1 /* 2 * videobuf2-core.c - video buffer 2 core framework 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * 6 * Author: Pawel Osciak <pawel@osciak.com> 7 * Marek Szyprowski <m.szyprowski@samsung.com> 8 * 9 * The vb2_thread implementation was based on code from videobuf-dvb.c: 10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs] 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/err.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mm.h> 23 #include <linux/poll.h> 24 #include <linux/slab.h> 25 #include <linux/sched.h> 26 #include <linux/freezer.h> 27 #include <linux/kthread.h> 28 29 #include <media/videobuf2-core.h> 30 #include <media/v4l2-mc.h> 31 32 #include <trace/events/vb2.h> 33 34 static int debug; 35 module_param(debug, int, 0644); 36 37 #define dprintk(q, level, fmt, arg...) \ 38 do { \ 39 if (debug >= level) \ 40 pr_info("[%s] %s: " fmt, (q)->name, __func__, \ 41 ## arg); \ 42 } while (0) 43 44 #ifdef CONFIG_VIDEO_ADV_DEBUG 45 46 /* 47 * If advanced debugging is on, then count how often each op is called 48 * successfully, which can either be per-buffer or per-queue. 49 * 50 * This makes it easy to check that the 'init' and 'cleanup' 51 * (and variations thereof) stay balanced. 52 */ 53 54 #define log_memop(vb, op) \ 55 dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n", \ 56 (vb)->index, #op, \ 57 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)") 58 59 #define call_memop(vb, op, args...) \ 60 ({ \ 61 struct vb2_queue *_q = (vb)->vb2_queue; \ 62 int err; \ 63 \ 64 log_memop(vb, op); \ 65 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \ 66 if (!err) \ 67 (vb)->cnt_mem_ ## op++; \ 68 err; \ 69 }) 70 71 #define call_ptr_memop(op, vb, args...) \ 72 ({ \ 73 struct vb2_queue *_q = (vb)->vb2_queue; \ 74 void *ptr; \ 75 \ 76 log_memop(vb, op); \ 77 ptr = _q->mem_ops->op ? _q->mem_ops->op(vb, args) : NULL; \ 78 if (!IS_ERR_OR_NULL(ptr)) \ 79 (vb)->cnt_mem_ ## op++; \ 80 ptr; \ 81 }) 82 83 #define call_void_memop(vb, op, args...) \ 84 ({ \ 85 struct vb2_queue *_q = (vb)->vb2_queue; \ 86 \ 87 log_memop(vb, op); \ 88 if (_q->mem_ops->op) \ 89 _q->mem_ops->op(args); \ 90 (vb)->cnt_mem_ ## op++; \ 91 }) 92 93 #define log_qop(q, op) \ 94 dprintk(q, 2, "call_qop(%s)%s\n", #op, \ 95 (q)->ops->op ? "" : " (nop)") 96 97 #define call_qop(q, op, args...) \ 98 ({ \ 99 int err; \ 100 \ 101 log_qop(q, op); \ 102 err = (q)->ops->op ? (q)->ops->op(args) : 0; \ 103 if (!err) \ 104 (q)->cnt_ ## op++; \ 105 err; \ 106 }) 107 108 #define call_void_qop(q, op, args...) \ 109 ({ \ 110 log_qop(q, op); \ 111 if ((q)->ops->op) \ 112 (q)->ops->op(args); \ 113 (q)->cnt_ ## op++; \ 114 }) 115 116 #define log_vb_qop(vb, op, args...) \ 117 dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n", \ 118 (vb)->index, #op, \ 119 (vb)->vb2_queue->ops->op ? "" : " (nop)") 120 121 #define call_vb_qop(vb, op, args...) \ 122 ({ \ 123 int err; \ 124 \ 125 log_vb_qop(vb, op); \ 126 err = (vb)->vb2_queue->ops->op ? \ 127 (vb)->vb2_queue->ops->op(args) : 0; \ 128 if (!err) \ 129 (vb)->cnt_ ## op++; \ 130 err; \ 131 }) 132 133 #define call_void_vb_qop(vb, op, args...) \ 134 ({ \ 135 log_vb_qop(vb, op); \ 136 if ((vb)->vb2_queue->ops->op) \ 137 (vb)->vb2_queue->ops->op(args); \ 138 (vb)->cnt_ ## op++; \ 139 }) 140 141 #else 142 143 #define call_memop(vb, op, args...) \ 144 ((vb)->vb2_queue->mem_ops->op ? \ 145 (vb)->vb2_queue->mem_ops->op(args) : 0) 146 147 #define call_ptr_memop(op, vb, args...) \ 148 ((vb)->vb2_queue->mem_ops->op ? \ 149 (vb)->vb2_queue->mem_ops->op(vb, args) : NULL) 150 151 #define call_void_memop(vb, op, args...) \ 152 do { \ 153 if ((vb)->vb2_queue->mem_ops->op) \ 154 (vb)->vb2_queue->mem_ops->op(args); \ 155 } while (0) 156 157 #define call_qop(q, op, args...) \ 158 ((q)->ops->op ? (q)->ops->op(args) : 0) 159 160 #define call_void_qop(q, op, args...) \ 161 do { \ 162 if ((q)->ops->op) \ 163 (q)->ops->op(args); \ 164 } while (0) 165 166 #define call_vb_qop(vb, op, args...) \ 167 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0) 168 169 #define call_void_vb_qop(vb, op, args...) \ 170 do { \ 171 if ((vb)->vb2_queue->ops->op) \ 172 (vb)->vb2_queue->ops->op(args); \ 173 } while (0) 174 175 #endif 176 177 #define call_bufop(q, op, args...) \ 178 ({ \ 179 int ret = 0; \ 180 if (q && q->buf_ops && q->buf_ops->op) \ 181 ret = q->buf_ops->op(args); \ 182 ret; \ 183 }) 184 185 #define call_void_bufop(q, op, args...) \ 186 ({ \ 187 if (q && q->buf_ops && q->buf_ops->op) \ 188 q->buf_ops->op(args); \ 189 }) 190 191 static void __vb2_queue_cancel(struct vb2_queue *q); 192 static void __enqueue_in_driver(struct vb2_buffer *vb); 193 194 static const char *vb2_state_name(enum vb2_buffer_state s) 195 { 196 static const char * const state_names[] = { 197 [VB2_BUF_STATE_DEQUEUED] = "dequeued", 198 [VB2_BUF_STATE_IN_REQUEST] = "in request", 199 [VB2_BUF_STATE_PREPARING] = "preparing", 200 [VB2_BUF_STATE_QUEUED] = "queued", 201 [VB2_BUF_STATE_ACTIVE] = "active", 202 [VB2_BUF_STATE_DONE] = "done", 203 [VB2_BUF_STATE_ERROR] = "error", 204 }; 205 206 if ((unsigned int)(s) < ARRAY_SIZE(state_names)) 207 return state_names[s]; 208 return "unknown"; 209 } 210 211 /* 212 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer 213 */ 214 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb) 215 { 216 struct vb2_queue *q = vb->vb2_queue; 217 void *mem_priv; 218 int plane; 219 int ret = -ENOMEM; 220 221 /* 222 * Allocate memory for all planes in this buffer 223 * NOTE: mmapped areas should be page aligned 224 */ 225 for (plane = 0; plane < vb->num_planes; ++plane) { 226 /* Memops alloc requires size to be page aligned. */ 227 unsigned long size = PAGE_ALIGN(vb->planes[plane].length); 228 229 /* Did it wrap around? */ 230 if (size < vb->planes[plane].length) 231 goto free; 232 233 mem_priv = call_ptr_memop(alloc, 234 vb, 235 q->alloc_devs[plane] ? : q->dev, 236 size); 237 if (IS_ERR_OR_NULL(mem_priv)) { 238 if (mem_priv) 239 ret = PTR_ERR(mem_priv); 240 goto free; 241 } 242 243 /* Associate allocator private data with this plane */ 244 vb->planes[plane].mem_priv = mem_priv; 245 } 246 247 return 0; 248 free: 249 /* Free already allocated memory if one of the allocations failed */ 250 for (; plane > 0; --plane) { 251 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv); 252 vb->planes[plane - 1].mem_priv = NULL; 253 } 254 255 return ret; 256 } 257 258 /* 259 * __vb2_buf_mem_free() - free memory of the given buffer 260 */ 261 static void __vb2_buf_mem_free(struct vb2_buffer *vb) 262 { 263 unsigned int plane; 264 265 for (plane = 0; plane < vb->num_planes; ++plane) { 266 call_void_memop(vb, put, vb->planes[plane].mem_priv); 267 vb->planes[plane].mem_priv = NULL; 268 dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n", 269 plane, vb->index); 270 } 271 } 272 273 /* 274 * __vb2_buf_userptr_put() - release userspace memory associated with 275 * a USERPTR buffer 276 */ 277 static void __vb2_buf_userptr_put(struct vb2_buffer *vb) 278 { 279 unsigned int plane; 280 281 for (plane = 0; plane < vb->num_planes; ++plane) { 282 if (vb->planes[plane].mem_priv) 283 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 284 vb->planes[plane].mem_priv = NULL; 285 } 286 } 287 288 /* 289 * __vb2_plane_dmabuf_put() - release memory associated with 290 * a DMABUF shared plane 291 */ 292 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p) 293 { 294 if (!p->mem_priv) 295 return; 296 297 if (p->dbuf_mapped) 298 call_void_memop(vb, unmap_dmabuf, p->mem_priv); 299 300 call_void_memop(vb, detach_dmabuf, p->mem_priv); 301 dma_buf_put(p->dbuf); 302 p->mem_priv = NULL; 303 p->dbuf = NULL; 304 p->dbuf_mapped = 0; 305 } 306 307 /* 308 * __vb2_buf_dmabuf_put() - release memory associated with 309 * a DMABUF shared buffer 310 */ 311 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb) 312 { 313 unsigned int plane; 314 315 for (plane = 0; plane < vb->num_planes; ++plane) 316 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 317 } 318 319 /* 320 * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory 321 * to sync caches 322 */ 323 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb) 324 { 325 unsigned int plane; 326 327 if (vb->synced) 328 return; 329 330 vb->synced = 1; 331 for (plane = 0; plane < vb->num_planes; ++plane) 332 call_void_memop(vb, prepare, vb->planes[plane].mem_priv); 333 } 334 335 /* 336 * __vb2_buf_mem_finish() - call ->finish on buffer's private memory 337 * to sync caches 338 */ 339 static void __vb2_buf_mem_finish(struct vb2_buffer *vb) 340 { 341 unsigned int plane; 342 343 if (!vb->synced) 344 return; 345 346 vb->synced = 0; 347 for (plane = 0; plane < vb->num_planes; ++plane) 348 call_void_memop(vb, finish, vb->planes[plane].mem_priv); 349 } 350 351 /* 352 * __setup_offsets() - setup unique offsets ("cookies") for every plane in 353 * the buffer. 354 */ 355 static void __setup_offsets(struct vb2_buffer *vb) 356 { 357 struct vb2_queue *q = vb->vb2_queue; 358 unsigned int plane; 359 unsigned long off = 0; 360 361 if (vb->index) { 362 struct vb2_buffer *prev = q->bufs[vb->index - 1]; 363 struct vb2_plane *p = &prev->planes[prev->num_planes - 1]; 364 365 off = PAGE_ALIGN(p->m.offset + p->length); 366 } 367 368 for (plane = 0; plane < vb->num_planes; ++plane) { 369 vb->planes[plane].m.offset = off; 370 371 dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n", 372 vb->index, plane, off); 373 374 off += vb->planes[plane].length; 375 off = PAGE_ALIGN(off); 376 } 377 } 378 379 static void init_buffer_cache_hints(struct vb2_queue *q, struct vb2_buffer *vb) 380 { 381 /* 382 * DMA exporter should take care of cache syncs, so we can avoid 383 * explicit ->prepare()/->finish() syncs. For other ->memory types 384 * we always need ->prepare() or/and ->finish() cache sync. 385 */ 386 if (q->memory == VB2_MEMORY_DMABUF) { 387 vb->skip_cache_sync_on_finish = 1; 388 vb->skip_cache_sync_on_prepare = 1; 389 return; 390 } 391 392 /* 393 * ->finish() cache sync can be avoided when queue direction is 394 * TO_DEVICE. 395 */ 396 if (q->dma_dir == DMA_TO_DEVICE) 397 vb->skip_cache_sync_on_finish = 1; 398 } 399 400 /* 401 * __vb2_queue_alloc() - allocate vb2 buffer structures and (for MMAP type) 402 * video buffer memory for all buffers/planes on the queue and initializes the 403 * queue 404 * 405 * Returns the number of buffers successfully allocated. 