1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter 4 * 5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/errno.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kmod.h> 13 #include <linux/ktime.h> 14 #include <linux/slab.h> 15 #include <linux/mm.h> 16 #include <linux/string.h> 17 #include <linux/types.h> 18 19 #include <drm/drm_connector.h> 20 #include <drm/drm_device.h> 21 #include <drm/drm_edid.h> 22 #include <drm/drm_file.h> 23 24 #include "cec-priv.h" 25 26 static void cec_fill_msg_report_features(struct cec_adapter *adap, 27 struct cec_msg *msg, 28 unsigned int la_idx); 29 30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) 31 { 32 int i; 33 34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++) 35 if (adap->log_addrs.log_addr[i] == log_addr) 36 return i; 37 return -1; 38 } 39 40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) 41 { 42 int i = cec_log_addr2idx(adap, log_addr); 43 44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; 45 } 46 47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, 48 unsigned int *offset) 49 { 50 unsigned int loc = cec_get_edid_spa_location(edid, size); 51 52 if (offset) 53 *offset = loc; 54 if (loc == 0) 55 return CEC_PHYS_ADDR_INVALID; 56 return (edid[loc] << 8) | edid[loc + 1]; 57 } 58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); 59 60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, 61 const struct drm_connector *connector) 62 { 63 memset(conn_info, 0, sizeof(*conn_info)); 64 conn_info->type = CEC_CONNECTOR_TYPE_DRM; 65 conn_info->drm.card_no = connector->dev->primary->index; 66 conn_info->drm.connector_id = connector->base.id; 67 } 68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); 69 70 /* 71 * Queue a new event for this filehandle. If ts == 0, then set it 72 * to the current time. 73 * 74 * We keep a queue of at most max_event events where max_event differs 75 * per event. If the queue becomes full, then drop the oldest event and 76 * keep track of how many events we've dropped. 77 */ 78 void cec_queue_event_fh(struct cec_fh *fh, 79 const struct cec_event *new_ev, u64 ts) 80 { 81 static const u16 max_events[CEC_NUM_EVENTS] = { 82 1, 1, 800, 800, 8, 8, 8, 8 83 }; 84 struct cec_event_entry *entry; 85 unsigned int ev_idx = new_ev->event - 1; 86 87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) 88 return; 89 90 if (ts == 0) 91 ts = ktime_get_ns(); 92 93 mutex_lock(&fh->lock); 94 if (ev_idx < CEC_NUM_CORE_EVENTS) 95 entry = &fh->core_events[ev_idx]; 96 else 97 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 98 if (entry) { 99 if (new_ev->event == CEC_EVENT_LOST_MSGS && 100 fh->queued_events[ev_idx]) { 101 entry->ev.lost_msgs.lost_msgs += 102 new_ev->lost_msgs.lost_msgs; 103 goto unlock; 104 } 105 entry->ev = *new_ev; 106 entry->ev.ts = ts; 107 108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) { 109 /* Add new msg at the end of the queue */ 110 list_add_tail(&entry->list, &fh->events[ev_idx]); 111 fh->queued_events[ev_idx]++; 112 fh->total_queued_events++; 113 goto unlock; 114 } 115 116 if (ev_idx >= CEC_NUM_CORE_EVENTS) { 117 list_add_tail(&entry->list, &fh->events[ev_idx]); 118 /* drop the oldest event */ 119 entry = list_first_entry(&fh->events[ev_idx], 120 struct cec_event_entry, list); 121 list_del(&entry->list); 122 kfree(entry); 123 } 124 } 125 /* Mark that events were lost */ 126 entry = list_first_entry_or_null(&fh->events[ev_idx], 127 struct cec_event_entry, list); 128 if (entry) 129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; 130 131 unlock: 132 mutex_unlock(&fh->lock); 133 wake_up_interruptible(&fh->wait); 134 } 135 136 /* Queue a new event for all open filehandles. */ 137 static void cec_queue_event(struct cec_adapter *adap, 138 const struct cec_event *ev) 139 { 140 u64 ts = ktime_get_ns(); 141 struct cec_fh *fh; 142 143 mutex_lock(&adap->devnode.lock_fhs); 144 list_for_each_entry(fh, &adap->devnode.fhs, list) 145 cec_queue_event_fh(fh, ev, ts); 146 mutex_unlock(&adap->devnode.lock_fhs); 147 } 148 149 /* Notify userspace that the CEC pin changed state at the given time. */ 150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, 151 bool dropped_events, ktime_t ts) 152 { 153 struct cec_event ev = { 154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : 155 CEC_EVENT_PIN_CEC_LOW, 156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, 157 }; 158 struct cec_fh *fh; 159 160 mutex_lock(&adap->devnode.lock_fhs); 161 list_for_each_entry(fh, &adap->devnode.fhs, list) { 162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN) 163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 164 } 165 mutex_unlock(&adap->devnode.lock_fhs); 166 } 167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); 168 169 /* Notify userspace that the HPD pin changed state at the given time. */ 170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 171 { 172 struct cec_event ev = { 173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : 174 CEC_EVENT_PIN_HPD_LOW, 175 }; 176 struct cec_fh *fh; 177 178 mutex_lock(&adap->devnode.lock_fhs); 179 list_for_each_entry(fh, &adap->devnode.fhs, list) 180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 181 mutex_unlock(&adap->devnode.lock_fhs); 182 } 183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); 184 185 /* Notify userspace that the 5V pin changed state at the given time. */ 186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 187 { 188 struct cec_event ev = { 189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH : 190 CEC_EVENT_PIN_5V_LOW, 191 }; 192 struct cec_fh *fh; 193 194 mutex_lock(&adap->devnode.lock_fhs); 195 list_for_each_entry(fh, &adap->devnode.fhs, list) 196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 197 mutex_unlock(&adap->devnode.lock_fhs); 198 } 199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); 200 201 /* 202 * Queue a new message for this filehandle. 203 * 204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the 205 * queue becomes full, then drop the oldest message and keep track 206 * of how many messages we've dropped. 