1 /* 2 * videobuf2-core.c - video buffer 2 core framework 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * 6 * Author: Pawel Osciak <pawel@osciak.com> 7 * Marek Szyprowski <m.szyprowski@samsung.com> 8 * 9 * The vb2_thread implementation was based on code from videobuf-dvb.c: 10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs] 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/err.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mm.h> 23 #include <linux/poll.h> 24 #include <linux/slab.h> 25 #include <linux/sched.h> 26 #include <linux/freezer.h> 27 #include <linux/kthread.h> 28 29 #include <media/videobuf2-core.h> 30 #include <media/v4l2-mc.h> 31 32 #include <trace/events/vb2.h> 33 34 #define PLANE_INDEX_BITS 3 35 #define PLANE_INDEX_SHIFT (PAGE_SHIFT + PLANE_INDEX_BITS) 36 #define PLANE_INDEX_MASK (BIT_MASK(PLANE_INDEX_BITS) - 1) 37 #define MAX_BUFFER_INDEX BIT_MASK(30 - PLANE_INDEX_SHIFT) 38 #define BUFFER_INDEX_MASK (MAX_BUFFER_INDEX - 1) 39 40 #if BIT(PLANE_INDEX_BITS) != VIDEO_MAX_PLANES 41 #error PLANE_INDEX_BITS order must be equal to VIDEO_MAX_PLANES 42 #endif 43 44 static int debug; 45 module_param(debug, int, 0644); 46 47 #define dprintk(q, level, fmt, arg...) \ 48 do { \ 49 if (debug >= level) \ 50 pr_info("[%s] %s: " fmt, (q)->name, __func__, \ 51 ## arg); \ 52 } while (0) 53 54 #ifdef CONFIG_VIDEO_ADV_DEBUG 55 56 /* 57 * If advanced debugging is on, then count how often each op is called 58 * successfully, which can either be per-buffer or per-queue. 59 * 60 * This makes it easy to check that the 'init' and 'cleanup' 61 * (and variations thereof) stay balanced. 62 */ 63 64 #define log_memop(vb, op) \ 65 dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n", \ 66 (vb)->index, #op, \ 67 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)") 68 69 #define call_memop(vb, op, args...) \ 70 ({ \ 71 struct vb2_queue *_q = (vb)->vb2_queue; \ 72 int err; \ 73 \ 74 log_memop(vb, op); \ 75 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \ 76 if (!err) \ 77 (vb)->cnt_mem_ ## op++; \ 78 err; \ 79 }) 80 81 #define call_ptr_memop(op, vb, args...) \ 82 ({ \ 83 struct vb2_queue *_q = (vb)->vb2_queue; \ 84 void *ptr; \ 85 \ 86 log_memop(vb, op); \ 87 ptr = _q->mem_ops->op ? _q->mem_ops->op(vb, args) : NULL; \ 88 if (!IS_ERR_OR_NULL(ptr)) \ 89 (vb)->cnt_mem_ ## op++; \ 90 ptr; \ 91 }) 92 93 #define call_void_memop(vb, op, args...) \ 94 ({ \ 95 struct vb2_queue *_q = (vb)->vb2_queue; \ 96 \ 97 log_memop(vb, op); \ 98 if (_q->mem_ops->op) \ 99 _q->mem_ops->op(args); \ 100 (vb)->cnt_mem_ ## op++; \ 101 }) 102 103 #define log_qop(q, op) \ 104 dprintk(q, 2, "call_qop(%s)%s\n", #op, \ 105 (q)->ops->op ? "" : " (nop)") 106 107 #define call_qop(q, op, args...) \ 108 ({ \ 109 int err; \ 110 \ 111 log_qop(q, op); \ 112 err = (q)->ops->op ? (q)->ops->op(args) : 0; \ 113 if (!err) \ 114 (q)->cnt_ ## op++; \ 115 err; \ 116 }) 117 118 #define call_void_qop(q, op, args...) \ 119 ({ \ 120 log_qop(q, op); \ 121 if ((q)->ops->op) \ 122 (q)->ops->op(args); \ 123 (q)->cnt_ ## op++; \ 124 }) 125 126 #define log_vb_qop(vb, op, args...) \ 127 dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n", \ 128 (vb)->index, #op, \ 129 (vb)->vb2_queue->ops->op ? "" : " (nop)") 130 131 #define call_vb_qop(vb, op, args...) \ 132 ({ \ 133 int err; \ 134 \ 135 log_vb_qop(vb, op); \ 136 err = (vb)->vb2_queue->ops->op ? \ 137 (vb)->vb2_queue->ops->op(args) : 0; \ 138 if (!err) \ 139 (vb)->cnt_ ## op++; \ 140 err; \ 141 }) 142 143 #define call_void_vb_qop(vb, op, args...) \ 144 ({ \ 145 log_vb_qop(vb, op); \ 146 if ((vb)->vb2_queue->ops->op) \ 147 (vb)->vb2_queue->ops->op(args); \ 148 (vb)->cnt_ ## op++; \ 149 }) 150 151 #else 152 153 #define call_memop(vb, op, args...) \ 154 ((vb)->vb2_queue->mem_ops->op ? \ 155 (vb)->vb2_queue->mem_ops->op(args) : 0) 156 157 #define call_ptr_memop(op, vb, args...) \ 158 ((vb)->vb2_queue->mem_ops->op ? \ 159 (vb)->vb2_queue->mem_ops->op(vb, args) : NULL) 160 161 #define call_void_memop(vb, op, args...) \ 162 do { \ 163 if ((vb)->vb2_queue->mem_ops->op) \ 164 (vb)->vb2_queue->mem_ops->op(args); \ 165 } while (0) 166 167 #define call_qop(q, op, args...) \ 168 ((q)->ops->op ? (q)->ops->op(args) : 0) 169 170 #define call_void_qop(q, op, args...) \ 171 do { \ 172 if ((q)->ops->op) \ 173 (q)->ops->op(args); \ 174 } while (0) 175 176 #define call_vb_qop(vb, op, args...) \ 177 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0) 178 179 #define call_void_vb_qop(vb, op, args...) \ 180 do { \ 181 if ((vb)->vb2_queue->ops->op) \ 182 (vb)->vb2_queue->ops->op(args); \ 183 } while (0) 184 185 #endif 186 187 #define call_bufop(q, op, args...) \ 188 ({ \ 189 int ret = 0; \ 190 if (q && q->buf_ops && q->buf_ops->op) \ 191 ret = q->buf_ops->op(args); \ 192 ret; \ 193 }) 194 195 #define call_void_bufop(q, op, args...) \ 196 ({ \ 197 if (q && q->buf_ops && q->buf_ops->op) \ 198 q->buf_ops->op(args); \ 199 }) 200 201 static void __vb2_queue_cancel(struct vb2_queue *q); 202 static void __enqueue_in_driver(struct vb2_buffer *vb); 203 204 static const char *vb2_state_name(enum vb2_buffer_state s) 205 { 206 static const char * const state_names[] = { 207 [VB2_BUF_STATE_DEQUEUED] = "dequeued", 208 [VB2_BUF_STATE_IN_REQUEST] = "in request", 209 [VB2_BUF_STATE_PREPARING] = "preparing", 210 [VB2_BUF_STATE_QUEUED] = "queued", 211 [VB2_BUF_STATE_ACTIVE] = "active", 212 [VB2_BUF_STATE_DONE] = "done", 213 [VB2_BUF_STATE_ERROR] = "error", 214 }; 215 216 if ((unsigned int)(s) < ARRAY_SIZE(state_names)) 217 return state_names[s]; 218 return "unknown"; 219 } 220 221 /* 222 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer 223 */ 224 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb) 225 { 226 struct vb2_queue *q = vb->vb2_queue; 227 void *mem_priv; 228 int plane; 229 int ret = -ENOMEM; 230 231 /* 232 * Allocate memory for all planes in this buffer 233 * NOTE: mmapped areas should be page aligned 234 */ 235 for (plane = 0; plane < vb->num_planes; ++plane) { 236 /* Memops alloc requires size to be page aligned. */ 237 unsigned long size = PAGE_ALIGN(vb->planes[plane].length); 238 239 /* Did it wrap around? */ 240 if (size < vb->planes[plane].length) 241 goto free; 242 243 mem_priv = call_ptr_memop(alloc, 244 vb, 245 q->alloc_devs[plane] ? : q->dev, 246 size); 247 if (IS_ERR_OR_NULL(mem_priv)) { 248 if (mem_priv) 249 ret = PTR_ERR(mem_priv); 250 goto free; 251 } 252 253 /* Associate allocator private data with this plane */ 254 vb->planes[plane].mem_priv = mem_priv; 255 } 256 257 return 0; 258 free: 259 /* Free already allocated memory if one of the allocations failed */ 260 for (; plane > 0; --plane) { 261 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv); 262 vb->planes[plane - 1].mem_priv = NULL; 263 } 264 265 return ret; 266 } 267 268 /* 269 * __vb2_buf_mem_free() - free memory of the given buffer 270 */ 271 static void __vb2_buf_mem_free(struct vb2_buffer *vb) 272 { 273 unsigned int plane; 274 275 for (plane = 0; plane < vb->num_planes; ++plane) { 276 call_void_memop(vb, put, vb->planes[plane].mem_priv); 277 vb->planes[plane].mem_priv = NULL; 278 dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n", 279 plane, vb->index); 280 } 281 } 282 283 /* 284 * __vb2_buf_userptr_put() - release userspace memory associated with 285 * a USERPTR buffer 286 */ 287 static void __vb2_buf_userptr_put(struct vb2_buffer *vb) 288 { 289 unsigned int plane; 290 291 for (plane = 0; plane < vb->num_planes; ++plane) { 292 if (vb->planes[plane].mem_priv) 293 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 294 vb->planes[plane].mem_priv = NULL; 295 } 296 } 297 298 /* 299 * __vb2_plane_dmabuf_put() - release memory associated with 300 * a DMABUF shared plane 301 */ 302 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p) 303 { 304 if (!p->mem_priv) 305 return; 306 307 if (p->dbuf_mapped) 308 call_void_memop(vb, unmap_dmabuf, p->mem_priv); 309 310 call_void_memop(vb, detach_dmabuf, p->mem_priv); 311 dma_buf_put(p->dbuf); 312 p->mem_priv = NULL; 313 p->dbuf = NULL; 314 p->dbuf_mapped = 0; 315 } 316 317 /* 318 * __vb2_buf_dmabuf_put() - release memory associated with 319 * a DMABUF shared buffer 320 */ 321 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb) 322 { 323 unsigned int plane; 324 325 for (plane = 0; plane < vb->num_planes; ++plane) 326 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 327 } 328 329 /* 330 * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory 331 * to sync caches 332 */ 333 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb) 334 { 335 unsigned int plane; 336 337 if (vb->synced) 338 return; 339 340 vb->synced = 1; 341 for (plane = 0; plane < vb->num_planes; ++plane) 342 call_void_memop(vb, prepare, vb->planes[plane].mem_priv); 343 } 344 345 /* 346 * __vb2_buf_mem_finish() - call ->finish on buffer's private memory 347 * to sync caches 348 */ 349 static void __vb2_buf_mem_finish(struct vb2_buffer *vb) 350 { 351 unsigned int plane; 352 353 if (!vb->synced) 354 return; 355 356 vb->synced = 0; 357 for (plane = 0; plane < vb->num_planes; ++plane) 358 call_void_memop(vb, finish, vb->planes[plane].mem_priv); 359 } 360 361 /* 362 * __setup_offsets() - setup unique offsets ("cookies") for every plane in 363 * the buffer. 364 */ 365 static void __setup_offsets(struct vb2_buffer *vb) 366 { 367 struct vb2_queue *q = vb->vb2_queue; 368 unsigned int plane; 369 unsigned long offset = 0; 370 371 /* 372 * The offset "cookie" value has the following constraints: 373 * - a buffer can have up to 8 planes. 374 * - v4l2 mem2mem uses bit 30 to distinguish between 375 * OUTPUT (aka "source", bit 30 is 0) and 376 * CAPTURE (aka "destination", bit 30 is 1) buffers. 377 * - must be page aligned 378 * That led to this bit mapping when PAGE_SHIFT = 12: 379 * |30 |29 15|14 12|11 0| 380 * |DST_QUEUE_OFF_BASE|buffer index|plane index| 0 | 381 * where there are 15 bits to store the buffer index. 382 * Depending on PAGE_SHIFT value we can have fewer bits 383 * to store the buffer index. 384 */ 385 offset = vb->index << PLANE_INDEX_SHIFT; 386 387 for (plane = 0; plane < vb->num_planes; ++plane) { 388 vb->planes[plane].m.offset = offset + (plane << PAGE_SHIFT); 389 390 dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n", 391 vb->index, plane, offset); 392 } 393 } 394 395 static void init_buffer_cache_hints(struct vb2_queue *q, struct vb2_buffer *vb) 396 { 397 /* 398 * DMA exporter should take care of cache syncs, so we can avoid 399 * explicit ->prepare()/->finish() syncs. For other ->memory types 400 * we always need ->prepare() or/and ->finish() cache sync. 401 */ 402 if (q->memory == VB2_MEMORY_DMABUF) { 403 vb->skip_cache_sync_on_finish = 1; 404 vb->skip_cache_sync_on_prepare = 1; 405 return; 406 } 407 408 /* 409 * ->finish() cache sync can be avoided when queue direction is 410 * TO_DEVICE. 411 */ 412 if (q->dma_dir == DMA_TO_DEVICE) 413 vb->skip_cache_sync_on_finish = 1; 414 } 415 416 /** 417 * vb2_queue_add_buffer() - add a buffer to a queue 418 * @q: pointer to &struct vb2_queue with videobuf2 queue. 419 * @vb: pointer to &struct vb2_buffer to be added to the queue. 420 * @index: index where add vb2_buffer in the queue 421 */ 422 static void vb2_queue_add_buffer(struct vb2_queue *q, struct vb2_buffer *vb, unsigned int index) 423 { 424 WARN_ON(index >= q->max_num_buffers || test_bit(index, q->bufs_bitmap) || vb->vb2_queue); 425 426 q->bufs[index] = vb; 427 vb->index = index; 428 vb->vb2_queue = q; 429 set_bit(index, q->bufs_bitmap); 430 } 431 432 /** 433 * vb2_queue_remove_buffer() - remove a buffer from a queue 434 * @vb: pointer to &struct vb2_buffer to be removed from the queue. 