xref: /linux/drivers/media/cec/core/cec-pin.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
4  */
5 
6 #include <linux/delay.h>
7 #include <linux/slab.h>
8 #include <linux/sched/types.h>
9 
10 #include <media/cec-pin.h>
11 #include "cec-pin-priv.h"
12 
13 /* All timings are in microseconds */
14 
15 /* start bit timings */
16 #define CEC_TIM_START_BIT_LOW		3700
17 #define CEC_TIM_START_BIT_LOW_MIN	3500
18 #define CEC_TIM_START_BIT_LOW_MAX	3900
19 #define CEC_TIM_START_BIT_TOTAL		4500
20 #define CEC_TIM_START_BIT_TOTAL_MIN	4300
21 #define CEC_TIM_START_BIT_TOTAL_MAX	4700
22 
23 /* data bit timings */
24 #define CEC_TIM_DATA_BIT_0_LOW		1500
25 #define CEC_TIM_DATA_BIT_0_LOW_MIN	1300
26 #define CEC_TIM_DATA_BIT_0_LOW_MAX	1700
27 #define CEC_TIM_DATA_BIT_1_LOW		600
28 #define CEC_TIM_DATA_BIT_1_LOW_MIN	400
29 #define CEC_TIM_DATA_BIT_1_LOW_MAX	800
30 #define CEC_TIM_DATA_BIT_TOTAL		2400
31 #define CEC_TIM_DATA_BIT_TOTAL_MIN	2050
32 #define CEC_TIM_DATA_BIT_TOTAL_MAX	2750
33 /* earliest safe time to sample the bit state */
34 #define CEC_TIM_DATA_BIT_SAMPLE		850
35 /* earliest time the bit is back to 1 (T7 + 50) */
36 #define CEC_TIM_DATA_BIT_HIGH		1750
37 
38 /* when idle, sample once per millisecond */
39 #define CEC_TIM_IDLE_SAMPLE		1000
40 /* when processing the start bit, sample twice per millisecond */
41 #define CEC_TIM_START_BIT_SAMPLE	500
42 /* when polling for a state change, sample once every 50 microseconds */
43 #define CEC_TIM_SAMPLE			50
44 
45 #define CEC_TIM_LOW_DRIVE_ERROR		(1.5 * CEC_TIM_DATA_BIT_TOTAL)
46 
47 /*
48  * Total data bit time that is too short/long for a valid bit,
49  * used for error injection.
50  */
51 #define CEC_TIM_DATA_BIT_TOTAL_SHORT	1800
52 #define CEC_TIM_DATA_BIT_TOTAL_LONG	2900
53 
54 /*
55  * Total start bit time that is too short/long for a valid bit,
56  * used for error injection.
57  */
58 #define CEC_TIM_START_BIT_TOTAL_SHORT	4100
59 #define CEC_TIM_START_BIT_TOTAL_LONG	5000
60 
61 /* Data bits are 0-7, EOM is bit 8 and ACK is bit 9 */
62 #define EOM_BIT				8
63 #define ACK_BIT				9
64 
65 struct cec_state {
66 	const char * const name;
67 	unsigned int usecs;
68 };
69 
70 static const struct cec_state states[CEC_PIN_STATES] = {
71 	{ "Off",		   0 },
72 	{ "Idle",		   CEC_TIM_IDLE_SAMPLE },
73 	{ "Tx Wait",		   CEC_TIM_SAMPLE },
74 	{ "Tx Wait for High",	   CEC_TIM_IDLE_SAMPLE },
75 	{ "Tx Start Bit Low",	   CEC_TIM_START_BIT_LOW },
76 	{ "Tx Start Bit High",	   CEC_TIM_START_BIT_TOTAL - CEC_TIM_START_BIT_LOW },
77 	{ "Tx Start Bit High Short", CEC_TIM_START_BIT_TOTAL_SHORT - CEC_TIM_START_BIT_LOW },
78 	{ "Tx Start Bit High Long", CEC_TIM_START_BIT_TOTAL_LONG - CEC_TIM_START_BIT_LOW },
79 	{ "Tx Start Bit Low Custom", 0 },
80 	{ "Tx Start Bit High Custom", 0 },
81 	{ "Tx Data 0 Low",	   CEC_TIM_DATA_BIT_0_LOW },
82 	{ "Tx Data 0 High",	   CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_0_LOW },
83 	{ "Tx Data 0 High Short",  CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_0_LOW },
84 	{ "Tx Data 0 High Long",   CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_0_LOW },
85 	{ "Tx Data 1 Low",	   CEC_TIM_DATA_BIT_1_LOW },
86 	{ "Tx Data 1 High",	   CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_1_LOW },
87 	{ "Tx Data 1 High Short",  CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_1_LOW },
88 	{ "Tx Data 1 High Long",   CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_1_LOW },
89 	{ "Tx Data 1 High Pre Sample", CEC_TIM_DATA_BIT_SAMPLE - CEC_TIM_DATA_BIT_1_LOW },
90 	{ "Tx Data 1 High Post Sample", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_SAMPLE },
91 	{ "Tx Data 1 High Post Sample Short", CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_SAMPLE },
92 	{ "Tx Data 1 High Post Sample Long", CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_SAMPLE },
93 	{ "Tx Data Bit Low Custom", 0 },
94 	{ "Tx Data Bit High Custom", 0 },
95 	{ "Tx Pulse Low Custom",   0 },
96 	{ "Tx Pulse High Custom",  0 },
97 	{ "Tx Low Drive",	   CEC_TIM_LOW_DRIVE_ERROR },
98 	{ "Rx Start Bit Low",	   CEC_TIM_SAMPLE },
99 	{ "Rx Start Bit High",	   CEC_TIM_SAMPLE },
100 	{ "Rx Data Sample",	   CEC_TIM_DATA_BIT_SAMPLE },
101 	{ "Rx Data Post Sample",   CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_SAMPLE },
102 	{ "Rx Data Wait for Low",  CEC_TIM_SAMPLE },
103 	{ "Rx Ack Low",		   CEC_TIM_DATA_BIT_0_LOW },
104 	{ "Rx Ack Low Post",	   CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_0_LOW },
105 	{ "Rx Ack High Post",	   CEC_TIM_DATA_BIT_HIGH },
106 	{ "Rx Ack Finish",	   CEC_TIM_DATA_BIT_TOTAL_MIN - CEC_TIM_DATA_BIT_HIGH },
107 	{ "Rx Low Drive",	   CEC_TIM_LOW_DRIVE_ERROR },
108 	{ "Rx Irq",		   0 },
109 };
110 
111 static void cec_pin_update(struct cec_pin *pin, bool v, bool force)
112 {
113 	if (!force && v == pin->adap->cec_pin_is_high)
114 		return;
115 
116 	pin->adap->cec_pin_is_high = v;
117 	if (atomic_read(&pin->work_pin_num_events) < CEC_NUM_PIN_EVENTS) {
118 		u8 ev = v;
119 
120 		if (pin->work_pin_events_dropped) {
121 			pin->work_pin_events_dropped = false;
122 			ev |= CEC_PIN_EVENT_FL_DROPPED;
123 		}
124 		pin->work_pin_events[pin->work_pin_events_wr] = ev;
125 		pin->work_pin_ts[pin->work_pin_events_wr] = ktime_get();
126 		pin->work_pin_events_wr =
127 			(pin->work_pin_events_wr + 1) % CEC_NUM_PIN_EVENTS;
128 		atomic_inc(&pin->work_pin_num_events);
129 	} else {