207 */ 208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) 209 { 210 static const struct cec_event ev_lost_msgs = { 211 .event = CEC_EVENT_LOST_MSGS, 212 .flags = 0, 213 { 214 .lost_msgs = { 1 }, 215 }, 216 }; 217 struct cec_msg_entry *entry; 218 219 mutex_lock(&fh->lock); 220 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 221 if (entry) { 222 entry->msg = *msg; 223 /* Add new msg at the end of the queue */ 224 list_add_tail(&entry->list, &fh->msgs); 225 226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { 227 /* All is fine if there is enough room */ 228 fh->queued_msgs++; 229 mutex_unlock(&fh->lock); 230 wake_up_interruptible(&fh->wait); 231 return; 232 } 233 234 /* 235 * if the message queue is full, then drop the oldest one and 236 * send a lost message event. 237 */ 238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); 239 list_del(&entry->list); 240 kfree(entry); 241 } 242 mutex_unlock(&fh->lock); 243 244 /* 245 * We lost a message, either because kmalloc failed or the queue 246 * was full. 247 */ 248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); 249 } 250 251 /* 252 * Queue the message for those filehandles that are in monitor mode. 253 * If valid_la is true (this message is for us or was sent by us), 254 * then pass it on to any monitoring filehandle. If this message 255 * isn't for us or from us, then only give it to filehandles that 256 * are in MONITOR_ALL mode. 257 * 258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is 259 * set and the CEC adapter was placed in 'monitor all' mode. 260 */ 261 static void cec_queue_msg_monitor(struct cec_adapter *adap, 262 const struct cec_msg *msg, 263 bool valid_la) 264 { 265 struct cec_fh *fh; 266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : 267 CEC_MODE_MONITOR_ALL; 268 269 mutex_lock(&adap->devnode.lock_fhs); 270 list_for_each_entry(fh, &adap->devnode.fhs, list) { 271 if (fh->mode_follower >= monitor_mode) 272 cec_queue_msg_fh(fh, msg); 273 } 274 mutex_unlock(&adap->devnode.lock_fhs); 275 } 276 277 /* 278 * Queue the message for follower filehandles. 279 */ 280 static void cec_queue_msg_followers(struct cec_adapter *adap, 281 const struct cec_msg *msg) 282 { 283 struct cec_fh *fh; 284 285 mutex_lock(&adap->devnode.lock_fhs); 286 list_for_each_entry(fh, &adap->devnode.fhs, list) { 287 if (fh->mode_follower == CEC_MODE_FOLLOWER) 288 cec_queue_msg_fh(fh, msg); 289 } 290 mutex_unlock(&adap->devnode.lock_fhs); 291 } 292 293 /* Notify userspace of an adapter state change. */ 294 static void cec_post_state_event(struct cec_adapter *adap) 295 { 296 struct cec_event ev = { 297 .event = CEC_EVENT_STATE_CHANGE, 298 }; 299 300 ev.state_change.phys_addr = adap->phys_addr; 301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; 302 ev.state_change.have_conn_info = 303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; 304 cec_queue_event(adap, &ev); 305 } 306 307 /* 308 * A CEC transmit (and a possible wait for reply) completed. 309 * If this was in blocking mode, then complete it, otherwise 310 * queue the message for userspace to dequeue later. 311 * 312 * This function is called with adap->lock held. 313 */ 314 static void cec_data_completed(struct cec_data *data) 315 { 316 /* 317 * Delete this transmit from the filehandle's xfer_list since 318 * we're done with it. 319 * 320 * Note that if the filehandle is closed before this transmit 321 * finished, then the release() function will set data->fh to NULL. 322 * Without that we would be referring to a closed filehandle. 323 */ 324 if (data->fh) 325 list_del_init(&data->xfer_list); 326 327 if (data->blocking) { 328 /* 329 * Someone is blocking so mark the message as completed 330 * and call complete. 331 */ 332 data->completed = true; 333 complete(&data->c); 334 } else { 335 /* 336 * No blocking, so just queue the message if needed and 337 * free the memory. 338 */ 339 if (data->fh) 340 cec_queue_msg_fh(data->fh, &data->msg); 341 kfree(data); 342 } 343 } 344 345 /* 346 * A pending CEC transmit needs to be cancelled, either because the CEC 347 * adapter is disabled or the transmit takes an impossibly long time to 348 * finish, or the reply timed out. 349 * 350 * This function is called with adap->lock held. 351 */ 352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status) 353 { 354 struct cec_adapter *adap = data->adap; 355 356 /* 357 * It's either the current transmit, or it is a pending 358 * transmit. Take the appropriate action to clear it. 359 */ 360 if (adap->transmitting == data) { 361 adap->transmitting = NULL; 362 } else { 363 list_del_init(&data->list); 364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) 365 if (!WARN_ON(!adap->transmit_queue_sz)) 366 adap->transmit_queue_sz--; 367 } 368 369 if (data->msg.tx_status & CEC_TX_STATUS_OK) { 370 data->msg.rx_ts = ktime_get_ns(); 371 data->msg.rx_status = rx_status; 372 if (!data->blocking) 373 data->msg.tx_status = 0; 374 } else { 375 data->msg.tx_ts = ktime_get_ns(); 376 data->msg.tx_status |= tx_status | 377 CEC_TX_STATUS_MAX_RETRIES; 378 data->msg.tx_error_cnt++; 379 data->attempts = 0; 380 if (!data->blocking) 381 data->msg.rx_status = 0; 382 } 383 384 /* Queue transmitted message for monitoring purposes */ 385 cec_queue_msg_monitor(adap, &data->msg, 1); 386 387 if (!data->blocking && data->msg.sequence) 388 /* Allow drivers to react to a canceled transmit */ 389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg); 390 391 cec_data_completed(data); 392 } 393 394 /* 395 * Flush all pending transmits and cancel any pending timeout work. 396 * 397 * This function is called with adap->lock held. 398 */ 399 static void cec_flush(struct cec_adapter *adap) 400 { 401 struct cec_data *data, *n; 402 403 /* 404 * If the adapter is disabled, or we're asked to stop, 405 * then cancel any pending transmits. 406 */ 407 while (!list_empty(&adap->transmit_queue)) { 408 data = list_first_entry(&adap->transmit_queue, 409 struct cec_data, list); 410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 411 } 412 if (adap->transmitting) 413 adap->transmit_in_progress_aborted = true; 414 415 /* Cancel the pending timeout work. */ 416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) { 417 if (cancel_delayed_work(&data->work)) 418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 419 /* 420 * If cancel_delayed_work returned false, then 421 * the cec_wait_timeout function is running, 422 * which will call cec_data_completed. So no 423 * need to do anything special in that case. 424 */ 425 } 426 /* 427 * If something went wrong and this counter isn't what it should 428 * be, then this will reset it back to 0. Warn if it is not 0, 429 * since it indicates a bug, either in this framework or in a 430 * CEC driver. 