406 */ 407 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory, 408 unsigned int num_buffers, unsigned int num_planes, 409 const unsigned plane_sizes[VB2_MAX_PLANES]) 410 { 411 unsigned int buffer, plane; 412 struct vb2_buffer *vb; 413 int ret; 414 415 /* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */ 416 num_buffers = min_t(unsigned int, num_buffers, 417 VB2_MAX_FRAME - q->num_buffers); 418 419 for (buffer = 0; buffer < num_buffers; ++buffer) { 420 /* Allocate vb2 buffer structures */ 421 vb = kzalloc(q->buf_struct_size, GFP_KERNEL); 422 if (!vb) { 423 dprintk(q, 1, "memory alloc for buffer struct failed\n"); 424 break; 425 } 426 427 vb->state = VB2_BUF_STATE_DEQUEUED; 428 vb->vb2_queue = q; 429 vb->num_planes = num_planes; 430 vb->index = q->num_buffers + buffer; 431 vb->type = q->type; 432 vb->memory = memory; 433 init_buffer_cache_hints(q, vb); 434 for (plane = 0; plane < num_planes; ++plane) { 435 vb->planes[plane].length = plane_sizes[plane]; 436 vb->planes[plane].min_length = plane_sizes[plane]; 437 } 438 call_void_bufop(q, init_buffer, vb); 439 440 q->bufs[vb->index] = vb; 441 442 /* Allocate video buffer memory for the MMAP type */ 443 if (memory == VB2_MEMORY_MMAP) { 444 ret = __vb2_buf_mem_alloc(vb); 445 if (ret) { 446 dprintk(q, 1, "failed allocating memory for buffer %d\n", 447 buffer); 448 q->bufs[vb->index] = NULL; 449 kfree(vb); 450 break; 451 } 452 __setup_offsets(vb); 453 /* 454 * Call the driver-provided buffer initialization 455 * callback, if given. An error in initialization 456 * results in queue setup failure. 457 */ 458 ret = call_vb_qop(vb, buf_init, vb); 459 if (ret) { 460 dprintk(q, 1, "buffer %d %p initialization failed\n", 461 buffer, vb); 462 __vb2_buf_mem_free(vb); 463 q->bufs[vb->index] = NULL; 464 kfree(vb); 465 break; 466 } 467 } 468 } 469 470 dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n", 471 buffer, num_planes); 472 473 return buffer; 474 } 475 476 /* 477 * __vb2_free_mem() - release all video buffer memory for a given queue 478 */ 479 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers) 480 { 481 unsigned int buffer; 482 struct vb2_buffer *vb; 483 484 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 485 ++buffer) { 486 vb = q->bufs[buffer]; 487 if (!vb) 488 continue; 489 490 /* Free MMAP buffers or release USERPTR buffers */ 491 if (q->memory == VB2_MEMORY_MMAP) 492 __vb2_buf_mem_free(vb); 493 else if (q->memory == VB2_MEMORY_DMABUF) 494 __vb2_buf_dmabuf_put(vb); 495 else 496 __vb2_buf_userptr_put(vb); 497 } 498 } 499 500 /* 501 * __vb2_queue_free() - free buffers at the end of the queue - video memory and 502 * related information, if no buffers are left return the queue to an 503 * uninitialized state. Might be called even if the queue has already been freed. 504 */ 505 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers) 506 { 507 unsigned int buffer; 508 509 /* 510 * Sanity check: when preparing a buffer the queue lock is released for 511 * a short while (see __buf_prepare for the details), which would allow 512 * a race with a reqbufs which can call this function. Removing the 513 * buffers from underneath __buf_prepare is obviously a bad idea, so we 514 * check if any of the buffers is in the state PREPARING, and if so we 515 * just return -EAGAIN. 516 */ 517 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 518 ++buffer) { 519 if (q->bufs[buffer] == NULL) 520 continue; 521 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) { 522 dprintk(q, 1, "preparing buffers, cannot free\n"); 523 return -EAGAIN; 524 } 525 } 526 527 /* Call driver-provided cleanup function for each buffer, if provided */ 528 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 529 ++buffer) { 530 struct vb2_buffer *vb = q->bufs[buffer]; 531 532 if (vb && vb->planes[0].mem_priv) 533 call_void_vb_qop(vb, buf_cleanup, vb); 534 } 535 536 /* Release video buffer memory */ 537 __vb2_free_mem(q, buffers); 538 539 #ifdef CONFIG_VIDEO_ADV_DEBUG 540 /* 541 * Check that all the calls were balances during the life-time of this 542 * queue. If not (or if the debug level is 1 or up), then dump the 543 * counters to the kernel log. 544 */ 545 if (q->num_buffers) { 546 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming || 547 q->cnt_wait_prepare != q->cnt_wait_finish; 548 549 if (unbalanced || debug) { 550 pr_info("counters for queue %p:%s\n", q, 551 unbalanced ? " UNBALANCED!" : ""); 552 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n", 553 q->cnt_queue_setup, q->cnt_start_streaming, 554 q->cnt_stop_streaming); 555 pr_info(" wait_prepare: %u wait_finish: %u\n", 556 q->cnt_wait_prepare, q->cnt_wait_finish); 557 } 558 q->cnt_queue_setup = 0; 559 q->cnt_wait_prepare = 0; 560 q->cnt_wait_finish = 0; 561 q->cnt_start_streaming = 0; 562 q->cnt_stop_streaming = 0; 563 } 564 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 565 struct vb2_buffer *vb = q->bufs[buffer]; 566 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put || 567 vb->cnt_mem_prepare != vb->cnt_mem_finish || 568 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr || 569 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf || 570 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf || 571 vb->cnt_buf_queue != vb->cnt_buf_done || 572 vb->cnt_buf_prepare != vb->cnt_buf_finish || 573 vb->cnt_buf_init != vb->cnt_buf_cleanup; 574 575 if (unbalanced || debug) { 576 pr_info(" counters for queue %p, buffer %d:%s\n", 577 q, buffer, unbalanced ? " UNBALANCED!" : ""); 578 pr_info(" buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n", 579 vb->cnt_buf_init, vb->cnt_buf_cleanup, 580 vb->cnt_buf_prepare, vb->cnt_buf_finish); 581 pr_info(" buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n", 582 vb->cnt_buf_out_validate, vb->cnt_buf_queue, 583 vb->cnt_buf_done, vb->cnt_buf_request_complete); 584 pr_info(" alloc: %u put: %u prepare: %u finish: %u mmap: %u\n", 585 vb->cnt_mem_alloc, vb->cnt_mem_put, 586 vb->cnt_mem_prepare, vb->cnt_mem_finish, 587 vb->cnt_mem_mmap); 588 pr_info(" get_userptr: %u put_userptr: %u\n", 589 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr); 590 pr_info(" attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n", 591 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf, 592 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf); 593 pr_info(" get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n", 594 vb->cnt_mem_get_dmabuf, 595 vb->cnt_mem_num_users, 596 vb->cnt_mem_vaddr, 597 vb->cnt_mem_cookie); 598 } 599 } 600 #endif 601 602 /* Free vb2 buffers */ 603 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 604 ++buffer) { 605 kfree(q->bufs[buffer]); 606 q->bufs[buffer] = NULL; 607 } 608 609 q->num_buffers -= buffers; 610 if (!q->num_buffers) { 611 q->memory = VB2_MEMORY_UNKNOWN; 612 INIT_LIST_HEAD(&q->queued_list); 613 } 614 return 0; 615 } 616 617 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb) 618 { 619 unsigned int plane; 620 for (plane = 0; plane < vb->num_planes; ++plane) { 621 void *mem_priv = vb->planes[plane].mem_priv; 622 /* 623 * If num_users() has not been provided, call_memop 624 * will return 0, apparently nobody cares about this 625 * case anyway. If num_users() returns more than 1, 626 * we are not the only user of the plane's memory. 627 */ 628 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1) 629 return true; 630 } 631 return false; 632 } 633 EXPORT_SYMBOL(vb2_buffer_in_use); 634 635 /* 636 * __buffers_in_use() - return true if any buffers on the queue are in use and 637 * the queue cannot be freed (by the means of REQBUFS(0)) call 638 */ 639 static bool __buffers_in_use(struct vb2_queue *q) 640 { 641 unsigned int buffer; 642 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 643 if (vb2_buffer_in_use(q, q->bufs[buffer])) 644 return true; 645 } 646 return false; 647 } 648 649 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb) 650 { 651 call_void_bufop(q, fill_user_buffer, q->bufs[index], pb); 652 } 653 EXPORT_SYMBOL_GPL(vb2_core_querybuf); 654 655 /* 656 * __verify_userptr_ops() - verify that all memory operations required for 657 * USERPTR queue type have been provided 658 */ 659 static int __verify_userptr_ops(struct vb2_queue *q) 660 { 661 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr || 662 !q->mem_ops->put_userptr) 663 return -EINVAL; 664 665 return 0; 666 } 667 668 /* 669 * __verify_mmap_ops() - verify that all memory operations required for 670 * MMAP queue type have been provided 671 */ 672 static int __verify_mmap_ops(struct vb2_queue *q) 673 { 674 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc || 675 !q->mem_ops->put || !q->mem_ops->mmap) 676 return -EINVAL; 677 678 return 0; 679 } 680 681 /* 682 * __verify_dmabuf_ops() - verify that all memory operations required for 683 * DMABUF queue type have been provided 684 */ 685 static int __verify_dmabuf_ops(struct vb2_queue *q) 686 { 687 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf || 688 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf || 689 !q->mem_ops->unmap_dmabuf) 690 return -EINVAL; 691 692 return 0; 693 } 694 695 int vb2_verify_memory_type(struct vb2_queue *q, 696 enum vb2_memory memory, unsigned int type) 697 { 698 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR && 699 memory != VB2_MEMORY_DMABUF) { 700 dprintk(q, 1, "unsupported memory type\n"); 701 return -EINVAL; 702 } 703 704 if (type != q->type) { 705 dprintk(q, 1, "requested type is incorrect\n"); 706 return -EINVAL; 707 } 708 709 /* 710 * Make sure all the required memory ops for given memory type 711 * are available. 712 */ 713 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) { 714 dprintk(q, 1, "MMAP for current setup unsupported\n"); 715 return -EINVAL; 716 } 717 718 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) { 719 dprintk(q, 1, "USERPTR for current setup unsupported\n"); 720 return -EINVAL; 721 } 722 723 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) { 724 dprintk(q, 1, "DMABUF for current setup unsupported\n"); 725 return -EINVAL; 726 } 727 728 /* 729 * Place the busy tests at the end: -EBUSY can be ignored when 730 * create_bufs is called with count == 0, but count == 0 should still 731 * do the memory and type validation. 732 */ 733 if (vb2_fileio_is_active(q)) { 734 dprintk(q, 1, "file io in progress\n"); 735 return -EBUSY; 736 } 737 return 0; 738 } 739 EXPORT_SYMBOL(vb2_verify_memory_type); 740 741 static void set_queue_coherency(struct vb2_queue *q, bool non_coherent_mem) 742 { 743 q->non_coherent_mem = 0; 744 745 if (!vb2_queue_allows_cache_hints(q)) 746 return; 747 q->non_coherent_mem = non_coherent_mem; 748 } 749 750 static bool verify_coherency_flags(struct vb2_queue *q, bool non_coherent_mem) 751 { 752 if (non_coherent_mem != q->non_coherent_mem) { 753 dprintk(q, 1, "memory coherency model mismatch\n"); 754 return false; 755 } 756 return true; 757 } 758 759 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory, 760 unsigned int flags, unsigned int *count) 761 { 762 unsigned int num_buffers, allocated_buffers, num_planes = 0; 763 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 764 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT; 765 unsigned int i; 766 int ret; 767 768 if (q->streaming) { 769 dprintk(q, 1, "streaming active\n"); 770 return -EBUSY; 771 } 772 773 if (q->waiting_in_dqbuf && *count) { 774 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 775 return -EBUSY; 776 } 777 778 if (*count == 0 || q->num_buffers != 0 || 779 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory) || 780 !verify_coherency_flags(q, non_coherent_mem)) { 781 /* 782 * We already have buffers allocated, so first check if they 783 * are not in use and can be freed. 