xref: /linux/drivers/media/dvb-frontends/af9013.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * Afatech AF9013 demodulator driver
3  *
4  * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
5  * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
6  *
7  * Thanks to Afatech who kindly provided information.
8  *
9  *    This program is free software; you can redistribute it and/or modify
10  *    it under the terms of the GNU General Public License as published by
11  *    the Free Software Foundation; either version 2 of the License, or
12  *    (at your option) any later version.
13  *
14  *    This program is distributed in the hope that it will be useful,
15  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *    GNU General Public License for more details.
18  *
19  *    You should have received a copy of the GNU General Public License
20  *    along with this program; if not, write to the Free Software
21  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  *
23  */
24 
25 #include "af9013_priv.h"
26 
27 struct af9013_state {
28 	struct i2c_adapter *i2c;
29 	struct dvb_frontend fe;
30 	struct af9013_config config;
31 
32 	/* tuner/demod RF and IF AGC limits used for signal strength calc */
33 	u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
34 	u16 signal_strength;
35 	u32 ber;
36 	u32 ucblocks;
37 	u16 snr;
38 	u32 bandwidth_hz;
39 	fe_status_t fe_status;
40 	unsigned long set_frontend_jiffies;
41 	unsigned long read_status_jiffies;
42 	bool first_tune;
43 	bool i2c_gate_state;
44 	unsigned int statistics_step:3;
45 	struct delayed_work statistics_work;
46 };
47 
48 /* write multiple registers */
49 static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
50 	const u8 *val, int len)
51 {
52 	int ret;
53 	u8 buf[3+len];
54 	struct i2c_msg msg[1] = {
55 		{
56 			.addr = priv->config.i2c_addr,
57 			.flags = 0,
58 			.len = sizeof(buf),
59 			.buf = buf,
60 		}
61 	};
62 
63 	buf[0] = (reg >> 8) & 0xff;
64 	buf[1] = (reg >> 0) & 0xff;
65 	buf[2] = mbox;
66 	memcpy(&buf[3], val, len);
67 
68 	ret = i2c_transfer(priv->i2c, msg, 1);
69 	if (ret == 1) {
70 		ret = 0;
71 	} else {
72 		dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
73 				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
74 		ret = -EREMOTEIO;
75 	}
76 	return ret;
77 }
78 
79 /* read multiple registers */
80 static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
81 	u8 *val, int len)
82 {
83 	int ret;
84 	u8 buf[3];
85 	struct i2c_msg msg[2] = {
86 		{
87 			.addr = priv->config.i2c_addr,
88 			.flags = 0,
89 			.len = 3,
90 			.buf = buf,
91 		}, {
92 			.addr = priv->config.i2c_addr,
93 			.flags = I2C_M_RD,
94 			.len = len,
95 			.buf = val,
96 		}
97 	};
98 
99 	buf[0] = (reg >> 8) & 0xff;
100 	buf[1] = (reg >> 0) & 0xff;
101 	buf[2] = mbox;
102 
103 	ret = i2c_transfer(priv->i2c, msg, 2);
104 	if (ret == 2) {
105 		ret = 0;
106 	} else {
107 		dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
108 				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
109 		ret = -EREMOTEIO;
110 	}
111 	return ret;
112 }
113 
114 /* write multiple registers */
115 static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
116 	int len)
117 {
118 	int ret, i;
119 	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
120 
121 	if ((priv->config.ts_mode == AF9013_TS_USB) &&
122 		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
123 		mbox |= ((len - 1) << 2);
124 		ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
125 	} else {
126 		for (i = 0; i < len; i++) {
127 			ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
128 			if (ret)
129 				goto err;
130 		}
131 	}
132 
133 err:
134 	return 0;
135 }
136 
137 /* read multiple registers */
138 static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
139 {
140 	int ret, i;
141 	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
142 
143 	if ((priv->config.ts_mode == AF9013_TS_USB) &&
144 		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
145 		mbox |= ((len - 1) << 2);
146 		ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
147 	} else {
148 		for (i = 0; i < len; i++) {
149 			ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
150 			if (ret)
151 				goto err;
152 		}
153 	}
154 
155 err:
156 	return 0;
157 }
158 
159 /* write single register */
160 static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
161 {
162 	return af9013_wr_regs(priv, reg, &val, 1);
163 }
164 
165 /* read single register */
166 static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
167 {
168 	return af9013_rd_regs(priv, reg, val, 1);
169 }
170 
171 static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
172 	u8 len)
173 {