130 		pin->work_pin_events_dropped = true;
131 		pin->work_pin_events_dropped_cnt++;
132 	}
133 	wake_up_interruptible(&pin->kthread_waitq);
134 }
135 
136 static bool cec_pin_read(struct cec_pin *pin)
137 {
138 	bool v = pin->ops->read(pin->adap);
139 
140 	cec_pin_update(pin, v, false);
141 	return v;
142 }
143 
144 static void cec_pin_low(struct cec_pin *pin)
145 {
146 	pin->ops->low(pin->adap);
147 	cec_pin_update(pin, false, false);
148 }
149 
150 static bool cec_pin_high(struct cec_pin *pin)
151 {
152 	pin->ops->high(pin->adap);
153 	return cec_pin_read(pin);
154 }
155 
156 static bool rx_error_inj(struct cec_pin *pin, unsigned int mode_offset,
157 			 int arg_idx, u8 *arg)
158 {
159 #ifdef CONFIG_CEC_PIN_ERROR_INJ
160 	u16 cmd = cec_pin_rx_error_inj(pin);
161 	u64 e = pin->error_inj[cmd];
162 	unsigned int mode = (e >> mode_offset) & CEC_ERROR_INJ_MODE_MASK;
163 
164 	if (arg_idx >= 0) {
165 		u8 pos = pin->error_inj_args[cmd][arg_idx];
166 
167 		if (arg)
168 			*arg = pos;
169 		else if (pos != pin->rx_bit)
170 			return false;
171 	}
172 
173 	switch (mode) {
174 	case CEC_ERROR_INJ_MODE_ONCE:
175 		pin->error_inj[cmd] &=
176 			~(CEC_ERROR_INJ_MODE_MASK << mode_offset);
177 		return true;
178 	case CEC_ERROR_INJ_MODE_ALWAYS:
179 		return true;
180 	case CEC_ERROR_INJ_MODE_TOGGLE:
181 		return pin->rx_toggle;
182 	default:
183 		return false;
184 	}
185 #else
186 	return false;
187 #endif
188 }
189 
190 static bool rx_nack(struct cec_pin *pin)
191 {
192 	return rx_error_inj(pin, CEC_ERROR_INJ_RX_NACK_OFFSET, -1, NULL);
193 }
194 
195 static bool rx_low_drive(struct cec_pin *pin)
196 {
197 	return rx_error_inj(pin, CEC_ERROR_INJ_RX_LOW_DRIVE_OFFSET,
198 			    CEC_ERROR_INJ_RX_LOW_DRIVE_ARG_IDX, NULL);
199 }
200 
201 static bool rx_add_byte(struct cec_pin *pin)
202 {
203 	return rx_error_inj(pin, CEC_ERROR_INJ_RX_ADD_BYTE_OFFSET, -1, NULL);
204 }
205 
206 static bool rx_remove_byte(struct cec_pin *pin)
207 {
208 	return rx_error_inj(pin, CEC_ERROR_INJ_RX_REMOVE_BYTE_OFFSET, -1, NULL);
209 }
210 
211 static bool rx_arb_lost(struct cec_pin *pin, u8 *poll)
212 {
213 	return pin->tx_msg.len == 0 &&
214 		rx_error_inj(pin, CEC_ERROR_INJ_RX_ARB_LOST_OFFSET,
215 			     CEC_ERROR_INJ_RX_ARB_LOST_ARG_IDX, poll);
216 }
217 
218 static bool tx_error_inj(struct cec_pin *pin, unsigned int mode_offset,
219 			 int arg_idx, u8 *arg)
220 {
221 #ifdef CONFIG_CEC_PIN_ERROR_INJ
222 	u16 cmd = cec_pin_tx_error_inj(pin);
223 	u64 e = pin->error_inj[cmd];
224 	unsigned int mode = (e >> mode_offset) & CEC_ERROR_INJ_MODE_MASK;
225 
226 	if (arg_idx >= 0) {
227 		u8 pos = pin->error_inj_args[cmd][arg_idx];
228 
229 		if (arg)
230 			*arg = pos;
231 		else if (pos != pin->tx_bit)
232 			return false;
233 	}
234 
235 	switch (mode) {
236 	case CEC_ERROR_INJ_MODE_ONCE:
237 		pin->error_inj[cmd] &=
238 			~(CEC_ERROR_INJ_MODE_MASK << mode_offset);
239 		return true;
240 	case CEC_ERROR_INJ_MODE_ALWAYS:
241 		return true;
242 	case CEC_ERROR_INJ_MODE_TOGGLE:
243 		return pin->tx_toggle;
244 	default:
245 		return false;
246 	}
247 #else
248 	return false;
249 #endif
250 }
251 
252 static bool tx_no_eom(struct cec_pin *pin)
253 {
254 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_NO_EOM_OFFSET, -1, NULL);
255 }
256 
257 static bool tx_early_eom(struct cec_pin *pin)
258 {
259 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_EARLY_EOM_OFFSET, -1, NULL);
260 }
261 
262 static bool tx_short_bit(struct cec_pin *pin)
263 {
264 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_SHORT_BIT_OFFSET,
265 			    CEC_ERROR_INJ_TX_SHORT_BIT_ARG_IDX, NULL);
266 }
267 
268 static bool tx_long_bit(struct cec_pin *pin)
269 {
270 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_LONG_BIT_OFFSET,
271 			    CEC_ERROR_INJ_TX_LONG_BIT_ARG_IDX, NULL);
272 }
273 
274 static bool tx_custom_bit(struct cec_pin *pin)
275 {
276 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_CUSTOM_BIT_OFFSET,
277 			    CEC_ERROR_INJ_TX_CUSTOM_BIT_ARG_IDX, NULL);
278 }
279 
280 static bool tx_short_start(struct cec_pin *pin)
281 {
282 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_SHORT_START_OFFSET, -1, NULL);
283 }
284 
285 static bool tx_long_start(struct cec_pin *pin)
286 {
287 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_LONG_START_OFFSET, -1, NULL);
288 }
289 
290 static bool tx_custom_start(struct cec_pin *pin)
291 {
292 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_CUSTOM_START_OFFSET,
293 			    -1, NULL);
294 }
295 
296 static bool tx_last_bit(struct cec_pin *pin)
297 {
298 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_LAST_BIT_OFFSET,
299 			    CEC_ERROR_INJ_TX_LAST_BIT_ARG_IDX, NULL);
300 }
301 
302 static u8 tx_add_bytes(struct cec_pin *pin)
303 {
304 	u8 bytes;
305 
306 	if (tx_error_inj(pin, CEC_ERROR_INJ_TX_ADD_BYTES_OFFSET,
307 			 CEC_ERROR_INJ_TX_ADD_BYTES_ARG_IDX, &bytes))
308 		return bytes;
309 	return 0;
310 }
311 
312 static bool tx_remove_byte(struct cec_pin *pin)
313 {
314 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_REMOVE_BYTE_OFFSET, -1, NULL);
315 }
316 
317 static bool tx_low_drive(struct cec_pin *pin)
318 {
319 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_LOW_DRIVE_OFFSET,
320 			    CEC_ERROR_INJ_TX_LOW_DRIVE_ARG_IDX, NULL);
321 }
322 
323 static void cec_pin_to_idle(struct cec_pin *pin)
324 {
325 	/*
326 	 * Reset all status fields, release the bus and
327 	 * go to idle state.
