xref: /linux/drivers/media/dvb-frontends/cxd2099.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cxd2099.c: Driver for the Sony CXD2099AR Common Interface Controller
4  *
5  * Copyright (C) 2010-2013 Digital Devices GmbH
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 only, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/slab.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/i2c.h>
21 #include <linux/regmap.h>
22 #include <linux/wait.h>
23 #include <linux/delay.h>
24 #include <linux/mutex.h>
25 #include <linux/io.h>
26 
27 #include "cxd2099.h"
28 
29 static int buffermode;
30 module_param(buffermode, int, 0444);
31 MODULE_PARM_DESC(buffermode, "Enable CXD2099AR buffer mode (default: disabled)");
32 
33 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
34 
35 struct cxd {
36 	struct dvb_ca_en50221 en;
37 
38 	struct cxd2099_cfg cfg;
39 	struct i2c_client *client;
40 	struct regmap *regmap;
41 
42 	u8     regs[0x23];
43 	u8     lastaddress;
44 	u8     clk_reg_f;
45 	u8     clk_reg_b;
46 	int    mode;
47 	int    ready;
48 	int    dr;
49 	int    write_busy;
50 	int    slot_stat;
51 
52 	u8     amem[1024];
53 	int    amem_read;
54 
55 	int    cammode;
56 	struct mutex lock; /* device access lock */
57 
58 	u8     rbuf[1028];
59 	u8     wbuf[1028];
60 };
61 
62 static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
63 {
64 	int status = 0;
65 
66 	if (ci->lastaddress != adr)
67 		status = regmap_write(ci->regmap, 0, adr);
68 	if (!status) {
69 		ci->lastaddress = adr;
70 
71 		while (n) {
72 			int len = n;
73 
74 			if (ci->cfg.max_i2c && len > ci->cfg.max_i2c)
75 				len = ci->cfg.max_i2c;
76 			status = regmap_raw_read(ci->regmap, 1, data, len);
77 			if (status)
78 				return status;
79 			data += len;
80 			n -= len;
81 		}
82 	}
83 	return status;
84 }
85 
86 static int read_reg(struct cxd *ci, u8 reg, u8 *val)
87 {
88 	return read_block(ci, reg, val, 1);
89 }
90 
91 static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
92 {
93 	int status;
94 	u8 addr[2] = {address & 0xff, address >> 8};
95 
96 	status = regmap_raw_write(ci->regmap, 2, addr, 2);
97 	if (!status)
98 		status = regmap_raw_read(ci->regmap, 3, data, n);
99 	return status;
100 }
101 
102 static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
103 {
104 	int status;
105 	u8 addr[2] = {address & 0xff, address >> 8};
106 
107 	status = regmap_raw_write(ci->regmap, 2, addr, 2);
108 	if (!status) {
109 		u8 buf[256];
110 
111 		memcpy(buf, data, n);
112 		status = regmap_raw_write(ci->regmap, 3, buf, n);
113 	}
114 	return status;
115 }
116 
117 static int read_io(struct cxd *ci, u16 address, unsigned int *val)
118 {
119 	int status;
120 	u8 addr[2] = {address & 0xff, address >> 8};
121 
122 	status = regmap_raw_write(ci->regmap, 2, addr, 2);
123 	if (!status)
124 		status = regmap_read(ci->regmap, 3, val);
125 	return status;
126 }
127 
128 static int write_io(struct cxd *ci, u16 address, u8 val)
129 {
130 	int status;
131 	u8 addr[2] = {address & 0xff, address >> 8};
132 
133 	status = regmap_raw_write(ci->regmap, 2, addr, 2);
134 	if (!status)
135 		status = regmap_write(ci->regmap, 3, val);
136 	return status;
137 }
138 
139 static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
140 {
141 	int status = 0;
142 	unsigned int regval;
143 
144 	if (ci->lastaddress != reg)
145 		status = regmap_write(ci->regmap, 0, reg);