784 */ 785 mutex_lock(&q->mmap_lock); 786 if (debug && q->memory == VB2_MEMORY_MMAP && 787 __buffers_in_use(q)) 788 dprintk(q, 1, "memory in use, orphaning buffers\n"); 789 790 /* 791 * Call queue_cancel to clean up any buffers in the 792 * QUEUED state which is possible if buffers were prepared or 793 * queued without ever calling STREAMON. 794 */ 795 __vb2_queue_cancel(q); 796 ret = __vb2_queue_free(q, q->num_buffers); 797 mutex_unlock(&q->mmap_lock); 798 if (ret) 799 return ret; 800 801 /* 802 * In case of REQBUFS(0) return immediately without calling 803 * driver's queue_setup() callback and allocating resources. 804 */ 805 if (*count == 0) 806 return 0; 807 } 808 809 /* 810 * Make sure the requested values and current defaults are sane. 811 */ 812 WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME); 813 num_buffers = max_t(unsigned int, *count, q->min_buffers_needed); 814 num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME); 815 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 816 /* 817 * Set this now to ensure that drivers see the correct q->memory value 818 * in the queue_setup op. 819 */ 820 mutex_lock(&q->mmap_lock); 821 q->memory = memory; 822 mutex_unlock(&q->mmap_lock); 823 set_queue_coherency(q, non_coherent_mem); 824 825 /* 826 * Ask the driver how many buffers and planes per buffer it requires. 827 * Driver also sets the size and allocator context for each plane. 828 */ 829 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes, 830 plane_sizes, q->alloc_devs); 831 if (ret) 832 goto error; 833 834 /* Check that driver has set sane values */ 835 if (WARN_ON(!num_planes)) { 836 ret = -EINVAL; 837 goto error; 838 } 839 840 for (i = 0; i < num_planes; i++) 841 if (WARN_ON(!plane_sizes[i])) { 842 ret = -EINVAL; 843 goto error; 844 } 845 846 /* Finally, allocate buffers and video memory */ 847 allocated_buffers = 848 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes); 849 if (allocated_buffers == 0) { 850 dprintk(q, 1, "memory allocation failed\n"); 851 ret = -ENOMEM; 852 goto error; 853 } 854 855 /* 856 * There is no point in continuing if we can't allocate the minimum 857 * number of buffers needed by this vb2_queue. 858 */ 859 if (allocated_buffers < q->min_buffers_needed) 860 ret = -ENOMEM; 861 862 /* 863 * Check if driver can handle the allocated number of buffers. 864 */ 865 if (!ret && allocated_buffers < num_buffers) { 866 num_buffers = allocated_buffers; 867 /* 868 * num_planes is set by the previous queue_setup(), but since it 869 * signals to queue_setup() whether it is called from create_bufs() 870 * vs reqbufs() we zero it here to signal that queue_setup() is 871 * called for the reqbufs() case. 872 */ 873 num_planes = 0; 874 875 ret = call_qop(q, queue_setup, q, &num_buffers, 876 &num_planes, plane_sizes, q->alloc_devs); 877 878 if (!ret && allocated_buffers < num_buffers) 879 ret = -ENOMEM; 880 881 /* 882 * Either the driver has accepted a smaller number of buffers, 883 * or .queue_setup() returned an error 884 */ 885 } 886 887 mutex_lock(&q->mmap_lock); 888 q->num_buffers = allocated_buffers; 889 890 if (ret < 0) { 891 /* 892 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 893 * from q->num_buffers and it will reset q->memory to 894 * VB2_MEMORY_UNKNOWN. 895 */ 896 __vb2_queue_free(q, allocated_buffers); 897 mutex_unlock(&q->mmap_lock); 898 return ret; 899 } 900 mutex_unlock(&q->mmap_lock); 901 902 /* 903 * Return the number of successfully allocated buffers 904 * to the userspace. 905 */ 906 *count = allocated_buffers; 907 q->waiting_for_buffers = !q->is_output; 908 909 return 0; 910 911 error: 912 mutex_lock(&q->mmap_lock); 913 q->memory = VB2_MEMORY_UNKNOWN; 914 mutex_unlock(&q->mmap_lock); 915 return ret; 916 } 917 EXPORT_SYMBOL_GPL(vb2_core_reqbufs); 918 919 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory, 920 unsigned int flags, unsigned int *count, 921 unsigned int requested_planes, 922 const unsigned int requested_sizes[]) 923 { 924 unsigned int num_planes = 0, num_buffers, allocated_buffers; 925 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 926 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT; 927 bool no_previous_buffers = !q->num_buffers; 928 int ret; 929 930 if (q->num_buffers == VB2_MAX_FRAME) { 931 dprintk(q, 1, "maximum number of buffers already allocated\n"); 932 return -ENOBUFS; 933 } 934 935 if (no_previous_buffers) { 936 if (q->waiting_in_dqbuf && *count) { 937 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 938 return -EBUSY; 939 } 940 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 941 /* 942 * Set this now to ensure that drivers see the correct q->memory 943 * value in the queue_setup op. 944 */ 945 mutex_lock(&q->mmap_lock); 946 q->memory = memory; 947 mutex_unlock(&q->mmap_lock); 948 q->waiting_for_buffers = !q->is_output; 949 set_queue_coherency(q, non_coherent_mem); 950 } else { 951 if (q->memory != memory) { 952 dprintk(q, 1, "memory model mismatch\n"); 953 return -EINVAL; 954 } 955 if (!verify_coherency_flags(q, non_coherent_mem)) 956 return -EINVAL; 957 } 958 959 num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers); 960 961 if (requested_planes && requested_sizes) { 962 num_planes = requested_planes; 963 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes)); 964 } 965 966 /* 967 * Ask the driver, whether the requested number of buffers, planes per 968 * buffer and their sizes are acceptable 969 */ 970 ret = call_qop(q, queue_setup, q, &num_buffers, 971 &num_planes, plane_sizes, q->alloc_devs); 972 if (ret) 973 goto error; 974 975 /* Finally, allocate buffers and video memory */ 976 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers, 977 num_planes, plane_sizes); 978 if (allocated_buffers == 0) { 979 dprintk(q, 1, "memory allocation failed\n"); 980 ret = -ENOMEM; 981 goto error; 982 } 983 984 /* 985 * Check if driver can handle the so far allocated number of buffers. 986 */ 987 if (allocated_buffers < num_buffers) { 988 num_buffers = allocated_buffers; 989 990 /* 991 * q->num_buffers contains the total number of buffers, that the 992 * queue driver has set up 993 */ 994 ret = call_qop(q, queue_setup, q, &num_buffers, 995 &num_planes, plane_sizes, q->alloc_devs); 996 997 if (!ret && allocated_buffers < num_buffers) 998 ret = -ENOMEM; 999 1000 /* 1001 * Either the driver has accepted a smaller number of buffers, 1002 * or .queue_setup() returned an error 1003 */ 1004 } 1005 1006 mutex_lock(&q->mmap_lock); 1007 q->num_buffers += allocated_buffers; 1008 1009 if (ret < 0) { 1010 /* 1011 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 1012 * from q->num_buffers and it will reset q->memory to 1013 * VB2_MEMORY_UNKNOWN. 1014 */ 1015 __vb2_queue_free(q, allocated_buffers); 1016 mutex_unlock(&q->mmap_lock); 1017 return -ENOMEM; 1018 } 1019 mutex_unlock(&q->mmap_lock); 1020 1021 /* 1022 * Return the number of successfully allocated buffers 1023 * to the userspace. 1024 */ 1025 *count = allocated_buffers; 1026 1027 return 0; 1028 1029 error: 1030 if (no_previous_buffers) { 1031 mutex_lock(&q->mmap_lock); 1032 q->memory = VB2_MEMORY_UNKNOWN; 1033 mutex_unlock(&q->mmap_lock); 1034 } 1035 return ret; 1036 } 1037 EXPORT_SYMBOL_GPL(vb2_core_create_bufs); 1038 1039 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no) 1040 { 1041 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 1042 return NULL; 1043 1044 return call_ptr_memop(vaddr, vb, vb->planes[plane_no].mem_priv); 1045 1046 } 1047 EXPORT_SYMBOL_GPL(vb2_plane_vaddr); 1048 1049 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no) 1050 { 1051 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 1052 return NULL; 1053 1054 return call_ptr_memop(cookie, vb, vb->planes[plane_no].mem_priv); 1055 } 1056 EXPORT_SYMBOL_GPL(vb2_plane_cookie); 1057 1058 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state) 1059 { 1060 struct vb2_queue *q = vb->vb2_queue; 1061 unsigned long flags; 1062 1063 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE)) 1064 return; 1065 1066 if (WARN_ON(state != VB2_BUF_STATE_DONE && 1067 state != VB2_BUF_STATE_ERROR && 1068 state != VB2_BUF_STATE_QUEUED)) 1069 state = VB2_BUF_STATE_ERROR; 1070 1071 #ifdef CONFIG_VIDEO_ADV_DEBUG 1072 /* 1073 * Although this is not a callback, it still does have to balance 1074 * with the buf_queue op. So update this counter manually. 1075 */ 1076 vb->cnt_buf_done++; 1077 #endif 1078 dprintk(q, 4, "done processing on buffer %d, state: %s\n", 1079 vb->index, vb2_state_name(state)); 1080 1081 if (state != VB2_BUF_STATE_QUEUED) 1082 __vb2_buf_mem_finish(vb); 1083 1084 spin_lock_irqsave(&q->done_lock, flags); 1085 if (state == VB2_BUF_STATE_QUEUED) { 1086 vb->state = VB2_BUF_STATE_QUEUED; 1087 } else { 1088 /* Add the buffer to the done buffers list */ 1089 list_add_tail(&vb->done_entry, &q->done_list); 1090 vb->state = state; 1091 } 1092 atomic_dec(&q->owned_by_drv_count); 1093 1094 if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) { 1095 media_request_object_unbind(&vb->req_obj); 1096 media_request_object_put(&vb->req_obj); 1097 } 1098 1099 spin_unlock_irqrestore(&q->done_lock, flags); 1100 1101 trace_vb2_buf_done(q, vb); 1102 1103 switch (state) { 1104 case VB2_BUF_STATE_QUEUED: 1105 return; 1106 default: 1107 /* Inform any processes that may be waiting for buffers */ 1108 wake_up(&q->done_wq); 1109 break; 1110 } 1111 } 1112 EXPORT_SYMBOL_GPL(vb2_buffer_done); 1113 1114 void vb2_discard_done(struct vb2_queue *q) 1115 { 1116 struct vb2_buffer *vb; 1117 unsigned long flags; 1118 1119 spin_lock_irqsave(&q->done_lock, flags); 1120 list_for_each_entry(vb, &q->done_list, done_entry) 1121 vb->state = VB2_BUF_STATE_ERROR; 1122 spin_unlock_irqrestore(&q->done_lock, flags); 1123 } 1124 EXPORT_SYMBOL_GPL(vb2_discard_done); 1125 1126 /* 1127 * __prepare_mmap() - prepare an MMAP buffer 1128 */ 1129 static int __prepare_mmap(struct vb2_buffer *vb) 1130 { 1131 int ret = 0; 1132 1133 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1134 vb, vb->planes); 1135 return ret ? ret : call_vb_qop(vb, buf_prepare, vb); 1136 } 1137 1138 /* 1139 * __prepare_userptr() - prepare a USERPTR buffer 1140 */ 1141 static int __prepare_userptr(struct vb2_buffer *vb) 1142 { 1143 struct vb2_plane planes[VB2_MAX_PLANES]; 1144 struct vb2_queue *q = vb->vb2_queue; 1145 void *mem_priv; 1146 unsigned int plane; 1147 int ret = 0; 1148 bool reacquired = vb->planes[0].mem_priv == NULL; 1149 1150 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1151 /* Copy relevant information provided by the userspace */ 1152 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1153 vb, planes); 1154 if (ret) 1155 return ret; 1156 1157 for (plane = 0; plane < vb->num_planes; ++plane) { 1158 /* Skip the plane if already verified */ 1159 if (vb->planes[plane].m.userptr && 1160 vb->planes[plane].m.userptr == planes[plane].m.userptr 1161 && vb->planes[plane].length == planes[plane].length) 1162 continue; 1163 1164 dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n", 1165 plane); 1166 1167 /* Check if the provided plane buffer is large enough */ 1168 if (planes[plane].length < vb->planes[plane].min_length) { 1169 dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n", 1170 planes[plane].length, 1171 vb->planes[plane].min_length, 1172 plane); 1173 ret = -EINVAL; 1174 goto err; 1175 } 1176 1177 /* Release previously acquired memory if present */ 1178 if (vb->planes[plane].mem_priv) { 1179 if (!reacquired) { 1180 reacquired = true; 1181 vb->copied_timestamp = 0; 1182 call_void_vb_qop(vb, buf_cleanup, vb); 1183 } 1184 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 1185 } 1186 1187 vb->planes[plane].mem_priv = NULL; 1188 vb->planes[plane].bytesused = 0; 1189 vb->planes[plane].length = 0; 1190 vb->planes[plane].m.userptr = 0; 1191 vb->planes[plane].data_offset = 0; 1192 1193 /* Acquire each plane's memory */ 1194 mem_priv = call_ptr_memop(get_userptr, 1195 vb, 1196 q->alloc_devs[plane] ? : q->dev, 1197 planes[plane].m.userptr, 1198 planes[plane].length); 1199 if (IS_ERR(mem_priv)) { 1200 dprintk(q, 1, "failed acquiring userspace memory for plane %d\n", 1201 plane); 1202 ret = PTR_ERR(mem_priv); 1203 goto err; 1204 } 1205 vb->planes[plane].mem_priv = mem_priv; 1206 } 1207 1208 /* 1209 * Now that everything is in order, copy relevant information 1210 * provided by userspace. 