xref: /linux/drivers/media/cec/core/cec-pin.c (revision 22c55fb9eb92395d999b8404d73e58540d11bdd8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
4  */
5 
6 #include <linux/delay.h>
7 #include <linux/sched/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/slab.h>
10 
11 #include <media/cec-pin.h>
12 #include "cec-pin-priv.h"
13 
14 /* All timings are in microseconds */
15 
16 /* start bit timings */
17 #define CEC_TIM_START_BIT_LOW		3700
18 #define CEC_TIM_START_BIT_LOW_MIN	3500
19 #define CEC_TIM_START_BIT_LOW_MAX	3900
20 #define CEC_TIM_START_BIT_TOTAL		4500
21 #define CEC_TIM_START_BIT_TOTAL_MIN	4300
22 #define CEC_TIM_START_BIT_TOTAL_MAX	4700
23 
24 /* data bit timings */
25 #define CEC_TIM_DATA_BIT_0_LOW		1500
26 #define CEC_TIM_DATA_BIT_0_LOW_MIN	1300
27 #define CEC_TIM_DATA_BIT_0_LOW_MAX	1700
28 #define CEC_TIM_DATA_BIT_1_LOW		600
29 #define CEC_TIM_DATA_BIT_1_LOW_MIN	400
30 #define CEC_TIM_DATA_BIT_1_LOW_MAX	800
31 #define CEC_TIM_DATA_BIT_TOTAL		2400
32 #define CEC_TIM_DATA_BIT_TOTAL_MIN	2050
33 #define CEC_TIM_DATA_BIT_TOTAL_MAX	2750
34 /* earliest safe time to sample the bit state */
35 #define CEC_TIM_DATA_BIT_SAMPLE		850
36 /* earliest time the bit is back to 1 (T7 + 50) */
37 #define CEC_TIM_DATA_BIT_HIGH		1750
38 
39 /* when idle, sample once per millisecond */
40 #define CEC_TIM_IDLE_SAMPLE		1000
41 /* when processing the start bit, sample twice per millisecond */
42 #define CEC_TIM_START_BIT_SAMPLE	500
43 /* when polling for a state change, sample once every 50 microseconds */
44 #define CEC_TIM_SAMPLE			50
45 
46 #define CEC_TIM_LOW_DRIVE_ERROR		(1.5 * CEC_TIM_DATA_BIT_TOTAL)
47 
48 /*
49  * Total data bit time that is too short/long for a valid bit,
50  * used for error injection.
51  */
52 #define CEC_TIM_DATA_BIT_TOTAL_SHORT	1800
53 #define CEC_TIM_DATA_BIT_TOTAL_LONG	2900
54 
55 /*
56  * Total start bit time that is too short/long for a valid bit,
57  * used for error injection.
58  */
59 #define CEC_TIM_START_BIT_TOTAL_SHORT	4100
60 #define CEC_TIM_START_BIT_TOTAL_LONG	5000
61 
62 /* Data bits are 0-7, EOM is bit 8 and ACK is bit 9 */
63 #define EOM_BIT				8
64 #define ACK_BIT				9
65 
66 struct cec_state {
67 	const char * const name;
68 	unsigned int usecs;
69 };
70 
71 static const struct cec_state states[CEC_PIN_STATES] = {
72 	{ "Off",		   0 },
73 	{ "Idle",		   CEC_TIM_IDLE_SAMPLE },
74 	{ "Tx Wait",		   CEC_TIM_SAMPLE },
75 	{ "Tx Wait for High",	   CEC_TIM_IDLE_SAMPLE },
76 	{ "Tx Start Bit Low",	   CEC_TIM_START_BIT_LOW },
77 	{ "Tx Start Bit High",	   CEC_TIM_START_BIT_TOTAL - CEC_TIM_START_BIT_LOW },
78 	{ "Tx Start Bit High Short", CEC_TIM_START_BIT_TOTAL_SHORT - CEC_TIM_START_BIT_LOW },
79 	{ "Tx Start Bit High Long", CEC_TIM_START_BIT_TOTAL_LONG - CEC_TIM_START_BIT_LOW },
80 	{ "Tx Start Bit Low Custom", 0 },
81 	{ "Tx Start Bit High Custom", 0 },
82 	{ "Tx Data 0 Low",	   CEC_TIM_DATA_BIT_0_LOW },
83 	{ "Tx Data 0 High",	   CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_0_LOW },
84 	{ "Tx Data 0 High Short",  CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_0_LOW },
85 	{ "Tx Data 0 High Long",   CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_0_LOW },
86 	{ "Tx Data 1 Low",	   CEC_TIM_DATA_BIT_1_LOW },
87 	{ "Tx Data 1 High",	   CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_1_LOW },
88 	{ "Tx Data 1 High Short",  CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_1_LOW },
89 	{ "Tx Data 1 High Long",   CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_1_LOW },
90 	{ "Tx Data 1 High Pre Sample", CEC_TIM_DATA_BIT_SAMPLE - CEC_TIM_DATA_BIT_1_LOW },
91 	{ "Tx Data 1 High Post Sample", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_SAMPLE },
92 	{ "Tx Data 1 High Post Sample Short", CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_SAMPLE },
93 	{ "Tx Data 1 High Post Sample Long", CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_SAMPLE },
94 	{ "Tx Data Bit Low Custom", 0 },
95 	{ "Tx Data Bit High Custom", 0 },
96 	{ "Tx Pulse Low Custom",   0 },
97 	{ "Tx Pulse High Custom",  0 },
98 	{ "Tx Low Drive",	   CEC_TIM_LOW_DRIVE_ERROR },
99 	{ "Rx Start Bit Low",	   CEC_TIM_SAMPLE },
100 	{ "Rx Start Bit High",	   CEC_TIM_SAMPLE },
101 	{ "Rx Data Sample",	   CEC_TIM_DATA_BIT_SAMPLE },
102 	{ "Rx Data Post Sample",   CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_SAMPLE },
103 	{ "Rx Data Wait for Low",  CEC_TIM_SAMPLE },
104 	{ "Rx Ack Low",		   CEC_TIM_DATA_BIT_0_LOW },
105 	{ "Rx Ack Low Post",	   CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_0_LOW },
106 	{ "Rx Ack High Post",	   CEC_TIM_DATA_BIT_HIGH },
107 	{ "Rx Ack Finish",	   CEC_TIM_DATA_BIT_TOTAL_MIN - CEC_TIM_DATA_BIT_HIGH },
108 	{ "Rx Low Drive",	   CEC_TIM_LOW_DRIVE_ERROR },
109 	{ "Rx Irq",		   0 },
110 };
111 
112 static void cec_pin_update(struct cec_pin *pin, bool v, bool force)
113 {
114 	if (!force && v == pin->adap->cec_pin_is_high)
115 		return;
116 
117 	pin->adap->cec_pin_is_high = v;
118 	if (atomic_read(&pin->work_pin_num_events) < CEC_NUM_PIN_EVENTS) {
119 		u8 ev = v;
120 
121 		if (pin->work_pin_events_dropped) {
122 			pin->work_pin_events_dropped = false;
123 			ev |= CEC_PIN_EVENT_FL_DROPPED;
124 		}
125 		pin->work_pin_events[pin->work_pin_events_wr] = ev;
126 		pin->work_pin_ts[pin->work_pin_events_wr] = ktime_get();
127 		pin->work_pin_events_wr =
128 			(pin->work_pin_events_wr + 1) % CEC_NUM_PIN_EVENTS;
129 		atomic_inc(&pin->work_pin_num_events);
130 	} else {
131 		pin->work_pin_events_dropped = true;
132 		pin->work_pin_events_dropped_cnt++;
133 	}
134 	wake_up_interruptible(&pin->kthread_waitq);
135 }
136 
137 static bool cec_pin_read(struct cec_pin *pin)
138 {
139 	bool v = call_pin_op(pin, read);
140 
141 	cec_pin_update(pin, v, false);
142 	return v;
143 }
144 
145 static void cec_pin_insert_glitch(struct cec_pin *pin, bool rising_edge)
146 {
147 	/*
148 	 * Insert a short glitch after the falling or rising edge to
149 	 * simulate reflections on the CEC line. This can be used to
150 	 * test deglitch filters, which should be present in CEC devices
151 	 * to deal with noise on the line.
