xref: /linux/drivers/media/cec/core/cec-adap.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18 
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23 
24 #include "cec-priv.h"
25 
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 					 struct cec_msg *msg,
28 					 unsigned int la_idx);
29 
30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
31 {
32 	int i;
33 
34 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
35 		if (adap->log_addrs.log_addr[i] == log_addr)
36 			return i;
37 	return -1;
38 }
39 
40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
41 {
42 	int i = cec_log_addr2idx(adap, log_addr);
43 
44 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
45 }
46 
47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
48 			   unsigned int *offset)
49 {
50 	unsigned int loc = cec_get_edid_spa_location(edid, size);
51 
52 	if (offset)
53 		*offset = loc;
54 	if (loc == 0)
55 		return CEC_PHYS_ADDR_INVALID;
56 	return (edid[loc] << 8) | edid[loc + 1];
57 }
58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
59 
60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
61 				 const struct drm_connector *connector)
62 {
63 	memset(conn_info, 0, sizeof(*conn_info));
64 	conn_info->type = CEC_CONNECTOR_TYPE_DRM;
65 	conn_info->drm.card_no = connector->dev->primary->index;
66 	conn_info->drm.connector_id = connector->base.id;
67 }
68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
69 
70 /*
71  * Queue a new event for this filehandle. If ts == 0, then set it
72  * to the current time.
73  *
74  * We keep a queue of at most max_event events where max_event differs
75  * per event. If the queue becomes full, then drop the oldest event and
76  * keep track of how many events we've dropped.
77  */
78 void cec_queue_event_fh(struct cec_fh *fh,
79 			const struct cec_event *new_ev, u64 ts)
80 {
81 	static const u16 max_events[CEC_NUM_EVENTS] = {
82 		1, 1, 800, 800, 8, 8, 8, 8
83 	};
84 	struct cec_event_entry *entry;
85 	unsigned int ev_idx = new_ev->event - 1;
86 
87 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
88 		return;
89 
90 	if (ts == 0)
91 		ts = ktime_get_ns();
92 
93 	mutex_lock(&fh->lock);
94 	if (ev_idx < CEC_NUM_CORE_EVENTS)
95 		entry = &fh->core_events[ev_idx];
96 	else
97 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
98 	if (entry) {
99 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
100 		    fh->queued_events[ev_idx]) {
101 			entry->ev.lost_msgs.lost_msgs +=
102 				new_ev->lost_msgs.lost_msgs;
103 			goto unlock;
104 		}
105 		entry->ev = *new_ev;
106 		entry->ev.ts = ts;
107 
108 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
109 			/* Add new msg at the end of the queue */
110 			list_add_tail(&entry->list, &fh->events[ev_idx]);
111 			fh->queued_events[ev_idx]++;
112 			fh->total_queued_events++;
113 			goto unlock;
114 		}
115 
116 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
117 			list_add_tail(&entry->list, &fh->events[ev_idx]);
118 			/* drop the oldest event */
119 			entry = list_first_entry(&fh->events[ev_idx],
120 						 struct cec_event_entry, list);
121 			list_del(&entry->list);
122 			kfree(entry);
123 		}
124 	}
125 	/* Mark that events were lost */
126 	entry = list_first_entry_or_null(&fh->events[ev_idx],
127 					 struct cec_event_entry, list);
128 	if (entry)
129 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
130 
131 unlock:
132 	mutex_unlock(&fh->lock);
133 	wake_up_interruptible(&fh->wait);
134 }
135 
136 /* Queue a new event for all open filehandles. */
137 static void cec_queue_event(struct cec_adapter *adap,
138 			    const struct cec_event *ev)
139 {
140 	u64 ts = ktime_get_ns();
141 	struct cec_fh *fh;
142 
143 	mutex_lock(&adap->devnode.lock_fhs);
144 	list_for_each_entry(fh, &adap->devnode.fhs, list)
145 		cec_queue_event_fh(fh, ev, ts);
146 	mutex_unlock(&adap->devnode.lock_fhs);
147 }
148 
149 /* Notify userspace that the CEC pin changed state at the given time. */
150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
151 			     bool dropped_events, ktime_t ts)
152 {
153 	struct cec_event ev = {
154 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
155 				   CEC_EVENT_PIN_CEC_LOW,
156 		.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
157 	};
158 	struct cec_fh *fh;
159 
160 	mutex_lock(&adap->devnode.lock_fhs);
161 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
162 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
163 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
164 	}
165 	mutex_unlock(&adap->devnode.lock_fhs);
166 }
167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
168 
169 /* Notify userspace that the HPD pin changed state at the given time. */
170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
171 {
172 	struct cec_event ev = {
173 		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
174 				   CEC_EVENT_PIN_HPD_LOW,
175 	};
176 	struct cec_fh *fh;
177 
178 	mutex_lock(&adap->devnode.lock_fhs);
179 	list_for_each_entry(fh, &adap->devnode.fhs, list)
180 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
181 	mutex_unlock(&adap->devnode.lock_fhs);
182 }
183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
184 
185 /* Notify userspace that the 5V pin changed state at the given time. */
186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
187 {
188 	struct cec_event ev = {
189 		.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
190 				   CEC_EVENT_PIN_5V_LOW,
191 	};
192 	struct cec_fh *fh;
193 
194 	mutex_lock(&adap->devnode.lock_fhs);
195 	list_for_each_entry(fh, &adap->devnode.fhs, list)
196 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
197 	mutex_unlock(&adap->devnode.lock_fhs);
198 }
199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
200 
201 /*
202  * Queue a new message for this filehandle.
203  *
204  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
205  * queue becomes full, then drop the oldest message and keep track
206  * of how many messages we've dropped.
207  */
208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
209 {
210 	static const struct cec_event ev_lost_msgs = {
211 		.event = CEC_EVENT_LOST_MSGS,
212 		.flags = 0,
213 		{
214 			.lost_msgs = { 1 },
215 		},
216 	};
217 	struct cec_msg_entry *entry;
218 
219 	mutex_lock(&fh->lock);
220 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
221 	if (entry) {
222 		entry->msg = *msg;
223 		/* Add new msg at the end of the queue */
224 		list_add_tail(&entry->list, &fh->msgs);
225 
226 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
227 			/* All is fine if there is enough room */
228 			fh->queued_msgs++;
229 			mutex_unlock(&fh->lock);
230 			wake_up_interruptible(&fh->wait);
231 			return;
232 		}
233 
234 		/*
235 		 * if the message queue is full, then drop the oldest one and
236 		 * send a lost message event.
237 		 */
238 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
239 		list_del(&entry->list);
240 		kfree(entry);
241 	}
242 	mutex_unlock(&fh->lock);
243 
244 	/*
245 	 * We lost a message, either because kmalloc failed or the queue
246 	 * was full.
247 	 */
248 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
249 }
250 
251 /*
252  * Queue the message for those filehandles that are in monitor mode.
253  * If valid_la is true (this message is for us or was sent by us),
254  * then pass it on to any monitoring filehandle. If this message
255  * isn't for us or from us, then only give it to filehandles that
256  * are in MONITOR_ALL mode.
257  *
258  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
259  * set and the CEC adapter was placed in 'monitor all' mode.
260  */
261 static void cec_queue_msg_monitor(struct cec_adapter *adap,
262 				  const struct cec_msg *msg,
263 				  bool valid_la)
264 {
265 	struct cec_fh *fh;
266 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
267 				      CEC_MODE_MONITOR_ALL;
268 
269 	mutex_lock(&adap->devnode.lock_fhs);
270 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
271 		if (fh->mode_follower >= monitor_mode)
272 			cec_queue_msg_fh(fh, msg);
273 	}
274 	mutex_unlock(&adap->devnode.lock_fhs);
275 }
276 
277 /*
278  * Queue the message for follower filehandles.
279  */
280 static void cec_queue_msg_followers(struct cec_adapter *adap,
281 				    const struct cec_msg *msg)
282 {
283 	struct cec_fh *fh;
284 
285 	mutex_lock(&adap->devnode.lock_fhs);
286 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
287 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
288 			cec_queue_msg_fh(fh, msg);
289 	}
290 	mutex_unlock(&adap->devnode.lock_fhs);
291 }
292 
293 /* Notify userspace of an adapter state change. */
294 static void cec_post_state_event(struct cec_adapter *adap)
295 {
296 	struct cec_event ev = {
297 		.event = CEC_EVENT_STATE_CHANGE,
298 	};
299 
300 	ev.state_change.phys_addr = adap->phys_addr;
301 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
302 	ev.state_change.have_conn_info =
303 		adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
304 	cec_queue_event(adap, &ev);
305 }
306 
307 /*
308  * A CEC transmit (and a possible wait for reply) completed.
309  * If this was in blocking mode, then complete it, otherwise
310  * queue the message for userspace to dequeue later.
311  *
312  * This function is called with adap->lock held.
313  */
314 static void cec_data_completed(struct cec_data *data)
315 {
316 	/*
317 	 * Delete this transmit from the filehandle's xfer_list since
318 	 * we're done with it.