174 	u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
175 	return af9013_wr_regs_i2c(state, mbox, reg, val, len);
176 }
177 
178 static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
179 	int len, u8 val)
180 {
181 	int ret;
182 	u8 tmp, mask;
183 
184 	/* no need for read if whole reg is written */
185 	if (len != 8) {
186 		ret = af9013_rd_reg(state, reg, &tmp);
187 		if (ret)
188 			return ret;
189 
190 		mask = (0xff >> (8 - len)) << pos;
191 		val <<= pos;
192 		tmp &= ~mask;
193 		val |= tmp;
194 	}
195 
196 	return af9013_wr_reg(state, reg, val);
197 }
198 
199 static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
200 	int len, u8 *val)
201 {
202 	int ret;
203 	u8 tmp;
204 
205 	ret = af9013_rd_reg(state, reg, &tmp);
206 	if (ret)
207 		return ret;
208 
209 	*val = (tmp >> pos);
210 	*val &= (0xff >> (8 - len));
211 
212 	return 0;
213 }
214 
215 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
216 {
217 	int ret;
218 	u8 pos;
219 	u16 addr;
220 
221 	dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
222 			__func__, gpio, gpioval);
223 
224 	/*
225 	 * GPIO0 & GPIO1 0xd735
226 	 * GPIO2 & GPIO3 0xd736
227 	 */
228 
229 	switch (gpio) {
230 	case 0:
231 	case 1:
232 		addr = 0xd735;
233 		break;
234 	case 2:
235 	case 3:
236 		addr = 0xd736;
237 		break;
238 
239 	default:
240 		dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
241 				KBUILD_MODNAME, gpio);
242 		ret = -EINVAL;
243 		goto err;
244 	}
245 
246 	switch (gpio) {
247 	case 0:
248 	case 2:
249 		pos = 0;
250 		break;
251 	case 1:
252 	case 3:
253 	default:
254 		pos = 4;
255 		break;
256 	}
257 
258 	ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
259 	if (ret)
260 		goto err;
261 
262 	return ret;
263 err:
264 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
265 	return ret;
266 }
267 
268 static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
269 {
270 	u32 r = 0, c = 0, i;
271 
272 	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
273 
274 	if (a > b) {
275 		c = a / b;
276 		a = a - c * b;
277 	}
278 
279 	for (i = 0; i < x; i++) {
280 		if (a >= b) {
281 			r += 1;
282 			a -= b;
283 		}
284 		a <<= 1;
285 		r <<= 1;
286 	}
287 	r = (c << (u32)x) + r;
288 
289 	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
290 			__func__, a, b, x, r, r);
291 
292 	return r;
293 }
294 
295 static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
296 {
297 	int ret, i;
298 	u8 tmp;
299 
300 	dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);
301 
302 	/* enable reset */
303 	ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
304 	if (ret)
305 		goto err;
306 
307 	/* start reset mechanism */
308 	ret = af9013_wr_reg(state, 0xaeff, 1);
309 	if (ret)
310 		goto err;
311 
312 	/* wait reset performs */
313 	for (i = 0; i < 150; i++) {
314 		ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
315 		if (ret)
316 			goto err;
317 
318 		if (tmp)
319 			break; /* reset done */
320 
321 		usleep_range(5000, 25000);
322 	}
323 
324 	if (!tmp)
325 		return -ETIMEDOUT;
326 
327 	if (onoff) {
328 		/* clear reset */
329 		ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
330 		if (ret)
331 			goto err;
332 
333 		/* disable reset */
334 		ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
335 
336 		/* power on */
337 		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
338 	} else {
339 		/* power off */
340 		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
341 	}
342 
343 	return ret;
344 err:
345 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
346 	return ret;
347 }
348 
349 static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
350 {
351 	struct af9013_state *state = fe->demodulator_priv;
352 	int ret;
353 
354 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
355 
356 	/* reset and start BER counter */
357 	ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
358 	if (ret)
359 		goto err;
360 
361 	return ret;
362 err:
363 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
364 	return ret;
365 }
366 
367 static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
368 {
369 	struct af9013_state *state = fe->demodulator_priv;
370 	int ret;
371 	u8 buf[5];
372 
373 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
374 
375 	/* check if error bit count is ready */
376 	ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
377 	if (ret)
378 		goto err;
379 
380 	if (!buf[0]) {
381 		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
382 		return 0;
383 	}
384 
385 	ret = af9013_rd_regs(state, 0xd387, buf, 5);
386 	if (ret)
387 		goto err;
388 
389 	state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
