xref: /linux/drivers/media/cec/core/cec-adap.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18 
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23 
24 #include "cec-priv.h"
25 
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 					 struct cec_msg *msg,
28 					 unsigned int la_idx);
29 
30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
31 {
32 	int i;
33 
34 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
35 		if (adap->log_addrs.log_addr[i] == log_addr)
36 			return i;
37 	return -1;
38 }
39 
40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
41 {
42 	int i = cec_log_addr2idx(adap, log_addr);
43 
44 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
45 }
46 
47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
48 			   unsigned int *offset)
49 {
50 	unsigned int loc = cec_get_edid_spa_location(edid, size);
51 
52 	if (offset)
53 		*offset = loc;
54 	if (loc == 0)
55 		return CEC_PHYS_ADDR_INVALID;
56 	return (edid[loc] << 8) | edid[loc + 1];
57 }
58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
59 
60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
61 				 const struct drm_connector *connector)
62 {
63 	memset(conn_info, 0, sizeof(*conn_info));
64 	conn_info->type = CEC_CONNECTOR_TYPE_DRM;
65 	conn_info->drm.card_no = connector->dev->primary->index;
66 	conn_info->drm.connector_id = connector->base.id;
67 }
68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
69 
70 /*
71  * Queue a new event for this filehandle. If ts == 0, then set it
72  * to the current time.
73  *
74  * We keep a queue of at most max_event events where max_event differs
75  * per event. If the queue becomes full, then drop the oldest event and
76  * keep track of how many events we've dropped.
77  */
78 void cec_queue_event_fh(struct cec_fh *fh,
79 			const struct cec_event *new_ev, u64 ts)
80 {
81 	static const u16 max_events[CEC_NUM_EVENTS] = {
82 		1, 1, 800, 800, 8, 8, 8, 8
83 	};
84 	struct cec_event_entry *entry;
85 	unsigned int ev_idx = new_ev->event - 1;
86 
87 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
88 		return;
89 
90 	if (ts == 0)
91 		ts = ktime_get_ns();
92 
93 	mutex_lock(&fh->lock);
94 	if (ev_idx < CEC_NUM_CORE_EVENTS)
95 		entry = &fh->core_events[ev_idx];
96 	else
97 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
98 	if (entry) {
99 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
100 		    fh->queued_events[ev_idx]) {
101 			entry->ev.lost_msgs.lost_msgs +=
102 				new_ev->lost_msgs.lost_msgs;
103 			goto unlock;
104 		}
105 		entry->ev = *new_ev;
106 		entry->ev.ts = ts;
107 
108 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
109 			/* Add new msg at the end of the queue */
110 			list_add_tail(&entry->list, &fh->events[ev_idx]);
111 			fh->queued_events[ev_idx]++;
112 			fh->total_queued_events++;
113 			goto unlock;
114 		}
115 
116 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
117 			list_add_tail(&entry->list, &fh->events[ev_idx]);
118 			/* drop the oldest event */
119 			entry = list_first_entry(&fh->events[ev_idx],
120 						 struct cec_event_entry, list);
121 			list_del(&entry->list);
122 			kfree(entry);
123 		}
124 	}
125 	/* Mark that events were lost */
126 	entry = list_first_entry_or_null(&fh->events[ev_idx],
127 					 struct cec_event_entry, list);
128 	if (entry)
129 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
130 
131 unlock:
132 	mutex_unlock(&fh->lock);
133 	wake_up_interruptible(&fh->wait);
134 }
135 
136 /* Queue a new event for all open filehandles. */
137 static void cec_queue_event(struct cec_adapter *adap,
138 			    const struct cec_event *ev)
139 {
140 	u64 ts = ktime_get_ns();
141 	struct cec_fh *fh;
142 
143 	mutex_lock(&adap->devnode.lock_fhs);
144 	list_for_each_entry(fh, &adap->devnode.fhs, list)
145 		cec_queue_event_fh(fh, ev, ts);
146 	mutex_unlock(&adap->devnode.lock_fhs);
147 }
148 
149 /* Notify userspace that the CEC pin changed state at the given time. */
150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
151 			     bool dropped_events, ktime_t ts)
152 {
153 	struct cec_event ev = {
154 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
155 				   CEC_EVENT_PIN_CEC_LOW,
156 		.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
157 	};
158 	struct cec_fh *fh;
159 
160 	mutex_lock(&adap->devnode.lock_fhs);
161 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
162 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
163 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
164 	}
165 	mutex_unlock(&adap->devnode.lock_fhs);
166 }
167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
168 
169 /* Notify userspace that the HPD pin changed state at the given time. */
170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
171 {
172 	struct cec_event ev = {
173 		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
174 				   CEC_EVENT_PIN_HPD_LOW,
175 	};
176 	struct cec_fh *fh;
177 
178 	mutex_lock(&adap->devnode.lock_fhs);
179 	list_for_each_entry(fh, &adap->devnode.fhs, list)
180 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
181 	mutex_unlock(&adap->devnode.lock_fhs);
182 }
183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
184 
185 /* Notify userspace that the 5V pin changed state at the given time. */
186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
187 {
188 	struct cec_event ev = {
189 		.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
190 				   CEC_EVENT_PIN_5V_LOW,
191 	};
192 	struct cec_fh *fh;
193 
194 	mutex_lock(&adap->devnode.lock_fhs);
195 	list_for_each_entry(fh, &adap->devnode.fhs, list)
196 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
197 	mutex_unlock(&adap->devnode.lock_fhs);
198 }
199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
200 
201 /*
202  * Queue a new message for this filehandle.
203  *
204  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
205  * queue becomes full, then drop the oldest message and keep track
206  * of how many messages we've dropped.
207  */
208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
209 {
210 	static const struct cec_event ev_lost_msgs = {
211 		.event = CEC_EVENT_LOST_MSGS,
212 		.flags = 0,
213 		{
214 			.lost_msgs = { 1 },
215 		},
216 	};
217 	struct cec_msg_entry *entry;
218 
219 	mutex_lock(&fh->lock);
220 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
221 	if (entry) {
222 		entry->msg = *msg;
223 		/* Add new msg at the end of the queue */
224 		list_add_tail(&entry->list, &fh->msgs);
225 
226 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
227 			/* All is fine if there is enough room */
228 			fh->queued_msgs++;
229 			mutex_unlock(&fh->lock);
230 			wake_up_interruptible(&fh->wait);
231 			return;
232 		}
233 
234 		/*
235 		 * if the message queue is full, then drop the oldest one and
236 		 * send a lost message event.
237 		 */
238 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
239 		list_del(&entry->list);
240 		kfree(entry);
241 	}
242 	mutex_unlock(&fh->lock);
243 
244 	/*
245 	 * We lost a message, either because kmalloc failed or the queue
246 	 * was full.
247 	 */
248 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
249 }
250 
251 /*
252  * Queue the message for those filehandles that are in monitor mode.
253  * If valid_la is true (this message is for us or was sent by us),
254  * then pass it on to any monitoring filehandle. If this message
255  * isn't for us or from us, then only give it to filehandles that
256  * are in MONITOR_ALL mode.
257  *
258  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
259  * set and the CEC adapter was placed in 'monitor all' mode.
260  */
261 static void cec_queue_msg_monitor(struct cec_adapter *adap,
262 				  const struct cec_msg *msg,
263 				  bool valid_la)
264 {
265 	struct cec_fh *fh;
266 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
267 				      CEC_MODE_MONITOR_ALL;
268 
269 	mutex_lock(&adap->devnode.lock_fhs);
270 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
271 		if (fh->mode_follower >= monitor_mode)
272 			cec_queue_msg_fh(fh, msg);
273 	}
274 	mutex_unlock(&adap->devnode.lock_fhs);
275 }
276 
277 /*
278  * Queue the message for follower filehandles.
279  */
280 static void cec_queue_msg_followers(struct cec_adapter *adap,
281 				    const struct cec_msg *msg)
282 {
283 	struct cec_fh *fh;
284 
285 	mutex_lock(&adap->devnode.lock_fhs);
286 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
287 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
288 			cec_queue_msg_fh(fh, msg);
289 	}
290 	mutex_unlock(&adap->devnode.lock_fhs);
291 }
292 
293 /* Notify userspace of an adapter state change. */
294 static void cec_post_state_event(struct cec_adapter *adap)
295 {
296 	struct cec_event ev = {
297 		.event = CEC_EVENT_STATE_CHANGE,
298 	};
299 
300 	ev.state_change.phys_addr = adap->phys_addr;
301 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
302 	ev.state_change.have_conn_info =
303 		adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
304 	cec_queue_event(adap, &ev);
305 }
306 
307 /*
308  * A CEC transmit (and a possible wait for reply) completed.
309  * If this was in blocking mode, then complete it, otherwise
310  * queue the message for userspace to dequeue later.
311  *
312  * This function is called with adap->lock held.
313  */
314 static void cec_data_completed(struct cec_data *data)
315 {
316 	/*
317 	 * Delete this transmit from the filehandle's xfer_list since
318 	 * we're done with it.
319 	 *
320 	 * Note that if the filehandle is closed before this transmit
321 	 * finished, then the release() function will set data->fh to NULL.
322 	 * Without that we would be referring to a closed filehandle.
