xref: /linux/drivers/media/cec/core/cec-adap.c (revision c5288cda69ee2d8607f5026bd599a5cebf0ee783)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18 
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23 
24 #include "cec-priv.h"
25 
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 					 struct cec_msg *msg,
28 					 unsigned int la_idx);
29 
30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
31 {
32 	int i;
33 
34 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
35 		if (adap->log_addrs.log_addr[i] == log_addr)
36 			return i;
37 	return -1;
38 }
39 
40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
41 {
42 	int i = cec_log_addr2idx(adap, log_addr);
43 
44 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
45 }
46 
47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
48 			   unsigned int *offset)
49 {
50 	unsigned int loc = cec_get_edid_spa_location(edid, size);
51 
52 	if (offset)
53 		*offset = loc;
54 	if (loc == 0)
55 		return CEC_PHYS_ADDR_INVALID;
56 	return (edid[loc] << 8) | edid[loc + 1];
57 }
58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
59 
60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
61 				 const struct drm_connector *connector)
62 {
63 	memset(conn_info, 0, sizeof(*conn_info));
64 	conn_info->type = CEC_CONNECTOR_TYPE_DRM;
65 	conn_info->drm.card_no = connector->dev->primary->index;
66 	conn_info->drm.connector_id = connector->base.id;
67 }
68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
69 
70 /*
71  * Queue a new event for this filehandle. If ts == 0, then set it
72  * to the current time.
73  *
74  * We keep a queue of at most max_event events where max_event differs
75  * per event. If the queue becomes full, then drop the oldest event and
76  * keep track of how many events we've dropped.
77  */
78 void cec_queue_event_fh(struct cec_fh *fh,
79 			const struct cec_event *new_ev, u64 ts)
80 {
81 	static const u16 max_events[CEC_NUM_EVENTS] = {
82 		1, 1, 800, 800, 8, 8, 8, 8
83 	};
84 	struct cec_event_entry *entry;
85 	unsigned int ev_idx = new_ev->event - 1;
86 
87 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
88 		return;
89 
90 	if (ts == 0)
91 		ts = ktime_get_ns();
92 
93 	mutex_lock(&fh->lock);
94 	if (ev_idx < CEC_NUM_CORE_EVENTS)
95 		entry = &fh->core_events[ev_idx];
96 	else
97 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
98 	if (entry) {
99 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
100 		    fh->queued_events[ev_idx]) {
101 			entry->ev.lost_msgs.lost_msgs +=
102 				new_ev->lost_msgs.lost_msgs;
103 			goto unlock;
104 		}
105 		entry->ev = *new_ev;
106 		entry->ev.ts = ts;
107 
108 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
109 			/* Add new msg at the end of the queue */
110 			list_add_tail(&entry->list, &fh->events[ev_idx]);
111 			fh->queued_events[ev_idx]++;
112 			fh->total_queued_events++;
113 			goto unlock;
114 		}
115 
116 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
117 			list_add_tail(&entry->list, &fh->events[ev_idx]);
118 			/* drop the oldest event */
119 			entry = list_first_entry(&fh->events[ev_idx],
120 						 struct cec_event_entry, list);
121 			list_del(&entry->list);
122 			kfree(entry);
123 		}
124 	}
125 	/* Mark that events were lost */
126 	entry = list_first_entry_or_null(&fh->events[ev_idx],
127 					 struct cec_event_entry, list);
128 	if (entry)
129 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
130 
131 unlock:
132 	mutex_unlock(&fh->lock);
133 	wake_up_interruptible(&fh->wait);
134 }
135 
136 /* Queue a new event for all open filehandles. */
137 static void cec_queue_event(struct cec_adapter *adap,
138 			    const struct cec_event *ev)
139 {
140 	u64 ts = ktime_get_ns();
141 	struct cec_fh *fh;
142 
143 	mutex_lock(&adap->devnode.lock_fhs);
144 	list_for_each_entry(fh, &adap->devnode.fhs, list)
145 		cec_queue_event_fh(fh, ev, ts);
146 	mutex_unlock(&adap->devnode.lock_fhs);
147 }
148 
149 /* Notify userspace that the CEC pin changed state at the given time. */
150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
151 			     bool dropped_events, ktime_t ts)
152 {
153 	struct cec_event ev = {
154 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
155 				   CEC_EVENT_PIN_CEC_LOW,
156 		.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
157 	};
158 	struct cec_fh *fh;
159 
160 	mutex_lock(&adap->devnode.lock_fhs);
161 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
162 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
163 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
164 	}
165 	mutex_unlock(&adap->devnode.lock_fhs);
166 }
167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
168 
169 /* Notify userspace that the HPD pin changed state at the given time. */
170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
171 {
172 	struct cec_event ev = {
173 		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
174 				   CEC_EVENT_PIN_HPD_LOW,
175 	};
176 	struct cec_fh *fh;
177 
178 	mutex_lock(&adap->devnode.lock_fhs);
179 	list_for_each_entry(fh, &adap->devnode.fhs, list)
180 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
181 	mutex_unlock(&adap->devnode.lock_fhs);
182 }
183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
184 
185 /* Notify userspace that the 5V pin changed state at the given time. */
186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
187 {
188 	struct cec_event ev = {
189 		.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
190 				   CEC_EVENT_PIN_5V_LOW,
191 	};
192 	struct cec_fh *fh;
193 
194 	mutex_lock(&adap->devnode.lock_fhs);
195 	list_for_each_entry(fh, &adap->devnode.fhs, list)
196 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
197 	mutex_unlock(&adap->devnode.lock_fhs);
198 }
199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
200 
201 /*
202  * Queue a new message for this filehandle.
203  *
204  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
205  * queue becomes full, then drop the oldest message and keep track
206  * of how many messages we've dropped.
207  */
208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
209 {
210 	static const struct cec_event ev_lost_msgs = {
211 		.event = CEC_EVENT_LOST_MSGS,
212 		.flags = 0,
213 		{
214 			.lost_msgs = { 1 },
215 		},
216 	};
217 	struct cec_msg_entry *entry;
218 
219 	mutex_lock(&fh->lock);
220 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
221 	if (entry) {
222 		entry->msg = *msg;
223 		/* Add new msg at the end of the queue */
224 		list_add_tail(&entry->list, &fh->msgs);
225 
226 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
227 			/* All is fine if there is enough room */
228 			fh->queued_msgs++;
229 			mutex_unlock(&fh->lock);
230 			wake_up_interruptible(&fh->wait);
231 			return;
232 		}
233 
234 		/*
235 		 * if the message queue is full, then drop the oldest one and
236 		 * send a lost message event.
237 		 */
238 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
239 		list_del(&entry->list);
240 		kfree(entry);
241 	}
242 	mutex_unlock(&fh->lock);
243 
244 	/*
245 	 * We lost a message, either because kmalloc failed or the queue
246 	 * was full.
247 	 */
248 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
249 }
250 
251 /*
252  * Queue the message for those filehandles that are in monitor mode.
253  * If valid_la is true (this message is for us or was sent by us),
254  * then pass it on to any monitoring filehandle. If this message
255  * isn't for us or from us, then only give it to filehandles that
256  * are in MONITOR_ALL mode.
257  *
258  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
259  * set and the CEC adapter was placed in 'monitor all' mode.
260  */
261 static void cec_queue_msg_monitor(struct cec_adapter *adap,
262 				  const struct cec_msg *msg,
263 				  bool valid_la)
264 {
265 	struct cec_fh *fh;
266 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
267 				      CEC_MODE_MONITOR_ALL;
268 
269 	mutex_lock(&adap->devnode.lock_fhs);
270 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
271 		if (fh->mode_follower >= monitor_mode)
272 			cec_queue_msg_fh(fh, msg);
273 	}
274 	mutex_unlock(&adap->devnode.lock_fhs);
275 }
276 
277 /*
278  * Queue the message for follower filehandles.
279  */
280 static void cec_queue_msg_followers(struct cec_adapter *adap,
281 				    const struct cec_msg *msg)
282 {
283 	struct cec_fh *fh;
284 
285 	mutex_lock(&adap->devnode.lock_fhs);
286 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
287 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
288 			cec_queue_msg_fh(fh, msg);
289 	}
290 	mutex_unlock(&adap->devnode.lock_fhs);
291 }
292 
293 /* Notify userspace of an adapter state change. */
294 static void cec_post_state_event(struct cec_adapter *adap)
295 {
296 	struct cec_event ev = {
297 		.event = CEC_EVENT_STATE_CHANGE,
298 	};
299 
300 	ev.state_change.phys_addr = adap->phys_addr;
301 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
302 	ev.state_change.have_conn_info =
303 		adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
304 	cec_queue_event(adap, &ev);
305 }
306 
307 /*
308  * A CEC transmit (and a possible wait for reply) completed.
309  * If this was in blocking mode, then complete it, otherwise
310  * queue the message for userspace to dequeue later.
311  *
312  * This function is called with adap->lock held.
313  */
314 static void cec_data_completed(struct cec_data *data)
315 {
316 	/*
317 	 * Delete this transmit from the filehandle's xfer_list since
318 	 * we're done with it.
