1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter 4 * 5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/errno.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kmod.h> 13 #include <linux/ktime.h> 14 #include <linux/slab.h> 15 #include <linux/mm.h> 16 #include <linux/string.h> 17 #include <linux/types.h> 18 19 #include <drm/drm_connector.h> 20 #include <drm/drm_device.h> 21 #include <drm/drm_edid.h> 22 #include <drm/drm_file.h> 23 24 #include "cec-priv.h" 25 26 static void cec_fill_msg_report_features(struct cec_adapter *adap, 27 struct cec_msg *msg, 28 unsigned int la_idx); 29 30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) 31 { 32 int i; 33 34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++) 35 if (adap->log_addrs.log_addr[i] == log_addr) 36 return i; 37 return -1; 38 } 39 40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) 41 { 42 int i = cec_log_addr2idx(adap, log_addr); 43 44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; 45 } 46 47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, 48 unsigned int *offset) 49 { 50 unsigned int loc = cec_get_edid_spa_location(edid, size); 51 52 if (offset) 53 *offset = loc; 54 if (loc == 0) 55 return CEC_PHYS_ADDR_INVALID; 56 return (edid[loc] << 8) | edid[loc + 1]; 57 } 58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); 59 60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, 61 const struct drm_connector *connector) 62 { 63 memset(conn_info, 0, sizeof(*conn_info)); 64 conn_info->type = CEC_CONNECTOR_TYPE_DRM; 65 conn_info->drm.card_no = connector->dev->primary->index; 66 conn_info->drm.connector_id = connector->base.id; 67 } 68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); 69 70 /* 71 * Queue a new event for this filehandle. If ts == 0, then set it 72 * to the current time. 73 * 74 * We keep a queue of at most max_event events where max_event differs 75 * per event. If the queue becomes full, then drop the oldest event and 76 * keep track of how many events we've dropped. 77 */ 78 void cec_queue_event_fh(struct cec_fh *fh, 79 const struct cec_event *new_ev, u64 ts) 80 { 81 static const u16 max_events[CEC_NUM_EVENTS] = { 82 1, 1, 800, 800, 8, 8, 8, 8 83 }; 84 struct cec_event_entry *entry; 85 unsigned int ev_idx = new_ev->event - 1; 86 87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) 88 return; 89 90 if (ts == 0) 91 ts = ktime_get_ns(); 92 93 mutex_lock(&fh->lock); 94 if (ev_idx < CEC_NUM_CORE_EVENTS) 95 entry = &fh->core_events[ev_idx]; 96 else 97 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 98 if (entry) { 99 if (new_ev->event == CEC_EVENT_LOST_MSGS && 100 fh->queued_events[ev_idx]) { 101 entry->ev.lost_msgs.lost_msgs += 102 new_ev->lost_msgs.lost_msgs; 103 goto unlock; 104 } 105 entry->ev = *new_ev; 106 entry->ev.ts = ts; 107 108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) { 109 /* Add new msg at the end of the queue */ 110 list_add_tail(&entry->list, &fh->events[ev_idx]); 111 fh->queued_events[ev_idx]++; 112 fh->total_queued_events++; 113 goto unlock; 114 } 115 116 if (ev_idx >= CEC_NUM_CORE_EVENTS) { 117 list_add_tail(&entry->list, &fh->events[ev_idx]); 118 /* drop the oldest event */ 119 entry = list_first_entry(&fh->events[ev_idx], 120 struct cec_event_entry, list); 121 list_del(&entry->list); 122 kfree(entry); 123 } 124 } 125 /* Mark that events were lost */ 126 entry = list_first_entry_or_null(&fh->events[ev_idx], 127 struct cec_event_entry, list); 128 if (entry) 129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; 130 131 unlock: 132 mutex_unlock(&fh->lock); 133 wake_up_interruptible(&fh->wait); 134 } 135 136 /* Queue a new event for all open filehandles. */ 137 static void cec_queue_event(struct cec_adapter *adap, 138 const struct cec_event *ev) 139 { 140 u64 ts = ktime_get_ns(); 141 struct cec_fh *fh; 142 143 mutex_lock(&adap->devnode.lock_fhs); 144 list_for_each_entry(fh, &adap->devnode.fhs, list) 145 cec_queue_event_fh(fh, ev, ts); 146 mutex_unlock(&adap->devnode.lock_fhs); 147 } 148 149 /* Notify userspace that the CEC pin changed state at the given time. */ 150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, 151 bool dropped_events, ktime_t ts) 152 { 153 struct cec_event ev = { 154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : 155 CEC_EVENT_PIN_CEC_LOW, 156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, 157 }; 158 struct cec_fh *fh; 159 160 mutex_lock(&adap->devnode.lock_fhs); 161 list_for_each_entry(fh, &adap->devnode.fhs, list) { 162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN) 163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 164 } 165 mutex_unlock(&adap->devnode.lock_fhs); 166 } 167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); 168 169 /* Notify userspace that the HPD pin changed state at the given time. */ 170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 171 { 172 struct cec_event ev = { 173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : 174 CEC_EVENT_PIN_HPD_LOW, 175 }; 176 struct cec_fh *fh; 177 178 mutex_lock(&adap->devnode.lock_fhs); 179 list_for_each_entry(fh, &adap->devnode.fhs, list) 180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 181 mutex_unlock(&adap->devnode.lock_fhs); 182 } 183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); 184 185 /* Notify userspace that the 5V pin changed state at the given time. */ 186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 187 { 188 struct cec_event ev = { 189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH : 190 CEC_EVENT_PIN_5V_LOW, 191 }; 192 struct cec_fh *fh; 193 194 mutex_lock(&adap->devnode.lock_fhs); 195 list_for_each_entry(fh, &adap->devnode.fhs, list) 196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 197 mutex_unlock(&adap->devnode.lock_fhs); 198 } 199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); 200 201 /* 202 * Queue a new message for this filehandle. 203 * 204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the 205 * queue becomes full, then drop the oldest message and keep track 206 * of how many messages we've dropped. 207 */ 208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) 209 { 210 static const struct cec_event ev_lost_msgs = { 211 .event = CEC_EVENT_LOST_MSGS, 212 .flags = 0, 213 { 214 .lost_msgs = { 1 }, 215 }, 216 }; 217 struct cec_msg_entry *entry; 218 219 mutex_lock(&fh->lock); 220 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 221 if (entry) { 222 entry->msg = *msg; 223 /* Add new msg at the end of the queue */ 224 list_add_tail(&entry->list, &fh->msgs); 225 226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { 227 /* All is fine if there is enough room */ 228 fh->queued_msgs++; 229 mutex_unlock(&fh->lock); 230 wake_up_interruptible(&fh->wait); 231 return; 232 } 233 234 /* 235 * if the message queue is full, then drop the oldest one and 236 * send a lost message event. 237 */ 238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); 239 list_del(&entry->list); 240 kfree(entry); 241 } 242 mutex_unlock(&fh->lock); 243 244 /* 245 * We lost a message, either because kmalloc failed or the queue 246 * was full. 247 */ 248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); 249 } 250 251 /* 252 * Queue the message for those filehandles that are in monitor mode. 253 * If valid_la is true (this message is for us or was sent by us), 254 * then pass it on to any monitoring filehandle. If this message 255 * isn't for us or from us, then only give it to filehandles that 256 * are in MONITOR_ALL mode. 257 * 258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is 259 * set and the CEC adapter was placed in 'monitor all' mode. 260 */ 261 static void cec_queue_msg_monitor(struct cec_adapter *adap, 262 const struct cec_msg *msg, 263 bool valid_la) 264 { 265 struct cec_fh *fh; 266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : 267 CEC_MODE_MONITOR_ALL; 268 269 mutex_lock(&adap->devnode.lock_fhs); 270 list_for_each_entry(fh, &adap->devnode.fhs, list) { 271 if (fh->mode_follower >= monitor_mode) 272 cec_queue_msg_fh(fh, msg); 273 } 274 mutex_unlock(&adap->devnode.lock_fhs); 275 } 276 277 /* 278 * Queue the message for follower filehandles. 279 */ 280 static void cec_queue_msg_followers(struct cec_adapter *adap, 281 const struct cec_msg *msg) 282 { 283 struct cec_fh *fh; 284 285 mutex_lock(&adap->devnode.lock_fhs); 286 list_for_each_entry(fh, &adap->devnode.fhs, list) { 287 if (fh->mode_follower == CEC_MODE_FOLLOWER) 288 cec_queue_msg_fh(fh, msg); 289 } 290 mutex_unlock(&adap->devnode.lock_fhs); 291 } 292 293 /* Notify userspace of an adapter state change. */ 294 static void cec_post_state_event(struct cec_adapter *adap) 295 { 296 struct cec_event ev = { 297 .event = CEC_EVENT_STATE_CHANGE, 298 }; 299 300 ev.state_change.phys_addr = adap->phys_addr; 301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; 302 ev.state_change.have_conn_info = 303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; 304 cec_queue_event(adap, &ev); 305 } 306 307 /* 308 * A CEC transmit (and a possible wait for reply) completed. 309 * If this was in blocking mode, then complete it, otherwise 310 * queue the message for userspace to dequeue later. 