323 	 */
324 	if (data->fh)
325 		list_del_init(&data->xfer_list);
326 
327 	if (data->blocking) {
328 		/*
329 		 * Someone is blocking so mark the message as completed
330 		 * and call complete.
331 		 */
332 		data->completed = true;
333 		complete(&data->c);
334 	} else {
335 		/*
336 		 * No blocking, so just queue the message if needed and
337 		 * free the memory.
338 		 */
339 		if (data->fh)
340 			cec_queue_msg_fh(data->fh, &data->msg);
341 		kfree(data);
342 	}
343 }
344 
345 /*
346  * A pending CEC transmit needs to be cancelled, either because the CEC
347  * adapter is disabled or the transmit takes an impossibly long time to
348  * finish, or the reply timed out.
349  *
350  * This function is called with adap->lock held.
351  */
352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
353 {
354 	struct cec_adapter *adap = data->adap;
355 
356 	/*
357 	 * It's either the current transmit, or it is a pending
358 	 * transmit. Take the appropriate action to clear it.
359 	 */
360 	if (adap->transmitting == data) {
361 		adap->transmitting = NULL;
362 	} else {
363 		list_del_init(&data->list);
364 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
365 			if (!WARN_ON(!adap->transmit_queue_sz))
366 				adap->transmit_queue_sz--;
367 	}
368 
369 	if (data->msg.tx_status & CEC_TX_STATUS_OK) {
370 		data->msg.rx_ts = ktime_get_ns();
371 		data->msg.rx_status = rx_status;
372 		if (!data->blocking)
373 			data->msg.tx_status = 0;
374 	} else {
375 		data->msg.tx_ts = ktime_get_ns();
376 		data->msg.tx_status |= tx_status |
377 				       CEC_TX_STATUS_MAX_RETRIES;
378 		data->msg.tx_error_cnt++;
379 		data->attempts = 0;
380 		if (!data->blocking)
381 			data->msg.rx_status = 0;
382 	}
383 
384 	/* Queue transmitted message for monitoring purposes */
385 	cec_queue_msg_monitor(adap, &data->msg, 1);
386 
387 	if (!data->blocking && data->msg.sequence)
388 		/* Allow drivers to react to a canceled transmit */
389 		call_void_op(adap, adap_nb_transmit_canceled, &data->msg);
390 
391 	cec_data_completed(data);
392 }
393 
394 /*
395  * Flush all pending transmits and cancel any pending timeout work.
396  *
397  * This function is called with adap->lock held.
398  */
399 static void cec_flush(struct cec_adapter *adap)
400 {
401 	struct cec_data *data, *n;
402 
403 	/*
404 	 * If the adapter is disabled, or we're asked to stop,
405 	 * then cancel any pending transmits.
406 	 */
407 	while (!list_empty(&adap->transmit_queue)) {
408 		data = list_first_entry(&adap->transmit_queue,
409 					struct cec_data, list);
410 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
411 	}
412 	if (adap->transmitting)
413 		adap->transmit_in_progress_aborted = true;
414 
415 	/* Cancel the pending timeout work. */
416 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
417 		if (cancel_delayed_work(&data->work))
418 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
419 		/*
420 		 * If cancel_delayed_work returned false, then
421 		 * the cec_wait_timeout function is running,
422 		 * which will call cec_data_completed. So no
423 		 * need to do anything special in that case.
424 		 */
425 	}
426 	/*
427 	 * If something went wrong and this counter isn't what it should
428 	 * be, then this will reset it back to 0. Warn if it is not 0,
429 	 * since it indicates a bug, either in this framework or in a
430 	 * CEC driver.
431 	 */
432 	if (WARN_ON(adap->transmit_queue_sz))
433 		adap->transmit_queue_sz = 0;
434 }
435 
436 /*
437  * Main CEC state machine
438  *
439  * Wait until the thread should be stopped, or we are not transmitting and
440  * a new transmit message is queued up, in which case we start transmitting
441  * that message. When the adapter finished transmitting the message it will
442  * call cec_transmit_done().
443  *
444  * If the adapter is disabled, then remove all queued messages instead.
445  *
446  * If the current transmit times out, then cancel that transmit.
447  */
448 int cec_thread_func(void *_adap)
449 {
450 	struct cec_adapter *adap = _adap;
451 
452 	for (;;) {
453 		unsigned int signal_free_time;
454 		struct cec_data *data;
455 		bool timeout = false;
456 		u8 attempts;
457 
458 		if (adap->transmit_in_progress) {
459 			int err;
460 
461 			/*
462 			 * We are transmitting a message, so add a timeout
463 			 * to prevent the state machine to get stuck waiting
464 			 * for this message to finalize and add a check to
465 			 * see if the adapter is disabled in which case the
466 			 * transmit should be canceled.
467 			 */
468 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
469 				(adap->needs_hpd &&
470 				 (!adap->is_configured && !adap->is_configuring)) ||
471 				kthread_should_stop() ||
472 				(!adap->transmit_in_progress &&
473 				 !list_empty(&adap->transmit_queue)),
474 				msecs_to_jiffies(adap->xfer_timeout_ms));
475 			timeout = err == 0;
476 		} else {
477 			/* Otherwise we just wait for something to happen. */
478 			wait_event_interruptible(adap->kthread_waitq,
479 				kthread_should_stop() ||
480 				(!adap->transmit_in_progress &&
481 				 !list_empty(&adap->transmit_queue)));
482 		}
483 
484 		mutex_lock(&adap->lock);
485 
486 		if ((adap->needs_hpd &&
487 		     (!adap->is_configured && !adap->is_configuring)) ||
488 		    kthread_should_stop()) {
489 			cec_flush(adap);
490 			goto unlock;
491 		}
492 
493 		if (adap->transmit_in_progress &&
494 		    adap->transmit_in_progress_aborted) {
495 			if (adap->transmitting)
496 				cec_data_cancel(adap->transmitting,
497 						CEC_TX_STATUS_ABORTED, 0);
498 			adap->transmit_in_progress = false;
499 			adap->transmit_in_progress_aborted = false;
500 			goto unlock;
501 		}
502 		if (adap->transmit_in_progress && timeout) {
503 			/*
504 			 * If we timeout, then log that. Normally this does
505 			 * not happen and it is an indication of a faulty CEC
506 			 * adapter driver, or the CEC bus is in some weird
507 			 * state. On rare occasions it can happen if there is
508 			 * so much traffic on the bus that the adapter was
509 			 * unable to transmit for xfer_timeout_ms (2.1s by
510 			 * default).
511 			 */
512 			if (adap->transmitting) {
513 				pr_warn("cec-%s: message %*ph timed out\n", adap->name,
514 					adap->transmitting->msg.len,
515 					adap->transmitting->msg.msg);
516 				/* Just give up on this. */
517 				cec_data_cancel(adap->transmitting,
518 						CEC_TX_STATUS_TIMEOUT, 0);
519 			} else {
520 				pr_warn("cec-%s: transmit timed out\n", adap->name);
521 			}
522 			adap->transmit_in_progress = false;
523 			adap->tx_timeout_cnt++;
524 			goto unlock;
525 		}
526 
527 		/*
528 		 * If we are still transmitting, or there is nothing new to
529 		 * transmit, then just continue waiting.
530 		 */
531 		if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
532 			goto unlock;
533 
534 		/* Get a new message to transmit */
535 		data = list_first_entry(&adap->transmit_queue,
536 					struct cec_data, list);
537 		list_del_init(&data->list);
538 		if (!WARN_ON(!data->adap->transmit_queue_sz))
539 			adap->transmit_queue_sz--;
540 
541 		/* Make this the current transmitting message */
542 		adap->transmitting = data;
543 
544 		/*
545 		 * Suggested number of attempts as per the CEC 2.0 spec:
546 		 * 4 attempts is the default, except for 'secondary poll
547 		 * messages', i.e. poll messages not sent during the adapter
548 		 * configuration phase when it allocates logical addresses.
549 		 */
550 		if (data->msg.len == 1 && adap->is_configured)
551 			attempts = 2;
552 		else
553 			attempts = 4;
554 
555 		/* Set the suggested signal free time */
556 		if (data->attempts) {
557 			/* should be >= 3 data bit periods for a retry */
558 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
559 		} else if (adap->last_initiator !=
560 			   cec_msg_initiator(&data->msg)) {
561 			/* should be >= 5 data bit periods for new initiator */
562 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
563 			adap->last_initiator = cec_msg_initiator(&data->msg);
564 		} else {
565 			/*
566 			 * should be >= 7 data bit periods for sending another
567 			 * frame immediately after another.
568 			 */
569 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
570 		}
571 		if (data->attempts == 0)
572 			data->attempts = attempts;
573 
574 		adap->transmit_in_progress_aborted = false;
575 		/* Tell the adapter to transmit, cancel on error */
576 		if (call_op(adap, adap_transmit, data->attempts,
577 			    signal_free_time, &data->msg))
578 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
579 		else
580 			adap->transmit_in_progress = true;
581 
582 unlock:
583 		mutex_unlock(&adap->lock);
584 
585 		if (kthread_should_stop())
586 			break;
587 	}
588 	return 0;
589 }
590 
591 /*
592  * Called by the CEC adapter if a transmit finished.
