1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter 4 * 5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/errno.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kmod.h> 13 #include <linux/ktime.h> 14 #include <linux/slab.h> 15 #include <linux/mm.h> 16 #include <linux/string.h> 17 #include <linux/types.h> 18 19 #include <drm/drm_connector.h> 20 #include <drm/drm_device.h> 21 #include <drm/drm_edid.h> 22 #include <drm/drm_file.h> 23 24 #include "cec-priv.h" 25 26 static void cec_fill_msg_report_features(struct cec_adapter *adap, 27 struct cec_msg *msg, 28 unsigned int la_idx); 29 30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) 31 { 32 int i; 33 34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++) 35 if (adap->log_addrs.log_addr[i] == log_addr) 36 return i; 37 return -1; 38 } 39 40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) 41 { 42 int i = cec_log_addr2idx(adap, log_addr); 43 44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; 45 } 46 47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, 48 unsigned int *offset) 49 { 50 unsigned int loc = cec_get_edid_spa_location(edid, size); 51 52 if (offset) 53 *offset = loc; 54 if (loc == 0) 55 return CEC_PHYS_ADDR_INVALID; 56 return (edid[loc] << 8) | edid[loc + 1]; 57 } 58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); 59 60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, 61 const struct drm_connector *connector) 62 { 63 memset(conn_info, 0, sizeof(*conn_info)); 64 conn_info->type = CEC_CONNECTOR_TYPE_DRM; 65 conn_info->drm.card_no = connector->dev->primary->index; 66 conn_info->drm.connector_id = connector->base.id; 67 } 68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); 69 70 /* 71 * Queue a new event for this filehandle. If ts == 0, then set it 72 * to the current time. 73 * 74 * We keep a queue of at most max_event events where max_event differs 75 * per event. If the queue becomes full, then drop the oldest event and 76 * keep track of how many events we've dropped. 77 */ 78 void cec_queue_event_fh(struct cec_fh *fh, 79 const struct cec_event *new_ev, u64 ts) 80 { 81 static const u16 max_events[CEC_NUM_EVENTS] = { 82 1, 1, 800, 800, 8, 8, 8, 8 83 }; 84 struct cec_event_entry *entry; 85 unsigned int ev_idx = new_ev->event - 1; 86 87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) 88 return; 89 90 if (ts == 0) 91 ts = ktime_get_ns(); 92 93 mutex_lock(&fh->lock); 94 if (ev_idx < CEC_NUM_CORE_EVENTS) 95 entry = &fh->core_events[ev_idx]; 96 else 97 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 98 if (entry) { 99 if (new_ev->event == CEC_EVENT_LOST_MSGS && 100 fh->queued_events[ev_idx]) { 101 entry->ev.lost_msgs.lost_msgs += 102 new_ev->lost_msgs.lost_msgs; 103 goto unlock; 104 } 105 entry->ev = *new_ev; 106 entry->ev.ts = ts; 107 108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) { 109 /* Add new msg at the end of the queue */ 110 list_add_tail(&entry->list, &fh->events[ev_idx]); 111 fh->queued_events[ev_idx]++; 112 fh->total_queued_events++; 113 goto unlock; 114 } 115 116 if (ev_idx >= CEC_NUM_CORE_EVENTS) { 117 list_add_tail(&entry->list, &fh->events[ev_idx]); 118 /* drop the oldest event */ 119 entry = list_first_entry(&fh->events[ev_idx], 120 struct cec_event_entry, list); 121 list_del(&entry->list); 122 kfree(entry); 123 } 124 } 125 /* Mark that events were lost */ 126 entry = list_first_entry_or_null(&fh->events[ev_idx], 127 struct cec_event_entry, list); 128 if (entry) 129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; 130 131 unlock: 132 mutex_unlock(&fh->lock); 133 wake_up_interruptible(&fh->wait); 134 } 135 136 /* Queue a new event for all open filehandles. */ 137 static void cec_queue_event(struct cec_adapter *adap, 138 const struct cec_event *ev) 139 { 140 u64 ts = ktime_get_ns(); 141 struct cec_fh *fh; 142 143 mutex_lock(&adap->devnode.lock_fhs); 144 list_for_each_entry(fh, &adap->devnode.fhs, list) 145 cec_queue_event_fh(fh, ev, ts); 146 mutex_unlock(&adap->devnode.lock_fhs); 147 } 148 149 /* Notify userspace that the CEC pin changed state at the given time. */ 150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, 151 bool dropped_events, ktime_t ts) 152 { 153 struct cec_event ev = { 154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : 155 CEC_EVENT_PIN_CEC_LOW, 156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, 157 }; 158 struct cec_fh *fh; 159 160 mutex_lock(&adap->devnode.lock_fhs); 161 list_for_each_entry(fh, &adap->devnode.fhs, list) { 162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN) 163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 164 } 165 mutex_unlock(&adap->devnode.lock_fhs); 166 } 167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); 168 169 /* Notify userspace that the HPD pin changed state at the given time. */ 170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 171 { 172 struct cec_event ev = { 173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : 174 CEC_EVENT_PIN_HPD_LOW, 175 }; 176 struct cec_fh *fh; 177 178 mutex_lock(&adap->devnode.lock_fhs); 179 list_for_each_entry(fh, &adap->devnode.fhs, list) 180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 181 mutex_unlock(&adap->devnode.lock_fhs); 182 } 183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); 184 185 /* Notify userspace that the 5V pin changed state at the given time. */ 186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 187 { 188 struct cec_event ev = { 189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH : 190 CEC_EVENT_PIN_5V_LOW, 191 }; 192 struct cec_fh *fh; 193 194 mutex_lock(&adap->devnode.lock_fhs); 195 list_for_each_entry(fh, &adap->devnode.fhs, list) 196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 197 mutex_unlock(&adap->devnode.lock_fhs); 198 } 199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); 200 201 /* 202 * Queue a new message for this filehandle. 203 * 204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the 205 * queue becomes full, then drop the oldest message and keep track 206 * of how many messages we've dropped. 207 */ 208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) 209 { 210 static const struct cec_event ev_lost_msgs = { 211 .event = CEC_EVENT_LOST_MSGS, 212 .flags = 0, 213 { 214 .lost_msgs = { 1 }, 215 }, 216 }; 217 struct cec_msg_entry *entry; 218 219 mutex_lock(&fh->lock); 220 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 221 if (entry) { 222 entry->msg = *msg; 223 /* Add new msg at the end of the queue */ 224 list_add_tail(&entry->list, &fh->msgs); 225 226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { 227 /* All is fine if there is enough room */ 228 fh->queued_msgs++; 229 mutex_unlock(&fh->lock); 230 wake_up_interruptible(&fh->wait); 231 return; 232 } 233 234 /* 235 * if the message queue is full, then drop the oldest one and 236 * send a lost message event. 237 */ 238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); 239 list_del(&entry->list); 240 kfree(entry); 241 } 242 mutex_unlock(&fh->lock); 243 244 /* 245 * We lost a message, either because kmalloc failed or the queue 246 * was full. 247 */ 248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); 249 } 250 251 /* 252 * Queue the message for those filehandles that are in monitor mode. 253 * If valid_la is true (this message is for us or was sent by us), 254 * then pass it on to any monitoring filehandle. If this message 255 * isn't for us or from us, then only give it to filehandles that 256 * are in MONITOR_ALL mode. 257 * 258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is 259 * set and the CEC adapter was placed in 'monitor all' mode. 260 */ 261 static void cec_queue_msg_monitor(struct cec_adapter *adap, 262 const struct cec_msg *msg, 263 bool valid_la) 264 { 265 struct cec_fh *fh; 266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : 267 CEC_MODE_MONITOR_ALL; 268 269 mutex_lock(&adap->devnode.lock_fhs); 270 list_for_each_entry(fh, &adap->devnode.fhs, list) { 271 if (fh->mode_follower >= monitor_mode) 272 cec_queue_msg_fh(fh, msg); 273 } 274 mutex_unlock(&adap->devnode.lock_fhs); 275 } 276 277 /* 278 * Queue the message for follower filehandles. 279 */ 280 static void cec_queue_msg_followers(struct cec_adapter *adap, 281 const struct cec_msg *msg) 282 { 283 struct cec_fh *fh; 284 285 mutex_lock(&adap->devnode.lock_fhs); 286 list_for_each_entry(fh, &adap->devnode.fhs, list) { 287 if (fh->mode_follower == CEC_MODE_FOLLOWER) 288 cec_queue_msg_fh(fh, msg); 289 } 290 mutex_unlock(&adap->devnode.lock_fhs); 291 } 292 293 /* Notify userspace of an adapter state change. */ 294 static void cec_post_state_event(struct cec_adapter *adap) 295 { 296 struct cec_event ev = { 297 .event = CEC_EVENT_STATE_CHANGE, 298 }; 299 300 ev.state_change.phys_addr = adap->phys_addr; 301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; 302 ev.state_change.have_conn_info = 303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; 304 cec_queue_event(adap, &ev); 305 } 306 307 /* 308 * A CEC transmit (and a possible wait for reply) completed. 309 * If this was in blocking mode, then complete it, otherwise 310 * queue the message for userspace to dequeue later. 