1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter 4 * 5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/errno.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kmod.h> 13 #include <linux/ktime.h> 14 #include <linux/slab.h> 15 #include <linux/mm.h> 16 #include <linux/string.h> 17 #include <linux/types.h> 18 19 #include <drm/drm_connector.h> 20 #include <drm/drm_device.h> 21 #include <drm/drm_edid.h> 22 #include <drm/drm_file.h> 23 24 #include "cec-priv.h" 25 26 static void cec_fill_msg_report_features(struct cec_adapter *adap, 27 struct cec_msg *msg, 28 unsigned int la_idx); 29 30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) 31 { 32 int i; 33 34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++) 35 if (adap->log_addrs.log_addr[i] == log_addr) 36 return i; 37 return -1; 38 } 39 40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) 41 { 42 int i = cec_log_addr2idx(adap, log_addr); 43 44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; 45 } 46 47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, 48 unsigned int *offset) 49 { 50 unsigned int loc = cec_get_edid_spa_location(edid, size); 51 52 if (offset) 53 *offset = loc; 54 if (loc == 0) 55 return CEC_PHYS_ADDR_INVALID; 56 return (edid[loc] << 8) | edid[loc + 1]; 57 } 58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); 59 60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, 61 const struct drm_connector *connector) 62 { 63 memset(conn_info, 0, sizeof(*conn_info)); 64 conn_info->type = CEC_CONNECTOR_TYPE_DRM; 65 conn_info->drm.card_no = connector->dev->primary->index; 66 conn_info->drm.connector_id = connector->base.id; 67 } 68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); 69 70 /* 71 * Queue a new event for this filehandle. If ts == 0, then set it 72 * to the current time. 73 * 74 * We keep a queue of at most max_event events where max_event differs 75 * per event. If the queue becomes full, then drop the oldest event and 76 * keep track of how many events we've dropped. 77 */ 78 void cec_queue_event_fh(struct cec_fh *fh, 79 const struct cec_event *new_ev, u64 ts) 80 { 81 static const u16 max_events[CEC_NUM_EVENTS] = { 82 1, 1, 800, 800, 8, 8, 8, 8 83 }; 84 struct cec_event_entry *entry; 85 unsigned int ev_idx = new_ev->event - 1; 86 87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) 88 return; 89 90 if (ts == 0) 91 ts = ktime_get_ns(); 92 93 mutex_lock(&fh->lock); 94 if (ev_idx < CEC_NUM_CORE_EVENTS) 95 entry = &fh->core_events[ev_idx]; 96 else 97 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 98 if (entry) { 99 if (new_ev->event == CEC_EVENT_LOST_MSGS && 100 fh->queued_events[ev_idx]) { 101 entry->ev.lost_msgs.lost_msgs += 102 new_ev->lost_msgs.lost_msgs; 103 goto unlock; 104 } 105 entry->ev = *new_ev; 106 entry->ev.ts = ts; 107 108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) { 109 /* Add new msg at the end of the queue */ 110 list_add_tail(&entry->list, &fh->events[ev_idx]); 111 fh->queued_events[ev_idx]++; 112 fh->total_queued_events++; 113 goto unlock; 114 } 115 116 if (ev_idx >= CEC_NUM_CORE_EVENTS) { 117 list_add_tail(&entry->list, &fh->events[ev_idx]); 118 /* drop the oldest event */ 119 entry = list_first_entry(&fh->events[ev_idx], 120 struct cec_event_entry, list); 121 list_del(&entry->list); 122 kfree(entry); 123 } 124 } 125 /* Mark that events were lost */ 126 entry = list_first_entry_or_null(&fh->events[ev_idx], 127 struct cec_event_entry, list); 128 if (entry) 129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; 130 131 unlock: 132 mutex_unlock(&fh->lock); 133 wake_up_interruptible(&fh->wait); 134 } 135 136 /* Queue a new event for all open filehandles. */ 137 static void cec_queue_event(struct cec_adapter *adap, 138 const struct cec_event *ev) 139 { 140 u64 ts = ktime_get_ns(); 141 struct cec_fh *fh; 142 143 mutex_lock(&adap->devnode.lock_fhs); 144 list_for_each_entry(fh, &adap->devnode.fhs, list) 145 cec_queue_event_fh(fh, ev, ts); 146 mutex_unlock(&adap->devnode.lock_fhs); 147 } 148 149 /* Notify userspace that the CEC pin changed state at the given time. */ 150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, 151 bool dropped_events, ktime_t ts) 152 { 153 struct cec_event ev = { 154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : 155 CEC_EVENT_PIN_CEC_LOW, 156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, 157 }; 158 struct cec_fh *fh; 159 160 mutex_lock(&adap->devnode.lock_fhs); 161 list_for_each_entry(fh, &adap->devnode.fhs, list) { 162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN) 163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 164 } 165 mutex_unlock(&adap->devnode.lock_fhs); 166 } 167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); 168 169 /* Notify userspace that the HPD pin changed state at the given time. */ 170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 171 { 172 struct cec_event ev = { 173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : 174 CEC_EVENT_PIN_HPD_LOW, 175 }; 176 struct cec_fh *fh; 177 178 mutex_lock(&adap->devnode.lock_fhs); 179 list_for_each_entry(fh, &adap->devnode.fhs, list) 180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 181 mutex_unlock(&adap->devnode.lock_fhs); 182 } 183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); 184 185 /* Notify userspace that the 5V pin changed state at the given time. */ 186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 187 { 188 struct cec_event ev = { 189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH : 190 CEC_EVENT_PIN_5V_LOW, 191 }; 192 struct cec_fh *fh; 193 194 mutex_lock(&adap->devnode.lock_fhs); 195 list_for_each_entry(fh, &adap->devnode.fhs, list) 196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 197 mutex_unlock(&adap->devnode.lock_fhs); 198 } 199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); 200 201 /* 202 * Queue a new message for this filehandle. 203 * 204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the 205 * queue becomes full, then drop the oldest message and keep track 206 * of how many messages we've dropped. 207 */ 208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) 209 { 210 static const struct cec_event ev_lost_msgs = { 211 .event = CEC_EVENT_LOST_MSGS, 212 .flags = 0, 213 { 214 .lost_msgs = { 1 }, 215 }, 216 }; 217 struct cec_msg_entry *entry; 218 219 mutex_lock(&fh->lock); 220 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 221 if (entry) { 222 entry->msg = *msg; 223 /* Add new msg at the end of the queue */ 224 list_add_tail(&entry->list, &fh->msgs); 225 226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { 227 /* All is fine if there is enough room */ 228 fh->queued_msgs++; 229 mutex_unlock(&fh->lock); 230 wake_up_interruptible(&fh->wait); 231 return; 232 } 233 234 /* 235 * if the message queue is full, then drop the oldest one and 236 * send a lost message event. 237 */ 238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); 239 list_del(&entry->list); 240 kfree(entry); 241 } 242 mutex_unlock(&fh->lock); 243 244 /* 245 * We lost a message, either because kmalloc failed or the queue 246 * was full. 247 */ 248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); 249 } 250 251 /* 252 * Queue the message for those filehandles that are in monitor mode. 253 * If valid_la is true (this message is for us or was sent by us), 254 * then pass it on to any monitoring filehandle. If this message 255 * isn't for us or from us, then only give it to filehandles that 256 * are in MONITOR_ALL mode. 257 * 258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is 259 * set and the CEC adapter was placed in 'monitor all' mode. 260 */ 261 static void cec_queue_msg_monitor(struct cec_adapter *adap, 262 const struct cec_msg *msg, 263 bool valid_la) 264 { 265 struct cec_fh *fh; 266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : 267 CEC_MODE_MONITOR_ALL; 268 269 mutex_lock(&adap->devnode.lock_fhs); 270 list_for_each_entry(fh, &adap->devnode.fhs, list) { 271 if (fh->mode_follower >= monitor_mode) 272 cec_queue_msg_fh(fh, msg); 273 } 274 mutex_unlock(&adap->devnode.lock_fhs); 275 } 276 277 /* 278 * Queue the message for follower filehandles. 279 */ 280 static void cec_queue_msg_followers(struct cec_adapter *adap, 281 const struct cec_msg *msg) 282 { 283 struct cec_fh *fh; 284 285 mutex_lock(&adap->devnode.lock_fhs); 286 list_for_each_entry(fh, &adap->devnode.fhs, list) { 287 if (fh->mode_follower == CEC_MODE_FOLLOWER) 288 cec_queue_msg_fh(fh, msg); 289 } 290 mutex_unlock(&adap->devnode.lock_fhs); 291 } 292 293 /* Notify userspace of an adapter state change. */ 294 static void cec_post_state_event(struct cec_adapter *adap) 295 { 296 struct cec_event ev = { 297 .event = CEC_EVENT_STATE_CHANGE, 298 }; 299 300 ev.state_change.phys_addr = adap->phys_addr; 301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; 302 ev.state_change.have_conn_info = 303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; 304 cec_queue_event(adap, &ev); 305 } 306 307 /* 308 * A CEC transmit (and a possible wait for reply) completed. 309 * If this was in blocking mode, then complete it, otherwise 310 * queue the message for userspace to dequeue later. 311 * 312 * This function is called with adap->lock held. 313 */ 314 static void cec_data_completed(struct cec_data *data) 315 { 316 /* 317 * Delete this transmit from the filehandle's xfer_list since 318 * we're done with it. 319 * 320 * Note that if the filehandle is closed before this transmit 321 * finished, then the release() function will set data->fh to NULL. 322 * Without that we would be referring to a closed filehandle. 