431 */ 432 if (WARN_ON(adap->transmit_queue_sz)) 433 adap->transmit_queue_sz = 0; 434 } 435 436 /* 437 * Main CEC state machine 438 * 439 * Wait until the thread should be stopped, or we are not transmitting and 440 * a new transmit message is queued up, in which case we start transmitting 441 * that message. When the adapter finished transmitting the message it will 442 * call cec_transmit_done(). 443 * 444 * If the adapter is disabled, then remove all queued messages instead. 445 * 446 * If the current transmit times out, then cancel that transmit. 447 */ 448 int cec_thread_func(void *_adap) 449 { 450 struct cec_adapter *adap = _adap; 451 452 for (;;) { 453 unsigned int signal_free_time; 454 struct cec_data *data; 455 bool timeout = false; 456 u8 attempts; 457 458 if (adap->transmit_in_progress) { 459 int err; 460 461 /* 462 * We are transmitting a message, so add a timeout 463 * to prevent the state machine to get stuck waiting 464 * for this message to finalize and add a check to 465 * see if the adapter is disabled in which case the 466 * transmit should be canceled. 467 */ 468 err = wait_event_interruptible_timeout(adap->kthread_waitq, 469 (adap->needs_hpd && 470 (!adap->is_configured && !adap->is_configuring)) || 471 kthread_should_stop() || 472 (!adap->transmit_in_progress && 473 !list_empty(&adap->transmit_queue)), 474 msecs_to_jiffies(adap->xfer_timeout_ms)); 475 timeout = err == 0; 476 } else { 477 /* Otherwise we just wait for something to happen. */ 478 wait_event_interruptible(adap->kthread_waitq, 479 kthread_should_stop() || 480 (!adap->transmit_in_progress && 481 !list_empty(&adap->transmit_queue))); 482 } 483 484 mutex_lock(&adap->lock); 485 486 if ((adap->needs_hpd && 487 (!adap->is_configured && !adap->is_configuring)) || 488 kthread_should_stop()) { 489 cec_flush(adap); 490 goto unlock; 491 } 492 493 if (adap->transmit_in_progress && 494 adap->transmit_in_progress_aborted) { 495 if (adap->transmitting) 496 cec_data_cancel(adap->transmitting, 497 CEC_TX_STATUS_ABORTED, 0); 498 adap->transmit_in_progress = false; 499 adap->transmit_in_progress_aborted = false; 500 goto unlock; 501 } 502 if (adap->transmit_in_progress && timeout) { 503 /* 504 * If we timeout, then log that. Normally this does 505 * not happen and it is an indication of a faulty CEC 506 * adapter driver, or the CEC bus is in some weird 507 * state. On rare occasions it can happen if there is 508 * so much traffic on the bus that the adapter was 509 * unable to transmit for xfer_timeout_ms (2.1s by 510 * default). 511 */ 512 if (adap->transmitting) { 513 pr_warn("cec-%s: message %*ph timed out\n", adap->name, 514 adap->transmitting->msg.len, 515 adap->transmitting->msg.msg); 516 /* Just give up on this. */ 517 cec_data_cancel(adap->transmitting, 518 CEC_TX_STATUS_TIMEOUT, 0); 519 } else { 520 pr_warn("cec-%s: transmit timed out\n", adap->name); 521 } 522 adap->transmit_in_progress = false; 523 adap->tx_timeout_cnt++; 524 goto unlock; 525 } 526 527 /* 528 * If we are still transmitting, or there is nothing new to 529 * transmit, then just continue waiting. 530 */ 531 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) 532 goto unlock; 533 534 /* Get a new message to transmit */ 535 data = list_first_entry(&adap->transmit_queue, 536 struct cec_data, list); 537 list_del_init(&data->list); 538 if (!WARN_ON(!data->adap->transmit_queue_sz)) 539 adap->transmit_queue_sz--; 540 541 /* Make this the current transmitting message */ 542 adap->transmitting = data; 543 544 /* 545 * Suggested number of attempts as per the CEC 2.0 spec: 546 * 4 attempts is the default, except for 'secondary poll 547 * messages', i.e. poll messages not sent during the adapter 548 * configuration phase when it allocates logical addresses. 549 */ 550 if (data->msg.len == 1 && adap->is_configured) 551 attempts = 2; 552 else 553 attempts = 4; 554 555 /* Set the suggested signal free time */ 556 if (data->attempts) { 557 /* should be >= 3 data bit periods for a retry */ 558 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; 559 } else if (adap->last_initiator != 560 cec_msg_initiator(&data->msg)) { 561 /* should be >= 5 data bit periods for new initiator */ 562 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 563 adap->last_initiator = cec_msg_initiator(&data->msg); 564 } else { 565 /* 566 * should be >= 7 data bit periods for sending another 567 * frame immediately after another. 568 */ 569 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; 570 } 571 if (data->attempts == 0) 572 data->attempts = attempts; 573 574 adap->transmit_in_progress_aborted = false; 575 /* Tell the adapter to transmit, cancel on error */ 576 if (call_op(adap, adap_transmit, data->attempts, 577 signal_free_time, &data->msg)) 578 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 579 else 580 adap->transmit_in_progress = true; 581 582 unlock: 583 mutex_unlock(&adap->lock); 584 585 if (kthread_should_stop()) 586 break; 587 } 588 return 0; 589 } 590 591 /* 592 * Called by the CEC adapter if a transmit finished. 593 */ 594 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, 595 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, 596 u8 error_cnt, ktime_t ts) 597 { 598 struct cec_data *data; 599 struct cec_msg *msg; 600 unsigned int attempts_made = arb_lost_cnt + nack_cnt + 601 low_drive_cnt + error_cnt; 602 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK); 603 bool aborted = adap->transmit_in_progress_aborted; 604 605 dprintk(2, "%s: status 0x%02x\n", __func__, status); 606 if (attempts_made < 1) 607 attempts_made = 1; 608 609 mutex_lock(&adap->lock); 610 data = adap->transmitting; 611 if (!data) { 612 /* 613 * This might happen if a transmit was issued and the cable is 614 * unplugged while the transmit is ongoing. Ignore this 615 * transmit in that case. 616 */ 617 if (!adap->transmit_in_progress) 618 dprintk(1, "%s was called without an ongoing transmit!