435 */ 436 static void vb2_queue_remove_buffer(struct vb2_buffer *vb) 437 { 438 clear_bit(vb->index, vb->vb2_queue->bufs_bitmap); 439 vb->vb2_queue->bufs[vb->index] = NULL; 440 vb->vb2_queue = NULL; 441 } 442 443 /* 444 * __vb2_queue_alloc() - allocate vb2 buffer structures and (for MMAP type) 445 * video buffer memory for all buffers/planes on the queue and initializes the 446 * queue 447 * @first_index: index of the first created buffer, all newly allocated buffers 448 * have indices in the range [first_index..first_index+count-1] 449 * 450 * Returns the number of buffers successfully allocated. 451 */ 452 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory, 453 unsigned int num_buffers, unsigned int num_planes, 454 const unsigned int plane_sizes[VB2_MAX_PLANES], 455 unsigned int *first_index) 456 { 457 unsigned int buffer, plane; 458 struct vb2_buffer *vb; 459 unsigned long index = q->max_num_buffers; 460 int ret; 461 462 /* 463 * Ensure that the number of already queue + the number of buffers already 464 * in the queue is below q->max_num_buffers 465 */ 466 num_buffers = min_t(unsigned int, num_buffers, 467 q->max_num_buffers - vb2_get_num_buffers(q)); 468 469 while (num_buffers) { 470 index = bitmap_find_next_zero_area(q->bufs_bitmap, q->max_num_buffers, 471 0, num_buffers, 0); 472 473 if (index < q->max_num_buffers) 474 break; 475 /* Try to find free space for less buffers */ 476 num_buffers--; 477 } 478 479 /* If there is no space left to allocate buffers return 0 to indicate the error */ 480 if (!num_buffers) { 481 *first_index = 0; 482 return 0; 483 } 484 485 *first_index = index; 486 487 for (buffer = 0; buffer < num_buffers; ++buffer) { 488 /* Allocate vb2 buffer structures */ 489 vb = kzalloc(q->buf_struct_size, GFP_KERNEL); 490 if (!vb) { 491 dprintk(q, 1, "memory alloc for buffer struct failed\n"); 492 break; 493 } 494 495 vb->state = VB2_BUF_STATE_DEQUEUED; 496 vb->num_planes = num_planes; 497 vb->type = q->type; 498 vb->memory = memory; 499 init_buffer_cache_hints(q, vb); 500 for (plane = 0; plane < num_planes; ++plane) { 501 vb->planes[plane].length = plane_sizes[plane]; 502 vb->planes[plane].min_length = plane_sizes[plane]; 503 } 504 505 vb2_queue_add_buffer(q, vb, index++); 506 call_void_bufop(q, init_buffer, vb); 507 508 /* Allocate video buffer memory for the MMAP type */ 509 if (memory == VB2_MEMORY_MMAP) { 510 ret = __vb2_buf_mem_alloc(vb); 511 if (ret) { 512 dprintk(q, 1, "failed allocating memory for buffer %d\n", 513 buffer); 514 vb2_queue_remove_buffer(vb); 515 kfree(vb); 516 break; 517 } 518 __setup_offsets(vb); 519 /* 520 * Call the driver-provided buffer initialization 521 * callback, if given. An error in initialization 522 * results in queue setup failure. 523 */ 524 ret = call_vb_qop(vb, buf_init, vb); 525 if (ret) { 526 dprintk(q, 1, "buffer %d %p initialization failed\n", 527 buffer, vb); 528 __vb2_buf_mem_free(vb); 529 vb2_queue_remove_buffer(vb); 530 kfree(vb); 531 break; 532 } 533 } 534 } 535 536 dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n", 537 buffer, num_planes); 538 539 return buffer; 540 } 541 542 /* 543 * __vb2_free_mem() - release video buffer memory for a given range of 544 * buffers in a given queue 545 */ 546 static void __vb2_free_mem(struct vb2_queue *q, unsigned int start, unsigned int count) 547 { 548 unsigned int i; 549 struct vb2_buffer *vb; 550 551 for (i = start; i < start + count; i++) { 552 vb = vb2_get_buffer(q, i); 553 if (!vb) 554 continue; 555 556 /* Free MMAP buffers or release USERPTR buffers */ 557 if (q->memory == VB2_MEMORY_MMAP) 558 __vb2_buf_mem_free(vb); 559 else if (q->memory == VB2_MEMORY_DMABUF) 560 __vb2_buf_dmabuf_put(vb); 561 else 562 __vb2_buf_userptr_put(vb); 563 } 564 } 565 566 /* 567 * __vb2_queue_free() - free @count buffers from @start index of the queue - video memory and 568 * related information, if no buffers are left return the queue to an 569 * uninitialized state. Might be called even if the queue has already been freed. 570 */ 571 static void __vb2_queue_free(struct vb2_queue *q, unsigned int start, unsigned int count) 572 { 573 unsigned int i; 574 575 lockdep_assert_held(&q->mmap_lock); 576 577 /* Call driver-provided cleanup function for each buffer, if provided */ 578 for (i = start; i < start + count; i++) { 579 struct vb2_buffer *vb = vb2_get_buffer(q, i); 580 581 if (vb && vb->planes[0].mem_priv) 582 call_void_vb_qop(vb, buf_cleanup, vb); 583 } 584 585 /* Release video buffer memory */ 586 __vb2_free_mem(q, start, count); 587 588 #ifdef CONFIG_VIDEO_ADV_DEBUG 589 /* 590 * Check that all the calls were balanced during the life-time of this 591 * queue. If not then dump the counters to the kernel log. 592 */ 593 if (vb2_get_num_buffers(q)) { 594 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming || 595 q->cnt_prepare_streaming != q->cnt_unprepare_streaming || 596 q->cnt_wait_prepare != q->cnt_wait_finish; 597 598 if (unbalanced) { 599 pr_info("unbalanced counters for queue %p:\n", q); 600 if (q->cnt_start_streaming != q->cnt_stop_streaming) 601 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n", 602 q->cnt_queue_setup, q->cnt_start_streaming, 603 q->cnt_stop_streaming); 604 if (q->cnt_prepare_streaming != q->cnt_unprepare_streaming) 605 pr_info(" prepare_streaming: %u unprepare_streaming: %u\n", 606 q->cnt_prepare_streaming, q->cnt_unprepare_streaming); 607 if (q->cnt_wait_prepare != q->cnt_wait_finish) 608 pr_info(" wait_prepare: %u wait_finish: %u\n", 609 q->cnt_wait_prepare, q->cnt_wait_finish); 610 } 611 q->cnt_queue_setup = 0; 612 q->cnt_wait_prepare = 0; 613 q->cnt_wait_finish = 0; 614 q->cnt_prepare_streaming = 0; 615 q->cnt_start_streaming = 0; 616 q->cnt_stop_streaming = 0; 617 q->cnt_unprepare_streaming = 0; 618 } 619 for (i = start; i < start + count; i++) { 620 struct vb2_buffer *vb = vb2_get_buffer(q, i); 621 bool unbalanced; 622 623 if (!vb) 624 continue; 625 626 unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put || 627 vb->cnt_mem_prepare != vb->cnt_mem_finish || 628 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr || 629 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf || 630 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf || 631 vb->cnt_buf_queue != vb->cnt_buf_done || 632 vb->cnt_buf_prepare != vb->cnt_buf_finish || 633 vb->cnt_buf_init != vb->cnt_buf_cleanup; 634 635 if (unbalanced) { 636 pr_info("unbalanced counters for queue %p, buffer %d:\n", 637 q, i); 638 if (vb->cnt_buf_init != vb->cnt_buf_cleanup) 639 pr_info(" buf_init: %u buf_cleanup: %u\n", 640 vb->cnt_buf_init, vb->cnt_buf_cleanup); 641 if (vb->cnt_buf_prepare != vb->cnt_buf_finish) 642 pr_info(" buf_prepare: %u buf_finish: %u\n", 643 vb->cnt_buf_prepare, vb->cnt_buf_finish); 644 if (vb->cnt_buf_queue != vb->cnt_buf_done) 645 pr_info(" buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n", 646 vb->cnt_buf_out_validate, vb->cnt_buf_queue, 647 vb->cnt_buf_done, vb->cnt_buf_request_complete); 648 if (vb->cnt_mem_alloc != vb->cnt_mem_put) 649 pr_info(" alloc: %u put: %u\n", 650 vb->cnt_mem_alloc, vb->cnt_mem_put); 651 if (vb->cnt_mem_prepare != vb->cnt_mem_finish) 652 pr_info(" prepare: %u finish: %u\n", 653 vb->cnt_mem_prepare, vb->cnt_mem_finish); 654 if (vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr) 655 pr_info(" get_userptr: %u put_userptr: %u\n", 656 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr); 657 if (vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf) 658 pr_info(" attach_dmabuf: %u detach_dmabuf: %u\n", 659 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf); 660 if (vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf) 661 pr_info(" map_dmabuf: %u unmap_dmabuf: %u\n", 662 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf); 663 pr_info(" get_dmabuf: %u num_users: %u\n", 664 vb->cnt_mem_get_dmabuf, 665 vb->cnt_mem_num_users); 666 } 667 } 668 #endif 669 670 /* Free vb2 buffers */ 671 for (i = start; i < start + count; i++) { 672 struct vb2_buffer *vb = vb2_get_buffer(q, i); 673 674 if (!vb) 675 continue; 676 677 vb2_queue_remove_buffer(vb); 678 kfree(vb); 679 } 680 681 if (!vb2_get_num_buffers(q)) { 682 q->memory = VB2_MEMORY_UNKNOWN; 683 INIT_LIST_HEAD(&q->queued_list); 684 } 685 } 686 687 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb) 688 { 689 unsigned int plane; 690 for (plane = 0; plane < vb->num_planes; ++plane) { 691 void *mem_priv = vb->planes[plane].mem_priv; 692 /* 693 * If num_users() has not been provided, call_memop 694 * will return 0, apparently nobody cares about this 695 * case anyway. If num_users() returns more than 1, 696 * we are not the only user of the plane's memory. 697 */ 698 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1) 699 return true; 700 } 701 return false; 702 } 703 EXPORT_SYMBOL(vb2_buffer_in_use); 704 705 /* 706 * __buffers_in_use() - return true if any buffers on the queue are in use and 707 * the queue cannot be freed (by the means of REQBUFS(0)) call 708 */ 709 static bool __buffers_in_use(struct vb2_queue *q) 710 { 711 unsigned int buffer; 712 for (buffer = 0; buffer < q->max_num_buffers; ++buffer) { 713 struct vb2_buffer *vb = vb2_get_buffer(q, buffer); 714 715 if (!vb) 716 continue; 717 718 if (vb2_buffer_in_use(q, vb)) 719 return true; 720 } 721 return false; 722 } 723 724 void vb2_core_querybuf(struct vb2_queue *q, struct vb2_buffer *vb, void *pb) 725 { 726 call_void_bufop(q, fill_user_buffer, vb, pb); 727 } 728 EXPORT_SYMBOL_GPL(vb2_core_querybuf); 729 730 /* 731 * __verify_userptr_ops() - verify that all memory operations required for 732 * USERPTR queue type have been provided 733 */ 734 static int __verify_userptr_ops(struct vb2_queue *q) 735 { 736 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr || 737 !q->mem_ops->put_userptr) 738 return -EINVAL; 739 740 return 0; 741 } 742 743 /* 744 * __verify_mmap_ops() - verify that all memory operations required for 745 * MMAP queue type have been provided 746 */ 747 static int __verify_mmap_ops(struct vb2_queue *q) 748 { 749 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc || 750 !q->mem_ops->put || !q->mem_ops->mmap) 751 return -EINVAL; 752 753 return 0; 754 } 755 756 /* 757 * __verify_dmabuf_ops() - verify that all memory operations required for 758 * DMABUF queue type have been provided 759 */ 760 static int __verify_dmabuf_ops(struct vb2_queue *q) 761 { 762 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf || 763 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf || 764 !q->mem_ops->unmap_dmabuf) 765 return -EINVAL; 766 767 return 0; 768 } 769 770 int vb2_verify_memory_type(struct vb2_queue *q, 771 enum vb2_memory memory, unsigned int type) 772 { 773 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR && 774 memory != VB2_MEMORY_DMABUF) { 775 dprintk(q, 1, "unsupported memory type\n"); 776 return -EINVAL; 777 } 778 779 if (type != q->type) { 780 dprintk(q, 1, "requested type is incorrect\n"); 781 return -EINVAL; 782 } 783 784 /* 785 * Make sure all the required memory ops for given memory type 786 * are available. 787 */ 788 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) { 789 dprintk(q, 1, "MMAP for current setup unsupported\n"); 790 return -EINVAL; 791 } 792 793 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) { 794 dprintk(q, 1, "USERPTR for current setup unsupported\n"); 795 return -EINVAL; 796 } 797 798 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) { 799 dprintk(q, 1, "DMABUF for current setup unsupported\n"); 800 return -EINVAL; 801 } 802 803 /* 804 * Place the busy tests at the end: -EBUSY can be ignored when 805 * create_bufs is called with count == 0, but count == 0 should still 806 * do the memory and type validation. 