1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter 4 * 5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/errno.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kmod.h> 13 #include <linux/ktime.h> 14 #include <linux/slab.h> 15 #include <linux/mm.h> 16 #include <linux/string.h> 17 #include <linux/types.h> 18 19 #include <drm/drm_connector.h> 20 #include <drm/drm_device.h> 21 #include <drm/drm_edid.h> 22 #include <drm/drm_file.h> 23 24 #include "cec-priv.h" 25 26 static void cec_fill_msg_report_features(struct cec_adapter *adap, 27 struct cec_msg *msg, 28 unsigned int la_idx); 29 30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) 31 { 32 int i; 33 34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++) 35 if (adap->log_addrs.log_addr[i] == log_addr) 36 return i; 37 return -1; 38 } 39 40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) 41 { 42 int i = cec_log_addr2idx(adap, log_addr); 43 44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; 45 } 46 47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, 48 unsigned int *offset) 49 { 50 unsigned int loc = cec_get_edid_spa_location(edid, size); 51 52 if (offset) 53 *offset = loc; 54 if (loc == 0) 55 return CEC_PHYS_ADDR_INVALID; 56 return (edid[loc] << 8) | edid[loc + 1]; 57 } 58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); 59 60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, 61 const struct drm_connector *connector) 62 { 63 memset(conn_info, 0, sizeof(*conn_info)); 64 conn_info->type = CEC_CONNECTOR_TYPE_DRM; 65 conn_info->drm.card_no = connector->dev->primary->index; 66 conn_info->drm.connector_id = connector->base.id; 67 } 68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); 69 70 /* 71 * Queue a new event for this filehandle. If ts == 0, then set it 72 * to the current time. 73 * 74 * We keep a queue of at most max_event events where max_event differs 75 * per event. If the queue becomes full, then drop the oldest event and 76 * keep track of how many events we've dropped. 77 */ 78 void cec_queue_event_fh(struct cec_fh *fh, 79 const struct cec_event *new_ev, u64 ts) 80 { 81 static const u16 max_events[CEC_NUM_EVENTS] = { 82 1, 1, 800, 800, 8, 8, 8, 8 83 }; 84 struct cec_event_entry *entry; 85 unsigned int ev_idx = new_ev->event - 1; 86 87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) 88 return; 89 90 if (ts == 0) 91 ts = ktime_get_ns(); 92 93 mutex_lock(&fh->lock); 94 if (ev_idx < CEC_NUM_CORE_EVENTS) 95 entry = &fh->core_events[ev_idx]; 96 else 97 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 98 if (entry) { 99 if (new_ev->event == CEC_EVENT_LOST_MSGS && 100 fh->queued_events[ev_idx]) { 101 entry->ev.lost_msgs.lost_msgs += 102 new_ev->lost_msgs.lost_msgs; 103 goto unlock; 104 } 105 entry->ev = *new_ev; 106 entry->ev.ts = ts; 107 108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) { 109 /* Add new msg at the end of the queue */ 110 list_add_tail(&entry->list, &fh->events[ev_idx]); 111 fh->queued_events[ev_idx]++; 112 fh->total_queued_events++; 113 goto unlock; 114 } 115 116 if (ev_idx >= CEC_NUM_CORE_EVENTS) { 117 list_add_tail(&entry->list, &fh->events[ev_idx]); 118 /* drop the oldest event */ 119 entry = list_first_entry(&fh->events[ev_idx], 120 struct cec_event_entry, list); 121 list_del(&entry->list); 122 kfree(entry); 123 } 124 } 125 /* Mark that events were lost */ 126 entry = list_first_entry_or_null(&fh->events[ev_idx], 127 struct cec_event_entry, list); 128 if (entry) 129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; 130 131 unlock: 132 mutex_unlock(&fh->lock); 133 wake_up_interruptible(&fh->wait); 134 } 135 136 /* Queue a new event for all open filehandles. */ 137 static void cec_queue_event(struct cec_adapter *adap, 138 const struct cec_event *ev) 139 { 140 u64 ts = ktime_get_ns(); 141 struct cec_fh *fh; 142 143 mutex_lock(&adap->devnode.lock_fhs); 144 list_for_each_entry(fh, &adap->devnode.fhs, list) 145 cec_queue_event_fh(fh, ev, ts); 146 mutex_unlock(&adap->devnode.lock_fhs); 147 } 148 149 /* Notify userspace that the CEC pin changed state at the given time. */ 150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, 151 bool dropped_events, ktime_t ts) 152 { 153 struct cec_event ev = { 154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : 155 CEC_EVENT_PIN_CEC_LOW, 156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, 157 }; 158 struct cec_fh *fh; 159 160 mutex_lock(&adap->devnode.lock_fhs); 161 list_for_each_entry(fh, &adap->devnode.fhs, list) { 162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN) 163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 164 } 165 mutex_unlock(&adap->devnode.lock_fhs); 166 } 167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); 168 169 /* Notify userspace that the HPD pin changed state at the given time. */ 170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 171 { 172 struct cec_event ev = { 173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : 174 CEC_EVENT_PIN_HPD_LOW, 175 }; 176 struct cec_fh *fh; 177 178 mutex_lock(&adap->devnode.lock_fhs); 179 list_for_each_entry(fh, &adap->devnode.fhs, list) 180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 181 mutex_unlock(&adap->devnode.lock_fhs); 182 } 183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); 184 185 /* Notify userspace that the 5V pin changed state at the given time. */ 186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 187 { 188 struct cec_event ev = { 189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH : 190 CEC_EVENT_PIN_5V_LOW, 191 }; 192 struct cec_fh *fh; 193 194 mutex_lock(&adap->devnode.lock_fhs); 195 list_for_each_entry(fh, &adap->devnode.fhs, list) 196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 197 mutex_unlock(&adap->devnode.lock_fhs); 198 } 199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); 200 201 /* 202 * Queue a new message for this filehandle. 203 * 204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the 205 * queue becomes full, then drop the oldest message and keep track 206 * of how many messages we've dropped. 207 */ 208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) 209 { 210 static const struct cec_event ev_lost_msgs = { 211 .event = CEC_EVENT_LOST_MSGS, 212 .flags = 0, 213 { 214 .lost_msgs = { 1 }, 215 }, 216 }; 217 struct cec_msg_entry *entry; 218 219 mutex_lock(&fh->lock); 220 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 221 if (entry) { 222 entry->msg = *msg; 223 /* Add new msg at the end of the queue */ 224 list_add_tail(&entry->list, &fh->msgs); 225 226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { 227 /* All is fine if there is enough room */ 228 fh->queued_msgs++; 229 mutex_unlock(&fh->lock); 230 wake_up_interruptible(&fh->wait); 231 return; 232 } 233 234 /* 235 * if the message queue is full, then drop the oldest one and 236 * send a lost message event. 237 */ 238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); 239 list_del(&entry->list); 240 kfree(entry); 241 } 242 mutex_unlock(&fh->lock); 243 244 /* 245 * We lost a message, either because kmalloc failed or the queue 246 * was full. 247 */ 248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); 249 } 250 251 /* 252 * Queue the message for those filehandles that are in monitor mode. 253 * If valid_la is true (this message is for us or was sent by us), 254 * then pass it on to any monitoring filehandle. If this message 255 * isn't for us or from us, then only give it to filehandles that 256 * are in MONITOR_ALL mode. 257 * 258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is 259 * set and the CEC adapter was placed in 'monitor all' mode. 260 */ 261 static void cec_queue_msg_monitor(struct cec_adapter *adap, 262 const struct cec_msg *msg, 263 bool valid_la) 264 { 265 struct cec_fh *fh; 266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : 267 CEC_MODE_MONITOR_ALL; 268 269 mutex_lock(&adap->devnode.lock_fhs); 270 list_for_each_entry(fh, &adap->devnode.fhs, list) { 271 if (fh->mode_follower >= monitor_mode) 272 cec_queue_msg_fh(fh, msg); 273 } 274 mutex_unlock(&adap->devnode.lock_fhs); 275 } 276 277 /* 278 * Queue the message for follower filehandles. 279 */ 280 static void cec_queue_msg_followers(struct cec_adapter *adap, 281 const struct cec_msg *msg) 282 { 283 struct cec_fh *fh; 284 285 mutex_lock(&adap->devnode.lock_fhs); 286 list_for_each_entry(fh, &adap->devnode.fhs, list) { 287 if (fh->mode_follower == CEC_MODE_FOLLOWER) 288 cec_queue_msg_fh(fh, msg); 289 } 290 mutex_unlock(&adap->devnode.lock_fhs); 291 } 292 293 /* Notify userspace of an adapter state change. */ 294 static void cec_post_state_event(struct cec_adapter *adap) 295 { 296 struct cec_event ev = { 297 .event = CEC_EVENT_STATE_CHANGE, 298 }; 299 300 ev.state_change.phys_addr = adap->phys_addr; 301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; 302 ev.state_change.have_conn_info = 303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; 304 cec_queue_event(adap, &ev); 305 } 306 307 /* 308 * A CEC transmit (and a possible wait for reply) completed. 309 * If this was in blocking mode, then complete it, otherwise 310 * queue the message for userspace to dequeue later. 