390 	state->ucblocks += (buf[4] << 8) | buf[3];
391 
392 	return ret;
393 err:
394 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
395 	return ret;
396 }
397 
398 static int af9013_statistics_snr_start(struct dvb_frontend *fe)
399 {
400 	struct af9013_state *state = fe->demodulator_priv;
401 	int ret;
402 
403 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
404 
405 	/* start SNR meas */
406 	ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
407 	if (ret)
408 		goto err;
409 
410 	return ret;
411 err:
412 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
413 	return ret;
414 }
415 
416 static int af9013_statistics_snr_result(struct dvb_frontend *fe)
417 {
418 	struct af9013_state *state = fe->demodulator_priv;
419 	int ret, i, len;
420 	u8 buf[3], tmp;
421 	u32 snr_val;
422 	const struct af9013_snr *uninitialized_var(snr_lut);
423 
424 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
425 
426 	/* check if SNR ready */
427 	ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
428 	if (ret)
429 		goto err;
430 
431 	if (!tmp) {
432 		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
433 		return 0;
434 	}
435 
436 	/* read value */
437 	ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
438 	if (ret)
439 		goto err;
440 
441 	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
442 
443 	/* read current modulation */
444 	ret = af9013_rd_reg(state, 0xd3c1, &tmp);
445 	if (ret)
446 		goto err;
447 
448 	switch ((tmp >> 6) & 3) {
449 	case 0:
450 		len = ARRAY_SIZE(qpsk_snr_lut);
451 		snr_lut = qpsk_snr_lut;
452 		break;
453 	case 1:
454 		len = ARRAY_SIZE(qam16_snr_lut);
455 		snr_lut = qam16_snr_lut;
456 		break;
457 	case 2:
458 		len = ARRAY_SIZE(qam64_snr_lut);
459 		snr_lut = qam64_snr_lut;
460 		break;
461 	default:
462 		goto err;
463 		break;
464 	}
465 
466 	for (i = 0; i < len; i++) {
467 		tmp = snr_lut[i].snr;
468 
469 		if (snr_val < snr_lut[i].val)
470 			break;
471 	}
472 	state->snr = tmp * 10; /* dB/10 */
473 
474 	return ret;
475 err:
476 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
477 	return ret;
478 }
479 
480 static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
481 {
482 	struct af9013_state *state = fe->demodulator_priv;
483 	int ret = 0;
484 	u8 buf[2], rf_gain, if_gain;
485 	int signal_strength;
486 
487 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
488 
489 	if (!state->signal_strength_en)
490 		return 0;
491 
492 	ret = af9013_rd_regs(state, 0xd07c, buf, 2);
493 	if (ret)
494 		goto err;
495 
496 	rf_gain = buf[0];
497 	if_gain = buf[1];
498 
499 	signal_strength = (0xffff / \
500 		(9 * (state->rf_50 + state->if_50) - \
501 		11 * (state->rf_80 + state->if_80))) * \
502 		(10 * (rf_gain + if_gain) - \
503 		11 * (state->rf_80 + state->if_80));
504 	if (signal_strength < 0)
505 		signal_strength = 0;
506 	else if (signal_strength > 0xffff)
507 		signal_strength = 0xffff;
508 
509 	state->signal_strength = signal_strength;
510 
511 	return ret;
512 err:
513 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
514 	return ret;
515 }
516 
517 static void af9013_statistics_work(struct work_struct *work)
518 {
519 	struct af9013_state *state = container_of(work,
520 		struct af9013_state, statistics_work.work);
521 	unsigned int next_msec;
522 
523 	/* update only signal strength when demod is not locked */
524 	if (!(state->fe_status & FE_HAS_LOCK)) {
525 		state->statistics_step = 0;
526 		state->ber = 0;
527 		state->snr = 0;
528 	}
529 
530 	switch (state->statistics_step) {
531 	default:
532 		state->statistics_step = 0;
533 	case 0:
534 		af9013_statistics_signal_strength(&state->fe);
535 		state->statistics_step++;
536 		next_msec = 300;
537 		break;
538 	case 1:
539 		af9013_statistics_snr_start(&state->fe);
540 		state->statistics_step++;
541 		next_msec = 200;
542 		break;
543 	case 2:
544 		af9013_statistics_ber_unc_start(&state->fe);
545 		state->statistics_step++;
546 		next_msec = 1000;
547 		break;
548 	case 3:
549 		af9013_statistics_snr_result(&state->fe);
550 		state->statistics_step++;
551 		next_msec = 400;
552 		break;
553 	case 4:
554 		af9013_statistics_ber_unc_result(&state->fe);
555 		state->statistics_step++;
556 		next_msec = 100;
557 		break;
558 	}
559 
560 	schedule_delayed_work(&state->statistics_work,
561 		msecs_to_jiffies(next_msec));
562 }
563 
564 static int af9013_get_tune_settings(struct dvb_frontend *fe,
565 	struct dvb_frontend_tune_settings *fesettings)
566 {
567 	fesettings->min_delay_ms = 800;
568 	fesettings->step_size = 0;
569 	fesettings->max_drift = 0;
570 
571 	return 0;
572 }
573 
574 static int af9013_set_frontend(struct dvb_frontend *fe)
575 {
576 	struct af9013_state *state = fe->demodulator_priv;