1211 */ 1212 for (plane = 0; plane < vb->num_planes; ++plane) { 1213 vb->planes[plane].bytesused = planes[plane].bytesused; 1214 vb->planes[plane].length = planes[plane].length; 1215 vb->planes[plane].m.userptr = planes[plane].m.userptr; 1216 vb->planes[plane].data_offset = planes[plane].data_offset; 1217 } 1218 1219 if (reacquired) { 1220 /* 1221 * One or more planes changed, so we must call buf_init to do 1222 * the driver-specific initialization on the newly acquired 1223 * buffer, if provided. 1224 */ 1225 ret = call_vb_qop(vb, buf_init, vb); 1226 if (ret) { 1227 dprintk(q, 1, "buffer initialization failed\n"); 1228 goto err; 1229 } 1230 } 1231 1232 ret = call_vb_qop(vb, buf_prepare, vb); 1233 if (ret) { 1234 dprintk(q, 1, "buffer preparation failed\n"); 1235 call_void_vb_qop(vb, buf_cleanup, vb); 1236 goto err; 1237 } 1238 1239 return 0; 1240 err: 1241 /* In case of errors, release planes that were already acquired */ 1242 for (plane = 0; plane < vb->num_planes; ++plane) { 1243 if (vb->planes[plane].mem_priv) 1244 call_void_memop(vb, put_userptr, 1245 vb->planes[plane].mem_priv); 1246 vb->planes[plane].mem_priv = NULL; 1247 vb->planes[plane].m.userptr = 0; 1248 vb->planes[plane].length = 0; 1249 } 1250 1251 return ret; 1252 } 1253 1254 /* 1255 * __prepare_dmabuf() - prepare a DMABUF buffer 1256 */ 1257 static int __prepare_dmabuf(struct vb2_buffer *vb) 1258 { 1259 struct vb2_plane planes[VB2_MAX_PLANES]; 1260 struct vb2_queue *q = vb->vb2_queue; 1261 void *mem_priv; 1262 unsigned int plane; 1263 int ret = 0; 1264 bool reacquired = vb->planes[0].mem_priv == NULL; 1265 1266 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1267 /* Copy relevant information provided by the userspace */ 1268 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1269 vb, planes); 1270 if (ret) 1271 return ret; 1272 1273 for (plane = 0; plane < vb->num_planes; ++plane) { 1274 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd); 1275 1276 if (IS_ERR_OR_NULL(dbuf)) { 1277 dprintk(q, 1, "invalid dmabuf fd for plane %d\n", 1278 plane); 1279 ret = -EINVAL; 1280 goto err; 1281 } 1282 1283 /* use DMABUF size if length is not provided */ 1284 if (planes[plane].length == 0) 1285 planes[plane].length = dbuf->size; 1286 1287 if (planes[plane].length < vb->planes[plane].min_length) { 1288 dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n", 1289 planes[plane].length, plane, 1290 vb->planes[plane].min_length); 1291 dma_buf_put(dbuf); 1292 ret = -EINVAL; 1293 goto err; 1294 } 1295 1296 /* Skip the plane if already verified */ 1297 if (dbuf == vb->planes[plane].dbuf && 1298 vb->planes[plane].length == planes[plane].length) { 1299 dma_buf_put(dbuf); 1300 continue; 1301 } 1302 1303 dprintk(q, 3, "buffer for plane %d changed\n", plane); 1304 1305 if (!reacquired) { 1306 reacquired = true; 1307 vb->copied_timestamp = 0; 1308 call_void_vb_qop(vb, buf_cleanup, vb); 1309 } 1310 1311 /* Release previously acquired memory if present */ 1312 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 1313 vb->planes[plane].bytesused = 0; 1314 vb->planes[plane].length = 0; 1315 vb->planes[plane].m.fd = 0; 1316 vb->planes[plane].data_offset = 0; 1317 1318 /* Acquire each plane's memory */ 1319 mem_priv = call_ptr_memop(attach_dmabuf, 1320 vb, 1321 q->alloc_devs[plane] ? : q->dev, 1322 dbuf, 1323 planes[plane].length); 1324 if (IS_ERR(mem_priv)) { 1325 dprintk(q, 1, "failed to attach dmabuf\n"); 1326 ret = PTR_ERR(mem_priv); 1327 dma_buf_put(dbuf); 1328 goto err; 1329 } 1330 1331 vb->planes[plane].dbuf = dbuf; 1332 vb->planes[plane].mem_priv = mem_priv; 1333 } 1334 1335 /* 1336 * This pins the buffer(s) with dma_buf_map_attachment()). It's done 1337 * here instead just before the DMA, while queueing the buffer(s) so 1338 * userspace knows sooner rather than later if the dma-buf map fails. 1339 */ 1340 for (plane = 0; plane < vb->num_planes; ++plane) { 1341 if (vb->planes[plane].dbuf_mapped) 1342 continue; 1343 1344 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv); 1345 if (ret) { 1346 dprintk(q, 1, "failed to map dmabuf for plane %d\n", 1347 plane); 1348 goto err; 1349 } 1350 vb->planes[plane].dbuf_mapped = 1; 1351 } 1352 1353 /* 1354 * Now that everything is in order, copy relevant information 1355 * provided by userspace. 1356 */ 1357 for (plane = 0; plane < vb->num_planes; ++plane) { 1358 vb->planes[plane].bytesused = planes[plane].bytesused; 1359 vb->planes[plane].length = planes[plane].length; 1360 vb->planes[plane].m.fd = planes[plane].m.fd; 1361 vb->planes[plane].data_offset = planes[plane].data_offset; 1362 } 1363 1364 if (reacquired) { 1365 /* 1366 * Call driver-specific initialization on the newly acquired buffer, 1367 * if provided. 1368 */ 1369 ret = call_vb_qop(vb, buf_init, vb); 1370 if (ret) { 1371 dprintk(q, 1, "buffer initialization failed\n"); 1372 goto err; 1373 } 1374 } 1375 1376 ret = call_vb_qop(vb, buf_prepare, vb); 1377 if (ret) { 1378 dprintk(q, 1, "buffer preparation failed\n"); 1379 call_void_vb_qop(vb, buf_cleanup, vb); 1380 goto err; 1381 } 1382 1383 return 0; 1384 err: 1385 /* In case of errors, release planes that were already acquired */ 1386 __vb2_buf_dmabuf_put(vb); 1387 1388 return ret; 1389 } 1390 1391 /* 1392 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing 1393 */ 1394 static void __enqueue_in_driver(struct vb2_buffer *vb) 1395 { 1396 struct vb2_queue *q = vb->vb2_queue; 1397 1398 vb->state = VB2_BUF_STATE_ACTIVE; 1399 atomic_inc(&q->owned_by_drv_count); 1400 1401 trace_vb2_buf_queue(q, vb); 1402 1403 call_void_vb_qop(vb, buf_queue, vb); 1404 } 1405 1406 static int __buf_prepare(struct vb2_buffer *vb) 1407 { 1408 struct vb2_queue *q = vb->vb2_queue; 1409 enum vb2_buffer_state orig_state = vb->state; 1410 int ret; 1411 1412 if (q->error) { 1413 dprintk(q, 1, "fatal error occurred on queue\n"); 1414 return -EIO; 1415 } 1416 1417 if (vb->prepared) 1418 return 0; 1419 WARN_ON(vb->synced); 1420 1421 if (q->is_output) { 1422 ret = call_vb_qop(vb, buf_out_validate, vb); 1423 if (ret) { 1424 dprintk(q, 1, "buffer validation failed\n"); 1425 return ret; 1426 } 1427 } 1428 1429 vb->state = VB2_BUF_STATE_PREPARING; 1430 1431 switch (q->memory) { 1432 case VB2_MEMORY_MMAP: 1433 ret = __prepare_mmap(vb); 1434 break; 1435 case VB2_MEMORY_USERPTR: 1436 ret = __prepare_userptr(vb); 1437 break; 1438 case VB2_MEMORY_DMABUF: 1439 ret = __prepare_dmabuf(vb); 1440 break; 1441 default: 1442 WARN(1, "Invalid queue type\n"); 1443 ret = -EINVAL; 1444 break; 1445 } 1446 1447 if (ret) { 1448 dprintk(q, 1, "buffer preparation failed: %d\n", ret); 1449 vb->state = orig_state; 1450 return ret; 1451 } 1452 1453 __vb2_buf_mem_prepare(vb); 1454 vb->prepared = 1; 1455 vb->state = orig_state; 1456 1457 return 0; 1458 } 1459 1460 static int vb2_req_prepare(struct media_request_object *obj) 1461 { 1462 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1463 int ret; 1464 1465 if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST)) 1466 return -EINVAL; 1467 1468 mutex_lock(vb->vb2_queue->lock); 1469 ret = __buf_prepare(vb); 1470 mutex_unlock(vb->vb2_queue->lock); 1471 return ret; 1472 } 1473 1474 static void __vb2_dqbuf(struct vb2_buffer *vb); 1475 1476 static void vb2_req_unprepare(struct media_request_object *obj) 1477 { 1478 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1479 1480 mutex_lock(vb->vb2_queue->lock); 1481 __vb2_dqbuf(vb); 1482 vb->state = VB2_BUF_STATE_IN_REQUEST; 1483 mutex_unlock(vb->vb2_queue->lock); 1484 WARN_ON(!vb->req_obj.req); 1485 } 1486 1487 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1488 struct media_request *req); 1489 1490 static void vb2_req_queue(struct media_request_object *obj) 1491 { 1492 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1493 int err; 1494 1495 mutex_lock(vb->vb2_queue->lock); 1496 /* 1497 * There is no method to propagate an error from vb2_core_qbuf(), 1498 * so if this returns a non-0 value, then WARN. 1499 * 1500 * The only exception is -EIO which is returned if q->error is 1501 * set. We just ignore that, and expect this will be caught the 1502 * next time vb2_req_prepare() is called. 1503 */ 1504 err = vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL); 1505 WARN_ON_ONCE(err && err != -EIO); 1506 mutex_unlock(vb->vb2_queue->lock); 1507 } 1508 1509 static void vb2_req_unbind(struct media_request_object *obj) 1510 { 1511 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1512 1513 if (vb->state == VB2_BUF_STATE_IN_REQUEST) 1514 call_void_bufop(vb->vb2_queue, init_buffer, vb); 1515 } 1516 1517 static void vb2_req_release(struct media_request_object *obj) 1518 { 1519 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1520 1521 if (vb->state == VB2_BUF_STATE_IN_REQUEST) { 1522 vb->state = VB2_BUF_STATE_DEQUEUED; 1523 if (vb->request) 1524 media_request_put(vb->request); 1525 vb->request = NULL; 1526 } 1527 } 1528 1529 static const struct media_request_object_ops vb2_core_req_ops = { 1530 .prepare = vb2_req_prepare, 1531 .unprepare = vb2_req_unprepare, 1532 .queue = vb2_req_queue, 1533 .unbind = vb2_req_unbind, 1534 .release = vb2_req_release, 1535 }; 1536 1537 bool vb2_request_object_is_buffer(struct media_request_object *obj) 1538 { 1539 return obj->ops == &vb2_core_req_ops; 1540 } 1541 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer); 1542 1543 unsigned int vb2_request_buffer_cnt(struct media_request *req) 1544 { 1545 struct media_request_object *obj; 1546 unsigned long flags; 1547 unsigned int buffer_cnt = 0; 1548 1549 spin_lock_irqsave(&req->lock, flags); 1550 list_for_each_entry(obj, &req->objects, list) 1551 if (vb2_request_object_is_buffer(obj)) 1552 buffer_cnt++; 1553 spin_unlock_irqrestore(&req->lock, flags); 1554 1555 return buffer_cnt; 1556 } 1557 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt); 1558 1559 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb) 1560 { 1561 struct vb2_buffer *vb; 1562 int ret; 1563 1564 vb = q->bufs[index]; 1565 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1566 dprintk(q, 1, "invalid buffer state %s\n", 1567 vb2_state_name(vb->state)); 1568 return -EINVAL; 1569 } 1570 if (vb->prepared) { 1571 dprintk(q, 1, "buffer already prepared\n"); 1572 return -EINVAL; 1573 } 1574 1575 ret = __buf_prepare(vb); 1576 if (ret) 1577 return ret; 1578 1579 /* Fill buffer information for the userspace */ 1580 call_void_bufop(q, fill_user_buffer, vb, pb); 1581 1582 dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index); 1583 1584 return 0; 1585 } 1586 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf); 1587 1588 /* 1589 * vb2_start_streaming() - Attempt to start streaming. 