146 	if (!status && reg >= 6 && reg <= 8 && mask != 0xff) {
147 		status = regmap_read(ci->regmap, 1, &regval);
148 		ci->regs[reg] = regval;
149 	}
150 	ci->lastaddress = reg;
151 	ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
152 	if (!status)
153 		status = regmap_write(ci->regmap, 1, ci->regs[reg]);
154 	if (reg == 0x20)
155 		ci->regs[reg] &= 0x7f;
156 	return status;
157 }
158 
159 static int write_reg(struct cxd *ci, u8 reg, u8 val)
160 {
161 	return write_regm(ci, reg, val, 0xff);
162 }
163 
164 static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
165 {
166 	int status = 0;
167 	u8 *buf = ci->wbuf;
168 
169 	if (ci->lastaddress != adr)
170 		status = regmap_write(ci->regmap, 0, adr);
171 	if (status)
172 		return status;
173 
174 	ci->lastaddress = adr;
175 	while (n) {
176 		int len = n;
177 
178 		if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c))
179 			len = ci->cfg.max_i2c - 1;
180 		memcpy(buf, data, len);
181 		status = regmap_raw_write(ci->regmap, 1, buf, len);
182 		if (status)
183 			return status;
184 		n -= len;
185 		data += len;
186 	}
187 	return status;
188 }
189 
190 static void set_mode(struct cxd *ci, int mode)
191 {
192 	if (mode == ci->mode)
193 		return;
194 
195 	switch (mode) {
196 	case 0x00: /* IO mem */
197 		write_regm(ci, 0x06, 0x00, 0x07);
198 		break;
199 	case 0x01: /* ATT mem */
200 		write_regm(ci, 0x06, 0x02, 0x07);
201 		break;
202 	default:
203 		break;
204 	}
205 	ci->mode = mode;
206 }
207 
208 static void cam_mode(struct cxd *ci, int mode)
209 {
210 	u8 dummy;
211 
212 	if (mode == ci->cammode)
213 		return;
214 
215 	switch (mode) {
216 	case 0x00:
217 		write_regm(ci, 0x20, 0x80, 0x80);
218 		break;
219 	case 0x01:
220 		if (!ci->en.read_data)
221 			return;
222 		ci->write_busy = 0;
223 		dev_info(&ci->client->dev, "enable cam buffer mode\n");
224 		write_reg(ci, 0x0d, 0x00);
225 		write_reg(ci, 0x0e, 0x01);
226 		write_regm(ci, 0x08, 0x40, 0x40);
227 		read_reg(ci, 0x12, &dummy);
228 		write_regm(ci, 0x08, 0x80, 0x80);
229 		break;
230 	default:
231 		break;
232 	}
233 	ci->cammode = mode;
234 }
235 
236 static int init(struct cxd *ci)
237 {
238 	int status;
239 
240 	mutex_lock(&ci->lock);
241 	ci->mode = -1;
242 	do {
243 		status = write_reg(ci, 0x00, 0x00);
244 		if (status < 0)
245 			break;
246 		status = write_reg(ci, 0x01, 0x00);
247 		if (status < 0)
248 			break;
249 		status = write_reg(ci, 0x02, 0x10);
250 		if (status < 0)
251 			break;
252 		status = write_reg(ci, 0x03, 0x00);
253 		if (status < 0)
254 			break;
255 		status = write_reg(ci, 0x05, 0xFF);
256 		if (status < 0)
257 			break;
258 		status = write_reg(ci, 0x06, 0x1F);
259 		if (status < 0)
260 			break;
261 		status = write_reg(ci, 0x07, 0x1F);
262 		if (status < 0)
263 			break;
264 		status = write_reg(ci, 0x08, 0x28);
265 		if (status < 0)
266 			break;
267 		status = write_reg(ci, 0x14, 0x20);
268 		if (status < 0)
269 			break;
270 
271 		/* TOSTRT = 8, Mode B (gated clock), falling Edge,
272 		 * Serial, POL=HIGH, MSB
273 		 */
274 		status = write_reg(ci, 0x0A, 0xA7);
275 		if (status < 0)
276 			break;
277 
278 		status = write_reg(ci, 0x0B, 0x33);
279 		if (status < 0)
280 			break;
281 		status = write_reg(ci, 0x0C, 0x33);
282 		if (status < 0)
283 			break;
284 
285 		status = write_regm(ci, 0x14, 0x00, 0x0F);
286 		if (status < 0)
287 			break;