311 * 312 * This function is called with adap->lock held. 313 */ 314 static void cec_data_completed(struct cec_data *data) 315 { 316 /* 317 * Delete this transmit from the filehandle's xfer_list since 318 * we're done with it. 319 * 320 * Note that if the filehandle is closed before this transmit 321 * finished, then the release() function will set data->fh to NULL. 322 * Without that we would be referring to a closed filehandle. 323 */ 324 if (data->fh) 325 list_del_init(&data->xfer_list); 326 327 if (data->blocking) { 328 /* 329 * Someone is blocking so mark the message as completed 330 * and call complete. 331 */ 332 data->completed = true; 333 complete(&data->c); 334 } else { 335 /* 336 * No blocking, so just queue the message if needed and 337 * free the memory. 338 */ 339 if (data->fh) 340 cec_queue_msg_fh(data->fh, &data->msg); 341 kfree(data); 342 } 343 } 344 345 /* 346 * A pending CEC transmit needs to be cancelled, either because the CEC 347 * adapter is disabled or the transmit takes an impossibly long time to 348 * finish, or the reply timed out. 349 * 350 * This function is called with adap->lock held. 351 */ 352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status) 353 { 354 struct cec_adapter *adap = data->adap; 355 356 /* 357 * It's either the current transmit, or it is a pending 358 * transmit. Take the appropriate action to clear it. 359 */ 360 if (adap->transmitting == data) { 361 adap->transmitting = NULL; 362 } else { 363 list_del_init(&data->list); 364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) 365 if (!WARN_ON(!adap->transmit_queue_sz)) 366 adap->transmit_queue_sz--; 367 } 368 369 if (data->msg.tx_status & CEC_TX_STATUS_OK) { 370 data->msg.rx_ts = ktime_get_ns(); 371 data->msg.rx_status = rx_status; 372 if (!data->blocking) 373 data->msg.tx_status = 0; 374 } else { 375 data->msg.tx_ts = ktime_get_ns(); 376 data->msg.tx_status |= tx_status | 377 CEC_TX_STATUS_MAX_RETRIES; 378 data->msg.tx_error_cnt++; 379 data->attempts = 0; 380 if (!data->blocking) 381 data->msg.rx_status = 0; 382 } 383 384 /* Queue transmitted message for monitoring purposes */ 385 cec_queue_msg_monitor(adap, &data->msg, 1); 386 387 if (!data->blocking && data->msg.sequence) 388 /* Allow drivers to react to a canceled transmit */ 389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg); 390 391 cec_data_completed(data); 392 } 393 394 /* 395 * Flush all pending transmits and cancel any pending timeout work. 396 * 397 * This function is called with adap->lock held. 398 */ 399 static void cec_flush(struct cec_adapter *adap) 400 { 401 struct cec_data *data, *n; 402 403 /* 404 * If the adapter is disabled, or we're asked to stop, 405 * then cancel any pending transmits. 406 */ 407 while (!list_empty(&adap->transmit_queue)) { 408 data = list_first_entry(&adap->transmit_queue, 409 struct cec_data, list); 410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 411 } 412 if (adap->transmitting) 413 adap->transmit_in_progress_aborted = true; 414 415 /* Cancel the pending timeout work. */ 416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) { 417 if (cancel_delayed_work(&data->work)) 418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 419 /* 420 * If cancel_delayed_work returned false, then 421 * the cec_wait_timeout function is running, 422 * which will call cec_data_completed. So no 423 * need to do anything special in that case. 424 */ 425 } 426 /* 427 * If something went wrong and this counter isn't what it should 428 * be, then this will reset it back to 0. Warn if it is not 0, 429 * since it indicates a bug, either in this framework or in a 430 * CEC driver. 431 */ 432 if (WARN_ON(adap->transmit_queue_sz)) 433 adap->transmit_queue_sz = 0; 434 } 435 436 /* 437 * Main CEC state machine 438 * 439 * Wait until the thread should be stopped, or we are not transmitting and 440 * a new transmit message is queued up, in which case we start transmitting 441 * that message. When the adapter finished transmitting the message it will 442 * call cec_transmit_done(). 443 * 444 * If the adapter is disabled, then remove all queued messages instead. 445 * 446 * If the current transmit times out, then cancel that transmit. 447 */ 448 int cec_thread_func(void *_adap) 449 { 450 struct cec_adapter *adap = _adap; 451 452 for (;;) { 453 unsigned int signal_free_time; 454 struct cec_data *data; 455 bool timeout = false; 456 u8 attempts; 457 458 if (adap->transmit_in_progress) { 459 int err; 460 461 /* 462 * We are transmitting a message, so add a timeout 463 * to prevent the state machine to get stuck waiting 464 * for this message to finalize and add a check to 465 * see if the adapter is disabled in which case the 466 * transmit should be canceled. 467 */ 468 err = wait_event_interruptible_timeout(adap->kthread_waitq, 469 (adap->needs_hpd && 470 (!adap->is_configured && !adap->is_configuring)) || 471 kthread_should_stop() || 472 (!adap->transmit_in_progress && 473 !list_empty(&adap->transmit_queue)), 474 msecs_to_jiffies(adap->xfer_timeout_ms)); 475 timeout = err == 0; 476 } else { 477 /* Otherwise we just wait for something to happen. */ 478 wait_event_interruptible(adap->kthread_waitq, 479 kthread_should_stop() || 480 (!adap->transmit_in_progress && 481 !list_empty(&adap->transmit_queue))); 482 } 483 484 mutex_lock(&adap->lock); 485 486 if ((adap->needs_hpd && 487 (!adap->is_configured && !adap->is_configuring)) || 488 kthread_should_stop()) { 489 cec_flush(adap); 490 goto unlock; 491 } 492 493 if (adap->transmit_in_progress && timeout) { 494 /* 495 * If we timeout, then log that. Normally this does 496 * not happen and it is an indication of a faulty CEC 497 * adapter driver, or the CEC bus is in some weird 498 * state. On rare occasions it can happen if there is 499 * so much traffic on the bus that the adapter was 500 * unable to transmit for xfer_timeout_ms (2.1s by 501 * default). 502 */ 503 if (adap->transmitting) { 504 pr_warn("cec-%s: message %*ph timed out\n", adap->name, 505 adap->transmitting->msg.len, 506 adap->transmitting->msg.msg); 507 /* Just give up on this. */ 508 cec_data_cancel(adap->transmitting, 509 CEC_TX_STATUS_TIMEOUT, 0); 510 } else { 511 pr_warn("cec-%s: transmit timed out\n", adap->name); 512 } 513 adap->transmit_in_progress = false; 514 adap->tx_timeouts++; 515 goto unlock; 516 } 517 518 /* 519 * If we are still transmitting, or there is nothing new to 520 * transmit, then just continue waiting. 521 */ 522 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) 523 goto unlock; 524 525 /* Get a new message to transmit */ 526 data = list_first_entry(&adap->transmit_queue, 527 struct cec_data, list); 528 list_del_init(&data->list); 529 if (!WARN_ON(!data->adap->transmit_queue_sz)) 530 adap->transmit_queue_sz--; 531 532 /* Make this the current transmitting message */ 533 adap->transmitting = data; 534 535 /* 536 * Suggested number of attempts as per the CEC 2.0 spec: 537 * 4 attempts is the default, except for 'secondary poll 538 * messages', i.e. poll messages not sent during the adapter 539 * configuration phase when it allocates logical addresses. 540 */ 541 if (data->msg.len == 1 && adap->is_configured) 542 attempts = 2; 543 else 544 attempts = 4; 545 546 /* Set the suggested signal free time */ 547 if (data->attempts) { 548 /* should be >= 3 data bit periods for a retry */ 549 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; 550 } else if (adap->last_initiator != 551 cec_msg_initiator(&data->msg)) { 552 /* should be >= 5 data bit periods for new initiator */ 553 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 554 adap->last_initiator = cec_msg_initiator(&data->msg); 555 } else { 556 /* 557 * should be >= 7 data bit periods for sending another 558 * frame immediately after another. 559 */ 560 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; 561 } 562 if (data->attempts == 0) 563 data->attempts = attempts; 564 565 adap->transmit_in_progress_aborted = false; 566 /* Tell the adapter to transmit, cancel on error */ 567 if (call_op(adap, adap_transmit, data->attempts, 568 signal_free_time, &data->msg)) 569 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 570 else 571 adap->transmit_in_progress = true; 572 573 unlock: 574 mutex_unlock(&adap->lock); 575 576 if (kthread_should_stop()) 577 break; 578 } 579 return 0; 580 } 581 582 /* 583 * Called by the CEC adapter if a transmit finished. 584 */ 585 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, 586 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, 587 u8 error_cnt, ktime_t ts) 588 { 589 struct cec_data *data; 590 struct cec_msg *msg; 591 unsigned int attempts_made = arb_lost_cnt + nack_cnt + 592 low_drive_cnt + error_cnt; 593 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK); 594 bool aborted = adap->transmit_in_progress_aborted; 595 596 dprintk(2, "%s: status 0x%02x\n", __func__, status); 597 if (attempts_made < 1) 598 attempts_made = 1; 599 600 mutex_lock(&adap->lock); 601 data = adap->transmitting; 602 if (!data) { 603 /* 604 * This might happen if a transmit was issued and the cable is 605 * unplugged while the transmit is ongoing. Ignore this 606 * transmit in that case. 607 */ 608 if (!adap->transmit_in_progress) 609 dprintk(1, "%s was called without an ongoing transmit!