1590 * @q: videobuf2 queue 1591 * 1592 * Attempt to start streaming. When this function is called there must be 1593 * at least q->min_buffers_needed buffers queued up (i.e. the minimum 1594 * number of buffers required for the DMA engine to function). If the 1595 * @start_streaming op fails it is supposed to return all the driver-owned 1596 * buffers back to vb2 in state QUEUED. Check if that happened and if 1597 * not warn and reclaim them forcefully. 1598 */ 1599 static int vb2_start_streaming(struct vb2_queue *q) 1600 { 1601 struct vb2_buffer *vb; 1602 int ret; 1603 1604 /* 1605 * If any buffers were queued before streamon, 1606 * we can now pass them to driver for processing. 1607 */ 1608 list_for_each_entry(vb, &q->queued_list, queued_entry) 1609 __enqueue_in_driver(vb); 1610 1611 /* Tell the driver to start streaming */ 1612 q->start_streaming_called = 1; 1613 ret = call_qop(q, start_streaming, q, 1614 atomic_read(&q->owned_by_drv_count)); 1615 if (!ret) 1616 return 0; 1617 1618 q->start_streaming_called = 0; 1619 1620 dprintk(q, 1, "driver refused to start streaming\n"); 1621 /* 1622 * If you see this warning, then the driver isn't cleaning up properly 1623 * after a failed start_streaming(). See the start_streaming() 1624 * documentation in videobuf2-core.h for more information how buffers 1625 * should be returned to vb2 in start_streaming(). 1626 */ 1627 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1628 unsigned i; 1629 1630 /* 1631 * Forcefully reclaim buffers if the driver did not 1632 * correctly return them to vb2. 1633 */ 1634 for (i = 0; i < q->num_buffers; ++i) { 1635 vb = q->bufs[i]; 1636 if (vb->state == VB2_BUF_STATE_ACTIVE) 1637 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED); 1638 } 1639 /* Must be zero now */ 1640 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1641 } 1642 /* 1643 * If done_list is not empty, then start_streaming() didn't call 1644 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or 1645 * STATE_DONE. 1646 */ 1647 WARN_ON(!list_empty(&q->done_list)); 1648 return ret; 1649 } 1650 1651 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1652 struct media_request *req) 1653 { 1654 struct vb2_buffer *vb; 1655 enum vb2_buffer_state orig_state; 1656 int ret; 1657 1658 if (q->error) { 1659 dprintk(q, 1, "fatal error occurred on queue\n"); 1660 return -EIO; 1661 } 1662 1663 vb = q->bufs[index]; 1664 1665 if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1666 q->requires_requests) { 1667 dprintk(q, 1, "qbuf requires a request\n"); 1668 return -EBADR; 1669 } 1670 1671 if ((req && q->uses_qbuf) || 1672 (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1673 q->uses_requests)) { 1674 dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n"); 1675 return -EBUSY; 1676 } 1677 1678 if (req) { 1679 int ret; 1680 1681 q->uses_requests = 1; 1682 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1683 dprintk(q, 1, "buffer %d not in dequeued state\n", 1684 vb->index); 1685 return -EINVAL; 1686 } 1687 1688 if (q->is_output && !vb->prepared) { 1689 ret = call_vb_qop(vb, buf_out_validate, vb); 1690 if (ret) { 1691 dprintk(q, 1, "buffer validation failed\n"); 1692 return ret; 1693 } 1694 } 1695 1696 media_request_object_init(&vb->req_obj); 1697 1698 /* Make sure the request is in a safe state for updating. */ 1699 ret = media_request_lock_for_update(req); 1700 if (ret) 1701 return ret; 1702 ret = media_request_object_bind(req, &vb2_core_req_ops, 1703 q, true, &vb->req_obj); 1704 media_request_unlock_for_update(req); 1705 if (ret) 1706 return ret; 1707 1708 vb->state = VB2_BUF_STATE_IN_REQUEST; 1709 1710 /* 1711 * Increment the refcount and store the request. 1712 * The request refcount is decremented again when the 1713 * buffer is dequeued. This is to prevent vb2_buffer_done() 1714 * from freeing the request from interrupt context, which can 1715 * happen if the application closed the request fd after 1716 * queueing the request. 1717 */ 1718 media_request_get(req); 1719 vb->request = req; 1720 1721 /* Fill buffer information for the userspace */ 1722 if (pb) { 1723 call_void_bufop(q, copy_timestamp, vb, pb); 1724 call_void_bufop(q, fill_user_buffer, vb, pb); 1725 } 1726 1727 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1728 return 0; 1729 } 1730 1731 if (vb->state != VB2_BUF_STATE_IN_REQUEST) 1732 q->uses_qbuf = 1; 1733 1734 switch (vb->state) { 1735 case VB2_BUF_STATE_DEQUEUED: 1736 case VB2_BUF_STATE_IN_REQUEST: 1737 if (!vb->prepared) { 1738 ret = __buf_prepare(vb); 1739 if (ret) 1740 return ret; 1741 } 1742 break; 1743 case VB2_BUF_STATE_PREPARING: 1744 dprintk(q, 1, "buffer still being prepared\n"); 1745 return -EINVAL; 1746 default: 1747 dprintk(q, 1, "invalid buffer state %s\n", 1748 vb2_state_name(vb->state)); 1749 return -EINVAL; 1750 } 1751 1752 /* 1753 * Add to the queued buffers list, a buffer will stay on it until 1754 * dequeued in dqbuf. 1755 */ 1756 orig_state = vb->state; 1757 list_add_tail(&vb->queued_entry, &q->queued_list); 1758 q->queued_count++; 1759 q->waiting_for_buffers = false; 1760 vb->state = VB2_BUF_STATE_QUEUED; 1761 1762 if (pb) 1763 call_void_bufop(q, copy_timestamp, vb, pb); 1764 1765 trace_vb2_qbuf(q, vb); 1766 1767 /* 1768 * If already streaming, give the buffer to driver for processing. 1769 * If not, the buffer will be given to driver on next streamon. 1770 */ 1771 if (q->start_streaming_called) 1772 __enqueue_in_driver(vb); 1773 1774 /* Fill buffer information for the userspace */ 1775 if (pb) 1776 call_void_bufop(q, fill_user_buffer, vb, pb); 1777 1778 /* 1779 * If streamon has been called, and we haven't yet called 1780 * start_streaming() since not enough buffers were queued, and 1781 * we now have reached the minimum number of queued buffers, 1782 * then we can finally call start_streaming(). 1783 */ 1784 if (q->streaming && !q->start_streaming_called && 1785 q->queued_count >= q->min_buffers_needed) { 1786 ret = vb2_start_streaming(q); 1787 if (ret) { 1788 /* 1789 * Since vb2_core_qbuf will return with an error, 1790 * we should return it to state DEQUEUED since 1791 * the error indicates that the buffer wasn't queued. 1792 */ 1793 list_del(&vb->queued_entry); 1794 q->queued_count--; 1795 vb->state = orig_state; 1796 return ret; 1797 } 1798 } 1799 1800 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1801 return 0; 1802 } 1803 EXPORT_SYMBOL_GPL(vb2_core_qbuf); 1804 1805 /* 1806 * __vb2_wait_for_done_vb() - wait for a buffer to become available 1807 * for dequeuing 1808 * 1809 * Will sleep if required for nonblocking == false. 1810 */ 1811 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking) 1812 { 1813 /* 1814 * All operations on vb_done_list are performed under done_lock 1815 * spinlock protection. However, buffers may be removed from 1816 * it and returned to userspace only while holding both driver's 1817 * lock and the done_lock spinlock. Thus we can be sure that as 1818 * long as we hold the driver's lock, the list will remain not 1819 * empty if list_empty() check succeeds. 1820 */ 1821 1822 for (;;) { 1823 int ret; 1824 1825 if (q->waiting_in_dqbuf) { 1826 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 1827 return -EBUSY; 1828 } 1829 1830 if (!q->streaming) { 1831 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1832 return -EINVAL; 1833 } 1834 1835 if (q->error) { 1836 dprintk(q, 1, "Queue in error state, will not wait for buffers\n"); 1837 return -EIO; 1838 } 1839 1840 if (q->last_buffer_dequeued) { 1841 dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n"); 1842 return -EPIPE; 1843 } 1844 1845 if (!list_empty(&q->done_list)) { 1846 /* 1847 * Found a buffer that we were waiting for. 1848 */ 1849 break; 1850 } 1851 1852 if (nonblocking) { 1853 dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n"); 1854 return -EAGAIN; 1855 } 1856 1857 q->waiting_in_dqbuf = 1; 1858 /* 1859 * We are streaming and blocking, wait for another buffer to 1860 * become ready or for streamoff. Driver's lock is released to 1861 * allow streamoff or qbuf to be called while waiting. 1862 */ 1863 call_void_qop(q, wait_prepare, q); 1864 1865 /* 1866 * All locks have been released, it is safe to sleep now. 1867 */ 1868 dprintk(q, 3, "will sleep waiting for buffers\n"); 1869 ret = wait_event_interruptible(q->done_wq, 1870 !list_empty(&q->done_list) || !q->streaming || 1871 q->error); 1872 1873 /* 1874 * We need to reevaluate both conditions again after reacquiring 1875 * the locks or return an error if one occurred. 1876 */ 1877 call_void_qop(q, wait_finish, q); 1878 q->waiting_in_dqbuf = 0; 1879 if (ret) { 1880 dprintk(q, 1, "sleep was interrupted\n"); 1881 return ret; 1882 } 1883 } 1884 return 0; 1885 } 1886 1887 /* 1888 * __vb2_get_done_vb() - get a buffer ready for dequeuing 1889 * 1890 * Will sleep if required for nonblocking == false. 1891 */ 1892 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb, 1893 void *pb, int nonblocking) 1894 { 1895 unsigned long flags; 1896 int ret = 0; 1897 1898 /* 1899 * Wait for at least one buffer to become available on the done_list. 1900 */ 1901 ret = __vb2_wait_for_done_vb(q, nonblocking); 1902 if (ret) 1903 return ret; 1904 1905 /* 1906 * Driver's lock has been held since we last verified that done_list 1907 * is not empty, so no need for another list_empty(done_list) check. 1908 */ 1909 spin_lock_irqsave(&q->done_lock, flags); 1910 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry); 1911 /* 1912 * Only remove the buffer from done_list if all planes can be 1913 * handled. Some cases such as V4L2 file I/O and DVB have pb 1914 * == NULL; skip the check then as there's nothing to verify. 