311 * 312 * This function is called with adap->lock held. 313 */ 314 static void cec_data_completed(struct cec_data *data) 315 { 316 /* 317 * Delete this transmit from the filehandle's xfer_list since 318 * we're done with it. 319 * 320 * Note that if the filehandle is closed before this transmit 321 * finished, then the release() function will set data->fh to NULL. 322 * Without that we would be referring to a closed filehandle. 323 */ 324 if (data->fh) 325 list_del_init(&data->xfer_list); 326 327 if (data->blocking) { 328 /* 329 * Someone is blocking so mark the message as completed 330 * and call complete. 331 */ 332 data->completed = true; 333 complete(&data->c); 334 } else { 335 /* 336 * No blocking, so just queue the message if needed and 337 * free the memory. 338 */ 339 if (data->fh) 340 cec_queue_msg_fh(data->fh, &data->msg); 341 kfree(data); 342 } 343 } 344 345 /* 346 * A pending CEC transmit needs to be cancelled, either because the CEC 347 * adapter is disabled or the transmit takes an impossibly long time to 348 * finish, or the reply timed out. 349 * 350 * This function is called with adap->lock held. 351 */ 352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status) 353 { 354 struct cec_adapter *adap = data->adap; 355 356 /* 357 * It's either the current transmit, or it is a pending 358 * transmit. Take the appropriate action to clear it. 359 */ 360 if (adap->transmitting == data) { 361 adap->transmitting = NULL; 362 } else { 363 list_del_init(&data->list); 364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) 365 if (!WARN_ON(!adap->transmit_queue_sz)) 366 adap->transmit_queue_sz--; 367 } 368 369 if (data->msg.tx_status & CEC_TX_STATUS_OK) { 370 data->msg.rx_ts = ktime_get_ns(); 371 data->msg.rx_status = rx_status; 372 if (!data->blocking) 373 data->msg.tx_status = 0; 374 } else { 375 data->msg.tx_ts = ktime_get_ns(); 376 data->msg.tx_status |= tx_status | 377 CEC_TX_STATUS_MAX_RETRIES; 378 data->msg.tx_error_cnt++; 379 data->attempts = 0; 380 if (!data->blocking) 381 data->msg.rx_status = 0; 382 } 383 384 /* Queue transmitted message for monitoring purposes */ 385 cec_queue_msg_monitor(adap, &data->msg, 1); 386 387 if (!data->blocking && data->msg.sequence) 388 /* Allow drivers to process the message first */ 389 call_op(adap, received, &data->msg); 390 391 cec_data_completed(data); 392 } 393 394 /* 395 * Flush all pending transmits and cancel any pending timeout work. 396 * 397 * This function is called with adap->lock held. 398 */ 399 static void cec_flush(struct cec_adapter *adap) 400 { 401 struct cec_data *data, *n; 402 403 /* 404 * If the adapter is disabled, or we're asked to stop, 405 * then cancel any pending transmits. 406 */ 407 while (!list_empty(&adap->transmit_queue)) { 408 data = list_first_entry(&adap->transmit_queue, 409 struct cec_data, list); 410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 411 } 412 if (adap->transmitting) 413 adap->transmit_in_progress_aborted = true; 414 415 /* Cancel the pending timeout work. */ 416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) { 417 if (cancel_delayed_work(&data->work)) 418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 419 /* 420 * If cancel_delayed_work returned false, then 421 * the cec_wait_timeout function is running, 422 * which will call cec_data_completed. So no 423 * need to do anything special in that case. 424 */ 425 } 426 /* 427 * If something went wrong and this counter isn't what it should 428 * be, then this will reset it back to 0. Warn if it is not 0, 429 * since it indicates a bug, either in this framework or in a 430 * CEC driver. 431 */ 432 if (WARN_ON(adap->transmit_queue_sz)) 433 adap->transmit_queue_sz = 0; 434 } 435 436 /* 437 * Main CEC state machine 438 * 439 * Wait until the thread should be stopped, or we are not transmitting and 440 * a new transmit message is queued up, in which case we start transmitting 441 * that message. When the adapter finished transmitting the message it will 442 * call cec_transmit_done(). 443 * 444 * If the adapter is disabled, then remove all queued messages instead. 445 * 446 * If the current transmit times out, then cancel that transmit. 447 */ 448 int cec_thread_func(void *_adap) 449 { 450 struct cec_adapter *adap = _adap; 451 452 for (;;) { 453 unsigned int signal_free_time; 454 struct cec_data *data; 455 bool timeout = false; 456 u8 attempts; 457 458 if (adap->transmit_in_progress) { 459 int err; 460 461 /* 462 * We are transmitting a message, so add a timeout 463 * to prevent the state machine to get stuck waiting 464 * for this message to finalize and add a check to 465 * see if the adapter is disabled in which case the 466 * transmit should be canceled. 467 */ 468 err = wait_event_interruptible_timeout(adap->kthread_waitq, 469 (adap->needs_hpd && 470 (!adap->is_configured && !adap->is_configuring)) || 471 kthread_should_stop() || 472 (!adap->transmit_in_progress && 473 !list_empty(&adap->transmit_queue)), 474 msecs_to_jiffies(adap->xfer_timeout_ms)); 475 timeout = err == 0; 476 } else { 477 /* Otherwise we just wait for something to happen. */ 478 wait_event_interruptible(adap->kthread_waitq, 479 kthread_should_stop() || 480 (!adap->transmit_in_progress && 481 !list_empty(&adap->transmit_queue))); 482 } 483 484 mutex_lock(&adap->lock); 485 486 if ((adap->needs_hpd && 487 (!adap->is_configured && !adap->is_configuring)) || 488 kthread_should_stop()) { 489 cec_flush(adap); 490 goto unlock; 491 } 492 493 if (adap->transmit_in_progress && timeout) { 494 /* 495 * If we timeout, then log that. Normally this does 496 * not happen and it is an indication of a faulty CEC 497 * adapter driver, or the CEC bus is in some weird 498 * state. On rare occasions it can happen if there is 499 * so much traffic on the bus that the adapter was 500 * unable to transmit for xfer_timeout_ms (2.1s by 501 * default). 502 */ 503 if (adap->transmitting) { 504 pr_warn("cec-%s: message %*ph timed out\n", adap->name, 505 adap->transmitting->msg.len, 506 adap->transmitting->msg.msg); 507 /* Just give up on this. */ 508 cec_data_cancel(adap->transmitting, 509 CEC_TX_STATUS_TIMEOUT, 0); 510 } else { 511 pr_warn("cec-%s: transmit timed out\n", adap->name); 512 } 513 adap->transmit_in_progress = false; 514 adap->tx_timeouts++; 515 goto unlock; 516 } 517 518 /* 519 * If we are still transmitting, or there is nothing new to 520 * transmit, then just continue waiting. 521 */ 522 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) 523 goto unlock; 524 525 /* Get a new message to transmit */ 526 data = list_first_entry(&adap->transmit_queue, 527 struct cec_data, list); 528 list_del_init(&data->list); 529 if (!WARN_ON(!data->adap->transmit_queue_sz)) 530 adap->transmit_queue_sz--; 531 532 /* Make this the current transmitting message */ 533 adap->transmitting = data; 534 535 /* 536 * Suggested number of attempts as per the CEC 2.0 spec: 537 * 4 attempts is the default, except for 'secondary poll 538 * messages', i.e. poll messages not sent during the adapter 539 * configuration phase when it allocates logical addresses. 540 */ 541 if (data->msg.len == 1 && adap->is_configured) 542 attempts = 2; 543 else 544 attempts = 4; 545 546 /* Set the suggested signal free time */ 547 if (data->attempts) { 548 /* should be >= 3 data bit periods for a retry */ 549 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; 550 } else if (adap->last_initiator != 551 cec_msg_initiator(&data->msg)) { 552 /* should be >= 5 data bit periods for new initiator */ 553 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 554 adap->last_initiator = cec_msg_initiator(&data->msg); 555 } else { 556 /* 557 * should be >= 7 data bit periods for sending another 558 * frame immediately after another. 559 */ 560 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; 561 } 562 if (data->attempts == 0) 563 data->attempts = attempts; 564 565 adap->transmit_in_progress_aborted = false; 566 /* Tell the adapter to transmit, cancel on error */ 567 if (call_op(adap, adap_transmit, data->attempts, 568 signal_free_time, &data->msg)) 569 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 570 else 571 adap->transmit_in_progress = true; 572 573 unlock: 574 mutex_unlock(&adap->lock); 575 576 if (kthread_should_stop()) 577 break; 578 } 579 return 0; 580 } 581 582 /* 583 * Called by the CEC adapter if a transmit finished. 584 */ 585 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, 586 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, 587 u8 error_cnt, ktime_t ts) 588 { 589 struct cec_data *data; 590 struct cec_msg *msg; 591 unsigned int attempts_made = arb_lost_cnt + nack_cnt + 592 low_drive_cnt + error_cnt; 593 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK); 594 bool aborted = adap->transmit_in_progress_aborted; 595 596 dprintk(2, "%s: status 0x%02x\n", __func__, status); 597 if (attempts_made < 1) 598 attempts_made = 1; 599 600 mutex_lock(&adap->lock); 601 data = adap->transmitting; 602 if (!data) { 603 /* 604 * This might happen if a transmit was issued and the cable is 605 * unplugged while the transmit is ongoing. Ignore this 606 * transmit in that case. 607 */ 608 if (!adap->transmit_in_progress) 609 dprintk(1, "%s was called without an ongoing transmit!