807 */ 808 if (vb2_fileio_is_active(q)) { 809 dprintk(q, 1, "file io in progress\n"); 810 return -EBUSY; 811 } 812 return 0; 813 } 814 EXPORT_SYMBOL(vb2_verify_memory_type); 815 816 static void set_queue_coherency(struct vb2_queue *q, bool non_coherent_mem) 817 { 818 q->non_coherent_mem = 0; 819 820 if (!vb2_queue_allows_cache_hints(q)) 821 return; 822 q->non_coherent_mem = non_coherent_mem; 823 } 824 825 static bool verify_coherency_flags(struct vb2_queue *q, bool non_coherent_mem) 826 { 827 if (non_coherent_mem != q->non_coherent_mem) { 828 dprintk(q, 1, "memory coherency model mismatch\n"); 829 return false; 830 } 831 return true; 832 } 833 834 static int vb2_core_allocated_buffers_storage(struct vb2_queue *q) 835 { 836 if (!q->bufs) 837 q->bufs = kcalloc(q->max_num_buffers, sizeof(*q->bufs), GFP_KERNEL); 838 if (!q->bufs) 839 return -ENOMEM; 840 841 if (!q->bufs_bitmap) 842 q->bufs_bitmap = bitmap_zalloc(q->max_num_buffers, GFP_KERNEL); 843 if (!q->bufs_bitmap) { 844 kfree(q->bufs); 845 q->bufs = NULL; 846 return -ENOMEM; 847 } 848 849 return 0; 850 } 851 852 static void vb2_core_free_buffers_storage(struct vb2_queue *q) 853 { 854 kfree(q->bufs); 855 q->bufs = NULL; 856 bitmap_free(q->bufs_bitmap); 857 q->bufs_bitmap = NULL; 858 } 859 860 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory, 861 unsigned int flags, unsigned int *count) 862 { 863 unsigned int num_buffers, allocated_buffers, num_planes = 0; 864 unsigned int q_num_bufs = vb2_get_num_buffers(q); 865 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 866 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT; 867 unsigned int i, first_index; 868 int ret = 0; 869 870 if (q->streaming) { 871 dprintk(q, 1, "streaming active\n"); 872 return -EBUSY; 873 } 874 875 if (q->waiting_in_dqbuf && *count) { 876 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 877 return -EBUSY; 878 } 879 880 if (*count == 0 || q_num_bufs != 0 || 881 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory) || 882 !verify_coherency_flags(q, non_coherent_mem)) { 883 /* 884 * We already have buffers allocated, so first check if they 885 * are not in use and can be freed. 886 */ 887 mutex_lock(&q->mmap_lock); 888 if (debug && q->memory == VB2_MEMORY_MMAP && 889 __buffers_in_use(q)) 890 dprintk(q, 1, "memory in use, orphaning buffers\n"); 891 892 /* 893 * Call queue_cancel to clean up any buffers in the 894 * QUEUED state which is possible if buffers were prepared or 895 * queued without ever calling STREAMON. 896 */ 897 __vb2_queue_cancel(q); 898 __vb2_queue_free(q, 0, q->max_num_buffers); 899 mutex_unlock(&q->mmap_lock); 900 901 q->is_busy = 0; 902 /* 903 * In case of REQBUFS(0) return immediately without calling 904 * driver's queue_setup() callback and allocating resources. 905 */ 906 if (*count == 0) 907 return 0; 908 } 909 910 /* 911 * Make sure the requested values and current defaults are sane. 912 */ 913 num_buffers = max_t(unsigned int, *count, q->min_reqbufs_allocation); 914 num_buffers = min_t(unsigned int, num_buffers, q->max_num_buffers); 915 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 916 /* 917 * Set this now to ensure that drivers see the correct q->memory value 918 * in the queue_setup op. 919 */ 920 mutex_lock(&q->mmap_lock); 921 ret = vb2_core_allocated_buffers_storage(q); 922 q->memory = memory; 923 mutex_unlock(&q->mmap_lock); 924 if (ret) 925 return ret; 926 set_queue_coherency(q, non_coherent_mem); 927 928 /* 929 * Ask the driver how many buffers and planes per buffer it requires. 930 * Driver also sets the size and allocator context for each plane. 931 */ 932 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes, 933 plane_sizes, q->alloc_devs); 934 if (ret) 935 goto error; 936 937 /* Check that driver has set sane values */ 938 if (WARN_ON(!num_planes)) { 939 ret = -EINVAL; 940 goto error; 941 } 942 943 for (i = 0; i < num_planes; i++) 944 if (WARN_ON(!plane_sizes[i])) { 945 ret = -EINVAL; 946 goto error; 947 } 948 949 /* Finally, allocate buffers and video memory */ 950 allocated_buffers = 951 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes, &first_index); 952 if (allocated_buffers == 0) { 953 /* There shouldn't be any buffers allocated, so first_index == 0 */ 954 WARN_ON(first_index); 955 dprintk(q, 1, "memory allocation failed\n"); 956 ret = -ENOMEM; 957 goto error; 958 } 959 960 /* 961 * There is no point in continuing if we can't allocate the minimum 962 * number of buffers needed by this vb2_queue. 963 */ 964 if (allocated_buffers < q->min_reqbufs_allocation) 965 ret = -ENOMEM; 966 967 /* 968 * Check if driver can handle the allocated number of buffers. 969 */ 970 if (!ret && allocated_buffers < num_buffers) { 971 num_buffers = allocated_buffers; 972 /* 973 * num_planes is set by the previous queue_setup(), but since it 974 * signals to queue_setup() whether it is called from create_bufs() 975 * vs reqbufs() we zero it here to signal that queue_setup() is 976 * called for the reqbufs() case. 977 */ 978 num_planes = 0; 979 980 ret = call_qop(q, queue_setup, q, &num_buffers, 981 &num_planes, plane_sizes, q->alloc_devs); 982 983 if (!ret && allocated_buffers < num_buffers) 984 ret = -ENOMEM; 985 986 /* 987 * Either the driver has accepted a smaller number of buffers, 988 * or .queue_setup() returned an error 989 */ 990 } 991 992 mutex_lock(&q->mmap_lock); 993 994 if (ret < 0) { 995 /* 996 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 997 * from already queued buffers and it will reset q->memory to 998 * VB2_MEMORY_UNKNOWN. 999 */ 1000 __vb2_queue_free(q, first_index, allocated_buffers); 1001 mutex_unlock(&q->mmap_lock); 1002 return ret; 1003 } 1004 mutex_unlock(&q->mmap_lock); 1005 1006 /* 1007 * Return the number of successfully allocated buffers 1008 * to the userspace. 1009 */ 1010 *count = allocated_buffers; 1011 q->waiting_for_buffers = !q->is_output; 1012 q->is_busy = 1; 1013 1014 return 0; 1015 1016 error: 1017 mutex_lock(&q->mmap_lock); 1018 q->memory = VB2_MEMORY_UNKNOWN; 1019 mutex_unlock(&q->mmap_lock); 1020 vb2_core_free_buffers_storage(q); 1021 return ret; 1022 } 1023 EXPORT_SYMBOL_GPL(vb2_core_reqbufs); 1024 1025 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory, 1026 unsigned int flags, unsigned int *count, 1027 unsigned int requested_planes, 1028 const unsigned int requested_sizes[], 1029 unsigned int *first_index) 1030 { 1031 unsigned int num_planes = 0, num_buffers, allocated_buffers; 1032 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 1033 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT; 1034 unsigned int q_num_bufs = vb2_get_num_buffers(q); 1035 bool no_previous_buffers = !q_num_bufs; 1036 int ret = 0; 1037 1038 if (q_num_bufs == q->max_num_buffers) { 1039 dprintk(q, 1, "maximum number of buffers already allocated\n"); 1040 return -ENOBUFS; 1041 } 1042 1043 if (no_previous_buffers) { 1044 if (q->waiting_in_dqbuf && *count) { 1045 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 1046 return -EBUSY; 1047 } 1048 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 1049 /* 1050 * Set this now to ensure that drivers see the correct q->memory 1051 * value in the queue_setup op. 1052 */ 1053 mutex_lock(&q->mmap_lock); 1054 ret = vb2_core_allocated_buffers_storage(q); 1055 q->memory = memory; 1056 mutex_unlock(&q->mmap_lock); 1057 if (ret) 1058 return ret; 1059 q->waiting_for_buffers = !q->is_output; 1060 set_queue_coherency(q, non_coherent_mem); 1061 } else { 1062 if (q->memory != memory) { 1063 dprintk(q, 1, "memory model mismatch\n"); 1064 return -EINVAL; 1065 } 1066 if (!verify_coherency_flags(q, non_coherent_mem)) 1067 return -EINVAL; 1068 } 1069 1070 num_buffers = min(*count, q->max_num_buffers - q_num_bufs); 1071 1072 if (requested_planes && requested_sizes) { 1073 num_planes = requested_planes; 1074 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes)); 1075 } 1076 1077 /* 1078 * Ask the driver, whether the requested number of buffers, planes per 1079 * buffer and their sizes are acceptable 1080 */ 1081 ret = call_qop(q, queue_setup, q, &num_buffers, 1082 &num_planes, plane_sizes, q->alloc_devs); 1083 if (ret) 1084 goto error; 1085 1086 /* Finally, allocate buffers and video memory */ 1087 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers, 1088 num_planes, plane_sizes, first_index); 1089 if (allocated_buffers == 0) { 1090 dprintk(q, 1, "memory allocation failed\n"); 1091 ret = -ENOMEM; 1092 goto error; 1093 } 1094 1095 /* 1096 * Check if driver can handle the so far allocated number of buffers. 1097 */ 1098 if (allocated_buffers < num_buffers) { 1099 num_buffers = allocated_buffers; 1100 1101 /* 1102 * num_buffers contains the total number of buffers, that the 1103 * queue driver has set up 1104 */ 1105 ret = call_qop(q, queue_setup, q, &num_buffers, 1106 &num_planes, plane_sizes, q->alloc_devs); 1107 1108 if (!ret && allocated_buffers < num_buffers) 1109 ret = -ENOMEM; 1110 1111 /* 1112 * Either the driver has accepted a smaller number of buffers, 1113 * or .queue_setup() returned an error 1114 */ 1115 } 1116 1117 mutex_lock(&q->mmap_lock); 1118 1119 if (ret < 0) { 1120 /* 1121 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 1122 * from already queued buffers and it will reset q->memory to 1123 * VB2_MEMORY_UNKNOWN. 1124 */ 1125 __vb2_queue_free(q, *first_index, allocated_buffers); 1126 mutex_unlock(&q->mmap_lock); 1127 return -ENOMEM; 1128 } 1129 mutex_unlock(&q->mmap_lock); 1130 1131 /* 1132 * Return the number of successfully allocated buffers 1133 * to the userspace. 1134 */ 1135 *count = allocated_buffers; 1136 q->is_busy = 1; 1137 1138 return 0; 1139 1140 error: 1141 if (no_previous_buffers) { 1142 mutex_lock(&q->mmap_lock); 1143 q->memory = VB2_MEMORY_UNKNOWN; 1144 mutex_unlock(&q->mmap_lock); 1145 } 1146 return ret; 1147 } 1148 EXPORT_SYMBOL_GPL(vb2_core_create_bufs); 1149 1150 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no) 1151 { 1152 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 1153 return NULL; 1154 1155 return call_ptr_memop(vaddr, vb, vb->planes[plane_no].mem_priv); 1156 1157 } 1158 EXPORT_SYMBOL_GPL(vb2_plane_vaddr); 1159 1160 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no) 1161 { 1162 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 1163 return NULL; 1164 1165 return call_ptr_memop(cookie, vb, vb->planes[plane_no].mem_priv); 1166 } 1167 EXPORT_SYMBOL_GPL(vb2_plane_cookie); 1168 1169 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state) 1170 { 1171 struct vb2_queue *q = vb->vb2_queue; 1172 unsigned long flags; 1173 1174 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE)) 1175 return; 1176 1177 if (WARN_ON(state != VB2_BUF_STATE_DONE && 1178 state != VB2_BUF_STATE_ERROR && 1179 state != VB2_BUF_STATE_QUEUED)) 1180 state = VB2_BUF_STATE_ERROR; 1181 1182 #ifdef CONFIG_VIDEO_ADV_DEBUG 1183 /* 1184 * Although this is not a callback, it still does have to balance 1185 * with the buf_queue op. So update this counter manually. 