\n", 619 __func__); 620 adap->transmit_in_progress = false; 621 goto wake_thread; 622 } 623 adap->transmit_in_progress = false; 624 adap->transmit_in_progress_aborted = false; 625 626 msg = &data->msg; 627 628 /* Drivers must fill in the status! */ 629 WARN_ON(status == 0); 630 msg->tx_ts = ktime_to_ns(ts); 631 msg->tx_status |= status; 632 msg->tx_arb_lost_cnt += arb_lost_cnt; 633 msg->tx_nack_cnt += nack_cnt; 634 msg->tx_low_drive_cnt += low_drive_cnt; 635 msg->tx_error_cnt += error_cnt; 636 637 adap->tx_arb_lost_cnt += arb_lost_cnt; 638 adap->tx_low_drive_cnt += low_drive_cnt; 639 adap->tx_error_cnt += error_cnt; 640 641 /* 642 * Low Drive transmission errors should really not happen for 643 * well-behaved CEC devices and proper HDMI cables. 644 * 645 * Ditto for the 'Error' status. 646 * 647 * For the first few times that this happens, log this. 648 * Stop logging after that, since that will not add any more 649 * useful information and instead it will just flood the kernel log. 650 */ 651 if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) { 652 adap->tx_low_drive_log_cnt++; 653 dprintk(0, "low drive counter: %u (seq %u: %*ph)\n", 654 msg->tx_low_drive_cnt, msg->sequence, 655 msg->len, msg->msg); 656 } 657 if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) { 658 adap->tx_error_log_cnt++; 659 dprintk(0, "error counter: %u (seq %u: %*ph)\n", 660 msg->tx_error_cnt, msg->sequence, 661 msg->len, msg->msg); 662 } 663 664 /* Mark that we're done with this transmit */ 665 adap->transmitting = NULL; 666 667 /* 668 * If there are still retry attempts left and there was an error and 669 * the hardware didn't signal that it retried itself (by setting 670 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. 671 */ 672 if (!aborted && data->attempts > attempts_made && !done) { 673 /* Retry this message */ 674 data->attempts -= attempts_made; 675 if (msg->timeout) 676 dprintk(2, "retransmit: %*ph (attempts: %d, wait for %*ph)\n", 677 msg->len, msg->msg, data->attempts, 678 data->match_len, data->match_reply); 679 else 680 dprintk(2, "retransmit: %*ph (attempts: %d)\n", 681 msg->len, msg->msg, data->attempts); 682 /* Add the message in front of the transmit queue */ 683 list_add(&data->list, &adap->transmit_queue); 684 adap->transmit_queue_sz++; 685 goto wake_thread; 686 } 687 688 if (aborted && !done) 689 status |= CEC_TX_STATUS_ABORTED; 690 data->attempts = 0; 691 692 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ 693 if (!(status & CEC_TX_STATUS_OK)) 694 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; 695 696 /* Queue transmitted message for monitoring purposes */ 697 cec_queue_msg_monitor(adap, msg, 1); 698 699 if ((status & CEC_TX_STATUS_OK) && adap->is_configured && 700 msg->timeout) { 701 /* 702 * Queue the message into the wait queue if we want to wait 703 * for a reply. 704 */ 705 list_add_tail(&data->list, &adap->wait_queue); 706 schedule_delayed_work(&data->work, 707 msecs_to_jiffies(msg->timeout)); 708 } else { 709 /* Otherwise we're done */ 710 cec_data_completed(data); 711 } 712 713 wake_thread: 714 /* 715 * Wake up the main thread to see if another message is ready 716 * for transmitting or to retry the current message. 717 */ 718 wake_up_interruptible(&adap->kthread_waitq); 719 mutex_unlock(&adap->lock); 720 } 721 EXPORT_SYMBOL_GPL(cec_transmit_done_ts); 722 723 void cec_transmit_attempt_done_ts(struct cec_adapter *adap, 724 u8 status, ktime_t ts) 725 { 726 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { 727 case CEC_TX_STATUS_OK: 728 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); 729 return; 730 case CEC_TX_STATUS_ARB_LOST: 731 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); 732 return; 733 case CEC_TX_STATUS_NACK: 734 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); 735 return; 736 case CEC_TX_STATUS_LOW_DRIVE: 737 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); 738 return; 739 case CEC_TX_STATUS_ERROR: 740 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); 741 return; 742 default: 743 /* Should never happen */ 744 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); 745 return; 746 } 747 } 748 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); 749 750 /* 751 * Called when waiting for a reply times out. 752 */ 753 static void cec_wait_timeout(struct work_struct *work) 754 { 755 struct cec_data *data = container_of(work, struct cec_data, work.work); 756 struct cec_adapter *adap = data->adap; 757 758 mutex_lock(&adap->lock); 759 /* 760 * Sanity check in case the timeout and the arrival of the message 761 * happened at the same time. 762 */ 763 if (list_empty(&data->list)) 764 goto unlock; 765 766 /* Mark the message as timed out */ 767 list_del_init(&data->list); 768 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT); 769 unlock: 770 mutex_unlock(&adap->lock); 771 } 772 773 /* 774 * Transmit a message. The fh argument may be NULL if the transmit is not 775 * associated with a specific filehandle. 776 * 777 * This function is called with adap->lock held. 778 */ 779 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, 780 struct cec_fh *fh, bool block) 781 { 782 struct cec_data *data; 783 bool is_raw = msg_is_raw(msg); 784 bool reply_vendor_id = (msg->flags & CEC_MSG_FL_REPLY_VENDOR_ID) && 785 msg->len > 1 && msg->msg[1] == CEC_MSG_VENDOR_COMMAND_WITH_ID; 786 int err; 787 788 if (adap->devnode.unregistered) 789 return -ENODEV; 790 791 msg->rx_ts = 0; 792 msg->tx_ts = 0; 793 msg->rx_status = 0; 794 msg->tx_status = 0; 795 msg->tx_arb_lost_cnt = 0; 796 msg->tx_nack_cnt = 0; 797 msg->tx_low_drive_cnt = 0; 798 msg->tx_error_cnt = 0; 799 msg->sequence = 0; 800 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW | 801 (reply_vendor_id ? CEC_MSG_FL_REPLY_VENDOR_ID : 0); 802 803 if ((reply_vendor_id || msg->reply) && msg->timeout == 0) { 804 /* Make sure the timeout isn't 0. */ 805 msg->timeout = 1000; 806 } 807 808 if (!msg->timeout) 809 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; 810 811 /* Sanity checks */ 812 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { 813 dprintk(1, "%s: invalid length %d\n", __func__, msg->len); 814 return -EINVAL; 815 } 816 if (reply_vendor_id && msg->len < 6) { 817 dprintk(1, "%s: <Vendor Command With ID> message too short\n", 818 __func__); 819 return -EINVAL; 820 } 821 822 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 823 824 if (msg->timeout) 825 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", 826 __func__, msg->len, msg->msg, msg->reply, 827 !block ? ", nb" : ""); 828 else 829 dprintk(2, "%s: %*ph%s\n", 830 __func__, msg->len, msg->msg, !block ? " (nb)" : ""); 831 832 if (msg->timeout && msg->len == 1) { 833 dprintk(1, "%s: can't reply to poll msg\n", __func__); 834 return -EINVAL; 835 } 836 837 if (is_raw) { 838 if (!capable(CAP_SYS_RAWIO)) 839 return -EPERM; 840 } else { 841 /* A CDC-Only device can only send CDC messages */ 842 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && 843 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { 844 dprintk(1, "%s: not a CDC message\n", __func__); 845 return -EINVAL; 846 } 847 848 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { 849 msg->msg[2] = adap->phys_addr >> 8; 850 msg->msg[3] = adap->phys_addr & 0xff; 851 } 852 853 if (msg->len == 1) { 854 if (cec_msg_destination(msg) == 0xf) { 855 dprintk(1, "%s: invalid poll message\n", 856 __func__); 857 return -EINVAL; 858 } 859 if (cec_has_log_addr(adap, cec_msg_destination(msg))) { 860 /* 861 * If the destination is a logical address our 862 * adapter has already claimed, then just NACK 863 * this. It depends on the hardware what it will 864 * do with a POLL to itself (some OK this), so 865 * it is just as easy to handle it here so the 866 * behavior will be consistent. 867 */ 868 msg->tx_ts = ktime_get_ns(); 869 msg->tx_status = CEC_TX_STATUS_NACK | 870 CEC_TX_STATUS_MAX_RETRIES; 871 msg->tx_nack_cnt = 1; 872 msg->sequence = ++adap->sequence; 873 if (!msg->sequence) 874 msg->sequence = ++adap->sequence; 875 return 0; 876 } 877 } 878 if (msg->len > 1 && !cec_msg_is_broadcast(msg) && 879 cec_has_log_addr(adap, cec_msg_destination(msg))) { 880 dprintk(1, "%s: destination is the adapter itself\n", 881 __func__); 882 return -EINVAL; 883 } 884 if (msg->len > 1 && adap->is_configured && 885 !cec_has_log_addr(adap, cec_msg_initiator(msg))) { 886 dprintk(1, "%s: initiator has unknown logical address %d\n", 887 __func__, cec_msg_initiator(msg)); 888 return -EINVAL; 889 } 890 /* 891 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be 892 * transmitted to a TV, even if the adapter is unconfigured. 893 * This makes it possible to detect or wake up displays that 894 * pull down the HPD when in standby. 895 */ 896 if (!adap->is_configured && !adap->is_configuring && 897 (msg->len > 2 || 898 cec_msg_destination(msg) != CEC_LOG_ADDR_TV || 899 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && 900 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { 901 dprintk(1, "%s: adapter is unconfigured\n", __func__); 902 return -ENONET; 903 } 904 } 905 906 if (!adap->is_configured && !adap->is_configuring) { 907 if (adap->needs_hpd) { 908 dprintk(1, "%s: adapter is unconfigured and needs HPD\n", 909 __func__); 910 return -ENONET; 911 } 912 if (reply_vendor_id || msg->reply) { 913 dprintk(1, "%s: adapter is unconfigured so reply is not supported\n", 914 __func__); 915 return -EINVAL; 916 } 917 } 918 919 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { 920 dprintk(2, "%s: transmit queue full\n", __func__); 921 return -EBUSY; 922 } 923 924 data = kzalloc(sizeof(*data), GFP_KERNEL); 925 if (!data) 926 return -ENOMEM; 927 928 msg->sequence = ++adap->sequence; 929 if (!msg->sequence) 930 msg->sequence = ++adap->sequence; 931 932 data->msg = *msg; 933 data->fh = fh; 934 data->adap = adap; 935 data->blocking = block; 936 if (reply_vendor_id) { 937 memcpy(data->match_reply, msg->msg + 1, 4); 938 data->match_reply[4] = msg->reply; 939 data->match_len = 5; 940 } else if (msg->timeout) { 941 data->match_reply[0] = msg->reply; 942 data->match_len = 1; 943 } 944 945 init_completion(&data->c); 946 INIT_DELAYED_WORK(&data->work, cec_wait_timeout); 947 948 if (fh) 949 list_add_tail(&data->xfer_list, &fh->xfer_list); 950 else 951 INIT_LIST_HEAD(&data->xfer_list); 952 953 list_add_tail(&data->list, &adap->transmit_queue); 954 adap->transmit_queue_sz++; 955 if (!adap->transmitting) 956 wake_up_interruptible(&adap->kthread_waitq); 957 958 /* All done if we don't need to block waiting for completion */ 959 if (!block) 960 return 0; 961 962 /* 963 * Release the lock and wait, retake the lock afterwards. 964 */ 965 mutex_unlock(&adap->lock); 966 err = wait_for_completion_killable(&data->c); 967 cancel_delayed_work_sync(&data->work); 968 mutex_lock(&adap->lock); 969 970 if (err) 971 adap->transmit_in_progress_aborted = true; 972 973 /* Cancel the transmit if it was interrupted */ 974 if (!data->completed) { 975 if (data->msg.tx_status & CEC_TX_STATUS_OK) 976 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 977 else 978 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 979 } 980 981 /* The transmit completed (possibly with an error) */ 982 *msg = data->msg; 983 if (WARN_ON(!list_empty(&data->list))) 984 list_del(&data->list); 985 if (WARN_ON(!list_empty(&data->xfer_list))) 986 list_del(&data->xfer_list); 987 kfree(data); 988 return 0; 989 } 990 991 /* Helper function to be used by drivers and this framework. */ 992 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, 993 bool block) 994 { 995 int ret; 996 997 mutex_lock(&adap->lock); 998 ret = cec_transmit_msg_fh(adap, msg, NULL, block); 999 mutex_unlock(&adap->lock); 1000 return ret; 1001 } 1002 EXPORT_SYMBOL_GPL(cec_transmit_msg); 1003 1004 /* 1005 * I don't like forward references but without this the low-level 1006 * cec_received_msg() function would come after a bunch of high-level 1007 * CEC protocol handling functions. That was very confusing. 1008 */ 1009 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 1010 bool is_reply); 1011 1012 #define DIRECTED 0x80 1013 #define BCAST1_4 0x40 1014 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ 1015 #define BCAST (BCAST1_4 | BCAST2_0) 1016 #define BOTH (BCAST | DIRECTED) 1017 1018 /* 1019 * Specify minimum length and whether the message is directed, broadcast 1020 * or both. Messages that do not match the criteria are ignored as per 1021 * the CEC specification. 