\n", 610 __func__); 611 adap->transmit_in_progress = false; 612 goto wake_thread; 613 } 614 adap->transmit_in_progress = false; 615 adap->transmit_in_progress_aborted = false; 616 617 msg = &data->msg; 618 619 /* Drivers must fill in the status! */ 620 WARN_ON(status == 0); 621 msg->tx_ts = ktime_to_ns(ts); 622 msg->tx_status |= status; 623 msg->tx_arb_lost_cnt += arb_lost_cnt; 624 msg->tx_nack_cnt += nack_cnt; 625 msg->tx_low_drive_cnt += low_drive_cnt; 626 msg->tx_error_cnt += error_cnt; 627 628 /* Mark that we're done with this transmit */ 629 adap->transmitting = NULL; 630 631 /* 632 * If there are still retry attempts left and there was an error and 633 * the hardware didn't signal that it retried itself (by setting 634 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. 635 */ 636 if (!aborted && data->attempts > attempts_made && !done) { 637 /* Retry this message */ 638 data->attempts -= attempts_made; 639 if (msg->timeout) 640 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", 641 msg->len, msg->msg, data->attempts, msg->reply); 642 else 643 dprintk(2, "retransmit: %*ph (attempts: %d)\n", 644 msg->len, msg->msg, data->attempts); 645 /* Add the message in front of the transmit queue */ 646 list_add(&data->list, &adap->transmit_queue); 647 adap->transmit_queue_sz++; 648 goto wake_thread; 649 } 650 651 if (aborted && !done) 652 status |= CEC_TX_STATUS_ABORTED; 653 data->attempts = 0; 654 655 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ 656 if (!(status & CEC_TX_STATUS_OK)) 657 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; 658 659 /* Queue transmitted message for monitoring purposes */ 660 cec_queue_msg_monitor(adap, msg, 1); 661 662 if ((status & CEC_TX_STATUS_OK) && adap->is_configured && 663 msg->timeout) { 664 /* 665 * Queue the message into the wait queue if we want to wait 666 * for a reply. 667 */ 668 list_add_tail(&data->list, &adap->wait_queue); 669 schedule_delayed_work(&data->work, 670 msecs_to_jiffies(msg->timeout)); 671 } else { 672 /* Otherwise we're done */ 673 cec_data_completed(data); 674 } 675 676 wake_thread: 677 /* 678 * Wake up the main thread to see if another message is ready 679 * for transmitting or to retry the current message. 680 */ 681 wake_up_interruptible(&adap->kthread_waitq); 682 mutex_unlock(&adap->lock); 683 } 684 EXPORT_SYMBOL_GPL(cec_transmit_done_ts); 685 686 void cec_transmit_attempt_done_ts(struct cec_adapter *adap, 687 u8 status, ktime_t ts) 688 { 689 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { 690 case CEC_TX_STATUS_OK: 691 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); 692 return; 693 case CEC_TX_STATUS_ARB_LOST: 694 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); 695 return; 696 case CEC_TX_STATUS_NACK: 697 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); 698 return; 699 case CEC_TX_STATUS_LOW_DRIVE: 700 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); 701 return; 702 case CEC_TX_STATUS_ERROR: 703 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); 704 return; 705 default: 706 /* Should never happen */ 707 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); 708 return; 709 } 710 } 711 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); 712 713 /* 714 * Called when waiting for a reply times out. 715 */ 716 static void cec_wait_timeout(struct work_struct *work) 717 { 718 struct cec_data *data = container_of(work, struct cec_data, work.work); 719 struct cec_adapter *adap = data->adap; 720 721 mutex_lock(&adap->lock); 722 /* 723 * Sanity check in case the timeout and the arrival of the message 724 * happened at the same time. 725 */ 726 if (list_empty(&data->list)) 727 goto unlock; 728 729 /* Mark the message as timed out */ 730 list_del_init(&data->list); 731 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT); 732 unlock: 733 mutex_unlock(&adap->lock); 734 } 735 736 /* 737 * Transmit a message. The fh argument may be NULL if the transmit is not 738 * associated with a specific filehandle. 739 * 740 * This function is called with adap->lock held. 741 */ 742 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, 743 struct cec_fh *fh, bool block) 744 { 745 struct cec_data *data; 746 bool is_raw = msg_is_raw(msg); 747 748 if (adap->devnode.unregistered) 749 return -ENODEV; 750 751 msg->rx_ts = 0; 752 msg->tx_ts = 0; 753 msg->rx_status = 0; 754 msg->tx_status = 0; 755 msg->tx_arb_lost_cnt = 0; 756 msg->tx_nack_cnt = 0; 757 msg->tx_low_drive_cnt = 0; 758 msg->tx_error_cnt = 0; 759 msg->sequence = 0; 760 761 if (msg->reply && msg->timeout == 0) { 762 /* Make sure the timeout isn't 0. */ 763 msg->timeout = 1000; 764 } 765 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW; 766 767 if (!msg->timeout) 768 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; 769 770 /* Sanity checks */ 771 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { 772 dprintk(1, "%s: invalid length %d\n", __func__, msg->len); 773 return -EINVAL; 774 } 775 776 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 777 778 if (msg->timeout) 779 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", 780 __func__, msg->len, msg->msg, msg->reply, 781 !block ? ", nb" : ""); 782 else 783 dprintk(2, "%s: %*ph%s\n", 784 __func__, msg->len, msg->msg, !block ? " (nb)" : ""); 785 786 if (msg->timeout && msg->len == 1) { 787 dprintk(1, "%s: can't reply to poll msg\n", __func__); 788 return -EINVAL; 789 } 790 791 if (is_raw) { 792 if (!capable(CAP_SYS_RAWIO)) 793 return -EPERM; 794 } else { 795 /* A CDC-Only device can only send CDC messages */ 796 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && 797 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { 798 dprintk(1, "%s: not a CDC message\n", __func__); 799 return -EINVAL; 800 } 801 802 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { 803 msg->msg[2] = adap->phys_addr >> 8; 804 msg->msg[3] = adap->phys_addr & 0xff; 805 } 806 807 if (msg->len == 1) { 808 if (cec_msg_destination(msg) == 0xf) { 809 dprintk(1, "%s: invalid poll message\n", 810 __func__); 811 return -EINVAL; 812 } 813 if (cec_has_log_addr(adap, cec_msg_destination(msg))) { 814 /* 815 * If the destination is a logical address our 816 * adapter has already claimed, then just NACK 817 * this. It depends on the hardware what it will 818 * do with a POLL to itself (some OK this), so 819 * it is just as easy to handle it here so the 820 * behavior will be consistent. 821 */ 822 msg->tx_ts = ktime_get_ns(); 823 msg->tx_status = CEC_TX_STATUS_NACK | 824 CEC_TX_STATUS_MAX_RETRIES; 825 msg->tx_nack_cnt = 1; 826 msg->sequence = ++adap->sequence; 827 if (!msg->sequence) 828 msg->sequence = ++adap->sequence; 829 return 0; 830 } 831 } 832 if (msg->len > 1 && !cec_msg_is_broadcast(msg) && 833 cec_has_log_addr(adap, cec_msg_destination(msg))) { 834 dprintk(1, "%s: destination is the adapter itself\n", 835 __func__); 836 return -EINVAL; 837 } 838 if (msg->len > 1 && adap->is_configured && 839 !cec_has_log_addr(adap, cec_msg_initiator(msg))) { 840 dprintk(1, "%s: initiator has unknown logical address %d\n", 841 __func__, cec_msg_initiator(msg)); 842 return -EINVAL; 843 } 844 /* 845 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be 846 * transmitted to a TV, even if the adapter is unconfigured. 847 * This makes it possible to detect or wake up displays that 848 * pull down the HPD when in standby. 849 */ 850 if (!adap->is_configured && !adap->is_configuring && 851 (msg->len > 2 || 852 cec_msg_destination(msg) != CEC_LOG_ADDR_TV || 853 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && 854 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { 855 dprintk(1, "%s: adapter is unconfigured\n", __func__); 856 return -ENONET; 857 } 858 } 859 860 if (!adap->is_configured && !adap->is_configuring) { 861 if (adap->needs_hpd) { 862 dprintk(1, "%s: adapter is unconfigured and needs HPD\n", 863 __func__); 864 return -ENONET; 865 } 866 if (msg->reply) { 867 dprintk(1, "%s: invalid msg->reply\n", __func__); 868 return -EINVAL; 869 } 870 } 871 872 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { 873 dprintk(2, "%s: transmit queue full\n", __func__); 874 return -EBUSY; 875 } 876 877 data = kzalloc(sizeof(*data), GFP_KERNEL); 878 if (!data) 879 return -ENOMEM; 880 881 msg->sequence = ++adap->sequence; 882 if (!msg->sequence) 883 msg->sequence = ++adap->sequence; 884 885 data->msg = *msg; 886 data->fh = fh; 887 data->adap = adap; 888 data->blocking = block; 889 890 init_completion(&data->c); 891 INIT_DELAYED_WORK(&data->work, cec_wait_timeout); 892 893 if (fh) 894 list_add_tail(&data->xfer_list, &fh->xfer_list); 895 else 896 INIT_LIST_HEAD(&data->xfer_list); 897 898 list_add_tail(&data->list, &adap->transmit_queue); 899 adap->transmit_queue_sz++; 900 if (!adap->transmitting) 901 wake_up_interruptible(&adap->kthread_waitq); 902 903 /* All done if we don't need to block waiting for completion */ 904 if (!block) 905 return 0; 906 907 /* 908 * Release the lock and wait, retake the lock afterwards. 