319 	 *
320 	 * Note that if the filehandle is closed before this transmit
321 	 * finished, then the release() function will set data->fh to NULL.
322 	 * Without that we would be referring to a closed filehandle.
323 	 */
324 	if (data->fh)
325 		list_del_init(&data->xfer_list);
326 
327 	if (data->blocking) {
328 		/*
329 		 * Someone is blocking so mark the message as completed
330 		 * and call complete.
331 		 */
332 		data->completed = true;
333 		complete(&data->c);
334 	} else {
335 		/*
336 		 * No blocking, so just queue the message if needed and
337 		 * free the memory.
338 		 */
339 		if (data->fh)
340 			cec_queue_msg_fh(data->fh, &data->msg);
341 		kfree(data);
342 	}
343 }
344 
345 /*
346  * A pending CEC transmit needs to be cancelled, either because the CEC
347  * adapter is disabled or the transmit takes an impossibly long time to
348  * finish, or the reply timed out.
349  *
350  * This function is called with adap->lock held.
351  */
352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
353 {
354 	struct cec_adapter *adap = data->adap;
355 
356 	/*
357 	 * It's either the current transmit, or it is a pending
358 	 * transmit. Take the appropriate action to clear it.
359 	 */
360 	if (adap->transmitting == data) {
361 		adap->transmitting = NULL;
362 	} else {
363 		list_del_init(&data->list);
364 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
365 			if (!WARN_ON(!adap->transmit_queue_sz))
366 				adap->transmit_queue_sz--;
367 	}
368 
369 	if (data->msg.tx_status & CEC_TX_STATUS_OK) {
370 		data->msg.rx_ts = ktime_get_ns();
371 		data->msg.rx_status = rx_status;
372 		if (!data->blocking)
373 			data->msg.tx_status = 0;
374 	} else {
375 		data->msg.tx_ts = ktime_get_ns();
376 		data->msg.tx_status |= tx_status |
377 				       CEC_TX_STATUS_MAX_RETRIES;
378 		data->msg.tx_error_cnt++;
379 		data->attempts = 0;
380 		if (!data->blocking)
381 			data->msg.rx_status = 0;
382 	}
383 
384 	/* Queue transmitted message for monitoring purposes */
385 	cec_queue_msg_monitor(adap, &data->msg, 1);
386 
387 	if (!data->blocking && data->msg.sequence)
388 		/* Allow drivers to react to a canceled transmit */
389 		call_void_op(adap, adap_nb_transmit_canceled, &data->msg);
390 
391 	cec_data_completed(data);
392 }
393 
394 /*
395  * Flush all pending transmits and cancel any pending timeout work.
396  *
397  * This function is called with adap->lock held.
398  */
399 static void cec_flush(struct cec_adapter *adap)
400 {
401 	struct cec_data *data, *n;
402 
403 	/*
404 	 * If the adapter is disabled, or we're asked to stop,
405 	 * then cancel any pending transmits.
406 	 */
407 	while (!list_empty(&adap->transmit_queue)) {
408 		data = list_first_entry(&adap->transmit_queue,
409 					struct cec_data, list);
410 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
411 	}
412 	if (adap->transmitting)
413 		adap->transmit_in_progress_aborted = true;
414 
415 	/* Cancel the pending timeout work. */
416 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
417 		if (cancel_delayed_work(&data->work))
418 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
419 		/*
420 		 * If cancel_delayed_work returned false, then
421 		 * the cec_wait_timeout function is running,
422 		 * which will call cec_data_completed. So no
423 		 * need to do anything special in that case.
424 		 */
425 	}
426 	/*
427 	 * If something went wrong and this counter isn't what it should
428 	 * be, then this will reset it back to 0. Warn if it is not 0,
429 	 * since it indicates a bug, either in this framework or in a
430 	 * CEC driver.
431 	 */
432 	if (WARN_ON(adap->transmit_queue_sz))
433 		adap->transmit_queue_sz = 0;
434 }
435 
436 /*
437  * Main CEC state machine
438  *
439  * Wait until the thread should be stopped, or we are not transmitting and
440  * a new transmit message is queued up, in which case we start transmitting
441  * that message. When the adapter finished transmitting the message it will
442  * call cec_transmit_done().
443  *
444  * If the adapter is disabled, then remove all queued messages instead.
445  *
446  * If the current transmit times out, then cancel that transmit.
447  */
448 int cec_thread_func(void *_adap)
449 {
450 	struct cec_adapter *adap = _adap;
451 
452 	for (;;) {
453 		unsigned int signal_free_time;
454 		struct cec_data *data;
455 		bool timeout = false;
456 		u8 attempts;
457 
458 		if (adap->transmit_in_progress) {
459 			int err;
460 
461 			/*
462 			 * We are transmitting a message, so add a timeout
463 			 * to prevent the state machine to get stuck waiting
464 			 * for this message to finalize and add a check to
465 			 * see if the adapter is disabled in which case the
466 			 * transmit should be canceled.
467 			 */
468 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
469 				(adap->needs_hpd &&
470 				 (!adap->is_configured && !adap->is_configuring)) ||
471 				kthread_should_stop() ||
472 				(!adap->transmit_in_progress &&
473 				 !list_empty(&adap->transmit_queue)),
474 				msecs_to_jiffies(adap->xfer_timeout_ms));
475 			timeout = err == 0;
476 		} else {
477 			/* Otherwise we just wait for something to happen. */
478 			wait_event_interruptible(adap->kthread_waitq,
479 				kthread_should_stop() ||
480 				(!adap->transmit_in_progress &&
481 				 !list_empty(&adap->transmit_queue)));
482 		}
483 
484 		mutex_lock(&adap->lock);
485 
486 		if ((adap->needs_hpd &&
487 		     (!adap->is_configured && !adap->is_configuring)) ||
488 		    kthread_should_stop()) {
489 			cec_flush(adap);
490 			goto unlock;
491 		}
492 
493 		if (adap->transmit_in_progress && timeout) {
494 			/*
495 			 * If we timeout, then log that. Normally this does
496 			 * not happen and it is an indication of a faulty CEC
497 			 * adapter driver, or the CEC bus is in some weird
498 			 * state. On rare occasions it can happen if there is
499 			 * so much traffic on the bus that the adapter was
500 			 * unable to transmit for xfer_timeout_ms (2.1s by
501 			 * default).
502 			 */
503 			if (adap->transmitting) {
504 				pr_warn("cec-%s: message %*ph timed out\n", adap->name,
505 					adap->transmitting->msg.len,
506 					adap->transmitting->msg.msg);
507 				/* Just give up on this. */
508 				cec_data_cancel(adap->transmitting,
509 						CEC_TX_STATUS_TIMEOUT, 0);
510 			} else {
511 				pr_warn("cec-%s: transmit timed out\n", adap->name);
512 			}
513 			adap->transmit_in_progress = false;
514 			adap->tx_timeout_cnt++;
515 			goto unlock;
516 		}
517 
518 		/*
519 		 * If we are still transmitting, or there is nothing new to
520 		 * transmit, then just continue waiting.
521 		 */
522 		if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
523 			goto unlock;
524 
525 		/* Get a new message to transmit */
526 		data = list_first_entry(&adap->transmit_queue,
527 					struct cec_data, list);
528 		list_del_init(&data->list);
529 		if (!WARN_ON(!data->adap->transmit_queue_sz))
530 			adap->transmit_queue_sz--;
531 
532 		/* Make this the current transmitting message */
533 		adap->transmitting = data;
534 
535 		/*
536 		 * Suggested number of attempts as per the CEC 2.0 spec:
537 		 * 4 attempts is the default, except for 'secondary poll
538 		 * messages', i.e. poll messages not sent during the adapter
539 		 * configuration phase when it allocates logical addresses.
540 		 */
541 		if (data->msg.len == 1 && adap->is_configured)
542 			attempts = 2;
543 		else
544 			attempts = 4;
545 
546 		/* Set the suggested signal free time */
547 		if (data->attempts) {
548 			/* should be >= 3 data bit periods for a retry */
549 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
550 		} else if (adap->last_initiator !=
551 			   cec_msg_initiator(&data->msg)) {
552 			/* should be >= 5 data bit periods for new initiator */
553 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
554 			adap->last_initiator = cec_msg_initiator(&data->msg);
555 		} else {
556 			/*
557 			 * should be >= 7 data bit periods for sending another
558 			 * frame immediately after another.
559 			 */
560 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
561 		}
562 		if (data->attempts == 0)
563 			data->attempts = attempts;
564 
565 		adap->transmit_in_progress_aborted = false;
566 		/* Tell the adapter to transmit, cancel on error */
567 		if (call_op(adap, adap_transmit, data->attempts,
568 			    signal_free_time, &data->msg))
569 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
570 		else
571 			adap->transmit_in_progress = true;
572 
573 unlock:
574 		mutex_unlock(&adap->lock);
575 
576 		if (kthread_should_stop())
577 			break;
578 	}
579 	return 0;
580 }
581 
582 /*
583  * Called by the CEC adapter if a transmit finished.