323 */ 324 if (data->fh) 325 list_del_init(&data->xfer_list); 326 327 if (data->blocking) { 328 /* 329 * Someone is blocking so mark the message as completed 330 * and call complete. 331 */ 332 data->completed = true; 333 complete(&data->c); 334 } else { 335 /* 336 * No blocking, so just queue the message if needed and 337 * free the memory. 338 */ 339 if (data->fh) 340 cec_queue_msg_fh(data->fh, &data->msg); 341 kfree(data); 342 } 343 } 344 345 /* 346 * A pending CEC transmit needs to be cancelled, either because the CEC 347 * adapter is disabled or the transmit takes an impossibly long time to 348 * finish, or the reply timed out. 349 * 350 * This function is called with adap->lock held. 351 */ 352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status) 353 { 354 struct cec_adapter *adap = data->adap; 355 356 /* 357 * It's either the current transmit, or it is a pending 358 * transmit. Take the appropriate action to clear it. 359 */ 360 if (adap->transmitting == data) { 361 adap->transmitting = NULL; 362 } else { 363 list_del_init(&data->list); 364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) 365 if (!WARN_ON(!adap->transmit_queue_sz)) 366 adap->transmit_queue_sz--; 367 } 368 369 if (data->msg.tx_status & CEC_TX_STATUS_OK) { 370 data->msg.rx_ts = ktime_get_ns(); 371 data->msg.rx_status = rx_status; 372 if (!data->blocking) 373 data->msg.tx_status = 0; 374 } else { 375 data->msg.tx_ts = ktime_get_ns(); 376 data->msg.tx_status |= tx_status | 377 CEC_TX_STATUS_MAX_RETRIES; 378 data->msg.tx_error_cnt++; 379 data->attempts = 0; 380 if (!data->blocking) 381 data->msg.rx_status = 0; 382 } 383 384 /* Queue transmitted message for monitoring purposes */ 385 cec_queue_msg_monitor(adap, &data->msg, 1); 386 387 if (!data->blocking && data->msg.sequence) 388 /* Allow drivers to react to a canceled transmit */ 389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg); 390 391 cec_data_completed(data); 392 } 393 394 /* 395 * Flush all pending transmits and cancel any pending timeout work. 396 * 397 * This function is called with adap->lock held. 398 */ 399 static void cec_flush(struct cec_adapter *adap) 400 { 401 struct cec_data *data, *n; 402 403 /* 404 * If the adapter is disabled, or we're asked to stop, 405 * then cancel any pending transmits. 406 */ 407 while (!list_empty(&adap->transmit_queue)) { 408 data = list_first_entry(&adap->transmit_queue, 409 struct cec_data, list); 410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 411 } 412 if (adap->transmitting) 413 adap->transmit_in_progress_aborted = true; 414 415 /* Cancel the pending timeout work. */ 416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) { 417 if (cancel_delayed_work(&data->work)) 418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 419 /* 420 * If cancel_delayed_work returned false, then 421 * the cec_wait_timeout function is running, 422 * which will call cec_data_completed. So no 423 * need to do anything special in that case. 424 */ 425 } 426 /* 427 * If something went wrong and this counter isn't what it should 428 * be, then this will reset it back to 0. Warn if it is not 0, 429 * since it indicates a bug, either in this framework or in a 430 * CEC driver. 431 */ 432 if (WARN_ON(adap->transmit_queue_sz)) 433 adap->transmit_queue_sz = 0; 434 } 435 436 /* 437 * Main CEC state machine 438 * 439 * Wait until the thread should be stopped, or we are not transmitting and 440 * a new transmit message is queued up, in which case we start transmitting 441 * that message. When the adapter finished transmitting the message it will 442 * call cec_transmit_done(). 443 * 444 * If the adapter is disabled, then remove all queued messages instead. 445 * 446 * If the current transmit times out, then cancel that transmit. 447 */ 448 int cec_thread_func(void *_adap) 449 { 450 struct cec_adapter *adap = _adap; 451 452 for (;;) { 453 unsigned int signal_free_time; 454 struct cec_data *data; 455 bool timeout = false; 456 u8 attempts; 457 458 if (adap->transmit_in_progress) { 459 int err; 460 461 /* 462 * We are transmitting a message, so add a timeout 463 * to prevent the state machine to get stuck waiting 464 * for this message to finalize and add a check to 465 * see if the adapter is disabled in which case the 466 * transmit should be canceled. 467 */ 468 err = wait_event_interruptible_timeout(adap->kthread_waitq, 469 (adap->needs_hpd && 470 (!adap->is_configured && !adap->is_configuring)) || 471 kthread_should_stop() || 472 (!adap->transmit_in_progress && 473 !list_empty(&adap->transmit_queue)), 474 msecs_to_jiffies(adap->xfer_timeout_ms)); 475 timeout = err == 0; 476 } else { 477 /* Otherwise we just wait for something to happen. */ 478 wait_event_interruptible(adap->kthread_waitq, 479 kthread_should_stop() || 480 (!adap->transmit_in_progress && 481 !list_empty(&adap->transmit_queue))); 482 } 483 484 mutex_lock(&adap->lock); 485 486 if ((adap->needs_hpd && 487 (!adap->is_configured && !adap->is_configuring)) || 488 kthread_should_stop()) { 489 cec_flush(adap); 490 goto unlock; 491 } 492 493 if (adap->transmit_in_progress && timeout) { 494 /* 495 * If we timeout, then log that. Normally this does 496 * not happen and it is an indication of a faulty CEC 497 * adapter driver, or the CEC bus is in some weird 498 * state. On rare occasions it can happen if there is 499 * so much traffic on the bus that the adapter was 500 * unable to transmit for xfer_timeout_ms (2.1s by 501 * default). 502 */ 503 if (adap->transmitting) { 504 pr_warn("cec-%s: message %*ph timed out\n", adap->name, 505 adap->transmitting->msg.len, 506 adap->transmitting->msg.msg); 507 /* Just give up on this. */ 508 cec_data_cancel(adap->transmitting, 509 CEC_TX_STATUS_TIMEOUT, 0); 510 } else { 511 pr_warn("cec-%s: transmit timed out\n", adap->name); 512 } 513 adap->transmit_in_progress = false; 514 adap->tx_timeout_cnt++; 515 goto unlock; 516 } 517 518 /* 519 * If we are still transmitting, or there is nothing new to 520 * transmit, then just continue waiting. 521 */ 522 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) 523 goto unlock; 524 525 /* Get a new message to transmit */ 526 data = list_first_entry(&adap->transmit_queue, 527 struct cec_data, list); 528 list_del_init(&data->list); 529 if (!WARN_ON(!data->adap->transmit_queue_sz)) 530 adap->transmit_queue_sz--; 531 532 /* Make this the current transmitting message */ 533 adap->transmitting = data; 534 535 /* 536 * Suggested number of attempts as per the CEC 2.0 spec: 537 * 4 attempts is the default, except for 'secondary poll 538 * messages', i.e. poll messages not sent during the adapter 539 * configuration phase when it allocates logical addresses. 540 */ 541 if (data->msg.len == 1 && adap->is_configured) 542 attempts = 2; 543 else 544 attempts = 4; 545 546 /* Set the suggested signal free time */ 547 if (data->attempts) { 548 /* should be >= 3 data bit periods for a retry */ 549 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; 550 } else if (adap->last_initiator != 551 cec_msg_initiator(&data->msg)) { 552 /* should be >= 5 data bit periods for new initiator */ 553 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 554 adap->last_initiator = cec_msg_initiator(&data->msg); 555 } else { 556 /* 557 * should be >= 7 data bit periods for sending another 558 * frame immediately after another. 559 */ 560 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; 561 } 562 if (data->attempts == 0) 563 data->attempts = attempts; 564 565 adap->transmit_in_progress_aborted = false; 566 /* Tell the adapter to transmit, cancel on error */ 567 if (call_op(adap, adap_transmit, data->attempts, 568 signal_free_time, &data->msg)) 569 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 570 else 571 adap->transmit_in_progress = true; 572 573 unlock: 574 mutex_unlock(&adap->lock); 575 576 if (kthread_should_stop()) 577 break; 578 } 579 return 0; 580 } 581 582 /* 583 * Called by the CEC adapter if a transmit finished. 584 */ 585 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, 586 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, 587 u8 error_cnt, ktime_t ts) 588 { 589 struct cec_data *data; 590 struct cec_msg *msg; 591 unsigned int attempts_made = arb_lost_cnt + nack_cnt + 592 low_drive_cnt + error_cnt; 593 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK); 594 bool aborted = adap->transmit_in_progress_aborted; 595 596 dprintk(2, "%s: status 0x%02x\n", __func__, status); 597 if (attempts_made < 1) 598 attempts_made = 1; 599 600 mutex_lock(&adap->lock); 601 data = adap->transmitting; 602 if (!data) { 603 /* 604 * This might happen if a transmit was issued and the cable is 605 * unplugged while the transmit is ongoing. Ignore this 606 * transmit in that case. 607 */ 608 if (!adap->transmit_in_progress) 609 dprintk(1, "%s was called without an ongoing transmit!