577 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
578 	int ret, i, sampling_freq;
579 	bool auto_mode, spec_inv;
580 	u8 buf[6];
581 	u32 if_frequency, freq_cw;
582 
583 	dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
584 			__func__, c->frequency, c->bandwidth_hz);
585 
586 	/* program tuner */
587 	if (fe->ops.tuner_ops.set_params)
588 		fe->ops.tuner_ops.set_params(fe);
589 
590 	/* program CFOE coefficients */
591 	if (c->bandwidth_hz != state->bandwidth_hz) {
592 		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
593 			if (coeff_lut[i].clock == state->config.clock &&
594 				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
595 				break;
596 			}
597 		}
598 
599 		ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
600 			sizeof(coeff_lut[i].val));
601 	}
602 
603 	/* program frequency control */
604 	if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
605 		/* get used IF frequency */
606 		if (fe->ops.tuner_ops.get_if_frequency)
607 			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
608 		else
609 			if_frequency = state->config.if_frequency;
610 
611 		dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
612 				__func__, if_frequency);
613 
614 		sampling_freq = if_frequency;
615 
616 		while (sampling_freq > (state->config.clock / 2))
617 			sampling_freq -= state->config.clock;
618 
619 		if (sampling_freq < 0) {
620 			sampling_freq *= -1;
621 			spec_inv = state->config.spec_inv;
622 		} else {
623 			spec_inv = !state->config.spec_inv;
624 		}
625 
626 		freq_cw = af9013_div(state, sampling_freq, state->config.clock,
627 				23);
628 
629 		if (spec_inv)
630 			freq_cw = 0x800000 - freq_cw;
631 
632 		buf[0] = (freq_cw >>  0) & 0xff;
633 		buf[1] = (freq_cw >>  8) & 0xff;
634 		buf[2] = (freq_cw >> 16) & 0x7f;
635 
636 		freq_cw = 0x800000 - freq_cw;
637 
638 		buf[3] = (freq_cw >>  0) & 0xff;
639 		buf[4] = (freq_cw >>  8) & 0xff;
640 		buf[5] = (freq_cw >> 16) & 0x7f;
641 
642 		ret = af9013_wr_regs(state, 0xd140, buf, 3);
643 		if (ret)
644 			goto err;
645 
646 		ret = af9013_wr_regs(state, 0x9be7, buf, 6);
647 		if (ret)
648 			goto err;
649 	}
650 
651 	/* clear TPS lock flag */
652 	ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
653 	if (ret)
654 		goto err;
655 
656 	/* clear MPEG2 lock flag */
657 	ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
658 	if (ret)
659 		goto err;
660 
661 	/* empty channel function */
662 	ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
663 	if (ret)
664 		goto err;
665 
666 	/* empty DVB-T channel function */
667 	ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
668 	if (ret)
669 		goto err;
670 
671 	/* transmission parameters */
672 	auto_mode = false;
673 	memset(buf, 0, 3);
674 
675 	switch (c->transmission_mode) {
676 	case TRANSMISSION_MODE_AUTO:
677 		auto_mode = 1;
678 		break;
679 	case TRANSMISSION_MODE_2K:
680 		break;
681 	case TRANSMISSION_MODE_8K:
682 		buf[0] |= (1 << 0);
683 		break;
684 	default:
685 		dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
686 				__func__);
687 		auto_mode = 1;
688 	}
689 
690 	switch (c->guard_interval) {
691 	case GUARD_INTERVAL_AUTO:
692 		auto_mode = 1;
693 		break;
694 	case GUARD_INTERVAL_1_32:
695 		break;
696 	case GUARD_INTERVAL_1_16:
697 		buf[0] |= (1 << 2);
698 		break;
699 	case GUARD_INTERVAL_1_8:
700 		buf[0] |= (2 << 2);
701 		break;
702 	case GUARD_INTERVAL_1_4:
703 		buf[0] |= (3 << 2);
704 		break;
705 	default:
706 		dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
707 				__func__);
708 		auto_mode = 1;
709 	}
710 
711 	switch (c->hierarchy) {
712 	case HIERARCHY_AUTO:
713 		auto_mode = 1;
714 		break;
715 	case HIERARCHY_NONE:
716 		break;
717 	case HIERARCHY_1:
718 		buf[0] |= (1 << 4);
719 		break;
720 	case HIERARCHY_2:
721 		buf[0] |= (2 << 4);
722 		break;
723 	case HIERARCHY_4:
724 		buf[0] |= (3 << 4);
725 		break;
726 	default:
727 		dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
728 		auto_mode = 1;
729 	}
730 
731 	switch (c->modulation) {
732 	case QAM_AUTO:
733 		auto_mode = 1;
734 		break;
735 	case QPSK:
736 		break;
737 	case QAM_16:
738 		buf[1] |= (1 << 6);
739 		break;
740 	case QAM_64:
741 		buf[1] |= (2 << 6);
742 		break;
743 	default:
744 		dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
745 		auto_mode = 1;
746 	}
747 
748 	/* Use HP. How and which case we can switch to LP? */
749 	buf[1] |= (1 << 4);
750 
751 	switch (c->code_rate_HP) {
752 	case FEC_AUTO:
753 		auto_mode = 1;
754 		break;
755 	case FEC_1_2:
756 		break;
757 	case FEC_2_3:
758 		buf[2] |= (1 << 0);
759 		break;
760 	case FEC_3_4:
761 		buf[2] |= (2 << 0);
762 		break;
763 	case FEC_5_6:
764 		buf[2] |= (3 << 0);
765 		break;
766 	case FEC_7_8:
767 		buf[2] |= (4 << 0);
768 		break;
769 	default:
770 		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
771 				__func__);
772 		auto_mode = 1;
773 	}
774 
775 	switch (c->code_rate_LP) {
776 	case FEC_AUTO:
777 		auto_mode = 1;
778 		break;
779 	case FEC_1_2:
780 		break;
781 	case FEC_2_3:
782 		buf[2] |= (1 << 3);
783 		break;
784 	case FEC_3_4:
785 		buf[2] |= (2 << 3);
786 		break;
787 	case FEC_5_6:
788 		buf[2] |= (3 << 3);
789 		break;
790 	case FEC_7_8:
791 		buf[2] |= (4 << 3);
792 		break;
793 	case FEC_NONE:
794 		break;
795 	default:
796 		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
797 				__func__);
798 		auto_mode = 1;
799 	}
800 
801 	switch (c->bandwidth_hz) {
802 	case 6000000:
803 		break;
804 	case 7000000:
805 		buf[1] |= (1 << 2);
806 		break;
807 	case 8000000:
808 		buf[1] |= (2 << 2);
809 		break;
810 	default:
811 		dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
812 				__func__);
813 		ret = -EINVAL;
814 		goto err;
815 	}
816 
817 	ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
818 	if (ret)
819 		goto err;
820 
821 	if (auto_mode) {
822 		/* clear easy mode flag */
823 		ret = af9013_wr_reg(state, 0xaefd, 0);
824 		if (ret)
825 			goto err;
826 
827 		dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
828 	} else {
829 		/* set easy mode flag */
830 		ret = af9013_wr_reg(state, 0xaefd, 1);
831 		if (ret)
832 			goto err;
833 
834 		ret = af9013_wr_reg(state, 0xaefe, 0);
835 		if (ret)
836 			goto err;
837 
838 		dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
839 	}
840 
841 	/* tune */
842 	ret = af9013_wr_reg(state, 0xffff, 0);
843 	if (ret)
844 		goto err;
845 
846 	state->bandwidth_hz = c->bandwidth_hz;
847 	state->set_frontend_jiffies = jiffies;
848 	state->first_tune = false;
849 
850 	return ret;
851 err:
852 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
853 	return ret;
854 }
855 
856 static int af9013_get_frontend(struct dvb_frontend *fe)
857 {
858 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
859 	struct af9013_state *state = fe->demodulator_priv;
860 	int ret;
861 	u8 buf[3];
862 
863 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
864 
865 	ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
866 	if (ret)
867 		goto err;
868 
869 	switch ((buf[1] >> 6) & 3) {
870 	case 0:
871 		c->modulation = QPSK;
872 		break;
873 	case 1:
874 		c->modulation = QAM_16;
875 		break;
876 	case 2:
877 		c->modulation = QAM_64;
878 		break;
879 	}
880 
881 	switch ((buf[0] >> 0) & 3) {
882 	case 0:
883 		c->transmission_mode = TRANSMISSION_MODE_2K;
884 		break;
885 	case 1:
886 		c->transmission_mode = TRANSMISSION_MODE_8K;
887 	}
888 
889 	switch ((buf[0] >> 2) & 3) {
890 	case 0:
891 		c->guard_interval = GUARD_INTERVAL_1_32;
892 		break;
893 	case 1:
894 		c->guard_interval = GUARD_INTERVAL_1_16;
895 		break;
896 	case 2:
897 		c->guard_interval = GUARD_INTERVAL_1_8;
898 		break;
899 	case 3:
900 		c->guard_interval = GUARD_INTERVAL_1_4;
901 		break;
902 	}
903 
904 	switch ((buf[0] >> 4) & 7) {
905 	case 0:
906 		c->hierarchy = HIERARCHY_NONE;
907 		break;
908 	case 1:
909 		c->hierarchy = HIERARCHY_1;
910 		break;
911 	case 2:
912 		c->hierarchy = HIERARCHY_2;
913 		break;
914 	case 3:
915 		c->hierarchy = HIERARCHY_4;
916 		break;
917 	}
918 
919 	switch ((buf[2] >> 0) & 7) {
920 	case 0:
921 		c->code_rate_HP = FEC_1_2;
922 		break;
923 	case 1:
924 		c->code_rate_HP = FEC_2_3;
925 		break;
926 	case 2:
927 		c->code_rate_HP = FEC_3_4;
928 		break;
929 	case 3:
930 		c->code_rate_HP = FEC_5_6;
931 		break;
932 	case 4:
933 		c->code_rate_HP = FEC_7_8;
934 		break;
935 	}
936 
937 	switch ((buf[2] >> 3) & 7) {
938 	case 0:
939 		c->code_rate_LP = FEC_1_2;
940 		break;
941 	case 1:
942 		c->code_rate_LP = FEC_2_3;
943 		break;
944 	case 2:
945 		c->code_rate_LP = FEC_3_4;
946 		break;
947 	case 3:
948 		c->code_rate_LP = FEC_5_6;
949 		break;
950 	case 4:
951 		c->code_rate_LP = FEC_7_8;
952 		break;
953 	}
954 
955 	switch ((buf[1] >> 2) & 3) {
956 	case 0:
957 		c->bandwidth_hz = 6000000;
958 		break;
959 	case 1:
960 		c->bandwidth_hz = 7000000;
961 		break;
962 	case 2:
963 		c->bandwidth_hz = 8000000;
964 		break;
965 	}
966 
967 	return ret;
968 err:
969 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
970 	return ret;
971 }
972 
973 static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
974 {
975 	struct af9013_state *state = fe->demodulator_priv;
976 	int ret;
977 	u8 tmp;
978 
979 	/*
980 	 * Return status from the cache if it is younger than 2000ms with the
981 	 * exception of last tune is done during 4000ms.