593  */
594 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
595 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
596 			  u8 error_cnt, ktime_t ts)
597 {
598 	struct cec_data *data;
599 	struct cec_msg *msg;
600 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
601 				     low_drive_cnt + error_cnt;
602 	bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
603 	bool aborted = adap->transmit_in_progress_aborted;
604 
605 	dprintk(2, "%s: status 0x%02x\n", __func__, status);
606 	if (attempts_made < 1)
607 		attempts_made = 1;
608 
609 	mutex_lock(&adap->lock);
610 	data = adap->transmitting;
611 	if (!data) {
612 		/*
613 		 * This might happen if a transmit was issued and the cable is
614 		 * unplugged while the transmit is ongoing. Ignore this
615 		 * transmit in that case.
616 		 */
617 		if (!adap->transmit_in_progress)
618 			dprintk(1, "%s was called without an ongoing transmit!\n",
619 				__func__);
620 		adap->transmit_in_progress = false;
621 		goto wake_thread;
622 	}
623 	adap->transmit_in_progress = false;
624 	adap->transmit_in_progress_aborted = false;
625 
626 	msg = &data->msg;
627 
628 	/* Drivers must fill in the status! */
629 	WARN_ON(status == 0);
630 	msg->tx_ts = ktime_to_ns(ts);
631 	msg->tx_status |= status;
632 	msg->tx_arb_lost_cnt += arb_lost_cnt;
633 	msg->tx_nack_cnt += nack_cnt;
634 	msg->tx_low_drive_cnt += low_drive_cnt;
635 	msg->tx_error_cnt += error_cnt;
636 
637 	adap->tx_arb_lost_cnt += arb_lost_cnt;
638 	adap->tx_low_drive_cnt += low_drive_cnt;
639 	adap->tx_error_cnt += error_cnt;
640 
641 	/*
642 	 * Low Drive transmission errors should really not happen for
643 	 * well-behaved CEC devices and proper HDMI cables.
644 	 *
645 	 * Ditto for the 'Error' status.
646 	 *
647 	 * For the first few times that this happens, log this.
648 	 * Stop logging after that, since that will not add any more
649 	 * useful information and instead it will just flood the kernel log.
650 	 */
651 	if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) {
652 		adap->tx_low_drive_log_cnt++;
653 		dprintk(0, "low drive counter: %u (seq %u: %*ph)\n",
654 			msg->tx_low_drive_cnt, msg->sequence,
655 			msg->len, msg->msg);
656 	}
657 	if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) {
658 		adap->tx_error_log_cnt++;
659 		dprintk(0, "error counter: %u (seq %u: %*ph)\n",
660 			msg->tx_error_cnt, msg->sequence,
661 			msg->len, msg->msg);
662 	}
663 
664 	/* Mark that we're done with this transmit */
665 	adap->transmitting = NULL;
666 
667 	/*
668 	 * If there are still retry attempts left and there was an error and
669 	 * the hardware didn't signal that it retried itself (by setting
670 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
671 	 */
672 	if (!aborted && data->attempts > attempts_made && !done) {
673 		/* Retry this message */
674 		data->attempts -= attempts_made;
675 		if (msg->timeout)
676 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for %*ph)\n",
677 				msg->len, msg->msg, data->attempts,
678 				data->match_len, data->match_reply);
679 		else
680 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
681 				msg->len, msg->msg, data->attempts);
682 		/* Add the message in front of the transmit queue */
683 		list_add(&data->list, &adap->transmit_queue);
684 		adap->transmit_queue_sz++;
685 		goto wake_thread;
686 	}
687 
688 	if (aborted && !done)
689 		status |= CEC_TX_STATUS_ABORTED;
690 	data->attempts = 0;
691 
692 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
693 	if (!(status & CEC_TX_STATUS_OK))
694 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
695 
696 	/* Queue transmitted message for monitoring purposes */
697 	cec_queue_msg_monitor(adap, msg, 1);
698 
699 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
700 	    msg->timeout) {
701 		/*
702 		 * Queue the message into the wait queue if we want to wait
703 		 * for a reply.
704 		 */
705 		list_add_tail(&data->list, &adap->wait_queue);
706 		schedule_delayed_work(&data->work,
707 				      msecs_to_jiffies(msg->timeout));
708 	} else {
709 		/* Otherwise we're done */
710 		cec_data_completed(data);
711 	}
712 
713 wake_thread:
714 	/*
715 	 * Wake up the main thread to see if another message is ready
716 	 * for transmitting or to retry the current message.
717 	 */
718 	wake_up_interruptible(&adap->kthread_waitq);
719 	mutex_unlock(&adap->lock);
720 }
721 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
722 
723 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
724 				  u8 status, ktime_t ts)
725 {
726 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
727 	case CEC_TX_STATUS_OK:
728 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
729 		return;
730 	case CEC_TX_STATUS_ARB_LOST:
731 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
732 		return;
733 	case CEC_TX_STATUS_NACK:
734 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
735 		return;
736 	case CEC_TX_STATUS_LOW_DRIVE:
737 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
738 		return;
739 	case CEC_TX_STATUS_ERROR:
740 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
741 		return;
742 	default:
743 		/* Should never happen */
744 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
745 		return;
746 	}
747 }
748 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
749 
750 /*
751  * Called when waiting for a reply times out.
752  */
753 static void cec_wait_timeout(struct work_struct *work)
754 {
755 	struct cec_data *data = container_of(work, struct cec_data, work.work);
756 	struct cec_adapter *adap = data->adap;
757 
758 	mutex_lock(&adap->lock);
759 	/*
760 	 * Sanity check in case the timeout and the arrival of the message
761 	 * happened at the same time.
762 	 */
763 	if (list_empty(&data->list))
764 		goto unlock;
765 
766 	/* Mark the message as timed out */
767 	list_del_init(&data->list);
768 	cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
769 unlock:
770 	mutex_unlock(&adap->lock);
771 }
772 
773 /*
774  * Transmit a message. The fh argument may be NULL if the transmit is not
775  * associated with a specific filehandle.
776  *
777  * This function is called with adap->lock held.
778  */
779 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
780 			struct cec_fh *fh, bool block)
781 {
782 	struct cec_data *data;
783 	bool is_raw = msg_is_raw(msg);
784 	bool reply_vendor_id = (msg->flags & CEC_MSG_FL_REPLY_VENDOR_ID) &&
785 		msg->len > 1 && msg->msg[1] == CEC_MSG_VENDOR_COMMAND_WITH_ID;
786 	int err;
787 
788 	if (adap->devnode.unregistered)
789 		return -ENODEV;
790 
791 	msg->rx_ts = 0;
792 	msg->tx_ts = 0;
793 	msg->rx_status = 0;
794 	msg->tx_status = 0;
795 	msg->tx_arb_lost_cnt = 0;
796 	msg->tx_nack_cnt = 0;
797 	msg->tx_low_drive_cnt = 0;
798 	msg->tx_error_cnt = 0;
799 	msg->sequence = 0;
800 	msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW |
801 		      (reply_vendor_id ? CEC_MSG_FL_REPLY_VENDOR_ID : 0);
802 
803 	if ((reply_vendor_id || msg->reply) && msg->timeout == 0) {
804 		/* Make sure the timeout isn't 0. */
805 		msg->timeout = 1000;
806 	}
807 
808 	if (!msg->timeout)
809 		msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
810 
811 	/* Sanity checks */
812 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
813 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
814 		return -EINVAL;
815 	}
816 	if (reply_vendor_id && msg->len < 6) {
817 		dprintk(1, "%s: <Vendor Command With ID> message too short\n",
818 			__func__);
819 		return -EINVAL;
820 	}
821 
822 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
823 
824 	if (msg->timeout)
825 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
826 			__func__, msg->len, msg->msg, msg->reply,
827 			!block ? ", nb" : "");
828 	else
829 		dprintk(2, "%s: %*ph%s\n",
830 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
831 
832 	if (msg->timeout && msg->len == 1) {
833 		dprintk(1, "%s: can't reply to poll msg\n", __func__);
834 		return -EINVAL;
835 	}
836 
837 	if (is_raw) {
838 		if (!capable(CAP_SYS_RAWIO))
839 			return -EPERM;
840 	} else {
841 		/* A CDC-Only device can only send CDC messages */
842 		if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
843 		    (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
844 			dprintk(1, "%s: not a CDC message\n", __func__);
845 			return -EINVAL;
846 		}
847 
848 		if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
849 			msg->msg[2] = adap->phys_addr >> 8;
850 			msg->msg[3] = adap->phys_addr & 0xff;
851 		}
852 
853 		if (msg->len == 1) {
854 			if (cec_msg_destination(msg) == 0xf) {
855 				dprintk(1, "%s: invalid poll message\n",
856 					__func__);
857 				return -EINVAL;
858 			}
859 			if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
860 				/*
861 				 * If the destination is a logical address our
862 				 * adapter has already claimed, then just NACK
863 				 * this. It depends on the hardware what it will
864 				 * do with a POLL to itself (some OK this), so
865 				 * it is just as easy to handle it here so the
866 				 * behavior will be consistent.