152 	 */
153 	if (!pin->tx_glitch_high_usecs || !pin->tx_glitch_low_usecs)
154 		return;
155 	if (rising_edge) {
156 		udelay(pin->tx_glitch_high_usecs);
157 		call_void_pin_op(pin, low);
158 		udelay(pin->tx_glitch_low_usecs);
159 		call_void_pin_op(pin, high);
160 	} else {
161 		udelay(pin->tx_glitch_low_usecs);
162 		call_void_pin_op(pin, high);
163 		udelay(pin->tx_glitch_high_usecs);
164 		call_void_pin_op(pin, low);
165 	}
166 }
167 
168 static void cec_pin_low(struct cec_pin *pin)
169 {
170 	call_void_pin_op(pin, low);
171 	if (pin->tx_glitch_falling_edge && pin->adap->cec_pin_is_high)
172 		cec_pin_insert_glitch(pin, false);
173 	cec_pin_update(pin, false, false);
174 }
175 
176 static bool cec_pin_high(struct cec_pin *pin)
177 {
178 	call_void_pin_op(pin, high);
179 	if (pin->tx_glitch_rising_edge && !pin->adap->cec_pin_is_high)
180 		cec_pin_insert_glitch(pin, true);
181 	return cec_pin_read(pin);
182 }
183 
184 static bool rx_error_inj(struct cec_pin *pin, unsigned int mode_offset,
185 			 int arg_idx, u8 *arg)
186 {
187 #ifdef CONFIG_CEC_PIN_ERROR_INJ
188 	u16 cmd = cec_pin_rx_error_inj(pin);
189 	u64 e = pin->error_inj[cmd];
190 	unsigned int mode = (e >> mode_offset) & CEC_ERROR_INJ_MODE_MASK;
191 
192 	if (arg_idx >= 0) {
193 		u8 pos = pin->error_inj_args[cmd][arg_idx];
194 
195 		if (arg)
196 			*arg = pos;
197 		else if (pos != pin->rx_bit)
198 			return false;
199 	}
200 
201 	switch (mode) {
202 	case CEC_ERROR_INJ_MODE_ONCE:
203 		pin->error_inj[cmd] &=
204 			~(CEC_ERROR_INJ_MODE_MASK << mode_offset);
205 		return true;
206 	case CEC_ERROR_INJ_MODE_ALWAYS:
207 		return true;
208 	case CEC_ERROR_INJ_MODE_TOGGLE:
209 		return pin->rx_toggle;
210 	default:
211 		return false;
212 	}
213 #else
214 	return false;
215 #endif
216 }
217 
218 static bool rx_nack(struct cec_pin *pin)
219 {
220 	return rx_error_inj(pin, CEC_ERROR_INJ_RX_NACK_OFFSET, -1, NULL);
221 }
222 
223 static bool rx_low_drive(struct cec_pin *pin)
224 {
225 	return rx_error_inj(pin, CEC_ERROR_INJ_RX_LOW_DRIVE_OFFSET,
226 			    CEC_ERROR_INJ_RX_LOW_DRIVE_ARG_IDX, NULL);
227 }
228 
229 static bool rx_add_byte(struct cec_pin *pin)
230 {
231 	return rx_error_inj(pin, CEC_ERROR_INJ_RX_ADD_BYTE_OFFSET, -1, NULL);
232 }
233 
234 static bool rx_remove_byte(struct cec_pin *pin)
235 {
236 	return rx_error_inj(pin, CEC_ERROR_INJ_RX_REMOVE_BYTE_OFFSET, -1, NULL);
237 }
238 
239 static bool rx_arb_lost(struct cec_pin *pin, u8 *poll)
240 {
241 	return pin->tx_msg.len == 0 &&
242 		rx_error_inj(pin, CEC_ERROR_INJ_RX_ARB_LOST_OFFSET,
243 			     CEC_ERROR_INJ_RX_ARB_LOST_ARG_IDX, poll);
244 }
245 
246 static bool tx_error_inj(struct cec_pin *pin, unsigned int mode_offset,
247 			 int arg_idx, u8 *arg)
248 {
249 #ifdef CONFIG_CEC_PIN_ERROR_INJ
250 	u16 cmd = cec_pin_tx_error_inj(pin);
251 	u64 e = pin->error_inj[cmd];
252 	unsigned int mode = (e >> mode_offset) & CEC_ERROR_INJ_MODE_MASK;
253 
254 	if (arg_idx >= 0) {
255 		u8 pos = pin->error_inj_args[cmd][arg_idx];
256 
257 		if (arg)
258 			*arg = pos;
259 		else if (pos != pin->tx_bit)
260 			return false;
261 	}
262 
263 	switch (mode) {
264 	case CEC_ERROR_INJ_MODE_ONCE:
265 		pin->error_inj[cmd] &=
266 			~(CEC_ERROR_INJ_MODE_MASK << mode_offset);
267 		return true;
268 	case CEC_ERROR_INJ_MODE_ALWAYS:
269 		return true;
270 	case CEC_ERROR_INJ_MODE_TOGGLE:
271 		return pin->tx_toggle;
272 	default:
273 		return false;
274 	}
275 #else
276 	return false;
277 #endif
278 }
279 
280 static bool tx_no_eom(struct cec_pin *pin)
281 {
282 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_NO_EOM_OFFSET, -1, NULL);
283 }
284 
285 static bool tx_early_eom(struct cec_pin *pin)
286 {
287 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_EARLY_EOM_OFFSET, -1, NULL);
288 }
289 
290 static bool tx_short_bit(struct cec_pin *pin)
291 {
292 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_SHORT_BIT_OFFSET,
293 			    CEC_ERROR_INJ_TX_SHORT_BIT_ARG_IDX, NULL);
294 }
295 
296 static bool tx_long_bit(struct cec_pin *pin)
297 {
298 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_LONG_BIT_OFFSET,
299 			    CEC_ERROR_INJ_TX_LONG_BIT_ARG_IDX, NULL);
300 }
301 
302 static bool tx_custom_bit(struct cec_pin *pin)
303 {
304 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_CUSTOM_BIT_OFFSET,
305 			    CEC_ERROR_INJ_TX_CUSTOM_BIT_ARG_IDX, NULL);
306 }
307 
308 static bool tx_short_start(struct cec_pin *pin)
309 {
310 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_SHORT_START_OFFSET, -1, NULL);
311 }
312 
313 static bool tx_long_start(struct cec_pin *pin)
314 {
315 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_LONG_START_OFFSET, -1, NULL);
316 }
317 
318 static bool tx_custom_start(struct cec_pin *pin)
319 {
320 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_CUSTOM_START_OFFSET,
321 			    -1, NULL);
322 }
323 
324 static bool tx_last_bit(struct cec_pin *pin)
325 {
326 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_LAST_BIT_OFFSET,
327 			    CEC_ERROR_INJ_TX_LAST_BIT_ARG_IDX, NULL);
328 }
329 
330 static u8 tx_add_bytes(struct cec_pin *pin)
331 {
332 	u8 bytes;
333 
334 	if (tx_error_inj(pin, CEC_ERROR_INJ_TX_ADD_BYTES_OFFSET,
335 			 CEC_ERROR_INJ_TX_ADD_BYTES_ARG_IDX, &bytes))
336 		return bytes;
337 	return 0;
338 }
339 
340 static bool tx_remove_byte(struct cec_pin *pin)
341 {
342 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_REMOVE_BYTE_OFFSET, -1, NULL);
343 }
344 
345 static bool tx_low_drive(struct cec_pin *pin)
346 {
347 	return tx_error_inj(pin, CEC_ERROR_INJ_TX_LOW_DRIVE_OFFSET,
348 			    CEC_ERROR_INJ_TX_LOW_DRIVE_ARG_IDX, NULL);
349 }
350 
351 static void cec_pin_to_idle(struct cec_pin *pin)
352 {
353 	/*
354 	 * Reset all status fields, release the bus and
355 	 * go to idle state.