311 * 312 * This function is called with adap->lock held. 313 */ 314 static void cec_data_completed(struct cec_data *data) 315 { 316 /* 317 * Delete this transmit from the filehandle's xfer_list since 318 * we're done with it. 319 * 320 * Note that if the filehandle is closed before this transmit 321 * finished, then the release() function will set data->fh to NULL. 322 * Without that we would be referring to a closed filehandle. 323 */ 324 if (data->fh) 325 list_del_init(&data->xfer_list); 326 327 if (data->blocking) { 328 /* 329 * Someone is blocking so mark the message as completed 330 * and call complete. 331 */ 332 data->completed = true; 333 complete(&data->c); 334 } else { 335 /* 336 * No blocking, so just queue the message if needed and 337 * free the memory. 338 */ 339 if (data->fh) 340 cec_queue_msg_fh(data->fh, &data->msg); 341 kfree(data); 342 } 343 } 344 345 /* 346 * A pending CEC transmit needs to be cancelled, either because the CEC 347 * adapter is disabled or the transmit takes an impossibly long time to 348 * finish, or the reply timed out. 349 * 350 * This function is called with adap->lock held. 351 */ 352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status) 353 { 354 struct cec_adapter *adap = data->adap; 355 356 /* 357 * It's either the current transmit, or it is a pending 358 * transmit. Take the appropriate action to clear it. 359 */ 360 if (adap->transmitting == data) { 361 adap->transmitting = NULL; 362 } else { 363 list_del_init(&data->list); 364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) 365 if (!WARN_ON(!adap->transmit_queue_sz)) 366 adap->transmit_queue_sz--; 367 } 368 369 if (data->msg.tx_status & CEC_TX_STATUS_OK) { 370 data->msg.rx_ts = ktime_get_ns(); 371 data->msg.rx_status = rx_status; 372 if (!data->blocking) 373 data->msg.tx_status = 0; 374 } else { 375 data->msg.tx_ts = ktime_get_ns(); 376 data->msg.tx_status |= tx_status | 377 CEC_TX_STATUS_MAX_RETRIES; 378 data->msg.tx_error_cnt++; 379 data->attempts = 0; 380 if (!data->blocking) 381 data->msg.rx_status = 0; 382 } 383 384 /* Queue transmitted message for monitoring purposes */ 385 cec_queue_msg_monitor(adap, &data->msg, 1); 386 387 if (!data->blocking && data->msg.sequence) 388 /* Allow drivers to react to a canceled transmit */ 389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg); 390 391 cec_data_completed(data); 392 } 393 394 /* 395 * Flush all pending transmits and cancel any pending timeout work. 396 * 397 * This function is called with adap->lock held. 398 */ 399 static void cec_flush(struct cec_adapter *adap) 400 { 401 struct cec_data *data, *n; 402 403 /* 404 * If the adapter is disabled, or we're asked to stop, 405 * then cancel any pending transmits. 406 */ 407 while (!list_empty(&adap->transmit_queue)) { 408 data = list_first_entry(&adap->transmit_queue, 409 struct cec_data, list); 410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 411 } 412 if (adap->transmitting) 413 adap->transmit_in_progress_aborted = true; 414 415 /* Cancel the pending timeout work. */ 416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) { 417 if (cancel_delayed_work(&data->work)) 418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 419 /* 420 * If cancel_delayed_work returned false, then 421 * the cec_wait_timeout function is running, 422 * which will call cec_data_completed. So no 423 * need to do anything special in that case. 424 */ 425 } 426 /* 427 * If something went wrong and this counter isn't what it should 428 * be, then this will reset it back to 0. Warn if it is not 0, 429 * since it indicates a bug, either in this framework or in a 430 * CEC driver. 431 */ 432 if (WARN_ON(adap->transmit_queue_sz)) 433 adap->transmit_queue_sz = 0; 434 } 435 436 /* 437 * Main CEC state machine 438 * 439 * Wait until the thread should be stopped, or we are not transmitting and 440 * a new transmit message is queued up, in which case we start transmitting 441 * that message. When the adapter finished transmitting the message it will 442 * call cec_transmit_done(). 443 * 444 * If the adapter is disabled, then remove all queued messages instead. 445 * 446 * If the current transmit times out, then cancel that transmit. 447 */ 448 int cec_thread_func(void *_adap) 449 { 450 struct cec_adapter *adap = _adap; 451 452 for (;;) { 453 unsigned int signal_free_time; 454 struct cec_data *data; 455 bool timeout = false; 456 u8 attempts; 457 458 if (adap->transmit_in_progress) { 459 int err; 460 461 /* 462 * We are transmitting a message, so add a timeout 463 * to prevent the state machine to get stuck waiting 464 * for this message to finalize and add a check to 465 * see if the adapter is disabled in which case the 466 * transmit should be canceled. 467 */ 468 err = wait_event_interruptible_timeout(adap->kthread_waitq, 469 (adap->needs_hpd && 470 (!adap->is_configured && !adap->is_configuring)) || 471 kthread_should_stop() || 472 (!adap->transmit_in_progress && 473 !list_empty(&adap->transmit_queue)), 474 msecs_to_jiffies(adap->xfer_timeout_ms)); 475 timeout = err == 0; 476 } else { 477 /* Otherwise we just wait for something to happen. */ 478 wait_event_interruptible(adap->kthread_waitq, 479 kthread_should_stop() || 480 (!adap->transmit_in_progress && 481 !list_empty(&adap->transmit_queue))); 482 } 483 484 mutex_lock(&adap->lock); 485 486 if ((adap->needs_hpd && 487 (!adap->is_configured && !adap->is_configuring)) || 488 kthread_should_stop()) { 489 cec_flush(adap); 490 goto unlock; 491 } 492 493 if (adap->transmit_in_progress && timeout) { 494 /* 495 * If we timeout, then log that. Normally this does 496 * not happen and it is an indication of a faulty CEC 497 * adapter driver, or the CEC bus is in some weird 498 * state. On rare occasions it can happen if there is 499 * so much traffic on the bus that the adapter was 500 * unable to transmit for xfer_timeout_ms (2.1s by 501 * default). 502 */ 503 if (adap->transmitting) { 504 pr_warn("cec-%s: message %*ph timed out\n", adap->name, 505 adap->transmitting->msg.len, 506 adap->transmitting->msg.msg); 507 /* Just give up on this. */ 508 cec_data_cancel(adap->transmitting, 509 CEC_TX_STATUS_TIMEOUT, 0); 510 } else { 511 pr_warn("cec-%s: transmit timed out\n", adap->name); 512 } 513 adap->transmit_in_progress = false; 514 adap->tx_timeout_cnt++; 515 goto unlock; 516 } 517 518 /* 519 * If we are still transmitting, or there is nothing new to 520 * transmit, then just continue waiting. 521 */ 522 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) 523 goto unlock; 524 525 /* Get a new message to transmit */ 526 data = list_first_entry(&adap->transmit_queue, 527 struct cec_data, list); 528 list_del_init(&data->list); 529 if (!WARN_ON(!data->adap->transmit_queue_sz)) 530 adap->transmit_queue_sz--; 531 532 /* Make this the current transmitting message */ 533 adap->transmitting = data; 534 535 /* 536 * Suggested number of attempts as per the CEC 2.0 spec: 537 * 4 attempts is the default, except for 'secondary poll 538 * messages', i.e. poll messages not sent during the adapter 539 * configuration phase when it allocates logical addresses. 540 */ 541 if (data->msg.len == 1 && adap->is_configured) 542 attempts = 2; 543 else 544 attempts = 4; 545 546 /* Set the suggested signal free time */ 547 if (data->attempts) { 548 /* should be >= 3 data bit periods for a retry */ 549 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; 550 } else if (adap->last_initiator != 551 cec_msg_initiator(&data->msg)) { 552 /* should be >= 5 data bit periods for new initiator */ 553 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 554 adap->last_initiator = cec_msg_initiator(&data->msg); 555 } else { 556 /* 557 * should be >= 7 data bit periods for sending another 558 * frame immediately after another. 559 */ 560 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; 561 } 562 if (data->attempts == 0) 563 data->attempts = attempts; 564 565 adap->transmit_in_progress_aborted = false; 566 /* Tell the adapter to transmit, cancel on error */ 567 if (call_op(adap, adap_transmit, data->attempts, 568 signal_free_time, &data->msg)) 569 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 570 else 571 adap->transmit_in_progress = true; 572 573 unlock: 574 mutex_unlock(&adap->lock); 575 576 if (kthread_should_stop()) 577 break; 578 } 579 return 0; 580 } 581 582 /* 583 * Called by the CEC adapter if a transmit finished. 584 */ 585 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, 586 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, 587 u8 error_cnt, ktime_t ts) 588 { 589 struct cec_data *data; 590 struct cec_msg *msg; 591 unsigned int attempts_made = arb_lost_cnt + nack_cnt + 592 low_drive_cnt + error_cnt; 593 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK); 594 bool aborted = adap->transmit_in_progress_aborted; 595 596 dprintk(2, "%s: status 0x%02x\n", __func__, status); 597 if (attempts_made < 1) 598 attempts_made = 1; 599 600 mutex_lock(&adap->lock); 601 data = adap->transmitting; 602 if (!data) { 603 /* 604 * This might happen if a transmit was issued and the cable is 605 * unplugged while the transmit is ongoing. Ignore this 606 * transmit in that case. 607 */ 608 if (!adap->transmit_in_progress) 609 dprintk(1, "%s was called without an ongoing transmit!