867 				 */
868 				msg->tx_ts = ktime_get_ns();
869 				msg->tx_status = CEC_TX_STATUS_NACK |
870 					CEC_TX_STATUS_MAX_RETRIES;
871 				msg->tx_nack_cnt = 1;
872 				msg->sequence = ++adap->sequence;
873 				if (!msg->sequence)
874 					msg->sequence = ++adap->sequence;
875 				return 0;
876 			}
877 		}
878 		if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
879 		    cec_has_log_addr(adap, cec_msg_destination(msg))) {
880 			dprintk(1, "%s: destination is the adapter itself\n",
881 				__func__);
882 			return -EINVAL;
883 		}
884 		if (msg->len > 1 && adap->is_configured &&
885 		    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
886 			dprintk(1, "%s: initiator has unknown logical address %d\n",
887 				__func__, cec_msg_initiator(msg));
888 			return -EINVAL;
889 		}
890 		/*
891 		 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
892 		 * transmitted to a TV, even if the adapter is unconfigured.
893 		 * This makes it possible to detect or wake up displays that
894 		 * pull down the HPD when in standby.
895 		 */
896 		if (!adap->is_configured && !adap->is_configuring &&
897 		    (msg->len > 2 ||
898 		     cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
899 		     (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
900 		      msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
901 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
902 			return -ENONET;
903 		}
904 	}
905 
906 	if (!adap->is_configured && !adap->is_configuring) {
907 		if (adap->needs_hpd) {
908 			dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
909 				__func__);
910 			return -ENONET;
911 		}
912 		if (reply_vendor_id || msg->reply) {
913 			dprintk(1, "%s: adapter is unconfigured so reply is not supported\n",
914 				__func__);
915 			return -EINVAL;
916 		}
917 	}
918 
919 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
920 		dprintk(2, "%s: transmit queue full\n", __func__);
921 		return -EBUSY;
922 	}
923 
924 	data = kzalloc(sizeof(*data), GFP_KERNEL);
925 	if (!data)
926 		return -ENOMEM;
927 
928 	msg->sequence = ++adap->sequence;
929 	if (!msg->sequence)
930 		msg->sequence = ++adap->sequence;
931 
932 	data->msg = *msg;
933 	data->fh = fh;
934 	data->adap = adap;
935 	data->blocking = block;
936 	if (reply_vendor_id) {
937 		memcpy(data->match_reply, msg->msg + 1, 4);
938 		data->match_reply[4] = msg->reply;
939 		data->match_len = 5;
940 	} else if (msg->timeout) {
941 		data->match_reply[0] = msg->reply;
942 		data->match_len = 1;
943 	}
944 
945 	init_completion(&data->c);
946 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
947 
948 	if (fh)
949 		list_add_tail(&data->xfer_list, &fh->xfer_list);
950 	else
951 		INIT_LIST_HEAD(&data->xfer_list);
952 
953 	list_add_tail(&data->list, &adap->transmit_queue);
954 	adap->transmit_queue_sz++;
955 	if (!adap->transmitting)
956 		wake_up_interruptible(&adap->kthread_waitq);
957 
958 	/* All done if we don't need to block waiting for completion */
959 	if (!block)
960 		return 0;
961 
962 	/*
963 	 * Release the lock and wait, retake the lock afterwards.
964 	 */
965 	mutex_unlock(&adap->lock);
966 	err = wait_for_completion_killable(&data->c);
967 	cancel_delayed_work_sync(&data->work);
968 	mutex_lock(&adap->lock);
969 
970 	if (err)
971 		adap->transmit_in_progress_aborted = true;
972 
973 	/* Cancel the transmit if it was interrupted */
974 	if (!data->completed) {
975 		if (data->msg.tx_status & CEC_TX_STATUS_OK)
976 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
977 		else
978 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
979 	}
980 
981 	/* The transmit completed (possibly with an error) */
982 	*msg = data->msg;
983 	if (WARN_ON(!list_empty(&data->list)))
984 		list_del(&data->list);
985 	if (WARN_ON(!list_empty(&data->xfer_list)))
986 		list_del(&data->xfer_list);
987 	kfree(data);
988 	return 0;
989 }
990 
991 /* Helper function to be used by drivers and this framework. */
992 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
993 		     bool block)
994 {
995 	int ret;
996 
997 	mutex_lock(&adap->lock);
998 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
999 	mutex_unlock(&adap->lock);
1000 	return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(cec_transmit_msg);
1003 
1004 /*
1005  * I don't like forward references but without this the low-level
1006  * cec_received_msg() function would come after a bunch of high-level
1007  * CEC protocol handling functions. That was very confusing.
1008  */
1009 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1010 			      bool is_reply);
1011 
1012 #define DIRECTED	0x80
1013 #define BCAST1_4	0x40
1014 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
1015 #define BCAST		(BCAST1_4 | BCAST2_0)
1016 #define BOTH		(BCAST | DIRECTED)
1017 
1018 /*
1019  * Specify minimum length and whether the message is directed, broadcast
1020  * or both. Messages that do not match the criteria are ignored as per
1021  * the CEC specification.
1022  */
1023 static const u8 cec_msg_size[256] = {
1024 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
1025 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
1026 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
1027 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
1028 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
1029 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
1030 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
1031 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
1032 	[CEC_MSG_STANDBY] = 2 | BOTH,
1033 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
1034 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
1035 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
1036 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
1037 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
1038 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
1039 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
1040 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
1041 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
1042 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
1043 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
1044 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
1045 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
1046 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
1047 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
1048 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
1049 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
1050 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
1051 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
1052 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
1053 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
1054 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
1055 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
1056 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1057 	[CEC_MSG_PLAY] = 3 | DIRECTED,
1058 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1059 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1060 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1061 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1062 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1063 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1064 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1065 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1066 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1067 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1068 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1069 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1070 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1071 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1072 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1073 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1074 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1075 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1076 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1077 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1078 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1079 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1080 	[CEC_MSG_ABORT] = 2 | DIRECTED,
1081 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1082 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1083 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1084 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1085 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1086 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1087 	[CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1088 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1089 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1090 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1091 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1092 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1093 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1094 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1095 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1096 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1097 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1098 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1099 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1100 };
1101 
1102 /* Called by the CEC adapter if a message is received */
1103 void cec_received_msg_ts(struct cec_adapter *adap,
1104 			 struct cec_msg *msg, ktime_t ts)
1105 {
1106 	struct cec_data *data;
1107 	u8 msg_init = cec_msg_initiator(msg);
1108 	u8 msg_dest = cec_msg_destination(msg);
1109 	u8 cmd = msg->msg[1];
1110 	bool is_reply = false;
1111 	bool valid_la = true;
1112 	bool monitor_valid_la = true;
1113 	u8 min_len = 0;
1114 
1115 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1116 		return;
1117 
1118 	if (adap->devnode.unregistered)
1119 		return;
1120 
1121 	/*
1122 	 * Some CEC adapters will receive the messages that they transmitted.
1123 	 * This test filters out those messages by checking if we are the
1124 	 * initiator, and just returning in that case.
1125 	 *
1126 	 * Note that this won't work if this is an Unregistered device.
1127 	 *
1128 	 * It is bad practice if the hardware receives the message that it
1129 	 * transmitted and luckily most CEC adapters behave correctly in this
1130 	 * respect.
1131 	 */
1132 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1133 	    cec_has_log_addr(adap, msg_init))
1134 		return;
1135 
1136 	msg->rx_ts = ktime_to_ns(ts);
1137 	msg->rx_status = CEC_RX_STATUS_OK;
1138 	msg->sequence = msg->reply = msg->timeout = 0;
1139 	msg->tx_status = 0;
1140 	msg->tx_ts = 0;
1141 	msg->tx_arb_lost_cnt = 0;
1142 	msg->tx_nack_cnt = 0;
1143 	msg->tx_low_drive_cnt = 0;
1144 	msg->tx_error_cnt = 0;
1145 	msg->flags = 0;
1146 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1147 
1148 	mutex_lock(&adap->lock);
1149 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1150 
1151 	if (!adap->transmit_in_progress)
1152 		adap->last_initiator = 0xff;
1153 
1154 	/* Check if this message was for us (directed or broadcast). */
1155 	if (!cec_msg_is_broadcast(msg)) {
1156 		valid_la = cec_has_log_addr(adap, msg_dest);
1157 		monitor_valid_la = valid_la;
1158 	}
1159 
1160 	/*
1161 	 * Check if the length is not too short or if the message is a
1162 	 * broadcast message where a directed message was expected or
1163 	 * vice versa. If so, then the message has to be ignored (according
1164 	 * to section CEC 7.3 and CEC 12.2).
1165 	 */
1166 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1167 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1168 
1169 		min_len = cec_msg_size[cmd] & 0x1f;
1170 		if (msg->len < min_len)
1171 			valid_la = false;
1172 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1173 			valid_la = false;
1174 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1175 			valid_la = false;
1176 		else if (cec_msg_is_broadcast(msg) &&
1177 			 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1178 			 !(dir_fl & BCAST1_4))
1179 			valid_la = false;
1180 	}
1181 	if (valid_la && min_len) {
1182 		/* These messages have special length requirements */
1183 		switch (cmd) {
1184 		case CEC_MSG_RECORD_ON:
1185 			switch (msg->msg[2]) {
1186 			case CEC_OP_RECORD_SRC_OWN:
1187 				break;
1188 			case CEC_OP_RECORD_SRC_DIGITAL:
1189 				if (msg->len < 10)
1190 					valid_la = false;
1191 				break;
1192 			case CEC_OP_RECORD_SRC_ANALOG:
1193 				if (msg->len < 7)
1194 					valid_la = false;
1195 				break;
1196 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1197 				if (msg->len < 4)
1198 					valid_la = false;
1199 				break;
1200 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1201 				if (msg->len < 5)
1202 					valid_la = false;
1203 				break;
1204 			}
1205 			break;
1206 		}
1207 	}
1208 
1209 	/* It's a valid message and not a poll or CDC message */
1210 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1211 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1212 
1213 		/* The aborted command is in msg[2] */
1214 		if (abort)
1215 			cmd = msg->msg[2];
1216 
1217 		/*
1218 		 * Walk over all transmitted messages that are waiting for a
1219 		 * reply.