909 */ 910 mutex_unlock(&adap->lock); 911 wait_for_completion_killable(&data->c); 912 if (!data->completed) 913 cancel_delayed_work_sync(&data->work); 914 mutex_lock(&adap->lock); 915 916 /* Cancel the transmit if it was interrupted */ 917 if (!data->completed) { 918 if (data->msg.tx_status & CEC_TX_STATUS_OK) 919 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 920 else 921 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 922 } 923 924 /* The transmit completed (possibly with an error) */ 925 *msg = data->msg; 926 if (WARN_ON(!list_empty(&data->list))) 927 list_del(&data->list); 928 if (WARN_ON(!list_empty(&data->xfer_list))) 929 list_del(&data->xfer_list); 930 kfree(data); 931 return 0; 932 } 933 934 /* Helper function to be used by drivers and this framework. */ 935 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, 936 bool block) 937 { 938 int ret; 939 940 mutex_lock(&adap->lock); 941 ret = cec_transmit_msg_fh(adap, msg, NULL, block); 942 mutex_unlock(&adap->lock); 943 return ret; 944 } 945 EXPORT_SYMBOL_GPL(cec_transmit_msg); 946 947 /* 948 * I don't like forward references but without this the low-level 949 * cec_received_msg() function would come after a bunch of high-level 950 * CEC protocol handling functions. That was very confusing. 951 */ 952 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 953 bool is_reply); 954 955 #define DIRECTED 0x80 956 #define BCAST1_4 0x40 957 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ 958 #define BCAST (BCAST1_4 | BCAST2_0) 959 #define BOTH (BCAST | DIRECTED) 960 961 /* 962 * Specify minimum length and whether the message is directed, broadcast 963 * or both. Messages that do not match the criteria are ignored as per 964 * the CEC specification. 965 */ 966 static const u8 cec_msg_size[256] = { 967 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, 968 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, 969 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, 970 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, 971 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, 972 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, 973 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, 974 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, 975 [CEC_MSG_STANDBY] = 2 | BOTH, 976 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, 977 [CEC_MSG_RECORD_ON] = 3 | DIRECTED, 978 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, 979 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, 980 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, 981 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, 982 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, 983 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, 984 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, 985 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, 986 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, 987 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, 988 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, 989 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, 990 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, 991 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, 992 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, 993 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, 994 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, 995 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, 996 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, 997 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, 998 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, 999 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, 1000 [CEC_MSG_PLAY] = 3 | DIRECTED, 1001 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, 1002 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, 1003 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, 1004 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, 1005 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, 1006 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, 1007 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, 1008 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, 1009 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, 1010 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, 1011 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, 1012 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, 1013 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, 1014 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, 1015 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, 1016 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, 1017 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, 1018 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, 1019 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, 1020 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, 1021 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, 1022 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, 1023 [CEC_MSG_ABORT] = 2 | DIRECTED, 1024 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, 1025 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, 1026 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, 1027 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1028 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1029 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, 1030 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED, 1031 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, 1032 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, 1033 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, 1034 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, 1035 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, 1036 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, 1037 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, 1038 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, 1039 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, 1040 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, 1041 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, 1042 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, 1043 }; 1044 1045 /* Called by the CEC adapter if a message is received */ 1046 void cec_received_msg_ts(struct cec_adapter *adap, 1047 struct cec_msg *msg, ktime_t ts) 1048 { 1049 struct cec_data *data; 1050 u8 msg_init = cec_msg_initiator(msg); 1051 u8 msg_dest = cec_msg_destination(msg); 1052 u8 cmd = msg->msg[1]; 1053 bool is_reply = false; 1054 bool valid_la = true; 1055 bool monitor_valid_la = true; 1056 u8 min_len = 0; 1057 1058 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) 1059 return; 1060 1061 if (adap->devnode.unregistered) 1062 return; 1063 1064 /* 1065 * Some CEC adapters will receive the messages that they transmitted. 1066 * This test filters out those messages by checking if we are the 1067 * initiator, and just returning in that case. 1068 * 1069 * Note that this won't work if this is an Unregistered device. 1070 * 1071 * It is bad practice if the hardware receives the message that it 1072 * transmitted and luckily most CEC adapters behave correctly in this 1073 * respect. 1074 */ 1075 if (msg_init != CEC_LOG_ADDR_UNREGISTERED && 1076 cec_has_log_addr(adap, msg_init)) 1077 return; 1078 1079 msg->rx_ts = ktime_to_ns(ts); 1080 msg->rx_status = CEC_RX_STATUS_OK; 1081 msg->sequence = msg->reply = msg->timeout = 0; 1082 msg->tx_status = 0; 1083 msg->tx_ts = 0; 1084 msg->tx_arb_lost_cnt = 0; 1085 msg->tx_nack_cnt = 0; 1086 msg->tx_low_drive_cnt = 0; 1087 msg->tx_error_cnt = 0; 1088 msg->flags = 0; 1089 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 1090 1091 mutex_lock(&adap->lock); 1092 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1093 1094 adap->last_initiator = 0xff; 1095 1096 /* Check if this message was for us (directed or broadcast). */ 1097 if (!cec_msg_is_broadcast(msg)) { 1098 valid_la = cec_has_log_addr(adap, msg_dest); 1099 monitor_valid_la = valid_la; 1100 } 1101 1102 /* 1103 * Check if the length is not too short or if the message is a 1104 * broadcast message where a directed message was expected or 1105 * vice versa. If so, then the message has to be ignored (according 1106 * to section CEC 7.3 and CEC 12.2). 1107 */ 1108 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { 1109 u8 dir_fl = cec_msg_size[cmd] & BOTH; 1110 1111 min_len = cec_msg_size[cmd] & 0x1f; 1112 if (msg->len < min_len) 1113 valid_la = false; 1114 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) 1115 valid_la = false; 1116 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) 1117 valid_la = false; 1118 else if (cec_msg_is_broadcast(msg) && 1119 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && 1120 !