1915 */ 1916 if (pb) 1917 ret = call_bufop(q, verify_planes_array, *vb, pb); 1918 if (!ret) 1919 list_del(&(*vb)->done_entry); 1920 spin_unlock_irqrestore(&q->done_lock, flags); 1921 1922 return ret; 1923 } 1924 1925 int vb2_wait_for_all_buffers(struct vb2_queue *q) 1926 { 1927 if (!q->streaming) { 1928 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1929 return -EINVAL; 1930 } 1931 1932 if (q->start_streaming_called) 1933 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count)); 1934 return 0; 1935 } 1936 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers); 1937 1938 /* 1939 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state 1940 */ 1941 static void __vb2_dqbuf(struct vb2_buffer *vb) 1942 { 1943 struct vb2_queue *q = vb->vb2_queue; 1944 1945 /* nothing to do if the buffer is already dequeued */ 1946 if (vb->state == VB2_BUF_STATE_DEQUEUED) 1947 return; 1948 1949 vb->state = VB2_BUF_STATE_DEQUEUED; 1950 1951 call_void_bufop(q, init_buffer, vb); 1952 } 1953 1954 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb, 1955 bool nonblocking) 1956 { 1957 struct vb2_buffer *vb = NULL; 1958 int ret; 1959 1960 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking); 1961 if (ret < 0) 1962 return ret; 1963 1964 switch (vb->state) { 1965 case VB2_BUF_STATE_DONE: 1966 dprintk(q, 3, "returning done buffer\n"); 1967 break; 1968 case VB2_BUF_STATE_ERROR: 1969 dprintk(q, 3, "returning done buffer with errors\n"); 1970 break; 1971 default: 1972 dprintk(q, 1, "invalid buffer state %s\n", 1973 vb2_state_name(vb->state)); 1974 return -EINVAL; 1975 } 1976 1977 call_void_vb_qop(vb, buf_finish, vb); 1978 vb->prepared = 0; 1979 1980 if (pindex) 1981 *pindex = vb->index; 1982 1983 /* Fill buffer information for the userspace */ 1984 if (pb) 1985 call_void_bufop(q, fill_user_buffer, vb, pb); 1986 1987 /* Remove from vb2 queue */ 1988 list_del(&vb->queued_entry); 1989 q->queued_count--; 1990 1991 trace_vb2_dqbuf(q, vb); 1992 1993 /* go back to dequeued state */ 1994 __vb2_dqbuf(vb); 1995 1996 if (WARN_ON(vb->req_obj.req)) { 1997 media_request_object_unbind(&vb->req_obj); 1998 media_request_object_put(&vb->req_obj); 1999 } 2000 if (vb->request) 2001 media_request_put(vb->request); 2002 vb->request = NULL; 2003 2004 dprintk(q, 2, "dqbuf of buffer %d, state: %s\n", 2005 vb->index, vb2_state_name(vb->state)); 2006 2007 return 0; 2008 2009 } 2010 EXPORT_SYMBOL_GPL(vb2_core_dqbuf); 2011 2012 /* 2013 * __vb2_queue_cancel() - cancel and stop (pause) streaming 2014 * 2015 * Removes all queued buffers from driver's queue and all buffers queued by 2016 * userspace from vb2's queue. Returns to state after reqbufs. 2017 */ 2018 static void __vb2_queue_cancel(struct vb2_queue *q) 2019 { 2020 unsigned int i; 2021 2022 /* 2023 * Tell driver to stop all transactions and release all queued 2024 * buffers. 2025 */ 2026 if (q->start_streaming_called) 2027 call_void_qop(q, stop_streaming, q); 2028 2029 /* 2030 * If you see this warning, then the driver isn't cleaning up properly 2031 * in stop_streaming(). See the stop_streaming() documentation in 2032 * videobuf2-core.h for more information how buffers should be returned 2033 * to vb2 in stop_streaming(). 2034 */ 2035 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 2036 for (i = 0; i < q->num_buffers; ++i) 2037 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) { 2038 pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n", 2039 q->bufs[i]); 2040 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR); 2041 } 2042 /* Must be zero now */ 2043 WARN_ON(atomic_read(&q->owned_by_drv_count)); 2044 } 2045 2046 q->streaming = 0; 2047 q->start_streaming_called = 0; 2048 q->queued_count = 0; 2049 q->error = 0; 2050 q->uses_requests = 0; 2051 q->uses_qbuf = 0; 2052 2053 /* 2054 * Remove all buffers from vb2's list... 2055 */ 2056 INIT_LIST_HEAD(&q->queued_list); 2057 /* 2058 * ...and done list; userspace will not receive any buffers it 2059 * has not already dequeued before initiating cancel. 2060 */ 2061 INIT_LIST_HEAD(&q->done_list); 2062 atomic_set(&q->owned_by_drv_count, 0); 2063 wake_up_all(&q->done_wq); 2064 2065 /* 2066 * Reinitialize all buffers for next use. 2067 * Make sure to call buf_finish for any queued buffers. Normally 2068 * that's done in dqbuf, but that's not going to happen when we 2069 * cancel the whole queue. Note: this code belongs here, not in 2070 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical 2071 * call to __fill_user_buffer() after buf_finish(). That order can't 2072 * be changed, so we can't move the buf_finish() to __vb2_dqbuf(). 2073 */ 2074 for (i = 0; i < q->num_buffers; ++i) { 2075 struct vb2_buffer *vb = q->bufs[i]; 2076 struct media_request *req = vb->req_obj.req; 2077 2078 /* 2079 * If a request is associated with this buffer, then 2080 * call buf_request_cancel() to give the driver to complete() 2081 * related request objects. Otherwise those objects would 2082 * never complete. 2083 */ 2084 if (req) { 2085 enum media_request_state state; 2086 unsigned long flags; 2087 2088 spin_lock_irqsave(&req->lock, flags); 2089 state = req->state; 2090 spin_unlock_irqrestore(&req->lock, flags); 2091 2092 if (state == MEDIA_REQUEST_STATE_QUEUED) 2093 call_void_vb_qop(vb, buf_request_complete, vb); 2094 } 2095 2096 __vb2_buf_mem_finish(vb); 2097 2098 if (vb->prepared) { 2099 call_void_vb_qop(vb, buf_finish, vb); 2100 vb->prepared = 0; 2101 } 2102 __vb2_dqbuf(vb); 2103 2104 if (vb->req_obj.req) { 2105 media_request_object_unbind(&vb->req_obj); 2106 media_request_object_put(&vb->req_obj); 2107 } 2108 if (vb->request) 2109 media_request_put(vb->request); 2110 vb->request = NULL; 2111 vb->copied_timestamp = 0; 2112 } 2113 } 2114 2115 int vb2_core_streamon(struct vb2_queue *q, unsigned int type) 2116 { 2117 int ret; 2118 2119 if (type != q->type) { 2120 dprintk(q, 1, "invalid stream type\n"); 2121 return -EINVAL; 2122 } 2123 2124 if (q->streaming) { 2125 dprintk(q, 3, "already streaming\n"); 2126 return 0; 2127 } 2128 2129 if (!q->num_buffers) { 2130 dprintk(q, 1, "no buffers have been allocated\n"); 2131 return -EINVAL; 2132 } 2133 2134 if (q->num_buffers < q->min_buffers_needed) { 2135 dprintk(q, 1, "need at least %u allocated buffers\n", 2136 q->min_buffers_needed); 2137 return -EINVAL; 2138 } 2139 2140 /* 2141 * Tell driver to start streaming provided sufficient buffers 2142 * are available. 2143 */ 2144 if (q->queued_count >= q->min_buffers_needed) { 2145 ret = v4l_vb2q_enable_media_source(q); 2146 if (ret) 2147 return ret; 2148 ret = vb2_start_streaming(q); 2149 if (ret) 2150 return ret; 2151 } 2152 2153 q->streaming = 1; 2154 2155 dprintk(q, 3, "successful\n"); 2156 return 0; 2157 } 2158 EXPORT_SYMBOL_GPL(vb2_core_streamon); 2159 2160 void vb2_queue_error(struct vb2_queue *q) 2161 { 2162 q->error = 1; 2163 2164 wake_up_all(&q->done_wq); 2165 } 2166 EXPORT_SYMBOL_GPL(vb2_queue_error); 2167 2168 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type) 2169 { 2170 if (type != q->type) { 2171 dprintk(q, 1, "invalid stream type\n"); 2172 return -EINVAL; 2173 } 2174 2175 /* 2176 * Cancel will pause streaming and remove all buffers from the driver 2177 * and vb2, effectively returning control over them to userspace. 2178 * 2179 * Note that we do this even if q->streaming == 0: if you prepare or 2180 * queue buffers, and then call streamoff without ever having called 2181 * streamon, you would still expect those buffers to be returned to 2182 * their normal dequeued state. 2183 */ 2184 __vb2_queue_cancel(q); 2185 q->waiting_for_buffers = !q->is_output; 2186 q->last_buffer_dequeued = false; 2187 2188 dprintk(q, 3, "successful\n"); 2189 return 0; 2190 } 2191 EXPORT_SYMBOL_GPL(vb2_core_streamoff); 2192 2193 /* 2194 * __find_plane_by_offset() - find plane associated with the given offset off 2195 */ 2196 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off, 2197 unsigned int *_buffer, unsigned int *_plane) 2198 { 2199 struct vb2_buffer *vb; 2200 unsigned int buffer, plane; 2201 2202 /* 2203 * Sanity checks to ensure the lock is held, MEMORY_MMAP is 2204 * used and fileio isn't active. 2205 */ 2206 lockdep_assert_held(&q->mmap_lock); 2207 2208 if (q->memory != VB2_MEMORY_MMAP) { 2209 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2210 return -EINVAL; 2211 } 2212 2213 if (vb2_fileio_is_active(q)) { 2214 dprintk(q, 1, "file io in progress\n"); 2215 return -EBUSY; 2216 } 2217 2218 /* 2219 * Go over all buffers and their planes, comparing the given offset 2220 * with an offset assigned to each plane. If a match is found, 2221 * return its buffer and plane numbers. 2222 */ 2223 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 2224 vb = q->bufs[buffer]; 2225 2226 for (plane = 0; plane < vb->num_planes; ++plane) { 2227 if (vb->planes[plane].m.offset == off) { 2228 *_buffer = buffer; 2229 *_plane = plane; 2230 return 0; 2231 } 2232 } 2233 } 2234 2235 return -EINVAL; 2236 } 2237 2238 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type, 2239 unsigned int index, unsigned int plane, unsigned int flags) 2240 { 2241 struct vb2_buffer *vb = NULL; 2242 struct vb2_plane *vb_plane; 2243 int ret; 2244 struct dma_buf *dbuf; 2245 2246 if (q->memory != VB2_MEMORY_MMAP) { 2247 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2248 return -EINVAL; 2249 } 2250 2251 if (!q->mem_ops->get_dmabuf) { 2252 dprintk(q, 1, "queue does not support DMA buffer exporting\n"); 2253 return -EINVAL; 2254 } 2255 2256 if (flags & ~(O_CLOEXEC | O_ACCMODE)) { 2257 dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n"); 2258 return -EINVAL; 2259 } 2260 2261 if (type != q->type) { 2262 dprintk(q, 1, "invalid buffer type\n"); 2263 return -EINVAL; 2264 } 2265 2266 if (index >= q->num_buffers) { 2267 dprintk(q, 1, "buffer index out of range\n"); 2268 return -EINVAL; 2269 } 2270 2271 vb = q->bufs[index]; 2272 2273 if (plane >= vb->num_planes) { 2274 dprintk(q, 1, "buffer plane out of range\n"); 2275 return -EINVAL; 2276 } 2277 2278 if (vb2_fileio_is_active(q)) { 2279 dprintk(q, 1, "expbuf: file io in progress\n"); 2280 return -EBUSY; 2281 } 2282 2283 vb_plane = &vb->planes[plane]; 2284 2285 dbuf = call_ptr_memop(get_dmabuf, 2286 vb, 2287 vb_plane->mem_priv, 2288 flags & O_ACCMODE); 2289 if (IS_ERR_OR_NULL(dbuf)) { 2290 dprintk(q, 1, "failed to export buffer %d, plane %d\n", 2291 index, plane); 2292 return -EINVAL; 2293 } 2294 2295 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE); 2296 if (ret < 0) { 2297 dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n", 2298 index, plane, ret); 2299 dma_buf_put(dbuf); 2300 return ret; 2301 } 2302 2303 dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n", 2304 index, plane, ret); 2305 *fd = ret; 2306 2307 return 0; 2308 } 2309 EXPORT_SYMBOL_GPL(vb2_core_expbuf); 2310 2311 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma) 2312 { 2313 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 2314 struct vb2_buffer *vb; 2315 unsigned int buffer = 0, plane = 0; 2316 int ret; 2317 unsigned long length; 2318 2319 /* 2320 * Check memory area access mode. 2321 */ 2322 if (!(vma->vm_flags & VM_SHARED)) { 2323 dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n"); 2324 return -EINVAL; 2325 } 2326 if (q->is_output) { 2327 if (!