1186 */ 1187 vb->cnt_buf_done++; 1188 #endif 1189 dprintk(q, 4, "done processing on buffer %d, state: %s\n", 1190 vb->index, vb2_state_name(state)); 1191 1192 if (state != VB2_BUF_STATE_QUEUED) 1193 __vb2_buf_mem_finish(vb); 1194 1195 spin_lock_irqsave(&q->done_lock, flags); 1196 if (state == VB2_BUF_STATE_QUEUED) { 1197 vb->state = VB2_BUF_STATE_QUEUED; 1198 } else { 1199 /* Add the buffer to the done buffers list */ 1200 list_add_tail(&vb->done_entry, &q->done_list); 1201 vb->state = state; 1202 } 1203 atomic_dec(&q->owned_by_drv_count); 1204 1205 if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) { 1206 media_request_object_unbind(&vb->req_obj); 1207 media_request_object_put(&vb->req_obj); 1208 } 1209 1210 spin_unlock_irqrestore(&q->done_lock, flags); 1211 1212 trace_vb2_buf_done(q, vb); 1213 1214 switch (state) { 1215 case VB2_BUF_STATE_QUEUED: 1216 return; 1217 default: 1218 /* Inform any processes that may be waiting for buffers */ 1219 wake_up(&q->done_wq); 1220 break; 1221 } 1222 } 1223 EXPORT_SYMBOL_GPL(vb2_buffer_done); 1224 1225 void vb2_discard_done(struct vb2_queue *q) 1226 { 1227 struct vb2_buffer *vb; 1228 unsigned long flags; 1229 1230 spin_lock_irqsave(&q->done_lock, flags); 1231 list_for_each_entry(vb, &q->done_list, done_entry) 1232 vb->state = VB2_BUF_STATE_ERROR; 1233 spin_unlock_irqrestore(&q->done_lock, flags); 1234 } 1235 EXPORT_SYMBOL_GPL(vb2_discard_done); 1236 1237 /* 1238 * __prepare_mmap() - prepare an MMAP buffer 1239 */ 1240 static int __prepare_mmap(struct vb2_buffer *vb) 1241 { 1242 int ret = 0; 1243 1244 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1245 vb, vb->planes); 1246 return ret ? ret : call_vb_qop(vb, buf_prepare, vb); 1247 } 1248 1249 /* 1250 * __prepare_userptr() - prepare a USERPTR buffer 1251 */ 1252 static int __prepare_userptr(struct vb2_buffer *vb) 1253 { 1254 struct vb2_plane planes[VB2_MAX_PLANES]; 1255 struct vb2_queue *q = vb->vb2_queue; 1256 void *mem_priv; 1257 unsigned int plane; 1258 int ret = 0; 1259 bool reacquired = vb->planes[0].mem_priv == NULL; 1260 1261 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1262 /* Copy relevant information provided by the userspace */ 1263 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1264 vb, planes); 1265 if (ret) 1266 return ret; 1267 1268 for (plane = 0; plane < vb->num_planes; ++plane) { 1269 /* Skip the plane if already verified */ 1270 if (vb->planes[plane].m.userptr && 1271 vb->planes[plane].m.userptr == planes[plane].m.userptr 1272 && vb->planes[plane].length == planes[plane].length) 1273 continue; 1274 1275 dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n", 1276 plane); 1277 1278 /* Check if the provided plane buffer is large enough */ 1279 if (planes[plane].length < vb->planes[plane].min_length) { 1280 dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n", 1281 planes[plane].length, 1282 vb->planes[plane].min_length, 1283 plane); 1284 ret = -EINVAL; 1285 goto err; 1286 } 1287 1288 /* Release previously acquired memory if present */ 1289 if (vb->planes[plane].mem_priv) { 1290 if (!reacquired) { 1291 reacquired = true; 1292 vb->copied_timestamp = 0; 1293 call_void_vb_qop(vb, buf_cleanup, vb); 1294 } 1295 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 1296 } 1297 1298 vb->planes[plane].mem_priv = NULL; 1299 vb->planes[plane].bytesused = 0; 1300 vb->planes[plane].length = 0; 1301 vb->planes[plane].m.userptr = 0; 1302 vb->planes[plane].data_offset = 0; 1303 1304 /* Acquire each plane's memory */ 1305 mem_priv = call_ptr_memop(get_userptr, 1306 vb, 1307 q->alloc_devs[plane] ? : q->dev, 1308 planes[plane].m.userptr, 1309 planes[plane].length); 1310 if (IS_ERR(mem_priv)) { 1311 dprintk(q, 1, "failed acquiring userspace memory for plane %d\n", 1312 plane); 1313 ret = PTR_ERR(mem_priv); 1314 goto err; 1315 } 1316 vb->planes[plane].mem_priv = mem_priv; 1317 } 1318 1319 /* 1320 * Now that everything is in order, copy relevant information 1321 * provided by userspace. 1322 */ 1323 for (plane = 0; plane < vb->num_planes; ++plane) { 1324 vb->planes[plane].bytesused = planes[plane].bytesused; 1325 vb->planes[plane].length = planes[plane].length; 1326 vb->planes[plane].m.userptr = planes[plane].m.userptr; 1327 vb->planes[plane].data_offset = planes[plane].data_offset; 1328 } 1329 1330 if (reacquired) { 1331 /* 1332 * One or more planes changed, so we must call buf_init to do 1333 * the driver-specific initialization on the newly acquired 1334 * buffer, if provided. 1335 */ 1336 ret = call_vb_qop(vb, buf_init, vb); 1337 if (ret) { 1338 dprintk(q, 1, "buffer initialization failed\n"); 1339 goto err; 1340 } 1341 } 1342 1343 ret = call_vb_qop(vb, buf_prepare, vb); 1344 if (ret) { 1345 dprintk(q, 1, "buffer preparation failed\n"); 1346 call_void_vb_qop(vb, buf_cleanup, vb); 1347 goto err; 1348 } 1349 1350 return 0; 1351 err: 1352 /* In case of errors, release planes that were already acquired */ 1353 for (plane = 0; plane < vb->num_planes; ++plane) { 1354 if (vb->planes[plane].mem_priv) 1355 call_void_memop(vb, put_userptr, 1356 vb->planes[plane].mem_priv); 1357 vb->planes[plane].mem_priv = NULL; 1358 vb->planes[plane].m.userptr = 0; 1359 vb->planes[plane].length = 0; 1360 } 1361 1362 return ret; 1363 } 1364 1365 /* 1366 * __prepare_dmabuf() - prepare a DMABUF buffer 1367 */ 1368 static int __prepare_dmabuf(struct vb2_buffer *vb) 1369 { 1370 struct vb2_plane planes[VB2_MAX_PLANES]; 1371 struct vb2_queue *q = vb->vb2_queue; 1372 void *mem_priv; 1373 unsigned int plane; 1374 int ret = 0; 1375 bool reacquired = vb->planes[0].mem_priv == NULL; 1376 1377 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1378 /* Copy relevant information provided by the userspace */ 1379 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1380 vb, planes); 1381 if (ret) 1382 return ret; 1383 1384 for (plane = 0; plane < vb->num_planes; ++plane) { 1385 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd); 1386 1387 if (IS_ERR_OR_NULL(dbuf)) { 1388 dprintk(q, 1, "invalid dmabuf fd for plane %d\n", 1389 plane); 1390 ret = -EINVAL; 1391 goto err; 1392 } 1393 1394 /* use DMABUF size if length is not provided */ 1395 if (planes[plane].length == 0) 1396 planes[plane].length = dbuf->size; 1397 1398 if (planes[plane].length < vb->planes[plane].min_length) { 1399 dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n", 1400 planes[plane].length, plane, 1401 vb->planes[plane].min_length); 1402 dma_buf_put(dbuf); 1403 ret = -EINVAL; 1404 goto err; 1405 } 1406 1407 /* Skip the plane if already verified */ 1408 if (dbuf == vb->planes[plane].dbuf && 1409 vb->planes[plane].length == planes[plane].length) { 1410 dma_buf_put(dbuf); 1411 continue; 1412 } 1413 1414 dprintk(q, 3, "buffer for plane %d changed\n", plane); 1415 1416 if (!reacquired) { 1417 reacquired = true; 1418 vb->copied_timestamp = 0; 1419 call_void_vb_qop(vb, buf_cleanup, vb); 1420 } 1421 1422 /* Release previously acquired memory if present */ 1423 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 1424 vb->planes[plane].bytesused = 0; 1425 vb->planes[plane].length = 0; 1426 vb->planes[plane].m.fd = 0; 1427 vb->planes[plane].data_offset = 0; 1428 1429 /* Acquire each plane's memory */ 1430 mem_priv = call_ptr_memop(attach_dmabuf, 1431 vb, 1432 q->alloc_devs[plane] ? : q->dev, 1433 dbuf, 1434 planes[plane].length); 1435 if (IS_ERR(mem_priv)) { 1436 dprintk(q, 1, "failed to attach dmabuf\n"); 1437 ret = PTR_ERR(mem_priv); 1438 dma_buf_put(dbuf); 1439 goto err; 1440 } 1441 1442 vb->planes[plane].dbuf = dbuf; 1443 vb->planes[plane].mem_priv = mem_priv; 1444 } 1445 1446 /* 1447 * This pins the buffer(s) with dma_buf_map_attachment()). It's done 1448 * here instead just before the DMA, while queueing the buffer(s) so 1449 * userspace knows sooner rather than later if the dma-buf map fails. 1450 */ 1451 for (plane = 0; plane < vb->num_planes; ++plane) { 1452 if (vb->planes[plane].dbuf_mapped) 1453 continue; 1454 1455 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv); 1456 if (ret) { 1457 dprintk(q, 1, "failed to map dmabuf for plane %d\n", 1458 plane); 1459 goto err; 1460 } 1461 vb->planes[plane].dbuf_mapped = 1; 1462 } 1463 1464 /* 1465 * Now that everything is in order, copy relevant information 1466 * provided by userspace. 1467 */ 1468 for (plane = 0; plane < vb->num_planes; ++plane) { 1469 vb->planes[plane].bytesused = planes[plane].bytesused; 1470 vb->planes[plane].length = planes[plane].length; 1471 vb->planes[plane].m.fd = planes[plane].m.fd; 1472 vb->planes[plane].data_offset = planes[plane].data_offset; 1473 } 1474 1475 if (reacquired) { 1476 /* 1477 * Call driver-specific initialization on the newly acquired buffer, 1478 * if provided. 1479 */ 1480 ret = call_vb_qop(vb, buf_init, vb); 1481 if (ret) { 1482 dprintk(q, 1, "buffer initialization failed\n"); 1483 goto err; 1484 } 1485 } 1486 1487 ret = call_vb_qop(vb, buf_prepare, vb); 1488 if (ret) { 1489 dprintk(q, 1, "buffer preparation failed\n"); 1490 call_void_vb_qop(vb, buf_cleanup, vb); 1491 goto err; 1492 } 1493 1494 return 0; 1495 err: 1496 /* In case of errors, release planes that were already acquired */ 1497 __vb2_buf_dmabuf_put(vb); 1498 1499 return ret; 1500 } 1501 1502 /* 1503 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing 1504 */ 1505 static void __enqueue_in_driver(struct vb2_buffer *vb) 1506 { 1507 struct vb2_queue *q = vb->vb2_queue; 1508 1509 vb->state = VB2_BUF_STATE_ACTIVE; 1510 atomic_inc(&q->owned_by_drv_count); 1511 1512 trace_vb2_buf_queue(q, vb); 1513 1514 call_void_vb_qop(vb, buf_queue, vb); 1515 } 1516 1517 static int __buf_prepare(struct vb2_buffer *vb) 1518 { 1519 struct vb2_queue *q = vb->vb2_queue; 1520 enum vb2_buffer_state orig_state = vb->state; 1521 int ret; 1522 1523 if (q->error) { 1524 dprintk(q, 1, "fatal error occurred on queue\n"); 1525 return -EIO; 1526 } 1527 1528 if (vb->prepared) 1529 return 0; 1530 WARN_ON(vb->synced); 1531 1532 if (q->is_output) { 1533 ret = call_vb_qop(vb, buf_out_validate, vb); 1534 if (ret) { 1535 dprintk(q, 1, "buffer validation failed\n"); 1536 return ret; 1537 } 1538 } 1539 1540 vb->state = VB2_BUF_STATE_PREPARING; 1541 1542 switch (q->memory) { 1543 case VB2_MEMORY_MMAP: 1544 ret = __prepare_mmap(vb); 1545 break; 1546 case VB2_MEMORY_USERPTR: 1547 ret = __prepare_userptr(vb); 1548 break; 1549 case VB2_MEMORY_DMABUF: 1550 ret = __prepare_dmabuf(vb); 1551 break; 1552 default: 1553 WARN(1, "Invalid queue type\n"); 1554 ret = -EINVAL; 1555 break; 1556 } 1557 1558 if (ret) { 1559 dprintk(q, 1, "buffer preparation failed: %d\n", ret); 1560 vb->state = orig_state; 1561 return ret; 1562 } 1563 1564 __vb2_buf_mem_prepare(vb); 1565 vb->prepared = 1; 1566 vb->state = orig_state; 1567 1568 return 0; 1569 } 1570 1571 static int vb2_req_prepare(struct media_request_object *obj) 1572 { 1573 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1574 int ret; 1575 1576 if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST)) 1577 return -EINVAL; 1578 1579 mutex_lock(vb->vb2_queue->lock); 1580 ret = __buf_prepare(vb); 1581 mutex_unlock(vb->vb2_queue->lock); 1582 return ret; 1583 } 1584 1585 static void __vb2_dqbuf(struct vb2_buffer *vb); 1586 1587 static void vb2_req_unprepare(struct media_request_object *obj) 1588 { 1589 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1590 1591 mutex_lock(vb->vb2_queue->lock); 1592 __vb2_dqbuf(vb); 1593 vb->state = VB2_BUF_STATE_IN_REQUEST; 1594 mutex_unlock(vb->vb2_queue->lock); 1595 WARN_ON(!vb->req_obj.req); 1596 } 1597 1598 static void vb2_req_queue(struct media_request_object *obj) 1599 { 1600 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1601 int err; 1602 1603 mutex_lock(vb->vb2_queue->lock); 1604 /* 1605 * There is no method to propagate an error from vb2_core_qbuf(), 1606 * so if this returns a non-0 value, then WARN. 1607 * 1608 * The only exception is -EIO which is returned if q->error is 1609 * set. We just ignore that, and expect this will be caught the 1610 * next time vb2_req_prepare() is called. 