\n", 610 __func__); 611 adap->transmit_in_progress = false; 612 goto wake_thread; 613 } 614 adap->transmit_in_progress = false; 615 adap->transmit_in_progress_aborted = false; 616 617 msg = &data->msg; 618 619 /* Drivers must fill in the status! */ 620 WARN_ON(status == 0); 621 msg->tx_ts = ktime_to_ns(ts); 622 msg->tx_status |= status; 623 msg->tx_arb_lost_cnt += arb_lost_cnt; 624 msg->tx_nack_cnt += nack_cnt; 625 msg->tx_low_drive_cnt += low_drive_cnt; 626 msg->tx_error_cnt += error_cnt; 627 628 adap->tx_arb_lost_cnt += arb_lost_cnt; 629 adap->tx_low_drive_cnt += low_drive_cnt; 630 adap->tx_error_cnt += error_cnt; 631 632 /* 633 * Low Drive transmission errors should really not happen for 634 * well-behaved CEC devices and proper HDMI cables. 635 * 636 * Ditto for the 'Error' status. 637 * 638 * For the first few times that this happens, log this. 639 * Stop logging after that, since that will not add any more 640 * useful information and instead it will just flood the kernel log. 641 */ 642 if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) { 643 adap->tx_low_drive_log_cnt++; 644 dprintk(0, "low drive counter: %u (seq %u: %*ph)\n", 645 msg->tx_low_drive_cnt, msg->sequence, 646 msg->len, msg->msg); 647 } 648 if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) { 649 adap->tx_error_log_cnt++; 650 dprintk(0, "error counter: %u (seq %u: %*ph)\n", 651 msg->tx_error_cnt, msg->sequence, 652 msg->len, msg->msg); 653 } 654 655 /* Mark that we're done with this transmit */ 656 adap->transmitting = NULL; 657 658 /* 659 * If there are still retry attempts left and there was an error and 660 * the hardware didn't signal that it retried itself (by setting 661 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. 662 */ 663 if (!aborted && data->attempts > attempts_made && !done) { 664 /* Retry this message */ 665 data->attempts -= attempts_made; 666 if (msg->timeout) 667 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", 668 msg->len, msg->msg, data->attempts, msg->reply); 669 else 670 dprintk(2, "retransmit: %*ph (attempts: %d)\n", 671 msg->len, msg->msg, data->attempts); 672 /* Add the message in front of the transmit queue */ 673 list_add(&data->list, &adap->transmit_queue); 674 adap->transmit_queue_sz++; 675 goto wake_thread; 676 } 677 678 if (aborted && !done) 679 status |= CEC_TX_STATUS_ABORTED; 680 data->attempts = 0; 681 682 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ 683 if (!(status & CEC_TX_STATUS_OK)) 684 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; 685 686 /* Queue transmitted message for monitoring purposes */ 687 cec_queue_msg_monitor(adap, msg, 1); 688 689 if ((status & CEC_TX_STATUS_OK) && adap->is_configured && 690 msg->timeout) { 691 /* 692 * Queue the message into the wait queue if we want to wait 693 * for a reply. 694 */ 695 list_add_tail(&data->list, &adap->wait_queue); 696 schedule_delayed_work(&data->work, 697 msecs_to_jiffies(msg->timeout)); 698 } else { 699 /* Otherwise we're done */ 700 cec_data_completed(data); 701 } 702 703 wake_thread: 704 /* 705 * Wake up the main thread to see if another message is ready 706 * for transmitting or to retry the current message. 707 */ 708 wake_up_interruptible(&adap->kthread_waitq); 709 mutex_unlock(&adap->lock); 710 } 711 EXPORT_SYMBOL_GPL(cec_transmit_done_ts); 712 713 void cec_transmit_attempt_done_ts(struct cec_adapter *adap, 714 u8 status, ktime_t ts) 715 { 716 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { 717 case CEC_TX_STATUS_OK: 718 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); 719 return; 720 case CEC_TX_STATUS_ARB_LOST: 721 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); 722 return; 723 case CEC_TX_STATUS_NACK: 724 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); 725 return; 726 case CEC_TX_STATUS_LOW_DRIVE: 727 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); 728 return; 729 case CEC_TX_STATUS_ERROR: 730 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); 731 return; 732 default: 733 /* Should never happen */ 734 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); 735 return; 736 } 737 } 738 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); 739 740 /* 741 * Called when waiting for a reply times out. 742 */ 743 static void cec_wait_timeout(struct work_struct *work) 744 { 745 struct cec_data *data = container_of(work, struct cec_data, work.work); 746 struct cec_adapter *adap = data->adap; 747 748 mutex_lock(&adap->lock); 749 /* 750 * Sanity check in case the timeout and the arrival of the message 751 * happened at the same time. 752 */ 753 if (list_empty(&data->list)) 754 goto unlock; 755 756 /* Mark the message as timed out */ 757 list_del_init(&data->list); 758 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT); 759 unlock: 760 mutex_unlock(&adap->lock); 761 } 762 763 /* 764 * Transmit a message. The fh argument may be NULL if the transmit is not 765 * associated with a specific filehandle. 766 * 767 * This function is called with adap->lock held. 768 */ 769 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, 770 struct cec_fh *fh, bool block) 771 { 772 struct cec_data *data; 773 bool is_raw = msg_is_raw(msg); 774 775 if (adap->devnode.unregistered) 776 return -ENODEV; 777 778 msg->rx_ts = 0; 779 msg->tx_ts = 0; 780 msg->rx_status = 0; 781 msg->tx_status = 0; 782 msg->tx_arb_lost_cnt = 0; 783 msg->tx_nack_cnt = 0; 784 msg->tx_low_drive_cnt = 0; 785 msg->tx_error_cnt = 0; 786 msg->sequence = 0; 787 788 if (msg->reply && msg->timeout == 0) { 789 /* Make sure the timeout isn't 0. */ 790 msg->timeout = 1000; 791 } 792 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW; 793 794 if (!msg->timeout) 795 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; 796 797 /* Sanity checks */ 798 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { 799 dprintk(1, "%s: invalid length %d\n", __func__, msg->len); 800 return -EINVAL; 801 } 802 803 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 804 805 if (msg->timeout) 806 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", 807 __func__, msg->len, msg->msg, msg->reply, 808 !block ? ", nb" : ""); 809 else 810 dprintk(2, "%s: %*ph%s\n", 811 __func__, msg->len, msg->msg, !block ? " (nb)" : ""); 812 813 if (msg->timeout && msg->len == 1) { 814 dprintk(1, "%s: can't reply to poll msg\n", __func__); 815 return -EINVAL; 816 } 817 818 if (is_raw) { 819 if (!capable(CAP_SYS_RAWIO)) 820 return -EPERM; 821 } else { 822 /* A CDC-Only device can only send CDC messages */ 823 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && 824 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { 825 dprintk(1, "%s: not a CDC message\n", __func__); 826 return -EINVAL; 827 } 828 829 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { 830 msg->msg[2] = adap->phys_addr >> 8; 831 msg->msg[3] = adap->phys_addr & 0xff; 832 } 833 834 if (msg->len == 1) { 835 if (cec_msg_destination(msg) == 0xf) { 836 dprintk(1, "%s: invalid poll message\n", 837 __func__); 838 return -EINVAL; 839 } 840 if (cec_has_log_addr(adap, cec_msg_destination(msg))) { 841 /* 842 * If the destination is a logical address our 843 * adapter has already claimed, then just NACK 844 * this. It depends on the hardware what it will 845 * do with a POLL to itself (some OK this), so 846 * it is just as easy to handle it here so the 847 * behavior will be consistent. 848 */ 849 msg->tx_ts = ktime_get_ns(); 850 msg->tx_status = CEC_TX_STATUS_NACK | 851 CEC_TX_STATUS_MAX_RETRIES; 852 msg->tx_nack_cnt = 1; 853 msg->sequence = ++adap->sequence; 854 if (!msg->sequence) 855 msg->sequence = ++adap->sequence; 856 return 0; 857 } 858 } 859 if (msg->len > 1 && !cec_msg_is_broadcast(msg) && 860 cec_has_log_addr(adap, cec_msg_destination(msg))) { 861 dprintk(1, "%s: destination is the adapter itself\n", 862 __func__); 863 return -EINVAL; 864 } 865 if (msg->len > 1 && adap->is_configured && 866 !cec_has_log_addr(adap, cec_msg_initiator(msg))) { 867 dprintk(1, "%s: initiator has unknown logical address %d\n", 868 __func__, cec_msg_initiator(msg)); 869 return -EINVAL; 870 } 871 /* 872 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be 873 * transmitted to a TV, even if the adapter is unconfigured. 874 * This makes it possible to detect or wake up displays that 875 * pull down the HPD when in standby. 876 */ 877 if (!adap->is_configured && !adap->is_configuring && 878 (msg->len > 2 || 879 cec_msg_destination(msg) != CEC_LOG_ADDR_TV || 880 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && 881 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { 882 dprintk(1, "%s: adapter is unconfigured\n", __func__); 883 return -ENONET; 884 } 885 } 886 887 if (!adap->is_configured && !adap->is_configuring) { 888 if (adap->needs_hpd) { 889 dprintk(1, "%s: adapter is unconfigured and needs HPD\n", 890 __func__); 891 return -ENONET; 892 } 893 if (msg->reply) { 894 dprintk(1, "%s: invalid msg->reply\n", __func__); 895 return -EINVAL; 896 } 897 } 898 899 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { 900 dprintk(2, "%s: transmit queue full\n", __func__); 901 return -EBUSY; 902 } 903 904 data = kzalloc(sizeof(*data), GFP_KERNEL); 905 if (!data) 906 return -ENOMEM; 907 908 msg->sequence = ++adap->sequence; 909 if (!msg->sequence) 910 msg->sequence = ++adap->sequence; 911 912 data->msg = *msg; 913 data->fh = fh; 914 data->adap = adap; 915 data->blocking = block; 916 917 init_completion(&data->c); 918 INIT_DELAYED_WORK(&data->work, cec_wait_timeout); 919 920 if (fh) 921 list_add_tail(&data->xfer_list, &fh->xfer_list); 922 else 923 INIT_LIST_HEAD(&data->xfer_list); 924 925 list_add_tail(&data->list, &adap->transmit_queue); 926 adap->transmit_queue_sz++; 927 if (!adap->transmitting) 928 wake_up_interruptible(&adap->kthread_waitq); 929 930 /* All done if we don't need to block waiting for completion */ 931 if (!block) 932 return 0; 933 934 /* 935 * Release the lock and wait, retake the lock afterwards. 