\n", 610 __func__); 611 adap->transmit_in_progress = false; 612 goto wake_thread; 613 } 614 adap->transmit_in_progress = false; 615 adap->transmit_in_progress_aborted = false; 616 617 msg = &data->msg; 618 619 /* Drivers must fill in the status! */ 620 WARN_ON(status == 0); 621 msg->tx_ts = ktime_to_ns(ts); 622 msg->tx_status |= status; 623 msg->tx_arb_lost_cnt += arb_lost_cnt; 624 msg->tx_nack_cnt += nack_cnt; 625 msg->tx_low_drive_cnt += low_drive_cnt; 626 msg->tx_error_cnt += error_cnt; 627 628 adap->tx_arb_lost_cnt += arb_lost_cnt; 629 adap->tx_low_drive_cnt += low_drive_cnt; 630 adap->tx_error_cnt += error_cnt; 631 632 /* 633 * Low Drive transmission errors should really not happen for 634 * well-behaved CEC devices and proper HDMI cables. 635 * 636 * Ditto for the 'Error' status. 637 * 638 * For the first few times that this happens, log this. 639 * Stop logging after that, since that will not add any more 640 * useful information and instead it will just flood the kernel log. 641 */ 642 if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) { 643 adap->tx_low_drive_log_cnt++; 644 dprintk(0, "low drive counter: %u (seq %u: %*ph)\n", 645 msg->tx_low_drive_cnt, msg->sequence, 646 msg->len, msg->msg); 647 } 648 if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) { 649 adap->tx_error_log_cnt++; 650 dprintk(0, "error counter: %u (seq %u: %*ph)\n", 651 msg->tx_error_cnt, msg->sequence, 652 msg->len, msg->msg); 653 } 654 655 /* Mark that we're done with this transmit */ 656 adap->transmitting = NULL; 657 658 /* 659 * If there are still retry attempts left and there was an error and 660 * the hardware didn't signal that it retried itself (by setting 661 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. 662 */ 663 if (!aborted && data->attempts > attempts_made && !done) { 664 /* Retry this message */ 665 data->attempts -= attempts_made; 666 if (msg->timeout) 667 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", 668 msg->len, msg->msg, data->attempts, msg->reply); 669 else 670 dprintk(2, "retransmit: %*ph (attempts: %d)\n", 671 msg->len, msg->msg, data->attempts); 672 /* Add the message in front of the transmit queue */ 673 list_add(&data->list, &adap->transmit_queue); 674 adap->transmit_queue_sz++; 675 goto wake_thread; 676 } 677 678 if (aborted && !done) 679 status |= CEC_TX_STATUS_ABORTED; 680 data->attempts = 0; 681 682 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ 683 if (!(status & CEC_TX_STATUS_OK)) 684 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; 685 686 /* Queue transmitted message for monitoring purposes */ 687 cec_queue_msg_monitor(adap, msg, 1); 688 689 if ((status & CEC_TX_STATUS_OK) && adap->is_configured && 690 msg->timeout) { 691 /* 692 * Queue the message into the wait queue if we want to wait 693 * for a reply. 694 */ 695 list_add_tail(&data->list, &adap->wait_queue); 696 schedule_delayed_work(&data->work, 697 msecs_to_jiffies(msg->timeout)); 698 } else { 699 /* Otherwise we're done */ 700 cec_data_completed(data); 701 } 702 703 wake_thread: 704 /* 705 * Wake up the main thread to see if another message is ready 706 * for transmitting or to retry the current message. 707 */ 708 wake_up_interruptible(&adap->kthread_waitq); 709 mutex_unlock(&adap->lock); 710 } 711 EXPORT_SYMBOL_GPL(cec_transmit_done_ts); 712 713 void cec_transmit_attempt_done_ts(struct cec_adapter *adap, 714 u8 status, ktime_t ts) 715 { 716 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { 717 case CEC_TX_STATUS_OK: 718 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); 719 return; 720 case CEC_TX_STATUS_ARB_LOST: 721 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); 722 return; 723 case CEC_TX_STATUS_NACK: 724 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); 725 return; 726 case CEC_TX_STATUS_LOW_DRIVE: 727 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); 728 return; 729 case CEC_TX_STATUS_ERROR: 730 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); 731 return; 732 default: 733 /* Should never happen */ 734 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); 735 return; 736 } 737 } 738 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); 739 740 /* 741 * Called when waiting for a reply times out. 742 */ 743 static void cec_wait_timeout(struct work_struct *work) 744 { 745 struct cec_data *data = container_of(work, struct cec_data, work.work); 746 struct cec_adapter *adap = data->adap; 747 748 mutex_lock(&adap->lock); 749 /* 750 * Sanity check in case the timeout and the arrival of the message 751 * happened at the same time. 752 */ 753 if (list_empty(&data->list)) 754 goto unlock; 755 756 /* Mark the message as timed out */ 757 list_del_init(&data->list); 758 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT); 759 unlock: 760 mutex_unlock(&adap->lock); 761 } 762 763 /* 764 * Transmit a message. The fh argument may be NULL if the transmit is not 765 * associated with a specific filehandle. 766 * 767 * This function is called with adap->lock held. 768 */ 769 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, 770 struct cec_fh *fh, bool block) 771 { 772 struct cec_data *data; 773 bool is_raw = msg_is_raw(msg); 774 775 if (adap->devnode.unregistered) 776 return -ENODEV; 777 778 msg->rx_ts = 0; 779 msg->tx_ts = 0; 780 msg->rx_status = 0; 781 msg->tx_status = 0; 782 msg->tx_arb_lost_cnt = 0; 783 msg->tx_nack_cnt = 0; 784 msg->tx_low_drive_cnt = 0; 785 msg->tx_error_cnt = 0; 786 msg->sequence = 0; 787 788 if (msg->reply && msg->timeout == 0) { 789 /* Make sure the timeout isn't 0. */ 790 msg->timeout = 1000; 791 } 792 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW; 793 794 if (!msg->timeout) 795 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; 796 797 /* Sanity checks */ 798 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { 799 dprintk(1, "%s: invalid length %d\n", __func__, msg->len); 800 return -EINVAL; 801 } 802 803 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 804 805 if (msg->timeout) 806 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", 807 __func__, msg->len, msg->msg, msg->reply, 808 !block ? ", nb" : ""); 809 else 810 dprintk(2, "%s: %*ph%s\n", 811 __func__, msg->len, msg->msg, !block ? " (nb)" : ""); 812 813 if (msg->timeout && msg->len == 1) { 814 dprintk(1, "%s: can't reply to poll msg\n", __func__); 815 return -EINVAL; 816 } 817 818 if (is_raw) { 819 if (!capable(CAP_SYS_RAWIO)) 820 return -EPERM; 821 } else { 822 /* A CDC-Only device can only send CDC messages */ 823 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && 824 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { 825 dprintk(1, "%s: not a CDC message\n", __func__); 826 return -EINVAL; 827 } 828 829 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { 830 msg->msg[2] = adap->phys_addr >> 8; 831 msg->msg[3] = adap->phys_addr & 0xff; 832 } 833 834 if (msg->len == 1) { 835 if (cec_msg_destination(msg) == 0xf) { 836 dprintk(1, "%s: invalid poll message\n", 837 __func__); 838 return -EINVAL; 839 } 840 if (cec_has_log_addr(adap, cec_msg_destination(msg))) { 841 /* 842 * If the destination is a logical address our 843 * adapter has already claimed, then just NACK 844 * this. It depends on the hardware what it will 845 * do with a POLL to itself (some OK this), so 846 * it is just as easy to handle it here so the 847 * behavior will be consistent. 848 */ 849 msg->tx_ts = ktime_get_ns(); 850 msg->tx_status = CEC_TX_STATUS_NACK | 851 CEC_TX_STATUS_MAX_RETRIES; 852 msg->tx_nack_cnt = 1; 853 msg->sequence = ++adap->sequence; 854 if (!msg->sequence) 855 msg->sequence = ++adap->sequence; 856 return 0; 857 } 858 } 859 if (msg->len > 1 && !cec_msg_is_broadcast(msg) && 860 cec_has_log_addr(adap, cec_msg_destination(msg))) { 861 dprintk(1, "%s: destination is the adapter itself\n", 862 __func__); 863 return -EINVAL; 864 } 865 if (msg->len > 1 && adap->is_configured && 866 !cec_has_log_addr(adap, cec_msg_initiator(msg))) { 867 dprintk(1, "%s: initiator has unknown logical address %d\n", 868 __func__, cec_msg_initiator(msg)); 869 return -EINVAL; 870 } 871 /* 872 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be 873 * transmitted to a TV, even if the adapter is unconfigured. 874 * This makes it possible to detect or wake up displays that 875 * pull down the HPD when in standby. 876 */ 877 if (!adap->is_configured && !adap->is_configuring && 878 (msg->len > 2 || 879 cec_msg_destination(msg) != CEC_LOG_ADDR_TV || 880 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && 881 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { 882 dprintk(1, "%s: adapter is unconfigured\n", __func__); 883 return -ENONET; 884 } 885 } 886 887 if (!adap->is_configured && !adap->is_configuring) { 888 if (adap->needs_hpd) { 889 dprintk(1, "%s: adapter is unconfigured and needs HPD\n", 890 __func__); 891 return -ENONET; 892 } 893 if (msg->reply) { 894 dprintk(1, "%s: invalid msg->reply\n", __func__); 895 return -EINVAL; 896 } 897 } 898 899 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { 900 dprintk(2, "%s: transmit queue full\n", __func__); 901 return -EBUSY; 902 } 903 904 data = kzalloc(sizeof(*data), GFP_KERNEL); 905 if (!data) 906 return -ENOMEM; 907 908 msg->sequence = ++adap->sequence; 909 if (!msg->sequence) 910 msg->sequence = ++adap->sequence; 911 912 data->msg = *msg; 913 data->fh = fh; 914 data->adap = adap; 915 data->blocking = block; 916 917 init_completion(&data->c); 918 INIT_DELAYED_WORK(&data->work, cec_wait_timeout); 919 920 if (fh) 921 list_add_tail(&data->xfer_list, &fh->xfer_list); 922 else 923 INIT_LIST_HEAD(&data->xfer_list); 924 925 list_add_tail(&data->list, &adap->transmit_queue); 926 adap->transmit_queue_sz++; 927 if (!adap->transmitting) 928 wake_up_interruptible(&adap->kthread_waitq); 929 930 /* All done if we don't need to block waiting for completion */ 931 if (!block) 932 return 0; 933 934 /* 935 * Release the lock and wait, retake the lock afterwards. 