328 	 */
329 	pin->rx_bit = pin->tx_bit = 0;
330 	pin->rx_msg.len = 0;
331 	memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
332 	pin->ts = ns_to_ktime(0);
333 	pin->tx_generated_poll = false;
334 	pin->tx_post_eom = false;
335 	if (pin->state >= CEC_ST_TX_WAIT &&
336 	    pin->state <= CEC_ST_TX_LOW_DRIVE)
337 		pin->tx_toggle ^= 1;
338 	if (pin->state >= CEC_ST_RX_START_BIT_LOW &&
339 	    pin->state <= CEC_ST_RX_LOW_DRIVE)
340 		pin->rx_toggle ^= 1;
341 	pin->state = CEC_ST_IDLE;
342 }
343 
344 /*
345  * Handle Transmit-related states
346  *
347  * Basic state changes when transmitting:
348  *
349  * Idle -> Tx Wait (waiting for the end of signal free time) ->
350  *	Tx Start Bit Low -> Tx Start Bit High ->
351  *
352  *   Regular data bits + EOM:
353  *	Tx Data 0 Low -> Tx Data 0 High ->
354  *   or:
355  *	Tx Data 1 Low -> Tx Data 1 High ->
356  *
357  *   First 4 data bits or Ack bit:
358  *	Tx Data 0 Low -> Tx Data 0 High ->
359  *   or:
360  *	Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
361  *		Tx Data 1 Post Sample ->
362  *
363  *   After the last Ack go to Idle.
364  *
365  * If it detects a Low Drive condition then:
366  *	Tx Wait For High -> Idle
367  *
368  * If it loses arbitration, then it switches to state Rx Data Post Sample.
369  */
370 static void cec_pin_tx_states(struct cec_pin *pin, ktime_t ts)
371 {
372 	bool v;
373 	bool is_ack_bit, ack;
374 
375 	switch (pin->state) {
376 	case CEC_ST_TX_WAIT_FOR_HIGH:
377 		if (cec_pin_read(pin))
378 			cec_pin_to_idle(pin);
379 		break;
380 
381 	case CEC_ST_TX_START_BIT_LOW:
382 		if (tx_short_start(pin)) {
383 			/*
384 			 * Error Injection: send an invalid (too short)
385 			 * start pulse.
386 			 */
387 			pin->state = CEC_ST_TX_START_BIT_HIGH_SHORT;
388 		} else if (tx_long_start(pin)) {
389 			/*
390 			 * Error Injection: send an invalid (too long)
391 			 * start pulse.
392 			 */
393 			pin->state = CEC_ST_TX_START_BIT_HIGH_LONG;
394 		} else {
395 			pin->state = CEC_ST_TX_START_BIT_HIGH;
396 		}
397 		/* Generate start bit */
398 		cec_pin_high(pin);
399 		break;
400 
401 	case CEC_ST_TX_START_BIT_LOW_CUSTOM:
402 		pin->state = CEC_ST_TX_START_BIT_HIGH_CUSTOM;
403 		/* Generate start bit */
404 		cec_pin_high(pin);
405 		break;
406 
407 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
408 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT:
409 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG:
410 		if (pin->tx_nacked) {
411 			cec_pin_to_idle(pin);
412 			pin->tx_msg.len = 0;
413 			if (pin->tx_generated_poll)
414 				break;
415 			pin->work_tx_ts = ts;
416 			pin->work_tx_status = CEC_TX_STATUS_NACK;
417 			wake_up_interruptible(&pin->kthread_waitq);
418 			break;
419 		}
420 		fallthrough;
421 	case CEC_ST_TX_DATA_BIT_0_HIGH:
422 	case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT:
423 	case CEC_ST_TX_DATA_BIT_0_HIGH_LONG:
424 	case CEC_ST_TX_DATA_BIT_1_HIGH:
425 	case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT:
426 	case CEC_ST_TX_DATA_BIT_1_HIGH_LONG:
427 		/*
428 		 * If the read value is 1, then all is OK, otherwise we have a
429 		 * low drive condition.
430 		 *
431 		 * Special case: when we generate a poll message due to an
432 		 * Arbitration Lost error injection, then ignore this since
433 		 * the pin can actually be low in that case.
434 		 */
435 		if (!cec_pin_read(pin) && !pin->tx_generated_poll) {
436 			/*
437 			 * It's 0, so someone detected an error and pulled the
438 			 * line low for 1.5 times the nominal bit period.
439 			 */
440 			pin->tx_msg.len = 0;
441 			pin->state = CEC_ST_TX_WAIT_FOR_HIGH;
442 			pin->work_tx_ts = ts;
443 			pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
444 			pin->tx_low_drive_cnt++;
445 			wake_up_interruptible(&pin->kthread_waitq);
446 			break;
447 		}
448 		fallthrough;
449 	case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM:
450 		if (tx_last_bit(pin)) {
451 			/* Error Injection: just stop sending after this bit */
452 			cec_pin_to_idle(pin);
453 			pin->tx_msg.len = 0;
454 			if (pin->tx_generated_poll)
455 				break;
456 			pin->work_tx_ts = ts;
457 			pin->work_tx_status = CEC_TX_STATUS_OK;
458 			wake_up_interruptible(&pin->kthread_waitq);
459 			break;
460 		}
461 		pin->tx_bit++;
462 		fallthrough;
463 	case CEC_ST_TX_START_BIT_HIGH:
464 	case CEC_ST_TX_START_BIT_HIGH_SHORT:
465 	case CEC_ST_TX_START_BIT_HIGH_LONG:
466 	case CEC_ST_TX_START_BIT_HIGH_CUSTOM:
467 		if (tx_low_drive(pin)) {
468 			/* Error injection: go to low drive */
469 			cec_pin_low(pin);
470 			pin->state = CEC_ST_TX_LOW_DRIVE;
471 			pin->tx_msg.len = 0;
472 			if (pin->tx_generated_poll)
473 				break;
474 			pin->work_tx_ts = ts;
475 			pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
476 			pin->tx_low_drive_cnt++;
477 			wake_up_interruptible(&pin->kthread_waitq);
478 			break;
479 		}
480 		if (pin->tx_bit / 10 >= pin->tx_msg.len + pin->tx_extra_bytes) {
481 			cec_pin_to_idle(pin);
482 			pin->tx_msg.len = 0;
483 			if (pin->tx_generated_poll)
484 				break;
485 			pin->work_tx_ts = ts;
486 			pin->work_tx_status = CEC_TX_STATUS_OK;
487 			wake_up_interruptible(&pin->kthread_waitq);
488 			break;
489 		}
490 
491 		switch (pin->tx_bit % 10) {
492 		default: {
493 			/*
494 			 * In the CEC_ERROR_INJ_TX_ADD_BYTES case we transmit
495 			 * extra bytes, so pin->tx_bit / 10 can become >= 16.
496 			 * Generate bit values for those extra bytes instead
497 			 * of reading them from the transmit buffer.