1611 */ 1612 err = vb2_core_qbuf(vb->vb2_queue, vb, NULL, NULL); 1613 WARN_ON_ONCE(err && err != -EIO); 1614 mutex_unlock(vb->vb2_queue->lock); 1615 } 1616 1617 static void vb2_req_unbind(struct media_request_object *obj) 1618 { 1619 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1620 1621 if (vb->state == VB2_BUF_STATE_IN_REQUEST) 1622 call_void_bufop(vb->vb2_queue, init_buffer, vb); 1623 } 1624 1625 static void vb2_req_release(struct media_request_object *obj) 1626 { 1627 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1628 1629 if (vb->state == VB2_BUF_STATE_IN_REQUEST) { 1630 vb->state = VB2_BUF_STATE_DEQUEUED; 1631 if (vb->request) 1632 media_request_put(vb->request); 1633 vb->request = NULL; 1634 } 1635 } 1636 1637 static const struct media_request_object_ops vb2_core_req_ops = { 1638 .prepare = vb2_req_prepare, 1639 .unprepare = vb2_req_unprepare, 1640 .queue = vb2_req_queue, 1641 .unbind = vb2_req_unbind, 1642 .release = vb2_req_release, 1643 }; 1644 1645 bool vb2_request_object_is_buffer(struct media_request_object *obj) 1646 { 1647 return obj->ops == &vb2_core_req_ops; 1648 } 1649 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer); 1650 1651 unsigned int vb2_request_buffer_cnt(struct media_request *req) 1652 { 1653 struct media_request_object *obj; 1654 unsigned long flags; 1655 unsigned int buffer_cnt = 0; 1656 1657 spin_lock_irqsave(&req->lock, flags); 1658 list_for_each_entry(obj, &req->objects, list) 1659 if (vb2_request_object_is_buffer(obj)) 1660 buffer_cnt++; 1661 spin_unlock_irqrestore(&req->lock, flags); 1662 1663 return buffer_cnt; 1664 } 1665 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt); 1666 1667 int vb2_core_prepare_buf(struct vb2_queue *q, struct vb2_buffer *vb, void *pb) 1668 { 1669 int ret; 1670 1671 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1672 dprintk(q, 1, "invalid buffer state %s\n", 1673 vb2_state_name(vb->state)); 1674 return -EINVAL; 1675 } 1676 if (vb->prepared) { 1677 dprintk(q, 1, "buffer already prepared\n"); 1678 return -EINVAL; 1679 } 1680 1681 ret = __buf_prepare(vb); 1682 if (ret) 1683 return ret; 1684 1685 /* Fill buffer information for the userspace */ 1686 call_void_bufop(q, fill_user_buffer, vb, pb); 1687 1688 dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index); 1689 1690 return 0; 1691 } 1692 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf); 1693 1694 int vb2_core_remove_bufs(struct vb2_queue *q, unsigned int start, unsigned int count) 1695 { 1696 unsigned int i, ret = 0; 1697 unsigned int q_num_bufs = vb2_get_num_buffers(q); 1698 1699 if (count == 0) 1700 return 0; 1701 1702 if (count > q_num_bufs) 1703 return -EINVAL; 1704 1705 if (start > q->max_num_buffers - count) 1706 return -EINVAL; 1707 1708 mutex_lock(&q->mmap_lock); 1709 1710 /* Check that all buffers in the range exist */ 1711 for (i = start; i < start + count; i++) { 1712 struct vb2_buffer *vb = vb2_get_buffer(q, i); 1713 1714 if (!vb) { 1715 ret = -EINVAL; 1716 goto unlock; 1717 } 1718 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1719 ret = -EBUSY; 1720 goto unlock; 1721 } 1722 } 1723 __vb2_queue_free(q, start, count); 1724 dprintk(q, 2, "%u buffers removed\n", count); 1725 1726 unlock: 1727 mutex_unlock(&q->mmap_lock); 1728 return ret; 1729 } 1730 EXPORT_SYMBOL_GPL(vb2_core_remove_bufs); 1731 1732 /* 1733 * vb2_start_streaming() - Attempt to start streaming. 1734 * @q: videobuf2 queue 1735 * 1736 * Attempt to start streaming. When this function is called there must be 1737 * at least q->min_queued_buffers queued up (i.e. the minimum 1738 * number of buffers required for the DMA engine to function). If the 1739 * @start_streaming op fails it is supposed to return all the driver-owned 1740 * buffers back to vb2 in state QUEUED. Check if that happened and if 1741 * not warn and reclaim them forcefully. 1742 */ 1743 static int vb2_start_streaming(struct vb2_queue *q) 1744 { 1745 struct vb2_buffer *vb; 1746 int ret; 1747 1748 /* 1749 * If any buffers were queued before streamon, 1750 * we can now pass them to driver for processing. 1751 */ 1752 list_for_each_entry(vb, &q->queued_list, queued_entry) 1753 __enqueue_in_driver(vb); 1754 1755 /* Tell the driver to start streaming */ 1756 q->start_streaming_called = 1; 1757 ret = call_qop(q, start_streaming, q, 1758 atomic_read(&q->owned_by_drv_count)); 1759 if (!ret) 1760 return 0; 1761 1762 q->start_streaming_called = 0; 1763 1764 dprintk(q, 1, "driver refused to start streaming\n"); 1765 /* 1766 * If you see this warning, then the driver isn't cleaning up properly 1767 * after a failed start_streaming(). See the start_streaming() 1768 * documentation in videobuf2-core.h for more information how buffers 1769 * should be returned to vb2 in start_streaming(). 1770 */ 1771 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1772 unsigned i; 1773 1774 /* 1775 * Forcefully reclaim buffers if the driver did not 1776 * correctly return them to vb2. 1777 */ 1778 for (i = 0; i < q->max_num_buffers; ++i) { 1779 vb = vb2_get_buffer(q, i); 1780 1781 if (!vb) 1782 continue; 1783 1784 if (vb->state == VB2_BUF_STATE_ACTIVE) 1785 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED); 1786 } 1787 /* Must be zero now */ 1788 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1789 } 1790 /* 1791 * If done_list is not empty, then start_streaming() didn't call 1792 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or 1793 * STATE_DONE. 1794 */ 1795 WARN_ON(!list_empty(&q->done_list)); 1796 return ret; 1797 } 1798 1799 int vb2_core_qbuf(struct vb2_queue *q, struct vb2_buffer *vb, void *pb, 1800 struct media_request *req) 1801 { 1802 enum vb2_buffer_state orig_state; 1803 int ret; 1804 1805 if (q->error) { 1806 dprintk(q, 1, "fatal error occurred on queue\n"); 1807 return -EIO; 1808 } 1809 1810 if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1811 q->requires_requests) { 1812 dprintk(q, 1, "qbuf requires a request\n"); 1813 return -EBADR; 1814 } 1815 1816 if ((req && q->uses_qbuf) || 1817 (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1818 q->uses_requests)) { 1819 dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n"); 1820 return -EBUSY; 1821 } 1822 1823 if (req) { 1824 int ret; 1825 1826 q->uses_requests = 1; 1827 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1828 dprintk(q, 1, "buffer %d not in dequeued state\n", 1829 vb->index); 1830 return -EINVAL; 1831 } 1832 1833 if (q->is_output && !vb->prepared) { 1834 ret = call_vb_qop(vb, buf_out_validate, vb); 1835 if (ret) { 1836 dprintk(q, 1, "buffer validation failed\n"); 1837 return ret; 1838 } 1839 } 1840 1841 media_request_object_init(&vb->req_obj); 1842 1843 /* Make sure the request is in a safe state for updating. */ 1844 ret = media_request_lock_for_update(req); 1845 if (ret) 1846 return ret; 1847 ret = media_request_object_bind(req, &vb2_core_req_ops, 1848 q, true, &vb->req_obj); 1849 media_request_unlock_for_update(req); 1850 if (ret) 1851 return ret; 1852 1853 vb->state = VB2_BUF_STATE_IN_REQUEST; 1854 1855 /* 1856 * Increment the refcount and store the request. 1857 * The request refcount is decremented again when the 1858 * buffer is dequeued. This is to prevent vb2_buffer_done() 1859 * from freeing the request from interrupt context, which can 1860 * happen if the application closed the request fd after 1861 * queueing the request. 1862 */ 1863 media_request_get(req); 1864 vb->request = req; 1865 1866 /* Fill buffer information for the userspace */ 1867 if (pb) { 1868 call_void_bufop(q, copy_timestamp, vb, pb); 1869 call_void_bufop(q, fill_user_buffer, vb, pb); 1870 } 1871 1872 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1873 return 0; 1874 } 1875 1876 if (vb->state != VB2_BUF_STATE_IN_REQUEST) 1877 q->uses_qbuf = 1; 1878 1879 switch (vb->state) { 1880 case VB2_BUF_STATE_DEQUEUED: 1881 case VB2_BUF_STATE_IN_REQUEST: 1882 if (!vb->prepared) { 1883 ret = __buf_prepare(vb); 1884 if (ret) 1885 return ret; 1886 } 1887 break; 1888 case VB2_BUF_STATE_PREPARING: 1889 dprintk(q, 1, "buffer still being prepared\n"); 1890 return -EINVAL; 1891 default: 1892 dprintk(q, 1, "invalid buffer state %s\n", 1893 vb2_state_name(vb->state)); 1894 return -EINVAL; 1895 } 1896 1897 /* 1898 * Add to the queued buffers list, a buffer will stay on it until 1899 * dequeued in dqbuf. 1900 */ 1901 orig_state = vb->state; 1902 list_add_tail(&vb->queued_entry, &q->queued_list); 1903 q->queued_count++; 1904 q->waiting_for_buffers = false; 1905 vb->state = VB2_BUF_STATE_QUEUED; 1906 1907 if (pb) 1908 call_void_bufop(q, copy_timestamp, vb, pb); 1909 1910 trace_vb2_qbuf(q, vb); 1911 1912 /* 1913 * If already streaming, give the buffer to driver for processing. 1914 * If not, the buffer will be given to driver on next streamon. 1915 */ 1916 if (q->start_streaming_called) 1917 __enqueue_in_driver(vb); 1918 1919 /* Fill buffer information for the userspace */ 1920 if (pb) 1921 call_void_bufop(q, fill_user_buffer, vb, pb); 1922 1923 /* 1924 * If streamon has been called, and we haven't yet called 1925 * start_streaming() since not enough buffers were queued, and 1926 * we now have reached the minimum number of queued buffers, 1927 * then we can finally call start_streaming(). 1928 */ 1929 if (q->streaming && !q->start_streaming_called && 1930 q->queued_count >= q->min_queued_buffers) { 1931 ret = vb2_start_streaming(q); 1932 if (ret) { 1933 /* 1934 * Since vb2_core_qbuf will return with an error, 1935 * we should return it to state DEQUEUED since 1936 * the error indicates that the buffer wasn't queued. 1937 */ 1938 list_del(&vb->queued_entry); 1939 q->queued_count--; 1940 vb->state = orig_state; 1941 return ret; 1942 } 1943 } 1944 1945 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1946 return 0; 1947 } 1948 EXPORT_SYMBOL_GPL(vb2_core_qbuf); 1949 1950 /* 1951 * __vb2_wait_for_done_vb() - wait for a buffer to become available 1952 * for dequeuing 1953 * 1954 * Will sleep if required for nonblocking == false. 1955 */ 1956 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking) 1957 { 1958 /* 1959 * All operations on vb_done_list are performed under done_lock 1960 * spinlock protection. However, buffers may be removed from 1961 * it and returned to userspace only while holding both driver's 1962 * lock and the done_lock spinlock. Thus we can be sure that as 1963 * long as we hold the driver's lock, the list will remain not 1964 * empty if list_empty() check succeeds. 1965 */ 1966 1967 for (;;) { 1968 int ret; 1969 1970 if (q->waiting_in_dqbuf) { 1971 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 1972 return -EBUSY; 1973 } 1974 1975 if (!q->streaming) { 1976 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1977 return -EINVAL; 1978 } 1979 1980 if (q->error) { 1981 dprintk(q, 1, "Queue in error state, will not wait for buffers\n"); 1982 return -EIO; 1983 } 1984 1985 if (q->last_buffer_dequeued) { 1986 dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n"); 1987 return -EPIPE; 1988 } 1989 1990 if (!list_empty(&q->done_list)) { 1991 /* 1992 * Found a buffer that we were waiting for. 1993 */ 1994 break; 1995 } 1996 1997 if (nonblocking) { 1998 dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n"); 1999 return -EAGAIN; 2000 } 2001 2002 q->waiting_in_dqbuf = 1; 2003 /* 2004 * We are streaming and blocking, wait for another buffer to 2005 * become ready or for streamoff. Driver's lock is released to 2006 * allow streamoff or qbuf to be called while waiting. 2007 */ 2008 call_void_qop(q, wait_prepare, q); 2009 2010 /* 2011 * All locks have been released, it is safe to sleep now. 2012 */ 2013 dprintk(q, 3, "will sleep waiting for buffers\n"); 2014 ret = wait_event_interruptible(q->done_wq, 2015 !list_empty(&q->done_list) || !q->streaming || 2016 q->error); 2017 2018 /* 2019 * We need to reevaluate both conditions again after reacquiring 2020 * the locks or return an error if one occurred. 2021 */ 2022 call_void_qop(q, wait_finish, q); 2023 q->waiting_in_dqbuf = 0; 2024 if (ret) { 2025 dprintk(q, 1, "sleep was interrupted\n"); 2026 return ret; 2027 } 2028 } 2029 return 0; 2030 } 2031 2032 /* 2033 * __vb2_get_done_vb() - get a buffer ready for dequeuing 2034 * 2035 * Will sleep if required for nonblocking == false. 2036 */ 2037 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb, 2038 void *pb, int nonblocking) 2039 { 2040 unsigned long flags; 2041 int ret = 0; 2042 2043 /* 2044 * Wait for at least one buffer to become available on the done_list. 2045 */ 2046 ret = __vb2_wait_for_done_vb(q, nonblocking); 2047 if (ret) 2048 return ret; 2049 2050 /* 2051 * Driver's lock has been held since we last verified that done_list 2052 * is not empty, so no need for another list_empty(done_list) check. 