356 	 */
357 	pin->rx_bit = pin->tx_bit = 0;
358 	pin->rx_msg.len = 0;
359 	memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
360 	pin->ts = ns_to_ktime(0);
361 	pin->tx_generated_poll = false;
362 	pin->tx_post_eom = false;
363 	if (pin->state >= CEC_ST_TX_WAIT &&
364 	    pin->state <= CEC_ST_TX_LOW_DRIVE)
365 		pin->tx_toggle ^= 1;
366 	if (pin->state >= CEC_ST_RX_START_BIT_LOW &&
367 	    pin->state <= CEC_ST_RX_LOW_DRIVE)
368 		pin->rx_toggle ^= 1;
369 	pin->state = CEC_ST_IDLE;
370 }
371 
372 /*
373  * Handle Transmit-related states
374  *
375  * Basic state changes when transmitting:
376  *
377  * Idle -> Tx Wait (waiting for the end of signal free time) ->
378  *	Tx Start Bit Low -> Tx Start Bit High ->
379  *
380  *   Regular data bits + EOM:
381  *	Tx Data 0 Low -> Tx Data 0 High ->
382  *   or:
383  *	Tx Data 1 Low -> Tx Data 1 High ->
384  *
385  *   First 4 data bits or Ack bit:
386  *	Tx Data 0 Low -> Tx Data 0 High ->
387  *   or:
388  *	Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
389  *		Tx Data 1 Post Sample ->
390  *
391  *   After the last Ack go to Idle.
392  *
393  * If it detects a Low Drive condition then:
394  *	Tx Wait For High -> Idle
395  *
396  * If it loses arbitration, then it switches to state Rx Data Post Sample.
397  */
398 static void cec_pin_tx_states(struct cec_pin *pin, ktime_t ts)
399 {
400 	bool v;
401 	bool is_ack_bit, ack;
402 
403 	switch (pin->state) {
404 	case CEC_ST_TX_WAIT_FOR_HIGH:
405 		if (cec_pin_read(pin))
406 			cec_pin_to_idle(pin);
407 		break;
408 
409 	case CEC_ST_TX_START_BIT_LOW:
410 		if (tx_short_start(pin)) {
411 			/*
412 			 * Error Injection: send an invalid (too short)
413 			 * start pulse.
414 			 */
415 			pin->state = CEC_ST_TX_START_BIT_HIGH_SHORT;
416 		} else if (tx_long_start(pin)) {
417 			/*
418 			 * Error Injection: send an invalid (too long)
419 			 * start pulse.
420 			 */
421 			pin->state = CEC_ST_TX_START_BIT_HIGH_LONG;
422 		} else {
423 			pin->state = CEC_ST_TX_START_BIT_HIGH;
424 		}
425 		/* Generate start bit */
426 		cec_pin_high(pin);
427 		break;
428 
429 	case CEC_ST_TX_START_BIT_LOW_CUSTOM:
430 		pin->state = CEC_ST_TX_START_BIT_HIGH_CUSTOM;
431 		/* Generate start bit */
432 		cec_pin_high(pin);
433 		break;
434 
435 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
436 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT:
437 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG:
438 		if (pin->tx_nacked) {
439 			cec_pin_to_idle(pin);
440 			pin->tx_msg.len = 0;
441 			if (pin->tx_generated_poll)
442 				break;
443 			pin->work_tx_ts = ts;
444 			pin->work_tx_status = CEC_TX_STATUS_NACK;
445 			wake_up_interruptible(&pin->kthread_waitq);
446 			break;
447 		}
448 		fallthrough;
449 	case CEC_ST_TX_DATA_BIT_0_HIGH:
450 	case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT:
451 	case CEC_ST_TX_DATA_BIT_0_HIGH_LONG:
452 	case CEC_ST_TX_DATA_BIT_1_HIGH:
453 	case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT:
454 	case CEC_ST_TX_DATA_BIT_1_HIGH_LONG:
455 		/*
456 		 * If the read value is 1, then all is OK, otherwise we have a
457 		 * low drive condition.
458 		 *
459 		 * Special case: when we generate a poll message due to an
460 		 * Arbitration Lost error injection, then ignore this since
461 		 * the pin can actually be low in that case.
462 		 */
463 		if (!cec_pin_read(pin) && !pin->tx_generated_poll) {
464 			/*
465 			 * It's 0, so someone detected an error and pulled the
466 			 * line low for 1.5 times the nominal bit period.
467 			 */
468 			pin->tx_msg.len = 0;
469 			pin->state = CEC_ST_TX_WAIT_FOR_HIGH;
470 			pin->work_tx_ts = ts;
471 			pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
472 			pin->tx_low_drive_cnt++;
473 			wake_up_interruptible(&pin->kthread_waitq);
474 			break;
475 		}
476 		fallthrough;
477 	case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM:
478 		if (tx_last_bit(pin)) {
479 			/* Error Injection: just stop sending after this bit */
480 			cec_pin_to_idle(pin);
481 			pin->tx_msg.len = 0;
482 			if (pin->tx_generated_poll)
483 				break;
484 			pin->work_tx_ts = ts;
485 			pin->work_tx_status = CEC_TX_STATUS_OK;
486 			wake_up_interruptible(&pin->kthread_waitq);
487 			break;
488 		}
489 		pin->tx_bit++;
490 		fallthrough;
491 	case CEC_ST_TX_START_BIT_HIGH:
492 	case CEC_ST_TX_START_BIT_HIGH_SHORT:
493 	case CEC_ST_TX_START_BIT_HIGH_LONG:
494 	case CEC_ST_TX_START_BIT_HIGH_CUSTOM:
495 		if (tx_low_drive(pin)) {
496 			/* Error injection: go to low drive */
497 			cec_pin_low(pin);
498 			pin->state = CEC_ST_TX_LOW_DRIVE;
499 			pin->tx_msg.len = 0;
500 			if (pin->tx_generated_poll)
501 				break;
502 			pin->work_tx_ts = ts;
503 			pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
504 			pin->tx_low_drive_cnt++;
505 			wake_up_interruptible(&pin->kthread_waitq);
506 			break;
507 		}
508 		if (pin->tx_bit / 10 >= pin->tx_msg.len + pin->tx_extra_bytes) {
509 			cec_pin_to_idle(pin);
510 			pin->tx_msg.len = 0;
511 			if (pin->tx_generated_poll)
512 				break;
513 			pin->work_tx_ts = ts;
514 			pin->work_tx_status = CEC_TX_STATUS_OK;
515 			wake_up_interruptible(&pin->kthread_waitq);
516 			break;
517 		}
518 
519 		switch (pin->tx_bit % 10) {
520 		default: {
521 			/*
522 			 * In the CEC_ERROR_INJ_TX_ADD_BYTES case we transmit
523 			 * extra bytes, so pin->tx_bit / 10 can become >= 16.