\n", 610 __func__); 611 adap->transmit_in_progress = false; 612 goto wake_thread; 613 } 614 adap->transmit_in_progress = false; 615 adap->transmit_in_progress_aborted = false; 616 617 msg = &data->msg; 618 619 /* Drivers must fill in the status! */ 620 WARN_ON(status == 0); 621 msg->tx_ts = ktime_to_ns(ts); 622 msg->tx_status |= status; 623 msg->tx_arb_lost_cnt += arb_lost_cnt; 624 msg->tx_nack_cnt += nack_cnt; 625 msg->tx_low_drive_cnt += low_drive_cnt; 626 msg->tx_error_cnt += error_cnt; 627 628 /* Mark that we're done with this transmit */ 629 adap->transmitting = NULL; 630 631 /* 632 * If there are still retry attempts left and there was an error and 633 * the hardware didn't signal that it retried itself (by setting 634 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. 635 */ 636 if (!aborted && data->attempts > attempts_made && !done) { 637 /* Retry this message */ 638 data->attempts -= attempts_made; 639 if (msg->timeout) 640 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", 641 msg->len, msg->msg, data->attempts, msg->reply); 642 else 643 dprintk(2, "retransmit: %*ph (attempts: %d)\n", 644 msg->len, msg->msg, data->attempts); 645 /* Add the message in front of the transmit queue */ 646 list_add(&data->list, &adap->transmit_queue); 647 adap->transmit_queue_sz++; 648 goto wake_thread; 649 } 650 651 if (aborted && !done) 652 status |= CEC_TX_STATUS_ABORTED; 653 data->attempts = 0; 654 655 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ 656 if (!(status & CEC_TX_STATUS_OK)) 657 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; 658 659 /* Queue transmitted message for monitoring purposes */ 660 cec_queue_msg_monitor(adap, msg, 1); 661 662 if ((status & CEC_TX_STATUS_OK) && adap->is_configured && 663 msg->timeout) { 664 /* 665 * Queue the message into the wait queue if we want to wait 666 * for a reply. 667 */ 668 list_add_tail(&data->list, &adap->wait_queue); 669 schedule_delayed_work(&data->work, 670 msecs_to_jiffies(msg->timeout)); 671 } else { 672 /* Otherwise we're done */ 673 cec_data_completed(data); 674 } 675 676 wake_thread: 677 /* 678 * Wake up the main thread to see if another message is ready 679 * for transmitting or to retry the current message. 680 */ 681 wake_up_interruptible(&adap->kthread_waitq); 682 mutex_unlock(&adap->lock); 683 } 684 EXPORT_SYMBOL_GPL(cec_transmit_done_ts); 685 686 void cec_transmit_attempt_done_ts(struct cec_adapter *adap, 687 u8 status, ktime_t ts) 688 { 689 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { 690 case CEC_TX_STATUS_OK: 691 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); 692 return; 693 case CEC_TX_STATUS_ARB_LOST: 694 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); 695 return; 696 case CEC_TX_STATUS_NACK: 697 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); 698 return; 699 case CEC_TX_STATUS_LOW_DRIVE: 700 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); 701 return; 702 case CEC_TX_STATUS_ERROR: 703 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); 704 return; 705 default: 706 /* Should never happen */ 707 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); 708 return; 709 } 710 } 711 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); 712 713 /* 714 * Called when waiting for a reply times out. 715 */ 716 static void cec_wait_timeout(struct work_struct *work) 717 { 718 struct cec_data *data = container_of(work, struct cec_data, work.work); 719 struct cec_adapter *adap = data->adap; 720 721 mutex_lock(&adap->lock); 722 /* 723 * Sanity check in case the timeout and the arrival of the message 724 * happened at the same time. 725 */ 726 if (list_empty(&data->list)) 727 goto unlock; 728 729 /* Mark the message as timed out */ 730 list_del_init(&data->list); 731 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT); 732 unlock: 733 mutex_unlock(&adap->lock); 734 } 735 736 /* 737 * Transmit a message. The fh argument may be NULL if the transmit is not 738 * associated with a specific filehandle. 739 * 740 * This function is called with adap->lock held. 741 */ 742 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, 743 struct cec_fh *fh, bool block) 744 { 745 struct cec_data *data; 746 bool is_raw = msg_is_raw(msg); 747 748 if (adap->devnode.unregistered) 749 return -ENODEV; 750 751 msg->rx_ts = 0; 752 msg->tx_ts = 0; 753 msg->rx_status = 0; 754 msg->tx_status = 0; 755 msg->tx_arb_lost_cnt = 0; 756 msg->tx_nack_cnt = 0; 757 msg->tx_low_drive_cnt = 0; 758 msg->tx_error_cnt = 0; 759 msg->sequence = 0; 760 761 if (msg->reply && msg->timeout == 0) { 762 /* Make sure the timeout isn't 0. */ 763 msg->timeout = 1000; 764 } 765 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW; 766 767 if (!msg->timeout) 768 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; 769 770 /* Sanity checks */ 771 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { 772 dprintk(1, "%s: invalid length %d\n", __func__, msg->len); 773 return -EINVAL; 774 } 775 776 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 777 778 if (msg->timeout) 779 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", 780 __func__, msg->len, msg->msg, msg->reply, 781 !block ? ", nb" : ""); 782 else 783 dprintk(2, "%s: %*ph%s\n", 784 __func__, msg->len, msg->msg, !block ? " (nb)" : ""); 785 786 if (msg->timeout && msg->len == 1) { 787 dprintk(1, "%s: can't reply to poll msg\n", __func__); 788 return -EINVAL; 789 } 790 791 if (is_raw) { 792 if (!capable(CAP_SYS_RAWIO)) 793 return -EPERM; 794 } else { 795 /* A CDC-Only device can only send CDC messages */ 796 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && 797 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { 798 dprintk(1, "%s: not a CDC message\n", __func__); 799 return -EINVAL; 800 } 801 802 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { 803 msg->msg[2] = adap->phys_addr >> 8; 804 msg->msg[3] = adap->phys_addr & 0xff; 805 } 806 807 if (msg->len == 1) { 808 if (cec_msg_destination(msg) == 0xf) { 809 dprintk(1, "%s: invalid poll message\n", 810 __func__); 811 return -EINVAL; 812 } 813 if (cec_has_log_addr(adap, cec_msg_destination(msg))) { 814 /* 815 * If the destination is a logical address our 816 * adapter has already claimed, then just NACK 817 * this. It depends on the hardware what it will 818 * do with a POLL to itself (some OK this), so 819 * it is just as easy to handle it here so the 820 * behavior will be consistent. 821 */ 822 msg->tx_ts = ktime_get_ns(); 823 msg->tx_status = CEC_TX_STATUS_NACK | 824 CEC_TX_STATUS_MAX_RETRIES; 825 msg->tx_nack_cnt = 1; 826 msg->sequence = ++adap->sequence; 827 if (!msg->sequence) 828 msg->sequence = ++adap->sequence; 829 return 0; 830 } 831 } 832 if (msg->len > 1 && !cec_msg_is_broadcast(msg) && 833 cec_has_log_addr(adap, cec_msg_destination(msg))) { 834 dprintk(1, "%s: destination is the adapter itself\n", 835 __func__); 836 return -EINVAL; 837 } 838 if (msg->len > 1 && adap->is_configured && 839 !cec_has_log_addr(adap, cec_msg_initiator(msg))) { 840 dprintk(1, "%s: initiator has unknown logical address %d\n", 841 __func__, cec_msg_initiator(msg)); 842 return -EINVAL; 843 } 844 /* 845 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be 846 * transmitted to a TV, even if the adapter is unconfigured. 847 * This makes it possible to detect or wake up displays that 848 * pull down the HPD when in standby. 849 */ 850 if (!adap->is_configured && !adap->is_configuring && 851 (msg->len > 2 || 852 cec_msg_destination(msg) != CEC_LOG_ADDR_TV || 853 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && 854 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { 855 dprintk(1, "%s: adapter is unconfigured\n", __func__); 856 return -ENONET; 857 } 858 } 859 860 if (!adap->is_configured && !adap->is_configuring) { 861 if (adap->needs_hpd) { 862 dprintk(1, "%s: adapter is unconfigured and needs HPD\n", 863 __func__); 864 return -ENONET; 865 } 866 if (msg->reply) { 867 dprintk(1, "%s: invalid msg->reply\n", __func__); 868 return -EINVAL; 869 } 870 } 871 872 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { 873 dprintk(2, "%s: transmit queue full\n", __func__); 874 return -EBUSY; 875 } 876 877 data = kzalloc(sizeof(*data), GFP_KERNEL); 878 if (!data) 879 return -ENOMEM; 880 881 msg->sequence = ++adap->sequence; 882 if (!msg->sequence) 883 msg->sequence = ++adap->sequence; 884 885 data->msg = *msg; 886 data->fh = fh; 887 data->adap = adap; 888 data->blocking = block; 889 890 init_completion(&data->c); 891 INIT_DELAYED_WORK(&data->work, cec_wait_timeout); 892 893 if (fh) 894 list_add_tail(&data->xfer_list, &fh->xfer_list); 895 else 896 INIT_LIST_HEAD(&data->xfer_list); 897 898 list_add_tail(&data->list, &adap->transmit_queue); 899 adap->transmit_queue_sz++; 900 if (!adap->transmitting) 901 wake_up_interruptible(&adap->kthread_waitq); 902 903 /* All done if we don't need to block waiting for completion */ 904 if (!block) 905 return 0; 906 907 /* 908 * Release the lock and wait, retake the lock afterwards. 