936 */ 937 mutex_unlock(&adap->lock); 938 wait_for_completion_killable(&data->c); 939 if (!data->completed) 940 cancel_delayed_work_sync(&data->work); 941 mutex_lock(&adap->lock); 942 943 /* Cancel the transmit if it was interrupted */ 944 if (!data->completed) { 945 if (data->msg.tx_status & CEC_TX_STATUS_OK) 946 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 947 else 948 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 949 } 950 951 /* The transmit completed (possibly with an error) */ 952 *msg = data->msg; 953 if (WARN_ON(!list_empty(&data->list))) 954 list_del(&data->list); 955 if (WARN_ON(!list_empty(&data->xfer_list))) 956 list_del(&data->xfer_list); 957 kfree(data); 958 return 0; 959 } 960 961 /* Helper function to be used by drivers and this framework. */ 962 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, 963 bool block) 964 { 965 int ret; 966 967 mutex_lock(&adap->lock); 968 ret = cec_transmit_msg_fh(adap, msg, NULL, block); 969 mutex_unlock(&adap->lock); 970 return ret; 971 } 972 EXPORT_SYMBOL_GPL(cec_transmit_msg); 973 974 /* 975 * I don't like forward references but without this the low-level 976 * cec_received_msg() function would come after a bunch of high-level 977 * CEC protocol handling functions. That was very confusing. 978 */ 979 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 980 bool is_reply); 981 982 #define DIRECTED 0x80 983 #define BCAST1_4 0x40 984 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ 985 #define BCAST (BCAST1_4 | BCAST2_0) 986 #define BOTH (BCAST | DIRECTED) 987 988 /* 989 * Specify minimum length and whether the message is directed, broadcast 990 * or both. Messages that do not match the criteria are ignored as per 991 * the CEC specification. 992 */ 993 static const u8 cec_msg_size[256] = { 994 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, 995 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, 996 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, 997 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, 998 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, 999 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, 1000 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, 1001 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, 1002 [CEC_MSG_STANDBY] = 2 | BOTH, 1003 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, 1004 [CEC_MSG_RECORD_ON] = 3 | DIRECTED, 1005 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, 1006 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, 1007 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, 1008 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, 1009 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, 1010 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, 1011 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, 1012 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, 1013 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, 1014 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, 1015 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, 1016 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, 1017 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, 1018 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, 1019 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, 1020 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, 1021 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, 1022 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, 1023 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, 1024 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, 1025 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, 1026 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, 1027 [CEC_MSG_PLAY] = 3 | DIRECTED, 1028 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, 1029 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, 1030 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, 1031 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, 1032 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, 1033 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, 1034 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, 1035 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, 1036 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, 1037 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, 1038 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, 1039 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, 1040 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, 1041 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, 1042 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, 1043 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, 1044 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, 1045 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, 1046 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, 1047 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, 1048 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, 1049 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, 1050 [CEC_MSG_ABORT] = 2 | DIRECTED, 1051 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, 1052 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, 1053 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, 1054 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1055 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1056 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, 1057 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED, 1058 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, 1059 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, 1060 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, 1061 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, 1062 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, 1063 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, 1064 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, 1065 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, 1066 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, 1067 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, 1068 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, 1069 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, 1070 }; 1071 1072 /* Called by the CEC adapter if a message is received */ 1073 void cec_received_msg_ts(struct cec_adapter *adap, 1074 struct cec_msg *msg, ktime_t ts) 1075 { 1076 struct cec_data *data; 1077 u8 msg_init = cec_msg_initiator(msg); 1078 u8 msg_dest = cec_msg_destination(msg); 1079 u8 cmd = msg->msg[1]; 1080 bool is_reply = false; 1081 bool valid_la = true; 1082 bool monitor_valid_la = true; 1083 u8 min_len = 0; 1084 1085 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) 1086 return; 1087 1088 if (adap->devnode.unregistered) 1089 return; 1090 1091 /* 1092 * Some CEC adapters will receive the messages that they transmitted. 1093 * This test filters out those messages by checking if we are the 1094 * initiator, and just returning in that case. 1095 * 1096 * Note that this won't work if this is an Unregistered device. 1097 * 1098 * It is bad practice if the hardware receives the message that it 1099 * transmitted and luckily most CEC adapters behave correctly in this 1100 * respect. 1101 */ 1102 if (msg_init != CEC_LOG_ADDR_UNREGISTERED && 1103 cec_has_log_addr(adap, msg_init)) 1104 return; 1105 1106 msg->rx_ts = ktime_to_ns(ts); 1107 msg->rx_status = CEC_RX_STATUS_OK; 1108 msg->sequence = msg->reply = msg->timeout = 0; 1109 msg->tx_status = 0; 1110 msg->tx_ts = 0; 1111 msg->tx_arb_lost_cnt = 0; 1112 msg->tx_nack_cnt = 0; 1113 msg->tx_low_drive_cnt = 0; 1114 msg->tx_error_cnt = 0; 1115 msg->flags = 0; 1116 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 1117 1118 mutex_lock(&adap->lock); 1119 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1120 1121 if (!adap->transmit_in_progress) 1122 adap->last_initiator = 0xff; 1123 1124 /* Check if this message was for us (directed or broadcast). */ 1125 if (!cec_msg_is_broadcast(msg)) { 1126 valid_la = cec_has_log_addr(adap, msg_dest); 1127 monitor_valid_la = valid_la; 1128 } 1129 1130 /* 1131 * Check if the length is not too short or if the message is a 1132 * broadcast message where a directed message was expected or 1133 * vice versa. If so, then the message has to be ignored (according 1134 * to section CEC 7.3 and CEC 12.2). 1135 */ 1136 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { 1137 u8 dir_fl = cec_msg_size[cmd] & BOTH; 1138 1139 min_len = cec_msg_size[cmd] & 0x1f; 1140 if (msg->len < min_len) 1141 valid_la = false; 1142 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) 1143 valid_la = false; 1144 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) 1145 valid_la = false; 1146 else if (cec_msg_is_broadcast(msg) && 1147 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && 1148 !