498 			 */
499 			unsigned int idx = (pin->tx_bit / 10);
500 			u8 val = idx;
501 
502 			if (idx < pin->tx_msg.len)
503 				val = pin->tx_msg.msg[idx];
504 			v = val & (1 << (7 - (pin->tx_bit % 10)));
505 
506 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
507 					 CEC_ST_TX_DATA_BIT_0_LOW;
508 			break;
509 		}
510 		case EOM_BIT: {
511 			unsigned int tot_len = pin->tx_msg.len +
512 					       pin->tx_extra_bytes;
513 			unsigned int tx_byte_idx = pin->tx_bit / 10;
514 
515 			v = !pin->tx_post_eom && tx_byte_idx == tot_len - 1;
516 			if (tot_len > 1 && tx_byte_idx == tot_len - 2 &&
517 			    tx_early_eom(pin)) {
518 				/* Error injection: set EOM one byte early */
519 				v = true;
520 				pin->tx_post_eom = true;
521 			} else if (v && tx_no_eom(pin)) {
522 				/* Error injection: no EOM */
523 				v = false;
524 			}
525 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
526 					 CEC_ST_TX_DATA_BIT_0_LOW;
527 			break;
528 		}
529 		case ACK_BIT:
530 			pin->state = CEC_ST_TX_DATA_BIT_1_LOW;
531 			break;
532 		}
533 		if (tx_custom_bit(pin))
534 			pin->state = CEC_ST_TX_DATA_BIT_LOW_CUSTOM;
535 		cec_pin_low(pin);
536 		break;
537 
538 	case CEC_ST_TX_DATA_BIT_0_LOW:
539 	case CEC_ST_TX_DATA_BIT_1_LOW:
540 		v = pin->state == CEC_ST_TX_DATA_BIT_1_LOW;
541 		is_ack_bit = pin->tx_bit % 10 == ACK_BIT;
542 		if (v && (pin->tx_bit < 4 || is_ack_bit)) {
543 			pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE;
544 		} else if (!is_ack_bit && tx_short_bit(pin)) {
545 			/* Error Injection: send an invalid (too short) bit */
546 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH_SHORT :
547 					 CEC_ST_TX_DATA_BIT_0_HIGH_SHORT;
548 		} else if (!is_ack_bit && tx_long_bit(pin)) {
549 			/* Error Injection: send an invalid (too long) bit */
550 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH_LONG :
551 					 CEC_ST_TX_DATA_BIT_0_HIGH_LONG;
552 		} else {
553 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH :
554 					 CEC_ST_TX_DATA_BIT_0_HIGH;
555 		}
556 		cec_pin_high(pin);
557 		break;
558 
559 	case CEC_ST_TX_DATA_BIT_LOW_CUSTOM:
560 		pin->state = CEC_ST_TX_DATA_BIT_HIGH_CUSTOM;
561 		cec_pin_high(pin);
562 		break;
563 
564 	case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
565 		/* Read the CEC value at the sample time */
566 		v = cec_pin_read(pin);
567 		is_ack_bit = pin->tx_bit % 10 == ACK_BIT;
568 		/*
569 		 * If v == 0 and we're within the first 4 bits
570 		 * of the initiator, then someone else started
571 		 * transmitting and we lost the arbitration
572 		 * (i.e. the logical address of the other
573 		 * transmitter has more leading 0 bits in the
574 		 * initiator).
575 		 */
576 		if (!v && !is_ack_bit && !pin->tx_generated_poll) {
577 			pin->tx_msg.len = 0;
578 			pin->work_tx_ts = ts;
579 			pin->work_tx_status = CEC_TX_STATUS_ARB_LOST;
580 			wake_up_interruptible(&pin->kthread_waitq);
581 			pin->rx_bit = pin->tx_bit;
582 			pin->tx_bit = 0;
583 			memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
584 			pin->rx_msg.msg[0] = pin->tx_msg.msg[0];
585 			pin->rx_msg.msg[0] &= (0xff << (8 - pin->rx_bit));
586 			pin->rx_msg.len = 0;
587 			pin->ts = ktime_sub_us(ts, CEC_TIM_DATA_BIT_SAMPLE);
588 			pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
589 			pin->rx_bit++;
590 			break;
591 		}
592 		pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE;
593 		if (!is_ack_bit && tx_short_bit(pin)) {
594 			/* Error Injection: send an invalid (too short) bit */
595 			pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT;
596 		} else if (!is_ack_bit && tx_long_bit(pin)) {
597 			/* Error Injection: send an invalid (too long) bit */
598 			pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG;
599 		}
600 		if (!is_ack_bit)
601 			break;
602 		/* Was the message ACKed? */
603 		ack = cec_msg_is_broadcast(&pin->tx_msg) ? v : !v;
604 		if (!ack && (!pin->tx_ignore_nack_until_eom ||
605 		    pin->tx_bit / 10 == pin->tx_msg.len - 1) &&
606 		    !pin->tx_post_eom) {
607 			/*
608 			 * Note: the CEC spec is ambiguous regarding
609 			 * what action to take when a NACK appears
610 			 * before the last byte of the payload was
611 			 * transmitted: either stop transmitting
612 			 * immediately, or wait until the last byte
613 			 * was transmitted.
614 			 *
615 			 * Most CEC implementations appear to stop
616 			 * immediately, and that's what we do here
617 			 * as well.
618 			 */
619 			pin->tx_nacked = true;
620 		}
621 		break;
622 
623 	case CEC_ST_TX_PULSE_LOW_CUSTOM:
624 		cec_pin_high(pin);
625 		pin->state = CEC_ST_TX_PULSE_HIGH_CUSTOM;
626 		break;
627 
628 	case CEC_ST_TX_PULSE_HIGH_CUSTOM:
629 		cec_pin_to_idle(pin);
630 		break;
631 
632 	default:
633 		break;
634 	}
635 }
636 
637 /*
638  * Handle Receive-related states
639  *
640  * Basic state changes when receiving:
641  *
642  *	Rx Start Bit Low -> Rx Start Bit High ->
643  *   Regular data bits + EOM:
644  *	Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
645  *   Ack bit 0:
646  *	Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
647  *   Ack bit 1:
648  *	Rx Ack High Post -> Rx Data High ->
649  *   Ack bit 0 && EOM:
650  *	Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
651  */
652 static void cec_pin_rx_states(struct cec_pin *pin, ktime_t ts)
653 {
654 	s32 delta;
655 	bool v;
656 	bool ack;
657 	bool bcast, for_us;
658 	u8 dest;
659 	u8 poll;
660 
661 	switch (pin->state) {
662 	/* Receive states */
663 	case CEC_ST_RX_START_BIT_LOW:
664 		v = cec_pin_read(pin);
665 		if (!v)
666 			break;
667 		pin->state = CEC_ST_RX_START_BIT_HIGH;
668 		delta = ktime_us_delta(ts, pin->ts);
669 		/* Start bit low is too short, go back to idle */
670 		if (delta < CEC_TIM_START_BIT_LOW_MIN - CEC_TIM_IDLE_SAMPLE) {
671 			if (!pin->rx_start_bit_low_too_short_cnt++) {
672 				pin->rx_start_bit_low_too_short_ts = ktime_to_ns(pin->ts);
673 				pin->rx_start_bit_low_too_short_delta = delta;
674 			}
675 			cec_pin_to_idle(pin);
676 			break;
677 		}
678 		if (rx_arb_lost(pin, &poll)) {
679 			cec_msg_init(&pin->tx_msg, poll >> 4, poll & 0xf);
680 			pin->tx_generated_poll = true;
681 			pin->tx_extra_bytes = 0;
682 			pin->state = CEC_ST_TX_START_BIT_HIGH;
683 			pin->ts = ts;
684 		}
685 		break;
686 
687 	case CEC_ST_RX_START_BIT_HIGH:
688 		v = cec_pin_read(pin);
689 		delta = ktime_us_delta(ts, pin->ts);
690 		/*
691 		 * Unfortunately the spec does not specify when to give up
692 		 * and go to idle. We just pick TOTAL_LONG.