584  */
585 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
586 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
587 			  u8 error_cnt, ktime_t ts)
588 {
589 	struct cec_data *data;
590 	struct cec_msg *msg;
591 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
592 				     low_drive_cnt + error_cnt;
593 	bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
594 	bool aborted = adap->transmit_in_progress_aborted;
595 
596 	dprintk(2, "%s: status 0x%02x\n", __func__, status);
597 	if (attempts_made < 1)
598 		attempts_made = 1;
599 
600 	mutex_lock(&adap->lock);
601 	data = adap->transmitting;
602 	if (!data) {
603 		/*
604 		 * This might happen if a transmit was issued and the cable is
605 		 * unplugged while the transmit is ongoing. Ignore this
606 		 * transmit in that case.
607 		 */
608 		if (!adap->transmit_in_progress)
609 			dprintk(1, "%s was called without an ongoing transmit!\n",
610 				__func__);
611 		adap->transmit_in_progress = false;
612 		goto wake_thread;
613 	}
614 	adap->transmit_in_progress = false;
615 	adap->transmit_in_progress_aborted = false;
616 
617 	msg = &data->msg;
618 
619 	/* Drivers must fill in the status! */
620 	WARN_ON(status == 0);
621 	msg->tx_ts = ktime_to_ns(ts);
622 	msg->tx_status |= status;
623 	msg->tx_arb_lost_cnt += arb_lost_cnt;
624 	msg->tx_nack_cnt += nack_cnt;
625 	msg->tx_low_drive_cnt += low_drive_cnt;
626 	msg->tx_error_cnt += error_cnt;
627 
628 	adap->tx_arb_lost_cnt += arb_lost_cnt;
629 	adap->tx_low_drive_cnt += low_drive_cnt;
630 	adap->tx_error_cnt += error_cnt;
631 
632 	/*
633 	 * Low Drive transmission errors should really not happen for
634 	 * well-behaved CEC devices and proper HDMI cables.
635 	 *
636 	 * Ditto for the 'Error' status.
637 	 *
638 	 * For the first few times that this happens, log this.
639 	 * Stop logging after that, since that will not add any more
640 	 * useful information and instead it will just flood the kernel log.
641 	 */
642 	if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) {
643 		adap->tx_low_drive_log_cnt++;
644 		dprintk(0, "low drive counter: %u (seq %u: %*ph)\n",
645 			msg->tx_low_drive_cnt, msg->sequence,
646 			msg->len, msg->msg);
647 	}
648 	if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) {
649 		adap->tx_error_log_cnt++;
650 		dprintk(0, "error counter: %u (seq %u: %*ph)\n",
651 			msg->tx_error_cnt, msg->sequence,
652 			msg->len, msg->msg);
653 	}
654 
655 	/* Mark that we're done with this transmit */
656 	adap->transmitting = NULL;
657 
658 	/*
659 	 * If there are still retry attempts left and there was an error and
660 	 * the hardware didn't signal that it retried itself (by setting
661 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
662 	 */
663 	if (!aborted && data->attempts > attempts_made && !done) {
664 		/* Retry this message */
665 		data->attempts -= attempts_made;
666 		if (msg->timeout)
667 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
668 				msg->len, msg->msg, data->attempts, msg->reply);
669 		else
670 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
671 				msg->len, msg->msg, data->attempts);
672 		/* Add the message in front of the transmit queue */
673 		list_add(&data->list, &adap->transmit_queue);
674 		adap->transmit_queue_sz++;
675 		goto wake_thread;
676 	}
677 
678 	if (aborted && !done)
679 		status |= CEC_TX_STATUS_ABORTED;
680 	data->attempts = 0;
681 
682 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
683 	if (!(status & CEC_TX_STATUS_OK))
684 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
685 
686 	/* Queue transmitted message for monitoring purposes */
687 	cec_queue_msg_monitor(adap, msg, 1);
688 
689 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
690 	    msg->timeout) {
691 		/*
692 		 * Queue the message into the wait queue if we want to wait
693 		 * for a reply.
694 		 */
695 		list_add_tail(&data->list, &adap->wait_queue);
696 		schedule_delayed_work(&data->work,
697 				      msecs_to_jiffies(msg->timeout));
698 	} else {
699 		/* Otherwise we're done */
700 		cec_data_completed(data);
701 	}
702 
703 wake_thread:
704 	/*
705 	 * Wake up the main thread to see if another message is ready
706 	 * for transmitting or to retry the current message.
707 	 */
708 	wake_up_interruptible(&adap->kthread_waitq);
709 	mutex_unlock(&adap->lock);
710 }
711 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
712 
713 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
714 				  u8 status, ktime_t ts)
715 {
716 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
717 	case CEC_TX_STATUS_OK:
718 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
719 		return;
720 	case CEC_TX_STATUS_ARB_LOST:
721 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
722 		return;
723 	case CEC_TX_STATUS_NACK:
724 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
725 		return;
726 	case CEC_TX_STATUS_LOW_DRIVE:
727 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
728 		return;
729 	case CEC_TX_STATUS_ERROR:
730 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
731 		return;
732 	default:
733 		/* Should never happen */
734 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
735 		return;
736 	}
737 }
738 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
739 
740 /*
741  * Called when waiting for a reply times out.
742  */
743 static void cec_wait_timeout(struct work_struct *work)
744 {
745 	struct cec_data *data = container_of(work, struct cec_data, work.work);
746 	struct cec_adapter *adap = data->adap;
747 
748 	mutex_lock(&adap->lock);
749 	/*
750 	 * Sanity check in case the timeout and the arrival of the message
751 	 * happened at the same time.
752 	 */
753 	if (list_empty(&data->list))
754 		goto unlock;
755 
756 	/* Mark the message as timed out */
757 	list_del_init(&data->list);
758 	cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
759 unlock:
760 	mutex_unlock(&adap->lock);
761 }
762 
763 /*
764  * Transmit a message. The fh argument may be NULL if the transmit is not
765  * associated with a specific filehandle.
766  *
767  * This function is called with adap->lock held.
768  */
769 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
770 			struct cec_fh *fh, bool block)
771 {
772 	struct cec_data *data;
773 	bool is_raw = msg_is_raw(msg);
774 
775 	if (adap->devnode.unregistered)
776 		return -ENODEV;
777 
778 	msg->rx_ts = 0;
779 	msg->tx_ts = 0;
780 	msg->rx_status = 0;
781 	msg->tx_status = 0;
782 	msg->tx_arb_lost_cnt = 0;
783 	msg->tx_nack_cnt = 0;
784 	msg->tx_low_drive_cnt = 0;
785 	msg->tx_error_cnt = 0;
786 	msg->sequence = 0;
787 
788 	if (msg->reply && msg->timeout == 0) {
789 		/* Make sure the timeout isn't 0. */
790 		msg->timeout = 1000;
791 	}
792 	msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
793 
794 	if (!msg->timeout)
795 		msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
796 
797 	/* Sanity checks */
798 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
799 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
800 		return -EINVAL;
801 	}
802 
803 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
804 
805 	if (msg->timeout)
806 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
807 			__func__, msg->len, msg->msg, msg->reply,
808 			!block ? ", nb" : "");
809 	else
810 		dprintk(2, "%s: %*ph%s\n",
811 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
812 
813 	if (msg->timeout && msg->len == 1) {
814 		dprintk(1, "%s: can't reply to poll msg\n", __func__);
815 		return -EINVAL;
816 	}
817 
818 	if (is_raw) {
819 		if (!capable(CAP_SYS_RAWIO))
820 			return -EPERM;
821 	} else {
822 		/* A CDC-Only device can only send CDC messages */
823 		if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
824 		    (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
825 			dprintk(1, "%s: not a CDC message\n", __func__);
826 			return -EINVAL;
827 		}
828 
829 		if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
830 			msg->msg[2] = adap->phys_addr >> 8;
831 			msg->msg[3] = adap->phys_addr & 0xff;
832 		}
833 
834 		if (msg->len == 1) {
835 			if (cec_msg_destination(msg) == 0xf) {
836 				dprintk(1, "%s: invalid poll message\n",
837 					__func__);
838 				return -EINVAL;
839 			}
840 			if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
841 				/*
842 				 * If the destination is a logical address our
843 				 * adapter has already claimed, then just NACK
844 				 * this. It depends on the hardware what it will
845 				 * do with a POLL to itself (some OK this), so
846 				 * it is just as easy to handle it here so the
847 				 * behavior will be consistent.