319 	 *
320 	 * Note that if the filehandle is closed before this transmit
321 	 * finished, then the release() function will set data->fh to NULL.
322 	 * Without that we would be referring to a closed filehandle.
323 	 */
324 	if (data->fh)
325 		list_del_init(&data->xfer_list);
326 
327 	if (data->blocking) {
328 		/*
329 		 * Someone is blocking so mark the message as completed
330 		 * and call complete.
331 		 */
332 		data->completed = true;
333 		complete(&data->c);
334 	} else {
335 		/*
336 		 * No blocking, so just queue the message if needed and
337 		 * free the memory.
338 		 */
339 		if (data->fh)
340 			cec_queue_msg_fh(data->fh, &data->msg);
341 		kfree(data);
342 	}
343 }
344 
345 /*
346  * A pending CEC transmit needs to be cancelled, either because the CEC
347  * adapter is disabled or the transmit takes an impossibly long time to
348  * finish, or the reply timed out.
349  *
350  * This function is called with adap->lock held.
351  */
352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
353 {
354 	struct cec_adapter *adap = data->adap;
355 
356 	/*
357 	 * It's either the current transmit, or it is a pending
358 	 * transmit. Take the appropriate action to clear it.
359 	 */
360 	if (adap->transmitting == data) {
361 		adap->transmitting = NULL;
362 	} else {
363 		list_del_init(&data->list);
364 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
365 			if (!WARN_ON(!adap->transmit_queue_sz))
366 				adap->transmit_queue_sz--;
367 	}
368 
369 	if (data->msg.tx_status & CEC_TX_STATUS_OK) {
370 		data->msg.rx_ts = ktime_get_ns();
371 		data->msg.rx_status = rx_status;
372 		if (!data->blocking)
373 			data->msg.tx_status = 0;
374 	} else {
375 		data->msg.tx_ts = ktime_get_ns();
376 		data->msg.tx_status |= tx_status |
377 				       CEC_TX_STATUS_MAX_RETRIES;
378 		data->msg.tx_error_cnt++;
379 		data->attempts = 0;
380 		if (!data->blocking)
381 			data->msg.rx_status = 0;
382 	}
383 
384 	/* Queue transmitted message for monitoring purposes */
385 	cec_queue_msg_monitor(adap, &data->msg, 1);
386 
387 	if (!data->blocking && data->msg.sequence)
388 		/* Allow drivers to react to a canceled transmit */
389 		call_void_op(adap, adap_nb_transmit_canceled, &data->msg);
390 
391 	cec_data_completed(data);
392 }
393 
394 /*
395  * Flush all pending transmits and cancel any pending timeout work.
396  *
397  * This function is called with adap->lock held.
398  */
399 static void cec_flush(struct cec_adapter *adap)
400 {
401 	struct cec_data *data, *n;
402 
403 	/*
404 	 * If the adapter is disabled, or we're asked to stop,
405 	 * then cancel any pending transmits.
406 	 */
407 	while (!list_empty(&adap->transmit_queue)) {
408 		data = list_first_entry(&adap->transmit_queue,
409 					struct cec_data, list);
410 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
411 	}
412 	if (adap->transmitting)
413 		adap->transmit_in_progress_aborted = true;
414 
415 	/* Cancel the pending timeout work. */
416 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
417 		if (cancel_delayed_work(&data->work))
418 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
419 		/*
420 		 * If cancel_delayed_work returned false, then
421 		 * the cec_wait_timeout function is running,
422 		 * which will call cec_data_completed. So no
423 		 * need to do anything special in that case.
424 		 */
425 	}
426 	/*
427 	 * If something went wrong and this counter isn't what it should
428 	 * be, then this will reset it back to 0. Warn if it is not 0,
429 	 * since it indicates a bug, either in this framework or in a
430 	 * CEC driver.
431 	 */
432 	if (WARN_ON(adap->transmit_queue_sz))
433 		adap->transmit_queue_sz = 0;
434 }
435 
436 /*
437  * Main CEC state machine
438  *
439  * Wait until the thread should be stopped, or we are not transmitting and
440  * a new transmit message is queued up, in which case we start transmitting
441  * that message. When the adapter finished transmitting the message it will
442  * call cec_transmit_done().
443  *
444  * If the adapter is disabled, then remove all queued messages instead.
445  *
446  * If the current transmit times out, then cancel that transmit.
447  */
448 int cec_thread_func(void *_adap)
449 {
450 	struct cec_adapter *adap = _adap;
451 
452 	for (;;) {
453 		unsigned int signal_free_time;
454 		struct cec_data *data;
455 		bool timeout = false;
456 		u8 attempts;
457 
458 		if (adap->transmit_in_progress) {
459 			int err;
460 
461 			/*
462 			 * We are transmitting a message, so add a timeout
463 			 * to prevent the state machine to get stuck waiting
464 			 * for this message to finalize and add a check to
465 			 * see if the adapter is disabled in which case the
466 			 * transmit should be canceled.
467 			 */
468 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
469 				(adap->needs_hpd &&
470 				 (!adap->is_configured && !adap->is_configuring)) ||
471 				kthread_should_stop() ||
472 				(!adap->transmit_in_progress &&
473 				 !list_empty(&adap->transmit_queue)),
474 				msecs_to_jiffies(adap->xfer_timeout_ms));
475 			timeout = err == 0;
476 		} else {
477 			/* Otherwise we just wait for something to happen. */
478 			wait_event_interruptible(adap->kthread_waitq,
479 				kthread_should_stop() ||
480 				(!adap->transmit_in_progress &&
481 				 !list_empty(&adap->transmit_queue)));
482 		}
483 
484 		mutex_lock(&adap->lock);
485 
486 		if ((adap->needs_hpd &&
487 		     (!adap->is_configured && !adap->is_configuring)) ||
488 		    kthread_should_stop()) {
489 			cec_flush(adap);
490 			goto unlock;
491 		}
492 
493 		if (adap->transmit_in_progress &&
494 		    adap->transmit_in_progress_aborted) {
495 			if (adap->transmitting)
496 				cec_data_cancel(adap->transmitting,
497 						CEC_TX_STATUS_ABORTED, 0);
498 			adap->transmit_in_progress = false;
499 			adap->transmit_in_progress_aborted = false;
500 			goto unlock;
501 		}
502 		if (adap->transmit_in_progress && timeout) {
503 			/*
504 			 * If we timeout, then log that. Normally this does
505 			 * not happen and it is an indication of a faulty CEC
506 			 * adapter driver, or the CEC bus is in some weird
507 			 * state. On rare occasions it can happen if there is
508 			 * so much traffic on the bus that the adapter was
509 			 * unable to transmit for xfer_timeout_ms (2.1s by
510 			 * default).
511 			 */
512 			if (adap->transmitting) {
513 				pr_warn("cec-%s: message %*ph timed out\n", adap->name,
514 					adap->transmitting->msg.len,
515 					adap->transmitting->msg.msg);
516 				/* Just give up on this. */
517 				cec_data_cancel(adap->transmitting,
518 						CEC_TX_STATUS_TIMEOUT, 0);
519 			} else {
520 				pr_warn("cec-%s: transmit timed out\n", adap->name);
521 			}
522 			adap->transmit_in_progress = false;
523 			adap->tx_timeout_cnt++;
524 			goto unlock;
525 		}
526 
527 		/*
528 		 * If we are still transmitting, or there is nothing new to
529 		 * transmit, then just continue waiting.
530 		 */
531 		if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
532 			goto unlock;
533 
534 		/* Get a new message to transmit */
535 		data = list_first_entry(&adap->transmit_queue,
536 					struct cec_data, list);
537 		list_del_init(&data->list);
538 		if (!WARN_ON(!data->adap->transmit_queue_sz))
539 			adap->transmit_queue_sz--;
540 
541 		/* Make this the current transmitting message */
542 		adap->transmitting = data;
543 
544 		/*
545 		 * Suggested number of attempts as per the CEC 2.0 spec:
546 		 * 4 attempts is the default, except for 'secondary poll
547 		 * messages', i.e. poll messages not sent during the adapter
548 		 * configuration phase when it allocates logical addresses.
549 		 */
550 		if (data->msg.len == 1 && adap->is_configured)
551 			attempts = 2;
552 		else
553 			attempts = 4;
554 
555 		/* Set the suggested signal free time */
556 		if (data->attempts) {
557 			/* should be >= 3 data bit periods for a retry */
558 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
559 		} else if (adap->last_initiator !=
560 			   cec_msg_initiator(&data->msg)) {
561 			/* should be >= 5 data bit periods for new initiator */
562 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
563 			adap->last_initiator = cec_msg_initiator(&data->msg);
564 		} else {
565 			/*
566 			 * should be >= 7 data bit periods for sending another
567 			 * frame immediately after another.
568 			 */
569 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
570 		}
571 		if (data->attempts == 0)
572 			data->attempts = attempts;
573 
574 		adap->transmit_in_progress_aborted = false;
575 		/* Tell the adapter to transmit, cancel on error */
576 		if (call_op(adap, adap_transmit, data->attempts,
577 			    signal_free_time, &data->msg))
578 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
579 		else
580 			adap->transmit_in_progress = true;
581 
582 unlock:
583 		mutex_unlock(&adap->lock);
584 
585 		if (kthread_should_stop())
586 			break;
587 	}
588 	return 0;
589 }
590 
591 /*
592  * Called by the CEC adapter if a transmit finished.