288 		status = write_reg(ci, 0x15, ci->clk_reg_b);
289 		if (status < 0)
290 			break;
291 		status = write_regm(ci, 0x16, 0x00, 0x0F);
292 		if (status < 0)
293 			break;
294 		status = write_reg(ci, 0x17, ci->clk_reg_f);
295 		if (status < 0)
296 			break;
297 
298 		if (ci->cfg.clock_mode == 2) {
299 			/* bitrate*2^13/ 72000 */
300 			u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000;
301 
302 			if (ci->cfg.polarity) {
303 				status = write_reg(ci, 0x09, 0x6f);
304 				if (status < 0)
305 					break;
306 			} else {
307 				status = write_reg(ci, 0x09, 0x6d);
308 				if (status < 0)
309 					break;
310 			}
311 			status = write_reg(ci, 0x20, 0x08);
312 			if (status < 0)
313 				break;
314 			status = write_reg(ci, 0x21, (reg >> 8) & 0xff);
315 			if (status < 0)
316 				break;
317 			status = write_reg(ci, 0x22, reg & 0xff);
318 			if (status < 0)
319 				break;
320 		} else if (ci->cfg.clock_mode == 1) {
321 			if (ci->cfg.polarity) {
322 				status = write_reg(ci, 0x09, 0x6f); /* D */
323 				if (status < 0)
324 					break;
325 			} else {
326 				status = write_reg(ci, 0x09, 0x6d);
327 				if (status < 0)
328 					break;
329 			}
330 			status = write_reg(ci, 0x20, 0x68);
331 			if (status < 0)
332 				break;
333 			status = write_reg(ci, 0x21, 0x00);
334 			if (status < 0)
335 				break;
336 			status = write_reg(ci, 0x22, 0x02);
337 			if (status < 0)
338 				break;
339 		} else {
340 			if (ci->cfg.polarity) {
341 				status = write_reg(ci, 0x09, 0x4f); /* C */
342 				if (status < 0)
343 					break;
344 			} else {
345 				status = write_reg(ci, 0x09, 0x4d);
346 				if (status < 0)
347 					break;
348 			}
349 			status = write_reg(ci, 0x20, 0x28);
350 			if (status < 0)
351 				break;
352 			status = write_reg(ci, 0x21, 0x00);
353 			if (status < 0)
354 				break;
355 			status = write_reg(ci, 0x22, 0x07);
356 			if (status < 0)
357 				break;
358 		}
359 
360 		status = write_regm(ci, 0x20, 0x80, 0x80);
361 		if (status < 0)
362 			break;
363 		status = write_regm(ci, 0x03, 0x02, 0x02);
364 		if (status < 0)
365 			break;
366 		status = write_reg(ci, 0x01, 0x04);
367 		if (status < 0)
368 			break;
369 		status = write_reg(ci, 0x00, 0x31);
370 		if (status < 0)
371 			break;
372 
373 		/* Put TS in bypass */
374 		status = write_regm(ci, 0x09, 0x08, 0x08);
375 		if (status < 0)
376 			break;
377 		ci->cammode = -1;
378 		cam_mode(ci, 0);
379 	} while (0);
380 	mutex_unlock(&ci->lock);
381 
382 	return 0;
383 }
384 
385 static int read_attribute_mem(struct dvb_ca_en50221 *ca,
386 			      int slot, int address)
387 {
388 	struct cxd *ci = ca->data;
389 	u8 val;
390 
391 	mutex_lock(&ci->lock);
392 	set_mode(ci, 1);
393 	read_pccard(ci, address, &val, 1);
394 	mutex_unlock(&ci->lock);
395 	return val;
396 }
397 
398 static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
399 			       int address, u8 value)
400 {
401 	struct cxd *ci = ca->data;
402 
403 	mutex_lock(&ci->lock);
404 	set_mode(ci, 1);
405 	write_pccard(ci, address, &value, 1);
406 	mutex_unlock(&ci->lock);
407 	return 0;
408 }
409 
410 static int read_cam_control(struct dvb_ca_en50221 *ca,
411 			    int slot, u8 address)
412 {
413 	struct cxd *ci = ca->data;
414 	unsigned int val;
415 
416 	mutex_lock(&ci->lock);
417 	set_mode(ci, 0);
418 	read_io(ci, address, &val);
419 	mutex_unlock(&ci->lock);
420 	return val;
421 }
422 