693 		 */
694 		if (v && delta > CEC_TIM_START_BIT_TOTAL_LONG) {
695 			pin->rx_start_bit_too_long_cnt++;
696 			cec_pin_to_idle(pin);
697 			break;
698 		}
699 		if (v)
700 			break;
701 		/* Start bit is too short, go back to idle */
702 		if (delta < CEC_TIM_START_BIT_TOTAL_MIN - CEC_TIM_IDLE_SAMPLE) {
703 			if (!pin->rx_start_bit_too_short_cnt++) {
704 				pin->rx_start_bit_too_short_ts = ktime_to_ns(pin->ts);
705 				pin->rx_start_bit_too_short_delta = delta;
706 			}
707 			cec_pin_to_idle(pin);
708 			break;
709 		}
710 		if (rx_low_drive(pin)) {
711 			/* Error injection: go to low drive */
712 			cec_pin_low(pin);
713 			pin->state = CEC_ST_RX_LOW_DRIVE;
714 			pin->rx_low_drive_cnt++;
715 			break;
716 		}
717 		pin->state = CEC_ST_RX_DATA_SAMPLE;
718 		pin->ts = ts;
719 		pin->rx_eom = false;
720 		break;
721 
722 	case CEC_ST_RX_DATA_SAMPLE:
723 		v = cec_pin_read(pin);
724 		pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
725 		switch (pin->rx_bit % 10) {
726 		default:
727 			if (pin->rx_bit / 10 < CEC_MAX_MSG_SIZE)
728 				pin->rx_msg.msg[pin->rx_bit / 10] |=
729 					v << (7 - (pin->rx_bit % 10));
730 			break;
731 		case EOM_BIT:
732 			pin->rx_eom = v;
733 			pin->rx_msg.len = pin->rx_bit / 10 + 1;
734 			break;
735 		case ACK_BIT:
736 			break;
737 		}
738 		pin->rx_bit++;
739 		break;
740 
741 	case CEC_ST_RX_DATA_POST_SAMPLE:
742 		pin->state = CEC_ST_RX_DATA_WAIT_FOR_LOW;
743 		break;
744 
745 	case CEC_ST_RX_DATA_WAIT_FOR_LOW:
746 		v = cec_pin_read(pin);
747 		delta = ktime_us_delta(ts, pin->ts);
748 		/*
749 		 * Unfortunately the spec does not specify when to give up
750 		 * and go to idle. We just pick TOTAL_LONG.
751 		 */
752 		if (v && delta > CEC_TIM_DATA_BIT_TOTAL_LONG) {
753 			pin->rx_data_bit_too_long_cnt++;
754 			cec_pin_to_idle(pin);
755 			break;
756 		}
757 		if (v)
758 			break;
759 
760 		if (rx_low_drive(pin)) {
761 			/* Error injection: go to low drive */
762 			cec_pin_low(pin);
763 			pin->state = CEC_ST_RX_LOW_DRIVE;
764 			pin->rx_low_drive_cnt++;
765 			break;
766 		}
767 
768 		/*
769 		 * Go to low drive state when the total bit time is
770 		 * too short.
771 		 */
772 		if (delta < CEC_TIM_DATA_BIT_TOTAL_MIN) {
773 			if (!pin->rx_data_bit_too_short_cnt++) {
774 				pin->rx_data_bit_too_short_ts = ktime_to_ns(pin->ts);
775 				pin->rx_data_bit_too_short_delta = delta;
776 			}
777 			cec_pin_low(pin);
778 			pin->state = CEC_ST_RX_LOW_DRIVE;
779 			pin->rx_low_drive_cnt++;
780 			break;
781 		}
782 		pin->ts = ts;
783 		if (pin->rx_bit % 10 != 9) {
784 			pin->state = CEC_ST_RX_DATA_SAMPLE;
785 			break;
786 		}
787 
788 		dest = cec_msg_destination(&pin->rx_msg);
789 		bcast = dest == CEC_LOG_ADDR_BROADCAST;
790 		/* for_us == broadcast or directed to us */
791 		for_us = bcast || (pin->la_mask & (1 << dest));
792 		/* ACK bit value */
793 		ack = bcast ? 1 : !for_us;
794 
795 		if (for_us && rx_nack(pin)) {
796 			/* Error injection: toggle the ACK bit */
797 			ack = !ack;
798 		}
799 
800 		if (ack) {
801 			/* No need to write to the bus, just wait */
802 			pin->state = CEC_ST_RX_ACK_HIGH_POST;
803 			break;
804 		}
805 		cec_pin_low(pin);
806 		pin->state = CEC_ST_RX_ACK_LOW;
807 		break;
808 
809 	case CEC_ST_RX_ACK_LOW:
810 		cec_pin_high(pin);
811 		pin->state = CEC_ST_RX_ACK_LOW_POST;
812 		break;
813 
814 	case CEC_ST_RX_ACK_LOW_POST:
815 	case CEC_ST_RX_ACK_HIGH_POST:
816 		v = cec_pin_read(pin);
817 		if (v && pin->rx_eom) {
818 			pin->work_rx_msg = pin->rx_msg;
819 			pin->work_rx_msg.rx_ts = ktime_to_ns(ts);
820 			wake_up_interruptible(&pin->kthread_waitq);
821 			pin->ts = ts;
822 			pin->state = CEC_ST_RX_ACK_FINISH;
823 			break;
824 		}
825 		pin->rx_bit++;
826 		pin->state = CEC_ST_RX_DATA_WAIT_FOR_LOW;
827 		break;
828 
829 	case CEC_ST_RX_ACK_FINISH:
830 		cec_pin_to_idle(pin);
831 		break;
832 
833 	default:
834 		break;
835 	}
836 }
837 
838 /*
839  * Main timer function
840  *
841  */
842 static enum hrtimer_restart cec_pin_timer(struct hrtimer *timer)
843 {
844 	struct cec_pin *pin = container_of(timer, struct cec_pin, timer);
845 	struct cec_adapter *adap = pin->adap;
846 	ktime_t ts;
847 	s32 delta;
848 	u32 usecs;
849 
850 	ts = ktime_get();
851 	if (ktime_to_ns(pin->timer_ts)) {
852 		delta = ktime_us_delta(ts, pin->timer_ts);
853 		pin->timer_cnt++;
854 		if (delta > 100 && pin->state != CEC_ST_IDLE) {
855 			/* Keep track of timer overruns */
856 			pin->timer_sum_overrun += delta;
857 			pin->timer_100us_overruns++;
858 			if (delta > 300)
859 				pin->timer_300us_overruns++;
860 			if (delta > pin->timer_max_overrun)
861 				pin->timer_max_overrun = delta;
862 		}
863 	}
864 	if (adap->monitor_pin_cnt)
865 		cec_pin_read(pin);
866 
867 	if (pin->wait_usecs) {
868 		/*
869 		 * If we are monitoring the pin, then we have to
870 		 * sample at regular intervals.