982 	 */
983 	if (time_is_after_jiffies(
984 		state->read_status_jiffies + msecs_to_jiffies(2000)) &&
985 		time_is_before_jiffies(
986 		state->set_frontend_jiffies + msecs_to_jiffies(4000))
987 	) {
988 			*status = state->fe_status;
989 			return 0;
990 	} else {
991 		*status = 0;
992 	}
993 
994 	/* MPEG2 lock */
995 	ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
996 	if (ret)
997 		goto err;
998 
999 	if (tmp)
1000 		*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
1001 			FE_HAS_SYNC | FE_HAS_LOCK;
1002 
1003 	if (!*status) {
1004 		/* TPS lock */
1005 		ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
1006 		if (ret)
1007 			goto err;
1008 
1009 		if (tmp)
1010 			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
1011 				FE_HAS_VITERBI;
1012 	}
1013 
1014 	state->fe_status = *status;
1015 	state->read_status_jiffies = jiffies;
1016 
1017 	return ret;
1018 err:
1019 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1020 	return ret;
1021 }
1022 
1023 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1024 {
1025 	struct af9013_state *state = fe->demodulator_priv;
1026 	*snr = state->snr;
1027 	return 0;
1028 }
1029 
1030 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1031 {
1032 	struct af9013_state *state = fe->demodulator_priv;
1033 	*strength = state->signal_strength;
1034 	return 0;
1035 }
1036 
1037 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1038 {
1039 	struct af9013_state *state = fe->demodulator_priv;
1040 	*ber = state->ber;
1041 	return 0;
1042 }
1043 
1044 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1045 {
1046 	struct af9013_state *state = fe->demodulator_priv;
1047 	*ucblocks = state->ucblocks;
1048 	return 0;
1049 }
1050 
1051 static int af9013_init(struct dvb_frontend *fe)
1052 {
1053 	struct af9013_state *state = fe->demodulator_priv;
1054 	int ret, i, len;
1055 	u8 buf[3], tmp;
1056 	u32 adc_cw;
1057 	const struct af9013_reg_bit *init;
1058 
1059 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1060 
1061 	/* power on */
1062 	ret = af9013_power_ctrl(state, 1);
1063 	if (ret)
1064 		goto err;
1065 
1066 	/* enable ADC */
1067 	ret = af9013_wr_reg(state, 0xd73a, 0xa4);
1068 	if (ret)
1069 		goto err;
1070 
1071 	/* write API version to firmware */
1072 	ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
1073 	if (ret)
1074 		goto err;
1075 
1076 	/* program ADC control */
1077 	switch (state->config.clock) {
1078 	case 28800000: /* 28.800 MHz */
1079 		tmp = 0;
1080 		break;
1081 	case 20480000: /* 20.480 MHz */
1082 		tmp = 1;
1083 		break;
1084 	case 28000000: /* 28.000 MHz */
1085 		tmp = 2;
1086 		break;
1087 	case 25000000: /* 25.000 MHz */
1088 		tmp = 3;
1089 		break;
1090 	default:
1091 		dev_err(&state->i2c->dev, "%s: invalid clock\n",
1092 				KBUILD_MODNAME);
1093 		return -EINVAL;
1094 	}
1095 
1096 	adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
1097 	buf[0] = (adc_cw >>  0) & 0xff;
1098 	buf[1] = (adc_cw >>  8) & 0xff;
1099 	buf[2] = (adc_cw >> 16) & 0xff;
1100 
1101 	ret = af9013_wr_regs(state, 0xd180, buf, 3);
1102 	if (ret)
1103 		goto err;
1104 
1105 	ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
1106 	if (ret)
1107 		goto err;
1108 
1109 	/* set I2C master clock */
1110 	ret = af9013_wr_reg(state, 0xd416, 0x14);
1111 	if (ret)
1112 		goto err;
1113 
1114 	/* set 16 embx */
1115 	ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
1116 	if (ret)
1117 		goto err;
1118 
1119 	/* set no trigger */
1120 	ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
1121 	if (ret)
1122 		goto err;
1123 
1124 	/* set read-update bit for constellation */
1125 	ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
1126 	if (ret)
1127 		goto err;
1128 
1129 	/* settings for mp2if */
1130 	if (state->config.ts_mode == AF9013_TS_USB) {
1131 		/* AF9015 split PSB to 1.5k + 0.5k */
1132 		ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
1133 		if (ret)
1134 			goto err;
1135 	} else {
1136 		/* AF9013 change the output bit to data7 */
1137 		ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
1138 		if (ret)
1139 			goto err;
1140 
1141 		/* AF9013 set mpeg to full speed */
1142 		ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
1143 		if (ret)
1144 			goto err;
1145 	}
1146 
1147 	ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
1148 	if (ret)
1149 		goto err;
1150 
1151 	/* load OFSM settings */
1152 	dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
1153 	len = ARRAY_SIZE(ofsm_init);
1154 	init = ofsm_init;
1155 	for (i = 0; i < len; i++) {
1156 		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1157 			init[i].len, init[i].val);
1158 		if (ret)
1159 			goto err;
1160 	}
1161 
1162 	/* load tuner specific settings */
1163 	dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
1164 			__func__);
1165 	switch (state->config.tuner) {
1166 	case AF9013_TUNER_MXL5003D:
1167 		len = ARRAY_SIZE(tuner_init_mxl5003d);
1168 		init = tuner_init_mxl5003d;
1169 		break;
1170 	case AF9013_TUNER_MXL5005D:
1171 	case AF9013_TUNER_MXL5005R:
1172 	case AF9013_TUNER_MXL5007T:
1173 		len = ARRAY_SIZE(tuner_init_mxl5005);
1174 		init = tuner_init_mxl5005;
1175 		break;
1176 	case AF9013_TUNER_ENV77H11D5:
1177 		len = ARRAY_SIZE(tuner_init_env77h11d5);
1178 		init = tuner_init_env77h11d5;
1179 		break;
1180 	case AF9013_TUNER_MT2060:
1181 		len = ARRAY_SIZE(tuner_init_mt2060);
1182 		init = tuner_init_mt2060;
1183 		break;
1184 	case AF9013_TUNER_MC44S803:
1185 		len = ARRAY_SIZE(tuner_init_mc44s803);
1186 		init = tuner_init_mc44s803;
1187 		break;
1188 	case AF9013_TUNER_QT1010:
1189 	case AF9013_TUNER_QT1010A:
1190 		len = ARRAY_SIZE(tuner_init_qt1010);
1191 		init = tuner_init_qt1010;
1192 		break;
1193 	case AF9013_TUNER_MT2060_2:
1194 		len = ARRAY_SIZE(tuner_init_mt2060_2);
1195 		init = tuner_init_mt2060_2;
1196 		break;
1197 	case AF9013_TUNER_TDA18271:
1198 	case AF9013_TUNER_TDA18218:
1199 		len = ARRAY_SIZE(tuner_init_tda18271);
1200 		init = tuner_init_tda18271;
1201 		break;
1202 	case AF9013_TUNER_UNKNOWN:
1203 	default:
1204 		len = ARRAY_SIZE(tuner_init_unknown);
1205 		init = tuner_init_unknown;
1206 		break;
1207 	}
1208 
1209 	for (i = 0; i < len; i++) {
1210 		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1211 			init[i].len, init[i].val);
1212 		if (ret)
1213 			goto err;
1214 	}
1215 
1216 	/* TS mode */
1217 	ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
1218 	if (ret)
1219 		goto err;
1220 
1221 	/* enable lock led */
1222 	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
1223 	if (ret)
1224 		goto err;
1225 
1226 	/* check if we support signal strength */
1227 	if (!state->signal_strength_en) {
1228 		ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
1229 			&state->signal_strength_en);
1230 		if (ret)
1231 			goto err;
1232 	}
1233 
1234 	/* read values needed for signal strength calculation */
1235 	if (state->signal_strength_en && !state->rf_50) {
1236 		ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
1237 		if (ret)
1238 			goto err;
1239 
1240 		ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
1241 		if (ret)
1242 			goto err;
1243 
1244 		ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
1245 		if (ret)
1246 			goto err;
1247 
1248 		ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
1249 		if (ret)
1250 			goto err;
1251 	}
1252 
1253 	/* SNR */
1254 	ret = af9013_wr_reg(state, 0xd2e2, 1);
1255 	if (ret)
1256 		goto err;
1257 
1258 	/* BER / UCB */
1259 	buf[0] = (10000 >> 0) & 0xff;
1260 	buf[1] = (10000 >> 8) & 0xff;
1261 	ret = af9013_wr_regs(state, 0xd385, buf, 2);
1262 	if (ret)
1263 		goto err;
1264 
1265 	/* enable FEC monitor */
1266 	ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
1267 	if (ret)
1268 		goto err;
1269 
1270 	state->first_tune = true;
1271 	schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
1272 
1273 	return ret;
1274 err:
1275 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1276 	return ret;
1277 }
1278 
1279 static int af9013_sleep(struct dvb_frontend *fe)
1280 {
1281 	struct af9013_state *state = fe->demodulator_priv;
1282 	int ret;
1283 
1284 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1285 
1286 	/* stop statistics polling */
1287 	cancel_delayed_work_sync(&state->statistics_work);
1288 
1289 	/* disable lock led */
1290 	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
1291 	if (ret)
1292 		goto err;
1293 
1294 	/* power off */
1295 	ret = af9013_power_ctrl(state, 0);
1296 	if (ret)
1297 		goto err;
1298 
1299 	return ret;
1300 err:
1301 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1302 	return ret;
1303 }
1304 
1305 static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1306 {
1307 	int ret;
1308 	struct af9013_state *state = fe->demodulator_priv;
1309 
1310 	dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
1311 
1312 	/* gate already open or close */
1313 	if (state->i2c_gate_state == enable)
1314 		return 0;
1315 
1316 	if (state->config.ts_mode == AF9013_TS_USB)
1317 		ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
1318 	else
1319 		ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
1320 	if (ret)
1321 		goto err;
1322 
1323 	state->i2c_gate_state = enable;
1324 
1325 	return ret;
1326 err:
1327 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1328 	return ret;
1329 }
1330 
1331 static void af9013_release(struct dvb_frontend *fe)
1332 {
1333 	struct af9013_state *state = fe->demodulator_priv;
1334 	kfree(state);
1335 }
1336 
1337 static struct dvb_frontend_ops af9013_ops;
1338 
1339 static int af9013_download_firmware(struct af9013_state *state)
1340 {
1341 	int i, len, remaining, ret;
1342 	const struct firmware *fw;
1343 	u16 checksum = 0;
1344 	u8 val;
1345 	u8 fw_params[4];
1346 	u8 *fw_file = AF9013_FIRMWARE;
1347 
1348 	msleep(100);
1349 	/* check whether firmware is already running */
1350 	ret = af9013_rd_reg(state, 0x98be, &val);
1351 	if (ret)
1352 		goto err;
1353 	else
1354 		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1355 				__func__, val);
1356 
1357 	if (val == 0x0c) /* fw is running, no need for download */
1358 		goto exit;
1359 
1360 	dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
1361 			"to load a firmware\n",
1362 			KBUILD_MODNAME, af9013_ops.info.name);
1363 
1364 	/* request the firmware, this will block and timeout */
1365 	ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
1366 	if (ret) {