524 			 * Generate bit values for those extra bytes instead
525 			 * of reading them from the transmit buffer.
526 			 */
527 			unsigned int idx = (pin->tx_bit / 10);
528 			u8 val = idx;
529 
530 			if (idx < pin->tx_msg.len)
531 				val = pin->tx_msg.msg[idx];
532 			v = val & (1 << (7 - (pin->tx_bit % 10)));
533 
534 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
535 					 CEC_ST_TX_DATA_BIT_0_LOW;
536 			break;
537 		}
538 		case EOM_BIT: {
539 			unsigned int tot_len = pin->tx_msg.len +
540 					       pin->tx_extra_bytes;
541 			unsigned int tx_byte_idx = pin->tx_bit / 10;
542 
543 			v = !pin->tx_post_eom && tx_byte_idx == tot_len - 1;
544 			if (tot_len > 1 && tx_byte_idx == tot_len - 2 &&
545 			    tx_early_eom(pin)) {
546 				/* Error injection: set EOM one byte early */
547 				v = true;
548 				pin->tx_post_eom = true;
549 			} else if (v && tx_no_eom(pin)) {
550 				/* Error injection: no EOM */
551 				v = false;
552 			}
553 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
554 					 CEC_ST_TX_DATA_BIT_0_LOW;
555 			break;
556 		}
557 		case ACK_BIT:
558 			pin->state = CEC_ST_TX_DATA_BIT_1_LOW;
559 			break;
560 		}
561 		if (tx_custom_bit(pin))
562 			pin->state = CEC_ST_TX_DATA_BIT_LOW_CUSTOM;
563 		cec_pin_low(pin);
564 		break;
565 
566 	case CEC_ST_TX_DATA_BIT_0_LOW:
567 	case CEC_ST_TX_DATA_BIT_1_LOW:
568 		v = pin->state == CEC_ST_TX_DATA_BIT_1_LOW;
569 		is_ack_bit = pin->tx_bit % 10 == ACK_BIT;
570 		if (v && (pin->tx_bit < 4 || is_ack_bit)) {
571 			pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE;
572 		} else if (!is_ack_bit && tx_short_bit(pin)) {
573 			/* Error Injection: send an invalid (too short) bit */
574 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH_SHORT :
575 					 CEC_ST_TX_DATA_BIT_0_HIGH_SHORT;
576 		} else if (!is_ack_bit && tx_long_bit(pin)) {
577 			/* Error Injection: send an invalid (too long) bit */
578 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH_LONG :
579 					 CEC_ST_TX_DATA_BIT_0_HIGH_LONG;
580 		} else {
581 			pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH :
582 					 CEC_ST_TX_DATA_BIT_0_HIGH;
583 		}
584 		cec_pin_high(pin);
585 		break;
586 
587 	case CEC_ST_TX_DATA_BIT_LOW_CUSTOM:
588 		pin->state = CEC_ST_TX_DATA_BIT_HIGH_CUSTOM;
589 		cec_pin_high(pin);
590 		break;
591 
592 	case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
593 		/* Read the CEC value at the sample time */
594 		v = cec_pin_read(pin);
595 		is_ack_bit = pin->tx_bit % 10 == ACK_BIT;
596 		/*
597 		 * If v == 0 and we're within the first 4 bits
598 		 * of the initiator, then someone else started
599 		 * transmitting and we lost the arbitration
600 		 * (i.e. the logical address of the other
601 		 * transmitter has more leading 0 bits in the
602 		 * initiator).
603 		 */
604 		if (!v && !is_ack_bit && !pin->tx_generated_poll) {
605 			pin->tx_msg.len = 0;
606 			pin->work_tx_ts = ts;
607 			pin->work_tx_status = CEC_TX_STATUS_ARB_LOST;
608 			wake_up_interruptible(&pin->kthread_waitq);
609 			pin->rx_bit = pin->tx_bit;
610 			pin->tx_bit = 0;
611 			memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
612 			pin->rx_msg.msg[0] = pin->tx_msg.msg[0];
613 			pin->rx_msg.msg[0] &= (0xff << (8 - pin->rx_bit));
614 			pin->rx_msg.len = 0;
615 			pin->ts = ktime_sub_us(ts, CEC_TIM_DATA_BIT_SAMPLE);
616 			pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
617 			pin->rx_bit++;
618 			break;
619 		}
620 		pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE;
621 		if (!is_ack_bit && tx_short_bit(pin)) {
622 			/* Error Injection: send an invalid (too short) bit */
623 			pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT;
624 		} else if (!is_ack_bit && tx_long_bit(pin)) {
625 			/* Error Injection: send an invalid (too long) bit */
626 			pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG;
627 		}
628 		if (!is_ack_bit)
629 			break;
630 		/* Was the message ACKed? */
631 		ack = cec_msg_is_broadcast(&pin->tx_msg) ? v : !v;
632 		if (!ack && (!pin->tx_ignore_nack_until_eom ||
633 		    pin->tx_bit / 10 == pin->tx_msg.len - 1) &&
634 		    !pin->tx_post_eom) {
635 			/*
636 			 * Note: the CEC spec is ambiguous regarding
637 			 * what action to take when a NACK appears
638 			 * before the last byte of the payload was
639 			 * transmitted: either stop transmitting
640 			 * immediately, or wait until the last byte
641 			 * was transmitted.
642 			 *
643 			 * Most CEC implementations appear to stop
644 			 * immediately, and that's what we do here
645 			 * as well.
646 			 */
647 			pin->tx_nacked = true;
648 		}
649 		break;
650 
651 	case CEC_ST_TX_PULSE_LOW_CUSTOM:
652 		cec_pin_high(pin);
653 		pin->state = CEC_ST_TX_PULSE_HIGH_CUSTOM;
654 		break;
655 
656 	case CEC_ST_TX_PULSE_HIGH_CUSTOM:
657 		cec_pin_to_idle(pin);
658 		break;
659 
660 	default:
661 		break;
662 	}
663 }
664 
665 /*
666  * Handle Receive-related states
667  *
668  * Basic state changes when receiving:
669  *
670  *	Rx Start Bit Low -> Rx Start Bit High ->
671  *   Regular data bits + EOM:
672  *	Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
673  *   Ack bit 0:
674  *	Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
675  *   Ack bit 1:
676  *	Rx Ack High Post -> Rx Data High ->
677  *   Ack bit 0 && EOM:
678  *	Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
679  */
680 static void cec_pin_rx_states(struct cec_pin *pin, ktime_t ts)
681 {
682 	s32 delta;
683 	bool v;
684 	bool ack;
685 	bool bcast, for_us;
686 	u8 dest;
687 	u8 poll;
688 
689 	switch (pin->state) {
690 	/* Receive states */
691 	case CEC_ST_RX_START_BIT_LOW:
692 		v = cec_pin_read(pin);
693 		if (!v)
694 			break;
695 		pin->state = CEC_ST_RX_START_BIT_HIGH;
696 		delta = ktime_us_delta(ts, pin->ts);
697 		/* Start bit low is too short, go back to idle */
698 		if (delta < CEC_TIM_START_BIT_LOW_MIN - CEC_TIM_IDLE_SAMPLE) {
699 			if (!pin->rx_start_bit_low_too_short_cnt++) {
700 				pin->rx_start_bit_low_too_short_ts = ktime_to_ns(pin->ts);
701 				pin->rx_start_bit_low_too_short_delta = delta;
702 			}
703 			cec_pin_to_idle(pin);
704 			break;
705 		}
706 		if (rx_arb_lost(pin, &poll)) {
707 			cec_msg_init(&pin->tx_msg, poll >> 4, poll & 0xf);
708 			pin->tx_generated_poll = true;
709 			pin->tx_extra_bytes = 0;
710 			pin->state = CEC_ST_TX_START_BIT_HIGH;
711 			pin->ts = ts;
712 		}
713 		break;
714 
715 	case CEC_ST_RX_START_BIT_HIGH:
716 		v = cec_pin_read(pin);
717 		delta = ktime_us_delta(ts, pin->ts);
718 		/*
719 		 * Unfortunately the spec does not specify when to give up
720 		 * and go to idle. We just pick TOTAL_LONG.