(dir_fl & BCAST1_4)) 1149 valid_la = false; 1150 } 1151 if (valid_la && min_len) { 1152 /* These messages have special length requirements */ 1153 switch (cmd) { 1154 case CEC_MSG_RECORD_ON: 1155 switch (msg->msg[2]) { 1156 case CEC_OP_RECORD_SRC_OWN: 1157 break; 1158 case CEC_OP_RECORD_SRC_DIGITAL: 1159 if (msg->len < 10) 1160 valid_la = false; 1161 break; 1162 case CEC_OP_RECORD_SRC_ANALOG: 1163 if (msg->len < 7) 1164 valid_la = false; 1165 break; 1166 case CEC_OP_RECORD_SRC_EXT_PLUG: 1167 if (msg->len < 4) 1168 valid_la = false; 1169 break; 1170 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: 1171 if (msg->len < 5) 1172 valid_la = false; 1173 break; 1174 } 1175 break; 1176 } 1177 } 1178 1179 /* It's a valid message and not a poll or CDC message */ 1180 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { 1181 bool abort = cmd == CEC_MSG_FEATURE_ABORT; 1182 1183 /* The aborted command is in msg[2] */ 1184 if (abort) 1185 cmd = msg->msg[2]; 1186 1187 /* 1188 * Walk over all transmitted messages that are waiting for a 1189 * reply. 1190 */ 1191 list_for_each_entry(data, &adap->wait_queue, list) { 1192 struct cec_msg *dst = &data->msg; 1193 1194 /* 1195 * The *only* CEC message that has two possible replies 1196 * is CEC_MSG_INITIATE_ARC. 1197 * In this case allow either of the two replies. 1198 */ 1199 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && 1200 (cmd == CEC_MSG_REPORT_ARC_INITIATED || 1201 cmd == CEC_MSG_REPORT_ARC_TERMINATED) && 1202 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || 1203 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) 1204 dst->reply = cmd; 1205 1206 /* Does the command match? */ 1207 if ((abort && cmd != dst->msg[1]) || 1208 (!abort && cmd != dst->reply)) 1209 continue; 1210 1211 /* Does the addressing match? */ 1212 if (msg_init != cec_msg_destination(dst) && 1213 !cec_msg_is_broadcast(dst)) 1214 continue; 1215 1216 /* We got a reply */ 1217 memcpy(dst->msg, msg->msg, msg->len); 1218 dst->len = msg->len; 1219 dst->rx_ts = msg->rx_ts; 1220 dst->rx_status = msg->rx_status; 1221 if (abort) 1222 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; 1223 msg->flags = dst->flags; 1224 msg->sequence = dst->sequence; 1225 /* Remove it from the wait_queue */ 1226 list_del_init(&data->list); 1227 1228 /* Cancel the pending timeout work */ 1229 if (!cancel_delayed_work(&data->work)) { 1230 mutex_unlock(&adap->lock); 1231 cancel_delayed_work_sync(&data->work); 1232 mutex_lock(&adap->lock); 1233 } 1234 /* 1235 * Mark this as a reply, provided someone is still 1236 * waiting for the answer. 1237 */ 1238 if (data->fh) 1239 is_reply = true; 1240 cec_data_completed(data); 1241 break; 1242 } 1243 } 1244 mutex_unlock(&adap->lock); 1245 1246 /* Pass the message on to any monitoring filehandles */ 1247 cec_queue_msg_monitor(adap, msg, monitor_valid_la); 1248 1249 /* We're done if it is not for us or a poll message */ 1250 if (!valid_la || msg->len <= 1) 1251 return; 1252 1253 if (adap->log_addrs.log_addr_mask == 0) 1254 return; 1255 1256 /* 1257 * Process the message on the protocol level. If is_reply is true, 1258 * then cec_receive_notify() won't pass on the reply to the listener(s) 1259 * since that was already done by cec_data_completed() above. 1260 */ 1261 cec_receive_notify(adap, msg, is_reply); 1262 } 1263 EXPORT_SYMBOL_GPL(cec_received_msg_ts); 1264 1265 /* Logical Address Handling */ 1266 1267 /* 1268 * Attempt to claim a specific logical address. 1269 * 1270 * This function is called with adap->lock held. 1271 */ 1272 static int cec_config_log_addr(struct cec_adapter *adap, 1273 unsigned int idx, 1274 unsigned int log_addr) 1275 { 1276 struct cec_log_addrs *las = &adap->log_addrs; 1277 struct cec_msg msg = { }; 1278 const unsigned int max_retries = 2; 1279 unsigned int i; 1280 int err; 1281 1282 if (cec_has_log_addr(adap, log_addr)) 1283 return 0; 1284 1285 /* Send poll message */ 1286 msg.len = 1; 1287 msg.msg[0] = (log_addr << 4) | log_addr; 1288 1289 for (i = 0; i < max_retries; i++) { 1290 err = cec_transmit_msg_fh(adap, &msg, NULL, true); 1291 1292 /* 1293 * While trying to poll the physical address was reset 1294 * and the adapter was unconfigured, so bail out. 1295 */ 1296 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID) 1297 return -EINTR; 1298 1299 /* Also bail out if the PA changed while configuring. */ 1300 if (adap->must_reconfigure) 1301 return -EINTR; 1302 1303 if (err) 1304 return err; 1305 1306 /* 1307 * The message was aborted or timed out due to a disconnect or 1308 * unconfigure, just bail out. 1309 */ 1310 if (msg.tx_status & 1311 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT)) 1312 return -EINTR; 1313 if (msg.tx_status & CEC_TX_STATUS_OK) 1314 return 0; 1315 if (msg.tx_status & CEC_TX_STATUS_NACK) 1316 break; 1317 /* 1318 * Retry up to max_retries times if the message was neither 1319 * OKed or NACKed. This can happen due to e.g. a Lost 1320 * Arbitration condition. 1321 */ 1322 } 1323 1324 /* 1325 * If we are unable to get an OK or a NACK after max_retries attempts 1326 * (and note that each attempt already consists of four polls), then 1327 * we assume that something is really weird and that it is not a 1328 * good idea to try and claim this logical address. 1329 */ 1330 if (i == max_retries) { 1331 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n", 1332 log_addr, msg.tx_status); 1333 return 0; 1334 } 1335 1336 /* 1337 * Message not acknowledged, so this logical 1338 * address is free to use. 1339 */ 1340 err = call_op(adap, adap_log_addr, log_addr); 1341 if (err) 1342 return err; 1343 1344 las->log_addr[idx] = log_addr; 1345 las->log_addr_mask |= 1 << log_addr; 1346 return 1; 1347 } 1348 1349 /* 1350 * Unconfigure the adapter: clear all logical addresses and send 1351 * the state changed event. 1352 * 1353 * This function is called with adap->lock held. 1354 */ 1355 static void cec_adap_unconfigure(struct cec_adapter *adap) 1356 { 1357 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1358 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID)); 1359 adap->log_addrs.log_addr_mask = 0; 1360 adap->is_configured = false; 1361 cec_flush(adap); 1362 wake_up_interruptible(&adap->kthread_waitq); 1363 cec_post_state_event(adap); 1364 call_void_op(adap, adap_unconfigured); 1365 } 1366 1367 /* 1368 * Attempt to claim the required logical addresses. 1369 */ 1370 static int cec_config_thread_func(void *arg) 1371 { 1372 /* The various LAs for each type of device */ 1373 static const u8 tv_log_addrs[] = { 1374 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, 1375 CEC_LOG_ADDR_INVALID 1376 }; 1377 static const u8 record_log_addrs[] = { 1378 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, 1379 CEC_LOG_ADDR_RECORD_3, 1380 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1381 CEC_LOG_ADDR_INVALID 1382 }; 1383 static const u8 tuner_log_addrs[] = { 1384 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, 1385 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, 1386 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1387 CEC_LOG_ADDR_INVALID 1388 }; 1389 static const u8 playback_log_addrs[] = { 1390 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, 1391 CEC_LOG_ADDR_PLAYBACK_3, 1392 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1393 CEC_LOG_ADDR_INVALID 1394 }; 1395 static const u8 audiosystem_log_addrs[] = { 1396 CEC_LOG_ADDR_AUDIOSYSTEM, 1397 CEC_LOG_ADDR_INVALID 1398 }; 1399 static const u8 specific_use_log_addrs[] = { 1400 CEC_LOG_ADDR_SPECIFIC, 1401 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1402 CEC_LOG_ADDR_INVALID 1403 }; 1404 static const u8 *type2addrs[6] = { 1405 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, 1406 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, 1407 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, 1408 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, 1409 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, 1410 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, 1411 }; 1412 static const u16 type2mask[] = { 1413 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, 1414 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, 1415 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, 1416 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, 1417 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, 1418 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, 1419 }; 1420 struct cec_adapter *adap = arg; 1421 struct cec_log_addrs *las = &adap->log_addrs; 1422 int err; 1423 int i, j; 1424 1425 mutex_lock(&adap->lock); 1426 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", 1427 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); 1428 las->log_addr_mask = 0; 1429 1430 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) 1431 goto configured; 1432 1433 reconfigure: 1434 for (i = 0; i < las->num_log_addrs; i++) { 1435 unsigned int type = las->log_addr_type[i]; 1436 const u8 *la_list; 1437 u8 last_la; 1438 1439 /* 1440 * The TV functionality can only map to physical address 0. 1441 * For any other address, try the Specific functionality 1442 * instead as per the spec. 1443 */ 1444 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) 1445 type = CEC_LOG_ADDR_TYPE_SPECIFIC; 1446 1447 la_list = type2addrs[type]; 1448 last_la = las->log_addr[i]; 1449 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1450 if (last_la == CEC_LOG_ADDR_INVALID || 1451 last_la == CEC_LOG_ADDR_UNREGISTERED || 1452 !