936 */ 937 mutex_unlock(&adap->lock); 938 wait_for_completion_killable(&data->c); 939 if (!data->completed) 940 cancel_delayed_work_sync(&data->work); 941 mutex_lock(&adap->lock); 942 943 /* Cancel the transmit if it was interrupted */ 944 if (!data->completed) { 945 if (data->msg.tx_status & CEC_TX_STATUS_OK) 946 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 947 else 948 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 949 } 950 951 /* The transmit completed (possibly with an error) */ 952 *msg = data->msg; 953 if (WARN_ON(!list_empty(&data->list))) 954 list_del(&data->list); 955 if (WARN_ON(!list_empty(&data->xfer_list))) 956 list_del(&data->xfer_list); 957 kfree(data); 958 return 0; 959 } 960 961 /* Helper function to be used by drivers and this framework. */ 962 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, 963 bool block) 964 { 965 int ret; 966 967 mutex_lock(&adap->lock); 968 ret = cec_transmit_msg_fh(adap, msg, NULL, block); 969 mutex_unlock(&adap->lock); 970 return ret; 971 } 972 EXPORT_SYMBOL_GPL(cec_transmit_msg); 973 974 /* 975 * I don't like forward references but without this the low-level 976 * cec_received_msg() function would come after a bunch of high-level 977 * CEC protocol handling functions. That was very confusing. 978 */ 979 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 980 bool is_reply); 981 982 #define DIRECTED 0x80 983 #define BCAST1_4 0x40 984 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ 985 #define BCAST (BCAST1_4 | BCAST2_0) 986 #define BOTH (BCAST | DIRECTED) 987 988 /* 989 * Specify minimum length and whether the message is directed, broadcast 990 * or both. Messages that do not match the criteria are ignored as per 991 * the CEC specification. 992 */ 993 static const u8 cec_msg_size[256] = { 994 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, 995 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, 996 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, 997 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, 998 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, 999 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, 1000 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, 1001 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, 1002 [CEC_MSG_STANDBY] = 2 | BOTH, 1003 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, 1004 [CEC_MSG_RECORD_ON] = 3 | DIRECTED, 1005 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, 1006 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, 1007 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, 1008 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, 1009 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, 1010 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, 1011 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, 1012 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, 1013 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, 1014 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, 1015 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, 1016 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, 1017 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, 1018 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, 1019 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, 1020 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, 1021 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, 1022 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, 1023 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, 1024 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, 1025 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, 1026 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, 1027 [CEC_MSG_PLAY] = 3 | DIRECTED, 1028 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, 1029 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, 1030 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, 1031 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, 1032 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, 1033 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, 1034 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, 1035 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, 1036 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, 1037 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, 1038 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, 1039 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, 1040 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, 1041 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, 1042 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, 1043 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, 1044 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, 1045 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, 1046 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, 1047 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, 1048 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, 1049 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, 1050 [CEC_MSG_ABORT] = 2 | DIRECTED, 1051 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, 1052 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, 1053 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, 1054 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1055 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1056 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, 1057 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED, 1058 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, 1059 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, 1060 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, 1061 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, 1062 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, 1063 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, 1064 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, 1065 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, 1066 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, 1067 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, 1068 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, 1069 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, 1070 }; 1071 1072 /* Called by the CEC adapter if a message is received */ 1073 void cec_received_msg_ts(struct cec_adapter *adap, 1074 struct cec_msg *msg, ktime_t ts) 1075 { 1076 struct cec_data *data; 1077 u8 msg_init = cec_msg_initiator(msg); 1078 u8 msg_dest = cec_msg_destination(msg); 1079 u8 cmd = msg->msg[1]; 1080 bool is_reply = false; 1081 bool valid_la = true; 1082 bool monitor_valid_la = true; 1083 u8 min_len = 0; 1084 1085 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) 1086 return; 1087 1088 if (adap->devnode.unregistered) 1089 return; 1090 1091 /* 1092 * Some CEC adapters will receive the messages that they transmitted. 1093 * This test filters out those messages by checking if we are the 1094 * initiator, and just returning in that case. 1095 * 1096 * Note that this won't work if this is an Unregistered device. 1097 * 1098 * It is bad practice if the hardware receives the message that it 1099 * transmitted and luckily most CEC adapters behave correctly in this 1100 * respect. 1101 */ 1102 if (msg_init != CEC_LOG_ADDR_UNREGISTERED && 1103 cec_has_log_addr(adap, msg_init)) 1104 return; 1105 1106 msg->rx_ts = ktime_to_ns(ts); 1107 msg->rx_status = CEC_RX_STATUS_OK; 1108 msg->sequence = msg->reply = msg->timeout = 0; 1109 msg->tx_status = 0; 1110 msg->tx_ts = 0; 1111 msg->tx_arb_lost_cnt = 0; 1112 msg->tx_nack_cnt = 0; 1113 msg->tx_low_drive_cnt = 0; 1114 msg->tx_error_cnt = 0; 1115 msg->flags = 0; 1116 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 1117 1118 mutex_lock(&adap->lock); 1119 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1120 1121 if (!adap->transmit_in_progress) 1122 adap->last_initiator = 0xff; 1123 1124 /* Check if this message was for us (directed or broadcast). */ 1125 if (!cec_msg_is_broadcast(msg)) { 1126 valid_la = cec_has_log_addr(adap, msg_dest); 1127 monitor_valid_la = valid_la; 1128 } 1129 1130 /* 1131 * Check if the length is not too short or if the message is a 1132 * broadcast message where a directed message was expected or 1133 * vice versa. If so, then the message has to be ignored (according 1134 * to section CEC 7.3 and CEC 12.2). 1135 */ 1136 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { 1137 u8 dir_fl = cec_msg_size[cmd] & BOTH; 1138 1139 min_len = cec_msg_size[cmd] & 0x1f; 1140 if (msg->len < min_len) 1141 valid_la = false; 1142 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) 1143 valid_la = false; 1144 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) 1145 valid_la = false; 1146 else if (cec_msg_is_broadcast(msg) && 1147 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && 1148 !