1367 		dev_info(&state->i2c->dev, "%s: did not find the firmware " \
1368 			"file. (%s) Please see linux/Documentation/dvb/ for " \
1369 			"more details on firmware-problems. (%d)\n",
1370 			KBUILD_MODNAME, fw_file, ret);
1371 		goto err;
1372 	}
1373 
1374 	dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
1375 			KBUILD_MODNAME, fw_file);
1376 
1377 	/* calc checksum */
1378 	for (i = 0; i < fw->size; i++)
1379 		checksum += fw->data[i];
1380 
1381 	fw_params[0] = checksum >> 8;
1382 	fw_params[1] = checksum & 0xff;
1383 	fw_params[2] = fw->size >> 8;
1384 	fw_params[3] = fw->size & 0xff;
1385 
1386 	/* write fw checksum & size */
1387 	ret = af9013_write_ofsm_regs(state, 0x50fc,
1388 		fw_params, sizeof(fw_params));
1389 	if (ret)
1390 		goto err_release;
1391 
1392 	#define FW_ADDR 0x5100 /* firmware start address */
1393 	#define LEN_MAX 16 /* max packet size */
1394 	for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
1395 		len = remaining;
1396 		if (len > LEN_MAX)
1397 			len = LEN_MAX;
1398 
1399 		ret = af9013_write_ofsm_regs(state,
1400 			FW_ADDR + fw->size - remaining,
1401 			(u8 *) &fw->data[fw->size - remaining], len);
1402 		if (ret) {
1403 			dev_err(&state->i2c->dev,
1404 					"%s: firmware download failed=%d\n",
1405 					KBUILD_MODNAME, ret);
1406 			goto err_release;
1407 		}
1408 	}
1409 
1410 	/* request boot firmware */
1411 	ret = af9013_wr_reg(state, 0xe205, 1);
1412 	if (ret)
1413 		goto err_release;
1414 
1415 	for (i = 0; i < 15; i++) {
1416 		msleep(100);
1417 
1418 		/* check firmware status */
1419 		ret = af9013_rd_reg(state, 0x98be, &val);
1420 		if (ret)
1421 			goto err_release;
1422 
1423 		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1424 				__func__, val);
1425 
1426 		if (val == 0x0c || val == 0x04) /* success or fail */
1427 			break;
1428 	}
1429 
1430 	if (val == 0x04) {
1431 		dev_err(&state->i2c->dev, "%s: firmware did not run\n",
1432 				KBUILD_MODNAME);
1433 		ret = -ENODEV;
1434 	} else if (val != 0x0c) {
1435 		dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
1436 				KBUILD_MODNAME);
1437 		ret = -ENODEV;
1438 	}
1439 
1440 err_release:
1441 	release_firmware(fw);
1442 err:
1443 exit:
1444 	if (!ret)
1445 		dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
1446 				KBUILD_MODNAME, af9013_ops.info.name);
1447 	return ret;
1448 }
1449 
1450 struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1451 	struct i2c_adapter *i2c)
1452 {
1453 	int ret;
1454 	struct af9013_state *state = NULL;
1455 	u8 buf[4], i;
1456 
1457 	/* allocate memory for the internal state */
1458 	state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1459 	if (state == NULL)
1460 		goto err;
1461 
1462 	/* setup the state */
1463 	state->i2c = i2c;
1464 	memcpy(&state->config, config, sizeof(struct af9013_config));
1465 
1466 	/* download firmware */
1467 	if (state->config.ts_mode != AF9013_TS_USB) {
1468 		ret = af9013_download_firmware(state);
1469 		if (ret)
1470 			goto err;
1471 	}
1472 
1473 	/* firmware version */
1474 	ret = af9013_rd_regs(state, 0x5103, buf, 4);
1475 	if (ret)
1476 		goto err;
1477 
1478 	dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
1479 			KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
1480 
1481 	/* set GPIOs */
1482 	for (i = 0; i < sizeof(state->config.gpio); i++) {
1483 		ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1484 		if (ret)
1485 			goto err;
1486 	}
1487 
1488 	/* create dvb_frontend */
1489 	memcpy(&state->fe.ops, &af9013_ops,
1490 		sizeof(struct dvb_frontend_ops));
1491 	state->fe.demodulator_priv = state;
1492 
1493 	INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
1494 
1495 	return &state->fe;
1496 err:
1497 	kfree(state);
1498 	return NULL;
1499 }
1500 EXPORT_SYMBOL(af9013_attach);
1501 
1502 static struct dvb_frontend_ops af9013_ops = {
1503 	.delsys = { SYS_DVBT },
1504 	.info = {
1505 		.name = "Afatech AF9013",
1506 		.frequency_min = 174000000,
1507 		.frequency_max = 862000000,
1508 		.frequency_stepsize = 250000,
1509 		.frequency_tolerance = 0,
1510 		.caps =	FE_CAN_FEC_1_2 |
1511 			FE_CAN_FEC_2_3 |
1512 			FE_CAN_FEC_3_4 |
1513 			FE_CAN_FEC_5_6 |
1514 			FE_CAN_FEC_7_8 |
1515 			FE_CAN_FEC_AUTO |
1516 			FE_CAN_QPSK |
1517 			FE_CAN_QAM_16 |
1518 			FE_CAN_QAM_64 |
1519 			FE_CAN_QAM_AUTO |
1520 			FE_CAN_TRANSMISSION_MODE_AUTO |
1521 			FE_CAN_GUARD_INTERVAL_AUTO |
1522 			FE_CAN_HIERARCHY_AUTO |
1523 			FE_CAN_RECOVER |
1524 			FE_CAN_MUTE_TS
1525 	},
1526 
1527 	.release = af9013_release,
1528 
1529 	.init = af9013_init,
1530 	.sleep = af9013_sleep,
1531 
1532 	.get_tune_settings = af9013_get_tune_settings,
1533 	.set_frontend = af9013_set_frontend,
1534 	.get_frontend = af9013_get_frontend,
1535 
1536 	.read_status = af9013_read_status,
1537 	.read_snr = af9013_read_snr,
1538 	.read_signal_strength = af9013_read_signal_strength,
1539 	.read_ber = af9013_read_ber,
1540 	.read_ucblocks = af9013_read_ucblocks,
1541 
1542 	.i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1543 };
1544 
1545 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1546 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1547 MODULE_LICENSE("GPL");
1548 MODULE_FIRMWARE(AF9013_FIRMWARE);
1549