909 */ 910 mutex_unlock(&adap->lock); 911 wait_for_completion_killable(&data->c); 912 if (!data->completed) 913 cancel_delayed_work_sync(&data->work); 914 mutex_lock(&adap->lock); 915 916 /* Cancel the transmit if it was interrupted */ 917 if (!data->completed) { 918 if (data->msg.tx_status & CEC_TX_STATUS_OK) 919 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 920 else 921 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 922 } 923 924 /* The transmit completed (possibly with an error) */ 925 *msg = data->msg; 926 if (WARN_ON(!list_empty(&data->list))) 927 list_del(&data->list); 928 if (WARN_ON(!list_empty(&data->xfer_list))) 929 list_del(&data->xfer_list); 930 kfree(data); 931 return 0; 932 } 933 934 /* Helper function to be used by drivers and this framework. */ 935 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, 936 bool block) 937 { 938 int ret; 939 940 mutex_lock(&adap->lock); 941 ret = cec_transmit_msg_fh(adap, msg, NULL, block); 942 mutex_unlock(&adap->lock); 943 return ret; 944 } 945 EXPORT_SYMBOL_GPL(cec_transmit_msg); 946 947 /* 948 * I don't like forward references but without this the low-level 949 * cec_received_msg() function would come after a bunch of high-level 950 * CEC protocol handling functions. That was very confusing. 951 */ 952 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 953 bool is_reply); 954 955 #define DIRECTED 0x80 956 #define BCAST1_4 0x40 957 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ 958 #define BCAST (BCAST1_4 | BCAST2_0) 959 #define BOTH (BCAST | DIRECTED) 960 961 /* 962 * Specify minimum length and whether the message is directed, broadcast 963 * or both. Messages that do not match the criteria are ignored as per 964 * the CEC specification. 965 */ 966 static const u8 cec_msg_size[256] = { 967 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, 968 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, 969 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, 970 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, 971 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, 972 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, 973 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, 974 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, 975 [CEC_MSG_STANDBY] = 2 | BOTH, 976 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, 977 [CEC_MSG_RECORD_ON] = 3 | DIRECTED, 978 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, 979 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, 980 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, 981 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, 982 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, 983 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, 984 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, 985 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, 986 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, 987 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, 988 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, 989 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, 990 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, 991 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, 992 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, 993 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, 994 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, 995 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, 996 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, 997 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, 998 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, 999 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, 1000 [CEC_MSG_PLAY] = 3 | DIRECTED, 1001 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, 1002 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, 1003 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, 1004 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, 1005 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, 1006 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, 1007 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, 1008 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, 1009 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, 1010 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, 1011 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, 1012 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, 1013 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, 1014 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, 1015 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, 1016 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, 1017 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, 1018 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, 1019 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, 1020 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, 1021 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, 1022 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, 1023 [CEC_MSG_ABORT] = 2 | DIRECTED, 1024 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, 1025 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, 1026 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, 1027 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1028 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1029 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, 1030 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED, 1031 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, 1032 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, 1033 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, 1034 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, 1035 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, 1036 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, 1037 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, 1038 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, 1039 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, 1040 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, 1041 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, 1042 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, 1043 }; 1044 1045 /* Called by the CEC adapter if a message is received */ 1046 void cec_received_msg_ts(struct cec_adapter *adap, 1047 struct cec_msg *msg, ktime_t ts) 1048 { 1049 struct cec_data *data; 1050 u8 msg_init = cec_msg_initiator(msg); 1051 u8 msg_dest = cec_msg_destination(msg); 1052 u8 cmd = msg->msg[1]; 1053 bool is_reply = false; 1054 bool valid_la = true; 1055 bool monitor_valid_la = true; 1056 u8 min_len = 0; 1057 1058 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) 1059 return; 1060 1061 if (adap->devnode.unregistered) 1062 return; 1063 1064 /* 1065 * Some CEC adapters will receive the messages that they transmitted. 1066 * This test filters out those messages by checking if we are the 1067 * initiator, and just returning in that case. 1068 * 1069 * Note that this won't work if this is an Unregistered device. 1070 * 1071 * It is bad practice if the hardware receives the message that it 1072 * transmitted and luckily most CEC adapters behave correctly in this 1073 * respect. 1074 */ 1075 if (msg_init != CEC_LOG_ADDR_UNREGISTERED && 1076 cec_has_log_addr(adap, msg_init)) 1077 return; 1078 1079 msg->rx_ts = ktime_to_ns(ts); 1080 msg->rx_status = CEC_RX_STATUS_OK; 1081 msg->sequence = msg->reply = msg->timeout = 0; 1082 msg->tx_status = 0; 1083 msg->tx_ts = 0; 1084 msg->tx_arb_lost_cnt = 0; 1085 msg->tx_nack_cnt = 0; 1086 msg->tx_low_drive_cnt = 0; 1087 msg->tx_error_cnt = 0; 1088 msg->flags = 0; 1089 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 1090 1091 mutex_lock(&adap->lock); 1092 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1093 1094 if (!adap->transmit_in_progress) 1095 adap->last_initiator = 0xff; 1096 1097 /* Check if this message was for us (directed or broadcast). */ 1098 if (!cec_msg_is_broadcast(msg)) { 1099 valid_la = cec_has_log_addr(adap, msg_dest); 1100 monitor_valid_la = valid_la; 1101 } 1102 1103 /* 1104 * Check if the length is not too short or if the message is a 1105 * broadcast message where a directed message was expected or 1106 * vice versa. If so, then the message has to be ignored (according 1107 * to section CEC 7.3 and CEC 12.2). 1108 */ 1109 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { 1110 u8 dir_fl = cec_msg_size[cmd] & BOTH; 1111 1112 min_len = cec_msg_size[cmd] & 0x1f; 1113 if (msg->len < min_len) 1114 valid_la = false; 1115 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) 1116 valid_la = false; 1117 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) 1118 valid_la = false; 1119 else if (cec_msg_is_broadcast(msg) && 1120 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && 1121 !