(dir_fl & BCAST1_4)) 1149 valid_la = false; 1150 } 1151 if (valid_la && min_len) { 1152 /* These messages have special length requirements */ 1153 switch (cmd) { 1154 case CEC_MSG_TIMER_STATUS: 1155 if (msg->msg[2] & 0x10) { 1156 switch (msg->msg[2] & 0xf) { 1157 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE: 1158 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE: 1159 if (msg->len < 5) 1160 valid_la = false; 1161 break; 1162 } 1163 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) { 1164 if (msg->len < 5) 1165 valid_la = false; 1166 } 1167 break; 1168 case CEC_MSG_RECORD_ON: 1169 switch (msg->msg[2]) { 1170 case CEC_OP_RECORD_SRC_OWN: 1171 break; 1172 case CEC_OP_RECORD_SRC_DIGITAL: 1173 if (msg->len < 10) 1174 valid_la = false; 1175 break; 1176 case CEC_OP_RECORD_SRC_ANALOG: 1177 if (msg->len < 7) 1178 valid_la = false; 1179 break; 1180 case CEC_OP_RECORD_SRC_EXT_PLUG: 1181 if (msg->len < 4) 1182 valid_la = false; 1183 break; 1184 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: 1185 if (msg->len < 5) 1186 valid_la = false; 1187 break; 1188 } 1189 break; 1190 } 1191 } 1192 1193 /* It's a valid message and not a poll or CDC message */ 1194 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { 1195 bool abort = cmd == CEC_MSG_FEATURE_ABORT; 1196 1197 /* The aborted command is in msg[2] */ 1198 if (abort) 1199 cmd = msg->msg[2]; 1200 1201 /* 1202 * Walk over all transmitted messages that are waiting for a 1203 * reply. 1204 */ 1205 list_for_each_entry(data, &adap->wait_queue, list) { 1206 struct cec_msg *dst = &data->msg; 1207 1208 /* 1209 * The *only* CEC message that has two possible replies 1210 * is CEC_MSG_INITIATE_ARC. 1211 * In this case allow either of the two replies. 1212 */ 1213 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && 1214 (cmd == CEC_MSG_REPORT_ARC_INITIATED || 1215 cmd == CEC_MSG_REPORT_ARC_TERMINATED) && 1216 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || 1217 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) 1218 dst->reply = cmd; 1219 1220 /* Does the command match? */ 1221 if ((abort && cmd != dst->msg[1]) || 1222 (!abort && cmd != dst->reply)) 1223 continue; 1224 1225 /* Does the addressing match? */ 1226 if (msg_init != cec_msg_destination(dst) && 1227 !cec_msg_is_broadcast(dst)) 1228 continue; 1229 1230 /* We got a reply */ 1231 memcpy(dst->msg, msg->msg, msg->len); 1232 dst->len = msg->len; 1233 dst->rx_ts = msg->rx_ts; 1234 dst->rx_status = msg->rx_status; 1235 if (abort) 1236 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; 1237 msg->flags = dst->flags; 1238 msg->sequence = dst->sequence; 1239 /* Remove it from the wait_queue */ 1240 list_del_init(&data->list); 1241 1242 /* Cancel the pending timeout work */ 1243 if (!cancel_delayed_work(&data->work)) { 1244 mutex_unlock(&adap->lock); 1245 cancel_delayed_work_sync(&data->work); 1246 mutex_lock(&adap->lock); 1247 } 1248 /* 1249 * Mark this as a reply, provided someone is still 1250 * waiting for the answer. 1251 */ 1252 if (data->fh) 1253 is_reply = true; 1254 cec_data_completed(data); 1255 break; 1256 } 1257 } 1258 mutex_unlock(&adap->lock); 1259 1260 /* Pass the message on to any monitoring filehandles */ 1261 cec_queue_msg_monitor(adap, msg, monitor_valid_la); 1262 1263 /* We're done if it is not for us or a poll message */ 1264 if (!valid_la || msg->len <= 1) 1265 return; 1266 1267 if (adap->log_addrs.log_addr_mask == 0) 1268 return; 1269 1270 /* 1271 * Process the message on the protocol level. If is_reply is true, 1272 * then cec_receive_notify() won't pass on the reply to the listener(s) 1273 * since that was already done by cec_data_completed() above. 1274 */ 1275 cec_receive_notify(adap, msg, is_reply); 1276 } 1277 EXPORT_SYMBOL_GPL(cec_received_msg_ts); 1278 1279 /* Logical Address Handling */ 1280 1281 /* 1282 * Attempt to claim a specific logical address. 1283 * 1284 * This function is called with adap->lock held. 1285 */ 1286 static int cec_config_log_addr(struct cec_adapter *adap, 1287 unsigned int idx, 1288 unsigned int log_addr) 1289 { 1290 struct cec_log_addrs *las = &adap->log_addrs; 1291 struct cec_msg msg = { }; 1292 const unsigned int max_retries = 2; 1293 unsigned int i; 1294 int err; 1295 1296 if (cec_has_log_addr(adap, log_addr)) 1297 return 0; 1298 1299 /* Send poll message */ 1300 msg.len = 1; 1301 msg.msg[0] = (log_addr << 4) | log_addr; 1302 1303 for (i = 0; i < max_retries; i++) { 1304 err = cec_transmit_msg_fh(adap, &msg, NULL, true); 1305 1306 /* 1307 * While trying to poll the physical address was reset 1308 * and the adapter was unconfigured, so bail out. 1309 */ 1310 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID) 1311 return -EINTR; 1312 1313 /* Also bail out if the PA changed while configuring. */ 1314 if (adap->must_reconfigure) 1315 return -EINTR; 1316 1317 if (err) 1318 return err; 1319 1320 /* 1321 * The message was aborted or timed out due to a disconnect or 1322 * unconfigure, just bail out. 1323 */ 1324 if (msg.tx_status & 1325 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT)) 1326 return -EINTR; 1327 if (msg.tx_status & CEC_TX_STATUS_OK) 1328 return 0; 1329 if (msg.tx_status & CEC_TX_STATUS_NACK) 1330 break; 1331 /* 1332 * Retry up to max_retries times if the message was neither 1333 * OKed or NACKed. This can happen due to e.g. a Lost 1334 * Arbitration condition. 1335 */ 1336 } 1337 1338 /* 1339 * If we are unable to get an OK or a NACK after max_retries attempts 1340 * (and note that each attempt already consists of four polls), then 1341 * we assume that something is really weird and that it is not a 1342 * good idea to try and claim this logical address. 1343 */ 1344 if (i == max_retries) { 1345 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n", 1346 log_addr, msg.tx_status); 1347 return 0; 1348 } 1349 1350 /* 1351 * Message not acknowledged, so this logical 1352 * address is free to use. 1353 */ 1354 err = call_op(adap, adap_log_addr, log_addr); 1355 if (err) 1356 return err; 1357 1358 las->log_addr[idx] = log_addr; 1359 las->log_addr_mask |= 1 << log_addr; 1360 return 1; 1361 } 1362 1363 /* 1364 * Unconfigure the adapter: clear all logical addresses and send 1365 * the state changed event. 1366 * 1367 * This function is called with adap->lock held. 1368 */ 1369 static void cec_adap_unconfigure(struct cec_adapter *adap) 1370 { 1371 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1372 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID)); 1373 adap->log_addrs.log_addr_mask = 0; 1374 adap->is_configured = false; 1375 cec_flush(adap); 1376 wake_up_interruptible(&adap->kthread_waitq); 1377 cec_post_state_event(adap); 1378 call_void_op(adap, adap_unconfigured); 1379 } 1380 1381 /* 1382 * Attempt to claim the required logical addresses. 1383 */ 1384 static int cec_config_thread_func(void *arg) 1385 { 1386 /* The various LAs for each type of device */ 1387 static const u8 tv_log_addrs[] = { 1388 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, 1389 CEC_LOG_ADDR_INVALID 1390 }; 1391 static const u8 record_log_addrs[] = { 1392 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, 1393 CEC_LOG_ADDR_RECORD_3, 1394 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1395 CEC_LOG_ADDR_INVALID 1396 }; 1397 static const u8 tuner_log_addrs[] = { 1398 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, 1399 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, 1400 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1401 CEC_LOG_ADDR_INVALID 1402 }; 1403 static const u8 playback_log_addrs[] = { 1404 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, 1405 CEC_LOG_ADDR_PLAYBACK_3, 1406 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1407 CEC_LOG_ADDR_INVALID 1408 }; 1409 static const u8 audiosystem_log_addrs[] = { 1410 CEC_LOG_ADDR_AUDIOSYSTEM, 1411 CEC_LOG_ADDR_INVALID 1412 }; 1413 static const u8 specific_use_log_addrs[] = { 1414 CEC_LOG_ADDR_SPECIFIC, 1415 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1416 CEC_LOG_ADDR_INVALID 1417 }; 1418 static const u8 *type2addrs[6] = { 1419 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, 1420 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, 1421 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, 1422 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, 1423 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, 1424 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, 1425 }; 1426 static const u16 type2mask[] = { 1427 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, 1428 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, 1429 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, 1430 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, 1431 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, 1432 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, 1433 }; 1434 struct cec_adapter *adap = arg; 1435 struct cec_log_addrs *las = &adap->log_addrs; 1436 int err; 1437 int i, j; 1438 1439 mutex_lock(&adap->lock); 1440 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", 1441 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); 1442 las->log_addr_mask = 0; 1443 1444 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) 1445 goto configured; 1446 1447 reconfigure: 1448 for (i = 0; i < las->num_log_addrs; i++) { 1449 unsigned int type = las->log_addr_type[i]; 1450 const u8 *la_list; 1451 u8 last_la; 1452 1453 /* 1454 * The TV functionality can only map to physical address 0. 1455 * For any other address, try the Specific functionality 1456 * instead as per the spec. 1457 */ 1458 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) 1459 type = CEC_LOG_ADDR_TYPE_SPECIFIC; 1460 1461 la_list = type2addrs[type]; 1462 last_la = las->log_addr[i]; 1463 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1464 if (last_la == CEC_LOG_ADDR_INVALID || 1465 last_la == CEC_LOG_ADDR_UNREGISTERED || 1466 !