848 				 */
849 				msg->tx_ts = ktime_get_ns();
850 				msg->tx_status = CEC_TX_STATUS_NACK |
851 					CEC_TX_STATUS_MAX_RETRIES;
852 				msg->tx_nack_cnt = 1;
853 				msg->sequence = ++adap->sequence;
854 				if (!msg->sequence)
855 					msg->sequence = ++adap->sequence;
856 				return 0;
857 			}
858 		}
859 		if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
860 		    cec_has_log_addr(adap, cec_msg_destination(msg))) {
861 			dprintk(1, "%s: destination is the adapter itself\n",
862 				__func__);
863 			return -EINVAL;
864 		}
865 		if (msg->len > 1 && adap->is_configured &&
866 		    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
867 			dprintk(1, "%s: initiator has unknown logical address %d\n",
868 				__func__, cec_msg_initiator(msg));
869 			return -EINVAL;
870 		}
871 		/*
872 		 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
873 		 * transmitted to a TV, even if the adapter is unconfigured.
874 		 * This makes it possible to detect or wake up displays that
875 		 * pull down the HPD when in standby.
876 		 */
877 		if (!adap->is_configured && !adap->is_configuring &&
878 		    (msg->len > 2 ||
879 		     cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
880 		     (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
881 		      msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
882 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
883 			return -ENONET;
884 		}
885 	}
886 
887 	if (!adap->is_configured && !adap->is_configuring) {
888 		if (adap->needs_hpd) {
889 			dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
890 				__func__);
891 			return -ENONET;
892 		}
893 		if (msg->reply) {
894 			dprintk(1, "%s: invalid msg->reply\n", __func__);
895 			return -EINVAL;
896 		}
897 	}
898 
899 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
900 		dprintk(2, "%s: transmit queue full\n", __func__);
901 		return -EBUSY;
902 	}
903 
904 	data = kzalloc(sizeof(*data), GFP_KERNEL);
905 	if (!data)
906 		return -ENOMEM;
907 
908 	msg->sequence = ++adap->sequence;
909 	if (!msg->sequence)
910 		msg->sequence = ++adap->sequence;
911 
912 	data->msg = *msg;
913 	data->fh = fh;
914 	data->adap = adap;
915 	data->blocking = block;
916 
917 	init_completion(&data->c);
918 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
919 
920 	if (fh)
921 		list_add_tail(&data->xfer_list, &fh->xfer_list);
922 	else
923 		INIT_LIST_HEAD(&data->xfer_list);
924 
925 	list_add_tail(&data->list, &adap->transmit_queue);
926 	adap->transmit_queue_sz++;
927 	if (!adap->transmitting)
928 		wake_up_interruptible(&adap->kthread_waitq);
929 
930 	/* All done if we don't need to block waiting for completion */
931 	if (!block)
932 		return 0;
933 
934 	/*
935 	 * Release the lock and wait, retake the lock afterwards.
936 	 */
937 	mutex_unlock(&adap->lock);
938 	wait_for_completion_killable(&data->c);
939 	if (!data->completed)
940 		cancel_delayed_work_sync(&data->work);
941 	mutex_lock(&adap->lock);
942 
943 	/* Cancel the transmit if it was interrupted */
944 	if (!data->completed) {
945 		if (data->msg.tx_status & CEC_TX_STATUS_OK)
946 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
947 		else
948 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
949 	}
950 
951 	/* The transmit completed (possibly with an error) */
952 	*msg = data->msg;
953 	if (WARN_ON(!list_empty(&data->list)))
954 		list_del(&data->list);
955 	if (WARN_ON(!list_empty(&data->xfer_list)))
956 		list_del(&data->xfer_list);
957 	kfree(data);
958 	return 0;
959 }
960 
961 /* Helper function to be used by drivers and this framework. */
962 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
963 		     bool block)
964 {
965 	int ret;
966 
967 	mutex_lock(&adap->lock);
968 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
969 	mutex_unlock(&adap->lock);
970 	return ret;
971 }
972 EXPORT_SYMBOL_GPL(cec_transmit_msg);
973 
974 /*
975  * I don't like forward references but without this the low-level
976  * cec_received_msg() function would come after a bunch of high-level
977  * CEC protocol handling functions. That was very confusing.
978  */
979 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
980 			      bool is_reply);
981 
982 #define DIRECTED	0x80
983 #define BCAST1_4	0x40
984 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
985 #define BCAST		(BCAST1_4 | BCAST2_0)
986 #define BOTH		(BCAST | DIRECTED)
987 
988 /*
989  * Specify minimum length and whether the message is directed, broadcast
990  * or both. Messages that do not match the criteria are ignored as per
991  * the CEC specification.
992  */
993 static const u8 cec_msg_size[256] = {
994 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
995 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
996 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
997 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
998 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
999 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
1000 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
1001 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
1002 	[CEC_MSG_STANDBY] = 2 | BOTH,
1003 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
1004 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
1005 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
1006 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
1007 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
1008 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
1009 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
1010 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
1011 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
1012 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
1013 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
1014 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
1015 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
1016 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
1017 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
1018 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
1019 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
1020 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
1021 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
1022 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
1023 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
1024 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
1025 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
1026 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1027 	[CEC_MSG_PLAY] = 3 | DIRECTED,
1028 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1029 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1030 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1031 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1032 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1033 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1034 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1035 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1036 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1037 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1038 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1039 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1040 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1041 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1042 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1043 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1044 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1045 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1046 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1047 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1048 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1049 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1050 	[CEC_MSG_ABORT] = 2 | DIRECTED,
1051 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1052 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1053 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1054 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1055 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1056 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1057 	[CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1058 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1059 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1060 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1061 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1062 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1063 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1064 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1065 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1066 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1067 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1068 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1069 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1070 };
1071 
1072 /* Called by the CEC adapter if a message is received */
1073 void cec_received_msg_ts(struct cec_adapter *adap,
1074 			 struct cec_msg *msg, ktime_t ts)
1075 {
1076 	struct cec_data *data;
1077 	u8 msg_init = cec_msg_initiator(msg);
1078 	u8 msg_dest = cec_msg_destination(msg);
1079 	u8 cmd = msg->msg[1];
1080 	bool is_reply = false;
1081 	bool valid_la = true;
1082 	bool monitor_valid_la = true;
1083 	u8 min_len = 0;
1084 
1085 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1086 		return;
1087 
1088 	if (adap->devnode.unregistered)
1089 		return;
1090 
1091 	/*
1092 	 * Some CEC adapters will receive the messages that they transmitted.
1093 	 * This test filters out those messages by checking if we are the
1094 	 * initiator, and just returning in that case.
1095 	 *
1096 	 * Note that this won't work if this is an Unregistered device.
1097 	 *
1098 	 * It is bad practice if the hardware receives the message that it
1099 	 * transmitted and luckily most CEC adapters behave correctly in this
1100 	 * respect.
1101 	 */
1102 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1103 	    cec_has_log_addr(adap, msg_init))
1104 		return;
1105 
1106 	msg->rx_ts = ktime_to_ns(ts);
1107 	msg->rx_status = CEC_RX_STATUS_OK;
1108 	msg->sequence = msg->reply = msg->timeout = 0;
1109 	msg->tx_status = 0;
1110 	msg->tx_ts = 0;
1111 	msg->tx_arb_lost_cnt = 0;
1112 	msg->tx_nack_cnt = 0;
1113 	msg->tx_low_drive_cnt = 0;
1114 	msg->tx_error_cnt = 0;
1115 	msg->flags = 0;
1116 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1117 
1118 	mutex_lock(&adap->lock);
1119 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1120 
1121 	if (!adap->transmit_in_progress)
1122 		adap->last_initiator = 0xff;
1123 
1124 	/* Check if this message was for us (directed or broadcast). */
1125 	if (!cec_msg_is_broadcast(msg)) {
1126 		valid_la = cec_has_log_addr(adap, msg_dest);
1127 		monitor_valid_la = valid_la;
1128 	}
1129 
1130 	/*
1131 	 * Check if the length is not too short or if the message is a
1132 	 * broadcast message where a directed message was expected or
1133 	 * vice versa. If so, then the message has to be ignored (according
1134 	 * to section CEC 7.3 and CEC 12.2).
1135 	 */
1136 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1137 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1138 
1139 		min_len = cec_msg_size[cmd] & 0x1f;
1140 		if (msg->len < min_len)
1141 			valid_la = false;
1142 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1143 			valid_la = false;
1144 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1145 			valid_la = false;
1146 		else if (cec_msg_is_broadcast(msg) &&
1147 			 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1148 			 !(dir_fl & BCAST1_4))
1149 			valid_la = false;
1150 	}
1151 	if (valid_la && min_len) {
1152 		/* These messages have special length requirements */
1153 		switch (cmd) {
1154 		case CEC_MSG_RECORD_ON:
1155 			switch (msg->msg[2]) {
1156 			case CEC_OP_RECORD_SRC_OWN:
1157 				break;
1158 			case CEC_OP_RECORD_SRC_DIGITAL:
1159 				if (msg->len < 10)
1160 					valid_la = false;
1161 				break;
1162 			case CEC_OP_RECORD_SRC_ANALOG:
1163 				if (msg->len < 7)
1164 					valid_la = false;
1165 				break;
1166 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1167 				if (msg->len < 4)
1168 					valid_la = false;
1169 				break;
1170 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1171 				if (msg->len < 5)
1172 					valid_la = false;
1173 				break;
1174 			}
1175 			break;
1176 		}
1177 	}
1178 
1179 	/* It's a valid message and not a poll or CDC message */
1180 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1181 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1182 
1183 		/* The aborted command is in msg[2] */
1184 		if (abort)
1185 			cmd = msg->msg[2];
1186 
1187 		/*
1188 		 * Walk over all transmitted messages that are waiting for a
1189 		 * reply.