593  */
594 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
595 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
596 			  u8 error_cnt, ktime_t ts)
597 {
598 	struct cec_data *data;
599 	struct cec_msg *msg;
600 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
601 				     low_drive_cnt + error_cnt;
602 	bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
603 	bool aborted = adap->transmit_in_progress_aborted;
604 
605 	dprintk(2, "%s: status 0x%02x\n", __func__, status);
606 	if (attempts_made < 1)
607 		attempts_made = 1;
608 
609 	mutex_lock(&adap->lock);
610 	data = adap->transmitting;
611 	if (!data) {
612 		/*
613 		 * This might happen if a transmit was issued and the cable is
614 		 * unplugged while the transmit is ongoing. Ignore this
615 		 * transmit in that case.
616 		 */
617 		if (!adap->transmit_in_progress)
618 			dprintk(1, "%s was called without an ongoing transmit!\n",
619 				__func__);
620 		adap->transmit_in_progress = false;
621 		goto wake_thread;
622 	}
623 	adap->transmit_in_progress = false;
624 	adap->transmit_in_progress_aborted = false;
625 
626 	msg = &data->msg;
627 
628 	/* Drivers must fill in the status! */
629 	WARN_ON(status == 0);
630 	msg->tx_ts = ktime_to_ns(ts);
631 	msg->tx_status |= status;
632 	msg->tx_arb_lost_cnt += arb_lost_cnt;
633 	msg->tx_nack_cnt += nack_cnt;
634 	msg->tx_low_drive_cnt += low_drive_cnt;
635 	msg->tx_error_cnt += error_cnt;
636 
637 	adap->tx_arb_lost_cnt += arb_lost_cnt;
638 	adap->tx_low_drive_cnt += low_drive_cnt;
639 	adap->tx_error_cnt += error_cnt;
640 
641 	/*
642 	 * Low Drive transmission errors should really not happen for
643 	 * well-behaved CEC devices and proper HDMI cables.
644 	 *
645 	 * Ditto for the 'Error' status.
646 	 *
647 	 * For the first few times that this happens, log this.
648 	 * Stop logging after that, since that will not add any more
649 	 * useful information and instead it will just flood the kernel log.
650 	 */
651 	if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) {
652 		adap->tx_low_drive_log_cnt++;
653 		dprintk(0, "low drive counter: %u (seq %u: %*ph)\n",
654 			msg->tx_low_drive_cnt, msg->sequence,
655 			msg->len, msg->msg);
656 	}
657 	if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) {
658 		adap->tx_error_log_cnt++;
659 		dprintk(0, "error counter: %u (seq %u: %*ph)\n",
660 			msg->tx_error_cnt, msg->sequence,
661 			msg->len, msg->msg);
662 	}
663 
664 	/* Mark that we're done with this transmit */
665 	adap->transmitting = NULL;
666 
667 	/*
668 	 * If there are still retry attempts left and there was an error and
669 	 * the hardware didn't signal that it retried itself (by setting
670 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
671 	 */
672 	if (!aborted && data->attempts > attempts_made && !done) {
673 		/* Retry this message */
674 		data->attempts -= attempts_made;
675 		if (msg->timeout)
676 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
677 				msg->len, msg->msg, data->attempts, msg->reply);
678 		else
679 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
680 				msg->len, msg->msg, data->attempts);
681 		/* Add the message in front of the transmit queue */
682 		list_add(&data->list, &adap->transmit_queue);
683 		adap->transmit_queue_sz++;
684 		goto wake_thread;
685 	}
686 
687 	if (aborted && !done)
688 		status |= CEC_TX_STATUS_ABORTED;
689 	data->attempts = 0;
690 
691 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
692 	if (!(status & CEC_TX_STATUS_OK))
693 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
694 
695 	/* Queue transmitted message for monitoring purposes */
696 	cec_queue_msg_monitor(adap, msg, 1);
697 
698 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
699 	    msg->timeout) {
700 		/*
701 		 * Queue the message into the wait queue if we want to wait
702 		 * for a reply.
703 		 */
704 		list_add_tail(&data->list, &adap->wait_queue);
705 		schedule_delayed_work(&data->work,
706 				      msecs_to_jiffies(msg->timeout));
707 	} else {
708 		/* Otherwise we're done */
709 		cec_data_completed(data);
710 	}
711 
712 wake_thread:
713 	/*
714 	 * Wake up the main thread to see if another message is ready
715 	 * for transmitting or to retry the current message.
716 	 */
717 	wake_up_interruptible(&adap->kthread_waitq);
718 	mutex_unlock(&adap->lock);
719 }
720 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
721 
722 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
723 				  u8 status, ktime_t ts)
724 {
725 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
726 	case CEC_TX_STATUS_OK:
727 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
728 		return;
729 	case CEC_TX_STATUS_ARB_LOST:
730 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
731 		return;
732 	case CEC_TX_STATUS_NACK:
733 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
734 		return;
735 	case CEC_TX_STATUS_LOW_DRIVE:
736 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
737 		return;
738 	case CEC_TX_STATUS_ERROR:
739 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
740 		return;
741 	default:
742 		/* Should never happen */
743 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
744 		return;
745 	}
746 }
747 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
748 
749 /*
750  * Called when waiting for a reply times out.
751  */
752 static void cec_wait_timeout(struct work_struct *work)
753 {
754 	struct cec_data *data = container_of(work, struct cec_data, work.work);
755 	struct cec_adapter *adap = data->adap;
756 
757 	mutex_lock(&adap->lock);
758 	/*
759 	 * Sanity check in case the timeout and the arrival of the message
760 	 * happened at the same time.
761 	 */
762 	if (list_empty(&data->list))
763 		goto unlock;
764 
765 	/* Mark the message as timed out */
766 	list_del_init(&data->list);
767 	cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
768 unlock:
769 	mutex_unlock(&adap->lock);
770 }
771 
772 /*
773  * Transmit a message. The fh argument may be NULL if the transmit is not
774  * associated with a specific filehandle.
775  *
776  * This function is called with adap->lock held.
777  */
778 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
779 			struct cec_fh *fh, bool block)
780 {
781 	struct cec_data *data;
782 	bool is_raw = msg_is_raw(msg);
783 	int err;
784 
785 	if (adap->devnode.unregistered)
786 		return -ENODEV;
787 
788 	msg->rx_ts = 0;
789 	msg->tx_ts = 0;
790 	msg->rx_status = 0;
791 	msg->tx_status = 0;
792 	msg->tx_arb_lost_cnt = 0;
793 	msg->tx_nack_cnt = 0;
794 	msg->tx_low_drive_cnt = 0;
795 	msg->tx_error_cnt = 0;
796 	msg->sequence = 0;
797 
798 	if (msg->reply && msg->timeout == 0) {
799 		/* Make sure the timeout isn't 0. */
800 		msg->timeout = 1000;
801 	}
802 	msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
803 
804 	if (!msg->timeout)
805 		msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
806 
807 	/* Sanity checks */
808 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
809 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
810 		return -EINVAL;
811 	}
812 
813 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
814 
815 	if (msg->timeout)
816 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
817 			__func__, msg->len, msg->msg, msg->reply,
818 			!block ? ", nb" : "");
819 	else
820 		dprintk(2, "%s: %*ph%s\n",
821 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
822 
823 	if (msg->timeout && msg->len == 1) {
824 		dprintk(1, "%s: can't reply to poll msg\n", __func__);
825 		return -EINVAL;
826 	}
827 
828 	if (is_raw) {
829 		if (!capable(CAP_SYS_RAWIO))
830 			return -EPERM;
831 	} else {
832 		/* A CDC-Only device can only send CDC messages */
833 		if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
834 		    (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
835 			dprintk(1, "%s: not a CDC message\n", __func__);
836 			return -EINVAL;
837 		}
838 
839 		if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
840 			msg->msg[2] = adap->phys_addr >> 8;
841 			msg->msg[3] = adap->phys_addr & 0xff;
842 		}
843 
844 		if (msg->len == 1) {
845 			if (cec_msg_destination(msg) == 0xf) {
846 				dprintk(1, "%s: invalid poll message\n",
847 					__func__);
848 				return -EINVAL;
849 			}
850 			if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
851 				/*
852 				 * If the destination is a logical address our
853 				 * adapter has already claimed, then just NACK
854 				 * this. It depends on the hardware what it will
855 				 * do with a POLL to itself (some OK this), so
856 				 * it is just as easy to handle it here so the
857 				 * behavior will be consistent.