((1 << last_la) & type2mask[type])) 1467 last_la = la_list[0]; 1468 1469 err = cec_config_log_addr(adap, i, last_la); 1470 1471 if (adap->must_reconfigure) { 1472 adap->must_reconfigure = false; 1473 las->log_addr_mask = 0; 1474 goto reconfigure; 1475 } 1476 1477 if (err > 0) /* Reused last LA */ 1478 continue; 1479 1480 if (err < 0) 1481 goto unconfigure; 1482 1483 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { 1484 /* Tried this one already, skip it */ 1485 if (la_list[j] == last_la) 1486 continue; 1487 /* The backup addresses are CEC 2.0 specific */ 1488 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || 1489 la_list[j] == CEC_LOG_ADDR_BACKUP_2) && 1490 las->cec_version < CEC_OP_CEC_VERSION_2_0) 1491 continue; 1492 1493 err = cec_config_log_addr(adap, i, la_list[j]); 1494 if (err == 0) /* LA is in use */ 1495 continue; 1496 if (err < 0) 1497 goto unconfigure; 1498 /* Done, claimed an LA */ 1499 break; 1500 } 1501 1502 if (la_list[j] == CEC_LOG_ADDR_INVALID) 1503 dprintk(1, "could not claim LA %d\n", i); 1504 } 1505 1506 if (adap->log_addrs.log_addr_mask == 0 && 1507 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) 1508 goto unconfigure; 1509 1510 configured: 1511 if (adap->log_addrs.log_addr_mask == 0) { 1512 /* Fall back to unregistered */ 1513 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; 1514 las->log_addr_mask = 1 << las->log_addr[0]; 1515 for (i = 1; i < las->num_log_addrs; i++) 1516 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1517 } 1518 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) 1519 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1520 adap->is_configured = true; 1521 adap->is_configuring = false; 1522 adap->must_reconfigure = false; 1523 cec_post_state_event(adap); 1524 1525 /* 1526 * Now post the Report Features and Report Physical Address broadcast 1527 * messages. Note that these are non-blocking transmits, meaning that 1528 * they are just queued up and once adap->lock is unlocked the main 1529 * thread will kick in and start transmitting these. 1530 * 1531 * If after this function is done (but before one or more of these 1532 * messages are actually transmitted) the CEC adapter is unconfigured, 1533 * then any remaining messages will be dropped by the main thread. 1534 */ 1535 for (i = 0; i < las->num_log_addrs; i++) { 1536 struct cec_msg msg = {}; 1537 1538 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || 1539 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) 1540 continue; 1541 1542 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; 1543 1544 /* Report Features must come first according to CEC 2.0 */ 1545 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && 1546 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { 1547 cec_fill_msg_report_features(adap, &msg, i); 1548 cec_transmit_msg_fh(adap, &msg, NULL, false); 1549 } 1550 1551 /* Report Physical Address */ 1552 cec_msg_report_physical_addr(&msg, adap->phys_addr, 1553 las->primary_device_type[i]); 1554 dprintk(1, "config: la %d pa %x.%x.%x.%x\n", 1555 las->log_addr[i], 1556 cec_phys_addr_exp(adap->phys_addr)); 1557 cec_transmit_msg_fh(adap, &msg, NULL, false); 1558 1559 /* Report Vendor ID */ 1560 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { 1561 cec_msg_device_vendor_id(&msg, 1562 adap->log_addrs.vendor_id); 1563 cec_transmit_msg_fh(adap, &msg, NULL, false); 1564 } 1565 } 1566 adap->kthread_config = NULL; 1567 complete(&adap->config_completion); 1568 mutex_unlock(&adap->lock); 1569 call_void_op(adap, configured); 1570 return 0; 1571 1572 unconfigure: 1573 for (i = 0; i < las->num_log_addrs; i++) 1574 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1575 cec_adap_unconfigure(adap); 1576 adap->is_configuring = false; 1577 adap->must_reconfigure = false; 1578 adap->kthread_config = NULL; 1579 complete(&adap->config_completion); 1580 mutex_unlock(&adap->lock); 1581 return 0; 1582 } 1583 1584 /* 1585 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the 1586 * logical addresses. 1587 * 1588 * This function is called with adap->lock held. 1589 */ 1590 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) 1591 { 1592 if (WARN_ON(adap->is_configuring || adap->is_configured)) 1593 return; 1594 1595 init_completion(&adap->config_completion); 1596 1597 /* Ready to kick off the thread */ 1598 adap->is_configuring = true; 1599 adap->kthread_config = kthread_run(cec_config_thread_func, adap, 1600 "ceccfg-%s", adap->name); 1601 if (IS_ERR(adap->kthread_config)) { 1602 adap->kthread_config = NULL; 1603 adap->is_configuring = false; 1604 } else if (block) { 1605 mutex_unlock(&adap->lock); 1606 wait_for_completion(&adap->config_completion); 1607 mutex_lock(&adap->lock); 1608 } 1609 } 1610 1611 /* 1612 * Helper function to enable/disable the CEC adapter. 1613 * 1614 * This function is called with adap->lock held. 1615 */ 1616 int cec_adap_enable(struct cec_adapter *adap) 1617 { 1618 bool enable; 1619 int ret = 0; 1620 1621 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt || 1622 adap->log_addrs.num_log_addrs; 1623 if (adap->needs_hpd) 1624 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID; 1625 1626 if (adap->devnode.unregistered) 1627 enable = false; 1628 1629 if (enable == adap->is_enabled) 1630 return 0; 1631 1632 /* serialize adap_enable */ 1633 mutex_lock(&adap->devnode.lock); 1634 if (enable) { 1635 adap->last_initiator = 0xff; 1636 adap->transmit_in_progress = false; 1637 adap->tx_low_drive_log_cnt = 0; 1638 adap->tx_error_log_cnt = 0; 1639 ret = adap->ops->adap_enable(adap, true); 1640 if (!ret) { 1641 /* 1642 * Enable monitor-all/pin modes if needed. We warn, but 1643 * continue if this fails as this is not a critical error. 1644 */ 1645 if (adap->monitor_all_cnt) 1646 WARN_ON(call_op(adap, adap_monitor_all_enable, true)); 1647 if (adap->monitor_pin_cnt) 1648 WARN_ON(call_op(adap, adap_monitor_pin_enable, true)); 1649 } 1650 } else { 1651 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */ 1652 if (adap->monitor_all_cnt) 1653 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 1654 if (adap->monitor_pin_cnt) 1655 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 1656 WARN_ON(adap->ops->adap_enable(adap, false)); 1657 adap->last_initiator = 0xff; 1658 adap->transmit_in_progress = false; 1659 adap->transmit_in_progress_aborted = false; 1660 if (adap->transmitting) 1661 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0); 1662 } 1663 if (!ret) 1664 adap->is_enabled = enable; 1665 wake_up_interruptible(&adap->kthread_waitq); 1666 mutex_unlock(&adap->devnode.lock); 1667 return ret; 1668 } 1669 1670 /* Set a new physical address and send an event notifying userspace of this. 1671 * 1672 * This function is called with adap->lock held. 1673 */ 1674 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1675 { 1676 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID; 1677 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID; 1678 1679 if (phys_addr == adap->phys_addr) 1680 return; 1681 if (!becomes_invalid && adap->devnode.unregistered) 1682 return; 1683 1684 dprintk(1, "new physical address %x.%x.%x.%x\n", 1685 cec_phys_addr_exp(phys_addr)); 1686 if (becomes_invalid || !is_invalid) { 1687 adap->phys_addr = CEC_PHYS_ADDR_INVALID; 1688 cec_post_state_event(adap); 1689 cec_adap_unconfigure(adap); 1690 if (becomes_invalid) { 1691 cec_adap_enable(adap); 1692 return; 1693 } 1694 } 1695 1696 adap->phys_addr = phys_addr; 1697 if (is_invalid) 1698 cec_adap_enable(adap); 1699 1700 cec_post_state_event(adap); 1701 if (!adap->log_addrs.num_log_addrs) 1702 return; 1703 if (adap->is_configuring) 1704 adap->must_reconfigure = true; 1705 else 1706 cec_claim_log_addrs(adap, block); 1707 } 1708 1709 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1710 { 1711 if (IS_ERR_OR_NULL(adap)) 1712 return; 1713 1714 mutex_lock(&adap->lock); 1715 __cec_s_phys_addr(adap, phys_addr, block); 1716 mutex_unlock(&adap->lock); 1717 } 1718 EXPORT_SYMBOL_GPL(cec_s_phys_addr); 1719 1720 /* 1721 * Note: In the drm subsystem, prefer calling (if possible): 1722 * 1723 * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false); 1724 */ 1725 void cec_s_phys_addr_from_edid(struct cec_adapter *adap, 1726 const struct edid *edid) 1727 { 1728 u16 pa = CEC_PHYS_ADDR_INVALID; 1729 1730 if (edid && edid->extensions) 1731 pa = cec_get_edid_phys_addr((const u8 *)edid, 1732 EDID_LENGTH * (edid->extensions + 1), NULL); 1733 cec_s_phys_addr(adap, pa, false); 1734 } 1735 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); 1736 1737 void cec_s_conn_info(struct cec_adapter *adap, 1738 const struct cec_connector_info *conn_info) 1739 { 1740 if (IS_ERR_OR_NULL(adap)) 1741 return; 1742 1743 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) 1744 return; 1745 1746 mutex_lock(&adap->lock); 1747 if (conn_info) 1748 adap->conn_info = *conn_info; 1749 else 1750 memset(&adap->conn_info, 0, sizeof(adap->conn_info)); 1751 cec_post_state_event(adap); 1752 mutex_unlock(&adap->lock); 1753 } 1754 EXPORT_SYMBOL_GPL(cec_s_conn_info); 1755 1756 /* 1757 * Called from either the ioctl or a driver to set the logical addresses. 