1190 		 */
1191 		list_for_each_entry(data, &adap->wait_queue, list) {
1192 			struct cec_msg *dst = &data->msg;
1193 
1194 			/*
1195 			 * The *only* CEC message that has two possible replies
1196 			 * is CEC_MSG_INITIATE_ARC.
1197 			 * In this case allow either of the two replies.
1198 			 */
1199 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1200 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1201 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1202 			    (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1203 			     dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1204 				dst->reply = cmd;
1205 
1206 			/* Does the command match? */
1207 			if ((abort && cmd != dst->msg[1]) ||
1208 			    (!abort && cmd != dst->reply))
1209 				continue;
1210 
1211 			/* Does the addressing match? */
1212 			if (msg_init != cec_msg_destination(dst) &&
1213 			    !cec_msg_is_broadcast(dst))
1214 				continue;
1215 
1216 			/* We got a reply */
1217 			memcpy(dst->msg, msg->msg, msg->len);
1218 			dst->len = msg->len;
1219 			dst->rx_ts = msg->rx_ts;
1220 			dst->rx_status = msg->rx_status;
1221 			if (abort)
1222 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1223 			msg->flags = dst->flags;
1224 			msg->sequence = dst->sequence;
1225 			/* Remove it from the wait_queue */
1226 			list_del_init(&data->list);
1227 
1228 			/* Cancel the pending timeout work */
1229 			if (!cancel_delayed_work(&data->work)) {
1230 				mutex_unlock(&adap->lock);
1231 				cancel_delayed_work_sync(&data->work);
1232 				mutex_lock(&adap->lock);
1233 			}
1234 			/*
1235 			 * Mark this as a reply, provided someone is still
1236 			 * waiting for the answer.
1237 			 */
1238 			if (data->fh)
1239 				is_reply = true;
1240 			cec_data_completed(data);
1241 			break;
1242 		}
1243 	}
1244 	mutex_unlock(&adap->lock);
1245 
1246 	/* Pass the message on to any monitoring filehandles */
1247 	cec_queue_msg_monitor(adap, msg, monitor_valid_la);
1248 
1249 	/* We're done if it is not for us or a poll message */
1250 	if (!valid_la || msg->len <= 1)
1251 		return;
1252 
1253 	if (adap->log_addrs.log_addr_mask == 0)
1254 		return;
1255 
1256 	/*
1257 	 * Process the message on the protocol level. If is_reply is true,
1258 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1259 	 * since that was already done by cec_data_completed() above.
1260 	 */
1261 	cec_receive_notify(adap, msg, is_reply);
1262 }
1263 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1264 
1265 /* Logical Address Handling */
1266 
1267 /*
1268  * Attempt to claim a specific logical address.
1269  *
1270  * This function is called with adap->lock held.
1271  */
1272 static int cec_config_log_addr(struct cec_adapter *adap,
1273 			       unsigned int idx,
1274 			       unsigned int log_addr)
1275 {
1276 	struct cec_log_addrs *las = &adap->log_addrs;
1277 	struct cec_msg msg = { };
1278 	const unsigned int max_retries = 2;
1279 	unsigned int i;
1280 	int err;
1281 
1282 	if (cec_has_log_addr(adap, log_addr))
1283 		return 0;
1284 
1285 	/* Send poll message */
1286 	msg.len = 1;
1287 	msg.msg[0] = (log_addr << 4) | log_addr;
1288 
1289 	for (i = 0; i < max_retries; i++) {
1290 		err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1291 
1292 		/*
1293 		 * While trying to poll the physical address was reset
1294 		 * and the adapter was unconfigured, so bail out.
1295 		 */
1296 		if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1297 			return -EINTR;
1298 
1299 		/* Also bail out if the PA changed while configuring. */
1300 		if (adap->must_reconfigure)
1301 			return -EINTR;
1302 
1303 		if (err)
1304 			return err;
1305 
1306 		/*
1307 		 * The message was aborted or timed out due to a disconnect or
1308 		 * unconfigure, just bail out.
1309 		 */
1310 		if (msg.tx_status &
1311 		    (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1312 			return -EINTR;
1313 		if (msg.tx_status & CEC_TX_STATUS_OK)
1314 			return 0;
1315 		if (msg.tx_status & CEC_TX_STATUS_NACK)
1316 			break;
1317 		/*
1318 		 * Retry up to max_retries times if the message was neither
1319 		 * OKed or NACKed. This can happen due to e.g. a Lost
1320 		 * Arbitration condition.
1321 		 */
1322 	}
1323 
1324 	/*
1325 	 * If we are unable to get an OK or a NACK after max_retries attempts
1326 	 * (and note that each attempt already consists of four polls), then
1327 	 * we assume that something is really weird and that it is not a
1328 	 * good idea to try and claim this logical address.
1329 	 */
1330 	if (i == max_retries) {
1331 		dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1332 			log_addr, msg.tx_status);
1333 		return 0;
1334 	}
1335 
1336 	/*
1337 	 * Message not acknowledged, so this logical
1338 	 * address is free to use.
1339 	 */
1340 	err = call_op(adap, adap_log_addr, log_addr);
1341 	if (err)
1342 		return err;
1343 
1344 	las->log_addr[idx] = log_addr;
1345 	las->log_addr_mask |= 1 << log_addr;
1346 	return 1;
1347 }
1348 
1349 /*
1350  * Unconfigure the adapter: clear all logical addresses and send
1351  * the state changed event.
1352  *
1353  * This function is called with adap->lock held.
1354  */
1355 static void cec_adap_unconfigure(struct cec_adapter *adap)
1356 {
1357 	if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1358 		WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1359 	adap->log_addrs.log_addr_mask = 0;
1360 	adap->is_configured = false;
1361 	cec_flush(adap);
1362 	wake_up_interruptible(&adap->kthread_waitq);
1363 	cec_post_state_event(adap);
1364 	call_void_op(adap, adap_unconfigured);
1365 }
1366 
1367 /*
1368  * Attempt to claim the required logical addresses.
1369  */
1370 static int cec_config_thread_func(void *arg)
1371 {
1372 	/* The various LAs for each type of device */
1373 	static const u8 tv_log_addrs[] = {
1374 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1375 		CEC_LOG_ADDR_INVALID
1376 	};
1377 	static const u8 record_log_addrs[] = {
1378 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1379 		CEC_LOG_ADDR_RECORD_3,
1380 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1381 		CEC_LOG_ADDR_INVALID
1382 	};
1383 	static const u8 tuner_log_addrs[] = {
1384 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1385 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1386 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1387 		CEC_LOG_ADDR_INVALID
1388 	};
1389 	static const u8 playback_log_addrs[] = {
1390 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1391 		CEC_LOG_ADDR_PLAYBACK_3,
1392 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1393 		CEC_LOG_ADDR_INVALID
1394 	};
1395 	static const u8 audiosystem_log_addrs[] = {
1396 		CEC_LOG_ADDR_AUDIOSYSTEM,
1397 		CEC_LOG_ADDR_INVALID
1398 	};
1399 	static const u8 specific_use_log_addrs[] = {
1400 		CEC_LOG_ADDR_SPECIFIC,
1401 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1402 		CEC_LOG_ADDR_INVALID
1403 	};
1404 	static const u8 *type2addrs[6] = {
1405 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1406 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1407 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1408 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1409 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1410 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1411 	};
1412 	static const u16 type2mask[] = {
1413 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1414 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1415 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1416 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1417 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1418 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1419 	};
1420 	struct cec_adapter *adap = arg;
1421 	struct cec_log_addrs *las = &adap->log_addrs;
1422 	int err;
1423 	int i, j;
1424 
1425 	mutex_lock(&adap->lock);
1426 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1427 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1428 	las->log_addr_mask = 0;
1429 
1430 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1431 		goto configured;
1432 
1433 reconfigure:
1434 	for (i = 0; i < las->num_log_addrs; i++) {
1435 		unsigned int type = las->log_addr_type[i];
1436 		const u8 *la_list;
1437 		u8 last_la;
1438 
1439 		/*
1440 		 * The TV functionality can only map to physical address 0.
1441 		 * For any other address, try the Specific functionality
1442 		 * instead as per the spec.