(dir_fl & BCAST1_4)) 1122 valid_la = false; 1123 } 1124 if (valid_la && min_len) { 1125 /* These messages have special length requirements */ 1126 switch (cmd) { 1127 case CEC_MSG_TIMER_STATUS: 1128 if (msg->msg[2] & 0x10) { 1129 switch (msg->msg[2] & 0xf) { 1130 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE: 1131 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE: 1132 if (msg->len < 5) 1133 valid_la = false; 1134 break; 1135 } 1136 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) { 1137 if (msg->len < 5) 1138 valid_la = false; 1139 } 1140 break; 1141 case CEC_MSG_RECORD_ON: 1142 switch (msg->msg[2]) { 1143 case CEC_OP_RECORD_SRC_OWN: 1144 break; 1145 case CEC_OP_RECORD_SRC_DIGITAL: 1146 if (msg->len < 10) 1147 valid_la = false; 1148 break; 1149 case CEC_OP_RECORD_SRC_ANALOG: 1150 if (msg->len < 7) 1151 valid_la = false; 1152 break; 1153 case CEC_OP_RECORD_SRC_EXT_PLUG: 1154 if (msg->len < 4) 1155 valid_la = false; 1156 break; 1157 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: 1158 if (msg->len < 5) 1159 valid_la = false; 1160 break; 1161 } 1162 break; 1163 } 1164 } 1165 1166 /* It's a valid message and not a poll or CDC message */ 1167 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { 1168 bool abort = cmd == CEC_MSG_FEATURE_ABORT; 1169 1170 /* The aborted command is in msg[2] */ 1171 if (abort) 1172 cmd = msg->msg[2]; 1173 1174 /* 1175 * Walk over all transmitted messages that are waiting for a 1176 * reply. 1177 */ 1178 list_for_each_entry(data, &adap->wait_queue, list) { 1179 struct cec_msg *dst = &data->msg; 1180 1181 /* 1182 * The *only* CEC message that has two possible replies 1183 * is CEC_MSG_INITIATE_ARC. 1184 * In this case allow either of the two replies. 1185 */ 1186 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && 1187 (cmd == CEC_MSG_REPORT_ARC_INITIATED || 1188 cmd == CEC_MSG_REPORT_ARC_TERMINATED) && 1189 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || 1190 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) 1191 dst->reply = cmd; 1192 1193 /* Does the command match? */ 1194 if ((abort && cmd != dst->msg[1]) || 1195 (!abort && cmd != dst->reply)) 1196 continue; 1197 1198 /* Does the addressing match? */ 1199 if (msg_init != cec_msg_destination(dst) && 1200 !cec_msg_is_broadcast(dst)) 1201 continue; 1202 1203 /* We got a reply */ 1204 memcpy(dst->msg, msg->msg, msg->len); 1205 dst->len = msg->len; 1206 dst->rx_ts = msg->rx_ts; 1207 dst->rx_status = msg->rx_status; 1208 if (abort) 1209 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; 1210 msg->flags = dst->flags; 1211 msg->sequence = dst->sequence; 1212 /* Remove it from the wait_queue */ 1213 list_del_init(&data->list); 1214 1215 /* Cancel the pending timeout work */ 1216 if (!cancel_delayed_work(&data->work)) { 1217 mutex_unlock(&adap->lock); 1218 cancel_delayed_work_sync(&data->work); 1219 mutex_lock(&adap->lock); 1220 } 1221 /* 1222 * Mark this as a reply, provided someone is still 1223 * waiting for the answer. 1224 */ 1225 if (data->fh) 1226 is_reply = true; 1227 cec_data_completed(data); 1228 break; 1229 } 1230 } 1231 mutex_unlock(&adap->lock); 1232 1233 /* Pass the message on to any monitoring filehandles */ 1234 cec_queue_msg_monitor(adap, msg, monitor_valid_la); 1235 1236 /* We're done if it is not for us or a poll message */ 1237 if (!valid_la || msg->len <= 1) 1238 return; 1239 1240 if (adap->log_addrs.log_addr_mask == 0) 1241 return; 1242 1243 /* 1244 * Process the message on the protocol level. If is_reply is true, 1245 * then cec_receive_notify() won't pass on the reply to the listener(s) 1246 * since that was already done by cec_data_completed() above. 1247 */ 1248 cec_receive_notify(adap, msg, is_reply); 1249 } 1250 EXPORT_SYMBOL_GPL(cec_received_msg_ts); 1251 1252 /* Logical Address Handling */ 1253 1254 /* 1255 * Attempt to claim a specific logical address. 1256 * 1257 * This function is called with adap->lock held. 1258 */ 1259 static int cec_config_log_addr(struct cec_adapter *adap, 1260 unsigned int idx, 1261 unsigned int log_addr) 1262 { 1263 struct cec_log_addrs *las = &adap->log_addrs; 1264 struct cec_msg msg = { }; 1265 const unsigned int max_retries = 2; 1266 unsigned int i; 1267 int err; 1268 1269 if (cec_has_log_addr(adap, log_addr)) 1270 return 0; 1271 1272 /* Send poll message */ 1273 msg.len = 1; 1274 msg.msg[0] = (log_addr << 4) | log_addr; 1275 1276 for (i = 0; i < max_retries; i++) { 1277 err = cec_transmit_msg_fh(adap, &msg, NULL, true); 1278 1279 /* 1280 * While trying to poll the physical address was reset 1281 * and the adapter was unconfigured, so bail out. 1282 */ 1283 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID) 1284 return -EINTR; 1285 1286 /* Also bail out if the PA changed while configuring. */ 1287 if (adap->must_reconfigure) 1288 return -EINTR; 1289 1290 if (err) 1291 return err; 1292 1293 /* 1294 * The message was aborted or timed out due to a disconnect or 1295 * unconfigure, just bail out. 1296 */ 1297 if (msg.tx_status & 1298 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT)) 1299 return -EINTR; 1300 if (msg.tx_status & CEC_TX_STATUS_OK) 1301 return 0; 1302 if (msg.tx_status & CEC_TX_STATUS_NACK) 1303 break; 1304 /* 1305 * Retry up to max_retries times if the message was neither 1306 * OKed or NACKed. This can happen due to e.g. a Lost 1307 * Arbitration condition. 1308 */ 1309 } 1310 1311 /* 1312 * If we are unable to get an OK or a NACK after max_retries attempts 1313 * (and note that each attempt already consists of four polls), then 1314 * we assume that something is really weird and that it is not a 1315 * good idea to try and claim this logical address. 1316 */ 1317 if (i == max_retries) { 1318 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n", 1319 log_addr, msg.tx_status); 1320 return 0; 1321 } 1322 1323 /* 1324 * Message not acknowledged, so this logical 1325 * address is free to use. 1326 */ 1327 err = call_op(adap, adap_log_addr, log_addr); 1328 if (err) 1329 return err; 1330 1331 las->log_addr[idx] = log_addr; 1332 las->log_addr_mask |= 1 << log_addr; 1333 return 1; 1334 } 1335 1336 /* 1337 * Unconfigure the adapter: clear all logical addresses and send 1338 * the state changed event. 1339 * 1340 * This function is called with adap->lock held. 1341 */ 1342 static void cec_adap_unconfigure(struct cec_adapter *adap) 1343 { 1344 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1345 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID)); 1346 adap->log_addrs.log_addr_mask = 0; 1347 adap->is_configured = false; 1348 cec_flush(adap); 1349 wake_up_interruptible(&adap->kthread_waitq); 1350 cec_post_state_event(adap); 1351 call_void_op(adap, adap_unconfigured); 1352 } 1353 1354 /* 1355 * Attempt to claim the required logical addresses. 1356 */ 1357 static int cec_config_thread_func(void *arg) 1358 { 1359 /* The various LAs for each type of device */ 1360 static const u8 tv_log_addrs[] = { 1361 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, 1362 CEC_LOG_ADDR_INVALID 1363 }; 1364 static const u8 record_log_addrs[] = { 1365 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, 1366 CEC_LOG_ADDR_RECORD_3, 1367 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1368 CEC_LOG_ADDR_INVALID 1369 }; 1370 static const u8 tuner_log_addrs[] = { 1371 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, 1372 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, 1373 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1374 CEC_LOG_ADDR_INVALID 1375 }; 1376 static const u8 playback_log_addrs[] = { 1377 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, 1378 CEC_LOG_ADDR_PLAYBACK_3, 1379 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1380 CEC_LOG_ADDR_INVALID 1381 }; 1382 static const u8 audiosystem_log_addrs[] = { 1383 CEC_LOG_ADDR_AUDIOSYSTEM, 1384 CEC_LOG_ADDR_INVALID 1385 }; 1386 static const u8 specific_use_log_addrs[] = { 1387 CEC_LOG_ADDR_SPECIFIC, 1388 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1389 CEC_LOG_ADDR_INVALID 1390 }; 1391 static const u8 *type2addrs[6] = { 1392 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, 1393 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, 1394 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, 1395 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, 1396 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, 1397 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, 1398 }; 1399 static const u16 type2mask[] = { 1400 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, 1401 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, 1402 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, 1403 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, 1404 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, 1405 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, 1406 }; 1407 struct cec_adapter *adap = arg; 1408 struct cec_log_addrs *las = &adap->log_addrs; 1409 int err; 1410 int i, j; 1411 1412 mutex_lock(&adap->lock); 1413 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", 1414 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); 1415 las->log_addr_mask = 0; 1416 1417 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) 1418 goto configured; 1419 1420 reconfigure: 1421 for (i = 0; i < las->num_log_addrs; i++) { 1422 unsigned int type = las->log_addr_type[i]; 1423 const u8 *la_list; 1424 u8 last_la; 1425 1426 /* 1427 * The TV functionality can only map to physical address 0. 