1758 * 1759 * This function is called with adap->lock held. 1760 */ 1761 int __cec_s_log_addrs(struct cec_adapter *adap, 1762 struct cec_log_addrs *log_addrs, bool block) 1763 { 1764 u16 type_mask = 0; 1765 int err; 1766 int i; 1767 1768 if (adap->devnode.unregistered) 1769 return -ENODEV; 1770 1771 if (!log_addrs || log_addrs->num_log_addrs == 0) { 1772 if (!adap->log_addrs.num_log_addrs) 1773 return 0; 1774 if (adap->is_configuring || adap->is_configured) 1775 cec_adap_unconfigure(adap); 1776 adap->log_addrs.num_log_addrs = 0; 1777 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) 1778 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; 1779 adap->log_addrs.osd_name[0] = '\0'; 1780 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; 1781 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; 1782 cec_adap_enable(adap); 1783 return 0; 1784 } 1785 1786 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { 1787 /* 1788 * Sanitize log_addrs fields if a CDC-Only device is 1789 * requested. 1790 */ 1791 log_addrs->num_log_addrs = 1; 1792 log_addrs->osd_name[0] = '\0'; 1793 log_addrs->vendor_id = CEC_VENDOR_ID_NONE; 1794 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; 1795 /* 1796 * This is just an internal convention since a CDC-Only device 1797 * doesn't have to be a switch. But switches already use 1798 * unregistered, so it makes some kind of sense to pick this 1799 * as the primary device. Since a CDC-Only device never sends 1800 * any 'normal' CEC messages this primary device type is never 1801 * sent over the CEC bus. 1802 */ 1803 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; 1804 log_addrs->all_device_types[0] = 0; 1805 log_addrs->features[0][0] = 0; 1806 log_addrs->features[0][1] = 0; 1807 } 1808 1809 /* Ensure the osd name is 0-terminated */ 1810 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; 1811 1812 /* Sanity checks */ 1813 if (log_addrs->num_log_addrs > adap->available_log_addrs) { 1814 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); 1815 return -EINVAL; 1816 } 1817 1818 /* 1819 * Vendor ID is a 24 bit number, so check if the value is 1820 * within the correct range. 1821 */ 1822 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && 1823 (log_addrs->vendor_id & 0xff000000) != 0) { 1824 dprintk(1, "invalid vendor ID\n"); 1825 return -EINVAL; 1826 } 1827 1828 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && 1829 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { 1830 dprintk(1, "invalid CEC version\n"); 1831 return -EINVAL; 1832 } 1833 1834 if (log_addrs->num_log_addrs > 1) 1835 for (i = 0; i < log_addrs->num_log_addrs; i++) 1836 if (log_addrs->log_addr_type[i] == 1837 CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1838 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); 1839 return -EINVAL; 1840 } 1841 1842 for (i = 0; i < log_addrs->num_log_addrs; i++) { 1843 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); 1844 u8 *features = log_addrs->features[i]; 1845 bool op_is_dev_features = false; 1846 unsigned int j; 1847 1848 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; 1849 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1850 dprintk(1, "unknown logical address type\n"); 1851 return -EINVAL; 1852 } 1853 if (type_mask & (1 << log_addrs->log_addr_type[i])) { 1854 dprintk(1, "duplicate logical address type\n"); 1855 return -EINVAL; 1856 } 1857 type_mask |= 1 << log_addrs->log_addr_type[i]; 1858 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && 1859 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { 1860 /* Record already contains the playback functionality */ 1861 dprintk(1, "invalid record + playback combination\n"); 1862 return -EINVAL; 1863 } 1864 if (log_addrs->primary_device_type[i] > 1865 CEC_OP_PRIM_DEVTYPE_PROCESSOR) { 1866 dprintk(1, "unknown primary device type\n"); 1867 return -EINVAL; 1868 } 1869 if (log_addrs->primary_device_type[i] == 2) { 1870 dprintk(1, "invalid primary device type\n"); 1871 return -EINVAL; 1872 } 1873 for (j = 0; j < feature_sz; j++) { 1874 if ((features[j] & 0x80) == 0) { 1875 if (op_is_dev_features) 1876 break; 1877 op_is_dev_features = true; 1878 } 1879 } 1880 if (!op_is_dev_features || j == feature_sz) { 1881 dprintk(1, "malformed features\n"); 1882 return -EINVAL; 1883 } 1884 /* Zero unused part of the feature array */ 1885 memset(features + j + 1, 0, feature_sz - j - 1); 1886 } 1887 1888 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { 1889 if (log_addrs->num_log_addrs > 2) { 1890 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); 1891 return -EINVAL; 1892 } 1893 if (log_addrs->num_log_addrs == 2) { 1894 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | 1895 (1 << CEC_LOG_ADDR_TYPE_TV)))) { 1896 dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); 1897 return -EINVAL; 1898 } 1899 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | 1900 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { 1901 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); 1902 return -EINVAL; 1903 } 1904 } 1905 } 1906 1907 /* Zero unused LAs */ 1908 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { 1909 log_addrs->primary_device_type[i] = 0; 1910 log_addrs->log_addr_type[i] = 0; 1911 log_addrs->all_device_types[i] = 0; 1912 memset(log_addrs->features[i], 0, 1913 sizeof(log_addrs->features[i])); 1914 } 1915 1916 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; 1917 adap->log_addrs = *log_addrs; 1918 err = cec_adap_enable(adap); 1919 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1920 cec_claim_log_addrs(adap, block); 1921 return err; 1922 } 1923 1924 int cec_s_log_addrs(struct cec_adapter *adap, 1925 struct cec_log_addrs *log_addrs, bool block) 1926 { 1927 int err; 1928 1929 mutex_lock(&adap->lock); 1930 err = __cec_s_log_addrs(adap, log_addrs, block); 1931 mutex_unlock(&adap->lock); 1932 return err; 1933 } 1934 EXPORT_SYMBOL_GPL(cec_s_log_addrs); 1935 1936 /* High-level core CEC message handling */ 1937 1938 /* Fill in the Report Features message */ 1939 static void cec_fill_msg_report_features(struct cec_adapter *adap, 1940 struct cec_msg *msg, 1941 unsigned int la_idx) 1942 { 1943 const struct cec_log_addrs *las = &adap->log_addrs; 1944 const u8 *features = las->features[la_idx]; 1945 bool op_is_dev_features = false; 1946 unsigned int idx; 1947 1948 /* Report Features */ 1949 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; 1950 msg->len = 4; 1951 msg->msg[1] = CEC_MSG_REPORT_FEATURES; 1952 msg->msg[2] = adap->log_addrs.cec_version; 1953 msg->msg[3] = las->all_device_types[la_idx]; 1954 1955 /* Write RC Profiles first, then Device Features */ 1956 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { 1957 msg->msg[msg->len++] = features[idx]; 1958 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { 1959 if (op_is_dev_features) 1960 break; 1961 op_is_dev_features = true; 1962 } 1963 } 1964 } 1965 1966 /* Transmit the Feature Abort message */ 1967 static int cec_feature_abort_reason(struct cec_adapter *adap, 1968 struct cec_msg *msg, u8 reason) 1969 { 1970 struct cec_msg tx_msg = { }; 1971 1972 /* 1973 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT 1974 * message! 1975 */ 1976 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) 1977 return 0; 1978 /* Don't Feature Abort messages from 'Unregistered' */ 1979 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) 1980 return 0; 1981 cec_msg_set_reply_to(&tx_msg, msg); 1982 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); 1983 return cec_transmit_msg(adap, &tx_msg, false); 1984 } 1985 1986 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) 1987 { 1988 return cec_feature_abort_reason(adap, msg, 1989 CEC_OP_ABORT_UNRECOGNIZED_OP); 1990 } 1991 1992 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) 1993 { 1994 return cec_feature_abort_reason(adap, msg, 1995 CEC_OP_ABORT_REFUSED); 1996 } 1997 1998 /* 1999 * Called when a CEC message is received. This function will do any 2000 * necessary core processing. The is_reply bool is true if this message 2001 * is a reply to an earlier transmit. 2002 * 2003 * The message is either a broadcast message or a valid directed message. 2004 */ 2005 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 2006 bool is_reply) 2007 { 2008 bool is_broadcast = cec_msg_is_broadcast(msg); 2009 u8 dest_laddr = cec_msg_destination(msg); 2010 u8 init_laddr = cec_msg_initiator(msg); 2011 u8 devtype = cec_log_addr2dev(adap, dest_laddr); 2012 int la_idx = cec_log_addr2idx(adap, dest_laddr); 2013 bool from_unregistered = init_laddr == 0xf; 2014 struct cec_msg tx_cec_msg = { }; 2015 2016 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 2017 2018 /* If this is a CDC-Only device, then ignore any non-CDC messages */ 2019 if (cec_is_cdc_only(&adap->log_addrs) && 2020 msg->msg[1] != CEC_MSG_CDC_MESSAGE) 2021 return 0; 2022 2023 /* Allow drivers to process the message first */ 2024 if (adap->ops->received && !adap->devnode.unregistered && 2025 adap->ops->received(adap, msg) != -ENOMSG) 2026 return 0; 2027 2028 /* 2029 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and 2030 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be 2031 * handled by the CEC core, even if the passthrough mode is on. 2032 * The others are just ignored if passthrough mode is on. 2033 */ 2034 switch (msg->msg[1]) { 2035 case CEC_MSG_GET_CEC_VERSION: 2036 case CEC_MSG_ABORT: 2037 case CEC_MSG_GIVE_DEVICE_POWER_STATUS: 2038 case CEC_MSG_GIVE_OSD_NAME: 2039 /* 2040 * These messages reply with a directed message, so ignore if 2041 * the initiator is Unregistered. 