858 				 */
859 				msg->tx_ts = ktime_get_ns();
860 				msg->tx_status = CEC_TX_STATUS_NACK |
861 					CEC_TX_STATUS_MAX_RETRIES;
862 				msg->tx_nack_cnt = 1;
863 				msg->sequence = ++adap->sequence;
864 				if (!msg->sequence)
865 					msg->sequence = ++adap->sequence;
866 				return 0;
867 			}
868 		}
869 		if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
870 		    cec_has_log_addr(adap, cec_msg_destination(msg))) {
871 			dprintk(1, "%s: destination is the adapter itself\n",
872 				__func__);
873 			return -EINVAL;
874 		}
875 		if (msg->len > 1 && adap->is_configured &&
876 		    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
877 			dprintk(1, "%s: initiator has unknown logical address %d\n",
878 				__func__, cec_msg_initiator(msg));
879 			return -EINVAL;
880 		}
881 		/*
882 		 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
883 		 * transmitted to a TV, even if the adapter is unconfigured.
884 		 * This makes it possible to detect or wake up displays that
885 		 * pull down the HPD when in standby.
886 		 */
887 		if (!adap->is_configured && !adap->is_configuring &&
888 		    (msg->len > 2 ||
889 		     cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
890 		     (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
891 		      msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
892 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
893 			return -ENONET;
894 		}
895 	}
896 
897 	if (!adap->is_configured && !adap->is_configuring) {
898 		if (adap->needs_hpd) {
899 			dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
900 				__func__);
901 			return -ENONET;
902 		}
903 		if (msg->reply) {
904 			dprintk(1, "%s: invalid msg->reply\n", __func__);
905 			return -EINVAL;
906 		}
907 	}
908 
909 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
910 		dprintk(2, "%s: transmit queue full\n", __func__);
911 		return -EBUSY;
912 	}
913 
914 	data = kzalloc(sizeof(*data), GFP_KERNEL);
915 	if (!data)
916 		return -ENOMEM;
917 
918 	msg->sequence = ++adap->sequence;
919 	if (!msg->sequence)
920 		msg->sequence = ++adap->sequence;
921 
922 	data->msg = *msg;
923 	data->fh = fh;
924 	data->adap = adap;
925 	data->blocking = block;
926 
927 	init_completion(&data->c);
928 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
929 
930 	if (fh)
931 		list_add_tail(&data->xfer_list, &fh->xfer_list);
932 	else
933 		INIT_LIST_HEAD(&data->xfer_list);
934 
935 	list_add_tail(&data->list, &adap->transmit_queue);
936 	adap->transmit_queue_sz++;
937 	if (!adap->transmitting)
938 		wake_up_interruptible(&adap->kthread_waitq);
939 
940 	/* All done if we don't need to block waiting for completion */
941 	if (!block)
942 		return 0;
943 
944 	/*
945 	 * Release the lock and wait, retake the lock afterwards.
946 	 */
947 	mutex_unlock(&adap->lock);
948 	err = wait_for_completion_killable(&data->c);
949 	cancel_delayed_work_sync(&data->work);
950 	mutex_lock(&adap->lock);
951 
952 	if (err)
953 		adap->transmit_in_progress_aborted = true;
954 
955 	/* Cancel the transmit if it was interrupted */
956 	if (!data->completed) {
957 		if (data->msg.tx_status & CEC_TX_STATUS_OK)
958 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
959 		else
960 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
961 	}
962 
963 	/* The transmit completed (possibly with an error) */
964 	*msg = data->msg;
965 	if (WARN_ON(!list_empty(&data->list)))
966 		list_del(&data->list);
967 	if (WARN_ON(!list_empty(&data->xfer_list)))
968 		list_del(&data->xfer_list);
969 	kfree(data);
970 	return 0;
971 }
972 
973 /* Helper function to be used by drivers and this framework. */
974 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
975 		     bool block)
976 {
977 	int ret;
978 
979 	mutex_lock(&adap->lock);
980 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
981 	mutex_unlock(&adap->lock);
982 	return ret;
983 }
984 EXPORT_SYMBOL_GPL(cec_transmit_msg);
985 
986 /*
987  * I don't like forward references but without this the low-level
988  * cec_received_msg() function would come after a bunch of high-level
989  * CEC protocol handling functions. That was very confusing.
990  */
991 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
992 			      bool is_reply);
993 
994 #define DIRECTED	0x80
995 #define BCAST1_4	0x40
996 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
997 #define BCAST		(BCAST1_4 | BCAST2_0)
998 #define BOTH		(BCAST | DIRECTED)
999 
1000 /*
1001  * Specify minimum length and whether the message is directed, broadcast
1002  * or both. Messages that do not match the criteria are ignored as per
1003  * the CEC specification.
1004  */
1005 static const u8 cec_msg_size[256] = {
1006 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
1007 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
1008 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
1009 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
1010 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
1011 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
1012 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
1013 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
1014 	[CEC_MSG_STANDBY] = 2 | BOTH,
1015 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
1016 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
1017 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
1018 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
1019 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
1020 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
1021 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
1022 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
1023 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
1024 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
1025 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
1026 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
1027 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
1028 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
1029 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
1030 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
1031 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
1032 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
1033 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
1034 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
1035 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
1036 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
1037 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
1038 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1039 	[CEC_MSG_PLAY] = 3 | DIRECTED,
1040 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1041 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1042 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1043 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1044 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1045 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1046 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1047 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1048 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1049 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1050 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1051 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1052 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1053 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1054 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1055 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1056 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1057 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1058 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1059 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1060 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1061 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1062 	[CEC_MSG_ABORT] = 2 | DIRECTED,
1063 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1064 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1065 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1066 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1067 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1068 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1069 	[CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1070 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1071 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1072 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1073 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1074 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1075 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1076 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1077 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1078 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1079 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1080 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1081 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1082 };
1083 
1084 /* Called by the CEC adapter if a message is received */
1085 void cec_received_msg_ts(struct cec_adapter *adap,
1086 			 struct cec_msg *msg, ktime_t ts)
1087 {
1088 	struct cec_data *data;
1089 	u8 msg_init = cec_msg_initiator(msg);
1090 	u8 msg_dest = cec_msg_destination(msg);
1091 	u8 cmd = msg->msg[1];
1092 	bool is_reply = false;
1093 	bool valid_la = true;
1094 	bool monitor_valid_la = true;
1095 	u8 min_len = 0;
1096 
1097 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1098 		return;
1099 
1100 	if (adap->devnode.unregistered)
1101 		return;
1102 
1103 	/*
1104 	 * Some CEC adapters will receive the messages that they transmitted.
1105 	 * This test filters out those messages by checking if we are the
1106 	 * initiator, and just returning in that case.
1107 	 *
1108 	 * Note that this won't work if this is an Unregistered device.
1109 	 *
1110 	 * It is bad practice if the hardware receives the message that it
1111 	 * transmitted and luckily most CEC adapters behave correctly in this
1112 	 * respect.
1113 	 */
1114 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1115 	    cec_has_log_addr(adap, msg_init))
1116 		return;
1117 
1118 	msg->rx_ts = ktime_to_ns(ts);
1119 	msg->rx_status = CEC_RX_STATUS_OK;
1120 	msg->sequence = msg->reply = msg->timeout = 0;
1121 	msg->tx_status = 0;
1122 	msg->tx_ts = 0;
1123 	msg->tx_arb_lost_cnt = 0;
1124 	msg->tx_nack_cnt = 0;
1125 	msg->tx_low_drive_cnt = 0;
1126 	msg->tx_error_cnt = 0;
1127 	msg->flags = 0;
1128 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1129 
1130 	mutex_lock(&adap->lock);
1131 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1132 
1133 	if (!adap->transmit_in_progress)
1134 		adap->last_initiator = 0xff;
1135 
1136 	/* Check if this message was for us (directed or broadcast). */
1137 	if (!cec_msg_is_broadcast(msg)) {
1138 		valid_la = cec_has_log_addr(adap, msg_dest);
1139 		monitor_valid_la = valid_la;
1140 	}
1141 
1142 	/*
1143 	 * Check if the length is not too short or if the message is a
1144 	 * broadcast message where a directed message was expected or
1145 	 * vice versa. If so, then the message has to be ignored (according
1146 	 * to section CEC 7.3 and CEC 12.2).
1147 	 */
1148 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1149 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1150 
1151 		min_len = cec_msg_size[cmd] & 0x1f;
1152 		if (msg->len < min_len)
1153 			valid_la = false;
1154 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1155 			valid_la = false;
1156 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1157 			valid_la = false;
1158 		else if (cec_msg_is_broadcast(msg) &&
1159 			 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1160 			 !(dir_fl & BCAST1_4))
1161 			valid_la = false;
1162 	}
1163 	if (valid_la && min_len) {
1164 		/* These messages have special length requirements */
1165 		switch (cmd) {
1166 		case CEC_MSG_RECORD_ON:
1167 			switch (msg->msg[2]) {
1168 			case CEC_OP_RECORD_SRC_OWN:
1169 				break;
1170 			case CEC_OP_RECORD_SRC_DIGITAL:
1171 				if (msg->len < 10)
1172 					valid_la = false;
1173 				break;
1174 			case CEC_OP_RECORD_SRC_ANALOG:
1175 				if (msg->len < 7)
1176 					valid_la = false;
1177 				break;
1178 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1179 				if (msg->len < 4)
1180 					valid_la = false;
1181 				break;
1182 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1183 				if (msg->len < 5)
1184 					valid_la = false;
1185 				break;
1186 			}
1187 			break;
1188 		}
1189 	}
1190 
1191 	/* It's a valid message and not a poll or CDC message */
1192 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1193 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1194 
1195 		/* The aborted command is in msg[2] */
1196 		if (abort)
1197 			cmd = msg->msg[2];
1198 
1199 		/*
1200 		 * Walk over all transmitted messages that are waiting for a
1201 		 * reply.