423 static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
424 			     u8 address, u8 value)
425 {
426 	struct cxd *ci = ca->data;
427 
428 	mutex_lock(&ci->lock);
429 	set_mode(ci, 0);
430 	write_io(ci, address, value);
431 	mutex_unlock(&ci->lock);
432 	return 0;
433 }
434 
435 static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
436 {
437 	struct cxd *ci = ca->data;
438 
439 	if (ci->cammode)
440 		read_data(ca, slot, ci->rbuf, 0);
441 
442 	mutex_lock(&ci->lock);
443 	cam_mode(ci, 0);
444 	write_reg(ci, 0x00, 0x21);
445 	write_reg(ci, 0x06, 0x1F);
446 	write_reg(ci, 0x00, 0x31);
447 	write_regm(ci, 0x20, 0x80, 0x80);
448 	write_reg(ci, 0x03, 0x02);
449 	ci->ready = 0;
450 	ci->mode = -1;
451 	{
452 		int i;
453 
454 		for (i = 0; i < 100; i++) {
455 			usleep_range(10000, 11000);
456 			if (ci->ready)
457 				break;
458 		}
459 	}
460 	mutex_unlock(&ci->lock);
461 	return 0;
462 }
463 
464 static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
465 {
466 	struct cxd *ci = ca->data;
467 
468 	dev_dbg(&ci->client->dev, "%s\n", __func__);
469 	if (ci->cammode)
470 		read_data(ca, slot, ci->rbuf, 0);
471 	mutex_lock(&ci->lock);
472 	write_reg(ci, 0x00, 0x21);
473 	write_reg(ci, 0x06, 0x1F);
474 	msleep(300);
475 
476 	write_regm(ci, 0x09, 0x08, 0x08);
477 	write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
478 	write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
479 
480 	ci->mode = -1;
481 	ci->write_busy = 0;
482 	mutex_unlock(&ci->lock);
483 	return 0;
484 }
485 
486 static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
487 {
488 	struct cxd *ci = ca->data;
489 
490 	mutex_lock(&ci->lock);
491 	write_regm(ci, 0x09, 0x00, 0x08);
492 	set_mode(ci, 0);
493 	cam_mode(ci, 1);
494 	mutex_unlock(&ci->lock);
495 	return 0;
496 }
497 
498 static int campoll(struct cxd *ci)
499 {
500 	u8 istat;
501 
502 	read_reg(ci, 0x04, &istat);
503 	if (!istat)
504 		return 0;
505 	write_reg(ci, 0x05, istat);
506 
507 	if (istat & 0x40)
508 		ci->dr = 1;
509 	if (istat & 0x20)
510 		ci->write_busy = 0;
511 
512 	if (istat & 2) {
513 		u8 slotstat;
514 
515 		read_reg(ci, 0x01, &slotstat);
516 		if (!(2 & slotstat)) {
517 			if (!ci->slot_stat) {
518 				ci->slot_stat |=
519 					      DVB_CA_EN50221_POLL_CAM_PRESENT;
520 				write_regm(ci, 0x03, 0x08, 0x08);
521 			}
522 
523 		} else {
524 			if (ci->slot_stat) {
525 				ci->slot_stat = 0;
526 				write_regm(ci, 0x03, 0x00, 0x08);
527 				dev_info(&ci->client->dev, "NO CAM\n");
528 				ci->ready = 0;
529 			}
530 		}
531 		if ((istat & 8) &&
532 		    ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
533 			ci->ready = 1;
534 			ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
535 		}
536 	}
537 	return 0;
538 }
539 
540 static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
541 {
542 	struct cxd *ci = ca->data;
543 	u8 slotstat;
544 
545 	mutex_lock(&ci->lock);
546 	campoll(ci);
547 	read_reg(ci, 0x01, &slotstat);
548 	mutex_unlock(&ci->lock);
549 
550 	return ci->slot_stat;
551 }
552 
553 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
554 {
555 	struct cxd *ci = ca->data;
556 	u8 msb, lsb;
557 	u16 len;
558 
559 	mutex_lock(&ci->lock);
560 	campoll(ci);
561 	mutex_unlock(&ci->lock);
562 
563 	if (!ci->dr)
564 		return 0;
565 
566 	mutex_lock(&ci->lock);
567 	read_reg(ci, 0x0f, &msb);
568 	read_reg(ci, 0x10, &lsb);
569 	len = ((u16)msb << 8) | lsb;