1428 * For any other address, try the Specific functionality 1429 * instead as per the spec. 1430 */ 1431 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) 1432 type = CEC_LOG_ADDR_TYPE_SPECIFIC; 1433 1434 la_list = type2addrs[type]; 1435 last_la = las->log_addr[i]; 1436 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1437 if (last_la == CEC_LOG_ADDR_INVALID || 1438 last_la == CEC_LOG_ADDR_UNREGISTERED || 1439 !((1 << last_la) & type2mask[type])) 1440 last_la = la_list[0]; 1441 1442 err = cec_config_log_addr(adap, i, last_la); 1443 1444 if (adap->must_reconfigure) { 1445 adap->must_reconfigure = false; 1446 las->log_addr_mask = 0; 1447 goto reconfigure; 1448 } 1449 1450 if (err > 0) /* Reused last LA */ 1451 continue; 1452 1453 if (err < 0) 1454 goto unconfigure; 1455 1456 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { 1457 /* Tried this one already, skip it */ 1458 if (la_list[j] == last_la) 1459 continue; 1460 /* The backup addresses are CEC 2.0 specific */ 1461 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || 1462 la_list[j] == CEC_LOG_ADDR_BACKUP_2) && 1463 las->cec_version < CEC_OP_CEC_VERSION_2_0) 1464 continue; 1465 1466 err = cec_config_log_addr(adap, i, la_list[j]); 1467 if (err == 0) /* LA is in use */ 1468 continue; 1469 if (err < 0) 1470 goto unconfigure; 1471 /* Done, claimed an LA */ 1472 break; 1473 } 1474 1475 if (la_list[j] == CEC_LOG_ADDR_INVALID) 1476 dprintk(1, "could not claim LA %d\n", i); 1477 } 1478 1479 if (adap->log_addrs.log_addr_mask == 0 && 1480 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) 1481 goto unconfigure; 1482 1483 configured: 1484 if (adap->log_addrs.log_addr_mask == 0) { 1485 /* Fall back to unregistered */ 1486 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; 1487 las->log_addr_mask = 1 << las->log_addr[0]; 1488 for (i = 1; i < las->num_log_addrs; i++) 1489 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1490 } 1491 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) 1492 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1493 adap->is_configured = true; 1494 adap->is_configuring = false; 1495 adap->must_reconfigure = false; 1496 cec_post_state_event(adap); 1497 1498 /* 1499 * Now post the Report Features and Report Physical Address broadcast 1500 * messages. Note that these are non-blocking transmits, meaning that 1501 * they are just queued up and once adap->lock is unlocked the main 1502 * thread will kick in and start transmitting these. 1503 * 1504 * If after this function is done (but before one or more of these 1505 * messages are actually transmitted) the CEC adapter is unconfigured, 1506 * then any remaining messages will be dropped by the main thread. 1507 */ 1508 for (i = 0; i < las->num_log_addrs; i++) { 1509 struct cec_msg msg = {}; 1510 1511 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || 1512 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) 1513 continue; 1514 1515 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; 1516 1517 /* Report Features must come first according to CEC 2.0 */ 1518 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && 1519 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { 1520 cec_fill_msg_report_features(adap, &msg, i); 1521 cec_transmit_msg_fh(adap, &msg, NULL, false); 1522 } 1523 1524 /* Report Physical Address */ 1525 cec_msg_report_physical_addr(&msg, adap->phys_addr, 1526 las->primary_device_type[i]); 1527 dprintk(1, "config: la %d pa %x.%x.%x.%x\n", 1528 las->log_addr[i], 1529 cec_phys_addr_exp(adap->phys_addr)); 1530 cec_transmit_msg_fh(adap, &msg, NULL, false); 1531 1532 /* Report Vendor ID */ 1533 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { 1534 cec_msg_device_vendor_id(&msg, 1535 adap->log_addrs.vendor_id); 1536 cec_transmit_msg_fh(adap, &msg, NULL, false); 1537 } 1538 } 1539 adap->kthread_config = NULL; 1540 complete(&adap->config_completion); 1541 mutex_unlock(&adap->lock); 1542 call_void_op(adap, configured); 1543 return 0; 1544 1545 unconfigure: 1546 for (i = 0; i < las->num_log_addrs; i++) 1547 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1548 cec_adap_unconfigure(adap); 1549 adap->is_configuring = false; 1550 adap->must_reconfigure = false; 1551 adap->kthread_config = NULL; 1552 complete(&adap->config_completion); 1553 mutex_unlock(&adap->lock); 1554 return 0; 1555 } 1556 1557 /* 1558 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the 1559 * logical addresses. 1560 * 1561 * This function is called with adap->lock held. 1562 */ 1563 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) 1564 { 1565 if (WARN_ON(adap->is_configuring || adap->is_configured)) 1566 return; 1567 1568 init_completion(&adap->config_completion); 1569 1570 /* Ready to kick off the thread */ 1571 adap->is_configuring = true; 1572 adap->kthread_config = kthread_run(cec_config_thread_func, adap, 1573 "ceccfg-%s", adap->name); 1574 if (IS_ERR(adap->kthread_config)) { 1575 adap->kthread_config = NULL; 1576 adap->is_configuring = false; 1577 } else if (block) { 1578 mutex_unlock(&adap->lock); 1579 wait_for_completion(&adap->config_completion); 1580 mutex_lock(&adap->lock); 1581 } 1582 } 1583 1584 /* 1585 * Helper function to enable/disable the CEC adapter. 1586 * 1587 * This function is called with adap->lock held. 1588 */ 1589 int cec_adap_enable(struct cec_adapter *adap) 1590 { 1591 bool enable; 1592 int ret = 0; 1593 1594 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt || 1595 adap->log_addrs.num_log_addrs; 1596 if (adap->needs_hpd) 1597 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID; 1598 1599 if (adap->devnode.unregistered) 1600 enable = false; 1601 1602 if (enable == adap->is_enabled) 1603 return 0; 1604 1605 /* serialize adap_enable */ 1606 mutex_lock(&adap->devnode.lock); 1607 if (enable) { 1608 adap->last_initiator = 0xff; 1609 adap->transmit_in_progress = false; 1610 ret = adap->ops->adap_enable(adap, true); 1611 if (!ret) { 1612 /* 1613 * Enable monitor-all/pin modes if needed. We warn, but 1614 * continue if this fails as this is not a critical error. 1615 */ 1616 if (adap->monitor_all_cnt) 1617 WARN_ON(call_op(adap, adap_monitor_all_enable, true)); 1618 if (adap->monitor_pin_cnt) 1619 WARN_ON(call_op(adap, adap_monitor_pin_enable, true)); 1620 } 1621 } else { 1622 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */ 1623 if (adap->monitor_all_cnt) 1624 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 1625 if (adap->monitor_pin_cnt) 1626 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 1627 WARN_ON(adap->ops->adap_enable(adap, false)); 1628 adap->last_initiator = 0xff; 1629 adap->transmit_in_progress = false; 1630 adap->transmit_in_progress_aborted = false; 1631 if (adap->transmitting) 1632 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0); 1633 } 1634 if (!ret) 1635 adap->is_enabled = enable; 1636 wake_up_interruptible(&adap->kthread_waitq); 1637 mutex_unlock(&adap->devnode.lock); 1638 return ret; 1639 } 1640 1641 /* Set a new physical address and send an event notifying userspace of this. 1642 * 1643 * This function is called with adap->lock held. 1644 */ 1645 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1646 { 1647 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID; 1648 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID; 1649 1650 if (phys_addr == adap->phys_addr) 1651 return; 1652 if (!becomes_invalid && adap->devnode.unregistered) 1653 return; 1654 1655 dprintk(1, "new physical address %x.%x.%x.%x\n", 1656 cec_phys_addr_exp(phys_addr)); 1657 if (becomes_invalid || !is_invalid) { 1658 adap->phys_addr = CEC_PHYS_ADDR_INVALID; 1659 cec_post_state_event(adap); 1660 cec_adap_unconfigure(adap); 1661 if (becomes_invalid) { 1662 cec_adap_enable(adap); 1663 return; 1664 } 1665 } 1666 1667 adap->phys_addr = phys_addr; 1668 if (is_invalid) 1669 cec_adap_enable(adap); 1670 1671 cec_post_state_event(adap); 1672 if (!adap->log_addrs.num_log_addrs) 1673 return; 1674 if (adap->is_configuring) 1675 adap->must_reconfigure = true; 1676 else 1677 cec_claim_log_addrs(adap, block); 1678 } 1679 1680 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1681 { 1682 if (IS_ERR_OR_NULL(adap)) 1683 return; 1684 1685 mutex_lock(&adap->lock); 1686 __cec_s_phys_addr(adap, phys_addr, block); 1687 mutex_unlock(&adap->lock); 1688 } 1689 EXPORT_SYMBOL_GPL(cec_s_phys_addr); 1690 1691 void cec_s_phys_addr_from_edid(struct cec_adapter *adap, 1692 const struct edid *edid) 1693 { 1694 u16 pa = CEC_PHYS_ADDR_INVALID; 1695 1696 if (edid && edid->extensions) 1697 pa = cec_get_edid_phys_addr((const u8 *)edid, 1698 EDID_LENGTH * (edid->extensions + 1), NULL); 1699 cec_s_phys_addr(adap, pa, false); 1700 } 1701 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); 1702 1703 void cec_s_conn_info(struct cec_adapter *adap, 1704 const struct cec_connector_info *conn_info) 1705 { 1706 if (IS_ERR_OR_NULL(adap)) 1707 return; 1708 1709 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) 1710 return; 1711 1712 mutex_lock(&adap->lock); 1713 if (conn_info) 1714 adap->conn_info = *conn_info; 1715 else 1716 memset(&adap->conn_info, 0, sizeof(adap->conn_info)); 1717 cec_post_state_event(adap); 1718 mutex_unlock(&adap->lock); 1719 } 1720 EXPORT_SYMBOL_GPL(cec_s_conn_info); 1721 1722 /* 1723 * Called from either the ioctl or a driver to set the logical addresses. 