & 0xff9f) | 0x2;
2462 
2463 			dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL);
2464 
2465 		}
2466 
2467 		state->current_rf = state->rf_request;
2468 		state->current_standard = state->fe->dtv_property_cache.delivery_system;
2469 
2470 		ret = 20;
2471 		state->calibrate = CAPTRIM_CAL;	/* captrim serach now */
2472 	}
2473 
2474 	else if (*tune_state == CT_TUNER_STEP_0) {	/* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2475 		const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
2476 
2477 		while (state->current_rf / 1000 > wbd->max_freq)
2478 			wbd++;
2479 
2480 		dib0090_write_reg(state, 0x1e, 0x07ff);
2481 		dprintk("Final Captrim: %d", (u32) state->fcaptrim);
2482 		dprintk("HFDIV code: %d", (u32) pll->hfdiv_code);
2483 		dprintk("VCO = %d", (u32) pll->vco_band);
2484 		dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request);
2485 		dprintk("REFDIV: %d, FREF: %d", (u32) 1, (u32) state->config->io.clock_khz);
2486 		dprintk("FBDIV: %d, Rest: %d", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
2487 		dprintk("Num: %d, Den: %d, SD: %d", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8),
2488 			(u32) dib0090_read_reg(state, 0x1c) & 0x3);
2489 
2490 #define WBD     0x781		/* 1 1 1 1 0000 0 0 1 */
2491 		c = 4;
2492 		i = 3;
2493 
2494 		if (wbd->wbd_gain != 0)
2495 			c = wbd->wbd_gain;
2496 
2497 		state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
2498 		dib0090_write_reg(state, 0x10, state->wbdmux);
2499 
2500 		if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) {
2501 			dprintk("P1G : The cable band is selected and lna_tune = %d", tune->lna_tune);
2502 			dib0090_write_reg(state, 0x09, tune->lna_bias);
2503 			dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim));
2504 		} else
2505 			dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias);
2506 
2507 		dib0090_write_reg(state, 0x0c, tune->v2i);
2508 		dib0090_write_reg(state, 0x0d, tune->mix);
2509 		dib0090_write_reg(state, 0x0e, tune->load);
2510 		*tune_state = CT_TUNER_STEP_1;
2511 
2512 	} else if (*tune_state == CT_TUNER_STEP_1) {
2513 		/* initialize the lt gain register */
2514 		state->rf_lt_def = 0x7c00;
2515 
2516 		dib0090_set_bandwidth(state);
2517 		state->tuner_is_tuned = 1;
2518 
2519 		state->calibrate |= WBD_CAL;
2520 		state->calibrate |= TEMP_CAL;
2521 		*tune_state = CT_TUNER_STOP;
2522 	} else
2523 		ret = FE_CALLBACK_TIME_NEVER;
2524 	return ret;
2525 }
2526 
2527 static int dib0090_release(struct dvb_frontend *fe)
2528 {
2529 	kfree(fe->tuner_priv);
2530 	fe->tuner_priv = NULL;
2531 	return 0;
2532 }
2533 
2534 enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
2535 {
2536 	struct dib0090_state *state = fe->tuner_priv;
2537 
2538 	return state->tune_state;
2539 }
2540 
2541 EXPORT_SYMBOL(dib0090_get_tune_state);
2542 
2543 int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
2544 {
2545 	struct dib0090_state *state = fe->tuner_priv;
2546 
2547 	state->tune_state = tune_state;
2548 	return 0;
2549 }
2550 
2551 EXPORT_SYMBOL(dib0090_set_tune_state);
2552 
2553 static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
2554 {
2555 	struct dib0090_state *state = fe->tuner_priv;
2556 
2557 	*frequency = 1000 * state->current_rf;
2558 	return 0;
2559 }
2560 
2561 static int dib0090_set_params(struct dvb_frontend *fe)
2562 {
2563 	struct dib0090_state *state = fe->tuner_priv;
2564 	u32 ret;
2565 
2566 	state->tune_state = CT_TUNER_START;
2567 
2568 	do {
2569 		ret = dib0090_tune(fe);
2570 		if (ret == FE_CALLBACK_TIME_NEVER)
2571 			break;
2572 
2573 		/*
2574 		 * Despite dib0090_tune returns time at a 0.1 ms range,
2575 		 * the actual sleep time depends on CONFIG_HZ. The worse case
2576 		 * is when CONFIG_HZ=100. In such case, the minimum granularity
2577 		 * is 10ms. On some real field tests, the tuner sometimes don't
2578 		 * lock when this timer is lower than 10ms. So, enforce a 10ms
2579 		 * granularity and use usleep_range() instead of msleep().