871 		 */
872 		if (pin->wait_usecs > 150) {
873 			pin->wait_usecs -= 100;
874 			pin->timer_ts = ktime_add_us(ts, 100);
875 			hrtimer_forward_now(timer, ns_to_ktime(100000));
876 			return HRTIMER_RESTART;
877 		}
878 		if (pin->wait_usecs > 100) {
879 			pin->wait_usecs /= 2;
880 			pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
881 			hrtimer_forward_now(timer,
882 					ns_to_ktime(pin->wait_usecs * 1000));
883 			return HRTIMER_RESTART;
884 		}
885 		pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
886 		hrtimer_forward_now(timer,
887 				    ns_to_ktime(pin->wait_usecs * 1000));
888 		pin->wait_usecs = 0;
889 		return HRTIMER_RESTART;
890 	}
891 
892 	switch (pin->state) {
893 	/* Transmit states */
894 	case CEC_ST_TX_WAIT_FOR_HIGH:
895 	case CEC_ST_TX_START_BIT_LOW:
896 	case CEC_ST_TX_START_BIT_HIGH:
897 	case CEC_ST_TX_START_BIT_HIGH_SHORT:
898 	case CEC_ST_TX_START_BIT_HIGH_LONG:
899 	case CEC_ST_TX_START_BIT_LOW_CUSTOM:
900 	case CEC_ST_TX_START_BIT_HIGH_CUSTOM:
901 	case CEC_ST_TX_DATA_BIT_0_LOW:
902 	case CEC_ST_TX_DATA_BIT_0_HIGH:
903 	case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT:
904 	case CEC_ST_TX_DATA_BIT_0_HIGH_LONG:
905 	case CEC_ST_TX_DATA_BIT_1_LOW:
906 	case CEC_ST_TX_DATA_BIT_1_HIGH:
907 	case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT:
908 	case CEC_ST_TX_DATA_BIT_1_HIGH_LONG:
909 	case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
910 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
911 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT:
912 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG:
913 	case CEC_ST_TX_DATA_BIT_LOW_CUSTOM:
914 	case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM:
915 	case CEC_ST_TX_PULSE_LOW_CUSTOM:
916 	case CEC_ST_TX_PULSE_HIGH_CUSTOM:
917 		cec_pin_tx_states(pin, ts);
918 		break;
919 
920 	/* Receive states */
921 	case CEC_ST_RX_START_BIT_LOW:
922 	case CEC_ST_RX_START_BIT_HIGH:
923 	case CEC_ST_RX_DATA_SAMPLE:
924 	case CEC_ST_RX_DATA_POST_SAMPLE:
925 	case CEC_ST_RX_DATA_WAIT_FOR_LOW:
926 	case CEC_ST_RX_ACK_LOW:
927 	case CEC_ST_RX_ACK_LOW_POST:
928 	case CEC_ST_RX_ACK_HIGH_POST:
929 	case CEC_ST_RX_ACK_FINISH:
930 		cec_pin_rx_states(pin, ts);
931 		break;
932 
933 	case CEC_ST_IDLE:
934 	case CEC_ST_TX_WAIT:
935 		if (!cec_pin_high(pin)) {
936 			/* Start bit, switch to receive state */
937 			pin->ts = ts;
938 			pin->state = CEC_ST_RX_START_BIT_LOW;
939 			/*
940 			 * If a transmit is pending, then that transmit should
941 			 * use a signal free time of no more than
942 			 * CEC_SIGNAL_FREE_TIME_NEW_INITIATOR since it will
943 			 * have a new initiator due to the receive that is now
944 			 * starting.
945 			 */
946 			if (pin->tx_msg.len && pin->tx_signal_free_time >
947 			    CEC_SIGNAL_FREE_TIME_NEW_INITIATOR)
948 				pin->tx_signal_free_time =
949 					CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
950 			break;
951 		}
952 		if (ktime_to_ns(pin->ts) == 0)
953 			pin->ts = ts;
954 		if (pin->tx_msg.len) {
955 			/*
956 			 * Check if the bus has been free for long enough
957 			 * so we can kick off the pending transmit.
958 			 */
959 			delta = ktime_us_delta(ts, pin->ts);
960 			if (delta / CEC_TIM_DATA_BIT_TOTAL >=
961 			    pin->tx_signal_free_time) {
962 				pin->tx_nacked = false;
963 				if (tx_custom_start(pin))
964 					pin->state = CEC_ST_TX_START_BIT_LOW_CUSTOM;
965 				else
966 					pin->state = CEC_ST_TX_START_BIT_LOW;
967 				/* Generate start bit */
968 				cec_pin_low(pin);
969 				break;
970 			}
971 			if (delta / CEC_TIM_DATA_BIT_TOTAL >=
972 			    pin->tx_signal_free_time - 1)
973 				pin->state = CEC_ST_TX_WAIT;
974 			break;
975 		}
976 		if (pin->tx_custom_pulse && pin->state == CEC_ST_IDLE) {
977 			pin->tx_custom_pulse = false;
978 			/* Generate custom pulse */
979 			cec_pin_low(pin);
980 			pin->state = CEC_ST_TX_PULSE_LOW_CUSTOM;
981 			break;
982 		}
983 		if (pin->state != CEC_ST_IDLE || pin->ops->enable_irq == NULL ||
984 		    pin->enable_irq_failed || adap->is_configuring ||
985 		    adap->is_configured || adap->monitor_all_cnt)
986 			break;
987 		/* Switch to interrupt mode */
988 		atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_ENABLE);
989 		pin->state = CEC_ST_RX_IRQ;
990 		wake_up_interruptible(&pin->kthread_waitq);
991 		return HRTIMER_NORESTART;
992 
993 	case CEC_ST_TX_LOW_DRIVE:
994 	case CEC_ST_RX_LOW_DRIVE:
995 		cec_pin_high(pin);
996 		cec_pin_to_idle(pin);
997 		break;
998 
999 	default:
1000 		break;
1001 	}
1002 
1003 	switch (pin->state) {
1004 	case CEC_ST_TX_START_BIT_LOW_CUSTOM:
1005 	case CEC_ST_TX_DATA_BIT_LOW_CUSTOM:
1006 	case CEC_ST_TX_PULSE_LOW_CUSTOM:
1007 		usecs = pin->tx_custom_low_usecs;
1008 		break;
1009 	case CEC_ST_TX_START_BIT_HIGH_CUSTOM:
1010 	case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM:
1011 	case CEC_ST_TX_PULSE_HIGH_CUSTOM:
1012 		usecs = pin->tx_custom_high_usecs;
1013 		break;
1014 	default:
1015 		usecs = states[pin->state].usecs;
1016 		break;
1017 	}
1018 