1202 		 */
1203 		list_for_each_entry(data, &adap->wait_queue, list) {
1204 			struct cec_msg *dst = &data->msg;
1205 
1206 			/*
1207 			 * The *only* CEC message that has two possible replies
1208 			 * is CEC_MSG_INITIATE_ARC.
1209 			 * In this case allow either of the two replies.
1210 			 */
1211 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1212 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1213 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1214 			    (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1215 			     dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1216 				dst->reply = cmd;
1217 
1218 			/* Does the command match? */
1219 			if ((abort && cmd != dst->msg[1]) ||
1220 			    (!abort && cmd != dst->reply))
1221 				continue;
1222 
1223 			/* Does the addressing match? */
1224 			if (msg_init != cec_msg_destination(dst) &&
1225 			    !cec_msg_is_broadcast(dst))
1226 				continue;
1227 
1228 			/* We got a reply */
1229 			memcpy(dst->msg, msg->msg, msg->len);
1230 			dst->len = msg->len;
1231 			dst->rx_ts = msg->rx_ts;
1232 			dst->rx_status = msg->rx_status;
1233 			if (abort)
1234 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1235 			msg->flags = dst->flags;
1236 			msg->sequence = dst->sequence;
1237 			/* Remove it from the wait_queue */
1238 			list_del_init(&data->list);
1239 
1240 			/* Cancel the pending timeout work */
1241 			if (!cancel_delayed_work(&data->work)) {
1242 				mutex_unlock(&adap->lock);
1243 				cancel_delayed_work_sync(&data->work);
1244 				mutex_lock(&adap->lock);
1245 			}
1246 			/*
1247 			 * Mark this as a reply, provided someone is still
1248 			 * waiting for the answer.
1249 			 */
1250 			if (data->fh)
1251 				is_reply = true;
1252 			cec_data_completed(data);
1253 			break;
1254 		}
1255 	}
1256 	mutex_unlock(&adap->lock);
1257 
1258 	/* Pass the message on to any monitoring filehandles */
1259 	cec_queue_msg_monitor(adap, msg, monitor_valid_la);
1260 
1261 	/* We're done if it is not for us or a poll message */
1262 	if (!valid_la || msg->len <= 1)
1263 		return;
1264 
1265 	if (adap->log_addrs.log_addr_mask == 0)
1266 		return;
1267 
1268 	/*
1269 	 * Process the message on the protocol level. If is_reply is true,
1270 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1271 	 * since that was already done by cec_data_completed() above.
1272 	 */
1273 	cec_receive_notify(adap, msg, is_reply);
1274 }
1275 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1276 
1277 /* Logical Address Handling */
1278 
1279 /*
1280  * Attempt to claim a specific logical address.
1281  *
1282  * This function is called with adap->lock held.
1283  */
1284 static int cec_config_log_addr(struct cec_adapter *adap,
1285 			       unsigned int idx,
1286 			       unsigned int log_addr)
1287 {
1288 	struct cec_log_addrs *las = &adap->log_addrs;
1289 	struct cec_msg msg = { };
1290 	const unsigned int max_retries = 2;
1291 	unsigned int i;
1292 	int err;
1293 
1294 	if (cec_has_log_addr(adap, log_addr))
1295 		return 0;
1296 
1297 	/* Send poll message */
1298 	msg.len = 1;
1299 	msg.msg[0] = (log_addr << 4) | log_addr;
1300 
1301 	for (i = 0; i < max_retries; i++) {
1302 		err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1303 
1304 		/*
1305 		 * While trying to poll the physical address was reset
1306 		 * and the adapter was unconfigured, so bail out.
1307 		 */
1308 		if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1309 			return -EINTR;
1310 
1311 		/* Also bail out if the PA changed while configuring. */
1312 		if (adap->must_reconfigure)
1313 			return -EINTR;
1314 
1315 		if (err)
1316 			return err;
1317 
1318 		/*
1319 		 * The message was aborted or timed out due to a disconnect or
1320 		 * unconfigure, just bail out.
1321 		 */
1322 		if (msg.tx_status &
1323 		    (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1324 			return -EINTR;
1325 		if (msg.tx_status & CEC_TX_STATUS_OK)
1326 			return 0;
1327 		if (msg.tx_status & CEC_TX_STATUS_NACK)
1328 			break;
1329 		/*
1330 		 * Retry up to max_retries times if the message was neither
1331 		 * OKed or NACKed. This can happen due to e.g. a Lost
1332 		 * Arbitration condition.
1333 		 */
1334 	}
1335 
1336 	/*
1337 	 * If we are unable to get an OK or a NACK after max_retries attempts
1338 	 * (and note that each attempt already consists of four polls), then
1339 	 * we assume that something is really weird and that it is not a
1340 	 * good idea to try and claim this logical address.
1341 	 */
1342 	if (i == max_retries) {
1343 		dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1344 			log_addr, msg.tx_status);
1345 		return 0;
1346 	}
1347 
1348 	/*
1349 	 * Message not acknowledged, so this logical
1350 	 * address is free to use.
1351 	 */
1352 	err = call_op(adap, adap_log_addr, log_addr);
1353 	if (err)
1354 		return err;
1355 
1356 	las->log_addr[idx] = log_addr;
1357 	las->log_addr_mask |= 1 << log_addr;
1358 	return 1;
1359 }
1360 
1361 /*
1362  * Unconfigure the adapter: clear all logical addresses and send
1363  * the state changed event.
1364  *
1365  * This function is called with adap->lock held.
1366  */
1367 static void cec_adap_unconfigure(struct cec_adapter *adap)
1368 {
1369 	if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1370 		WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1371 	adap->log_addrs.log_addr_mask = 0;
1372 	adap->is_configured = false;
1373 	cec_flush(adap);
1374 	wake_up_interruptible(&adap->kthread_waitq);
1375 	cec_post_state_event(adap);
1376 	call_void_op(adap, adap_unconfigured);
1377 }
1378 
1379 /*
1380  * Attempt to claim the required logical addresses.
1381  */
1382 static int cec_config_thread_func(void *arg)
1383 {
1384 	/* The various LAs for each type of device */
1385 	static const u8 tv_log_addrs[] = {
1386 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1387 		CEC_LOG_ADDR_INVALID
1388 	};
1389 	static const u8 record_log_addrs[] = {
1390 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1391 		CEC_LOG_ADDR_RECORD_3,
1392 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1393 		CEC_LOG_ADDR_INVALID
1394 	};
1395 	static const u8 tuner_log_addrs[] = {
1396 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1397 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1398 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1399 		CEC_LOG_ADDR_INVALID
1400 	};
1401 	static const u8 playback_log_addrs[] = {
1402 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1403 		CEC_LOG_ADDR_PLAYBACK_3,
1404 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1405 		CEC_LOG_ADDR_INVALID
1406 	};
1407 	static const u8 audiosystem_log_addrs[] = {
1408 		CEC_LOG_ADDR_AUDIOSYSTEM,
1409 		CEC_LOG_ADDR_INVALID
1410 	};
1411 	static const u8 specific_use_log_addrs[] = {
1412 		CEC_LOG_ADDR_SPECIFIC,
1413 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1414 		CEC_LOG_ADDR_INVALID
1415 	};
1416 	static const u8 *type2addrs[6] = {
1417 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1418 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1419 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1420 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1421 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1422 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1423 	};
1424 	static const u16 type2mask[] = {
1425 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1426 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1427 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1428 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1429 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1430 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1431 	};
1432 	struct cec_adapter *adap = arg;
1433 	struct cec_log_addrs *las = &adap->log_addrs;
1434 	int err;
1435 	int i, j;
1436 
1437 	mutex_lock(&adap->lock);
1438 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1439 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1440 	las->log_addr_mask = 0;
1441 
1442 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1443 		goto configured;
1444 
1445 reconfigure:
1446 	for (i = 0; i < las->num_log_addrs; i++) {
1447 		unsigned int type = las->log_addr_type[i];
1448 		const u8 *la_list;
1449 		u8 last_la;
1450 
1451 		/*
1452 		 * The TV functionality can only map to physical address 0.
1453 		 * For any other address, try the Specific functionality
1454 		 * instead as per the spec.