2580 		 */
2581 		ret = 10 * (ret + 99)/100;
2582 		usleep_range(ret * 1000, (ret + 1) * 1000);
2583 	} while (state->tune_state != CT_TUNER_STOP);
2584 
2585 	return 0;
2586 }
2587 
2588 static const struct dvb_tuner_ops dib0090_ops = {
2589 	.info = {
2590 		 .name = "DiBcom DiB0090",
2591 		 .frequency_min = 45000000,
2592 		 .frequency_max = 860000000,
2593 		 .frequency_step = 1000,
2594 		 },
2595 	.release = dib0090_release,
2596 
2597 	.init = dib0090_wakeup,
2598 	.sleep = dib0090_sleep,
2599 	.set_params = dib0090_set_params,
2600 	.get_frequency = dib0090_get_frequency,
2601 };
2602 
2603 static const struct dvb_tuner_ops dib0090_fw_ops = {
2604 	.info = {
2605 		 .name = "DiBcom DiB0090",
2606 		 .frequency_min = 45000000,
2607 		 .frequency_max = 860000000,
2608 		 .frequency_step = 1000,
2609 		 },
2610 	.release = dib0090_release,
2611 
2612 	.init = NULL,
2613 	.sleep = NULL,
2614 	.set_params = NULL,
2615 	.get_frequency = NULL,
2616 };
2617 
2618 static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
2619 	{470, 0, 250, 0, 100, 4},
2620 	{860, 51, 866, 21, 375, 4},
2621 	{1700, 0, 800, 0, 850, 4},
2622 	{2900, 0, 250, 0, 100, 6},
2623 	{0xFFFF, 0, 0, 0, 0, 0},
2624 };
2625 
2626 struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2627 {
2628 	struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
2629 	if (st == NULL)
2630 		return NULL;
2631 
2632 	st->config = config;
2633 	st->i2c = i2c;
2634 	st->fe = fe;
2635 	mutex_init(&st->i2c_buffer_lock);
2636 	fe->tuner_priv = st;
2637 
2638 	if (config->wbd == NULL)
2639 		st->current_wbd_table = dib0090_wbd_table_default;
2640 	else
2641 		st->current_wbd_table = config->wbd;
2642 
2643 	if (dib0090_reset(fe) != 0)
2644 		goto free_mem;
2645 
2646 	printk(KERN_INFO "DiB0090: successfully identified\n");
2647 	memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));
2648 
2649 	return fe;
2650  free_mem:
2651 	kfree(st);
2652 	fe->tuner_priv = NULL;
2653 	return NULL;
2654 }
2655 
2656 EXPORT_SYMBOL(dib0090_register);
2657 
2658 struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2659 {
2660 	struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL);
2661 	if (st == NULL)
2662 		return NULL;
2663 
2664 	st->config = config;
2665 	st->i2c = i2c;
2666 	st->fe = fe;
2667 	mutex_init(&st->i2c_buffer_lock);
2668 	fe->tuner_priv = st;
2669 
2670 	if (dib0090_fw_reset_digital(fe, st->config) != 0)
2671 		goto free_mem;
2672 
2673 	dprintk("DiB0090 FW: successfully identified");
2674 	memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));
2675 
2676 	return fe;
2677 free_mem:
2678 	kfree(st);
2679 	fe->tuner_priv = NULL;
2680 	return NULL;
2681 }
2682 EXPORT_SYMBOL(dib0090_fw_register);
2683 
2684 MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
2685 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>");
2686 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2687 MODULE_LICENSE("GPL");
2688