((1 << last_la) & type2mask[type])) 1453 last_la = la_list[0]; 1454 1455 err = cec_config_log_addr(adap, i, last_la); 1456 1457 if (adap->must_reconfigure) { 1458 adap->must_reconfigure = false; 1459 las->log_addr_mask = 0; 1460 goto reconfigure; 1461 } 1462 1463 if (err > 0) /* Reused last LA */ 1464 continue; 1465 1466 if (err < 0) 1467 goto unconfigure; 1468 1469 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { 1470 /* Tried this one already, skip it */ 1471 if (la_list[j] == last_la) 1472 continue; 1473 /* The backup addresses are CEC 2.0 specific */ 1474 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || 1475 la_list[j] == CEC_LOG_ADDR_BACKUP_2) && 1476 las->cec_version < CEC_OP_CEC_VERSION_2_0) 1477 continue; 1478 1479 err = cec_config_log_addr(adap, i, la_list[j]); 1480 if (err == 0) /* LA is in use */ 1481 continue; 1482 if (err < 0) 1483 goto unconfigure; 1484 /* Done, claimed an LA */ 1485 break; 1486 } 1487 1488 if (la_list[j] == CEC_LOG_ADDR_INVALID) 1489 dprintk(1, "could not claim LA %d\n", i); 1490 } 1491 1492 if (adap->log_addrs.log_addr_mask == 0 && 1493 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) 1494 goto unconfigure; 1495 1496 configured: 1497 if (adap->log_addrs.log_addr_mask == 0) { 1498 /* Fall back to unregistered */ 1499 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; 1500 las->log_addr_mask = 1 << las->log_addr[0]; 1501 for (i = 1; i < las->num_log_addrs; i++) 1502 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1503 } 1504 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) 1505 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1506 adap->is_configured = true; 1507 adap->is_configuring = false; 1508 adap->must_reconfigure = false; 1509 cec_post_state_event(adap); 1510 1511 /* 1512 * Now post the Report Features and Report Physical Address broadcast 1513 * messages. Note that these are non-blocking transmits, meaning that 1514 * they are just queued up and once adap->lock is unlocked the main 1515 * thread will kick in and start transmitting these. 1516 * 1517 * If after this function is done (but before one or more of these 1518 * messages are actually transmitted) the CEC adapter is unconfigured, 1519 * then any remaining messages will be dropped by the main thread. 1520 */ 1521 for (i = 0; i < las->num_log_addrs; i++) { 1522 struct cec_msg msg = {}; 1523 1524 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || 1525 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) 1526 continue; 1527 1528 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; 1529 1530 /* Report Features must come first according to CEC 2.0 */ 1531 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && 1532 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { 1533 cec_fill_msg_report_features(adap, &msg, i); 1534 cec_transmit_msg_fh(adap, &msg, NULL, false); 1535 } 1536 1537 /* Report Physical Address */ 1538 cec_msg_report_physical_addr(&msg, adap->phys_addr, 1539 las->primary_device_type[i]); 1540 dprintk(1, "config: la %d pa %x.%x.%x.%x\n", 1541 las->log_addr[i], 1542 cec_phys_addr_exp(adap->phys_addr)); 1543 cec_transmit_msg_fh(adap, &msg, NULL, false); 1544 1545 /* Report Vendor ID */ 1546 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { 1547 cec_msg_device_vendor_id(&msg, 1548 adap->log_addrs.vendor_id); 1549 cec_transmit_msg_fh(adap, &msg, NULL, false); 1550 } 1551 } 1552 adap->kthread_config = NULL; 1553 complete(&adap->config_completion); 1554 mutex_unlock(&adap->lock); 1555 call_void_op(adap, configured); 1556 return 0; 1557 1558 unconfigure: 1559 for (i = 0; i < las->num_log_addrs; i++) 1560 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1561 cec_adap_unconfigure(adap); 1562 adap->is_configuring = false; 1563 adap->must_reconfigure = false; 1564 adap->kthread_config = NULL; 1565 complete(&adap->config_completion); 1566 mutex_unlock(&adap->lock); 1567 return 0; 1568 } 1569 1570 /* 1571 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the 1572 * logical addresses. 1573 * 1574 * This function is called with adap->lock held. 1575 */ 1576 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) 1577 { 1578 if (WARN_ON(adap->is_configuring || adap->is_configured)) 1579 return; 1580 1581 init_completion(&adap->config_completion); 1582 1583 /* Ready to kick off the thread */ 1584 adap->is_configuring = true; 1585 adap->kthread_config = kthread_run(cec_config_thread_func, adap, 1586 "ceccfg-%s", adap->name); 1587 if (IS_ERR(adap->kthread_config)) { 1588 adap->kthread_config = NULL; 1589 adap->is_configuring = false; 1590 } else if (block) { 1591 mutex_unlock(&adap->lock); 1592 wait_for_completion(&adap->config_completion); 1593 mutex_lock(&adap->lock); 1594 } 1595 } 1596 1597 /* 1598 * Helper function to enable/disable the CEC adapter. 1599 * 1600 * This function is called with adap->lock held. 1601 */ 1602 int cec_adap_enable(struct cec_adapter *adap) 1603 { 1604 bool enable; 1605 int ret = 0; 1606 1607 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt || 1608 adap->log_addrs.num_log_addrs; 1609 if (adap->needs_hpd) 1610 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID; 1611 1612 if (adap->devnode.unregistered) 1613 enable = false; 1614 1615 if (enable == adap->is_enabled) 1616 return 0; 1617 1618 /* serialize adap_enable */ 1619 mutex_lock(&adap->devnode.lock); 1620 if (enable) { 1621 adap->last_initiator = 0xff; 1622 adap->transmit_in_progress = false; 1623 adap->tx_low_drive_log_cnt = 0; 1624 adap->tx_error_log_cnt = 0; 1625 ret = adap->ops->adap_enable(adap, true); 1626 if (!ret) { 1627 /* 1628 * Enable monitor-all/pin modes if needed. We warn, but 1629 * continue if this fails as this is not a critical error. 1630 */ 1631 if (adap->monitor_all_cnt) 1632 WARN_ON(call_op(adap, adap_monitor_all_enable, true)); 1633 if (adap->monitor_pin_cnt) 1634 WARN_ON(call_op(adap, adap_monitor_pin_enable, true)); 1635 } 1636 } else { 1637 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */ 1638 if (adap->monitor_all_cnt) 1639 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 1640 if (adap->monitor_pin_cnt) 1641 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 1642 WARN_ON(adap->ops->adap_enable(adap, false)); 1643 adap->last_initiator = 0xff; 1644 adap->transmit_in_progress = false; 1645 adap->transmit_in_progress_aborted = false; 1646 if (adap->transmitting) 1647 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0); 1648 } 1649 if (!ret) 1650 adap->is_enabled = enable; 1651 wake_up_interruptible(&adap->kthread_waitq); 1652 mutex_unlock(&adap->devnode.lock); 1653 return ret; 1654 } 1655 1656 /* Set a new physical address and send an event notifying userspace of this. 1657 * 1658 * This function is called with adap->lock held. 1659 */ 1660 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1661 { 1662 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID; 1663 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID; 1664 1665 if (phys_addr == adap->phys_addr) 1666 return; 1667 if (!becomes_invalid && adap->devnode.unregistered) 1668 return; 1669 1670 dprintk(1, "new physical address %x.%x.%x.%x\n", 1671 cec_phys_addr_exp(phys_addr)); 1672 if (becomes_invalid || !is_invalid) { 1673 adap->phys_addr = CEC_PHYS_ADDR_INVALID; 1674 cec_post_state_event(adap); 1675 cec_adap_unconfigure(adap); 1676 if (becomes_invalid) { 1677 cec_adap_enable(adap); 1678 return; 1679 } 1680 } 1681 1682 adap->phys_addr = phys_addr; 1683 if (is_invalid) 1684 cec_adap_enable(adap); 1685 1686 cec_post_state_event(adap); 1687 if (!adap->log_addrs.num_log_addrs) 1688 return; 1689 if (adap->is_configuring) 1690 adap->must_reconfigure = true; 1691 else 1692 cec_claim_log_addrs(adap, block); 1693 } 1694 1695 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1696 { 1697 if (IS_ERR_OR_NULL(adap)) 1698 return; 1699 1700 mutex_lock(&adap->lock); 1701 __cec_s_phys_addr(adap, phys_addr, block); 1702 mutex_unlock(&adap->lock); 1703 } 1704 EXPORT_SYMBOL_GPL(cec_s_phys_addr); 1705 1706 /* 1707 * Note: In the drm subsystem, prefer calling (if possible): 1708 * 1709 * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false); 1710 */ 1711 void cec_s_phys_addr_from_edid(struct cec_adapter *adap, 1712 const struct edid *edid) 1713 { 1714 u16 pa = CEC_PHYS_ADDR_INVALID; 1715 1716 if (edid && edid->extensions) 1717 pa = cec_get_edid_phys_addr((const u8 *)edid, 1718 EDID_LENGTH * (edid->extensions + 1), NULL); 1719 cec_s_phys_addr(adap, pa, false); 1720 } 1721 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); 1722 1723 void cec_s_conn_info(struct cec_adapter *adap, 1724 const struct cec_connector_info *conn_info) 1725 { 1726 if (IS_ERR_OR_NULL(adap)) 1727 return; 1728 1729 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) 1730 return; 1731 1732 mutex_lock(&adap->lock); 1733 if (conn_info) 1734 adap->conn_info = *conn_info; 1735 else 1736 memset(&adap->conn_info, 0, sizeof(adap->conn_info)); 1737 cec_post_state_event(adap); 1738 mutex_unlock(&adap->lock); 1739 } 1740 EXPORT_SYMBOL_GPL(cec_s_conn_info); 1741 1742 /* 1743 * Called from either the ioctl or a driver to set the logical addresses. 