1022 */ 1023 static const u8 cec_msg_size[256] = { 1024 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, 1025 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, 1026 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, 1027 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, 1028 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, 1029 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, 1030 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, 1031 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, 1032 [CEC_MSG_STANDBY] = 2 | BOTH, 1033 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, 1034 [CEC_MSG_RECORD_ON] = 3 | DIRECTED, 1035 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, 1036 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, 1037 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, 1038 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, 1039 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, 1040 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, 1041 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, 1042 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, 1043 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, 1044 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, 1045 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, 1046 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, 1047 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, 1048 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, 1049 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, 1050 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, 1051 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, 1052 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, 1053 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, 1054 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, 1055 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, 1056 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, 1057 [CEC_MSG_PLAY] = 3 | DIRECTED, 1058 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, 1059 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, 1060 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, 1061 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, 1062 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, 1063 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, 1064 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, 1065 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, 1066 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, 1067 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, 1068 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, 1069 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, 1070 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, 1071 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, 1072 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, 1073 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, 1074 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, 1075 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, 1076 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, 1077 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, 1078 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, 1079 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, 1080 [CEC_MSG_ABORT] = 2 | DIRECTED, 1081 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, 1082 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, 1083 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, 1084 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1085 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1086 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, 1087 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED, 1088 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, 1089 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, 1090 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, 1091 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, 1092 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, 1093 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, 1094 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, 1095 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, 1096 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, 1097 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, 1098 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, 1099 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, 1100 }; 1101 1102 /* Called by the CEC adapter if a message is received */ 1103 void cec_received_msg_ts(struct cec_adapter *adap, 1104 struct cec_msg *msg, ktime_t ts) 1105 { 1106 struct cec_data *data; 1107 u8 msg_init = cec_msg_initiator(msg); 1108 u8 msg_dest = cec_msg_destination(msg); 1109 u8 cmd = msg->msg[1]; 1110 bool is_reply = false; 1111 bool valid_la = true; 1112 bool monitor_valid_la = true; 1113 u8 min_len = 0; 1114 1115 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) 1116 return; 1117 1118 if (adap->devnode.unregistered) 1119 return; 1120 1121 /* 1122 * Some CEC adapters will receive the messages that they transmitted. 1123 * This test filters out those messages by checking if we are the 1124 * initiator, and just returning in that case. 1125 * 1126 * Note that this won't work if this is an Unregistered device. 1127 * 1128 * It is bad practice if the hardware receives the message that it 1129 * transmitted and luckily most CEC adapters behave correctly in this 1130 * respect. 1131 */ 1132 if (msg_init != CEC_LOG_ADDR_UNREGISTERED && 1133 cec_has_log_addr(adap, msg_init)) 1134 return; 1135 1136 msg->rx_ts = ktime_to_ns(ts); 1137 msg->rx_status = CEC_RX_STATUS_OK; 1138 msg->sequence = msg->reply = msg->timeout = 0; 1139 msg->tx_status = 0; 1140 msg->tx_ts = 0; 1141 msg->tx_arb_lost_cnt = 0; 1142 msg->tx_nack_cnt = 0; 1143 msg->tx_low_drive_cnt = 0; 1144 msg->tx_error_cnt = 0; 1145 msg->flags = 0; 1146 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 1147 1148 mutex_lock(&adap->lock); 1149 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1150 1151 if (!adap->transmit_in_progress) 1152 adap->last_initiator = 0xff; 1153 1154 /* Check if this message was for us (directed or broadcast). */ 1155 if (!cec_msg_is_broadcast(msg)) { 1156 valid_la = cec_has_log_addr(adap, msg_dest); 1157 monitor_valid_la = valid_la; 1158 } 1159 1160 /* 1161 * Check if the length is not too short or if the message is a 1162 * broadcast message where a directed message was expected or 1163 * vice versa. If so, then the message has to be ignored (according 1164 * to section CEC 7.3 and CEC 12.2). 