1455 		 */
1456 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1457 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1458 
1459 		la_list = type2addrs[type];
1460 		last_la = las->log_addr[i];
1461 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1462 		if (last_la == CEC_LOG_ADDR_INVALID ||
1463 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1464 		    !((1 << last_la) & type2mask[type]))
1465 			last_la = la_list[0];
1466 
1467 		err = cec_config_log_addr(adap, i, last_la);
1468 
1469 		if (adap->must_reconfigure) {
1470 			adap->must_reconfigure = false;
1471 			las->log_addr_mask = 0;
1472 			goto reconfigure;
1473 		}
1474 
1475 		if (err > 0) /* Reused last LA */
1476 			continue;
1477 
1478 		if (err < 0)
1479 			goto unconfigure;
1480 
1481 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1482 			/* Tried this one already, skip it */
1483 			if (la_list[j] == last_la)
1484 				continue;
1485 			/* The backup addresses are CEC 2.0 specific */
1486 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1487 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1488 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1489 				continue;
1490 
1491 			err = cec_config_log_addr(adap, i, la_list[j]);
1492 			if (err == 0) /* LA is in use */
1493 				continue;
1494 			if (err < 0)
1495 				goto unconfigure;
1496 			/* Done, claimed an LA */
1497 			break;
1498 		}
1499 
1500 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1501 			dprintk(1, "could not claim LA %d\n", i);
1502 	}
1503 
1504 	if (adap->log_addrs.log_addr_mask == 0 &&
1505 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1506 		goto unconfigure;
1507 
1508 configured:
1509 	if (adap->log_addrs.log_addr_mask == 0) {
1510 		/* Fall back to unregistered */
1511 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1512 		las->log_addr_mask = 1 << las->log_addr[0];
1513 		for (i = 1; i < las->num_log_addrs; i++)
1514 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1515 	}
1516 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1517 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1518 	adap->is_configured = true;
1519 	adap->is_configuring = false;
1520 	adap->must_reconfigure = false;
1521 	cec_post_state_event(adap);
1522 
1523 	/*
1524 	 * Now post the Report Features and Report Physical Address broadcast
1525 	 * messages. Note that these are non-blocking transmits, meaning that
1526 	 * they are just queued up and once adap->lock is unlocked the main
1527 	 * thread will kick in and start transmitting these.
1528 	 *
1529 	 * If after this function is done (but before one or more of these
1530 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1531 	 * then any remaining messages will be dropped by the main thread.
1532 	 */
1533 	for (i = 0; i < las->num_log_addrs; i++) {
1534 		struct cec_msg msg = {};
1535 
1536 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1537 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1538 			continue;
1539 
1540 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1541 
1542 		/* Report Features must come first according to CEC 2.0 */
1543 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1544 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1545 			cec_fill_msg_report_features(adap, &msg, i);
1546 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1547 		}
1548 
1549 		/* Report Physical Address */
1550 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1551 					     las->primary_device_type[i]);
1552 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1553 			las->log_addr[i],
1554 			cec_phys_addr_exp(adap->phys_addr));
1555 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1556 
1557 		/* Report Vendor ID */
1558 		if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1559 			cec_msg_device_vendor_id(&msg,
1560 						 adap->log_addrs.vendor_id);
1561 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1562 		}
1563 	}
1564 	adap->kthread_config = NULL;
1565 	complete(&adap->config_completion);
1566 	mutex_unlock(&adap->lock);
1567 	call_void_op(adap, configured);
1568 	return 0;
1569 
1570 unconfigure:
1571 	for (i = 0; i < las->num_log_addrs; i++)
1572 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1573 	cec_adap_unconfigure(adap);
1574 	adap->is_configuring = false;
1575 	adap->must_reconfigure = false;
1576 	adap->kthread_config = NULL;
1577 	complete(&adap->config_completion);
1578 	mutex_unlock(&adap->lock);
1579 	return 0;
1580 }
1581 
1582 /*
1583  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1584  * logical addresses.
1585  *
1586  * This function is called with adap->lock held.
1587  */
1588 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1589 {
1590 	if (WARN_ON(adap->is_claiming_log_addrs ||
1591 		    adap->is_configuring || adap->is_configured))
1592 		return;
1593 
1594 	adap->is_claiming_log_addrs = true;
1595 
1596 	init_completion(&adap->config_completion);
1597 
1598 	/* Ready to kick off the thread */
1599 	adap->is_configuring = true;
1600 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1601 					   "ceccfg-%s", adap->name);
1602 	if (IS_ERR(adap->kthread_config)) {
1603 		adap->kthread_config = NULL;
1604 		adap->is_configuring = false;
1605 	} else if (block) {
1606 		mutex_unlock(&adap->lock);
1607 		wait_for_completion(&adap->config_completion);
1608 		mutex_lock(&adap->lock);
1609 	}
1610 	adap->is_claiming_log_addrs = false;
1611 }
1612 
1613 /*
1614  * Helper function to enable/disable the CEC adapter.
1615  *
1616  * This function is called with adap->lock held.
1617  */
1618 int cec_adap_enable(struct cec_adapter *adap)
1619 {
1620 	bool enable;
1621 	int ret = 0;
1622 
1623 	enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1624 		 adap->log_addrs.num_log_addrs;
1625 	if (adap->needs_hpd)
1626 		enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1627 
1628 	if (adap->devnode.unregistered)
1629 		enable = false;
1630 
1631 	if (enable == adap->is_enabled)
1632 		return 0;
1633 
1634 	/* serialize adap_enable */
1635 	mutex_lock(&adap->devnode.lock);
1636 	if (enable) {
1637 		adap->last_initiator = 0xff;
1638 		adap->transmit_in_progress = false;
1639 		adap->tx_low_drive_log_cnt = 0;
1640 		adap->tx_error_log_cnt = 0;
1641 		ret = adap->ops->adap_enable(adap, true);
1642 		if (!ret) {
1643 			/*
1644 			 * Enable monitor-all/pin modes if needed. We warn, but
1645 			 * continue if this fails as this is not a critical error.
1646 			 */
1647 			if (adap->monitor_all_cnt)
1648 				WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1649 			if (adap->monitor_pin_cnt)
1650 				WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1651 		}
1652 	} else {
1653 		/* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1654 		if (adap->monitor_all_cnt)
1655 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1656 		if (adap->monitor_pin_cnt)
1657 			WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1658 		WARN_ON(adap->ops->adap_enable(adap, false));
1659 		adap->last_initiator = 0xff;
1660 		adap->transmit_in_progress = false;
1661 		adap->transmit_in_progress_aborted = false;
1662 		if (adap->transmitting)
1663 			cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0);
1664 	}
1665 	if (!ret)
1666 		adap->is_enabled = enable;
1667 	wake_up_interruptible(&adap->kthread_waitq);
1668 	mutex_unlock(&adap->devnode.lock);
1669 	return ret;
1670 }
1671 
1672 /* Set a new physical address and send an event notifying userspace of this.
1673  *
1674  * This function is called with adap->lock held.
1675  */
1676 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1677 {
1678 	bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1679 	bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1680 
1681 	if (phys_addr == adap->phys_addr)
1682 		return;
1683 	if (!becomes_invalid && adap->devnode.unregistered)
1684 		return;
1685 
1686 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1687 		cec_phys_addr_exp(phys_addr));
1688 	if (becomes_invalid || !is_invalid) {
1689 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1690 		cec_post_state_event(adap);
1691 		cec_adap_unconfigure(adap);
1692 		if (becomes_invalid) {
1693 			cec_adap_enable(adap);
1694 			return;
1695 		}
1696 	}
1697 
1698 	adap->phys_addr = phys_addr;
1699 	if (is_invalid)
1700 		cec_adap_enable(adap);
1701 
1702 	cec_post_state_event(adap);
1703 	if (!adap->log_addrs.num_log_addrs)
1704 		return;
1705 	if (adap->is_configuring)
1706 		adap->must_reconfigure = true;
1707 	else
1708 		cec_claim_log_addrs(adap, block);
1709 }
1710 
1711 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1712 {
1713 	if (IS_ERR_OR_NULL(adap))
1714 		return;
1715 
1716 	mutex_lock(&adap->lock);
1717 	__cec_s_phys_addr(adap, phys_addr, block);
1718 	mutex_unlock(&adap->lock);
1719 }
1720 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1721 
1722 /*
1723  * Note: In the drm subsystem, prefer calling (if possible):
1724  *
1725  * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false);
1726  */
1727 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1728 			       const struct edid *edid)
1729 {
1730 	u16 pa = CEC_PHYS_ADDR_INVALID;
1731 
1732 	if (edid && edid->extensions)
1733 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1734 				EDID_LENGTH * (edid->extensions + 1), NULL);
1735 	cec_s_phys_addr(adap, pa, false);
1736 }
1737 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1738 
1739 void cec_s_conn_info(struct cec_adapter *adap,
1740 		     const struct cec_connector_info *conn_info)
1741 {
1742 	if (IS_ERR_OR_NULL(adap))
1743 		return;
1744 
1745 	if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1746 		return;
1747 
1748 	mutex_lock(&adap->lock);
1749 	if (conn_info)
1750 		adap->conn_info = *conn_info;
1751 	else
1752 		memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1753 	cec_post_state_event(adap);
1754 	mutex_unlock(&adap->lock);
1755 }
1756 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1757 
1758 /*
1759  * Called from either the ioctl or a driver to set the logical addresses.
1760  *
1761  * This function is called with adap->lock held.