1220 		 */
1221 		list_for_each_entry(data, &adap->wait_queue, list) {
1222 			struct cec_msg *dst = &data->msg;
1223 
1224 			/*
1225 			 * The *only* CEC message that has two possible replies
1226 			 * is CEC_MSG_INITIATE_ARC.
1227 			 * In this case allow either of the two replies.
1228 			 */
1229 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1230 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1231 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1232 			    (data->match_reply[0] == CEC_MSG_REPORT_ARC_INITIATED ||
1233 			     data->match_reply[0] == CEC_MSG_REPORT_ARC_TERMINATED)) {
1234 				dst->reply = cmd;
1235 				data->match_reply[0] = cmd;
1236 			}
1237 
1238 			/* Does the command match? */
1239 			if ((abort && cmd != dst->msg[1]) ||
1240 			    (!abort && memcmp(data->match_reply, msg->msg + 1, data->match_len)))
1241 				continue;
1242 
1243 			/* Does the addressing match? */
1244 			if (msg_init != cec_msg_destination(dst) &&
1245 			    !cec_msg_is_broadcast(dst))
1246 				continue;
1247 
1248 			/* We got a reply */
1249 			memcpy(dst->msg, msg->msg, msg->len);
1250 			dst->len = msg->len;
1251 			dst->rx_ts = msg->rx_ts;
1252 			dst->rx_status = msg->rx_status;
1253 			if (abort)
1254 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1255 			msg->flags = dst->flags;
1256 			msg->sequence = dst->sequence;
1257 			/* Remove it from the wait_queue */
1258 			list_del_init(&data->list);
1259 
1260 			/* Cancel the pending timeout work */
1261 			if (!cancel_delayed_work(&data->work)) {
1262 				mutex_unlock(&adap->lock);
1263 				cancel_delayed_work_sync(&data->work);
1264 				mutex_lock(&adap->lock);
1265 			}
1266 			/*
1267 			 * Mark this as a reply, provided someone is still
1268 			 * waiting for the answer.
1269 			 */
1270 			if (data->fh)
1271 				is_reply = true;
1272 			cec_data_completed(data);
1273 			break;
1274 		}
1275 	}
1276 	mutex_unlock(&adap->lock);
1277 
1278 	/* Pass the message on to any monitoring filehandles */
1279 	cec_queue_msg_monitor(adap, msg, monitor_valid_la);
1280 
1281 	/* We're done if it is not for us or a poll message */
1282 	if (!valid_la || msg->len <= 1)
1283 		return;
1284 
1285 	if (adap->log_addrs.log_addr_mask == 0)
1286 		return;
1287 
1288 	/*
1289 	 * Process the message on the protocol level. If is_reply is true,
1290 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1291 	 * since that was already done by cec_data_completed() above.
1292 	 */
1293 	cec_receive_notify(adap, msg, is_reply);
1294 }
1295 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1296 
1297 /* Logical Address Handling */
1298 
1299 /*
1300  * Attempt to claim a specific logical address.
1301  *
1302  * This function is called with adap->lock held.
1303  */
1304 static int cec_config_log_addr(struct cec_adapter *adap,
1305 			       unsigned int idx,
1306 			       unsigned int log_addr)
1307 {
1308 	struct cec_log_addrs *las = &adap->log_addrs;
1309 	struct cec_msg msg = { };
1310 	const unsigned int max_retries = 2;
1311 	unsigned int i;
1312 	int err;
1313 
1314 	if (cec_has_log_addr(adap, log_addr))
1315 		return 0;
1316 
1317 	/* Send poll message */
1318 	msg.len = 1;
1319 	msg.msg[0] = (log_addr << 4) | log_addr;
1320 
1321 	for (i = 0; i < max_retries; i++) {
1322 		err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1323 
1324 		/*
1325 		 * While trying to poll the physical address was reset
1326 		 * and the adapter was unconfigured, so bail out.
1327 		 */
1328 		if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1329 			return -EINTR;
1330 
1331 		/* Also bail out if the PA changed while configuring. */
1332 		if (adap->must_reconfigure)
1333 			return -EINTR;
1334 
1335 		if (err)
1336 			return err;
1337 
1338 		/*
1339 		 * The message was aborted or timed out due to a disconnect or
1340 		 * unconfigure, just bail out.
1341 		 */
1342 		if (msg.tx_status &
1343 		    (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1344 			return -EINTR;
1345 		if (msg.tx_status & CEC_TX_STATUS_OK)
1346 			return 0;
1347 		if (msg.tx_status & CEC_TX_STATUS_NACK)
1348 			break;
1349 		/*
1350 		 * Retry up to max_retries times if the message was neither
1351 		 * OKed or NACKed. This can happen due to e.g. a Lost
1352 		 * Arbitration condition.
1353 		 */
1354 	}
1355 
1356 	/*
1357 	 * If we are unable to get an OK or a NACK after max_retries attempts
1358 	 * (and note that each attempt already consists of four polls), then
1359 	 * we assume that something is really weird and that it is not a
1360 	 * good idea to try and claim this logical address.
1361 	 */
1362 	if (i == max_retries) {
1363 		dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1364 			log_addr, msg.tx_status);
1365 		return 0;
1366 	}
1367 
1368 	/*
1369 	 * Message not acknowledged, so this logical
1370 	 * address is free to use.
1371 	 */
1372 	err = call_op(adap, adap_log_addr, log_addr);
1373 	if (err)
1374 		return err;
1375 
1376 	las->log_addr[idx] = log_addr;
1377 	las->log_addr_mask |= 1 << log_addr;
1378 	return 1;
1379 }
1380 
1381 /*
1382  * Unconfigure the adapter: clear all logical addresses and send
1383  * the state changed event.
1384  *
1385  * This function is called with adap->lock held.
1386  */
1387 static void cec_adap_unconfigure(struct cec_adapter *adap)
1388 {
1389 	if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1390 		WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1391 	adap->log_addrs.log_addr_mask = 0;
1392 	adap->is_configured = false;
1393 	cec_flush(adap);
1394 	wake_up_interruptible(&adap->kthread_waitq);
1395 	cec_post_state_event(adap);
1396 	call_void_op(adap, adap_unconfigured);
1397 }
1398 
1399 /*
1400  * Attempt to claim the required logical addresses.
1401  */
1402 static int cec_config_thread_func(void *arg)
1403 {
1404 	/* The various LAs for each type of device */
1405 	static const u8 tv_log_addrs[] = {
1406 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1407 		CEC_LOG_ADDR_INVALID
1408 	};
1409 	static const u8 record_log_addrs[] = {
1410 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1411 		CEC_LOG_ADDR_RECORD_3,
1412 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1413 		CEC_LOG_ADDR_INVALID
1414 	};
1415 	static const u8 tuner_log_addrs[] = {
1416 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1417 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1418 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1419 		CEC_LOG_ADDR_INVALID
1420 	};
1421 	static const u8 playback_log_addrs[] = {
1422 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1423 		CEC_LOG_ADDR_PLAYBACK_3,
1424 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1425 		CEC_LOG_ADDR_INVALID
1426 	};
1427 	static const u8 audiosystem_log_addrs[] = {
1428 		CEC_LOG_ADDR_AUDIOSYSTEM,
1429 		CEC_LOG_ADDR_INVALID
1430 	};
1431 	static const u8 specific_use_log_addrs[] = {
1432 		CEC_LOG_ADDR_SPECIFIC,
1433 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1434 		CEC_LOG_ADDR_INVALID
1435 	};
1436 	static const u8 *type2addrs[6] = {
1437 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1438 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1439 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1440 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1441 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1442 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1443 	};
1444 	static const u16 type2mask[] = {
1445 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1446 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1447 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1448 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1449 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1450 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1451 	};
1452 	struct cec_adapter *adap = arg;
1453 	struct cec_log_addrs *las = &adap->log_addrs;
1454 	int err;
1455 	int i, j;
1456 
1457 	mutex_lock(&adap->lock);
1458 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1459 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1460 	las->log_addr_mask = 0;
1461 
1462 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1463 		goto configured;
1464 
1465 reconfigure:
1466 	for (i = 0; i < las->num_log_addrs; i++) {
1467 		unsigned int type = las->log_addr_type[i];
1468 		const u8 *la_list;
1469 		u8 last_la;
1470 
1471 		/*
1472 		 * The TV functionality can only map to physical address 0.
1473 		 * For any other address, try the Specific functionality
1474 		 * instead as per the spec.