2053 */ 2054 spin_lock_irqsave(&q->done_lock, flags); 2055 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry); 2056 /* 2057 * Only remove the buffer from done_list if all planes can be 2058 * handled. Some cases such as V4L2 file I/O and DVB have pb 2059 * == NULL; skip the check then as there's nothing to verify. 2060 */ 2061 if (pb) 2062 ret = call_bufop(q, verify_planes_array, *vb, pb); 2063 if (!ret) 2064 list_del(&(*vb)->done_entry); 2065 spin_unlock_irqrestore(&q->done_lock, flags); 2066 2067 return ret; 2068 } 2069 2070 int vb2_wait_for_all_buffers(struct vb2_queue *q) 2071 { 2072 if (!q->streaming) { 2073 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 2074 return -EINVAL; 2075 } 2076 2077 if (q->start_streaming_called) 2078 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count)); 2079 return 0; 2080 } 2081 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers); 2082 2083 /* 2084 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state 2085 */ 2086 static void __vb2_dqbuf(struct vb2_buffer *vb) 2087 { 2088 struct vb2_queue *q = vb->vb2_queue; 2089 2090 /* nothing to do if the buffer is already dequeued */ 2091 if (vb->state == VB2_BUF_STATE_DEQUEUED) 2092 return; 2093 2094 vb->state = VB2_BUF_STATE_DEQUEUED; 2095 2096 call_void_bufop(q, init_buffer, vb); 2097 } 2098 2099 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb, 2100 bool nonblocking) 2101 { 2102 struct vb2_buffer *vb = NULL; 2103 int ret; 2104 2105 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking); 2106 if (ret < 0) 2107 return ret; 2108 2109 switch (vb->state) { 2110 case VB2_BUF_STATE_DONE: 2111 dprintk(q, 3, "returning done buffer\n"); 2112 break; 2113 case VB2_BUF_STATE_ERROR: 2114 dprintk(q, 3, "returning done buffer with errors\n"); 2115 break; 2116 default: 2117 dprintk(q, 1, "invalid buffer state %s\n", 2118 vb2_state_name(vb->state)); 2119 return -EINVAL; 2120 } 2121 2122 call_void_vb_qop(vb, buf_finish, vb); 2123 vb->prepared = 0; 2124 2125 if (pindex) 2126 *pindex = vb->index; 2127 2128 /* Fill buffer information for the userspace */ 2129 if (pb) 2130 call_void_bufop(q, fill_user_buffer, vb, pb); 2131 2132 /* Remove from vb2 queue */ 2133 list_del(&vb->queued_entry); 2134 q->queued_count--; 2135 2136 trace_vb2_dqbuf(q, vb); 2137 2138 /* go back to dequeued state */ 2139 __vb2_dqbuf(vb); 2140 2141 if (WARN_ON(vb->req_obj.req)) { 2142 media_request_object_unbind(&vb->req_obj); 2143 media_request_object_put(&vb->req_obj); 2144 } 2145 if (vb->request) 2146 media_request_put(vb->request); 2147 vb->request = NULL; 2148 2149 dprintk(q, 2, "dqbuf of buffer %d, state: %s\n", 2150 vb->index, vb2_state_name(vb->state)); 2151 2152 return 0; 2153 2154 } 2155 EXPORT_SYMBOL_GPL(vb2_core_dqbuf); 2156 2157 /* 2158 * __vb2_queue_cancel() - cancel and stop (pause) streaming 2159 * 2160 * Removes all queued buffers from driver's queue and all buffers queued by 2161 * userspace from vb2's queue. Returns to state after reqbufs. 2162 */ 2163 static void __vb2_queue_cancel(struct vb2_queue *q) 2164 { 2165 unsigned int i; 2166 2167 /* 2168 * Tell driver to stop all transactions and release all queued 2169 * buffers. 2170 */ 2171 if (q->start_streaming_called) 2172 call_void_qop(q, stop_streaming, q); 2173 2174 if (q->streaming) 2175 call_void_qop(q, unprepare_streaming, q); 2176 2177 /* 2178 * If you see this warning, then the driver isn't cleaning up properly 2179 * in stop_streaming(). See the stop_streaming() documentation in 2180 * videobuf2-core.h for more information how buffers should be returned 2181 * to vb2 in stop_streaming(). 2182 */ 2183 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 2184 for (i = 0; i < q->max_num_buffers; i++) { 2185 struct vb2_buffer *vb = vb2_get_buffer(q, i); 2186 2187 if (!vb) 2188 continue; 2189 2190 if (vb->state == VB2_BUF_STATE_ACTIVE) { 2191 pr_warn("driver bug: stop_streaming operation is leaving buffer %u in active state\n", 2192 vb->index); 2193 vb2_buffer_done(vb, VB2_BUF_STATE_ERROR); 2194 } 2195 } 2196 /* Must be zero now */ 2197 WARN_ON(atomic_read(&q->owned_by_drv_count)); 2198 } 2199 2200 q->streaming = 0; 2201 q->start_streaming_called = 0; 2202 q->queued_count = 0; 2203 q->error = 0; 2204 q->uses_requests = 0; 2205 q->uses_qbuf = 0; 2206 2207 /* 2208 * Remove all buffers from vb2's list... 2209 */ 2210 INIT_LIST_HEAD(&q->queued_list); 2211 /* 2212 * ...and done list; userspace will not receive any buffers it 2213 * has not already dequeued before initiating cancel. 2214 */ 2215 INIT_LIST_HEAD(&q->done_list); 2216 atomic_set(&q->owned_by_drv_count, 0); 2217 wake_up_all(&q->done_wq); 2218 2219 /* 2220 * Reinitialize all buffers for next use. 2221 * Make sure to call buf_finish for any queued buffers. Normally 2222 * that's done in dqbuf, but that's not going to happen when we 2223 * cancel the whole queue. Note: this code belongs here, not in 2224 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical 2225 * call to __fill_user_buffer() after buf_finish(). That order can't 2226 * be changed, so we can't move the buf_finish() to __vb2_dqbuf(). 2227 */ 2228 for (i = 0; i < q->max_num_buffers; i++) { 2229 struct vb2_buffer *vb; 2230 struct media_request *req; 2231 2232 vb = vb2_get_buffer(q, i); 2233 if (!vb) 2234 continue; 2235 2236 req = vb->req_obj.req; 2237 /* 2238 * If a request is associated with this buffer, then 2239 * call buf_request_cancel() to give the driver to complete() 2240 * related request objects. Otherwise those objects would 2241 * never complete. 2242 */ 2243 if (req) { 2244 enum media_request_state state; 2245 unsigned long flags; 2246 2247 spin_lock_irqsave(&req->lock, flags); 2248 state = req->state; 2249 spin_unlock_irqrestore(&req->lock, flags); 2250 2251 if (state == MEDIA_REQUEST_STATE_QUEUED) 2252 call_void_vb_qop(vb, buf_request_complete, vb); 2253 } 2254 2255 __vb2_buf_mem_finish(vb); 2256 2257 if (vb->prepared) { 2258 call_void_vb_qop(vb, buf_finish, vb); 2259 vb->prepared = 0; 2260 } 2261 __vb2_dqbuf(vb); 2262 2263 if (vb->req_obj.req) { 2264 media_request_object_unbind(&vb->req_obj); 2265 media_request_object_put(&vb->req_obj); 2266 } 2267 if (vb->request) 2268 media_request_put(vb->request); 2269 vb->request = NULL; 2270 vb->copied_timestamp = 0; 2271 } 2272 } 2273 2274 int vb2_core_streamon(struct vb2_queue *q, unsigned int type) 2275 { 2276 unsigned int q_num_bufs = vb2_get_num_buffers(q); 2277 int ret; 2278 2279 if (type != q->type) { 2280 dprintk(q, 1, "invalid stream type\n"); 2281 return -EINVAL; 2282 } 2283 2284 if (q->streaming) { 2285 dprintk(q, 3, "already streaming\n"); 2286 return 0; 2287 } 2288 2289 if (!q_num_bufs) { 2290 dprintk(q, 1, "no buffers have been allocated\n"); 2291 return -EINVAL; 2292 } 2293 2294 if (q_num_bufs < q->min_queued_buffers) { 2295 dprintk(q, 1, "need at least %u queued buffers\n", 2296 q->min_queued_buffers); 2297 return -EINVAL; 2298 } 2299 2300 ret = call_qop(q, prepare_streaming, q); 2301 if (ret) 2302 return ret; 2303 2304 /* 2305 * Tell driver to start streaming provided sufficient buffers 2306 * are available. 2307 */ 2308 if (q->queued_count >= q->min_queued_buffers) { 2309 ret = vb2_start_streaming(q); 2310 if (ret) 2311 goto unprepare; 2312 } 2313 2314 q->streaming = 1; 2315 2316 dprintk(q, 3, "successful\n"); 2317 return 0; 2318 2319 unprepare: 2320 call_void_qop(q, unprepare_streaming, q); 2321 return ret; 2322 } 2323 EXPORT_SYMBOL_GPL(vb2_core_streamon); 2324 2325 void vb2_queue_error(struct vb2_queue *q) 2326 { 2327 q->error = 1; 2328 2329 wake_up_all(&q->done_wq); 2330 } 2331 EXPORT_SYMBOL_GPL(vb2_queue_error); 2332 2333 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type) 2334 { 2335 if (type != q->type) { 2336 dprintk(q, 1, "invalid stream type\n"); 2337 return -EINVAL; 2338 } 2339 2340 /* 2341 * Cancel will pause streaming and remove all buffers from the driver 2342 * and vb2, effectively returning control over them to userspace. 2343 * 2344 * Note that we do this even if q->streaming == 0: if you prepare or 2345 * queue buffers, and then call streamoff without ever having called 2346 * streamon, you would still expect those buffers to be returned to 2347 * their normal dequeued state. 2348 */ 2349 __vb2_queue_cancel(q); 2350 q->waiting_for_buffers = !q->is_output; 2351 q->last_buffer_dequeued = false; 2352 2353 dprintk(q, 3, "successful\n"); 2354 return 0; 2355 } 2356 EXPORT_SYMBOL_GPL(vb2_core_streamoff); 2357 2358 /* 2359 * __find_plane_by_offset() - find plane associated with the given offset 2360 */ 2361 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long offset, 2362 struct vb2_buffer **vb, unsigned int *plane) 2363 { 2364 unsigned int buffer; 2365 2366 /* 2367 * Sanity checks to ensure the lock is held, MEMORY_MMAP is 2368 * used and fileio isn't active. 2369 */ 2370 lockdep_assert_held(&q->mmap_lock); 2371 2372 if (q->memory != VB2_MEMORY_MMAP) { 2373 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2374 return -EINVAL; 2375 } 2376 2377 if (vb2_fileio_is_active(q)) { 2378 dprintk(q, 1, "file io in progress\n"); 2379 return -EBUSY; 2380 } 2381 2382 /* Get buffer and plane from the offset */ 2383 buffer = (offset >> PLANE_INDEX_SHIFT) & BUFFER_INDEX_MASK; 2384 *plane = (offset >> PAGE_SHIFT) & PLANE_INDEX_MASK; 2385 2386 *vb = vb2_get_buffer(q, buffer); 2387 if (!*vb) 2388 return -EINVAL; 2389 if (*plane >= (*vb)->num_planes) 2390 return -EINVAL; 2391 2392 return 0; 2393 } 2394 2395 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type, 2396 struct vb2_buffer *vb, unsigned int plane, unsigned int flags) 2397 { 2398 struct vb2_plane *vb_plane; 2399 int ret; 2400 struct dma_buf *dbuf; 2401 2402 if (q->memory != VB2_MEMORY_MMAP) { 2403 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2404 return -EINVAL; 2405 } 2406 2407 if (!q->mem_ops->get_dmabuf) { 2408 dprintk(q, 1, "queue does not support DMA buffer exporting\n"); 2409 return -EINVAL; 2410 } 2411 2412 if (flags & ~(O_CLOEXEC | O_ACCMODE)) { 2413 dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n"); 2414 return -EINVAL; 2415 } 2416 2417 if (type != q->type) { 2418 dprintk(q, 1, "invalid buffer type\n"); 2419 return -EINVAL; 2420 } 2421 2422 if (plane >= vb->num_planes) { 2423 dprintk(q, 1, "buffer plane out of range\n"); 2424 return -EINVAL; 2425 } 2426 2427 if (vb2_fileio_is_active(q)) { 2428 dprintk(q, 1, "expbuf: file io in progress\n"); 2429 return -EBUSY; 2430 } 2431 2432 vb_plane = &vb->planes[plane]; 2433 2434 dbuf = call_ptr_memop(get_dmabuf, 2435 vb, 2436 vb_plane->mem_priv, 2437 flags & O_ACCMODE); 2438 if (IS_ERR_OR_NULL(dbuf)) { 2439 dprintk(q, 1, "failed to export buffer %d, plane %d\n", 2440 vb->index, plane); 2441 return -EINVAL; 2442 } 2443 2444 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE); 2445 if (ret < 0) { 2446 dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n", 2447 vb->index, plane, ret); 2448 dma_buf_put(dbuf); 2449 return ret; 2450 } 2451 2452 dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n", 2453 vb->index, plane, ret); 2454 *fd = ret; 2455 2456 return 0; 2457 } 2458 EXPORT_SYMBOL_GPL(vb2_core_expbuf); 2459 2460 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma) 2461 { 2462 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 2463 struct vb2_buffer *vb; 2464 unsigned int plane = 0; 2465 int ret; 2466 unsigned long length; 2467 2468 /* 2469 * Check memory area access mode. 2470 */ 2471 if (!(vma->vm_flags & VM_SHARED)) { 2472 dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n"); 2473 return -EINVAL; 2474 } 2475 if (q->is_output) { 2476 if (!(vma->vm_flags & VM_WRITE)) { 2477 dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n"); 2478 return -EINVAL; 2479 } 2480 } else { 2481 if (!