1744 * 1745 * This function is called with adap->lock held. 1746 */ 1747 int __cec_s_log_addrs(struct cec_adapter *adap, 1748 struct cec_log_addrs *log_addrs, bool block) 1749 { 1750 u16 type_mask = 0; 1751 int err; 1752 int i; 1753 1754 if (adap->devnode.unregistered) 1755 return -ENODEV; 1756 1757 if (!log_addrs || log_addrs->num_log_addrs == 0) { 1758 if (!adap->log_addrs.num_log_addrs) 1759 return 0; 1760 if (adap->is_configuring || adap->is_configured) 1761 cec_adap_unconfigure(adap); 1762 adap->log_addrs.num_log_addrs = 0; 1763 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) 1764 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; 1765 adap->log_addrs.osd_name[0] = '\0'; 1766 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; 1767 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; 1768 cec_adap_enable(adap); 1769 return 0; 1770 } 1771 1772 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { 1773 /* 1774 * Sanitize log_addrs fields if a CDC-Only device is 1775 * requested. 1776 */ 1777 log_addrs->num_log_addrs = 1; 1778 log_addrs->osd_name[0] = '\0'; 1779 log_addrs->vendor_id = CEC_VENDOR_ID_NONE; 1780 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; 1781 /* 1782 * This is just an internal convention since a CDC-Only device 1783 * doesn't have to be a switch. But switches already use 1784 * unregistered, so it makes some kind of sense to pick this 1785 * as the primary device. Since a CDC-Only device never sends 1786 * any 'normal' CEC messages this primary device type is never 1787 * sent over the CEC bus. 1788 */ 1789 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; 1790 log_addrs->all_device_types[0] = 0; 1791 log_addrs->features[0][0] = 0; 1792 log_addrs->features[0][1] = 0; 1793 } 1794 1795 /* Ensure the osd name is 0-terminated */ 1796 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; 1797 1798 /* Sanity checks */ 1799 if (log_addrs->num_log_addrs > adap->available_log_addrs) { 1800 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); 1801 return -EINVAL; 1802 } 1803 1804 /* 1805 * Vendor ID is a 24 bit number, so check if the value is 1806 * within the correct range. 1807 */ 1808 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && 1809 (log_addrs->vendor_id & 0xff000000) != 0) { 1810 dprintk(1, "invalid vendor ID\n"); 1811 return -EINVAL; 1812 } 1813 1814 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && 1815 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { 1816 dprintk(1, "invalid CEC version\n"); 1817 return -EINVAL; 1818 } 1819 1820 if (log_addrs->num_log_addrs > 1) 1821 for (i = 0; i < log_addrs->num_log_addrs; i++) 1822 if (log_addrs->log_addr_type[i] == 1823 CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1824 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); 1825 return -EINVAL; 1826 } 1827 1828 for (i = 0; i < log_addrs->num_log_addrs; i++) { 1829 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); 1830 u8 *features = log_addrs->features[i]; 1831 bool op_is_dev_features = false; 1832 unsigned int j; 1833 1834 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; 1835 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1836 dprintk(1, "unknown logical address type\n"); 1837 return -EINVAL; 1838 } 1839 if (type_mask & (1 << log_addrs->log_addr_type[i])) { 1840 dprintk(1, "duplicate logical address type\n"); 1841 return -EINVAL; 1842 } 1843 type_mask |= 1 << log_addrs->log_addr_type[i]; 1844 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && 1845 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { 1846 /* Record already contains the playback functionality */ 1847 dprintk(1, "invalid record + playback combination\n"); 1848 return -EINVAL; 1849 } 1850 if (log_addrs->primary_device_type[i] > 1851 CEC_OP_PRIM_DEVTYPE_PROCESSOR) { 1852 dprintk(1, "unknown primary device type\n"); 1853 return -EINVAL; 1854 } 1855 if (log_addrs->primary_device_type[i] == 2) { 1856 dprintk(1, "invalid primary device type\n"); 1857 return -EINVAL; 1858 } 1859 for (j = 0; j < feature_sz; j++) { 1860 if ((features[j] & 0x80) == 0) { 1861 if (op_is_dev_features) 1862 break; 1863 op_is_dev_features = true; 1864 } 1865 } 1866 if (!op_is_dev_features || j == feature_sz) { 1867 dprintk(1, "malformed features\n"); 1868 return -EINVAL; 1869 } 1870 /* Zero unused part of the feature array */ 1871 memset(features + j + 1, 0, feature_sz - j - 1); 1872 } 1873 1874 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { 1875 if (log_addrs->num_log_addrs > 2) { 1876 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); 1877 return -EINVAL; 1878 } 1879 if (log_addrs->num_log_addrs == 2) { 1880 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | 1881 (1 << CEC_LOG_ADDR_TYPE_TV)))) { 1882 dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); 1883 return -EINVAL; 1884 } 1885 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | 1886 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { 1887 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); 1888 return -EINVAL; 1889 } 1890 } 1891 } 1892 1893 /* Zero unused LAs */ 1894 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { 1895 log_addrs->primary_device_type[i] = 0; 1896 log_addrs->log_addr_type[i] = 0; 1897 log_addrs->all_device_types[i] = 0; 1898 memset(log_addrs->features[i], 0, 1899 sizeof(log_addrs->features[i])); 1900 } 1901 1902 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; 1903 adap->log_addrs = *log_addrs; 1904 err = cec_adap_enable(adap); 1905 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1906 cec_claim_log_addrs(adap, block); 1907 return err; 1908 } 1909 1910 int cec_s_log_addrs(struct cec_adapter *adap, 1911 struct cec_log_addrs *log_addrs, bool block) 1912 { 1913 int err; 1914 1915 mutex_lock(&adap->lock); 1916 err = __cec_s_log_addrs(adap, log_addrs, block); 1917 mutex_unlock(&adap->lock); 1918 return err; 1919 } 1920 EXPORT_SYMBOL_GPL(cec_s_log_addrs); 1921 1922 /* High-level core CEC message handling */ 1923 1924 /* Fill in the Report Features message */ 1925 static void cec_fill_msg_report_features(struct cec_adapter *adap, 1926 struct cec_msg *msg, 1927 unsigned int la_idx) 1928 { 1929 const struct cec_log_addrs *las = &adap->log_addrs; 1930 const u8 *features = las->features[la_idx]; 1931 bool op_is_dev_features = false; 1932 unsigned int idx; 1933 1934 /* Report Features */ 1935 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; 1936 msg->len = 4; 1937 msg->msg[1] = CEC_MSG_REPORT_FEATURES; 1938 msg->msg[2] = adap->log_addrs.cec_version; 1939 msg->msg[3] = las->all_device_types[la_idx]; 1940 1941 /* Write RC Profiles first, then Device Features */ 1942 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { 1943 msg->msg[msg->len++] = features[idx]; 1944 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { 1945 if (op_is_dev_features) 1946 break; 1947 op_is_dev_features = true; 1948 } 1949 } 1950 } 1951 1952 /* Transmit the Feature Abort message */ 1953 static int cec_feature_abort_reason(struct cec_adapter *adap, 1954 struct cec_msg *msg, u8 reason) 1955 { 1956 struct cec_msg tx_msg = { }; 1957 1958 /* 1959 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT 1960 * message! 1961 */ 1962 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) 1963 return 0; 1964 /* Don't Feature Abort messages from 'Unregistered' */ 1965 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) 1966 return 0; 1967 cec_msg_set_reply_to(&tx_msg, msg); 1968 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); 1969 return cec_transmit_msg(adap, &tx_msg, false); 1970 } 1971 1972 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) 1973 { 1974 return cec_feature_abort_reason(adap, msg, 1975 CEC_OP_ABORT_UNRECOGNIZED_OP); 1976 } 1977 1978 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) 1979 { 1980 return cec_feature_abort_reason(adap, msg, 1981 CEC_OP_ABORT_REFUSED); 1982 } 1983 1984 /* 1985 * Called when a CEC message is received. This function will do any 1986 * necessary core processing. The is_reply bool is true if this message 1987 * is a reply to an earlier transmit. 1988 * 1989 * The message is either a broadcast message or a valid directed message. 1990 */ 1991 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 1992 bool is_reply) 1993 { 1994 bool is_broadcast = cec_msg_is_broadcast(msg); 1995 u8 dest_laddr = cec_msg_destination(msg); 1996 u8 init_laddr = cec_msg_initiator(msg); 1997 u8 devtype = cec_log_addr2dev(adap, dest_laddr); 1998 int la_idx = cec_log_addr2idx(adap, dest_laddr); 1999 bool from_unregistered = init_laddr == 0xf; 2000 struct cec_msg tx_cec_msg = { }; 2001 2002 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 2003 2004 /* If this is a CDC-Only device, then ignore any non-CDC messages */ 2005 if (cec_is_cdc_only(&adap->log_addrs) && 2006 msg->msg[1] != CEC_MSG_CDC_MESSAGE) 2007 return 0; 2008 2009 /* Allow drivers to process the message first */ 2010 if (adap->ops->received && !adap->devnode.unregistered && 2011 adap->ops->received(adap, msg) != -ENOMSG) 2012 return 0; 2013 2014 /* 2015 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and 2016 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be 2017 * handled by the CEC core, even if the passthrough mode is on. 2018 * The others are just ignored if passthrough mode is on. 2019 */ 2020 switch (msg->msg[1]) { 2021 case CEC_MSG_GET_CEC_VERSION: 2022 case CEC_MSG_ABORT: 2023 case CEC_MSG_GIVE_DEVICE_POWER_STATUS: 2024 case CEC_MSG_GIVE_OSD_NAME: 2025 /* 2026 * These messages reply with a directed message, so ignore if 2027 * the initiator is Unregistered. 