1724 * 1725 * This function is called with adap->lock held. 1726 */ 1727 int __cec_s_log_addrs(struct cec_adapter *adap, 1728 struct cec_log_addrs *log_addrs, bool block) 1729 { 1730 u16 type_mask = 0; 1731 int err; 1732 int i; 1733 1734 if (adap->devnode.unregistered) 1735 return -ENODEV; 1736 1737 if (!log_addrs || log_addrs->num_log_addrs == 0) { 1738 if (!adap->log_addrs.num_log_addrs) 1739 return 0; 1740 if (adap->is_configuring || adap->is_configured) 1741 cec_adap_unconfigure(adap); 1742 adap->log_addrs.num_log_addrs = 0; 1743 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) 1744 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; 1745 adap->log_addrs.osd_name[0] = '\0'; 1746 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; 1747 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; 1748 cec_adap_enable(adap); 1749 return 0; 1750 } 1751 1752 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { 1753 /* 1754 * Sanitize log_addrs fields if a CDC-Only device is 1755 * requested. 1756 */ 1757 log_addrs->num_log_addrs = 1; 1758 log_addrs->osd_name[0] = '\0'; 1759 log_addrs->vendor_id = CEC_VENDOR_ID_NONE; 1760 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; 1761 /* 1762 * This is just an internal convention since a CDC-Only device 1763 * doesn't have to be a switch. But switches already use 1764 * unregistered, so it makes some kind of sense to pick this 1765 * as the primary device. Since a CDC-Only device never sends 1766 * any 'normal' CEC messages this primary device type is never 1767 * sent over the CEC bus. 1768 */ 1769 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; 1770 log_addrs->all_device_types[0] = 0; 1771 log_addrs->features[0][0] = 0; 1772 log_addrs->features[0][1] = 0; 1773 } 1774 1775 /* Ensure the osd name is 0-terminated */ 1776 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; 1777 1778 /* Sanity checks */ 1779 if (log_addrs->num_log_addrs > adap->available_log_addrs) { 1780 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); 1781 return -EINVAL; 1782 } 1783 1784 /* 1785 * Vendor ID is a 24 bit number, so check if the value is 1786 * within the correct range. 1787 */ 1788 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && 1789 (log_addrs->vendor_id & 0xff000000) != 0) { 1790 dprintk(1, "invalid vendor ID\n"); 1791 return -EINVAL; 1792 } 1793 1794 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && 1795 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { 1796 dprintk(1, "invalid CEC version\n"); 1797 return -EINVAL; 1798 } 1799 1800 if (log_addrs->num_log_addrs > 1) 1801 for (i = 0; i < log_addrs->num_log_addrs; i++) 1802 if (log_addrs->log_addr_type[i] == 1803 CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1804 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); 1805 return -EINVAL; 1806 } 1807 1808 for (i = 0; i < log_addrs->num_log_addrs; i++) { 1809 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); 1810 u8 *features = log_addrs->features[i]; 1811 bool op_is_dev_features = false; 1812 unsigned int j; 1813 1814 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; 1815 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1816 dprintk(1, "unknown logical address type\n"); 1817 return -EINVAL; 1818 } 1819 if (type_mask & (1 << log_addrs->log_addr_type[i])) { 1820 dprintk(1, "duplicate logical address type\n"); 1821 return -EINVAL; 1822 } 1823 type_mask |= 1 << log_addrs->log_addr_type[i]; 1824 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && 1825 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { 1826 /* Record already contains the playback functionality */ 1827 dprintk(1, "invalid record + playback combination\n"); 1828 return -EINVAL; 1829 } 1830 if (log_addrs->primary_device_type[i] > 1831 CEC_OP_PRIM_DEVTYPE_PROCESSOR) { 1832 dprintk(1, "unknown primary device type\n"); 1833 return -EINVAL; 1834 } 1835 if (log_addrs->primary_device_type[i] == 2) { 1836 dprintk(1, "invalid primary device type\n"); 1837 return -EINVAL; 1838 } 1839 for (j = 0; j < feature_sz; j++) { 1840 if ((features[j] & 0x80) == 0) { 1841 if (op_is_dev_features) 1842 break; 1843 op_is_dev_features = true; 1844 } 1845 } 1846 if (!op_is_dev_features || j == feature_sz) { 1847 dprintk(1, "malformed features\n"); 1848 return -EINVAL; 1849 } 1850 /* Zero unused part of the feature array */ 1851 memset(features + j + 1, 0, feature_sz - j - 1); 1852 } 1853 1854 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { 1855 if (log_addrs->num_log_addrs > 2) { 1856 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); 1857 return -EINVAL; 1858 } 1859 if (log_addrs->num_log_addrs == 2) { 1860 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | 1861 (1 << CEC_LOG_ADDR_TYPE_TV)))) { 1862 dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); 1863 return -EINVAL; 1864 } 1865 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | 1866 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { 1867 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); 1868 return -EINVAL; 1869 } 1870 } 1871 } 1872 1873 /* Zero unused LAs */ 1874 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { 1875 log_addrs->primary_device_type[i] = 0; 1876 log_addrs->log_addr_type[i] = 0; 1877 log_addrs->all_device_types[i] = 0; 1878 memset(log_addrs->features[i], 0, 1879 sizeof(log_addrs->features[i])); 1880 } 1881 1882 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; 1883 adap->log_addrs = *log_addrs; 1884 err = cec_adap_enable(adap); 1885 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1886 cec_claim_log_addrs(adap, block); 1887 return err; 1888 } 1889 1890 int cec_s_log_addrs(struct cec_adapter *adap, 1891 struct cec_log_addrs *log_addrs, bool block) 1892 { 1893 int err; 1894 1895 mutex_lock(&adap->lock); 1896 err = __cec_s_log_addrs(adap, log_addrs, block); 1897 mutex_unlock(&adap->lock); 1898 return err; 1899 } 1900 EXPORT_SYMBOL_GPL(cec_s_log_addrs); 1901 1902 /* High-level core CEC message handling */ 1903 1904 /* Fill in the Report Features message */ 1905 static void cec_fill_msg_report_features(struct cec_adapter *adap, 1906 struct cec_msg *msg, 1907 unsigned int la_idx) 1908 { 1909 const struct cec_log_addrs *las = &adap->log_addrs; 1910 const u8 *features = las->features[la_idx]; 1911 bool op_is_dev_features = false; 1912 unsigned int idx; 1913 1914 /* Report Features */ 1915 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; 1916 msg->len = 4; 1917 msg->msg[1] = CEC_MSG_REPORT_FEATURES; 1918 msg->msg[2] = adap->log_addrs.cec_version; 1919 msg->msg[3] = las->all_device_types[la_idx]; 1920 1921 /* Write RC Profiles first, then Device Features */ 1922 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { 1923 msg->msg[msg->len++] = features[idx]; 1924 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { 1925 if (op_is_dev_features) 1926 break; 1927 op_is_dev_features = true; 1928 } 1929 } 1930 } 1931 1932 /* Transmit the Feature Abort message */ 1933 static int cec_feature_abort_reason(struct cec_adapter *adap, 1934 struct cec_msg *msg, u8 reason) 1935 { 1936 struct cec_msg tx_msg = { }; 1937 1938 /* 1939 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT 1940 * message! 1941 */ 1942 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) 1943 return 0; 1944 /* Don't Feature Abort messages from 'Unregistered' */ 1945 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) 1946 return 0; 1947 cec_msg_set_reply_to(&tx_msg, msg); 1948 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); 1949 return cec_transmit_msg(adap, &tx_msg, false); 1950 } 1951 1952 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) 1953 { 1954 return cec_feature_abort_reason(adap, msg, 1955 CEC_OP_ABORT_UNRECOGNIZED_OP); 1956 } 1957 1958 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) 1959 { 1960 return cec_feature_abort_reason(adap, msg, 1961 CEC_OP_ABORT_REFUSED); 1962 } 1963 1964 /* 1965 * Called when a CEC message is received. This function will do any 1966 * necessary core processing. The is_reply bool is true if this message 1967 * is a reply to an earlier transmit. 1968 * 1969 * The message is either a broadcast message or a valid directed message. 1970 */ 1971 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 1972 bool is_reply) 1973 { 1974 bool is_broadcast = cec_msg_is_broadcast(msg); 1975 u8 dest_laddr = cec_msg_destination(msg); 1976 u8 init_laddr = cec_msg_initiator(msg); 1977 u8 devtype = cec_log_addr2dev(adap, dest_laddr); 1978 int la_idx = cec_log_addr2idx(adap, dest_laddr); 1979 bool from_unregistered = init_laddr == 0xf; 1980 struct cec_msg tx_cec_msg = { }; 1981 1982 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1983 1984 /* If this is a CDC-Only device, then ignore any non-CDC messages */ 1985 if (cec_is_cdc_only(&adap->log_addrs) && 1986 msg->msg[1] != CEC_MSG_CDC_MESSAGE) 1987 return 0; 1988 1989 /* Allow drivers to process the message first */ 1990 if (adap->ops->received && !adap->devnode.unregistered && 1991 adap->ops->received(adap, msg) != -ENOMSG) 1992 return 0; 1993 1994 /* 1995 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and 1996 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be 1997 * handled by the CEC core, even if the passthrough mode is on. 1998 * The others are just ignored if passthrough mode is on. 1999 */ 2000 switch (msg->msg[1]) { 2001 case CEC_MSG_GET_CEC_VERSION: 2002 case CEC_MSG_ABORT: 2003 case CEC_MSG_GIVE_DEVICE_POWER_STATUS: 2004 case CEC_MSG_GIVE_OSD_NAME: 2005 /* 2006 * These messages reply with a directed message, so ignore if 2007 * the initiator is Unregistered. 