1475 		 */
1476 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1477 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1478 
1479 		la_list = type2addrs[type];
1480 		last_la = las->log_addr[i];
1481 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1482 		if (last_la == CEC_LOG_ADDR_INVALID ||
1483 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1484 		    !((1 << last_la) & type2mask[type]))
1485 			last_la = la_list[0];
1486 
1487 		err = cec_config_log_addr(adap, i, last_la);
1488 
1489 		if (adap->must_reconfigure) {
1490 			adap->must_reconfigure = false;
1491 			las->log_addr_mask = 0;
1492 			goto reconfigure;
1493 		}
1494 
1495 		if (err > 0) /* Reused last LA */
1496 			continue;
1497 
1498 		if (err < 0)
1499 			goto unconfigure;
1500 
1501 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1502 			/* Tried this one already, skip it */
1503 			if (la_list[j] == last_la)
1504 				continue;
1505 			/* The backup addresses are CEC 2.0 specific */
1506 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1507 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1508 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1509 				continue;
1510 
1511 			err = cec_config_log_addr(adap, i, la_list[j]);
1512 			if (err == 0) /* LA is in use */
1513 				continue;
1514 			if (err < 0)
1515 				goto unconfigure;
1516 			/* Done, claimed an LA */
1517 			break;
1518 		}
1519 
1520 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1521 			dprintk(1, "could not claim LA %d\n", i);
1522 	}
1523 
1524 	if (adap->log_addrs.log_addr_mask == 0 &&
1525 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1526 		goto unconfigure;
1527 
1528 configured:
1529 	if (adap->log_addrs.log_addr_mask == 0) {
1530 		/* Fall back to unregistered */
1531 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1532 		las->log_addr_mask = 1 << las->log_addr[0];
1533 		for (i = 1; i < las->num_log_addrs; i++)
1534 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1535 	}
1536 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1537 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1538 	adap->is_configured = true;
1539 	adap->is_configuring = false;
1540 	adap->must_reconfigure = false;
1541 	cec_post_state_event(adap);
1542 
1543 	/*
1544 	 * Now post the Report Features and Report Physical Address broadcast
1545 	 * messages. Note that these are non-blocking transmits, meaning that
1546 	 * they are just queued up and once adap->lock is unlocked the main
1547 	 * thread will kick in and start transmitting these.
1548 	 *
1549 	 * If after this function is done (but before one or more of these
1550 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1551 	 * then any remaining messages will be dropped by the main thread.
1552 	 */
1553 	for (i = 0; i < las->num_log_addrs; i++) {
1554 		struct cec_msg msg = {};
1555 
1556 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1557 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1558 			continue;
1559 
1560 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1561 
1562 		/* Report Features must come first according to CEC 2.0 */
1563 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1564 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1565 			cec_fill_msg_report_features(adap, &msg, i);
1566 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1567 		}
1568 
1569 		/* Report Physical Address */
1570 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1571 					     las->primary_device_type[i]);
1572 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1573 			las->log_addr[i],
1574 			cec_phys_addr_exp(adap->phys_addr));
1575 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1576 
1577 		/* Report Vendor ID */
1578 		if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1579 			cec_msg_device_vendor_id(&msg,
1580 						 adap->log_addrs.vendor_id);
1581 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1582 		}
1583 	}
1584 	adap->kthread_config = NULL;
1585 	complete(&adap->config_completion);
1586 	mutex_unlock(&adap->lock);
1587 	call_void_op(adap, configured);
1588 	return 0;
1589 
1590 unconfigure:
1591 	for (i = 0; i < las->num_log_addrs; i++)
1592 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1593 	cec_adap_unconfigure(adap);
1594 	adap->is_configuring = false;
1595 	adap->must_reconfigure = false;
1596 	adap->kthread_config = NULL;
1597 	complete(&adap->config_completion);
1598 	mutex_unlock(&adap->lock);
1599 	return 0;
1600 }
1601 
1602 /*
1603  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1604  * logical addresses.
1605  *
1606  * This function is called with adap->lock held.
1607  */
1608 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1609 {
1610 	if (WARN_ON(adap->is_claiming_log_addrs ||
1611 		    adap->is_configuring || adap->is_configured))
1612 		return;
1613 
1614 	adap->is_claiming_log_addrs = true;
1615 
1616 	init_completion(&adap->config_completion);
1617 
1618 	/* Ready to kick off the thread */
1619 	adap->is_configuring = true;
1620 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1621 					   "ceccfg-%s", adap->name);
1622 	if (IS_ERR(adap->kthread_config)) {
1623 		adap->kthread_config = NULL;
1624 		adap->is_configuring = false;
1625 	} else if (block) {
1626 		mutex_unlock(&adap->lock);
1627 		wait_for_completion(&adap->config_completion);
1628 		mutex_lock(&adap->lock);
1629 	}
1630 	adap->is_claiming_log_addrs = false;
1631 }
1632 
1633 /*
1634  * Helper function to enable/disable the CEC adapter.
1635  *
1636  * This function is called with adap->lock held.
1637  */
1638 int cec_adap_enable(struct cec_adapter *adap)
1639 {
1640 	bool enable;
1641 	int ret = 0;
1642 
1643 	enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1644 		 adap->log_addrs.num_log_addrs;
1645 	if (adap->needs_hpd)
1646 		enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1647 
1648 	if (adap->devnode.unregistered)
1649 		enable = false;
1650 
1651 	if (enable == adap->is_enabled)
1652 		return 0;
1653 
1654 	/* serialize adap_enable */
1655 	mutex_lock(&adap->devnode.lock);
1656 	if (enable) {
1657 		adap->last_initiator = 0xff;
1658 		adap->transmit_in_progress = false;
1659 		adap->tx_low_drive_log_cnt = 0;
1660 		adap->tx_error_log_cnt = 0;
1661 		ret = adap->ops->adap_enable(adap, true);
1662 		if (!ret) {
1663 			/*
1664 			 * Enable monitor-all/pin modes if needed. We warn, but
1665 			 * continue if this fails as this is not a critical error.
1666 			 */
1667 			if (adap->monitor_all_cnt)
1668 				WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1669 			if (adap->monitor_pin_cnt)
1670 				WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1671 		}
1672 	} else {
1673 		/* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1674 		if (adap->monitor_all_cnt)
1675 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1676 		if (adap->monitor_pin_cnt)
1677 			WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1678 		WARN_ON(adap->ops->adap_enable(adap, false));
1679 		adap->last_initiator = 0xff;
1680 		adap->transmit_in_progress = false;
1681 		adap->transmit_in_progress_aborted = false;
1682 		if (adap->transmitting)
1683 			cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0);
1684 	}
1685 	if (!ret)
1686 		adap->is_enabled = enable;
1687 	wake_up_interruptible(&adap->kthread_waitq);
1688 	mutex_unlock(&adap->devnode.lock);
1689 	return ret;
1690 }
1691 
1692 /* Set a new physical address and send an event notifying userspace of this.
1693  *
1694  * This function is called with adap->lock held.
1695  */
1696 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1697 {
1698 	bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1699 	bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1700 
1701 	if (phys_addr == adap->phys_addr)
1702 		return;
1703 	if (!becomes_invalid && adap->devnode.unregistered)
1704 		return;
1705 
1706 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1707 		cec_phys_addr_exp(phys_addr));
1708 	if (becomes_invalid || !is_invalid) {
1709 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1710 		cec_post_state_event(adap);
1711 		cec_adap_unconfigure(adap);
1712 		if (becomes_invalid) {
1713 			cec_adap_enable(adap);
1714 			return;
1715 		}
1716 	}
1717 
1718 	adap->phys_addr = phys_addr;
1719 	if (is_invalid)
1720 		cec_adap_enable(adap);
1721 
1722 	cec_post_state_event(adap);
1723 	if (!adap->log_addrs.num_log_addrs)
1724 		return;
1725 	if (adap->is_configuring)
1726 		adap->must_reconfigure = true;
1727 	else
1728 		cec_claim_log_addrs(adap, block);
1729 }
1730 
1731 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1732 {
1733 	if (IS_ERR_OR_NULL(adap))
1734 		return;
1735 
1736 	mutex_lock(&adap->lock);
1737 	__cec_s_phys_addr(adap, phys_addr, block);
1738 	mutex_unlock(&adap->lock);
1739 }
1740 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1741 
1742 /*
1743  * Note: In the drm subsystem, prefer calling (if possible):
1744  *
1745  * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false);
1746  */
1747 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1748 			       const struct edid *edid)
1749 {
1750 	u16 pa = CEC_PHYS_ADDR_INVALID;
1751 
1752 	if (edid && edid->extensions)
1753 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1754 				EDID_LENGTH * (edid->extensions + 1), NULL);
1755 	cec_s_phys_addr(adap, pa, false);
1756 }
1757 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1758 
1759 void cec_s_conn_info(struct cec_adapter *adap,
1760 		     const struct cec_connector_info *conn_info)
1761 {
1762 	if (IS_ERR_OR_NULL(adap))
1763 		return;
1764 
1765 	if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1766 		return;
1767 
1768 	mutex_lock(&adap->lock);
1769 	if (conn_info)
1770 		adap->conn_info = *conn_info;
1771 	else
1772 		memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1773 	cec_post_state_event(adap);
1774 	mutex_unlock(&adap->lock);
1775 }
1776 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1777 
1778 /*
1779  * Called from either the ioctl or a driver to set the logical addresses.
1780  *
1781  * This function is called with adap->lock held.