(dir_fl & BCAST1_4)) 1121 valid_la = false; 1122 } 1123 if (valid_la && min_len) { 1124 /* These messages have special length requirements */ 1125 switch (cmd) { 1126 case CEC_MSG_TIMER_STATUS: 1127 if (msg->msg[2] & 0x10) { 1128 switch (msg->msg[2] & 0xf) { 1129 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE: 1130 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE: 1131 if (msg->len < 5) 1132 valid_la = false; 1133 break; 1134 } 1135 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) { 1136 if (msg->len < 5) 1137 valid_la = false; 1138 } 1139 break; 1140 case CEC_MSG_RECORD_ON: 1141 switch (msg->msg[2]) { 1142 case CEC_OP_RECORD_SRC_OWN: 1143 break; 1144 case CEC_OP_RECORD_SRC_DIGITAL: 1145 if (msg->len < 10) 1146 valid_la = false; 1147 break; 1148 case CEC_OP_RECORD_SRC_ANALOG: 1149 if (msg->len < 7) 1150 valid_la = false; 1151 break; 1152 case CEC_OP_RECORD_SRC_EXT_PLUG: 1153 if (msg->len < 4) 1154 valid_la = false; 1155 break; 1156 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: 1157 if (msg->len < 5) 1158 valid_la = false; 1159 break; 1160 } 1161 break; 1162 } 1163 } 1164 1165 /* It's a valid message and not a poll or CDC message */ 1166 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { 1167 bool abort = cmd == CEC_MSG_FEATURE_ABORT; 1168 1169 /* The aborted command is in msg[2] */ 1170 if (abort) 1171 cmd = msg->msg[2]; 1172 1173 /* 1174 * Walk over all transmitted messages that are waiting for a 1175 * reply. 1176 */ 1177 list_for_each_entry(data, &adap->wait_queue, list) { 1178 struct cec_msg *dst = &data->msg; 1179 1180 /* 1181 * The *only* CEC message that has two possible replies 1182 * is CEC_MSG_INITIATE_ARC. 1183 * In this case allow either of the two replies. 1184 */ 1185 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && 1186 (cmd == CEC_MSG_REPORT_ARC_INITIATED || 1187 cmd == CEC_MSG_REPORT_ARC_TERMINATED) && 1188 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || 1189 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) 1190 dst->reply = cmd; 1191 1192 /* Does the command match? */ 1193 if ((abort && cmd != dst->msg[1]) || 1194 (!abort && cmd != dst->reply)) 1195 continue; 1196 1197 /* Does the addressing match? */ 1198 if (msg_init != cec_msg_destination(dst) && 1199 !cec_msg_is_broadcast(dst)) 1200 continue; 1201 1202 /* We got a reply */ 1203 memcpy(dst->msg, msg->msg, msg->len); 1204 dst->len = msg->len; 1205 dst->rx_ts = msg->rx_ts; 1206 dst->rx_status = msg->rx_status; 1207 if (abort) 1208 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; 1209 msg->flags = dst->flags; 1210 msg->sequence = dst->sequence; 1211 /* Remove it from the wait_queue */ 1212 list_del_init(&data->list); 1213 1214 /* Cancel the pending timeout work */ 1215 if (!cancel_delayed_work(&data->work)) { 1216 mutex_unlock(&adap->lock); 1217 cancel_delayed_work_sync(&data->work); 1218 mutex_lock(&adap->lock); 1219 } 1220 /* 1221 * Mark this as a reply, provided someone is still 1222 * waiting for the answer. 1223 */ 1224 if (data->fh) 1225 is_reply = true; 1226 cec_data_completed(data); 1227 break; 1228 } 1229 } 1230 mutex_unlock(&adap->lock); 1231 1232 /* Pass the message on to any monitoring filehandles */ 1233 cec_queue_msg_monitor(adap, msg, monitor_valid_la); 1234 1235 /* We're done if it is not for us or a poll message */ 1236 if (!valid_la || msg->len <= 1) 1237 return; 1238 1239 if (adap->log_addrs.log_addr_mask == 0) 1240 return; 1241 1242 /* 1243 * Process the message on the protocol level. If is_reply is true, 1244 * then cec_receive_notify() won't pass on the reply to the listener(s) 1245 * since that was already done by cec_data_completed() above. 1246 */ 1247 cec_receive_notify(adap, msg, is_reply); 1248 } 1249 EXPORT_SYMBOL_GPL(cec_received_msg_ts); 1250 1251 /* Logical Address Handling */ 1252 1253 /* 1254 * Attempt to claim a specific logical address. 1255 * 1256 * This function is called with adap->lock held. 1257 */ 1258 static int cec_config_log_addr(struct cec_adapter *adap, 1259 unsigned int idx, 1260 unsigned int log_addr) 1261 { 1262 struct cec_log_addrs *las = &adap->log_addrs; 1263 struct cec_msg msg = { }; 1264 const unsigned int max_retries = 2; 1265 unsigned int i; 1266 int err; 1267 1268 if (cec_has_log_addr(adap, log_addr)) 1269 return 0; 1270 1271 /* Send poll message */ 1272 msg.len = 1; 1273 msg.msg[0] = (log_addr << 4) | log_addr; 1274 1275 for (i = 0; i < max_retries; i++) { 1276 err = cec_transmit_msg_fh(adap, &msg, NULL, true); 1277 1278 /* 1279 * While trying to poll the physical address was reset 1280 * and the adapter was unconfigured, so bail out. 1281 */ 1282 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID) 1283 return -EINTR; 1284 1285 /* Also bail out if the PA changed while configuring. */ 1286 if (adap->must_reconfigure) 1287 return -EINTR; 1288 1289 if (err) 1290 return err; 1291 1292 /* 1293 * The message was aborted or timed out due to a disconnect or 1294 * unconfigure, just bail out. 1295 */ 1296 if (msg.tx_status & 1297 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT)) 1298 return -EINTR; 1299 if (msg.tx_status & CEC_TX_STATUS_OK) 1300 return 0; 1301 if (msg.tx_status & CEC_TX_STATUS_NACK) 1302 break; 1303 /* 1304 * Retry up to max_retries times if the message was neither 1305 * OKed or NACKed. This can happen due to e.g. a Lost 1306 * Arbitration condition. 1307 */ 1308 } 1309 1310 /* 1311 * If we are unable to get an OK or a NACK after max_retries attempts 1312 * (and note that each attempt already consists of four polls), then 1313 * we assume that something is really weird and that it is not a 1314 * good idea to try and claim this logical address. 1315 */ 1316 if (i == max_retries) { 1317 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n", 1318 log_addr, msg.tx_status); 1319 return 0; 1320 } 1321 1322 /* 1323 * Message not acknowledged, so this logical 1324 * address is free to use. 1325 */ 1326 err = call_op(adap, adap_log_addr, log_addr); 1327 if (err) 1328 return err; 1329 1330 las->log_addr[idx] = log_addr; 1331 las->log_addr_mask |= 1 << log_addr; 1332 return 1; 1333 } 1334 1335 /* 1336 * Unconfigure the adapter: clear all logical addresses and send 1337 * the state changed event. 1338 * 1339 * This function is called with adap->lock held. 1340 */ 1341 static void cec_adap_unconfigure(struct cec_adapter *adap) 1342 { 1343 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1344 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID)); 1345 adap->log_addrs.log_addr_mask = 0; 1346 adap->is_configured = false; 1347 cec_flush(adap); 1348 wake_up_interruptible(&adap->kthread_waitq); 1349 cec_post_state_event(adap); 1350 call_void_op(adap, adap_configured, false); 1351 } 1352 1353 /* 1354 * Attempt to claim the required logical addresses. 1355 */ 1356 static int cec_config_thread_func(void *arg) 1357 { 1358 /* The various LAs for each type of device */ 1359 static const u8 tv_log_addrs[] = { 1360 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, 1361 CEC_LOG_ADDR_INVALID 1362 }; 1363 static const u8 record_log_addrs[] = { 1364 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, 1365 CEC_LOG_ADDR_RECORD_3, 1366 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1367 CEC_LOG_ADDR_INVALID 1368 }; 1369 static const u8 tuner_log_addrs[] = { 1370 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, 1371 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, 1372 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1373 CEC_LOG_ADDR_INVALID 1374 }; 1375 static const u8 playback_log_addrs[] = { 1376 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, 1377 CEC_LOG_ADDR_PLAYBACK_3, 1378 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1379 CEC_LOG_ADDR_INVALID 1380 }; 1381 static const u8 audiosystem_log_addrs[] = { 1382 CEC_LOG_ADDR_AUDIOSYSTEM, 1383 CEC_LOG_ADDR_INVALID 1384 }; 1385 static const u8 specific_use_log_addrs[] = { 1386 CEC_LOG_ADDR_SPECIFIC, 1387 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1388 CEC_LOG_ADDR_INVALID 1389 }; 1390 static const u8 *type2addrs[6] = { 1391 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, 1392 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, 1393 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, 1394 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, 1395 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, 1396 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, 1397 }; 1398 static const u16 type2mask[] = { 1399 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, 1400 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, 1401 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, 1402 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, 1403 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, 1404 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, 1405 }; 1406 struct cec_adapter *adap = arg; 1407 struct cec_log_addrs *las = &adap->log_addrs; 1408 int err; 1409 int i, j; 1410 1411 mutex_lock(&adap->lock); 1412 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", 1413 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); 1414 las->log_addr_mask = 0; 1415 1416 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) 1417 goto configured; 1418 1419 reconfigure: 1420 for (i = 0; i < las->num_log_addrs; i++) { 1421 unsigned int type = las->log_addr_type[i]; 1422 const u8 *la_list; 1423 u8 last_la; 1424 1425 /* 1426 * The TV functionality can only map to physical address 0. 