1762  */
1763 int __cec_s_log_addrs(struct cec_adapter *adap,
1764 		      struct cec_log_addrs *log_addrs, bool block)
1765 {
1766 	u16 type_mask = 0;
1767 	int err;
1768 	int i;
1769 
1770 	if (adap->devnode.unregistered)
1771 		return -ENODEV;
1772 
1773 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1774 		if (!adap->log_addrs.num_log_addrs)
1775 			return 0;
1776 		if (adap->is_configuring || adap->is_configured)
1777 			cec_adap_unconfigure(adap);
1778 		adap->log_addrs.num_log_addrs = 0;
1779 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1780 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1781 		adap->log_addrs.osd_name[0] = '\0';
1782 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1783 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1784 		cec_adap_enable(adap);
1785 		return 0;
1786 	}
1787 
1788 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1789 		/*
1790 		 * Sanitize log_addrs fields if a CDC-Only device is
1791 		 * requested.
1792 		 */
1793 		log_addrs->num_log_addrs = 1;
1794 		log_addrs->osd_name[0] = '\0';
1795 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1796 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1797 		/*
1798 		 * This is just an internal convention since a CDC-Only device
1799 		 * doesn't have to be a switch. But switches already use
1800 		 * unregistered, so it makes some kind of sense to pick this
1801 		 * as the primary device. Since a CDC-Only device never sends
1802 		 * any 'normal' CEC messages this primary device type is never
1803 		 * sent over the CEC bus.
1804 		 */
1805 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1806 		log_addrs->all_device_types[0] = 0;
1807 		log_addrs->features[0][0] = 0;
1808 		log_addrs->features[0][1] = 0;
1809 	}
1810 
1811 	/* Ensure the osd name is 0-terminated */
1812 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1813 
1814 	/* Sanity checks */
1815 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1816 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1817 		return -EINVAL;
1818 	}
1819 
1820 	/*
1821 	 * Vendor ID is a 24 bit number, so check if the value is
1822 	 * within the correct range.
1823 	 */
1824 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1825 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1826 		dprintk(1, "invalid vendor ID\n");
1827 		return -EINVAL;
1828 	}
1829 
1830 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1831 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1832 		dprintk(1, "invalid CEC version\n");
1833 		return -EINVAL;
1834 	}
1835 
1836 	if (log_addrs->num_log_addrs > 1)
1837 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1838 			if (log_addrs->log_addr_type[i] ==
1839 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1840 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1841 				return -EINVAL;
1842 			}
1843 
1844 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1845 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1846 		u8 *features = log_addrs->features[i];
1847 		bool op_is_dev_features = false;
1848 		unsigned int j;
1849 
1850 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1851 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1852 			dprintk(1, "unknown logical address type\n");
1853 			return -EINVAL;
1854 		}
1855 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1856 			dprintk(1, "duplicate logical address type\n");
1857 			return -EINVAL;
1858 		}
1859 		type_mask |= 1 << log_addrs->log_addr_type[i];
1860 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1861 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1862 			/* Record already contains the playback functionality */
1863 			dprintk(1, "invalid record + playback combination\n");
1864 			return -EINVAL;
1865 		}
1866 		if (log_addrs->primary_device_type[i] >
1867 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1868 			dprintk(1, "unknown primary device type\n");
1869 			return -EINVAL;
1870 		}
1871 		if (log_addrs->primary_device_type[i] == 2) {
1872 			dprintk(1, "invalid primary device type\n");
1873 			return -EINVAL;
1874 		}
1875 		for (j = 0; j < feature_sz; j++) {
1876 			if ((features[j] & 0x80) == 0) {
1877 				if (op_is_dev_features)
1878 					break;
1879 				op_is_dev_features = true;
1880 			}
1881 		}
1882 		if (!op_is_dev_features || j == feature_sz) {
1883 			dprintk(1, "malformed features\n");
1884 			return -EINVAL;
1885 		}
1886 		/* Zero unused part of the feature array */
1887 		memset(features + j + 1, 0, feature_sz - j - 1);
1888 	}
1889 
1890 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1891 		if (log_addrs->num_log_addrs > 2) {
1892 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1893 			return -EINVAL;
1894 		}
1895 		if (log_addrs->num_log_addrs == 2) {
1896 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1897 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1898 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1899 				return -EINVAL;
1900 			}
1901 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1902 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1903 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1904 				return -EINVAL;
1905 			}
1906 		}
1907 	}
1908 
1909 	/* Zero unused LAs */
1910 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1911 		log_addrs->primary_device_type[i] = 0;
1912 		log_addrs->log_addr_type[i] = 0;
1913 		log_addrs->all_device_types[i] = 0;
1914 		memset(log_addrs->features[i], 0,
1915 		       sizeof(log_addrs->features[i]));
1916 	}
1917 
1918 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1919 	adap->log_addrs = *log_addrs;
1920 	err = cec_adap_enable(adap);
1921 	if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1922 		cec_claim_log_addrs(adap, block);
1923 	return err;
1924 }
1925 
1926 int cec_s_log_addrs(struct cec_adapter *adap,
1927 		    struct cec_log_addrs *log_addrs, bool block)
1928 {
1929 	int err;
1930 
1931 	mutex_lock(&adap->lock);
1932 	err = __cec_s_log_addrs(adap, log_addrs, block);
1933 	mutex_unlock(&adap->lock);
1934 	return err;
1935 }
1936 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1937 
1938 /* High-level core CEC message handling */
1939 
1940 /* Fill in the Report Features message */
1941 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1942 					 struct cec_msg *msg,
1943 					 unsigned int la_idx)
1944 {
1945 	const struct cec_log_addrs *las = &adap->log_addrs;
1946 	const u8 *features = las->features[la_idx];
1947 	bool op_is_dev_features = false;
1948 	unsigned int idx;
1949 
1950 	/* Report Features */
1951 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1952 	msg->len = 4;
1953 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1954 	msg->msg[2] = adap->log_addrs.cec_version;
1955 	msg->msg[3] = las->all_device_types[la_idx];
1956 
1957 	/* Write RC Profiles first, then Device Features */
1958 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1959 		msg->msg[msg->len++] = features[idx];
1960 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1961 			if (op_is_dev_features)
1962 				break;
1963 			op_is_dev_features = true;
1964 		}
1965 	}
1966 }
1967 
1968 /* Transmit the Feature Abort message */
1969 static int cec_feature_abort_reason(struct cec_adapter *adap,
1970 				    struct cec_msg *msg, u8 reason)
1971 {
1972 	struct cec_msg tx_msg = { };
1973 
1974 	/*
1975 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1976 	 * message!
1977 	 */
1978 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1979 		return 0;
1980 	/* Don't Feature Abort messages from 'Unregistered' */
1981 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1982 		return 0;
1983 	cec_msg_set_reply_to(&tx_msg, msg);
1984 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1985 	return cec_transmit_msg(adap, &tx_msg, false);
1986 }
1987 
1988 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1989 {
1990 	return cec_feature_abort_reason(adap, msg,
1991 					CEC_OP_ABORT_UNRECOGNIZED_OP);
1992 }
1993 
1994 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1995 {
1996 	return cec_feature_abort_reason(adap, msg,
1997 					CEC_OP_ABORT_REFUSED);
1998 }
1999 
2000 /*
2001  * Called when a CEC message is received. This function will do any
2002  * necessary core processing. The is_reply bool is true if this message
2003  * is a reply to an earlier transmit.
2004  *
2005  * The message is either a broadcast message or a valid directed message.
2006  */
2007 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
2008 			      bool is_reply)
2009 {
2010 	bool is_broadcast = cec_msg_is_broadcast(msg);
2011 	u8 dest_laddr = cec_msg_destination(msg);
2012 	u8 init_laddr = cec_msg_initiator(msg);
2013 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
2014 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
2015 	bool from_unregistered = init_laddr == 0xf;
2016 	struct cec_msg tx_cec_msg = { };
2017 
2018 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
2019 
2020 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
2021 	if (cec_is_cdc_only(&adap->log_addrs) &&
2022 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
2023 		return 0;
2024 
2025 	/* Allow drivers to process the message first */
2026 	if (adap->ops->received && !adap->devnode.unregistered &&
2027 	    adap->ops->received(adap, msg) != -ENOMSG)
2028 		return 0;
2029 
2030 	/*
2031 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
2032 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
2033 	 * handled by the CEC core, even if the passthrough mode is on.
2034 	 * The others are just ignored if passthrough mode is on.
2035 	 */
2036 	switch (msg->msg[1]) {
2037 	case CEC_MSG_GET_CEC_VERSION:
2038 	case CEC_MSG_ABORT:
2039 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2040 	case CEC_MSG_GIVE_OSD_NAME:
2041 		/*
2042 		 * These messages reply with a directed message, so ignore if
2043 		 * the initiator is Unregistered.
2044 		 */
2045 		if (!adap->passthrough && from_unregistered)
2046 			return 0;
2047 		fallthrough;
2048 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2049 	case CEC_MSG_GIVE_FEATURES:
2050 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2051 		/*
2052 		 * Skip processing these messages if the passthrough mode
2053 		 * is on.