721 		 */
722 		if (v && delta > CEC_TIM_START_BIT_TOTAL_LONG) {
723 			pin->rx_start_bit_too_long_cnt++;
724 			cec_pin_to_idle(pin);
725 			break;
726 		}
727 		if (v)
728 			break;
729 		/* Start bit is too short, go back to idle */
730 		if (delta < CEC_TIM_START_BIT_TOTAL_MIN - CEC_TIM_IDLE_SAMPLE) {
731 			if (!pin->rx_start_bit_too_short_cnt++) {
732 				pin->rx_start_bit_too_short_ts = ktime_to_ns(pin->ts);
733 				pin->rx_start_bit_too_short_delta = delta;
734 			}
735 			cec_pin_to_idle(pin);
736 			break;
737 		}
738 		if (rx_low_drive(pin)) {
739 			/* Error injection: go to low drive */
740 			cec_pin_low(pin);
741 			pin->state = CEC_ST_RX_LOW_DRIVE;
742 			pin->rx_low_drive_cnt++;
743 			break;
744 		}
745 		pin->state = CEC_ST_RX_DATA_SAMPLE;
746 		pin->ts = ts;
747 		pin->rx_eom = false;
748 		break;
749 
750 	case CEC_ST_RX_DATA_SAMPLE:
751 		v = cec_pin_read(pin);
752 		pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
753 		switch (pin->rx_bit % 10) {
754 		default:
755 			if (pin->rx_bit / 10 < CEC_MAX_MSG_SIZE)
756 				pin->rx_msg.msg[pin->rx_bit / 10] |=
757 					v << (7 - (pin->rx_bit % 10));
758 			break;
759 		case EOM_BIT:
760 			pin->rx_eom = v;
761 			pin->rx_msg.len = pin->rx_bit / 10 + 1;
762 			break;
763 		case ACK_BIT:
764 			break;
765 		}
766 		pin->rx_bit++;
767 		break;
768 
769 	case CEC_ST_RX_DATA_POST_SAMPLE:
770 		pin->state = CEC_ST_RX_DATA_WAIT_FOR_LOW;
771 		break;
772 
773 	case CEC_ST_RX_DATA_WAIT_FOR_LOW:
774 		v = cec_pin_read(pin);
775 		delta = ktime_us_delta(ts, pin->ts);
776 		/*
777 		 * Unfortunately the spec does not specify when to give up
778 		 * and go to idle. We just pick TOTAL_LONG.
779 		 */
780 		if (v && delta > CEC_TIM_DATA_BIT_TOTAL_LONG) {
781 			pin->rx_data_bit_too_long_cnt++;
782 			cec_pin_to_idle(pin);
783 			break;
784 		}
785 		if (v)
786 			break;
787 
788 		if (rx_low_drive(pin)) {
789 			/* Error injection: go to low drive */
790 			cec_pin_low(pin);
791 			pin->state = CEC_ST_RX_LOW_DRIVE;
792 			pin->rx_low_drive_cnt++;
793 			break;
794 		}
795 
796 		/*
797 		 * Go to low drive state when the total bit time is
798 		 * too short.
799 		 */
800 		if (delta < CEC_TIM_DATA_BIT_TOTAL_MIN && !pin->rx_no_low_drive) {
801 			if (!pin->rx_data_bit_too_short_cnt++) {
802 				pin->rx_data_bit_too_short_ts = ktime_to_ns(pin->ts);
803 				pin->rx_data_bit_too_short_delta = delta;
804 			}
805 			cec_pin_low(pin);
806 			pin->state = CEC_ST_RX_LOW_DRIVE;
807 			pin->rx_low_drive_cnt++;
808 			break;
809 		}
810 		pin->ts = ts;
811 		if (pin->rx_bit % 10 != 9) {
812 			pin->state = CEC_ST_RX_DATA_SAMPLE;
813 			break;
814 		}
815 
816 		dest = cec_msg_destination(&pin->rx_msg);
817 		bcast = dest == CEC_LOG_ADDR_BROADCAST;
818 		/* for_us == broadcast or directed to us */
819 		for_us = bcast || (pin->la_mask & (1 << dest));
820 		/* ACK bit value */
821 		ack = bcast ? 1 : !for_us;
822 
823 		if (for_us && rx_nack(pin)) {
824 			/* Error injection: toggle the ACK bit */
825 			ack = !ack;
826 		}
827 
828 		if (ack) {
829 			/* No need to write to the bus, just wait */
830 			pin->state = CEC_ST_RX_ACK_HIGH_POST;
831 			break;
832 		}
833 		cec_pin_low(pin);
834 		pin->state = CEC_ST_RX_ACK_LOW;
835 		break;
836 
837 	case CEC_ST_RX_ACK_LOW:
838 		cec_pin_high(pin);
839 		pin->state = CEC_ST_RX_ACK_LOW_POST;
840 		break;
841 
842 	case CEC_ST_RX_ACK_LOW_POST:
843 	case CEC_ST_RX_ACK_HIGH_POST:
844 		v = cec_pin_read(pin);
845 		if (v && pin->rx_eom) {
846 			pin->work_rx_msg = pin->rx_msg;
847 			pin->work_rx_msg.rx_ts = ktime_to_ns(ts);
848 			wake_up_interruptible(&pin->kthread_waitq);
849 			pin->ts = ts;
850 			pin->state = CEC_ST_RX_ACK_FINISH;
851 			break;
852 		}
853 		pin->rx_bit++;
854 		pin->state = CEC_ST_RX_DATA_WAIT_FOR_LOW;
855 		break;
856 
857 	case CEC_ST_RX_ACK_FINISH:
858 		cec_pin_to_idle(pin);
859 		break;
860 
861 	default:
862 		break;
863 	}
864 }
865 
866 /*
867  * Main timer function
868  *
869  */
870 static enum hrtimer_restart cec_pin_timer(struct hrtimer *timer)
871 {
872 	struct cec_pin *pin = container_of(timer, struct cec_pin, timer);
873 	struct cec_adapter *adap = pin->adap;
874 	ktime_t ts;
875 	s32 delta;
876 	u32 usecs;
877 
878 	ts = ktime_get();
879 	if (ktime_to_ns(pin->timer_ts)) {
880 		delta = ktime_us_delta(ts, pin->timer_ts);
881 		pin->timer_cnt++;
882 		if (delta > 100 && pin->state != CEC_ST_IDLE) {
883 			/* Keep track of timer overruns */
884 			pin->timer_sum_overrun += delta;
885 			pin->timer_100us_overruns++;
886 			if (delta > 300)
887 				pin->timer_300us_overruns++;
888 			if (delta > pin->timer_max_overrun)
889 				pin->timer_max_overrun = delta;
890 		}
891 	}
892 	if (adap->monitor_pin_cnt)
893 		cec_pin_read(pin);
894 
895 	if (pin->wait_usecs) {
896 		/*
897 		 * If we are monitoring the pin, then we have to
898 		 * sample at regular intervals.