570 	if (len > ecount || len < 2) {
571 		/* read it anyway or cxd may hang */
572 		read_block(ci, 0x12, ci->rbuf, len);
573 		mutex_unlock(&ci->lock);
574 		return -EIO;
575 	}
576 	read_block(ci, 0x12, ebuf, len);
577 	ci->dr = 0;
578 	mutex_unlock(&ci->lock);
579 	return len;
580 }
581 
582 static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
583 {
584 	struct cxd *ci = ca->data;
585 
586 	if (ci->write_busy)
587 		return -EAGAIN;
588 	mutex_lock(&ci->lock);
589 	write_reg(ci, 0x0d, ecount >> 8);
590 	write_reg(ci, 0x0e, ecount & 0xff);
591 	write_block(ci, 0x11, ebuf, ecount);
592 	ci->write_busy = 1;
593 	mutex_unlock(&ci->lock);
594 	return ecount;
595 }
596 
597 static struct dvb_ca_en50221 en_templ = {
598 	.read_attribute_mem  = read_attribute_mem,
599 	.write_attribute_mem = write_attribute_mem,
600 	.read_cam_control    = read_cam_control,
601 	.write_cam_control   = write_cam_control,
602 	.slot_reset          = slot_reset,
603 	.slot_shutdown       = slot_shutdown,
604 	.slot_ts_enable      = slot_ts_enable,
605 	.poll_slot_status    = poll_slot_status,
606 	.read_data           = read_data,
607 	.write_data          = write_data,
608 };
609 
610 static int cxd2099_probe(struct i2c_client *client,
611 			 const struct i2c_device_id *id)
612 {
613 	struct cxd *ci;
614 	struct cxd2099_cfg *cfg = client->dev.platform_data;
615 	static const struct regmap_config rm_cfg = {
616 		.reg_bits = 8,
617 		.val_bits = 8,
618 	};
619 	unsigned int val;
620 	int ret;
621 
622 	ci = kzalloc(sizeof(*ci), GFP_KERNEL);
623 	if (!ci) {
624 		ret = -ENOMEM;
625 		goto err;
626 	}
627 
628 	ci->client = client;
629 	memcpy(&ci->cfg, cfg, sizeof(ci->cfg));
630 
631 	ci->regmap = regmap_init_i2c(client, &rm_cfg);
632 	if (IS_ERR(ci->regmap)) {
633 		ret = PTR_ERR(ci->regmap);
634 		goto err_kfree;
635 	}
636 
637 	ret = regmap_read(ci->regmap, 0x00, &val);
638 	if (ret < 0) {
639 		dev_info(&client->dev, "No CXD2099AR detected at 0x%02x\n",
640 			 client->addr);
641 		goto err_rmexit;
642 	}
643 
644 	mutex_init(&ci->lock);
645 	ci->lastaddress = 0xff;
646 	ci->clk_reg_b = 0x4a;
647 	ci->clk_reg_f = 0x1b;
648 
649 	ci->en = en_templ;
650 	ci->en.data = ci;
651 	init(ci);
652 	dev_info(&client->dev, "Attached CXD2099AR at 0x%02x\n", client->addr);
653 
654 	*cfg->en = &ci->en;
655 
656 	if (!buffermode) {
657 		ci->en.read_data = NULL;
658 		ci->en.write_data = NULL;
659 	} else {
660 		dev_info(&client->dev, "Using CXD2099AR buffer mode");
661 	}
662 
663 	i2c_set_clientdata(client, ci);
664 
665 	return 0;
666 
667 err_rmexit:
668 	regmap_exit(ci->regmap);
669 err_kfree:
670 	kfree(ci);
671 err:
672 
673 	return ret;
674 }
675 
676 static int cxd2099_remove(struct i2c_client *client)
677 {
678 	struct cxd *ci = i2c_get_clientdata(client);
679 
680 	regmap_exit(ci->regmap);
681 	kfree(ci);
682 
683 	return 0;
684 }
685 
686 static const struct i2c_device_id cxd2099_id[] = {
687 	{"cxd2099", 0},
688 	{}
689 };
690 MODULE_DEVICE_TABLE(i2c, cxd2099_id);
691 
692 static struct i2c_driver cxd2099_driver = {
693 	.driver = {
694 		.name	= "cxd2099",
695 	},
696 	.probe		= cxd2099_probe,
697 	.remove		= cxd2099_remove,
698 	.id_table	= cxd2099_id,
699 };
700 
701 module_i2c_driver(cxd2099_driver);
702 
703 MODULE_DESCRIPTION("Sony CXD2099AR Common Interface controller driver");
704 MODULE_AUTHOR("Ralph Metzler");
705 MODULE_LICENSE("GPL v2");
706