1443 		 */
1444 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1445 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1446 
1447 		la_list = type2addrs[type];
1448 		last_la = las->log_addr[i];
1449 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1450 		if (last_la == CEC_LOG_ADDR_INVALID ||
1451 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1452 		    !((1 << last_la) & type2mask[type]))
1453 			last_la = la_list[0];
1454 
1455 		err = cec_config_log_addr(adap, i, last_la);
1456 
1457 		if (adap->must_reconfigure) {
1458 			adap->must_reconfigure = false;
1459 			las->log_addr_mask = 0;
1460 			goto reconfigure;
1461 		}
1462 
1463 		if (err > 0) /* Reused last LA */
1464 			continue;
1465 
1466 		if (err < 0)
1467 			goto unconfigure;
1468 
1469 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1470 			/* Tried this one already, skip it */
1471 			if (la_list[j] == last_la)
1472 				continue;
1473 			/* The backup addresses are CEC 2.0 specific */
1474 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1475 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1476 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1477 				continue;
1478 
1479 			err = cec_config_log_addr(adap, i, la_list[j]);
1480 			if (err == 0) /* LA is in use */
1481 				continue;
1482 			if (err < 0)
1483 				goto unconfigure;
1484 			/* Done, claimed an LA */
1485 			break;
1486 		}
1487 
1488 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1489 			dprintk(1, "could not claim LA %d\n", i);
1490 	}
1491 
1492 	if (adap->log_addrs.log_addr_mask == 0 &&
1493 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1494 		goto unconfigure;
1495 
1496 configured:
1497 	if (adap->log_addrs.log_addr_mask == 0) {
1498 		/* Fall back to unregistered */
1499 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1500 		las->log_addr_mask = 1 << las->log_addr[0];
1501 		for (i = 1; i < las->num_log_addrs; i++)
1502 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1503 	}
1504 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1505 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1506 	adap->is_configured = true;
1507 	adap->is_configuring = false;
1508 	adap->must_reconfigure = false;
1509 	cec_post_state_event(adap);
1510 
1511 	/*
1512 	 * Now post the Report Features and Report Physical Address broadcast
1513 	 * messages. Note that these are non-blocking transmits, meaning that
1514 	 * they are just queued up and once adap->lock is unlocked the main
1515 	 * thread will kick in and start transmitting these.
1516 	 *
1517 	 * If after this function is done (but before one or more of these
1518 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1519 	 * then any remaining messages will be dropped by the main thread.
1520 	 */
1521 	for (i = 0; i < las->num_log_addrs; i++) {
1522 		struct cec_msg msg = {};
1523 
1524 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1525 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1526 			continue;
1527 
1528 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1529 
1530 		/* Report Features must come first according to CEC 2.0 */
1531 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1532 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1533 			cec_fill_msg_report_features(adap, &msg, i);
1534 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1535 		}
1536 
1537 		/* Report Physical Address */
1538 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1539 					     las->primary_device_type[i]);
1540 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1541 			las->log_addr[i],
1542 			cec_phys_addr_exp(adap->phys_addr));
1543 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1544 
1545 		/* Report Vendor ID */
1546 		if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1547 			cec_msg_device_vendor_id(&msg,
1548 						 adap->log_addrs.vendor_id);
1549 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1550 		}
1551 	}
1552 	adap->kthread_config = NULL;
1553 	complete(&adap->config_completion);
1554 	mutex_unlock(&adap->lock);
1555 	call_void_op(adap, configured);
1556 	return 0;
1557 
1558 unconfigure:
1559 	for (i = 0; i < las->num_log_addrs; i++)
1560 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1561 	cec_adap_unconfigure(adap);
1562 	adap->is_configuring = false;
1563 	adap->must_reconfigure = false;
1564 	adap->kthread_config = NULL;
1565 	complete(&adap->config_completion);
1566 	mutex_unlock(&adap->lock);
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1572  * logical addresses.
1573  *
1574  * This function is called with adap->lock held.
1575  */
1576 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1577 {
1578 	if (WARN_ON(adap->is_configuring || adap->is_configured))
1579 		return;
1580 
1581 	init_completion(&adap->config_completion);
1582 
1583 	/* Ready to kick off the thread */
1584 	adap->is_configuring = true;
1585 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1586 					   "ceccfg-%s", adap->name);
1587 	if (IS_ERR(adap->kthread_config)) {
1588 		adap->kthread_config = NULL;
1589 		adap->is_configuring = false;
1590 	} else if (block) {
1591 		mutex_unlock(&adap->lock);
1592 		wait_for_completion(&adap->config_completion);
1593 		mutex_lock(&adap->lock);
1594 	}
1595 }
1596 
1597 /*
1598  * Helper function to enable/disable the CEC adapter.
1599  *
1600  * This function is called with adap->lock held.
1601  */
1602 int cec_adap_enable(struct cec_adapter *adap)
1603 {
1604 	bool enable;
1605 	int ret = 0;
1606 
1607 	enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1608 		 adap->log_addrs.num_log_addrs;
1609 	if (adap->needs_hpd)
1610 		enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1611 
1612 	if (adap->devnode.unregistered)
1613 		enable = false;
1614 
1615 	if (enable == adap->is_enabled)
1616 		return 0;
1617 
1618 	/* serialize adap_enable */
1619 	mutex_lock(&adap->devnode.lock);
1620 	if (enable) {
1621 		adap->last_initiator = 0xff;
1622 		adap->transmit_in_progress = false;
1623 		adap->tx_low_drive_log_cnt = 0;
1624 		adap->tx_error_log_cnt = 0;
1625 		ret = adap->ops->adap_enable(adap, true);
1626 		if (!ret) {
1627 			/*
1628 			 * Enable monitor-all/pin modes if needed. We warn, but
1629 			 * continue if this fails as this is not a critical error.
1630 			 */
1631 			if (adap->monitor_all_cnt)
1632 				WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1633 			if (adap->monitor_pin_cnt)
1634 				WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1635 		}
1636 	} else {
1637 		/* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1638 		if (adap->monitor_all_cnt)
1639 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1640 		if (adap->monitor_pin_cnt)
1641 			WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1642 		WARN_ON(adap->ops->adap_enable(adap, false));
1643 		adap->last_initiator = 0xff;
1644 		adap->transmit_in_progress = false;
1645 		adap->transmit_in_progress_aborted = false;
1646 		if (adap->transmitting)
1647 			cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0);
1648 	}
1649 	if (!ret)
1650 		adap->is_enabled = enable;
1651 	wake_up_interruptible(&adap->kthread_waitq);
1652 	mutex_unlock(&adap->devnode.lock);
1653 	return ret;
1654 }
1655 
1656 /* Set a new physical address and send an event notifying userspace of this.
1657  *
1658  * This function is called with adap->lock held.
1659  */
1660 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1661 {
1662 	bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1663 	bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1664 
1665 	if (phys_addr == adap->phys_addr)
1666 		return;
1667 	if (!becomes_invalid && adap->devnode.unregistered)
1668 		return;
1669 
1670 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1671 		cec_phys_addr_exp(phys_addr));
1672 	if (becomes_invalid || !is_invalid) {
1673 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1674 		cec_post_state_event(adap);
1675 		cec_adap_unconfigure(adap);
1676 		if (becomes_invalid) {
1677 			cec_adap_enable(adap);
1678 			return;
1679 		}
1680 	}
1681 
1682 	adap->phys_addr = phys_addr;
1683 	if (is_invalid)
1684 		cec_adap_enable(adap);
1685 
1686 	cec_post_state_event(adap);
1687 	if (!adap->log_addrs.num_log_addrs)
1688 		return;
1689 	if (adap->is_configuring)
1690 		adap->must_reconfigure = true;
1691 	else
1692 		cec_claim_log_addrs(adap, block);
1693 }
1694 
1695 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1696 {
1697 	if (IS_ERR_OR_NULL(adap))
1698 		return;
1699 
1700 	mutex_lock(&adap->lock);
1701 	__cec_s_phys_addr(adap, phys_addr, block);
1702 	mutex_unlock(&adap->lock);
1703 }
1704 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1705 
1706 /*
1707  * Note: In the drm subsystem, prefer calling (if possible):
1708  *
1709  * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false);
1710  */
1711 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1712 			       const struct edid *edid)
1713 {
1714 	u16 pa = CEC_PHYS_ADDR_INVALID;
1715 
1716 	if (edid && edid->extensions)
1717 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1718 				EDID_LENGTH * (edid->extensions + 1), NULL);
1719 	cec_s_phys_addr(adap, pa, false);
1720 }
1721 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1722 
1723 void cec_s_conn_info(struct cec_adapter *adap,
1724 		     const struct cec_connector_info *conn_info)
1725 {
1726 	if (IS_ERR_OR_NULL(adap))
1727 		return;
1728 
1729 	if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1730 		return;
1731 
1732 	mutex_lock(&adap->lock);
1733 	if (conn_info)
1734 		adap->conn_info = *conn_info;
1735 	else
1736 		memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1737 	cec_post_state_event(adap);
1738 	mutex_unlock(&adap->lock);
1739 }
1740 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1741 
1742 /*
1743  * Called from either the ioctl or a driver to set the logical addresses.
1744  *
1745  * This function is called with adap->lock held.