(vma->vm_flags & VM_WRITE)) { 2328 dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n"); 2329 return -EINVAL; 2330 } 2331 } else { 2332 if (!(vma->vm_flags & VM_READ)) { 2333 dprintk(q, 1, "invalid vma flags, VM_READ needed\n"); 2334 return -EINVAL; 2335 } 2336 } 2337 2338 mutex_lock(&q->mmap_lock); 2339 2340 /* 2341 * Find the plane corresponding to the offset passed by userspace. This 2342 * will return an error if not MEMORY_MMAP or file I/O is in progress. 2343 */ 2344 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2345 if (ret) 2346 goto unlock; 2347 2348 vb = q->bufs[buffer]; 2349 2350 /* 2351 * MMAP requires page_aligned buffers. 2352 * The buffer length was page_aligned at __vb2_buf_mem_alloc(), 2353 * so, we need to do the same here. 2354 */ 2355 length = PAGE_ALIGN(vb->planes[plane].length); 2356 if (length < (vma->vm_end - vma->vm_start)) { 2357 dprintk(q, 1, 2358 "MMAP invalid, as it would overflow buffer length\n"); 2359 ret = -EINVAL; 2360 goto unlock; 2361 } 2362 2363 /* 2364 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer, 2365 * not as a in-buffer offset. We always want to mmap a whole buffer 2366 * from its beginning. 2367 */ 2368 vma->vm_pgoff = 0; 2369 2370 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma); 2371 2372 unlock: 2373 mutex_unlock(&q->mmap_lock); 2374 if (ret) 2375 return ret; 2376 2377 dprintk(q, 3, "buffer %d, plane %d successfully mapped\n", buffer, plane); 2378 return 0; 2379 } 2380 EXPORT_SYMBOL_GPL(vb2_mmap); 2381 2382 #ifndef CONFIG_MMU 2383 unsigned long vb2_get_unmapped_area(struct vb2_queue *q, 2384 unsigned long addr, 2385 unsigned long len, 2386 unsigned long pgoff, 2387 unsigned long flags) 2388 { 2389 unsigned long off = pgoff << PAGE_SHIFT; 2390 struct vb2_buffer *vb; 2391 unsigned int buffer, plane; 2392 void *vaddr; 2393 int ret; 2394 2395 mutex_lock(&q->mmap_lock); 2396 2397 /* 2398 * Find the plane corresponding to the offset passed by userspace. This 2399 * will return an error if not MEMORY_MMAP or file I/O is in progress. 2400 */ 2401 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2402 if (ret) 2403 goto unlock; 2404 2405 vb = q->bufs[buffer]; 2406 2407 vaddr = vb2_plane_vaddr(vb, plane); 2408 mutex_unlock(&q->mmap_lock); 2409 return vaddr ? (unsigned long)vaddr : -EINVAL; 2410 2411 unlock: 2412 mutex_unlock(&q->mmap_lock); 2413 return ret; 2414 } 2415 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area); 2416 #endif 2417 2418 int vb2_core_queue_init(struct vb2_queue *q) 2419 { 2420 /* 2421 * Sanity check 2422 */ 2423 if (WARN_ON(!q) || 2424 WARN_ON(!q->ops) || 2425 WARN_ON(!q->mem_ops) || 2426 WARN_ON(!q->type) || 2427 WARN_ON(!q->io_modes) || 2428 WARN_ON(!q->ops->queue_setup) || 2429 WARN_ON(!q->ops->buf_queue)) 2430 return -EINVAL; 2431 2432 if (WARN_ON(q->requires_requests && !q->supports_requests)) 2433 return -EINVAL; 2434 2435 /* 2436 * This combination is not allowed since a non-zero value of 2437 * q->min_buffers_needed can cause vb2_core_qbuf() to fail if 2438 * it has to call start_streaming(), and the Request API expects 2439 * that queueing a request (and thus queueing a buffer contained 2440 * in that request) will always succeed. There is no method of 2441 * propagating an error back to userspace. 2442 */ 2443 if (WARN_ON(q->supports_requests && q->min_buffers_needed)) 2444 return -EINVAL; 2445 2446 INIT_LIST_HEAD(&q->queued_list); 2447 INIT_LIST_HEAD(&q->done_list); 2448 spin_lock_init(&q->done_lock); 2449 mutex_init(&q->mmap_lock); 2450 init_waitqueue_head(&q->done_wq); 2451 2452 q->memory = VB2_MEMORY_UNKNOWN; 2453 2454 if (q->buf_struct_size == 0) 2455 q->buf_struct_size = sizeof(struct vb2_buffer); 2456 2457 if (q->bidirectional) 2458 q->dma_dir = DMA_BIDIRECTIONAL; 2459 else 2460 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2461 2462 if (q->name[0] == '\0') 2463 snprintf(q->name, sizeof(q->name), "%s-%p", 2464 q->is_output ? "out" : "cap", q); 2465 2466 return 0; 2467 } 2468 EXPORT_SYMBOL_GPL(vb2_core_queue_init); 2469 2470 static int __vb2_init_fileio(struct vb2_queue *q, int read); 2471 static int __vb2_cleanup_fileio(struct vb2_queue *q); 2472 void vb2_core_queue_release(struct vb2_queue *q) 2473 { 2474 __vb2_cleanup_fileio(q); 2475 __vb2_queue_cancel(q); 2476 mutex_lock(&q->mmap_lock); 2477 __vb2_queue_free(q, q->num_buffers); 2478 mutex_unlock(&q->mmap_lock); 2479 } 2480 EXPORT_SYMBOL_GPL(vb2_core_queue_release); 2481 2482 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file, 2483 poll_table *wait) 2484 { 2485 __poll_t req_events = poll_requested_events(wait); 2486 struct vb2_buffer *vb = NULL; 2487 unsigned long flags; 2488 2489 /* 2490 * poll_wait() MUST be called on the first invocation on all the 2491 * potential queues of interest, even if we are not interested in their 2492 * events during this first call. Failure to do so will result in 2493 * queue's events to be ignored because the poll_table won't be capable 2494 * of adding new wait queues thereafter. 2495 */ 2496 poll_wait(file, &q->done_wq, wait); 2497 2498 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM))) 2499 return 0; 2500 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM))) 2501 return 0; 2502 2503 /* 2504 * Start file I/O emulator only if streaming API has not been used yet. 2505 */ 2506 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) { 2507 if (!q->is_output && (q->io_modes & VB2_READ) && 2508 (req_events & (EPOLLIN | EPOLLRDNORM))) { 2509 if (__vb2_init_fileio(q, 1)) 2510 return EPOLLERR; 2511 } 2512 if (q->is_output && (q->io_modes & VB2_WRITE) && 2513 (req_events & (EPOLLOUT | EPOLLWRNORM))) { 2514 if (__vb2_init_fileio(q, 0)) 2515 return EPOLLERR; 2516 /* 2517 * Write to OUTPUT queue can be done immediately. 2518 */ 2519 return EPOLLOUT | EPOLLWRNORM; 2520 } 2521 } 2522 2523 /* 2524 * There is nothing to wait for if the queue isn't streaming, or if the 2525 * error flag is set. 2526 */ 2527 if (!vb2_is_streaming(q) || q->error) 2528 return EPOLLERR; 2529 2530 /* 2531 * If this quirk is set and QBUF hasn't been called yet then 2532 * return EPOLLERR as well. This only affects capture queues, output 2533 * queues will always initialize waiting_for_buffers to false. 2534 * This quirk is set by V4L2 for backwards compatibility reasons. 2535 */ 2536 if (q->quirk_poll_must_check_waiting_for_buffers && 2537 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM))) 2538 return EPOLLERR; 2539 2540 /* 2541 * For output streams you can call write() as long as there are fewer 2542 * buffers queued than there are buffers available. 2543 */ 2544 if (q->is_output && q->fileio && q->queued_count < q->num_buffers) 2545 return EPOLLOUT | EPOLLWRNORM; 2546 2547 if (list_empty(&q->done_list)) { 2548 /* 2549 * If the last buffer was dequeued from a capture queue, 2550 * return immediately. DQBUF will return -EPIPE. 2551 */ 2552 if (q->last_buffer_dequeued) 2553 return EPOLLIN | EPOLLRDNORM; 2554 } 2555 2556 /* 2557 * Take first buffer available for dequeuing. 2558 */ 2559 spin_lock_irqsave(&q->done_lock, flags); 2560 if (!list_empty(&q->done_list)) 2561 vb = list_first_entry(&q->done_list, struct vb2_buffer, 2562 done_entry); 2563 spin_unlock_irqrestore(&q->done_lock, flags); 2564 2565 if (vb && (vb->state == VB2_BUF_STATE_DONE 2566 || vb->state == VB2_BUF_STATE_ERROR)) { 2567 return (q->is_output) ? 2568 EPOLLOUT | EPOLLWRNORM : 2569 EPOLLIN | EPOLLRDNORM; 2570 } 2571 return 0; 2572 } 2573 EXPORT_SYMBOL_GPL(vb2_core_poll); 2574 2575 /* 2576 * struct vb2_fileio_buf - buffer context used by file io emulator 2577 * 2578 * vb2 provides a compatibility layer and emulator of file io (read and 2579 * write) calls on top of streaming API. This structure is used for 2580 * tracking context related to the buffers. 2581 */ 2582 struct vb2_fileio_buf { 2583 void *vaddr; 2584 unsigned int size; 2585 unsigned int pos; 2586 unsigned int queued:1; 2587 }; 2588 2589 /* 2590 * struct vb2_fileio_data - queue context used by file io emulator 2591 * 2592 * @cur_index: the index of the buffer currently being read from or 2593 * written to. If equal to q->num_buffers then a new buffer 2594 * must be dequeued. 2595 * @initial_index: in the read() case all buffers are queued up immediately 2596 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles 2597 * buffers. However, in the write() case no buffers are initially 2598 * queued, instead whenever a buffer is full it is queued up by 2599 * __vb2_perform_fileio(). Only once all available buffers have 2600 * been queued up will __vb2_perform_fileio() start to dequeue 2601 * buffers. This means that initially __vb2_perform_fileio() 2602 * needs to know what buffer index to use when it is queuing up 2603 * the buffers for the first time. That initial index is stored 2604 * in this field. Once it is equal to q->num_buffers all 2605 * available buffers have been queued and __vb2_perform_fileio() 2606 * should start the normal dequeue/queue cycle. 2607 * 2608 * vb2 provides a compatibility layer and emulator of file io (read and 2609 * write) calls on top of streaming API. For proper operation it required 2610 * this structure to save the driver state between each call of the read 2611 * or write function. 2612 */ 2613 struct vb2_fileio_data { 2614 unsigned int count; 2615 unsigned int type; 2616 unsigned int memory; 2617 struct vb2_fileio_buf bufs[VB2_MAX_FRAME]; 2618 unsigned int cur_index; 2619 unsigned int initial_index; 2620 unsigned int q_count; 2621 unsigned int dq_count; 2622 unsigned read_once:1; 2623 unsigned write_immediately:1; 2624 }; 2625 2626 /* 2627 * __vb2_init_fileio() - initialize file io emulator 2628 * @q: videobuf2 queue 2629 * @read: mode selector (1 means read, 0 means write) 2630 */ 2631 static int __vb2_init_fileio(struct vb2_queue *q, int read) 2632 { 2633 struct vb2_fileio_data *fileio; 2634 int i, ret; 2635 unsigned int count = 0; 2636 2637 /* 2638 * Sanity check 2639 */ 2640 if (WARN_ON((read && !(q->io_modes & VB2_READ)) || 2641 (!read && !(q->io_modes & VB2_WRITE)))) 2642 return -EINVAL; 2643 2644 /* 2645 * Check if device supports mapping buffers to kernel virtual space. 2646 */ 2647 if (!q->mem_ops->vaddr) 2648 return -EBUSY; 2649 2650 /* 2651 * Check if streaming api has not been already activated. 2652 */ 2653 if (q->streaming || q->num_buffers > 0) 2654 return -EBUSY; 2655 2656 /* 2657 * Start with count 1, driver can increase it in queue_setup() 2658 */ 2659 count = 1; 2660 2661 dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n", 2662 (read) ? "read" : "write", count, q->fileio_read_once, 2663 q->fileio_write_immediately); 2664 2665 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL); 2666 if (fileio == NULL) 2667 return -ENOMEM; 2668 2669 fileio->read_once = q->fileio_read_once; 2670 fileio->write_immediately = q->fileio_write_immediately; 2671 2672 /* 2673 * Request buffers and use MMAP type to force driver 2674 * to allocate buffers by itself. 