1165 */ 1166 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { 1167 u8 dir_fl = cec_msg_size[cmd] & BOTH; 1168 1169 min_len = cec_msg_size[cmd] & 0x1f; 1170 if (msg->len < min_len) 1171 valid_la = false; 1172 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) 1173 valid_la = false; 1174 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) 1175 valid_la = false; 1176 else if (cec_msg_is_broadcast(msg) && 1177 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && 1178 !(dir_fl & BCAST1_4)) 1179 valid_la = false; 1180 } 1181 if (valid_la && min_len) { 1182 /* These messages have special length requirements */ 1183 switch (cmd) { 1184 case CEC_MSG_RECORD_ON: 1185 switch (msg->msg[2]) { 1186 case CEC_OP_RECORD_SRC_OWN: 1187 break; 1188 case CEC_OP_RECORD_SRC_DIGITAL: 1189 if (msg->len < 10) 1190 valid_la = false; 1191 break; 1192 case CEC_OP_RECORD_SRC_ANALOG: 1193 if (msg->len < 7) 1194 valid_la = false; 1195 break; 1196 case CEC_OP_RECORD_SRC_EXT_PLUG: 1197 if (msg->len < 4) 1198 valid_la = false; 1199 break; 1200 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: 1201 if (msg->len < 5) 1202 valid_la = false; 1203 break; 1204 } 1205 break; 1206 } 1207 } 1208 1209 /* It's a valid message and not a poll or CDC message */ 1210 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { 1211 bool abort = cmd == CEC_MSG_FEATURE_ABORT; 1212 1213 /* The aborted command is in msg[2] */ 1214 if (abort) 1215 cmd = msg->msg[2]; 1216 1217 /* 1218 * Walk over all transmitted messages that are waiting for a 1219 * reply. 1220 */ 1221 list_for_each_entry(data, &adap->wait_queue, list) { 1222 struct cec_msg *dst = &data->msg; 1223 1224 /* 1225 * The *only* CEC message that has two possible replies 1226 * is CEC_MSG_INITIATE_ARC. 1227 * In this case allow either of the two replies. 1228 */ 1229 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && 1230 (cmd == CEC_MSG_REPORT_ARC_INITIATED || 1231 cmd == CEC_MSG_REPORT_ARC_TERMINATED) && 1232 (data->match_reply[0] == CEC_MSG_REPORT_ARC_INITIATED || 1233 data->match_reply[0] == CEC_MSG_REPORT_ARC_TERMINATED)) { 1234 dst->reply = cmd; 1235 data->match_reply[0] = cmd; 1236 } 1237 1238 /* Does the command match? */ 1239 if ((abort && cmd != dst->msg[1]) || 1240 (!abort && memcmp(data->match_reply, msg->msg + 1, data->match_len))) 1241 continue; 1242 1243 /* Does the addressing match? */ 1244 if (msg_init != cec_msg_destination(dst) && 1245 !cec_msg_is_broadcast(dst)) 1246 continue; 1247 1248 /* We got a reply */ 1249 memcpy(dst->msg, msg->msg, msg->len); 1250 dst->len = msg->len; 1251 dst->rx_ts = msg->rx_ts; 1252 dst->rx_status = msg->rx_status; 1253 if (abort) 1254 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; 1255 msg->flags = dst->flags; 1256 msg->sequence = dst->sequence; 1257 /* Remove it from the wait_queue */ 1258 list_del_init(&data->list); 1259 1260 /* Cancel the pending timeout work */ 1261 if (!cancel_delayed_work(&data->work)) { 1262 mutex_unlock(&adap->lock); 1263 cancel_delayed_work_sync(&data->work); 1264 mutex_lock(&adap->lock); 1265 } 1266 /* 1267 * Mark this as a reply, provided someone is still 1268 * waiting for the answer. 1269 */ 1270 if (data->fh) 1271 is_reply = true; 1272 cec_data_completed(data); 1273 break; 1274 } 1275 } 1276 mutex_unlock(&adap->lock); 1277 1278 /* Pass the message on to any monitoring filehandles */ 1279 cec_queue_msg_monitor(adap, msg, monitor_valid_la); 1280 1281 /* We're done if it is not for us or a poll message */ 1282 if (!valid_la || msg->len <= 1) 1283 return; 1284 1285 if (adap->log_addrs.log_addr_mask == 0) 1286 return; 1287 1288 /* 1289 * Process the message on the protocol level. If is_reply is true, 1290 * then cec_receive_notify() won't pass on the reply to the listener(s) 1291 * since that was already done by cec_data_completed() above. 1292 */ 1293 cec_receive_notify(adap, msg, is_reply); 1294 } 1295 EXPORT_SYMBOL_GPL(cec_received_msg_ts); 1296 1297 /* Logical Address Handling */ 1298 1299 /* 1300 * Attempt to claim a specific logical address. 1301 * 1302 * This function is called with adap->lock held. 1303 */ 1304 static int cec_config_log_addr(struct cec_adapter *adap, 1305 unsigned int idx, 1306 unsigned int log_addr) 1307 { 1308 struct cec_log_addrs *las = &adap->log_addrs; 1309 struct cec_msg msg = { }; 1310 const unsigned int max_retries = 2; 1311 unsigned int i; 1312 int err; 1313 1314 if (cec_has_log_addr(adap, log_addr)) 1315 return 0; 1316 1317 /* Send poll message */ 1318 msg.len = 1; 1319 msg.msg[0] = (log_addr << 4) | log_addr; 1320 1321 for (i = 0; i < max_retries; i++) { 1322 err = cec_transmit_msg_fh(adap, &msg, NULL, true); 1323 1324 /* 1325 * While trying to poll the physical address was reset 1326 * and the adapter was unconfigured, so bail out. 1327 */ 1328 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID) 1329 return -EINTR; 1330 1331 /* Also bail out if the PA changed while configuring. */ 1332 if (adap->must_reconfigure) 1333 return -EINTR; 1334 1335 if (err) 1336 return err; 1337 1338 /* 1339 * The message was aborted or timed out due to a disconnect or 1340 * unconfigure, just bail out. 1341 */ 1342 if (msg.tx_status & 1343 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT)) 1344 return -EINTR; 1345 if (msg.tx_status & CEC_TX_STATUS_OK) 1346 return 0; 1347 if (msg.tx_status & CEC_TX_STATUS_NACK) 1348 break; 1349 /* 1350 * Retry up to max_retries times if the message was neither 1351 * OKed or NACKed. This can happen due to e.g. a Lost 1352 * Arbitration condition. 1353 */ 1354 } 1355 1356 /* 1357 * If we are unable to get an OK or a NACK after max_retries attempts 1358 * (and note that each attempt already consists of four polls), then 1359 * we assume that something is really weird and that it is not a 1360 * good idea to try and claim this logical address. 