(vma->vm_flags & VM_READ)) { 2482 dprintk(q, 1, "invalid vma flags, VM_READ needed\n"); 2483 return -EINVAL; 2484 } 2485 } 2486 2487 mutex_lock(&q->mmap_lock); 2488 2489 /* 2490 * Find the plane corresponding to the offset passed by userspace. This 2491 * will return an error if not MEMORY_MMAP or file I/O is in progress. 2492 */ 2493 ret = __find_plane_by_offset(q, offset, &vb, &plane); 2494 if (ret) 2495 goto unlock; 2496 2497 /* 2498 * MMAP requires page_aligned buffers. 2499 * The buffer length was page_aligned at __vb2_buf_mem_alloc(), 2500 * so, we need to do the same here. 2501 */ 2502 length = PAGE_ALIGN(vb->planes[plane].length); 2503 if (length < (vma->vm_end - vma->vm_start)) { 2504 dprintk(q, 1, 2505 "MMAP invalid, as it would overflow buffer length\n"); 2506 ret = -EINVAL; 2507 goto unlock; 2508 } 2509 2510 /* 2511 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer, 2512 * not as a in-buffer offset. We always want to mmap a whole buffer 2513 * from its beginning. 2514 */ 2515 vma->vm_pgoff = 0; 2516 2517 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma); 2518 2519 unlock: 2520 mutex_unlock(&q->mmap_lock); 2521 if (ret) 2522 return ret; 2523 2524 dprintk(q, 3, "buffer %u, plane %d successfully mapped\n", vb->index, plane); 2525 return 0; 2526 } 2527 EXPORT_SYMBOL_GPL(vb2_mmap); 2528 2529 #ifndef CONFIG_MMU 2530 unsigned long vb2_get_unmapped_area(struct vb2_queue *q, 2531 unsigned long addr, 2532 unsigned long len, 2533 unsigned long pgoff, 2534 unsigned long flags) 2535 { 2536 unsigned long offset = pgoff << PAGE_SHIFT; 2537 struct vb2_buffer *vb; 2538 unsigned int plane; 2539 void *vaddr; 2540 int ret; 2541 2542 mutex_lock(&q->mmap_lock); 2543 2544 /* 2545 * Find the plane corresponding to the offset passed by userspace. This 2546 * will return an error if not MEMORY_MMAP or file I/O is in progress. 2547 */ 2548 ret = __find_plane_by_offset(q, offset, &vb, &plane); 2549 if (ret) 2550 goto unlock; 2551 2552 vaddr = vb2_plane_vaddr(vb, plane); 2553 mutex_unlock(&q->mmap_lock); 2554 return vaddr ? (unsigned long)vaddr : -EINVAL; 2555 2556 unlock: 2557 mutex_unlock(&q->mmap_lock); 2558 return ret; 2559 } 2560 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area); 2561 #endif 2562 2563 int vb2_core_queue_init(struct vb2_queue *q) 2564 { 2565 /* 2566 * Sanity check 2567 */ 2568 /* 2569 * For drivers who don't support max_num_buffers ensure 2570 * a backward compatibility. 2571 */ 2572 if (!q->max_num_buffers) 2573 q->max_num_buffers = VB2_MAX_FRAME; 2574 2575 /* The maximum is limited by offset cookie encoding pattern */ 2576 q->max_num_buffers = min_t(unsigned int, q->max_num_buffers, MAX_BUFFER_INDEX); 2577 2578 if (WARN_ON(!q) || 2579 WARN_ON(!q->ops) || 2580 WARN_ON(!q->mem_ops) || 2581 WARN_ON(!q->type) || 2582 WARN_ON(!q->io_modes) || 2583 WARN_ON(!q->ops->queue_setup) || 2584 WARN_ON(!q->ops->buf_queue)) 2585 return -EINVAL; 2586 2587 if (WARN_ON(q->max_num_buffers < VB2_MAX_FRAME) || 2588 WARN_ON(q->min_queued_buffers > q->max_num_buffers)) 2589 return -EINVAL; 2590 2591 if (WARN_ON(q->requires_requests && !q->supports_requests)) 2592 return -EINVAL; 2593 2594 /* 2595 * This combination is not allowed since a non-zero value of 2596 * q->min_queued_buffers can cause vb2_core_qbuf() to fail if 2597 * it has to call start_streaming(), and the Request API expects 2598 * that queueing a request (and thus queueing a buffer contained 2599 * in that request) will always succeed. There is no method of 2600 * propagating an error back to userspace. 2601 */ 2602 if (WARN_ON(q->supports_requests && q->min_queued_buffers)) 2603 return -EINVAL; 2604 2605 /* 2606 * The minimum requirement is 2: one buffer is used 2607 * by the hardware while the other is being processed by userspace. 2608 */ 2609 if (q->min_reqbufs_allocation < 2) 2610 q->min_reqbufs_allocation = 2; 2611 2612 /* 2613 * If the driver needs 'min_queued_buffers' in the queue before 2614 * calling start_streaming() then the minimum requirement is 2615 * 'min_queued_buffers + 1' to keep at least one buffer available 2616 * for userspace. 2617 */ 2618 if (q->min_reqbufs_allocation < q->min_queued_buffers + 1) 2619 q->min_reqbufs_allocation = q->min_queued_buffers + 1; 2620 2621 if (WARN_ON(q->min_reqbufs_allocation > q->max_num_buffers)) 2622 return -EINVAL; 2623 2624 INIT_LIST_HEAD(&q->queued_list); 2625 INIT_LIST_HEAD(&q->done_list); 2626 spin_lock_init(&q->done_lock); 2627 mutex_init(&q->mmap_lock); 2628 init_waitqueue_head(&q->done_wq); 2629 2630 q->memory = VB2_MEMORY_UNKNOWN; 2631 2632 if (q->buf_struct_size == 0) 2633 q->buf_struct_size = sizeof(struct vb2_buffer); 2634 2635 if (q->bidirectional) 2636 q->dma_dir = DMA_BIDIRECTIONAL; 2637 else 2638 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2639 2640 if (q->name[0] == '\0') 2641 snprintf(q->name, sizeof(q->name), "%s-%p", 2642 q->is_output ? "out" : "cap", q); 2643 2644 return 0; 2645 } 2646 EXPORT_SYMBOL_GPL(vb2_core_queue_init); 2647 2648 static int __vb2_init_fileio(struct vb2_queue *q, int read); 2649 static int __vb2_cleanup_fileio(struct vb2_queue *q); 2650 void vb2_core_queue_release(struct vb2_queue *q) 2651 { 2652 __vb2_cleanup_fileio(q); 2653 __vb2_queue_cancel(q); 2654 mutex_lock(&q->mmap_lock); 2655 __vb2_queue_free(q, 0, q->max_num_buffers); 2656 vb2_core_free_buffers_storage(q); 2657 q->is_busy = 0; 2658 mutex_unlock(&q->mmap_lock); 2659 } 2660 EXPORT_SYMBOL_GPL(vb2_core_queue_release); 2661 2662 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file, 2663 poll_table *wait) 2664 { 2665 __poll_t req_events = poll_requested_events(wait); 2666 struct vb2_buffer *vb = NULL; 2667 unsigned long flags; 2668 2669 /* 2670 * poll_wait() MUST be called on the first invocation on all the 2671 * potential queues of interest, even if we are not interested in their 2672 * events during this first call. Failure to do so will result in 2673 * queue's events to be ignored because the poll_table won't be capable 2674 * of adding new wait queues thereafter. 2675 */ 2676 poll_wait(file, &q->done_wq, wait); 2677 2678 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM))) 2679 return 0; 2680 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM))) 2681 return 0; 2682 2683 /* 2684 * Start file I/O emulator only if streaming API has not been used yet. 2685 */ 2686 if (vb2_get_num_buffers(q) == 0 && !vb2_fileio_is_active(q)) { 2687 if (!q->is_output && (q->io_modes & VB2_READ) && 2688 (req_events & (EPOLLIN | EPOLLRDNORM))) { 2689 if (__vb2_init_fileio(q, 1)) 2690 return EPOLLERR; 2691 } 2692 if (q->is_output && (q->io_modes & VB2_WRITE) && 2693 (req_events & (EPOLLOUT | EPOLLWRNORM))) { 2694 if (__vb2_init_fileio(q, 0)) 2695 return EPOLLERR; 2696 /* 2697 * Write to OUTPUT queue can be done immediately. 2698 */ 2699 return EPOLLOUT | EPOLLWRNORM; 2700 } 2701 } 2702 2703 /* 2704 * There is nothing to wait for if the queue isn't streaming, or if the 2705 * error flag is set. 2706 */ 2707 if (!vb2_is_streaming(q) || q->error) 2708 return EPOLLERR; 2709 2710 /* 2711 * If this quirk is set and QBUF hasn't been called yet then 2712 * return EPOLLERR as well. This only affects capture queues, output 2713 * queues will always initialize waiting_for_buffers to false. 2714 * This quirk is set by V4L2 for backwards compatibility reasons. 2715 */ 2716 if (q->quirk_poll_must_check_waiting_for_buffers && 2717 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM))) 2718 return EPOLLERR; 2719 2720 /* 2721 * For output streams you can call write() as long as there are fewer 2722 * buffers queued than there are buffers available. 2723 */ 2724 if (q->is_output && q->fileio && q->queued_count < vb2_get_num_buffers(q)) 2725 return EPOLLOUT | EPOLLWRNORM; 2726 2727 if (list_empty(&q->done_list)) { 2728 /* 2729 * If the last buffer was dequeued from a capture queue, 2730 * return immediately. DQBUF will return -EPIPE. 2731 */ 2732 if (q->last_buffer_dequeued) 2733 return EPOLLIN | EPOLLRDNORM; 2734 } 2735 2736 /* 2737 * Take first buffer available for dequeuing. 2738 */ 2739 spin_lock_irqsave(&q->done_lock, flags); 2740 if (!list_empty(&q->done_list)) 2741 vb = list_first_entry(&q->done_list, struct vb2_buffer, 2742 done_entry); 2743 spin_unlock_irqrestore(&q->done_lock, flags); 2744 2745 if (vb && (vb->state == VB2_BUF_STATE_DONE 2746 || vb->state == VB2_BUF_STATE_ERROR)) { 2747 return (q->is_output) ? 2748 EPOLLOUT | EPOLLWRNORM : 2749 EPOLLIN | EPOLLRDNORM; 2750 } 2751 return 0; 2752 } 2753 EXPORT_SYMBOL_GPL(vb2_core_poll); 2754 2755 /* 2756 * struct vb2_fileio_buf - buffer context used by file io emulator 2757 * 2758 * vb2 provides a compatibility layer and emulator of file io (read and 2759 * write) calls on top of streaming API. This structure is used for 2760 * tracking context related to the buffers. 2761 */ 2762 struct vb2_fileio_buf { 2763 void *vaddr; 2764 unsigned int size; 2765 unsigned int pos; 2766 unsigned int queued:1; 2767 }; 2768 2769 /* 2770 * struct vb2_fileio_data - queue context used by file io emulator 2771 * 2772 * @cur_index: the index of the buffer currently being read from or 2773 * written to. If equal to number of buffers in the vb2_queue 2774 * then a new buffer must be dequeued. 2775 * @initial_index: in the read() case all buffers are queued up immediately 2776 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles 2777 * buffers. However, in the write() case no buffers are initially 2778 * queued, instead whenever a buffer is full it is queued up by 2779 * __vb2_perform_fileio(). Only once all available buffers have 2780 * been queued up will __vb2_perform_fileio() start to dequeue 2781 * buffers. This means that initially __vb2_perform_fileio() 2782 * needs to know what buffer index to use when it is queuing up 2783 * the buffers for the first time. That initial index is stored 2784 * in this field. Once it is equal to number of buffers in the 2785 * vb2_queue all available buffers have been queued and 2786 * __vb2_perform_fileio() should start the normal dequeue/queue cycle. 2787 * 2788 * vb2 provides a compatibility layer and emulator of file io (read and 2789 * write) calls on top of streaming API. For proper operation it required 2790 * this structure to save the driver state between each call of the read 2791 * or write function. 2792 */ 2793 struct vb2_fileio_data { 2794 unsigned int count; 2795 unsigned int type; 2796 unsigned int memory; 2797 struct vb2_fileio_buf bufs[VB2_MAX_FRAME]; 2798 unsigned int cur_index; 2799 unsigned int initial_index; 2800 unsigned int q_count; 2801 unsigned int dq_count; 2802 unsigned read_once:1; 2803 unsigned write_immediately:1; 2804 }; 2805 2806 /* 2807 * __vb2_init_fileio() - initialize file io emulator 2808 * @q: videobuf2 queue 2809 * @read: mode selector (1 means read, 0 means write) 2810 */ 2811 static int __vb2_init_fileio(struct vb2_queue *q, int read) 2812 { 2813 struct vb2_fileio_data *fileio; 2814 struct vb2_buffer *vb; 2815 int i, ret; 2816 2817 /* 2818 * Sanity check 2819 */ 2820 if (WARN_ON((read && !(q->io_modes & VB2_READ)) || 2821 (!read && !(q->io_modes & VB2_WRITE)))) 2822 return -EINVAL; 2823 2824 /* 2825 * Check if device supports mapping buffers to kernel virtual space. 2826 */ 2827 if (!q->mem_ops->vaddr) 2828 return -EBUSY; 2829 2830 /* 2831 * Check if streaming api has not been already activated. 2832 */ 2833 if (q->streaming || vb2_get_num_buffers(q) > 0) 2834 return -EBUSY; 2835 2836 dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n", 2837 (read) ? "read" : "write", q->min_reqbufs_allocation, q->fileio_read_once, 2838 q->fileio_write_immediately); 2839 2840 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL); 2841 if (fileio == NULL) 2842 return -ENOMEM; 2843 2844 fileio->read_once = q->fileio_read_once; 2845 fileio->write_immediately = q->fileio_write_immediately; 2846 2847 /* 2848 * Request buffers and use MMAP type to force driver 2849 * to allocate buffers by itself. 