1427 * For any other address, try the Specific functionality 1428 * instead as per the spec. 1429 */ 1430 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) 1431 type = CEC_LOG_ADDR_TYPE_SPECIFIC; 1432 1433 la_list = type2addrs[type]; 1434 last_la = las->log_addr[i]; 1435 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1436 if (last_la == CEC_LOG_ADDR_INVALID || 1437 last_la == CEC_LOG_ADDR_UNREGISTERED || 1438 !((1 << last_la) & type2mask[type])) 1439 last_la = la_list[0]; 1440 1441 err = cec_config_log_addr(adap, i, last_la); 1442 1443 if (adap->must_reconfigure) { 1444 adap->must_reconfigure = false; 1445 las->log_addr_mask = 0; 1446 goto reconfigure; 1447 } 1448 1449 if (err > 0) /* Reused last LA */ 1450 continue; 1451 1452 if (err < 0) 1453 goto unconfigure; 1454 1455 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { 1456 /* Tried this one already, skip it */ 1457 if (la_list[j] == last_la) 1458 continue; 1459 /* The backup addresses are CEC 2.0 specific */ 1460 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || 1461 la_list[j] == CEC_LOG_ADDR_BACKUP_2) && 1462 las->cec_version < CEC_OP_CEC_VERSION_2_0) 1463 continue; 1464 1465 err = cec_config_log_addr(adap, i, la_list[j]); 1466 if (err == 0) /* LA is in use */ 1467 continue; 1468 if (err < 0) 1469 goto unconfigure; 1470 /* Done, claimed an LA */ 1471 break; 1472 } 1473 1474 if (la_list[j] == CEC_LOG_ADDR_INVALID) 1475 dprintk(1, "could not claim LA %d\n", i); 1476 } 1477 1478 if (adap->log_addrs.log_addr_mask == 0 && 1479 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) 1480 goto unconfigure; 1481 1482 configured: 1483 if (adap->log_addrs.log_addr_mask == 0) { 1484 /* Fall back to unregistered */ 1485 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; 1486 las->log_addr_mask = 1 << las->log_addr[0]; 1487 for (i = 1; i < las->num_log_addrs; i++) 1488 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1489 } 1490 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) 1491 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1492 adap->is_configured = true; 1493 adap->is_configuring = false; 1494 adap->must_reconfigure = false; 1495 cec_post_state_event(adap); 1496 1497 /* 1498 * Now post the Report Features and Report Physical Address broadcast 1499 * messages. Note that these are non-blocking transmits, meaning that 1500 * they are just queued up and once adap->lock is unlocked the main 1501 * thread will kick in and start transmitting these. 1502 * 1503 * If after this function is done (but before one or more of these 1504 * messages are actually transmitted) the CEC adapter is unconfigured, 1505 * then any remaining messages will be dropped by the main thread. 1506 */ 1507 for (i = 0; i < las->num_log_addrs; i++) { 1508 struct cec_msg msg = {}; 1509 1510 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || 1511 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) 1512 continue; 1513 1514 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; 1515 1516 /* Report Features must come first according to CEC 2.0 */ 1517 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && 1518 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { 1519 cec_fill_msg_report_features(adap, &msg, i); 1520 cec_transmit_msg_fh(adap, &msg, NULL, false); 1521 } 1522 1523 /* Report Physical Address */ 1524 cec_msg_report_physical_addr(&msg, adap->phys_addr, 1525 las->primary_device_type[i]); 1526 dprintk(1, "config: la %d pa %x.%x.%x.%x\n", 1527 las->log_addr[i], 1528 cec_phys_addr_exp(adap->phys_addr)); 1529 cec_transmit_msg_fh(adap, &msg, NULL, false); 1530 1531 /* Report Vendor ID */ 1532 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { 1533 cec_msg_device_vendor_id(&msg, 1534 adap->log_addrs.vendor_id); 1535 cec_transmit_msg_fh(adap, &msg, NULL, false); 1536 } 1537 } 1538 adap->kthread_config = NULL; 1539 complete(&adap->config_completion); 1540 mutex_unlock(&adap->lock); 1541 call_void_op(adap, adap_configured, true); 1542 return 0; 1543 1544 unconfigure: 1545 for (i = 0; i < las->num_log_addrs; i++) 1546 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1547 cec_adap_unconfigure(adap); 1548 adap->is_configuring = false; 1549 adap->must_reconfigure = false; 1550 adap->kthread_config = NULL; 1551 complete(&adap->config_completion); 1552 mutex_unlock(&adap->lock); 1553 return 0; 1554 } 1555 1556 /* 1557 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the 1558 * logical addresses. 1559 * 1560 * This function is called with adap->lock held. 1561 */ 1562 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) 1563 { 1564 if (WARN_ON(adap->is_configuring || adap->is_configured)) 1565 return; 1566 1567 init_completion(&adap->config_completion); 1568 1569 /* Ready to kick off the thread */ 1570 adap->is_configuring = true; 1571 adap->kthread_config = kthread_run(cec_config_thread_func, adap, 1572 "ceccfg-%s", adap->name); 1573 if (IS_ERR(adap->kthread_config)) { 1574 adap->kthread_config = NULL; 1575 adap->is_configuring = false; 1576 } else if (block) { 1577 mutex_unlock(&adap->lock); 1578 wait_for_completion(&adap->config_completion); 1579 mutex_lock(&adap->lock); 1580 } 1581 } 1582 1583 /* 1584 * Helper function to enable/disable the CEC adapter. 1585 * 1586 * This function is called with adap->lock held. 1587 */ 1588 static int cec_adap_enable(struct cec_adapter *adap) 1589 { 1590 bool enable; 1591 int ret = 0; 1592 1593 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt || 1594 adap->log_addrs.num_log_addrs; 1595 if (adap->needs_hpd) 1596 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID; 1597 1598 if (enable == adap->is_enabled) 1599 return 0; 1600 1601 /* serialize adap_enable */ 1602 mutex_lock(&adap->devnode.lock); 1603 if (enable) { 1604 adap->last_initiator = 0xff; 1605 adap->transmit_in_progress = false; 1606 ret = adap->ops->adap_enable(adap, true); 1607 if (!ret) { 1608 /* 1609 * Enable monitor-all/pin modes if needed. We warn, but 1610 * continue if this fails as this is not a critical error. 1611 */ 1612 if (adap->monitor_all_cnt) 1613 WARN_ON(call_op(adap, adap_monitor_all_enable, true)); 1614 if (adap->monitor_pin_cnt) 1615 WARN_ON(call_op(adap, adap_monitor_pin_enable, true)); 1616 } 1617 } else { 1618 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */ 1619 if (adap->monitor_all_cnt) 1620 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 1621 if (adap->monitor_pin_cnt) 1622 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 1623 WARN_ON(adap->ops->adap_enable(adap, false)); 1624 adap->last_initiator = 0xff; 1625 adap->transmit_in_progress = false; 1626 adap->transmit_in_progress_aborted = false; 1627 if (adap->transmitting) 1628 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0); 1629 } 1630 if (!ret) 1631 adap->is_enabled = enable; 1632 wake_up_interruptible(&adap->kthread_waitq); 1633 mutex_unlock(&adap->devnode.lock); 1634 return ret; 1635 } 1636 1637 /* Set a new physical address and send an event notifying userspace of this. 1638 * 1639 * This function is called with adap->lock held. 1640 */ 1641 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1642 { 1643 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID; 1644 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID; 1645 1646 if (phys_addr == adap->phys_addr) 1647 return; 1648 if (!becomes_invalid && adap->devnode.unregistered) 1649 return; 1650 1651 dprintk(1, "new physical address %x.%x.%x.%x\n", 1652 cec_phys_addr_exp(phys_addr)); 1653 if (becomes_invalid || !is_invalid) { 1654 adap->phys_addr = CEC_PHYS_ADDR_INVALID; 1655 cec_post_state_event(adap); 1656 cec_adap_unconfigure(adap); 1657 if (becomes_invalid) { 1658 cec_adap_enable(adap); 1659 return; 1660 } 1661 } 1662 1663 adap->phys_addr = phys_addr; 1664 if (is_invalid) 1665 cec_adap_enable(adap); 1666 1667 cec_post_state_event(adap); 1668 if (!adap->log_addrs.num_log_addrs) 1669 return; 1670 if (adap->is_configuring) 1671 adap->must_reconfigure = true; 1672 else 1673 cec_claim_log_addrs(adap, block); 1674 } 1675 1676 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1677 { 1678 if (IS_ERR_OR_NULL(adap)) 1679 return; 1680 1681 mutex_lock(&adap->lock); 1682 __cec_s_phys_addr(adap, phys_addr, block); 1683 mutex_unlock(&adap->lock); 1684 } 1685 EXPORT_SYMBOL_GPL(cec_s_phys_addr); 1686 1687 void cec_s_phys_addr_from_edid(struct cec_adapter *adap, 1688 const struct edid *edid) 1689 { 1690 u16 pa = CEC_PHYS_ADDR_INVALID; 1691 1692 if (edid && edid->extensions) 1693 pa = cec_get_edid_phys_addr((const u8 *)edid, 1694 EDID_LENGTH * (edid->extensions + 1), NULL); 1695 cec_s_phys_addr(adap, pa, false); 1696 } 1697 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); 1698 1699 void cec_s_conn_info(struct cec_adapter *adap, 1700 const struct cec_connector_info *conn_info) 1701 { 1702 if (IS_ERR_OR_NULL(adap)) 1703 return; 1704 1705 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) 1706 return; 1707 1708 mutex_lock(&adap->lock); 1709 if (conn_info) 1710 adap->conn_info = *conn_info; 1711 else 1712 memset(&adap->conn_info, 0, sizeof(adap->conn_info)); 1713 cec_post_state_event(adap); 1714 mutex_unlock(&adap->lock); 1715 } 1716 EXPORT_SYMBOL_GPL(cec_s_conn_info); 1717 1718 /* 1719 * Called from either the ioctl or a driver to set the logical addresses. 