1782  */
1783 int __cec_s_log_addrs(struct cec_adapter *adap,
1784 		      struct cec_log_addrs *log_addrs, bool block)
1785 {
1786 	u16 type_mask = 0;
1787 	int err;
1788 	int i;
1789 
1790 	if (adap->devnode.unregistered)
1791 		return -ENODEV;
1792 
1793 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1794 		if (!adap->log_addrs.num_log_addrs)
1795 			return 0;
1796 		if (adap->is_configuring || adap->is_configured)
1797 			cec_adap_unconfigure(adap);
1798 		adap->log_addrs.num_log_addrs = 0;
1799 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1800 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1801 		adap->log_addrs.osd_name[0] = '\0';
1802 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1803 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1804 		cec_adap_enable(adap);
1805 		return 0;
1806 	}
1807 
1808 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1809 		/*
1810 		 * Sanitize log_addrs fields if a CDC-Only device is
1811 		 * requested.
1812 		 */
1813 		log_addrs->num_log_addrs = 1;
1814 		log_addrs->osd_name[0] = '\0';
1815 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1816 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1817 		/*
1818 		 * This is just an internal convention since a CDC-Only device
1819 		 * doesn't have to be a switch. But switches already use
1820 		 * unregistered, so it makes some kind of sense to pick this
1821 		 * as the primary device. Since a CDC-Only device never sends
1822 		 * any 'normal' CEC messages this primary device type is never
1823 		 * sent over the CEC bus.
1824 		 */
1825 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1826 		log_addrs->all_device_types[0] = 0;
1827 		log_addrs->features[0][0] = 0;
1828 		log_addrs->features[0][1] = 0;
1829 	}
1830 
1831 	/* Ensure the osd name is 0-terminated */
1832 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1833 
1834 	/* Sanity checks */
1835 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1836 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1837 		return -EINVAL;
1838 	}
1839 
1840 	/*
1841 	 * Vendor ID is a 24 bit number, so check if the value is
1842 	 * within the correct range.
1843 	 */
1844 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1845 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1846 		dprintk(1, "invalid vendor ID\n");
1847 		return -EINVAL;
1848 	}
1849 
1850 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1851 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1852 		dprintk(1, "invalid CEC version\n");
1853 		return -EINVAL;
1854 	}
1855 
1856 	if (log_addrs->num_log_addrs > 1)
1857 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1858 			if (log_addrs->log_addr_type[i] ==
1859 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1860 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1861 				return -EINVAL;
1862 			}
1863 
1864 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1865 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1866 		u8 *features = log_addrs->features[i];
1867 		bool op_is_dev_features = false;
1868 		unsigned int j;
1869 
1870 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1871 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1872 			dprintk(1, "unknown logical address type\n");
1873 			return -EINVAL;
1874 		}
1875 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1876 			dprintk(1, "duplicate logical address type\n");
1877 			return -EINVAL;
1878 		}
1879 		type_mask |= 1 << log_addrs->log_addr_type[i];
1880 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1881 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1882 			/* Record already contains the playback functionality */
1883 			dprintk(1, "invalid record + playback combination\n");
1884 			return -EINVAL;
1885 		}
1886 		if (log_addrs->primary_device_type[i] >
1887 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1888 			dprintk(1, "unknown primary device type\n");
1889 			return -EINVAL;
1890 		}
1891 		if (log_addrs->primary_device_type[i] == 2) {
1892 			dprintk(1, "invalid primary device type\n");
1893 			return -EINVAL;
1894 		}
1895 		for (j = 0; j < feature_sz; j++) {
1896 			if ((features[j] & 0x80) == 0) {
1897 				if (op_is_dev_features)
1898 					break;
1899 				op_is_dev_features = true;
1900 			}
1901 		}
1902 		if (!op_is_dev_features || j == feature_sz) {
1903 			dprintk(1, "malformed features\n");
1904 			return -EINVAL;
1905 		}
1906 		/* Zero unused part of the feature array */
1907 		memset(features + j + 1, 0, feature_sz - j - 1);
1908 	}
1909 
1910 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1911 		if (log_addrs->num_log_addrs > 2) {
1912 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1913 			return -EINVAL;
1914 		}
1915 		if (log_addrs->num_log_addrs == 2) {
1916 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1917 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1918 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1919 				return -EINVAL;
1920 			}
1921 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1922 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1923 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1924 				return -EINVAL;
1925 			}
1926 		}
1927 	}
1928 
1929 	/* Zero unused LAs */
1930 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1931 		log_addrs->primary_device_type[i] = 0;
1932 		log_addrs->log_addr_type[i] = 0;
1933 		log_addrs->all_device_types[i] = 0;
1934 		memset(log_addrs->features[i], 0,
1935 		       sizeof(log_addrs->features[i]));
1936 	}
1937 
1938 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1939 	adap->log_addrs = *log_addrs;
1940 	err = cec_adap_enable(adap);
1941 	if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1942 		cec_claim_log_addrs(adap, block);
1943 	return err;
1944 }
1945 
1946 int cec_s_log_addrs(struct cec_adapter *adap,
1947 		    struct cec_log_addrs *log_addrs, bool block)
1948 {
1949 	int err;
1950 
1951 	mutex_lock(&adap->lock);
1952 	err = __cec_s_log_addrs(adap, log_addrs, block);
1953 	mutex_unlock(&adap->lock);
1954 	return err;
1955 }
1956 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1957 
1958 /* High-level core CEC message handling */
1959 
1960 /* Fill in the Report Features message */
1961 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1962 					 struct cec_msg *msg,
1963 					 unsigned int la_idx)
1964 {
1965 	const struct cec_log_addrs *las = &adap->log_addrs;
1966 	const u8 *features = las->features[la_idx];
1967 	bool op_is_dev_features = false;
1968 	unsigned int idx;
1969 
1970 	/* Report Features */
1971 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1972 	msg->len = 4;
1973 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1974 	msg->msg[2] = adap->log_addrs.cec_version;
1975 	msg->msg[3] = las->all_device_types[la_idx];
1976 
1977 	/* Write RC Profiles first, then Device Features */
1978 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1979 		msg->msg[msg->len++] = features[idx];
1980 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1981 			if (op_is_dev_features)
1982 				break;
1983 			op_is_dev_features = true;
1984 		}
1985 	}
1986 }
1987 
1988 /* Transmit the Feature Abort message */
1989 static int cec_feature_abort_reason(struct cec_adapter *adap,
1990 				    struct cec_msg *msg, u8 reason)
1991 {
1992 	struct cec_msg tx_msg = { };
1993 
1994 	/*
1995 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1996 	 * message!
1997 	 */
1998 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1999 		return 0;
2000 	/* Don't Feature Abort messages from 'Unregistered' */
2001 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
2002 		return 0;
2003 	cec_msg_set_reply_to(&tx_msg, msg);
2004 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
2005 	return cec_transmit_msg(adap, &tx_msg, false);
2006 }
2007 
2008 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
2009 {
2010 	return cec_feature_abort_reason(adap, msg,
2011 					CEC_OP_ABORT_UNRECOGNIZED_OP);
2012 }
2013 
2014 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
2015 {
2016 	return cec_feature_abort_reason(adap, msg,
2017 					CEC_OP_ABORT_REFUSED);
2018 }
2019 
2020 /*
2021  * Called when a CEC message is received. This function will do any
2022  * necessary core processing. The is_reply bool is true if this message
2023  * is a reply to an earlier transmit.
2024  *
2025  * The message is either a broadcast message or a valid directed message.
2026  */
2027 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
2028 			      bool is_reply)
2029 {
2030 	bool is_broadcast = cec_msg_is_broadcast(msg);
2031 	u8 dest_laddr = cec_msg_destination(msg);
2032 	u8 init_laddr = cec_msg_initiator(msg);
2033 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
2034 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
2035 	bool from_unregistered = init_laddr == 0xf;
2036 	struct cec_msg tx_cec_msg = { };
2037 
2038 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
2039 
2040 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
2041 	if (cec_is_cdc_only(&adap->log_addrs) &&
2042 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
2043 		return 0;
2044 
2045 	/* Allow drivers to process the message first */
2046 	if (adap->ops->received && !adap->devnode.unregistered &&
2047 	    adap->ops->received(adap, msg) != -ENOMSG)
2048 		return 0;
2049 
2050 	/*
2051 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
2052 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
2053 	 * handled by the CEC core, even if the passthrough mode is on.
2054 	 * The others are just ignored if passthrough mode is on.
2055 	 */
2056 	switch (msg->msg[1]) {
2057 	case CEC_MSG_GET_CEC_VERSION:
2058 	case CEC_MSG_ABORT:
2059 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2060 	case CEC_MSG_GIVE_OSD_NAME:
2061 		/*
2062 		 * These messages reply with a directed message, so ignore if
2063 		 * the initiator is Unregistered.
2064 		 */
2065 		if (!adap->passthrough && from_unregistered)
2066 			return 0;
2067 		fallthrough;
2068 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2069 	case CEC_MSG_GIVE_FEATURES:
2070 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2071 		/*
2072 		 * Skip processing these messages if the passthrough mode
2073 		 * is on.