2042 */ 2043 if (!adap->passthrough && from_unregistered) 2044 return 0; 2045 fallthrough; 2046 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2047 case CEC_MSG_GIVE_FEATURES: 2048 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2049 /* 2050 * Skip processing these messages if the passthrough mode 2051 * is on. 2052 */ 2053 if (adap->passthrough) 2054 goto skip_processing; 2055 /* Ignore if addressing is wrong */ 2056 if (is_broadcast) 2057 return 0; 2058 break; 2059 2060 case CEC_MSG_USER_CONTROL_PRESSED: 2061 case CEC_MSG_USER_CONTROL_RELEASED: 2062 /* Wrong addressing mode: don't process */ 2063 if (is_broadcast || from_unregistered) 2064 goto skip_processing; 2065 break; 2066 2067 case CEC_MSG_REPORT_PHYSICAL_ADDR: 2068 /* 2069 * This message is always processed, regardless of the 2070 * passthrough setting. 2071 * 2072 * Exception: don't process if wrong addressing mode. 2073 */ 2074 if (!is_broadcast) 2075 goto skip_processing; 2076 break; 2077 2078 default: 2079 break; 2080 } 2081 2082 cec_msg_set_reply_to(&tx_cec_msg, msg); 2083 2084 switch (msg->msg[1]) { 2085 /* The following messages are processed but still passed through */ 2086 case CEC_MSG_REPORT_PHYSICAL_ADDR: { 2087 u16 pa = (msg->msg[2] << 8) | msg->msg[3]; 2088 2089 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", 2090 cec_phys_addr_exp(pa), init_laddr); 2091 break; 2092 } 2093 2094 case CEC_MSG_USER_CONTROL_PRESSED: 2095 if (!(adap->capabilities & CEC_CAP_RC) || 2096 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2097 break; 2098 2099 #ifdef CONFIG_MEDIA_CEC_RC 2100 switch (msg->msg[2]) { 2101 /* 2102 * Play function, this message can have variable length 2103 * depending on the specific play function that is used. 2104 */ 2105 case CEC_OP_UI_CMD_PLAY_FUNCTION: 2106 if (msg->len == 2) 2107 rc_keydown(adap->rc, RC_PROTO_CEC, 2108 msg->msg[2], 0); 2109 else 2110 rc_keydown(adap->rc, RC_PROTO_CEC, 2111 msg->msg[2] << 8 | msg->msg[3], 0); 2112 break; 2113 /* 2114 * Other function messages that are not handled. 2115 * Currently the RC framework does not allow to supply an 2116 * additional parameter to a keypress. These "keys" contain 2117 * other information such as channel number, an input number 2118 * etc. 2119 * For the time being these messages are not processed by the 2120 * framework and are simply forwarded to the user space. 2121 */ 2122 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: 2123 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: 2124 case CEC_OP_UI_CMD_TUNE_FUNCTION: 2125 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: 2126 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: 2127 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: 2128 break; 2129 default: 2130 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); 2131 break; 2132 } 2133 #endif 2134 break; 2135 2136 case CEC_MSG_USER_CONTROL_RELEASED: 2137 if (!(adap->capabilities & CEC_CAP_RC) || 2138 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2139 break; 2140 #ifdef CONFIG_MEDIA_CEC_RC 2141 rc_keyup(adap->rc); 2142 #endif 2143 break; 2144 2145 /* 2146 * The remaining messages are only processed if the passthrough mode 2147 * is off. 2148 */ 2149 case CEC_MSG_GET_CEC_VERSION: 2150 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); 2151 return cec_transmit_msg(adap, &tx_cec_msg, false); 2152 2153 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2154 /* Do nothing for CEC switches using addr 15 */ 2155 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) 2156 return 0; 2157 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); 2158 return cec_transmit_msg(adap, &tx_cec_msg, false); 2159 2160 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2161 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) 2162 return cec_feature_abort(adap, msg); 2163 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); 2164 return cec_transmit_msg(adap, &tx_cec_msg, false); 2165 2166 case CEC_MSG_ABORT: 2167 /* Do nothing for CEC switches */ 2168 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) 2169 return 0; 2170 return cec_feature_refused(adap, msg); 2171 2172 case CEC_MSG_GIVE_OSD_NAME: { 2173 if (adap->log_addrs.osd_name[0] == 0) 2174 return cec_feature_abort(adap, msg); 2175 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); 2176 return cec_transmit_msg(adap, &tx_cec_msg, false); 2177 } 2178 2179 case CEC_MSG_GIVE_FEATURES: 2180 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) 2181 return cec_feature_abort(adap, msg); 2182 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); 2183 return cec_transmit_msg(adap, &tx_cec_msg, false); 2184 2185 default: 2186 /* 2187 * Unprocessed messages are aborted if userspace isn't doing 2188 * any processing either. 2189 */ 2190 if (!is_broadcast && !is_reply && !adap->follower_cnt && 2191 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) 2192 return cec_feature_abort(adap, msg); 2193 break; 2194 } 2195 2196 skip_processing: 2197 /* If this was a reply, then we're done, unless otherwise specified */ 2198 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) 2199 return 0; 2200 2201 /* 2202 * Send to the exclusive follower if there is one, otherwise send 2203 * to all followers. 2204 */ 2205 if (adap->cec_follower) 2206 cec_queue_msg_fh(adap->cec_follower, msg); 2207 else 2208 cec_queue_msg_followers(adap, msg); 2209 return 0; 2210 } 2211 2212 /* 2213 * Helper functions to keep track of the 'monitor all' use count. 2214 * 2215 * These functions are called with adap->lock held. 2216 */ 2217 int cec_monitor_all_cnt_inc(struct cec_adapter *adap) 2218 { 2219 int ret; 2220 2221 if (adap->monitor_all_cnt++) 2222 return 0; 2223 2224 ret = cec_adap_enable(adap); 2225 if (ret) 2226 adap->monitor_all_cnt--; 2227 return ret; 2228 } 2229 2230 void cec_monitor_all_cnt_dec(struct cec_adapter *adap) 2231 { 2232 if (WARN_ON(!adap->monitor_all_cnt)) 2233 return; 2234 if (--adap->monitor_all_cnt) 2235 return; 2236 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 2237 cec_adap_enable(adap); 2238 } 2239 2240 /* 2241 * Helper functions to keep track of the 'monitor pin' use count. 2242 * 2243 * These functions are called with adap->lock held. 2244 */ 2245 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) 2246 { 2247 int ret; 2248 2249 if (adap->monitor_pin_cnt++) 2250 return 0; 2251 2252 ret = cec_adap_enable(adap); 2253 if (ret) 2254 adap->monitor_pin_cnt--; 2255 return ret; 2256 } 2257 2258 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) 2259 { 2260 if (WARN_ON(!adap->monitor_pin_cnt)) 2261 return; 2262 if (--adap->monitor_pin_cnt) 2263 return; 2264 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 2265 cec_adap_enable(adap); 2266 } 2267 2268 #ifdef CONFIG_DEBUG_FS 2269 /* 2270 * Log the current state of the CEC adapter. 2271 * Very useful for debugging. 2272 */ 2273 int cec_adap_status(struct seq_file *file, void *priv) 2274 { 2275 struct cec_adapter *adap = dev_get_drvdata(file->private); 2276 struct cec_data *data; 2277 2278 mutex_lock(&adap->lock); 2279 seq_printf(file, "enabled: %d\n", adap->is_enabled); 2280 seq_printf(file, "configured: %d\n", adap->is_configured); 2281 seq_printf(file, "configuring: %d\n", adap->is_configuring); 2282 seq_printf(file, "phys_addr: %x.%x.%x.%x\n", 2283 cec_phys_addr_exp(adap->phys_addr)); 2284 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); 2285 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); 2286 if (adap->cec_follower) 2287 seq_printf(file, "has CEC follower%s\n", 2288 adap->passthrough ? " (in passthrough mode)" : ""); 2289 if (adap->cec_initiator) 2290 seq_puts(file, "has CEC initiator\n"); 2291 if (adap->monitor_all_cnt) 2292 seq_printf(file, "file handles in Monitor All mode: %u\n", 2293 adap->monitor_all_cnt); 2294 if (adap->monitor_pin_cnt) 2295 seq_printf(file, "file handles in Monitor Pin mode: %u\n", 2296 adap->monitor_pin_cnt); 2297 if (adap->tx_timeout_cnt) { 2298 seq_printf(file, "transmit timeout count: %u\n", 2299 adap->tx_timeout_cnt); 2300 adap->tx_timeout_cnt = 0; 2301 } 2302 if (adap->tx_low_drive_cnt) { 2303 seq_printf(file, "transmit low drive count: %u\n", 2304 adap->tx_low_drive_cnt); 2305 adap->tx_low_drive_cnt = 0; 2306 } 2307 if (adap->tx_arb_lost_cnt) { 2308 seq_printf(file, "transmit arbitration lost count: %u\n", 2309 adap->tx_arb_lost_cnt); 2310 adap->tx_arb_lost_cnt = 0; 2311 } 2312 if (adap->tx_error_cnt) { 2313 seq_printf(file, "transmit error count: %u\n", 2314 adap->tx_error_cnt); 2315 adap->tx_error_cnt = 0; 2316 } 2317 data = adap->transmitting; 2318 if (data) 2319 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", 2320 data->msg.len, data->msg.msg, data->msg.reply, 2321 data->msg.timeout); 2322 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); 2323 list_for_each_entry(data, &adap->transmit_queue, list) { 2324 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", 2325 data->msg.len, data->msg.msg, data->msg.reply, 2326 data->msg.timeout); 2327 } 2328 list_for_each_entry(data, &adap->wait_queue, list) { 2329 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", 2330 data->msg.len, data->msg.msg, data->msg.reply, 2331 data->msg.timeout); 2332 } 2333 2334 call_void_op(adap, adap_status, file); 2335 mutex_unlock(&adap->lock); 2336 return 0; 2337 } 2338 #endif 2339