899 		 */
900 		if (pin->wait_usecs > 150) {
901 			pin->wait_usecs -= 100;
902 			pin->timer_ts = ktime_add_us(ts, 100);
903 			hrtimer_forward_now(timer, us_to_ktime(100));
904 			return HRTIMER_RESTART;
905 		}
906 		if (pin->wait_usecs > 100) {
907 			pin->wait_usecs /= 2;
908 			pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
909 			hrtimer_forward_now(timer,
910 					us_to_ktime(pin->wait_usecs));
911 			return HRTIMER_RESTART;
912 		}
913 		pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
914 		hrtimer_forward_now(timer,
915 				    us_to_ktime(pin->wait_usecs));
916 		pin->wait_usecs = 0;
917 		return HRTIMER_RESTART;
918 	}
919 
920 	switch (pin->state) {
921 	/* Transmit states */
922 	case CEC_ST_TX_WAIT_FOR_HIGH:
923 	case CEC_ST_TX_START_BIT_LOW:
924 	case CEC_ST_TX_START_BIT_HIGH:
925 	case CEC_ST_TX_START_BIT_HIGH_SHORT:
926 	case CEC_ST_TX_START_BIT_HIGH_LONG:
927 	case CEC_ST_TX_START_BIT_LOW_CUSTOM:
928 	case CEC_ST_TX_START_BIT_HIGH_CUSTOM:
929 	case CEC_ST_TX_DATA_BIT_0_LOW:
930 	case CEC_ST_TX_DATA_BIT_0_HIGH:
931 	case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT:
932 	case CEC_ST_TX_DATA_BIT_0_HIGH_LONG:
933 	case CEC_ST_TX_DATA_BIT_1_LOW:
934 	case CEC_ST_TX_DATA_BIT_1_HIGH:
935 	case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT:
936 	case CEC_ST_TX_DATA_BIT_1_HIGH_LONG:
937 	case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
938 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
939 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT:
940 	case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG:
941 	case CEC_ST_TX_DATA_BIT_LOW_CUSTOM:
942 	case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM:
943 	case CEC_ST_TX_PULSE_LOW_CUSTOM:
944 	case CEC_ST_TX_PULSE_HIGH_CUSTOM:
945 		cec_pin_tx_states(pin, ts);
946 		break;
947 
948 	/* Receive states */
949 	case CEC_ST_RX_START_BIT_LOW:
950 	case CEC_ST_RX_START_BIT_HIGH:
951 	case CEC_ST_RX_DATA_SAMPLE:
952 	case CEC_ST_RX_DATA_POST_SAMPLE:
953 	case CEC_ST_RX_DATA_WAIT_FOR_LOW:
954 	case CEC_ST_RX_ACK_LOW:
955 	case CEC_ST_RX_ACK_LOW_POST:
956 	case CEC_ST_RX_ACK_HIGH_POST:
957 	case CEC_ST_RX_ACK_FINISH:
958 		cec_pin_rx_states(pin, ts);
959 		break;
960 
961 	case CEC_ST_IDLE:
962 	case CEC_ST_TX_WAIT:
963 		if (!cec_pin_high(pin)) {
964 			/* Start bit, switch to receive state */
965 			pin->ts = ts;
966 			pin->state = CEC_ST_RX_START_BIT_LOW;
967 			/*
968 			 * If a transmit is pending, then that transmit should
969 			 * use a signal free time of no more than
970 			 * CEC_SIGNAL_FREE_TIME_NEW_INITIATOR since it will
971 			 * have a new initiator due to the receive that is now
972 			 * starting.
973 			 */
974 			if (pin->tx_msg.len && pin->tx_signal_free_time >
975 			    CEC_SIGNAL_FREE_TIME_NEW_INITIATOR)
976 				pin->tx_signal_free_time =
977 					CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
978 			break;
979 		}
980 		if (ktime_to_ns(pin->ts) == 0)
981 			pin->ts = ts;
982 		if (pin->tx_msg.len) {
983 			/*
984 			 * Check if the bus has been free for long enough
985 			 * so we can kick off the pending transmit.
986 			 */
987 			delta = ktime_us_delta(ts, pin->ts);
988 			if (delta / CEC_TIM_DATA_BIT_TOTAL >=
989 			    pin->tx_signal_free_time) {
990 				pin->tx_nacked = false;
991 				if (tx_custom_start(pin))
992 					pin->state = CEC_ST_TX_START_BIT_LOW_CUSTOM;
993 				else
994 					pin->state = CEC_ST_TX_START_BIT_LOW;
995 				/* Generate start bit */
996 				cec_pin_low(pin);
997 				break;
998 			}
999 			if (delta / CEC_TIM_DATA_BIT_TOTAL >=
1000 			    pin->tx_signal_free_time - 1)
1001 				pin->state = CEC_ST_TX_WAIT;
1002 			break;
1003 		}
1004 		if (pin->tx_custom_pulse && pin->state == CEC_ST_IDLE) {
1005 			pin->tx_custom_pulse = false;
1006 			/* Generate custom pulse */
1007 			cec_pin_low(pin);
1008 			pin->state = CEC_ST_TX_PULSE_LOW_CUSTOM;
1009 			break;
1010 		}
1011 		if (pin->state != CEC_ST_IDLE || pin->ops->enable_irq == NULL ||
1012 		    pin->enable_irq_failed || adap->is_configuring ||
1013 		    adap->is_configured || adap->monitor_all_cnt || !adap->monitor_pin_cnt)
1014 			break;
1015 		/* Switch to interrupt mode */
1016 		atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_ENABLE);
1017 		pin->state = CEC_ST_RX_IRQ;
1018 		wake_up_interruptible(&pin->kthread_waitq);
1019 		return HRTIMER_NORESTART;
1020 
1021 	case CEC_ST_TX_LOW_DRIVE:
1022 	case CEC_ST_RX_LOW_DRIVE:
1023 		cec_pin_high(pin);
1024 		cec_pin_to_idle(pin);
1025 		break;
1026 
1027 	default:
1028 		break;
1029 	}
1030 
1031 	switch (pin->state) {
1032 	case CEC_ST_TX_START_BIT_LOW_CUSTOM:
1033 	case CEC_ST_TX_DATA_BIT_LOW_CUSTOM:
1034 	case CEC_ST_TX_PULSE_LOW_CUSTOM:
1035 		usecs = pin->tx_custom_low_usecs;
1036 		break;
1037 	case CEC_ST_TX_START_BIT_HIGH_CUSTOM:
1038 	case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM:
1039 	case CEC_ST_TX_PULSE_HIGH_CUSTOM:
1040 		usecs = pin->tx_custom_high_usecs;
1041 		break;
1042 	default:
1043 		usecs = states[pin->state].usecs;
1044 		break;
1045 	}
1046 
1047 	if (!adap->monitor_pin_cnt || usecs <= 150) {
1048 		pin->wait_usecs = 0;
1049 		pin->timer_ts = ktime_add_us(ts, usecs);
1050 		hrtimer_forward_now(timer, us_to_ktime(usecs));
1051 		return HRTIMER_RESTART;