1746  */
1747 int __cec_s_log_addrs(struct cec_adapter *adap,
1748 		      struct cec_log_addrs *log_addrs, bool block)
1749 {
1750 	u16 type_mask = 0;
1751 	int err;
1752 	int i;
1753 
1754 	if (adap->devnode.unregistered)
1755 		return -ENODEV;
1756 
1757 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1758 		if (!adap->log_addrs.num_log_addrs)
1759 			return 0;
1760 		if (adap->is_configuring || adap->is_configured)
1761 			cec_adap_unconfigure(adap);
1762 		adap->log_addrs.num_log_addrs = 0;
1763 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1764 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1765 		adap->log_addrs.osd_name[0] = '\0';
1766 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1767 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1768 		cec_adap_enable(adap);
1769 		return 0;
1770 	}
1771 
1772 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1773 		/*
1774 		 * Sanitize log_addrs fields if a CDC-Only device is
1775 		 * requested.
1776 		 */
1777 		log_addrs->num_log_addrs = 1;
1778 		log_addrs->osd_name[0] = '\0';
1779 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1780 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1781 		/*
1782 		 * This is just an internal convention since a CDC-Only device
1783 		 * doesn't have to be a switch. But switches already use
1784 		 * unregistered, so it makes some kind of sense to pick this
1785 		 * as the primary device. Since a CDC-Only device never sends
1786 		 * any 'normal' CEC messages this primary device type is never
1787 		 * sent over the CEC bus.
1788 		 */
1789 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1790 		log_addrs->all_device_types[0] = 0;
1791 		log_addrs->features[0][0] = 0;
1792 		log_addrs->features[0][1] = 0;
1793 	}
1794 
1795 	/* Ensure the osd name is 0-terminated */
1796 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1797 
1798 	/* Sanity checks */
1799 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1800 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1801 		return -EINVAL;
1802 	}
1803 
1804 	/*
1805 	 * Vendor ID is a 24 bit number, so check if the value is
1806 	 * within the correct range.
1807 	 */
1808 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1809 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1810 		dprintk(1, "invalid vendor ID\n");
1811 		return -EINVAL;
1812 	}
1813 
1814 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1815 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1816 		dprintk(1, "invalid CEC version\n");
1817 		return -EINVAL;
1818 	}
1819 
1820 	if (log_addrs->num_log_addrs > 1)
1821 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1822 			if (log_addrs->log_addr_type[i] ==
1823 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1824 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1825 				return -EINVAL;
1826 			}
1827 
1828 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1829 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1830 		u8 *features = log_addrs->features[i];
1831 		bool op_is_dev_features = false;
1832 		unsigned int j;
1833 
1834 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1835 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1836 			dprintk(1, "unknown logical address type\n");
1837 			return -EINVAL;
1838 		}
1839 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1840 			dprintk(1, "duplicate logical address type\n");
1841 			return -EINVAL;
1842 		}
1843 		type_mask |= 1 << log_addrs->log_addr_type[i];
1844 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1845 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1846 			/* Record already contains the playback functionality */
1847 			dprintk(1, "invalid record + playback combination\n");
1848 			return -EINVAL;
1849 		}
1850 		if (log_addrs->primary_device_type[i] >
1851 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1852 			dprintk(1, "unknown primary device type\n");
1853 			return -EINVAL;
1854 		}
1855 		if (log_addrs->primary_device_type[i] == 2) {
1856 			dprintk(1, "invalid primary device type\n");
1857 			return -EINVAL;
1858 		}
1859 		for (j = 0; j < feature_sz; j++) {
1860 			if ((features[j] & 0x80) == 0) {
1861 				if (op_is_dev_features)
1862 					break;
1863 				op_is_dev_features = true;
1864 			}
1865 		}
1866 		if (!op_is_dev_features || j == feature_sz) {
1867 			dprintk(1, "malformed features\n");
1868 			return -EINVAL;
1869 		}
1870 		/* Zero unused part of the feature array */
1871 		memset(features + j + 1, 0, feature_sz - j - 1);
1872 	}
1873 
1874 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1875 		if (log_addrs->num_log_addrs > 2) {
1876 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1877 			return -EINVAL;
1878 		}
1879 		if (log_addrs->num_log_addrs == 2) {
1880 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1881 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1882 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1883 				return -EINVAL;
1884 			}
1885 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1886 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1887 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1888 				return -EINVAL;
1889 			}
1890 		}
1891 	}
1892 
1893 	/* Zero unused LAs */
1894 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1895 		log_addrs->primary_device_type[i] = 0;
1896 		log_addrs->log_addr_type[i] = 0;
1897 		log_addrs->all_device_types[i] = 0;
1898 		memset(log_addrs->features[i], 0,
1899 		       sizeof(log_addrs->features[i]));
1900 	}
1901 
1902 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1903 	adap->log_addrs = *log_addrs;
1904 	err = cec_adap_enable(adap);
1905 	if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1906 		cec_claim_log_addrs(adap, block);
1907 	return err;
1908 }
1909 
1910 int cec_s_log_addrs(struct cec_adapter *adap,
1911 		    struct cec_log_addrs *log_addrs, bool block)
1912 {
1913 	int err;
1914 
1915 	mutex_lock(&adap->lock);
1916 	err = __cec_s_log_addrs(adap, log_addrs, block);
1917 	mutex_unlock(&adap->lock);
1918 	return err;
1919 }
1920 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1921 
1922 /* High-level core CEC message handling */
1923 
1924 /* Fill in the Report Features message */
1925 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1926 					 struct cec_msg *msg,
1927 					 unsigned int la_idx)
1928 {
1929 	const struct cec_log_addrs *las = &adap->log_addrs;
1930 	const u8 *features = las->features[la_idx];
1931 	bool op_is_dev_features = false;
1932 	unsigned int idx;
1933 
1934 	/* Report Features */
1935 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1936 	msg->len = 4;
1937 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1938 	msg->msg[2] = adap->log_addrs.cec_version;
1939 	msg->msg[3] = las->all_device_types[la_idx];
1940 
1941 	/* Write RC Profiles first, then Device Features */
1942 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1943 		msg->msg[msg->len++] = features[idx];
1944 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1945 			if (op_is_dev_features)
1946 				break;
1947 			op_is_dev_features = true;
1948 		}
1949 	}
1950 }
1951 
1952 /* Transmit the Feature Abort message */
1953 static int cec_feature_abort_reason(struct cec_adapter *adap,
1954 				    struct cec_msg *msg, u8 reason)
1955 {
1956 	struct cec_msg tx_msg = { };
1957 
1958 	/*
1959 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1960 	 * message!
1961 	 */
1962 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1963 		return 0;
1964 	/* Don't Feature Abort messages from 'Unregistered' */
1965 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1966 		return 0;
1967 	cec_msg_set_reply_to(&tx_msg, msg);
1968 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1969 	return cec_transmit_msg(adap, &tx_msg, false);
1970 }
1971 
1972 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1973 {
1974 	return cec_feature_abort_reason(adap, msg,
1975 					CEC_OP_ABORT_UNRECOGNIZED_OP);
1976 }
1977 
1978 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1979 {
1980 	return cec_feature_abort_reason(adap, msg,
1981 					CEC_OP_ABORT_REFUSED);
1982 }
1983 
1984 /*
1985  * Called when a CEC message is received. This function will do any
1986  * necessary core processing. The is_reply bool is true if this message
1987  * is a reply to an earlier transmit.
1988  *
1989  * The message is either a broadcast message or a valid directed message.
1990  */
1991 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1992 			      bool is_reply)
1993 {
1994 	bool is_broadcast = cec_msg_is_broadcast(msg);
1995 	u8 dest_laddr = cec_msg_destination(msg);
1996 	u8 init_laddr = cec_msg_initiator(msg);
1997 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1998 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
1999 	bool from_unregistered = init_laddr == 0xf;
2000 	struct cec_msg tx_cec_msg = { };
2001 
2002 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
2003 
2004 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
2005 	if (cec_is_cdc_only(&adap->log_addrs) &&
2006 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
2007 		return 0;
2008 
2009 	/* Allow drivers to process the message first */
2010 	if (adap->ops->received && !adap->devnode.unregistered &&
2011 	    adap->ops->received(adap, msg) != -ENOMSG)
2012 		return 0;
2013 
2014 	/*
2015 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
2016 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
2017 	 * handled by the CEC core, even if the passthrough mode is on.
2018 	 * The others are just ignored if passthrough mode is on.
2019 	 */
2020 	switch (msg->msg[1]) {
2021 	case CEC_MSG_GET_CEC_VERSION:
2022 	case CEC_MSG_ABORT:
2023 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2024 	case CEC_MSG_GIVE_OSD_NAME:
2025 		/*
2026 		 * These messages reply with a directed message, so ignore if
2027 		 * the initiator is Unregistered.
2028 		 */
2029 		if (!adap->passthrough && from_unregistered)
2030 			return 0;
2031 		fallthrough;
2032 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2033 	case CEC_MSG_GIVE_FEATURES:
2034 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2035 		/*
2036 		 * Skip processing these messages if the passthrough mode
2037 		 * is on.