1019 	if (!adap->monitor_pin_cnt || usecs <= 150) {
1020 		pin->wait_usecs = 0;
1021 		pin->timer_ts = ktime_add_us(ts, usecs);
1022 		hrtimer_forward_now(timer,
1023 				ns_to_ktime(usecs * 1000));
1024 		return HRTIMER_RESTART;
1025 	}
1026 	pin->wait_usecs = usecs - 100;
1027 	pin->timer_ts = ktime_add_us(ts, 100);
1028 	hrtimer_forward_now(timer, ns_to_ktime(100000));
1029 	return HRTIMER_RESTART;
1030 }
1031 
1032 static int cec_pin_thread_func(void *_adap)
1033 {
1034 	struct cec_adapter *adap = _adap;
1035 	struct cec_pin *pin = adap->pin;
1036 	bool irq_enabled = false;
1037 
1038 	for (;;) {
1039 		wait_event_interruptible(pin->kthread_waitq,
1040 			kthread_should_stop() ||
1041 			pin->work_rx_msg.len ||
1042 			pin->work_tx_status ||
1043 			atomic_read(&pin->work_irq_change) ||
1044 			atomic_read(&pin->work_pin_num_events));
1045 
1046 		if (pin->work_rx_msg.len) {
1047 			struct cec_msg *msg = &pin->work_rx_msg;
1048 
1049 			if (msg->len > 1 && msg->len < CEC_MAX_MSG_SIZE &&
1050 			    rx_add_byte(pin)) {
1051 				/* Error injection: add byte to the message */
1052 				msg->msg[msg->len++] = 0x55;
1053 			}
1054 			if (msg->len > 2 && rx_remove_byte(pin)) {
1055 				/* Error injection: remove byte from message */
1056 				msg->len--;
1057 			}
1058 			if (msg->len > CEC_MAX_MSG_SIZE)
1059 				msg->len = CEC_MAX_MSG_SIZE;
1060 			cec_received_msg_ts(adap, msg,
1061 				ns_to_ktime(pin->work_rx_msg.rx_ts));
1062 			msg->len = 0;
1063 		}
1064 
1065 		if (pin->work_tx_status) {
1066 			unsigned int tx_status = pin->work_tx_status;
1067 
1068 			pin->work_tx_status = 0;
1069 			cec_transmit_attempt_done_ts(adap, tx_status,
1070 						     pin->work_tx_ts);
1071 		}
1072 
1073 		while (atomic_read(&pin->work_pin_num_events)) {
1074 			unsigned int idx = pin->work_pin_events_rd;
1075 			u8 v = pin->work_pin_events[idx];
1076 
1077 			cec_queue_pin_cec_event(adap,
1078 						v & CEC_PIN_EVENT_FL_IS_HIGH,
1079 						v & CEC_PIN_EVENT_FL_DROPPED,
1080 						pin->work_pin_ts[idx]);
1081 			pin->work_pin_events_rd = (idx + 1) % CEC_NUM_PIN_EVENTS;
1082 			atomic_dec(&pin->work_pin_num_events);
1083 		}
1084 
1085 		switch (atomic_xchg(&pin->work_irq_change,
1086 				    CEC_PIN_IRQ_UNCHANGED)) {
1087 		case CEC_PIN_IRQ_DISABLE:
1088 			if (irq_enabled) {
1089 				pin->ops->disable_irq(adap);
1090 				irq_enabled = false;
1091 			}
1092 			cec_pin_high(pin);
1093 			cec_pin_to_idle(pin);
1094 			hrtimer_start(&pin->timer, ns_to_ktime(0),
1095 				      HRTIMER_MODE_REL);
1096 			break;
1097 		case CEC_PIN_IRQ_ENABLE:
1098 			if (irq_enabled)
1099 				break;
1100 			pin->enable_irq_failed = !pin->ops->enable_irq(adap);
1101 			if (pin->enable_irq_failed) {
1102 				cec_pin_to_idle(pin);
1103 				hrtimer_start(&pin->timer, ns_to_ktime(0),
1104 					      HRTIMER_MODE_REL);
1105 			} else {
1106 				irq_enabled = true;
1107 			}
1108 			break;
1109 		default:
1110 			break;
1111 		}
1112 		if (kthread_should_stop())
1113 			break;
1114 	}
1115 	if (pin->ops->disable_irq && irq_enabled)
1116 		pin->ops->disable_irq(adap);
1117 	hrtimer_cancel(&pin->timer);
1118 	cec_pin_read(pin);
1119 	cec_pin_to_idle(pin);
1120 	pin->state = CEC_ST_OFF;
1121 	return 0;
1122 }
1123 
1124 static int cec_pin_adap_enable(struct cec_adapter *adap, bool enable)
1125 {
1126 	struct cec_pin *pin = adap->pin;
1127 
1128 	if (enable) {
1129 		atomic_set(&pin->work_pin_num_events, 0);
1130 		pin->work_pin_events_rd = pin->work_pin_events_wr = 0;
1131 		pin->work_pin_events_dropped = false;
1132 		cec_pin_read(pin);
1133 		cec_pin_to_idle(pin);
1134 		pin->tx_msg.len = 0;
1135 		pin->timer_ts = ns_to_ktime(0);
1136 		atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
1137 		pin->kthread = kthread_run(cec_pin_thread_func, adap,
1138 					   "cec-pin");
1139 		if (IS_ERR(pin->kthread)) {
1140 			pr_err("cec-pin: kernel_thread() failed\n");
1141 			return PTR_ERR(pin->kthread);
1142 		}
1143 		hrtimer_start(&pin->timer, ns_to_ktime(0),
1144 			      HRTIMER_MODE_REL);
1145 	} else {
1146 		kthread_stop(pin->kthread);
1147 	}
1148 	return 0;
1149 }
1150 
1151 static int cec_pin_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
1152 {
1153 	struct cec_pin *pin = adap->pin;
1154 
1155 	if (log_addr == CEC_LOG_ADDR_INVALID)
1156 		pin->la_mask = 0;
1157 	else
1158 		pin->la_mask |= (1 << log_addr);
1159 	return 0;
1160 }
1161 
1162 void cec_pin_start_timer(struct cec_pin *pin)
1163 {
1164 	if (pin->state != CEC_ST_RX_IRQ)
1165 		return;
1166 
1167 	atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
1168 	wake_up_interruptible(&pin->kthread_waitq);
1169 }
1170 
1171 static int cec_pin_adap_transmit(struct cec_adapter *adap, u8 attempts,
1172 				      u32 signal_free_time, struct cec_msg *msg)
1173 {
1174 	struct cec_pin *pin = adap->pin;
1175 
1176 	/*
1177 	 * If a receive is in progress, then this transmit should use
1178 	 * a signal free time of max CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
1179 	 * since when it starts transmitting it will have a new initiator.