1052 	}
1053 	pin->wait_usecs = usecs - 100;
1054 	pin->timer_ts = ktime_add_us(ts, 100);
1055 	hrtimer_forward_now(timer, us_to_ktime(100));
1056 	return HRTIMER_RESTART;
1057 }
1058 
1059 static int cec_pin_thread_func(void *_adap)
1060 {
1061 	struct cec_adapter *adap = _adap;
1062 	struct cec_pin *pin = adap->pin;
1063 
1064 	pin->enabled_irq = false;
1065 	pin->enable_irq_failed = false;
1066 	for (;;) {
1067 		wait_event_interruptible(pin->kthread_waitq,
1068 					 kthread_should_stop() ||
1069 					 pin->work_rx_msg.len ||
1070 					 pin->work_tx_status ||
1071 					 atomic_read(&pin->work_irq_change) ||
1072 					 atomic_read(&pin->work_pin_num_events));
1073 
1074 		if (kthread_should_stop())
1075 			break;
1076 
1077 		if (pin->work_rx_msg.len) {
1078 			struct cec_msg *msg = &pin->work_rx_msg;
1079 
1080 			if (msg->len > 1 && msg->len < CEC_MAX_MSG_SIZE &&
1081 			    rx_add_byte(pin)) {
1082 				/* Error injection: add byte to the message */
1083 				msg->msg[msg->len++] = 0x55;
1084 			}
1085 			if (msg->len > 2 && rx_remove_byte(pin)) {
1086 				/* Error injection: remove byte from message */
1087 				msg->len--;
1088 			}
1089 			if (msg->len > CEC_MAX_MSG_SIZE)
1090 				msg->len = CEC_MAX_MSG_SIZE;
1091 			cec_received_msg_ts(adap, msg,
1092 				ns_to_ktime(pin->work_rx_msg.rx_ts));
1093 			msg->len = 0;
1094 		}
1095 
1096 		if (pin->work_tx_status) {
1097 			unsigned int tx_status = pin->work_tx_status;
1098 
1099 			pin->work_tx_status = 0;
1100 			cec_transmit_attempt_done_ts(adap, tx_status,
1101 						     pin->work_tx_ts);
1102 		}
1103 
1104 		while (atomic_read(&pin->work_pin_num_events)) {
1105 			unsigned int idx = pin->work_pin_events_rd;
1106 			u8 v = pin->work_pin_events[idx];
1107 
1108 			cec_queue_pin_cec_event(adap,
1109 						v & CEC_PIN_EVENT_FL_IS_HIGH,
1110 						v & CEC_PIN_EVENT_FL_DROPPED,
1111 						pin->work_pin_ts[idx]);
1112 			pin->work_pin_events_rd = (idx + 1) % CEC_NUM_PIN_EVENTS;
1113 			atomic_dec(&pin->work_pin_num_events);
1114 		}
1115 
1116 		switch (atomic_xchg(&pin->work_irq_change,
1117 				    CEC_PIN_IRQ_UNCHANGED)) {
1118 		case CEC_PIN_IRQ_DISABLE:
1119 			if (pin->enabled_irq) {
1120 				pin->ops->disable_irq(adap);
1121 				pin->enabled_irq = false;
1122 				pin->enable_irq_failed = false;
1123 			}
1124 			cec_pin_high(pin);
1125 			if (pin->state == CEC_ST_OFF)
1126 				break;
1127 			cec_pin_to_idle(pin);
1128 			hrtimer_start(&pin->timer, ns_to_ktime(0),
1129 				      HRTIMER_MODE_REL);
1130 			break;
1131 		case CEC_PIN_IRQ_ENABLE:
1132 			if (pin->enabled_irq || !pin->ops->enable_irq ||
1133 			    pin->adap->devnode.unregistered)
1134 				break;
1135 			pin->enable_irq_failed = !pin->ops->enable_irq(adap);
1136 			if (pin->enable_irq_failed) {
1137 				cec_pin_to_idle(pin);
1138 				hrtimer_start(&pin->timer, ns_to_ktime(0),
1139 					      HRTIMER_MODE_REL);
1140 			} else {
1141 				pin->enabled_irq = true;
1142 			}
1143 			break;
1144 		default:
1145 			break;
1146 		}
1147 	}
1148 
1149 	if (pin->enabled_irq) {
1150 		pin->ops->disable_irq(pin->adap);
1151 		pin->enabled_irq = false;
1152 		pin->enable_irq_failed = false;
1153 		cec_pin_high(pin);
1154 	}
1155 	return 0;
1156 }
1157 
1158 static int cec_pin_adap_enable(struct cec_adapter *adap, bool enable)
1159 {
1160 	struct cec_pin *pin = adap->pin;
1161 
1162 	if (enable) {
1163 		cec_pin_read(pin);
1164 		cec_pin_to_idle(pin);
1165 		pin->tx_msg.len = 0;
1166 		pin->timer_ts = ns_to_ktime(0);
1167 		atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
1168 		if (!pin->kthread) {
1169 			pin->kthread = kthread_run(cec_pin_thread_func, adap,
1170 						   "cec-pin");
1171 			if (IS_ERR(pin->kthread)) {
1172 				int err = PTR_ERR(pin->kthread);
1173 
1174 				pr_err("cec-pin: kernel_thread() failed\n");
1175 				pin->kthread = NULL;
1176 				return err;
1177 			}
1178 		}
1179 		hrtimer_start(&pin->timer, ns_to_ktime(0),
1180 			      HRTIMER_MODE_REL);
1181 	} else if (pin->kthread) {
1182 		hrtimer_cancel(&pin->timer);
1183 		cec_pin_high(pin);
1184 		cec_pin_to_idle(pin);
1185 		pin->state = CEC_ST_OFF;
1186 		pin->work_tx_status = 0;
1187 		atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
1188 		wake_up_interruptible(&pin->kthread_waitq);
1189 	}
1190 	return 0;
1191 }
1192 
1193 static int cec_pin_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
1194 {
1195 	struct cec_pin *pin = adap->pin;
1196 
1197 	if (log_addr == CEC_LOG_ADDR_INVALID)
1198 		pin->la_mask = 0;
1199 	else
1200 		pin->la_mask |= (1 << log_addr);
1201 	return 0;
1202 }
1203 
1204 void cec_pin_start_timer(struct cec_pin *pin)
1205 {
1206 	if (pin->state != CEC_ST_RX_IRQ)
1207 		return;
1208 
1209 	atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
1210 	wake_up_interruptible(&pin->kthread_waitq);
1211 }
1212 
1213 static int cec_pin_adap_transmit(struct cec_adapter *adap, u8 attempts,
1214 				      u32 signal_free_time, struct cec_msg *msg)
1215 {
1216 	struct cec_pin *pin = adap->pin;
1217 
1218 	/*
1219 	 * If a receive is in progress, then this transmit should use
1220 	 * a signal free time of max CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
1221 	 * since when it starts transmitting it will have a new initiator.