1720 * 1721 * This function is called with adap->lock held. 1722 */ 1723 int __cec_s_log_addrs(struct cec_adapter *adap, 1724 struct cec_log_addrs *log_addrs, bool block) 1725 { 1726 u16 type_mask = 0; 1727 int err; 1728 int i; 1729 1730 if (adap->devnode.unregistered) 1731 return -ENODEV; 1732 1733 if (!log_addrs || log_addrs->num_log_addrs == 0) { 1734 if (!adap->log_addrs.num_log_addrs) 1735 return 0; 1736 if (adap->is_configuring || adap->is_configured) 1737 cec_adap_unconfigure(adap); 1738 adap->log_addrs.num_log_addrs = 0; 1739 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) 1740 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; 1741 adap->log_addrs.osd_name[0] = '\0'; 1742 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; 1743 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; 1744 cec_adap_enable(adap); 1745 return 0; 1746 } 1747 1748 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { 1749 /* 1750 * Sanitize log_addrs fields if a CDC-Only device is 1751 * requested. 1752 */ 1753 log_addrs->num_log_addrs = 1; 1754 log_addrs->osd_name[0] = '\0'; 1755 log_addrs->vendor_id = CEC_VENDOR_ID_NONE; 1756 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; 1757 /* 1758 * This is just an internal convention since a CDC-Only device 1759 * doesn't have to be a switch. But switches already use 1760 * unregistered, so it makes some kind of sense to pick this 1761 * as the primary device. Since a CDC-Only device never sends 1762 * any 'normal' CEC messages this primary device type is never 1763 * sent over the CEC bus. 1764 */ 1765 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; 1766 log_addrs->all_device_types[0] = 0; 1767 log_addrs->features[0][0] = 0; 1768 log_addrs->features[0][1] = 0; 1769 } 1770 1771 /* Ensure the osd name is 0-terminated */ 1772 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; 1773 1774 /* Sanity checks */ 1775 if (log_addrs->num_log_addrs > adap->available_log_addrs) { 1776 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); 1777 return -EINVAL; 1778 } 1779 1780 /* 1781 * Vendor ID is a 24 bit number, so check if the value is 1782 * within the correct range. 1783 */ 1784 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && 1785 (log_addrs->vendor_id & 0xff000000) != 0) { 1786 dprintk(1, "invalid vendor ID\n"); 1787 return -EINVAL; 1788 } 1789 1790 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && 1791 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { 1792 dprintk(1, "invalid CEC version\n"); 1793 return -EINVAL; 1794 } 1795 1796 if (log_addrs->num_log_addrs > 1) 1797 for (i = 0; i < log_addrs->num_log_addrs; i++) 1798 if (log_addrs->log_addr_type[i] == 1799 CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1800 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); 1801 return -EINVAL; 1802 } 1803 1804 for (i = 0; i < log_addrs->num_log_addrs; i++) { 1805 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); 1806 u8 *features = log_addrs->features[i]; 1807 bool op_is_dev_features = false; 1808 unsigned int j; 1809 1810 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; 1811 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1812 dprintk(1, "unknown logical address type\n"); 1813 return -EINVAL; 1814 } 1815 if (type_mask & (1 << log_addrs->log_addr_type[i])) { 1816 dprintk(1, "duplicate logical address type\n"); 1817 return -EINVAL; 1818 } 1819 type_mask |= 1 << log_addrs->log_addr_type[i]; 1820 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && 1821 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { 1822 /* Record already contains the playback functionality */ 1823 dprintk(1, "invalid record + playback combination\n"); 1824 return -EINVAL; 1825 } 1826 if (log_addrs->primary_device_type[i] > 1827 CEC_OP_PRIM_DEVTYPE_PROCESSOR) { 1828 dprintk(1, "unknown primary device type\n"); 1829 return -EINVAL; 1830 } 1831 if (log_addrs->primary_device_type[i] == 2) { 1832 dprintk(1, "invalid primary device type\n"); 1833 return -EINVAL; 1834 } 1835 for (j = 0; j < feature_sz; j++) { 1836 if ((features[j] & 0x80) == 0) { 1837 if (op_is_dev_features) 1838 break; 1839 op_is_dev_features = true; 1840 } 1841 } 1842 if (!op_is_dev_features || j == feature_sz) { 1843 dprintk(1, "malformed features\n"); 1844 return -EINVAL; 1845 } 1846 /* Zero unused part of the feature array */ 1847 memset(features + j + 1, 0, feature_sz - j - 1); 1848 } 1849 1850 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { 1851 if (log_addrs->num_log_addrs > 2) { 1852 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); 1853 return -EINVAL; 1854 } 1855 if (log_addrs->num_log_addrs == 2) { 1856 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | 1857 (1 << CEC_LOG_ADDR_TYPE_TV)))) { 1858 dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); 1859 return -EINVAL; 1860 } 1861 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | 1862 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { 1863 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); 1864 return -EINVAL; 1865 } 1866 } 1867 } 1868 1869 /* Zero unused LAs */ 1870 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { 1871 log_addrs->primary_device_type[i] = 0; 1872 log_addrs->log_addr_type[i] = 0; 1873 log_addrs->all_device_types[i] = 0; 1874 memset(log_addrs->features[i], 0, 1875 sizeof(log_addrs->features[i])); 1876 } 1877 1878 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; 1879 adap->log_addrs = *log_addrs; 1880 err = cec_adap_enable(adap); 1881 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1882 cec_claim_log_addrs(adap, block); 1883 return err; 1884 } 1885 1886 int cec_s_log_addrs(struct cec_adapter *adap, 1887 struct cec_log_addrs *log_addrs, bool block) 1888 { 1889 int err; 1890 1891 mutex_lock(&adap->lock); 1892 err = __cec_s_log_addrs(adap, log_addrs, block); 1893 mutex_unlock(&adap->lock); 1894 return err; 1895 } 1896 EXPORT_SYMBOL_GPL(cec_s_log_addrs); 1897 1898 /* High-level core CEC message handling */ 1899 1900 /* Fill in the Report Features message */ 1901 static void cec_fill_msg_report_features(struct cec_adapter *adap, 1902 struct cec_msg *msg, 1903 unsigned int la_idx) 1904 { 1905 const struct cec_log_addrs *las = &adap->log_addrs; 1906 const u8 *features = las->features[la_idx]; 1907 bool op_is_dev_features = false; 1908 unsigned int idx; 1909 1910 /* Report Features */ 1911 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; 1912 msg->len = 4; 1913 msg->msg[1] = CEC_MSG_REPORT_FEATURES; 1914 msg->msg[2] = adap->log_addrs.cec_version; 1915 msg->msg[3] = las->all_device_types[la_idx]; 1916 1917 /* Write RC Profiles first, then Device Features */ 1918 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { 1919 msg->msg[msg->len++] = features[idx]; 1920 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { 1921 if (op_is_dev_features) 1922 break; 1923 op_is_dev_features = true; 1924 } 1925 } 1926 } 1927 1928 /* Transmit the Feature Abort message */ 1929 static int cec_feature_abort_reason(struct cec_adapter *adap, 1930 struct cec_msg *msg, u8 reason) 1931 { 1932 struct cec_msg tx_msg = { }; 1933 1934 /* 1935 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT 1936 * message! 1937 */ 1938 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) 1939 return 0; 1940 /* Don't Feature Abort messages from 'Unregistered' */ 1941 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) 1942 return 0; 1943 cec_msg_set_reply_to(&tx_msg, msg); 1944 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); 1945 return cec_transmit_msg(adap, &tx_msg, false); 1946 } 1947 1948 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) 1949 { 1950 return cec_feature_abort_reason(adap, msg, 1951 CEC_OP_ABORT_UNRECOGNIZED_OP); 1952 } 1953 1954 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) 1955 { 1956 return cec_feature_abort_reason(adap, msg, 1957 CEC_OP_ABORT_REFUSED); 1958 } 1959 1960 /* 1961 * Called when a CEC message is received. This function will do any 1962 * necessary core processing. The is_reply bool is true if this message 1963 * is a reply to an earlier transmit. 1964 * 1965 * The message is either a broadcast message or a valid directed message. 1966 */ 1967 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 1968 bool is_reply) 1969 { 1970 bool is_broadcast = cec_msg_is_broadcast(msg); 1971 u8 dest_laddr = cec_msg_destination(msg); 1972 u8 init_laddr = cec_msg_initiator(msg); 1973 u8 devtype = cec_log_addr2dev(adap, dest_laddr); 1974 int la_idx = cec_log_addr2idx(adap, dest_laddr); 1975 bool from_unregistered = init_laddr == 0xf; 1976 struct cec_msg tx_cec_msg = { }; 1977 1978 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1979 1980 /* If this is a CDC-Only device, then ignore any non-CDC messages */ 1981 if (cec_is_cdc_only(&adap->log_addrs) && 1982 msg->msg[1] != CEC_MSG_CDC_MESSAGE) 1983 return 0; 1984 1985 /* Allow drivers to process the message first */ 1986 if (adap->ops->received && !adap->devnode.unregistered && 1987 adap->ops->received(adap, msg) != -ENOMSG) 1988 return 0; 1989 1990 /* 1991 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and 1992 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be 1993 * handled by the CEC core, even if the passthrough mode is on. 1994 * The others are just ignored if passthrough mode is on. 1995 */ 1996 switch (msg->msg[1]) { 1997 case CEC_MSG_GET_CEC_VERSION: 1998 case CEC_MSG_ABORT: 1999 case CEC_MSG_GIVE_DEVICE_POWER_STATUS: 2000 case CEC_MSG_GIVE_OSD_NAME: 2001 /* 2002 * These messages reply with a directed message, so ignore if 2003 * the initiator is Unregistered. 