1180 	 */
1181 	if (pin->state != CEC_ST_IDLE &&
1182 	    signal_free_time > CEC_SIGNAL_FREE_TIME_NEW_INITIATOR)
1183 		signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
1184 
1185 	pin->tx_signal_free_time = signal_free_time;
1186 	pin->tx_extra_bytes = 0;
1187 	pin->tx_msg = *msg;
1188 	if (msg->len > 1) {
1189 		/* Error injection: add byte to the message */
1190 		pin->tx_extra_bytes = tx_add_bytes(pin);
1191 	}
1192 	if (msg->len > 2 && tx_remove_byte(pin)) {
1193 		/* Error injection: remove byte from the message */
1194 		pin->tx_msg.len--;
1195 	}
1196 	pin->work_tx_status = 0;
1197 	pin->tx_bit = 0;
1198 	cec_pin_start_timer(pin);
1199 	return 0;
1200 }
1201 
1202 static void cec_pin_adap_status(struct cec_adapter *adap,
1203 				       struct seq_file *file)
1204 {
1205 	struct cec_pin *pin = adap->pin;
1206 
1207 	seq_printf(file, "state: %s\n", states[pin->state].name);
1208 	seq_printf(file, "tx_bit: %d\n", pin->tx_bit);
1209 	seq_printf(file, "rx_bit: %d\n", pin->rx_bit);
1210 	seq_printf(file, "cec pin: %d\n", pin->ops->read(adap));
1211 	seq_printf(file, "cec pin events dropped: %u\n",
1212 		   pin->work_pin_events_dropped_cnt);
1213 	seq_printf(file, "irq failed: %d\n", pin->enable_irq_failed);
1214 	if (pin->timer_100us_overruns) {
1215 		seq_printf(file, "timer overruns > 100us: %u of %u\n",
1216 			   pin->timer_100us_overruns, pin->timer_cnt);
1217 		seq_printf(file, "timer overruns > 300us: %u of %u\n",
1218 			   pin->timer_300us_overruns, pin->timer_cnt);
1219 		seq_printf(file, "max timer overrun: %u usecs\n",
1220 			   pin->timer_max_overrun);
1221 		seq_printf(file, "avg timer overrun: %u usecs\n",
1222 			   pin->timer_sum_overrun / pin->timer_100us_overruns);
1223 	}
1224 	if (pin->rx_start_bit_low_too_short_cnt)
1225 		seq_printf(file,
1226 			   "rx start bit low too short: %u (delta %u, ts %llu)\n",
1227 			   pin->rx_start_bit_low_too_short_cnt,
1228 			   pin->rx_start_bit_low_too_short_delta,
1229 			   pin->rx_start_bit_low_too_short_ts);
1230 	if (pin->rx_start_bit_too_short_cnt)
1231 		seq_printf(file,
1232 			   "rx start bit too short: %u (delta %u, ts %llu)\n",
1233 			   pin->rx_start_bit_too_short_cnt,
1234 			   pin->rx_start_bit_too_short_delta,
1235 			   pin->rx_start_bit_too_short_ts);
1236 	if (pin->rx_start_bit_too_long_cnt)
1237 		seq_printf(file, "rx start bit too long: %u\n",
1238 			   pin->rx_start_bit_too_long_cnt);
1239 	if (pin->rx_data_bit_too_short_cnt)
1240 		seq_printf(file,
1241 			   "rx data bit too short: %u (delta %u, ts %llu)\n",
1242 			   pin->rx_data_bit_too_short_cnt,
1243 			   pin->rx_data_bit_too_short_delta,
1244 			   pin->rx_data_bit_too_short_ts);
1245 	if (pin->rx_data_bit_too_long_cnt)
1246 		seq_printf(file, "rx data bit too long: %u\n",
1247 			   pin->rx_data_bit_too_long_cnt);
1248 	seq_printf(file, "rx initiated low drive: %u\n", pin->rx_low_drive_cnt);
1249 	seq_printf(file, "tx detected low drive: %u\n", pin->tx_low_drive_cnt);
1250 	pin->work_pin_events_dropped_cnt = 0;
1251 	pin->timer_cnt = 0;
1252 	pin->timer_100us_overruns = 0;
1253 	pin->timer_300us_overruns = 0;
1254 	pin->timer_max_overrun = 0;
1255 	pin->timer_sum_overrun = 0;
1256 	pin->rx_start_bit_low_too_short_cnt = 0;
1257 	pin->rx_start_bit_too_short_cnt = 0;
1258 	pin->rx_start_bit_too_long_cnt = 0;
1259 	pin->rx_data_bit_too_short_cnt = 0;
1260 	pin->rx_data_bit_too_long_cnt = 0;
1261 	pin->rx_low_drive_cnt = 0;
1262 	pin->tx_low_drive_cnt = 0;
1263 	if (pin->ops->status)
1264 		pin->ops->status(adap, file);
1265 }
1266 
1267 static int cec_pin_adap_monitor_all_enable(struct cec_adapter *adap,
1268 						  bool enable)
1269 {
1270 	struct cec_pin *pin = adap->pin;
1271 
1272 	pin->monitor_all = enable;
1273 	return 0;
1274 }
1275 
1276 static void cec_pin_adap_free(struct cec_adapter *adap)
1277 {
1278 	struct cec_pin *pin = adap->pin;
1279 
1280 	if (pin->ops->free)
1281 		pin->ops->free(adap);
1282 	adap->pin = NULL;
1283 	kfree(pin);
1284 }
1285 
1286 static int cec_pin_received(struct cec_adapter *adap, struct cec_msg *msg)
1287 {
1288 	struct cec_pin *pin = adap->pin;
1289 
1290 	if (pin->ops->received)
1291 		return pin->ops->received(adap, msg);
1292 	return -ENOMSG;
1293 }
1294 
1295 void cec_pin_changed(struct cec_adapter *adap, bool value)
1296 {
1297 	struct cec_pin *pin = adap->pin;
1298 
1299 	cec_pin_update(pin, value, false);
1300 	if (!value && (adap->is_configuring || adap->is_configured ||
1301 		       adap->monitor_all_cnt))
1302 		atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
1303 }
1304 EXPORT_SYMBOL_GPL(cec_pin_changed);
1305 
1306 static const struct cec_adap_ops cec_pin_adap_ops = {
1307 	.adap_enable = cec_pin_adap_enable,
1308 	.adap_monitor_all_enable = cec_pin_adap_monitor_all_enable,
1309 	.adap_log_addr = cec_pin_adap_log_addr,
1310 	.adap_transmit = cec_pin_adap_transmit,
1311 	.adap_status = cec_pin_adap_status,
1312 	.adap_free = cec_pin_adap_free,
1313 #ifdef CONFIG_CEC_PIN_ERROR_INJ
1314 	.error_inj_parse_line = cec_pin_error_inj_parse_line,
1315 	.error_inj_show = cec_pin_error_inj_show,
1316 #endif
1317 	.received = cec_pin_received,
1318 };
1319 
1320 struct cec_adapter *cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops,
1321 					void *priv, const char *name, u32 caps)
1322 {
1323 	struct cec_adapter *adap;
1324 	struct cec_pin *pin = kzalloc(sizeof(*pin), GFP_KERNEL);
1325 
1326 	if (pin == NULL)
1327 		return ERR_PTR(-ENOMEM);
1328 	pin->ops = pin_ops;
1329 	hrtimer_init(&pin->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1330 	pin->timer.function = cec_pin_timer;
1331 	init_waitqueue_head(&pin->kthread_waitq);
1332 	pin->tx_custom_low_usecs = CEC_TIM_CUSTOM_DEFAULT;
1333 	pin->tx_custom_high_usecs = CEC_TIM_CUSTOM_DEFAULT;
1334 
1335 	adap = cec_allocate_adapter(&cec_pin_adap_ops, priv, name,
1336 			    caps | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN,
1337 			    CEC_MAX_LOG_ADDRS);
1338 
1339 	if (IS_ERR(adap)) {
1340 		kfree(pin);
1341 		return adap;
1342 	}
1343 
1344 	adap->pin = pin;
1345 	pin->adap = adap;
1346 	cec_pin_update(pin, cec_pin_high(pin), true);
1347 	return adap;
1348 }
1349 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter);
1350