2074 		 */
2075 		if (adap->passthrough)
2076 			goto skip_processing;
2077 		/* Ignore if addressing is wrong */
2078 		if (is_broadcast)
2079 			return 0;
2080 		break;
2081 
2082 	case CEC_MSG_USER_CONTROL_PRESSED:
2083 	case CEC_MSG_USER_CONTROL_RELEASED:
2084 		/* Wrong addressing mode: don't process */
2085 		if (is_broadcast || from_unregistered)
2086 			goto skip_processing;
2087 		break;
2088 
2089 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
2090 		/*
2091 		 * This message is always processed, regardless of the
2092 		 * passthrough setting.
2093 		 *
2094 		 * Exception: don't process if wrong addressing mode.
2095 		 */
2096 		if (!is_broadcast)
2097 			goto skip_processing;
2098 		break;
2099 
2100 	default:
2101 		break;
2102 	}
2103 
2104 	cec_msg_set_reply_to(&tx_cec_msg, msg);
2105 
2106 	switch (msg->msg[1]) {
2107 	/* The following messages are processed but still passed through */
2108 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2109 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2110 
2111 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2112 			cec_phys_addr_exp(pa), init_laddr);
2113 		break;
2114 	}
2115 
2116 	case CEC_MSG_USER_CONTROL_PRESSED:
2117 		if (!(adap->capabilities & CEC_CAP_RC) ||
2118 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2119 			break;
2120 
2121 #ifdef CONFIG_MEDIA_CEC_RC
2122 		switch (msg->msg[2]) {
2123 		/*
2124 		 * Play function, this message can have variable length
2125 		 * depending on the specific play function that is used.
2126 		 */
2127 		case CEC_OP_UI_CMD_PLAY_FUNCTION:
2128 			if (msg->len == 2)
2129 				rc_keydown(adap->rc, RC_PROTO_CEC,
2130 					   msg->msg[2], 0);
2131 			else
2132 				rc_keydown(adap->rc, RC_PROTO_CEC,
2133 					   msg->msg[2] << 8 | msg->msg[3], 0);
2134 			break;
2135 		/*
2136 		 * Other function messages that are not handled.
2137 		 * Currently the RC framework does not allow to supply an
2138 		 * additional parameter to a keypress. These "keys" contain
2139 		 * other information such as channel number, an input number
2140 		 * etc.
2141 		 * For the time being these messages are not processed by the
2142 		 * framework and are simply forwarded to the user space.
2143 		 */
2144 		case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2145 		case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2146 		case CEC_OP_UI_CMD_TUNE_FUNCTION:
2147 		case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2148 		case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2149 		case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2150 			break;
2151 		default:
2152 			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2153 			break;
2154 		}
2155 #endif
2156 		break;
2157 
2158 	case CEC_MSG_USER_CONTROL_RELEASED:
2159 		if (!(adap->capabilities & CEC_CAP_RC) ||
2160 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2161 			break;
2162 #ifdef CONFIG_MEDIA_CEC_RC
2163 		rc_keyup(adap->rc);
2164 #endif
2165 		break;
2166 
2167 	/*
2168 	 * The remaining messages are only processed if the passthrough mode
2169 	 * is off.
2170 	 */
2171 	case CEC_MSG_GET_CEC_VERSION:
2172 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2173 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2174 
2175 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2176 		/* Do nothing for CEC switches using addr 15 */
2177 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2178 			return 0;
2179 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2180 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2181 
2182 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2183 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2184 			return cec_feature_abort(adap, msg);
2185 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2186 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2187 
2188 	case CEC_MSG_ABORT:
2189 		/* Do nothing for CEC switches */
2190 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2191 			return 0;
2192 		return cec_feature_refused(adap, msg);
2193 
2194 	case CEC_MSG_GIVE_OSD_NAME: {
2195 		if (adap->log_addrs.osd_name[0] == 0)
2196 			return cec_feature_abort(adap, msg);
2197 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2198 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2199 	}
2200 
2201 	case CEC_MSG_GIVE_FEATURES:
2202 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2203 			return cec_feature_abort(adap, msg);
2204 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2205 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2206 
2207 	default:
2208 		/*
2209 		 * Unprocessed messages are aborted if userspace isn't doing
2210 		 * any processing either.
2211 		 */
2212 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2213 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2214 			return cec_feature_abort(adap, msg);
2215 		break;
2216 	}
2217 
2218 skip_processing:
2219 	/* If this was a reply, then we're done, unless otherwise specified */
2220 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2221 		return 0;
2222 
2223 	/*
2224 	 * Send to the exclusive follower if there is one, otherwise send
2225 	 * to all followers.
2226 	 */
2227 	if (adap->cec_follower)
2228 		cec_queue_msg_fh(adap->cec_follower, msg);
2229 	else
2230 		cec_queue_msg_followers(adap, msg);
2231 	return 0;
2232 }
2233 
2234 /*
2235  * Helper functions to keep track of the 'monitor all' use count.
2236  *
2237  * These functions are called with adap->lock held.
2238  */
2239 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2240 {
2241 	int ret;
2242 
2243 	if (adap->monitor_all_cnt++)
2244 		return 0;
2245 
2246 	ret = cec_adap_enable(adap);
2247 	if (ret)
2248 		adap->monitor_all_cnt--;
2249 	return ret;
2250 }
2251 
2252 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2253 {
2254 	if (WARN_ON(!adap->monitor_all_cnt))
2255 		return;
2256 	if (--adap->monitor_all_cnt)
2257 		return;
2258 	WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2259 	cec_adap_enable(adap);
2260 }
2261 
2262 /*
2263  * Helper functions to keep track of the 'monitor pin' use count.
2264  *
2265  * These functions are called with adap->lock held.
2266  */
2267 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2268 {
2269 	int ret;
2270 
2271 	if (adap->monitor_pin_cnt++)
2272 		return 0;
2273 
2274 	ret = cec_adap_enable(adap);
2275 	if (ret)
2276 		adap->monitor_pin_cnt--;
2277 	return ret;
2278 }
2279 
2280 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2281 {
2282 	if (WARN_ON(!adap->monitor_pin_cnt))
2283 		return;
2284 	if (--adap->monitor_pin_cnt)
2285 		return;
2286 	WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2287 	cec_adap_enable(adap);
2288 }
2289 
2290 #ifdef CONFIG_DEBUG_FS
2291 /*
2292  * Log the current state of the CEC adapter.
2293  * Very useful for debugging.
2294  */
2295 int cec_adap_status(struct seq_file *file, void *priv)
2296 {
2297 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2298 	struct cec_data *data;
2299 
2300 	mutex_lock(&adap->lock);
2301 	seq_printf(file, "enabled: %d\n", adap->is_enabled);
2302 	seq_printf(file, "configured: %d\n", adap->is_configured);
2303 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2304 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2305 		   cec_phys_addr_exp(adap->phys_addr));
2306 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2307 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2308 	if (adap->cec_follower)
2309 		seq_printf(file, "has CEC follower%s\n",
2310 			   adap->passthrough ? " (in passthrough mode)" : "");
2311 	if (adap->cec_initiator)
2312 		seq_puts(file, "has CEC initiator\n");
2313 	if (adap->monitor_all_cnt)
2314 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2315 			   adap->monitor_all_cnt);
2316 	if (adap->monitor_pin_cnt)
2317 		seq_printf(file, "file handles in Monitor Pin mode: %u\n",
2318 			   adap->monitor_pin_cnt);
2319 	if (adap->tx_timeout_cnt) {
2320 		seq_printf(file, "transmit timeout count: %u\n",
2321 			   adap->tx_timeout_cnt);
2322 		adap->tx_timeout_cnt = 0;
2323 	}
2324 	if (adap->tx_low_drive_cnt) {
2325 		seq_printf(file, "transmit low drive count: %u\n",
2326 			   adap->tx_low_drive_cnt);
2327 		adap->tx_low_drive_cnt = 0;
2328 	}
2329 	if (adap->tx_arb_lost_cnt) {
2330 		seq_printf(file, "transmit arbitration lost count: %u\n",
2331 			   adap->tx_arb_lost_cnt);
2332 		adap->tx_arb_lost_cnt = 0;
2333 	}
2334 	if (adap->tx_error_cnt) {
2335 		seq_printf(file, "transmit error count: %u\n",
2336 			   adap->tx_error_cnt);
2337 		adap->tx_error_cnt = 0;
2338 	}
2339 	data = adap->transmitting;
2340 	if (data)
2341 		seq_printf(file, "transmitting message: %*ph (reply: %*ph, timeout: %ums)\n",
2342 			   data->msg.len, data->msg.msg,
2343 			   data->match_len, data->match_reply,
2344 			   data->msg.timeout);
2345 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2346 	list_for_each_entry(data, &adap->transmit_queue, list) {
2347 		seq_printf(file, "queued tx message: %*ph (reply: %*ph, timeout: %ums)\n",
2348 			   data->msg.len, data->msg.msg,
2349 			   data->match_len, data->match_reply,
2350 			   data->msg.timeout);
2351 	}
2352 	list_for_each_entry(data, &adap->wait_queue, list) {
2353 		seq_printf(file, "message waiting for reply: %*ph (reply: %*ph, timeout: %ums)\n",
2354 			   data->msg.len, data->msg.msg,
2355 			   data->match_len, data->match_reply,
2356 			   data->msg.timeout);
2357 	}
2358 
2359 	call_void_op(adap, adap_status, file);
2360 	mutex_unlock(&adap->lock);
2361 	return 0;
2362 }
2363 #endif
2364