2038 		 */
2039 		if (adap->passthrough)
2040 			goto skip_processing;
2041 		/* Ignore if addressing is wrong */
2042 		if (is_broadcast)
2043 			return 0;
2044 		break;
2045 
2046 	case CEC_MSG_USER_CONTROL_PRESSED:
2047 	case CEC_MSG_USER_CONTROL_RELEASED:
2048 		/* Wrong addressing mode: don't process */
2049 		if (is_broadcast || from_unregistered)
2050 			goto skip_processing;
2051 		break;
2052 
2053 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
2054 		/*
2055 		 * This message is always processed, regardless of the
2056 		 * passthrough setting.
2057 		 *
2058 		 * Exception: don't process if wrong addressing mode.
2059 		 */
2060 		if (!is_broadcast)
2061 			goto skip_processing;
2062 		break;
2063 
2064 	default:
2065 		break;
2066 	}
2067 
2068 	cec_msg_set_reply_to(&tx_cec_msg, msg);
2069 
2070 	switch (msg->msg[1]) {
2071 	/* The following messages are processed but still passed through */
2072 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2073 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2074 
2075 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2076 			cec_phys_addr_exp(pa), init_laddr);
2077 		break;
2078 	}
2079 
2080 	case CEC_MSG_USER_CONTROL_PRESSED:
2081 		if (!(adap->capabilities & CEC_CAP_RC) ||
2082 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2083 			break;
2084 
2085 #ifdef CONFIG_MEDIA_CEC_RC
2086 		switch (msg->msg[2]) {
2087 		/*
2088 		 * Play function, this message can have variable length
2089 		 * depending on the specific play function that is used.
2090 		 */
2091 		case CEC_OP_UI_CMD_PLAY_FUNCTION:
2092 			if (msg->len == 2)
2093 				rc_keydown(adap->rc, RC_PROTO_CEC,
2094 					   msg->msg[2], 0);
2095 			else
2096 				rc_keydown(adap->rc, RC_PROTO_CEC,
2097 					   msg->msg[2] << 8 | msg->msg[3], 0);
2098 			break;
2099 		/*
2100 		 * Other function messages that are not handled.
2101 		 * Currently the RC framework does not allow to supply an
2102 		 * additional parameter to a keypress. These "keys" contain
2103 		 * other information such as channel number, an input number
2104 		 * etc.
2105 		 * For the time being these messages are not processed by the
2106 		 * framework and are simply forwarded to the user space.
2107 		 */
2108 		case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2109 		case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2110 		case CEC_OP_UI_CMD_TUNE_FUNCTION:
2111 		case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2112 		case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2113 		case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2114 			break;
2115 		default:
2116 			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2117 			break;
2118 		}
2119 #endif
2120 		break;
2121 
2122 	case CEC_MSG_USER_CONTROL_RELEASED:
2123 		if (!(adap->capabilities & CEC_CAP_RC) ||
2124 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2125 			break;
2126 #ifdef CONFIG_MEDIA_CEC_RC
2127 		rc_keyup(adap->rc);
2128 #endif
2129 		break;
2130 
2131 	/*
2132 	 * The remaining messages are only processed if the passthrough mode
2133 	 * is off.
2134 	 */
2135 	case CEC_MSG_GET_CEC_VERSION:
2136 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2137 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2138 
2139 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2140 		/* Do nothing for CEC switches using addr 15 */
2141 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2142 			return 0;
2143 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2144 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2145 
2146 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2147 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2148 			return cec_feature_abort(adap, msg);
2149 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2150 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2151 
2152 	case CEC_MSG_ABORT:
2153 		/* Do nothing for CEC switches */
2154 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2155 			return 0;
2156 		return cec_feature_refused(adap, msg);
2157 
2158 	case CEC_MSG_GIVE_OSD_NAME: {
2159 		if (adap->log_addrs.osd_name[0] == 0)
2160 			return cec_feature_abort(adap, msg);
2161 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2162 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2163 	}
2164 
2165 	case CEC_MSG_GIVE_FEATURES:
2166 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2167 			return cec_feature_abort(adap, msg);
2168 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2169 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2170 
2171 	default:
2172 		/*
2173 		 * Unprocessed messages are aborted if userspace isn't doing
2174 		 * any processing either.
2175 		 */
2176 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2177 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2178 			return cec_feature_abort(adap, msg);
2179 		break;
2180 	}
2181 
2182 skip_processing:
2183 	/* If this was a reply, then we're done, unless otherwise specified */
2184 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2185 		return 0;
2186 
2187 	/*
2188 	 * Send to the exclusive follower if there is one, otherwise send
2189 	 * to all followers.
2190 	 */
2191 	if (adap->cec_follower)
2192 		cec_queue_msg_fh(adap->cec_follower, msg);
2193 	else
2194 		cec_queue_msg_followers(adap, msg);
2195 	return 0;
2196 }
2197 
2198 /*
2199  * Helper functions to keep track of the 'monitor all' use count.
2200  *
2201  * These functions are called with adap->lock held.
2202  */
2203 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2204 {
2205 	int ret;
2206 
2207 	if (adap->monitor_all_cnt++)
2208 		return 0;
2209 
2210 	ret = cec_adap_enable(adap);
2211 	if (ret)
2212 		adap->monitor_all_cnt--;
2213 	return ret;
2214 }
2215 
2216 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2217 {
2218 	if (WARN_ON(!adap->monitor_all_cnt))
2219 		return;
2220 	if (--adap->monitor_all_cnt)
2221 		return;
2222 	WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2223 	cec_adap_enable(adap);
2224 }
2225 
2226 /*
2227  * Helper functions to keep track of the 'monitor pin' use count.
2228  *
2229  * These functions are called with adap->lock held.
2230  */
2231 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2232 {
2233 	int ret;
2234 
2235 	if (adap->monitor_pin_cnt++)
2236 		return 0;
2237 
2238 	ret = cec_adap_enable(adap);
2239 	if (ret)
2240 		adap->monitor_pin_cnt--;
2241 	return ret;
2242 }
2243 
2244 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2245 {
2246 	if (WARN_ON(!adap->monitor_pin_cnt))
2247 		return;
2248 	if (--adap->monitor_pin_cnt)
2249 		return;
2250 	WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2251 	cec_adap_enable(adap);
2252 }
2253 
2254 #ifdef CONFIG_DEBUG_FS
2255 /*
2256  * Log the current state of the CEC adapter.
2257  * Very useful for debugging.
2258  */
2259 int cec_adap_status(struct seq_file *file, void *priv)
2260 {
2261 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2262 	struct cec_data *data;
2263 
2264 	mutex_lock(&adap->lock);
2265 	seq_printf(file, "enabled: %d\n", adap->is_enabled);
2266 	seq_printf(file, "configured: %d\n", adap->is_configured);
2267 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2268 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2269 		   cec_phys_addr_exp(adap->phys_addr));
2270 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2271 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2272 	if (adap->cec_follower)
2273 		seq_printf(file, "has CEC follower%s\n",
2274 			   adap->passthrough ? " (in passthrough mode)" : "");
2275 	if (adap->cec_initiator)
2276 		seq_puts(file, "has CEC initiator\n");
2277 	if (adap->monitor_all_cnt)
2278 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2279 			   adap->monitor_all_cnt);
2280 	if (adap->monitor_pin_cnt)
2281 		seq_printf(file, "file handles in Monitor Pin mode: %u\n",
2282 			   adap->monitor_pin_cnt);
2283 	if (adap->tx_timeout_cnt) {
2284 		seq_printf(file, "transmit timeout count: %u\n",
2285 			   adap->tx_timeout_cnt);
2286 		adap->tx_timeout_cnt = 0;
2287 	}
2288 	if (adap->tx_low_drive_cnt) {
2289 		seq_printf(file, "transmit low drive count: %u\n",
2290 			   adap->tx_low_drive_cnt);
2291 		adap->tx_low_drive_cnt = 0;
2292 	}
2293 	if (adap->tx_arb_lost_cnt) {
2294 		seq_printf(file, "transmit arbitration lost count: %u\n",
2295 			   adap->tx_arb_lost_cnt);
2296 		adap->tx_arb_lost_cnt = 0;
2297 	}
2298 	if (adap->tx_error_cnt) {
2299 		seq_printf(file, "transmit error count: %u\n",
2300 			   adap->tx_error_cnt);
2301 		adap->tx_error_cnt = 0;
2302 	}
2303 	data = adap->transmitting;
2304 	if (data)
2305 		seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2306 			   data->msg.len, data->msg.msg, data->msg.reply,
2307 			   data->msg.timeout);
2308 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2309 	list_for_each_entry(data, &adap->transmit_queue, list) {
2310 		seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2311 			   data->msg.len, data->msg.msg, data->msg.reply,
2312 			   data->msg.timeout);
2313 	}
2314 	list_for_each_entry(data, &adap->wait_queue, list) {
2315 		seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2316 			   data->msg.len, data->msg.msg, data->msg.reply,
2317 			   data->msg.timeout);
2318 	}
2319 
2320 	call_void_op(adap, adap_status, file);
2321 	mutex_unlock(&adap->lock);
2322 	return 0;
2323 }
2324 #endif
2325