2008 */ 2009 if (!adap->passthrough && from_unregistered) 2010 return 0; 2011 fallthrough; 2012 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2013 case CEC_MSG_GIVE_FEATURES: 2014 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2015 /* 2016 * Skip processing these messages if the passthrough mode 2017 * is on. 2018 */ 2019 if (adap->passthrough) 2020 goto skip_processing; 2021 /* Ignore if addressing is wrong */ 2022 if (is_broadcast) 2023 return 0; 2024 break; 2025 2026 case CEC_MSG_USER_CONTROL_PRESSED: 2027 case CEC_MSG_USER_CONTROL_RELEASED: 2028 /* Wrong addressing mode: don't process */ 2029 if (is_broadcast || from_unregistered) 2030 goto skip_processing; 2031 break; 2032 2033 case CEC_MSG_REPORT_PHYSICAL_ADDR: 2034 /* 2035 * This message is always processed, regardless of the 2036 * passthrough setting. 2037 * 2038 * Exception: don't process if wrong addressing mode. 2039 */ 2040 if (!is_broadcast) 2041 goto skip_processing; 2042 break; 2043 2044 default: 2045 break; 2046 } 2047 2048 cec_msg_set_reply_to(&tx_cec_msg, msg); 2049 2050 switch (msg->msg[1]) { 2051 /* The following messages are processed but still passed through */ 2052 case CEC_MSG_REPORT_PHYSICAL_ADDR: { 2053 u16 pa = (msg->msg[2] << 8) | msg->msg[3]; 2054 2055 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", 2056 cec_phys_addr_exp(pa), init_laddr); 2057 break; 2058 } 2059 2060 case CEC_MSG_USER_CONTROL_PRESSED: 2061 if (!(adap->capabilities & CEC_CAP_RC) || 2062 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2063 break; 2064 2065 #ifdef CONFIG_MEDIA_CEC_RC 2066 switch (msg->msg[2]) { 2067 /* 2068 * Play function, this message can have variable length 2069 * depending on the specific play function that is used. 2070 */ 2071 case CEC_OP_UI_CMD_PLAY_FUNCTION: 2072 if (msg->len == 2) 2073 rc_keydown(adap->rc, RC_PROTO_CEC, 2074 msg->msg[2], 0); 2075 else 2076 rc_keydown(adap->rc, RC_PROTO_CEC, 2077 msg->msg[2] << 8 | msg->msg[3], 0); 2078 break; 2079 /* 2080 * Other function messages that are not handled. 2081 * Currently the RC framework does not allow to supply an 2082 * additional parameter to a keypress. These "keys" contain 2083 * other information such as channel number, an input number 2084 * etc. 2085 * For the time being these messages are not processed by the 2086 * framework and are simply forwarded to the user space. 2087 */ 2088 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: 2089 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: 2090 case CEC_OP_UI_CMD_TUNE_FUNCTION: 2091 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: 2092 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: 2093 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: 2094 break; 2095 default: 2096 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); 2097 break; 2098 } 2099 #endif 2100 break; 2101 2102 case CEC_MSG_USER_CONTROL_RELEASED: 2103 if (!(adap->capabilities & CEC_CAP_RC) || 2104 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2105 break; 2106 #ifdef CONFIG_MEDIA_CEC_RC 2107 rc_keyup(adap->rc); 2108 #endif 2109 break; 2110 2111 /* 2112 * The remaining messages are only processed if the passthrough mode 2113 * is off. 2114 */ 2115 case CEC_MSG_GET_CEC_VERSION: 2116 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); 2117 return cec_transmit_msg(adap, &tx_cec_msg, false); 2118 2119 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2120 /* Do nothing for CEC switches using addr 15 */ 2121 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) 2122 return 0; 2123 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); 2124 return cec_transmit_msg(adap, &tx_cec_msg, false); 2125 2126 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2127 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) 2128 return cec_feature_abort(adap, msg); 2129 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); 2130 return cec_transmit_msg(adap, &tx_cec_msg, false); 2131 2132 case CEC_MSG_ABORT: 2133 /* Do nothing for CEC switches */ 2134 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) 2135 return 0; 2136 return cec_feature_refused(adap, msg); 2137 2138 case CEC_MSG_GIVE_OSD_NAME: { 2139 if (adap->log_addrs.osd_name[0] == 0) 2140 return cec_feature_abort(adap, msg); 2141 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); 2142 return cec_transmit_msg(adap, &tx_cec_msg, false); 2143 } 2144 2145 case CEC_MSG_GIVE_FEATURES: 2146 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) 2147 return cec_feature_abort(adap, msg); 2148 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); 2149 return cec_transmit_msg(adap, &tx_cec_msg, false); 2150 2151 default: 2152 /* 2153 * Unprocessed messages are aborted if userspace isn't doing 2154 * any processing either. 2155 */ 2156 if (!is_broadcast && !is_reply && !adap->follower_cnt && 2157 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) 2158 return cec_feature_abort(adap, msg); 2159 break; 2160 } 2161 2162 skip_processing: 2163 /* If this was a reply, then we're done, unless otherwise specified */ 2164 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) 2165 return 0; 2166 2167 /* 2168 * Send to the exclusive follower if there is one, otherwise send 2169 * to all followers. 2170 */ 2171 if (adap->cec_follower) 2172 cec_queue_msg_fh(adap->cec_follower, msg); 2173 else 2174 cec_queue_msg_followers(adap, msg); 2175 return 0; 2176 } 2177 2178 /* 2179 * Helper functions to keep track of the 'monitor all' use count. 2180 * 2181 * These functions are called with adap->lock held. 2182 */ 2183 int cec_monitor_all_cnt_inc(struct cec_adapter *adap) 2184 { 2185 int ret; 2186 2187 if (adap->monitor_all_cnt++) 2188 return 0; 2189 2190 ret = cec_adap_enable(adap); 2191 if (ret) 2192 adap->monitor_all_cnt--; 2193 return ret; 2194 } 2195 2196 void cec_monitor_all_cnt_dec(struct cec_adapter *adap) 2197 { 2198 if (WARN_ON(!adap->monitor_all_cnt)) 2199 return; 2200 if (--adap->monitor_all_cnt) 2201 return; 2202 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 2203 cec_adap_enable(adap); 2204 } 2205 2206 /* 2207 * Helper functions to keep track of the 'monitor pin' use count. 2208 * 2209 * These functions are called with adap->lock held. 2210 */ 2211 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) 2212 { 2213 int ret; 2214 2215 if (adap->monitor_pin_cnt++) 2216 return 0; 2217 2218 ret = cec_adap_enable(adap); 2219 if (ret) 2220 adap->monitor_pin_cnt--; 2221 return ret; 2222 } 2223 2224 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) 2225 { 2226 if (WARN_ON(!adap->monitor_pin_cnt)) 2227 return; 2228 if (--adap->monitor_pin_cnt) 2229 return; 2230 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 2231 cec_adap_enable(adap); 2232 } 2233 2234 #ifdef CONFIG_DEBUG_FS 2235 /* 2236 * Log the current state of the CEC adapter. 2237 * Very useful for debugging. 2238 */ 2239 int cec_adap_status(struct seq_file *file, void *priv) 2240 { 2241 struct cec_adapter *adap = dev_get_drvdata(file->private); 2242 struct cec_data *data; 2243 2244 mutex_lock(&adap->lock); 2245 seq_printf(file, "enabled: %d\n", adap->is_enabled); 2246 seq_printf(file, "configured: %d\n", adap->is_configured); 2247 seq_printf(file, "configuring: %d\n", adap->is_configuring); 2248 seq_printf(file, "phys_addr: %x.%x.%x.%x\n", 2249 cec_phys_addr_exp(adap->phys_addr)); 2250 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); 2251 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); 2252 if (adap->cec_follower) 2253 seq_printf(file, "has CEC follower%s\n", 2254 adap->passthrough ? " (in passthrough mode)" : ""); 2255 if (adap->cec_initiator) 2256 seq_puts(file, "has CEC initiator\n"); 2257 if (adap->monitor_all_cnt) 2258 seq_printf(file, "file handles in Monitor All mode: %u\n", 2259 adap->monitor_all_cnt); 2260 if (adap->monitor_pin_cnt) 2261 seq_printf(file, "file handles in Monitor Pin mode: %u\n", 2262 adap->monitor_pin_cnt); 2263 if (adap->tx_timeouts) { 2264 seq_printf(file, "transmit timeouts: %u\n", 2265 adap->tx_timeouts); 2266 adap->tx_timeouts = 0; 2267 } 2268 data = adap->transmitting; 2269 if (data) 2270 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", 2271 data->msg.len, data->msg.msg, data->msg.reply, 2272 data->msg.timeout); 2273 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); 2274 list_for_each_entry(data, &adap->transmit_queue, list) { 2275 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", 2276 data->msg.len, data->msg.msg, data->msg.reply, 2277 data->msg.timeout); 2278 } 2279 list_for_each_entry(data, &adap->wait_queue, list) { 2280 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", 2281 data->msg.len, data->msg.msg, data->msg.reply, 2282 data->msg.timeout); 2283 } 2284 2285 call_void_op(adap, adap_status, file); 2286 mutex_unlock(&adap->lock); 2287 return 0; 2288 } 2289 #endif 2290