2004 */ 2005 if (!adap->passthrough && from_unregistered) 2006 return 0; 2007 fallthrough; 2008 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2009 case CEC_MSG_GIVE_FEATURES: 2010 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2011 /* 2012 * Skip processing these messages if the passthrough mode 2013 * is on. 2014 */ 2015 if (adap->passthrough) 2016 goto skip_processing; 2017 /* Ignore if addressing is wrong */ 2018 if (is_broadcast) 2019 return 0; 2020 break; 2021 2022 case CEC_MSG_USER_CONTROL_PRESSED: 2023 case CEC_MSG_USER_CONTROL_RELEASED: 2024 /* Wrong addressing mode: don't process */ 2025 if (is_broadcast || from_unregistered) 2026 goto skip_processing; 2027 break; 2028 2029 case CEC_MSG_REPORT_PHYSICAL_ADDR: 2030 /* 2031 * This message is always processed, regardless of the 2032 * passthrough setting. 2033 * 2034 * Exception: don't process if wrong addressing mode. 2035 */ 2036 if (!is_broadcast) 2037 goto skip_processing; 2038 break; 2039 2040 default: 2041 break; 2042 } 2043 2044 cec_msg_set_reply_to(&tx_cec_msg, msg); 2045 2046 switch (msg->msg[1]) { 2047 /* The following messages are processed but still passed through */ 2048 case CEC_MSG_REPORT_PHYSICAL_ADDR: { 2049 u16 pa = (msg->msg[2] << 8) | msg->msg[3]; 2050 2051 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", 2052 cec_phys_addr_exp(pa), init_laddr); 2053 break; 2054 } 2055 2056 case CEC_MSG_USER_CONTROL_PRESSED: 2057 if (!(adap->capabilities & CEC_CAP_RC) || 2058 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2059 break; 2060 2061 #ifdef CONFIG_MEDIA_CEC_RC 2062 switch (msg->msg[2]) { 2063 /* 2064 * Play function, this message can have variable length 2065 * depending on the specific play function that is used. 2066 */ 2067 case CEC_OP_UI_CMD_PLAY_FUNCTION: 2068 if (msg->len == 2) 2069 rc_keydown(adap->rc, RC_PROTO_CEC, 2070 msg->msg[2], 0); 2071 else 2072 rc_keydown(adap->rc, RC_PROTO_CEC, 2073 msg->msg[2] << 8 | msg->msg[3], 0); 2074 break; 2075 /* 2076 * Other function messages that are not handled. 2077 * Currently the RC framework does not allow to supply an 2078 * additional parameter to a keypress. These "keys" contain 2079 * other information such as channel number, an input number 2080 * etc. 2081 * For the time being these messages are not processed by the 2082 * framework and are simply forwarded to the user space. 2083 */ 2084 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: 2085 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: 2086 case CEC_OP_UI_CMD_TUNE_FUNCTION: 2087 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: 2088 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: 2089 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: 2090 break; 2091 default: 2092 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); 2093 break; 2094 } 2095 #endif 2096 break; 2097 2098 case CEC_MSG_USER_CONTROL_RELEASED: 2099 if (!(adap->capabilities & CEC_CAP_RC) || 2100 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2101 break; 2102 #ifdef CONFIG_MEDIA_CEC_RC 2103 rc_keyup(adap->rc); 2104 #endif 2105 break; 2106 2107 /* 2108 * The remaining messages are only processed if the passthrough mode 2109 * is off. 2110 */ 2111 case CEC_MSG_GET_CEC_VERSION: 2112 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); 2113 return cec_transmit_msg(adap, &tx_cec_msg, false); 2114 2115 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2116 /* Do nothing for CEC switches using addr 15 */ 2117 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) 2118 return 0; 2119 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); 2120 return cec_transmit_msg(adap, &tx_cec_msg, false); 2121 2122 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2123 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) 2124 return cec_feature_abort(adap, msg); 2125 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); 2126 return cec_transmit_msg(adap, &tx_cec_msg, false); 2127 2128 case CEC_MSG_ABORT: 2129 /* Do nothing for CEC switches */ 2130 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) 2131 return 0; 2132 return cec_feature_refused(adap, msg); 2133 2134 case CEC_MSG_GIVE_OSD_NAME: { 2135 if (adap->log_addrs.osd_name[0] == 0) 2136 return cec_feature_abort(adap, msg); 2137 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); 2138 return cec_transmit_msg(adap, &tx_cec_msg, false); 2139 } 2140 2141 case CEC_MSG_GIVE_FEATURES: 2142 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) 2143 return cec_feature_abort(adap, msg); 2144 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); 2145 return cec_transmit_msg(adap, &tx_cec_msg, false); 2146 2147 default: 2148 /* 2149 * Unprocessed messages are aborted if userspace isn't doing 2150 * any processing either. 2151 */ 2152 if (!is_broadcast && !is_reply && !adap->follower_cnt && 2153 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) 2154 return cec_feature_abort(adap, msg); 2155 break; 2156 } 2157 2158 skip_processing: 2159 /* If this was a reply, then we're done, unless otherwise specified */ 2160 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) 2161 return 0; 2162 2163 /* 2164 * Send to the exclusive follower if there is one, otherwise send 2165 * to all followers. 2166 */ 2167 if (adap->cec_follower) 2168 cec_queue_msg_fh(adap->cec_follower, msg); 2169 else 2170 cec_queue_msg_followers(adap, msg); 2171 return 0; 2172 } 2173 2174 /* 2175 * Helper functions to keep track of the 'monitor all' use count. 2176 * 2177 * These functions are called with adap->lock held. 2178 */ 2179 int cec_monitor_all_cnt_inc(struct cec_adapter *adap) 2180 { 2181 int ret; 2182 2183 if (adap->monitor_all_cnt++) 2184 return 0; 2185 2186 ret = cec_adap_enable(adap); 2187 if (ret) 2188 adap->monitor_all_cnt--; 2189 return ret; 2190 } 2191 2192 void cec_monitor_all_cnt_dec(struct cec_adapter *adap) 2193 { 2194 if (WARN_ON(!adap->monitor_all_cnt)) 2195 return; 2196 if (--adap->monitor_all_cnt) 2197 return; 2198 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 2199 cec_adap_enable(adap); 2200 } 2201 2202 /* 2203 * Helper functions to keep track of the 'monitor pin' use count. 2204 * 2205 * These functions are called with adap->lock held. 2206 */ 2207 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) 2208 { 2209 int ret; 2210 2211 if (adap->monitor_pin_cnt++) 2212 return 0; 2213 2214 ret = cec_adap_enable(adap); 2215 if (ret) 2216 adap->monitor_pin_cnt--; 2217 return ret; 2218 } 2219 2220 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) 2221 { 2222 if (WARN_ON(!adap->monitor_pin_cnt)) 2223 return; 2224 if (--adap->monitor_pin_cnt) 2225 return; 2226 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 2227 cec_adap_enable(adap); 2228 } 2229 2230 #ifdef CONFIG_DEBUG_FS 2231 /* 2232 * Log the current state of the CEC adapter. 2233 * Very useful for debugging. 2234 */ 2235 int cec_adap_status(struct seq_file *file, void *priv) 2236 { 2237 struct cec_adapter *adap = dev_get_drvdata(file->private); 2238 struct cec_data *data; 2239 2240 mutex_lock(&adap->lock); 2241 seq_printf(file, "enabled: %d\n", adap->is_enabled); 2242 seq_printf(file, "configured: %d\n", adap->is_configured); 2243 seq_printf(file, "configuring: %d\n", adap->is_configuring); 2244 seq_printf(file, "phys_addr: %x.%x.%x.%x\n", 2245 cec_phys_addr_exp(adap->phys_addr)); 2246 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); 2247 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); 2248 if (adap->cec_follower) 2249 seq_printf(file, "has CEC follower%s\n", 2250 adap->passthrough ? " (in passthrough mode)" : ""); 2251 if (adap->cec_initiator) 2252 seq_puts(file, "has CEC initiator\n"); 2253 if (adap->monitor_all_cnt) 2254 seq_printf(file, "file handles in Monitor All mode: %u\n", 2255 adap->monitor_all_cnt); 2256 if (adap->monitor_pin_cnt) 2257 seq_printf(file, "file handles in Monitor Pin mode: %u\n", 2258 adap->monitor_pin_cnt); 2259 if (adap->tx_timeouts) { 2260 seq_printf(file, "transmit timeouts: %u\n", 2261 adap->tx_timeouts); 2262 adap->tx_timeouts = 0; 2263 } 2264 data = adap->transmitting; 2265 if (data) 2266 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", 2267 data->msg.len, data->msg.msg, data->msg.reply, 2268 data->msg.timeout); 2269 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); 2270 list_for_each_entry(data, &adap->transmit_queue, list) { 2271 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", 2272 data->msg.len, data->msg.msg, data->msg.reply, 2273 data->msg.timeout); 2274 } 2275 list_for_each_entry(data, &adap->wait_queue, list) { 2276 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", 2277 data->msg.len, data->msg.msg, data->msg.reply, 2278 data->msg.timeout); 2279 } 2280 2281 call_void_op(adap, adap_status, file); 2282 mutex_unlock(&adap->lock); 2283 return 0; 2284 } 2285 #endif 2286