1222 	 */
1223 	if (pin->state != CEC_ST_IDLE &&
1224 	    signal_free_time > CEC_SIGNAL_FREE_TIME_NEW_INITIATOR)
1225 		signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
1226 
1227 	pin->tx_signal_free_time = signal_free_time;
1228 	pin->tx_extra_bytes = 0;
1229 	pin->tx_msg = *msg;
1230 	if (msg->len > 1) {
1231 		/* Error injection: add byte to the message */
1232 		pin->tx_extra_bytes = tx_add_bytes(pin);
1233 	}
1234 	if (msg->len > 2 && tx_remove_byte(pin)) {
1235 		/* Error injection: remove byte from the message */
1236 		pin->tx_msg.len--;
1237 	}
1238 	pin->work_tx_status = 0;
1239 	pin->tx_bit = 0;
1240 	cec_pin_start_timer(pin);
1241 	return 0;
1242 }
1243 
1244 static void cec_pin_adap_status(struct cec_adapter *adap,
1245 				       struct seq_file *file)
1246 {
1247 	struct cec_pin *pin = adap->pin;
1248 
1249 	seq_printf(file, "state: %s\n", states[pin->state].name);
1250 	seq_printf(file, "tx_bit: %d\n", pin->tx_bit);
1251 	seq_printf(file, "rx_bit: %d\n", pin->rx_bit);
1252 	seq_printf(file, "cec pin: %d\n", call_pin_op(pin, read));
1253 	seq_printf(file, "cec pin events dropped: %u\n",
1254 		   pin->work_pin_events_dropped_cnt);
1255 	if (pin->ops->enable_irq)
1256 		seq_printf(file, "irq %s\n", pin->enabled_irq ? "enabled" :
1257 			   (pin->enable_irq_failed ? "failed" : "disabled"));
1258 	if (pin->timer_100us_overruns) {
1259 		seq_printf(file, "timer overruns > 100us: %u of %u\n",
1260 			   pin->timer_100us_overruns, pin->timer_cnt);
1261 		seq_printf(file, "timer overruns > 300us: %u of %u\n",
1262 			   pin->timer_300us_overruns, pin->timer_cnt);
1263 		seq_printf(file, "max timer overrun: %u usecs\n",
1264 			   pin->timer_max_overrun);
1265 		seq_printf(file, "avg timer overrun: %u usecs\n",
1266 			   pin->timer_sum_overrun / pin->timer_100us_overruns);
1267 	}
1268 	if (pin->rx_start_bit_low_too_short_cnt)
1269 		seq_printf(file,
1270 			   "rx start bit low too short: %u (delta %u, ts %llu)\n",
1271 			   pin->rx_start_bit_low_too_short_cnt,
1272 			   pin->rx_start_bit_low_too_short_delta,
1273 			   pin->rx_start_bit_low_too_short_ts);
1274 	if (pin->rx_start_bit_too_short_cnt)
1275 		seq_printf(file,
1276 			   "rx start bit too short: %u (delta %u, ts %llu)\n",
1277 			   pin->rx_start_bit_too_short_cnt,
1278 			   pin->rx_start_bit_too_short_delta,
1279 			   pin->rx_start_bit_too_short_ts);
1280 	if (pin->rx_start_bit_too_long_cnt)
1281 		seq_printf(file, "rx start bit too long: %u\n",
1282 			   pin->rx_start_bit_too_long_cnt);
1283 	if (pin->rx_data_bit_too_short_cnt)
1284 		seq_printf(file,
1285 			   "rx data bit too short: %u (delta %u, ts %llu)\n",
1286 			   pin->rx_data_bit_too_short_cnt,
1287 			   pin->rx_data_bit_too_short_delta,
1288 			   pin->rx_data_bit_too_short_ts);
1289 	if (pin->rx_data_bit_too_long_cnt)
1290 		seq_printf(file, "rx data bit too long: %u\n",
1291 			   pin->rx_data_bit_too_long_cnt);
1292 	seq_printf(file, "rx initiated low drive: %u\n", pin->rx_low_drive_cnt);
1293 	seq_printf(file, "tx detected low drive: %u\n", pin->tx_low_drive_cnt);
1294 	pin->work_pin_events_dropped_cnt = 0;
1295 	pin->timer_cnt = 0;
1296 	pin->timer_100us_overruns = 0;
1297 	pin->timer_300us_overruns = 0;
1298 	pin->timer_max_overrun = 0;
1299 	pin->timer_sum_overrun = 0;
1300 	pin->rx_start_bit_low_too_short_cnt = 0;
1301 	pin->rx_start_bit_too_short_cnt = 0;
1302 	pin->rx_start_bit_too_long_cnt = 0;
1303 	pin->rx_data_bit_too_short_cnt = 0;
1304 	pin->rx_data_bit_too_long_cnt = 0;
1305 	pin->rx_low_drive_cnt = 0;
1306 	pin->tx_low_drive_cnt = 0;
1307 	call_void_pin_op(pin, status, file);
1308 }
1309 
1310 static int cec_pin_adap_monitor_all_enable(struct cec_adapter *adap,
1311 						  bool enable)
1312 {
1313 	struct cec_pin *pin = adap->pin;
1314 
1315 	pin->monitor_all = enable;
1316 	return 0;
1317 }
1318 
1319 static void cec_pin_adap_free(struct cec_adapter *adap)
1320 {
1321 	struct cec_pin *pin = adap->pin;
1322 
1323 	if (pin->kthread)
1324 		kthread_stop(pin->kthread);
1325 	pin->kthread = NULL;
1326 	if (pin->ops->free)
1327 		pin->ops->free(adap);
1328 	adap->pin = NULL;
1329 	kfree(pin);
1330 }
1331 
1332 static int cec_pin_received(struct cec_adapter *adap, struct cec_msg *msg)
1333 {
1334 	struct cec_pin *pin = adap->pin;
1335 
1336 	if (pin->ops->received && !adap->devnode.unregistered)
1337 		return pin->ops->received(adap, msg);
1338 	return -ENOMSG;
1339 }
1340 
1341 void cec_pin_changed(struct cec_adapter *adap, bool value)
1342 {
1343 	struct cec_pin *pin = adap->pin;
1344 
1345 	cec_pin_update(pin, value, false);
1346 	if (!value && (adap->is_configuring || adap->is_configured ||
1347 		       adap->monitor_all_cnt || !adap->monitor_pin_cnt))
1348 		atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
1349 }
1350 EXPORT_SYMBOL_GPL(cec_pin_changed);
1351 
1352 static const struct cec_adap_ops cec_pin_adap_ops = {
1353 	.adap_enable = cec_pin_adap_enable,
1354 	.adap_monitor_all_enable = cec_pin_adap_monitor_all_enable,
1355 	.adap_log_addr = cec_pin_adap_log_addr,
1356 	.adap_transmit = cec_pin_adap_transmit,
1357 	.adap_status = cec_pin_adap_status,
1358 	.adap_free = cec_pin_adap_free,
1359 #ifdef CONFIG_CEC_PIN_ERROR_INJ
1360 	.error_inj_parse_line = cec_pin_error_inj_parse_line,
1361 	.error_inj_show = cec_pin_error_inj_show,
1362 #endif
1363 	.received = cec_pin_received,
1364 };
1365 
1366 struct cec_adapter *cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops,
1367 					void *priv, const char *name, u32 caps)
1368 {
1369 	struct cec_adapter *adap;
1370 	struct cec_pin *pin = kzalloc(sizeof(*pin), GFP_KERNEL);
1371 
1372 	if (pin == NULL)
1373 		return ERR_PTR(-ENOMEM);
1374 	pin->ops = pin_ops;
1375 	atomic_set(&pin->work_pin_num_events, 0);
1376 	hrtimer_setup(&pin->timer, cec_pin_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1377 	init_waitqueue_head(&pin->kthread_waitq);
1378 	pin->tx_custom_low_usecs = CEC_TIM_CUSTOM_DEFAULT;
1379 	pin->tx_custom_high_usecs = CEC_TIM_CUSTOM_DEFAULT;
1380 	pin->tx_glitch_low_usecs = CEC_TIM_GLITCH_DEFAULT;
1381 	pin->tx_glitch_high_usecs = CEC_TIM_GLITCH_DEFAULT;
1382 
1383 	adap = cec_allocate_adapter(&cec_pin_adap_ops, priv, name,
1384 			    caps | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN,
1385 			    CEC_MAX_LOG_ADDRS);
1386 
1387 	if (IS_ERR(adap)) {
1388 		kfree(pin);
1389 		return adap;
1390 	}
1391 
1392 	adap->pin = pin;
1393 	pin->adap = adap;
1394 	cec_pin_update(pin, cec_pin_high(pin), true);
1395 	return adap;
1396 }
1397 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter);
1398