2850 */ 2851 fileio->count = q->min_reqbufs_allocation; 2852 fileio->memory = VB2_MEMORY_MMAP; 2853 fileio->type = q->type; 2854 q->fileio = fileio; 2855 ret = vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2856 if (ret) 2857 goto err_kfree; 2858 /* vb2_fileio_data supports max VB2_MAX_FRAME buffers */ 2859 if (fileio->count > VB2_MAX_FRAME) { 2860 dprintk(q, 1, "fileio: more than VB2_MAX_FRAME buffers requested\n"); 2861 ret = -ENOSPC; 2862 goto err_reqbufs; 2863 } 2864 2865 /* 2866 * Userspace can never add or delete buffers later, so there 2867 * will never be holes. It is safe to assume that vb2_get_buffer(q, 0) 2868 * will always return a valid vb pointer 2869 */ 2870 vb = vb2_get_buffer(q, 0); 2871 2872 /* 2873 * Check if plane_count is correct 2874 * (multiplane buffers are not supported). 2875 */ 2876 if (vb->num_planes != 1) { 2877 ret = -EBUSY; 2878 goto err_reqbufs; 2879 } 2880 2881 /* 2882 * Get kernel address of each buffer. 2883 */ 2884 for (i = 0; i < vb2_get_num_buffers(q); i++) { 2885 /* vb can never be NULL when using fileio. */ 2886 vb = vb2_get_buffer(q, i); 2887 2888 fileio->bufs[i].vaddr = vb2_plane_vaddr(vb, 0); 2889 if (fileio->bufs[i].vaddr == NULL) { 2890 ret = -EINVAL; 2891 goto err_reqbufs; 2892 } 2893 fileio->bufs[i].size = vb2_plane_size(vb, 0); 2894 } 2895 2896 /* 2897 * Read mode requires pre queuing of all buffers. 2898 */ 2899 if (read) { 2900 /* 2901 * Queue all buffers. 2902 */ 2903 for (i = 0; i < vb2_get_num_buffers(q); i++) { 2904 struct vb2_buffer *vb2 = vb2_get_buffer(q, i); 2905 2906 if (!vb2) 2907 continue; 2908 2909 ret = vb2_core_qbuf(q, vb2, NULL, NULL); 2910 if (ret) 2911 goto err_reqbufs; 2912 fileio->bufs[i].queued = 1; 2913 } 2914 /* 2915 * All buffers have been queued, so mark that by setting 2916 * initial_index to the number of buffers in the vb2_queue 2917 */ 2918 fileio->initial_index = vb2_get_num_buffers(q); 2919 fileio->cur_index = fileio->initial_index; 2920 } 2921 2922 /* 2923 * Start streaming. 2924 */ 2925 ret = vb2_core_streamon(q, q->type); 2926 if (ret) 2927 goto err_reqbufs; 2928 2929 return ret; 2930 2931 err_reqbufs: 2932 fileio->count = 0; 2933 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2934 2935 err_kfree: 2936 q->fileio = NULL; 2937 kfree(fileio); 2938 return ret; 2939 } 2940 2941 /* 2942 * __vb2_cleanup_fileio() - free resourced used by file io emulator 2943 * @q: videobuf2 queue 2944 */ 2945 static int __vb2_cleanup_fileio(struct vb2_queue *q) 2946 { 2947 struct vb2_fileio_data *fileio = q->fileio; 2948 2949 if (fileio) { 2950 vb2_core_streamoff(q, q->type); 2951 q->fileio = NULL; 2952 fileio->count = 0; 2953 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2954 kfree(fileio); 2955 dprintk(q, 3, "file io emulator closed\n"); 2956 } 2957 return 0; 2958 } 2959 2960 /* 2961 * __vb2_perform_fileio() - perform a single file io (read or write) operation 2962 * @q: videobuf2 queue 2963 * @data: pointed to target userspace buffer 2964 * @count: number of bytes to read or write 2965 * @ppos: file handle position tracking pointer 2966 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking) 2967 * @read: access mode selector (1 means read, 0 means write) 2968 */ 2969 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count, 2970 loff_t *ppos, int nonblock, int read) 2971 { 2972 struct vb2_fileio_data *fileio; 2973 struct vb2_fileio_buf *buf; 2974 bool is_multiplanar = q->is_multiplanar; 2975 /* 2976 * When using write() to write data to an output video node the vb2 core 2977 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody 2978 * else is able to provide this information with the write() operation. 2979 */ 2980 bool copy_timestamp = !read && q->copy_timestamp; 2981 unsigned index; 2982 int ret; 2983 2984 dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n", 2985 read ? "read" : "write", (long)*ppos, count, 2986 nonblock ? "non" : ""); 2987 2988 if (!data) 2989 return -EINVAL; 2990 2991 if (q->waiting_in_dqbuf) { 2992 dprintk(q, 3, "another dup()ped fd is %s\n", 2993 read ? "reading" : "writing"); 2994 return -EBUSY; 2995 } 2996 2997 /* 2998 * Initialize emulator on first call. 2999 */ 3000 if (!vb2_fileio_is_active(q)) { 3001 ret = __vb2_init_fileio(q, read); 3002 dprintk(q, 3, "vb2_init_fileio result: %d\n", ret); 3003 if (ret) 3004 return ret; 3005 } 3006 fileio = q->fileio; 3007 3008 /* 3009 * Check if we need to dequeue the buffer. 3010 */ 3011 index = fileio->cur_index; 3012 if (index >= vb2_get_num_buffers(q)) { 3013 struct vb2_buffer *b; 3014 3015 /* 3016 * Call vb2_dqbuf to get buffer back. 3017 */ 3018 ret = vb2_core_dqbuf(q, &index, NULL, nonblock); 3019 dprintk(q, 5, "vb2_dqbuf result: %d\n", ret); 3020 if (ret) 3021 return ret; 3022 fileio->dq_count += 1; 3023 3024 fileio->cur_index = index; 3025 buf = &fileio->bufs[index]; 3026 3027 /* b can never be NULL when using fileio. */ 3028 b = vb2_get_buffer(q, index); 3029 3030 /* 3031 * Get number of bytes filled by the driver 3032 */ 3033 buf->pos = 0; 3034 buf->queued = 0; 3035 buf->size = read ? vb2_get_plane_payload(b, 0) 3036 : vb2_plane_size(b, 0); 3037 /* Compensate for data_offset on read in the multiplanar case. */ 3038 if (is_multiplanar && read && 3039 b->planes[0].data_offset < buf->size) { 3040 buf->pos = b->planes[0].data_offset; 3041 buf->size -= buf->pos; 3042 } 3043 } else { 3044 buf = &fileio->bufs[index]; 3045 } 3046 3047 /* 3048 * Limit count on last few bytes of the buffer. 3049 */ 3050 if (buf->pos + count > buf->size) { 3051 count = buf->size - buf->pos; 3052 dprintk(q, 5, "reducing read count: %zd\n", count); 3053 } 3054 3055 /* 3056 * Transfer data to userspace. 3057 */ 3058 dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n", 3059 count, index, buf->pos); 3060 if (read) 3061 ret = copy_to_user(data, buf->vaddr + buf->pos, count); 3062 else 3063 ret = copy_from_user(buf->vaddr + buf->pos, data, count); 3064 if (ret) { 3065 dprintk(q, 3, "error copying data\n"); 3066 return -EFAULT; 3067 } 3068 3069 /* 3070 * Update counters. 3071 */ 3072 buf->pos += count; 3073 *ppos += count; 3074 3075 /* 3076 * Queue next buffer if required. 3077 */ 3078 if (buf->pos == buf->size || (!read && fileio->write_immediately)) { 3079 /* b can never be NULL when using fileio. */ 3080 struct vb2_buffer *b = vb2_get_buffer(q, index); 3081 3082 /* 3083 * Check if this is the last buffer to read. 3084 */ 3085 if (read && fileio->read_once && fileio->dq_count == 1) { 3086 dprintk(q, 3, "read limit reached\n"); 3087 return __vb2_cleanup_fileio(q); 3088 } 3089 3090 /* 3091 * Call vb2_qbuf and give buffer to the driver. 3092 */ 3093 b->planes[0].bytesused = buf->pos; 3094 3095 if (copy_timestamp) 3096 b->timestamp = ktime_get_ns(); 3097 ret = vb2_core_qbuf(q, b, NULL, NULL); 3098 dprintk(q, 5, "vb2_qbuf result: %d\n", ret); 3099 if (ret) 3100 return ret; 3101 3102 /* 3103 * Buffer has been queued, update the status 3104 */ 3105 buf->pos = 0; 3106 buf->queued = 1; 3107 buf->size = vb2_plane_size(b, 0); 3108 fileio->q_count += 1; 3109 /* 3110 * If we are queuing up buffers for the first time, then 3111 * increase initial_index by one. 3112 */ 3113 if (fileio->initial_index < vb2_get_num_buffers(q)) 3114 fileio->initial_index++; 3115 /* 3116 * The next buffer to use is either a buffer that's going to be 3117 * queued for the first time (initial_index < number of buffers in the vb2_queue) 3118 * or it is equal to the number of buffers in the vb2_queue, 3119 * meaning that the next time we need to dequeue a buffer since 3120 * we've now queued up all the 'first time' buffers. 3121 */ 3122 fileio->cur_index = fileio->initial_index; 3123 } 3124 3125 /* 3126 * Return proper number of bytes processed. 3127 */ 3128 if (ret == 0) 3129 ret = count; 3130 return ret; 3131 } 3132 3133 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count, 3134 loff_t *ppos, int nonblocking) 3135 { 3136 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1); 3137 } 3138 EXPORT_SYMBOL_GPL(vb2_read); 3139 3140 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count, 3141 loff_t *ppos, int nonblocking) 3142 { 3143 return __vb2_perform_fileio(q, (char __user *) data, count, 3144 ppos, nonblocking, 0); 3145 } 3146 EXPORT_SYMBOL_GPL(vb2_write); 3147 3148 struct vb2_threadio_data { 3149 struct task_struct *thread; 3150 vb2_thread_fnc fnc; 3151 void *priv; 3152 bool stop; 3153 }; 3154 3155 static int vb2_thread(void *data) 3156 { 3157 struct vb2_queue *q = data; 3158 struct vb2_threadio_data *threadio = q->threadio; 3159 bool copy_timestamp = false; 3160 unsigned prequeue = 0; 3161 unsigned index = 0; 3162 int ret = 0; 3163 3164 if (q->is_output) { 3165 prequeue = vb2_get_num_buffers(q); 3166 copy_timestamp = q->copy_timestamp; 3167 } 3168 3169 set_freezable(); 3170 3171 for (;;) { 3172 struct vb2_buffer *vb; 3173 3174 /* 3175 * Call vb2_dqbuf to get buffer back. 3176 */ 3177 if (prequeue) { 3178 vb = vb2_get_buffer(q, index++); 3179 if (!vb) 3180 continue; 3181 prequeue--; 3182 } else { 3183 call_void_qop(q, wait_finish, q); 3184 if (!threadio->stop) 3185 ret = vb2_core_dqbuf(q, &index, NULL, 0); 3186 call_void_qop(q, wait_prepare, q); 3187 dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret); 3188 if (!ret) 3189 vb = vb2_get_buffer(q, index); 3190 } 3191 if (ret || threadio->stop) 3192 break; 3193 try_to_freeze(); 3194 3195 if (vb->state != VB2_BUF_STATE_ERROR) 3196 if (threadio->fnc(vb, threadio->priv)) 3197 break; 3198 call_void_qop(q, wait_finish, q); 3199 if (copy_timestamp) 3200 vb->timestamp = ktime_get_ns(); 3201 if (!threadio->stop) 3202 ret = vb2_core_qbuf(q, vb, NULL, NULL); 3203 call_void_qop(q, wait_prepare, q); 3204 if (ret || threadio->stop) 3205 break; 3206 } 3207 3208 /* Hmm, linux becomes *very* unhappy without this ... */ 3209 while (!kthread_should_stop()) { 3210 set_current_state(TASK_INTERRUPTIBLE); 3211 schedule(); 3212 } 3213 return 0; 3214 } 3215 3216 /* 3217 * This function should not be used for anything else but the videobuf2-dvb 3218 * support. If you think you have another good use-case for this, then please 3219 * contact the linux-media mailinglist first. 3220 */ 3221 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv, 3222 const char *thread_name) 3223 { 3224 struct vb2_threadio_data *threadio; 3225 int ret = 0; 3226 3227 if (q->threadio) 3228 return -EBUSY; 3229 if (vb2_is_busy(q)) 3230 return -EBUSY; 3231 if (WARN_ON(q->fileio)) 3232 return -EBUSY; 3233 3234 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL); 3235 if (threadio == NULL) 3236 return -ENOMEM; 3237 threadio->fnc = fnc; 3238 threadio->priv = priv; 3239 3240 ret = __vb2_init_fileio(q, !q->is_output); 3241 dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret); 3242 if (ret) 3243 goto nomem; 3244 q->threadio = threadio; 3245 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name); 3246 if (IS_ERR(threadio->thread)) { 3247 ret = PTR_ERR(threadio->thread); 3248 threadio->thread = NULL; 3249 goto nothread; 3250 } 3251 return 0; 3252 3253 nothread: 3254 __vb2_cleanup_fileio(q); 3255 nomem: 3256 kfree(threadio); 3257 return ret; 3258 } 3259 EXPORT_SYMBOL_GPL(vb2_thread_start); 3260 3261 int vb2_thread_stop(struct vb2_queue *q) 3262 { 3263 struct vb2_threadio_data *threadio = q->threadio; 3264 int err; 3265 3266 if (threadio == NULL) 3267 return 0; 3268 threadio->stop = true; 3269 /* Wake up all pending sleeps in the thread */ 3270 vb2_queue_error(q); 3271 err = kthread_stop(threadio->thread); 3272 __vb2_cleanup_fileio(q); 3273 threadio->thread = NULL; 3274 kfree(threadio); 3275 q->threadio = NULL; 3276 return err; 3277 } 3278 EXPORT_SYMBOL_GPL(vb2_thread_stop); 3279 3280 MODULE_DESCRIPTION("Media buffer core framework"); 3281 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski"); 3282 MODULE_LICENSE("GPL"); 3283 MODULE_IMPORT_NS(DMA_BUF); 3284