2054 		 */
2055 		if (adap->passthrough)
2056 			goto skip_processing;
2057 		/* Ignore if addressing is wrong */
2058 		if (is_broadcast)
2059 			return 0;
2060 		break;
2061 
2062 	case CEC_MSG_USER_CONTROL_PRESSED:
2063 	case CEC_MSG_USER_CONTROL_RELEASED:
2064 		/* Wrong addressing mode: don't process */
2065 		if (is_broadcast || from_unregistered)
2066 			goto skip_processing;
2067 		break;
2068 
2069 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
2070 		/*
2071 		 * This message is always processed, regardless of the
2072 		 * passthrough setting.
2073 		 *
2074 		 * Exception: don't process if wrong addressing mode.
2075 		 */
2076 		if (!is_broadcast)
2077 			goto skip_processing;
2078 		break;
2079 
2080 	default:
2081 		break;
2082 	}
2083 
2084 	cec_msg_set_reply_to(&tx_cec_msg, msg);
2085 
2086 	switch (msg->msg[1]) {
2087 	/* The following messages are processed but still passed through */
2088 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2089 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2090 
2091 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2092 			cec_phys_addr_exp(pa), init_laddr);
2093 		break;
2094 	}
2095 
2096 	case CEC_MSG_USER_CONTROL_PRESSED:
2097 		if (!(adap->capabilities & CEC_CAP_RC) ||
2098 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2099 			break;
2100 
2101 #ifdef CONFIG_MEDIA_CEC_RC
2102 		switch (msg->msg[2]) {
2103 		/*
2104 		 * Play function, this message can have variable length
2105 		 * depending on the specific play function that is used.
2106 		 */
2107 		case CEC_OP_UI_CMD_PLAY_FUNCTION:
2108 			if (msg->len == 2)
2109 				rc_keydown(adap->rc, RC_PROTO_CEC,
2110 					   msg->msg[2], 0);
2111 			else
2112 				rc_keydown(adap->rc, RC_PROTO_CEC,
2113 					   msg->msg[2] << 8 | msg->msg[3], 0);
2114 			break;
2115 		/*
2116 		 * Other function messages that are not handled.
2117 		 * Currently the RC framework does not allow to supply an
2118 		 * additional parameter to a keypress. These "keys" contain
2119 		 * other information such as channel number, an input number
2120 		 * etc.
2121 		 * For the time being these messages are not processed by the
2122 		 * framework and are simply forwarded to the user space.
2123 		 */
2124 		case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2125 		case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2126 		case CEC_OP_UI_CMD_TUNE_FUNCTION:
2127 		case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2128 		case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2129 		case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2130 			break;
2131 		default:
2132 			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2133 			break;
2134 		}
2135 #endif
2136 		break;
2137 
2138 	case CEC_MSG_USER_CONTROL_RELEASED:
2139 		if (!(adap->capabilities & CEC_CAP_RC) ||
2140 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2141 			break;
2142 #ifdef CONFIG_MEDIA_CEC_RC
2143 		rc_keyup(adap->rc);
2144 #endif
2145 		break;
2146 
2147 	/*
2148 	 * The remaining messages are only processed if the passthrough mode
2149 	 * is off.
2150 	 */
2151 	case CEC_MSG_GET_CEC_VERSION:
2152 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2153 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2154 
2155 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2156 		/* Do nothing for CEC switches using addr 15 */
2157 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2158 			return 0;
2159 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2160 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2161 
2162 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2163 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2164 			return cec_feature_abort(adap, msg);
2165 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2166 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2167 
2168 	case CEC_MSG_ABORT:
2169 		/* Do nothing for CEC switches */
2170 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2171 			return 0;
2172 		return cec_feature_refused(adap, msg);
2173 
2174 	case CEC_MSG_GIVE_OSD_NAME: {
2175 		if (adap->log_addrs.osd_name[0] == 0)
2176 			return cec_feature_abort(adap, msg);
2177 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2178 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2179 	}
2180 
2181 	case CEC_MSG_GIVE_FEATURES:
2182 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2183 			return cec_feature_abort(adap, msg);
2184 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2185 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2186 
2187 	default:
2188 		/*
2189 		 * Unprocessed messages are aborted if userspace isn't doing
2190 		 * any processing either.
2191 		 */
2192 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2193 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2194 			return cec_feature_abort(adap, msg);
2195 		break;
2196 	}
2197 
2198 skip_processing:
2199 	/* If this was a reply, then we're done, unless otherwise specified */
2200 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2201 		return 0;
2202 
2203 	/*
2204 	 * Send to the exclusive follower if there is one, otherwise send
2205 	 * to all followers.
2206 	 */
2207 	if (adap->cec_follower)
2208 		cec_queue_msg_fh(adap->cec_follower, msg);
2209 	else
2210 		cec_queue_msg_followers(adap, msg);
2211 	return 0;
2212 }
2213 
2214 /*
2215  * Helper functions to keep track of the 'monitor all' use count.
2216  *
2217  * These functions are called with adap->lock held.
2218  */
2219 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2220 {
2221 	int ret;
2222 
2223 	if (adap->monitor_all_cnt++)
2224 		return 0;
2225 
2226 	ret = cec_adap_enable(adap);
2227 	if (ret)
2228 		adap->monitor_all_cnt--;
2229 	return ret;
2230 }
2231 
2232 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2233 {
2234 	if (WARN_ON(!adap->monitor_all_cnt))
2235 		return;
2236 	if (--adap->monitor_all_cnt)
2237 		return;
2238 	WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2239 	cec_adap_enable(adap);
2240 }
2241 
2242 /*
2243  * Helper functions to keep track of the 'monitor pin' use count.
2244  *
2245  * These functions are called with adap->lock held.
2246  */
2247 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2248 {
2249 	int ret;
2250 
2251 	if (adap->monitor_pin_cnt++)
2252 		return 0;
2253 
2254 	ret = cec_adap_enable(adap);
2255 	if (ret)
2256 		adap->monitor_pin_cnt--;
2257 	return ret;
2258 }
2259 
2260 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2261 {
2262 	if (WARN_ON(!adap->monitor_pin_cnt))
2263 		return;
2264 	if (--adap->monitor_pin_cnt)
2265 		return;
2266 	WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2267 	cec_adap_enable(adap);
2268 }
2269 
2270 #ifdef CONFIG_DEBUG_FS
2271 /*
2272  * Log the current state of the CEC adapter.
2273  * Very useful for debugging.
2274  */
2275 int cec_adap_status(struct seq_file *file, void *priv)
2276 {
2277 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2278 	struct cec_data *data;
2279 
2280 	mutex_lock(&adap->lock);
2281 	seq_printf(file, "enabled: %d\n", adap->is_enabled);
2282 	seq_printf(file, "configured: %d\n", adap->is_configured);
2283 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2284 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2285 		   cec_phys_addr_exp(adap->phys_addr));
2286 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2287 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2288 	if (adap->cec_follower)
2289 		seq_printf(file, "has CEC follower%s\n",
2290 			   adap->passthrough ? " (in passthrough mode)" : "");
2291 	if (adap->cec_initiator)
2292 		seq_puts(file, "has CEC initiator\n");
2293 	if (adap->monitor_all_cnt)
2294 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2295 			   adap->monitor_all_cnt);
2296 	if (adap->monitor_pin_cnt)
2297 		seq_printf(file, "file handles in Monitor Pin mode: %u\n",
2298 			   adap->monitor_pin_cnt);
2299 	if (adap->tx_timeout_cnt) {
2300 		seq_printf(file, "transmit timeout count: %u\n",
2301 			   adap->tx_timeout_cnt);
2302 		adap->tx_timeout_cnt = 0;
2303 	}
2304 	if (adap->tx_low_drive_cnt) {
2305 		seq_printf(file, "transmit low drive count: %u\n",
2306 			   adap->tx_low_drive_cnt);
2307 		adap->tx_low_drive_cnt = 0;
2308 	}
2309 	if (adap->tx_arb_lost_cnt) {
2310 		seq_printf(file, "transmit arbitration lost count: %u\n",
2311 			   adap->tx_arb_lost_cnt);
2312 		adap->tx_arb_lost_cnt = 0;
2313 	}
2314 	if (adap->tx_error_cnt) {
2315 		seq_printf(file, "transmit error count: %u\n",
2316 			   adap->tx_error_cnt);
2317 		adap->tx_error_cnt = 0;
2318 	}
2319 	data = adap->transmitting;
2320 	if (data)
2321 		seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2322 			   data->msg.len, data->msg.msg, data->msg.reply,
2323 			   data->msg.timeout);
2324 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2325 	list_for_each_entry(data, &adap->transmit_queue, list) {
2326 		seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2327 			   data->msg.len, data->msg.msg, data->msg.reply,
2328 			   data->msg.timeout);
2329 	}
2330 	list_for_each_entry(data, &adap->wait_queue, list) {
2331 		seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2332 			   data->msg.len, data->msg.msg, data->msg.reply,
2333 			   data->msg.timeout);
2334 	}
2335 
2336 	call_void_op(adap, adap_status, file);
2337 	mutex_unlock(&adap->lock);
2338 	return 0;
2339 }
2340 #endif
2341