2028 */ 2029 if (!adap->passthrough && from_unregistered) 2030 return 0; 2031 fallthrough; 2032 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2033 case CEC_MSG_GIVE_FEATURES: 2034 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2035 /* 2036 * Skip processing these messages if the passthrough mode 2037 * is on. 2038 */ 2039 if (adap->passthrough) 2040 goto skip_processing; 2041 /* Ignore if addressing is wrong */ 2042 if (is_broadcast) 2043 return 0; 2044 break; 2045 2046 case CEC_MSG_USER_CONTROL_PRESSED: 2047 case CEC_MSG_USER_CONTROL_RELEASED: 2048 /* Wrong addressing mode: don't process */ 2049 if (is_broadcast || from_unregistered) 2050 goto skip_processing; 2051 break; 2052 2053 case CEC_MSG_REPORT_PHYSICAL_ADDR: 2054 /* 2055 * This message is always processed, regardless of the 2056 * passthrough setting. 2057 * 2058 * Exception: don't process if wrong addressing mode. 2059 */ 2060 if (!is_broadcast) 2061 goto skip_processing; 2062 break; 2063 2064 default: 2065 break; 2066 } 2067 2068 cec_msg_set_reply_to(&tx_cec_msg, msg); 2069 2070 switch (msg->msg[1]) { 2071 /* The following messages are processed but still passed through */ 2072 case CEC_MSG_REPORT_PHYSICAL_ADDR: { 2073 u16 pa = (msg->msg[2] << 8) | msg->msg[3]; 2074 2075 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", 2076 cec_phys_addr_exp(pa), init_laddr); 2077 break; 2078 } 2079 2080 case CEC_MSG_USER_CONTROL_PRESSED: 2081 if (!(adap->capabilities & CEC_CAP_RC) || 2082 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2083 break; 2084 2085 #ifdef CONFIG_MEDIA_CEC_RC 2086 switch (msg->msg[2]) { 2087 /* 2088 * Play function, this message can have variable length 2089 * depending on the specific play function that is used. 2090 */ 2091 case CEC_OP_UI_CMD_PLAY_FUNCTION: 2092 if (msg->len == 2) 2093 rc_keydown(adap->rc, RC_PROTO_CEC, 2094 msg->msg[2], 0); 2095 else 2096 rc_keydown(adap->rc, RC_PROTO_CEC, 2097 msg->msg[2] << 8 | msg->msg[3], 0); 2098 break; 2099 /* 2100 * Other function messages that are not handled. 2101 * Currently the RC framework does not allow to supply an 2102 * additional parameter to a keypress. These "keys" contain 2103 * other information such as channel number, an input number 2104 * etc. 2105 * For the time being these messages are not processed by the 2106 * framework and are simply forwarded to the user space. 2107 */ 2108 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: 2109 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: 2110 case CEC_OP_UI_CMD_TUNE_FUNCTION: 2111 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: 2112 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: 2113 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: 2114 break; 2115 default: 2116 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); 2117 break; 2118 } 2119 #endif 2120 break; 2121 2122 case CEC_MSG_USER_CONTROL_RELEASED: 2123 if (!(adap->capabilities & CEC_CAP_RC) || 2124 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2125 break; 2126 #ifdef CONFIG_MEDIA_CEC_RC 2127 rc_keyup(adap->rc); 2128 #endif 2129 break; 2130 2131 /* 2132 * The remaining messages are only processed if the passthrough mode 2133 * is off. 2134 */ 2135 case CEC_MSG_GET_CEC_VERSION: 2136 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); 2137 return cec_transmit_msg(adap, &tx_cec_msg, false); 2138 2139 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2140 /* Do nothing for CEC switches using addr 15 */ 2141 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) 2142 return 0; 2143 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); 2144 return cec_transmit_msg(adap, &tx_cec_msg, false); 2145 2146 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2147 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) 2148 return cec_feature_abort(adap, msg); 2149 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); 2150 return cec_transmit_msg(adap, &tx_cec_msg, false); 2151 2152 case CEC_MSG_ABORT: 2153 /* Do nothing for CEC switches */ 2154 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) 2155 return 0; 2156 return cec_feature_refused(adap, msg); 2157 2158 case CEC_MSG_GIVE_OSD_NAME: { 2159 if (adap->log_addrs.osd_name[0] == 0) 2160 return cec_feature_abort(adap, msg); 2161 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); 2162 return cec_transmit_msg(adap, &tx_cec_msg, false); 2163 } 2164 2165 case CEC_MSG_GIVE_FEATURES: 2166 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) 2167 return cec_feature_abort(adap, msg); 2168 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); 2169 return cec_transmit_msg(adap, &tx_cec_msg, false); 2170 2171 default: 2172 /* 2173 * Unprocessed messages are aborted if userspace isn't doing 2174 * any processing either. 2175 */ 2176 if (!is_broadcast && !is_reply && !adap->follower_cnt && 2177 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) 2178 return cec_feature_abort(adap, msg); 2179 break; 2180 } 2181 2182 skip_processing: 2183 /* If this was a reply, then we're done, unless otherwise specified */ 2184 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) 2185 return 0; 2186 2187 /* 2188 * Send to the exclusive follower if there is one, otherwise send 2189 * to all followers. 2190 */ 2191 if (adap->cec_follower) 2192 cec_queue_msg_fh(adap->cec_follower, msg); 2193 else 2194 cec_queue_msg_followers(adap, msg); 2195 return 0; 2196 } 2197 2198 /* 2199 * Helper functions to keep track of the 'monitor all' use count. 2200 * 2201 * These functions are called with adap->lock held. 2202 */ 2203 int cec_monitor_all_cnt_inc(struct cec_adapter *adap) 2204 { 2205 int ret; 2206 2207 if (adap->monitor_all_cnt++) 2208 return 0; 2209 2210 ret = cec_adap_enable(adap); 2211 if (ret) 2212 adap->monitor_all_cnt--; 2213 return ret; 2214 } 2215 2216 void cec_monitor_all_cnt_dec(struct cec_adapter *adap) 2217 { 2218 if (WARN_ON(!adap->monitor_all_cnt)) 2219 return; 2220 if (--adap->monitor_all_cnt) 2221 return; 2222 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 2223 cec_adap_enable(adap); 2224 } 2225 2226 /* 2227 * Helper functions to keep track of the 'monitor pin' use count. 2228 * 2229 * These functions are called with adap->lock held. 2230 */ 2231 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) 2232 { 2233 int ret; 2234 2235 if (adap->monitor_pin_cnt++) 2236 return 0; 2237 2238 ret = cec_adap_enable(adap); 2239 if (ret) 2240 adap->monitor_pin_cnt--; 2241 return ret; 2242 } 2243 2244 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) 2245 { 2246 if (WARN_ON(!adap->monitor_pin_cnt)) 2247 return; 2248 if (--adap->monitor_pin_cnt) 2249 return; 2250 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 2251 cec_adap_enable(adap); 2252 } 2253 2254 #ifdef CONFIG_DEBUG_FS 2255 /* 2256 * Log the current state of the CEC adapter. 2257 * Very useful for debugging. 2258 */ 2259 int cec_adap_status(struct seq_file *file, void *priv) 2260 { 2261 struct cec_adapter *adap = dev_get_drvdata(file->private); 2262 struct cec_data *data; 2263 2264 mutex_lock(&adap->lock); 2265 seq_printf(file, "enabled: %d\n", adap->is_enabled); 2266 seq_printf(file, "configured: %d\n", adap->is_configured); 2267 seq_printf(file, "configuring: %d\n", adap->is_configuring); 2268 seq_printf(file, "phys_addr: %x.%x.%x.%x\n", 2269 cec_phys_addr_exp(adap->phys_addr)); 2270 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); 2271 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); 2272 if (adap->cec_follower) 2273 seq_printf(file, "has CEC follower%s\n", 2274 adap->passthrough ? " (in passthrough mode)" : ""); 2275 if (adap->cec_initiator) 2276 seq_puts(file, "has CEC initiator\n"); 2277 if (adap->monitor_all_cnt) 2278 seq_printf(file, "file handles in Monitor All mode: %u\n", 2279 adap->monitor_all_cnt); 2280 if (adap->monitor_pin_cnt) 2281 seq_printf(file, "file handles in Monitor Pin mode: %u\n", 2282 adap->monitor_pin_cnt); 2283 if (adap->tx_timeout_cnt) { 2284 seq_printf(file, "transmit timeout count: %u\n", 2285 adap->tx_timeout_cnt); 2286 adap->tx_timeout_cnt = 0; 2287 } 2288 if (adap->tx_low_drive_cnt) { 2289 seq_printf(file, "transmit low drive count: %u\n", 2290 adap->tx_low_drive_cnt); 2291 adap->tx_low_drive_cnt = 0; 2292 } 2293 if (adap->tx_arb_lost_cnt) { 2294 seq_printf(file, "transmit arbitration lost count: %u\n", 2295 adap->tx_arb_lost_cnt); 2296 adap->tx_arb_lost_cnt = 0; 2297 } 2298 if (adap->tx_error_cnt) { 2299 seq_printf(file, "transmit error count: %u\n", 2300 adap->tx_error_cnt); 2301 adap->tx_error_cnt = 0; 2302 } 2303 data = adap->transmitting; 2304 if (data) 2305 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", 2306 data->msg.len, data->msg.msg, data->msg.reply, 2307 data->msg.timeout); 2308 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); 2309 list_for_each_entry(data, &adap->transmit_queue, list) { 2310 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", 2311 data->msg.len, data->msg.msg, data->msg.reply, 2312 data->msg.timeout); 2313 } 2314 list_for_each_entry(data, &adap->wait_queue, list) { 2315 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", 2316 data->msg.len, data->msg.msg, data->msg.reply, 2317 data->msg.timeout); 2318 } 2319 2320 call_void_op(adap, adap_status, file); 2321 mutex_unlock(&adap->lock); 2322 return 0; 2323 } 2324 #endif 2325