2675 */ 2676 fileio->count = count; 2677 fileio->memory = VB2_MEMORY_MMAP; 2678 fileio->type = q->type; 2679 q->fileio = fileio; 2680 ret = vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2681 if (ret) 2682 goto err_kfree; 2683 2684 /* 2685 * Check if plane_count is correct 2686 * (multiplane buffers are not supported). 2687 */ 2688 if (q->bufs[0]->num_planes != 1) { 2689 ret = -EBUSY; 2690 goto err_reqbufs; 2691 } 2692 2693 /* 2694 * Get kernel address of each buffer. 2695 */ 2696 for (i = 0; i < q->num_buffers; i++) { 2697 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0); 2698 if (fileio->bufs[i].vaddr == NULL) { 2699 ret = -EINVAL; 2700 goto err_reqbufs; 2701 } 2702 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0); 2703 } 2704 2705 /* 2706 * Read mode requires pre queuing of all buffers. 2707 */ 2708 if (read) { 2709 /* 2710 * Queue all buffers. 2711 */ 2712 for (i = 0; i < q->num_buffers; i++) { 2713 ret = vb2_core_qbuf(q, i, NULL, NULL); 2714 if (ret) 2715 goto err_reqbufs; 2716 fileio->bufs[i].queued = 1; 2717 } 2718 /* 2719 * All buffers have been queued, so mark that by setting 2720 * initial_index to q->num_buffers 2721 */ 2722 fileio->initial_index = q->num_buffers; 2723 fileio->cur_index = q->num_buffers; 2724 } 2725 2726 /* 2727 * Start streaming. 2728 */ 2729 ret = vb2_core_streamon(q, q->type); 2730 if (ret) 2731 goto err_reqbufs; 2732 2733 return ret; 2734 2735 err_reqbufs: 2736 fileio->count = 0; 2737 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2738 2739 err_kfree: 2740 q->fileio = NULL; 2741 kfree(fileio); 2742 return ret; 2743 } 2744 2745 /* 2746 * __vb2_cleanup_fileio() - free resourced used by file io emulator 2747 * @q: videobuf2 queue 2748 */ 2749 static int __vb2_cleanup_fileio(struct vb2_queue *q) 2750 { 2751 struct vb2_fileio_data *fileio = q->fileio; 2752 2753 if (fileio) { 2754 vb2_core_streamoff(q, q->type); 2755 q->fileio = NULL; 2756 fileio->count = 0; 2757 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2758 kfree(fileio); 2759 dprintk(q, 3, "file io emulator closed\n"); 2760 } 2761 return 0; 2762 } 2763 2764 /* 2765 * __vb2_perform_fileio() - perform a single file io (read or write) operation 2766 * @q: videobuf2 queue 2767 * @data: pointed to target userspace buffer 2768 * @count: number of bytes to read or write 2769 * @ppos: file handle position tracking pointer 2770 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking) 2771 * @read: access mode selector (1 means read, 0 means write) 2772 */ 2773 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count, 2774 loff_t *ppos, int nonblock, int read) 2775 { 2776 struct vb2_fileio_data *fileio; 2777 struct vb2_fileio_buf *buf; 2778 bool is_multiplanar = q->is_multiplanar; 2779 /* 2780 * When using write() to write data to an output video node the vb2 core 2781 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody 2782 * else is able to provide this information with the write() operation. 2783 */ 2784 bool copy_timestamp = !read && q->copy_timestamp; 2785 unsigned index; 2786 int ret; 2787 2788 dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n", 2789 read ? "read" : "write", (long)*ppos, count, 2790 nonblock ? "non" : ""); 2791 2792 if (!data) 2793 return -EINVAL; 2794 2795 if (q->waiting_in_dqbuf) { 2796 dprintk(q, 3, "another dup()ped fd is %s\n", 2797 read ? "reading" : "writing"); 2798 return -EBUSY; 2799 } 2800 2801 /* 2802 * Initialize emulator on first call. 2803 */ 2804 if (!vb2_fileio_is_active(q)) { 2805 ret = __vb2_init_fileio(q, read); 2806 dprintk(q, 3, "vb2_init_fileio result: %d\n", ret); 2807 if (ret) 2808 return ret; 2809 } 2810 fileio = q->fileio; 2811 2812 /* 2813 * Check if we need to dequeue the buffer. 2814 */ 2815 index = fileio->cur_index; 2816 if (index >= q->num_buffers) { 2817 struct vb2_buffer *b; 2818 2819 /* 2820 * Call vb2_dqbuf to get buffer back. 2821 */ 2822 ret = vb2_core_dqbuf(q, &index, NULL, nonblock); 2823 dprintk(q, 5, "vb2_dqbuf result: %d\n", ret); 2824 if (ret) 2825 return ret; 2826 fileio->dq_count += 1; 2827 2828 fileio->cur_index = index; 2829 buf = &fileio->bufs[index]; 2830 b = q->bufs[index]; 2831 2832 /* 2833 * Get number of bytes filled by the driver 2834 */ 2835 buf->pos = 0; 2836 buf->queued = 0; 2837 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0) 2838 : vb2_plane_size(q->bufs[index], 0); 2839 /* Compensate for data_offset on read in the multiplanar case. */ 2840 if (is_multiplanar && read && 2841 b->planes[0].data_offset < buf->size) { 2842 buf->pos = b->planes[0].data_offset; 2843 buf->size -= buf->pos; 2844 } 2845 } else { 2846 buf = &fileio->bufs[index]; 2847 } 2848 2849 /* 2850 * Limit count on last few bytes of the buffer. 2851 */ 2852 if (buf->pos + count > buf->size) { 2853 count = buf->size - buf->pos; 2854 dprintk(q, 5, "reducing read count: %zd\n", count); 2855 } 2856 2857 /* 2858 * Transfer data to userspace. 2859 */ 2860 dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n", 2861 count, index, buf->pos); 2862 if (read) 2863 ret = copy_to_user(data, buf->vaddr + buf->pos, count); 2864 else 2865 ret = copy_from_user(buf->vaddr + buf->pos, data, count); 2866 if (ret) { 2867 dprintk(q, 3, "error copying data\n"); 2868 return -EFAULT; 2869 } 2870 2871 /* 2872 * Update counters. 2873 */ 2874 buf->pos += count; 2875 *ppos += count; 2876 2877 /* 2878 * Queue next buffer if required. 2879 */ 2880 if (buf->pos == buf->size || (!read && fileio->write_immediately)) { 2881 struct vb2_buffer *b = q->bufs[index]; 2882 2883 /* 2884 * Check if this is the last buffer to read. 2885 */ 2886 if (read && fileio->read_once && fileio->dq_count == 1) { 2887 dprintk(q, 3, "read limit reached\n"); 2888 return __vb2_cleanup_fileio(q); 2889 } 2890 2891 /* 2892 * Call vb2_qbuf and give buffer to the driver. 2893 */ 2894 b->planes[0].bytesused = buf->pos; 2895 2896 if (copy_timestamp) 2897 b->timestamp = ktime_get_ns(); 2898 ret = vb2_core_qbuf(q, index, NULL, NULL); 2899 dprintk(q, 5, "vb2_dbuf result: %d\n", ret); 2900 if (ret) 2901 return ret; 2902 2903 /* 2904 * Buffer has been queued, update the status 2905 */ 2906 buf->pos = 0; 2907 buf->queued = 1; 2908 buf->size = vb2_plane_size(q->bufs[index], 0); 2909 fileio->q_count += 1; 2910 /* 2911 * If we are queuing up buffers for the first time, then 2912 * increase initial_index by one. 2913 */ 2914 if (fileio->initial_index < q->num_buffers) 2915 fileio->initial_index++; 2916 /* 2917 * The next buffer to use is either a buffer that's going to be 2918 * queued for the first time (initial_index < q->num_buffers) 2919 * or it is equal to q->num_buffers, meaning that the next 2920 * time we need to dequeue a buffer since we've now queued up 2921 * all the 'first time' buffers. 2922 */ 2923 fileio->cur_index = fileio->initial_index; 2924 } 2925 2926 /* 2927 * Return proper number of bytes processed. 2928 */ 2929 if (ret == 0) 2930 ret = count; 2931 return ret; 2932 } 2933 2934 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count, 2935 loff_t *ppos, int nonblocking) 2936 { 2937 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1); 2938 } 2939 EXPORT_SYMBOL_GPL(vb2_read); 2940 2941 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count, 2942 loff_t *ppos, int nonblocking) 2943 { 2944 return __vb2_perform_fileio(q, (char __user *) data, count, 2945 ppos, nonblocking, 0); 2946 } 2947 EXPORT_SYMBOL_GPL(vb2_write); 2948 2949 struct vb2_threadio_data { 2950 struct task_struct *thread; 2951 vb2_thread_fnc fnc; 2952 void *priv; 2953 bool stop; 2954 }; 2955 2956 static int vb2_thread(void *data) 2957 { 2958 struct vb2_queue *q = data; 2959 struct vb2_threadio_data *threadio = q->threadio; 2960 bool copy_timestamp = false; 2961 unsigned prequeue = 0; 2962 unsigned index = 0; 2963 int ret = 0; 2964 2965 if (q->is_output) { 2966 prequeue = q->num_buffers; 2967 copy_timestamp = q->copy_timestamp; 2968 } 2969 2970 set_freezable(); 2971 2972 for (;;) { 2973 struct vb2_buffer *vb; 2974 2975 /* 2976 * Call vb2_dqbuf to get buffer back. 2977 */ 2978 if (prequeue) { 2979 vb = q->bufs[index++]; 2980 prequeue--; 2981 } else { 2982 call_void_qop(q, wait_finish, q); 2983 if (!threadio->stop) 2984 ret = vb2_core_dqbuf(q, &index, NULL, 0); 2985 call_void_qop(q, wait_prepare, q); 2986 dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret); 2987 if (!ret) 2988 vb = q->bufs[index]; 2989 } 2990 if (ret || threadio->stop) 2991 break; 2992 try_to_freeze(); 2993 2994 if (vb->state != VB2_BUF_STATE_ERROR) 2995 if (threadio->fnc(vb, threadio->priv)) 2996 break; 2997 call_void_qop(q, wait_finish, q); 2998 if (copy_timestamp) 2999 vb->timestamp = ktime_get_ns(); 3000 if (!threadio->stop) 3001 ret = vb2_core_qbuf(q, vb->index, NULL, NULL); 3002 call_void_qop(q, wait_prepare, q); 3003 if (ret || threadio->stop) 3004 break; 3005 } 3006 3007 /* Hmm, linux becomes *very* unhappy without this ... */ 3008 while (!kthread_should_stop()) { 3009 set_current_state(TASK_INTERRUPTIBLE); 3010 schedule(); 3011 } 3012 return 0; 3013 } 3014 3015 /* 3016 * This function should not be used for anything else but the videobuf2-dvb 3017 * support. If you think you have another good use-case for this, then please 3018 * contact the linux-media mailinglist first. 3019 */ 3020 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv, 3021 const char *thread_name) 3022 { 3023 struct vb2_threadio_data *threadio; 3024 int ret = 0; 3025 3026 if (q->threadio) 3027 return -EBUSY; 3028 if (vb2_is_busy(q)) 3029 return -EBUSY; 3030 if (WARN_ON(q->fileio)) 3031 return -EBUSY; 3032 3033 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL); 3034 if (threadio == NULL) 3035 return -ENOMEM; 3036 threadio->fnc = fnc; 3037 threadio->priv = priv; 3038 3039 ret = __vb2_init_fileio(q, !q->is_output); 3040 dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret); 3041 if (ret) 3042 goto nomem; 3043 q->threadio = threadio; 3044 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name); 3045 if (IS_ERR(threadio->thread)) { 3046 ret = PTR_ERR(threadio->thread); 3047 threadio->thread = NULL; 3048 goto nothread; 3049 } 3050 return 0; 3051 3052 nothread: 3053 __vb2_cleanup_fileio(q); 3054 nomem: 3055 kfree(threadio); 3056 return ret; 3057 } 3058 EXPORT_SYMBOL_GPL(vb2_thread_start); 3059 3060 int vb2_thread_stop(struct vb2_queue *q) 3061 { 3062 struct vb2_threadio_data *threadio = q->threadio; 3063 int err; 3064 3065 if (threadio == NULL) 3066 return 0; 3067 threadio->stop = true; 3068 /* Wake up all pending sleeps in the thread */ 3069 vb2_queue_error(q); 3070 err = kthread_stop(threadio->thread); 3071 __vb2_cleanup_fileio(q); 3072 threadio->thread = NULL; 3073 kfree(threadio); 3074 q->threadio = NULL; 3075 return err; 3076 } 3077 EXPORT_SYMBOL_GPL(vb2_thread_stop); 3078 3079 MODULE_DESCRIPTION("Media buffer core framework"); 3080 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski"); 3081 MODULE_LICENSE("GPL"); 3082 MODULE_IMPORT_NS(DMA_BUF); 3083