1361 */ 1362 if (i == max_retries) { 1363 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n", 1364 log_addr, msg.tx_status); 1365 return 0; 1366 } 1367 1368 /* 1369 * Message not acknowledged, so this logical 1370 * address is free to use. 1371 */ 1372 err = call_op(adap, adap_log_addr, log_addr); 1373 if (err) 1374 return err; 1375 1376 las->log_addr[idx] = log_addr; 1377 las->log_addr_mask |= 1 << log_addr; 1378 return 1; 1379 } 1380 1381 /* 1382 * Unconfigure the adapter: clear all logical addresses and send 1383 * the state changed event. 1384 * 1385 * This function is called with adap->lock held. 1386 */ 1387 static void cec_adap_unconfigure(struct cec_adapter *adap) 1388 { 1389 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1390 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID)); 1391 adap->log_addrs.log_addr_mask = 0; 1392 adap->is_configured = false; 1393 cec_flush(adap); 1394 wake_up_interruptible(&adap->kthread_waitq); 1395 cec_post_state_event(adap); 1396 call_void_op(adap, adap_unconfigured); 1397 } 1398 1399 /* 1400 * Attempt to claim the required logical addresses. 1401 */ 1402 static int cec_config_thread_func(void *arg) 1403 { 1404 /* The various LAs for each type of device */ 1405 static const u8 tv_log_addrs[] = { 1406 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, 1407 CEC_LOG_ADDR_INVALID 1408 }; 1409 static const u8 record_log_addrs[] = { 1410 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, 1411 CEC_LOG_ADDR_RECORD_3, 1412 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1413 CEC_LOG_ADDR_INVALID 1414 }; 1415 static const u8 tuner_log_addrs[] = { 1416 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, 1417 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, 1418 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1419 CEC_LOG_ADDR_INVALID 1420 }; 1421 static const u8 playback_log_addrs[] = { 1422 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, 1423 CEC_LOG_ADDR_PLAYBACK_3, 1424 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1425 CEC_LOG_ADDR_INVALID 1426 }; 1427 static const u8 audiosystem_log_addrs[] = { 1428 CEC_LOG_ADDR_AUDIOSYSTEM, 1429 CEC_LOG_ADDR_INVALID 1430 }; 1431 static const u8 specific_use_log_addrs[] = { 1432 CEC_LOG_ADDR_SPECIFIC, 1433 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1434 CEC_LOG_ADDR_INVALID 1435 }; 1436 static const u8 *type2addrs[6] = { 1437 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, 1438 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, 1439 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, 1440 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, 1441 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, 1442 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, 1443 }; 1444 static const u16 type2mask[] = { 1445 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, 1446 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, 1447 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, 1448 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, 1449 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, 1450 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, 1451 }; 1452 struct cec_adapter *adap = arg; 1453 struct cec_log_addrs *las = &adap->log_addrs; 1454 int err; 1455 int i, j; 1456 1457 mutex_lock(&adap->lock); 1458 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", 1459 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); 1460 las->log_addr_mask = 0; 1461 1462 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) 1463 goto configured; 1464 1465 reconfigure: 1466 for (i = 0; i < las->num_log_addrs; i++) { 1467 unsigned int type = las->log_addr_type[i]; 1468 const u8 *la_list; 1469 u8 last_la; 1470 1471 /* 1472 * The TV functionality can only map to physical address 0. 1473 * For any other address, try the Specific functionality 1474 * instead as per the spec. 1475 */ 1476 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) 1477 type = CEC_LOG_ADDR_TYPE_SPECIFIC; 1478 1479 la_list = type2addrs[type]; 1480 last_la = las->log_addr[i]; 1481 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1482 if (last_la == CEC_LOG_ADDR_INVALID || 1483 last_la == CEC_LOG_ADDR_UNREGISTERED || 1484 !((1 << last_la) & type2mask[type])) 1485 last_la = la_list[0]; 1486 1487 err = cec_config_log_addr(adap, i, last_la); 1488 1489 if (adap->must_reconfigure) { 1490 adap->must_reconfigure = false; 1491 las->log_addr_mask = 0; 1492 goto reconfigure; 1493 } 1494 1495 if (err > 0) /* Reused last LA */ 1496 continue; 1497 1498 if (err < 0) 1499 goto unconfigure; 1500 1501 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { 1502 /* Tried this one already, skip it */ 1503 if (la_list[j] == last_la) 1504 continue; 1505 /* The backup addresses are CEC 2.0 specific */ 1506 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || 1507 la_list[j] == CEC_LOG_ADDR_BACKUP_2) && 1508 las->cec_version < CEC_OP_CEC_VERSION_2_0) 1509 continue; 1510 1511 err = cec_config_log_addr(adap, i, la_list[j]); 1512 if (err == 0) /* LA is in use */ 1513 continue; 1514 if (err < 0) 1515 goto unconfigure; 1516 /* Done, claimed an LA */ 1517 break; 1518 } 1519 1520 if (la_list[j] == CEC_LOG_ADDR_INVALID) 1521 dprintk(1, "could not claim LA %d\n", i); 1522 } 1523 1524 if (adap->log_addrs.log_addr_mask == 0 && 1525 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) 1526 goto unconfigure; 1527 1528 configured: 1529 if (adap->log_addrs.log_addr_mask == 0) { 1530 /* Fall back to unregistered */ 1531 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; 1532 las->log_addr_mask = 1 << las->log_addr[0]; 1533 for (i = 1; i < las->num_log_addrs; i++) 1534 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1535 } 1536 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) 1537 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1538 adap->is_configured = true; 1539 adap->is_configuring = false; 1540 adap->must_reconfigure = false; 1541 cec_post_state_event(adap); 1542 1543 /* 1544 * Now post the Report Features and Report Physical Address broadcast 1545 * messages. Note that these are non-blocking transmits, meaning that 1546 * they are just queued up and once adap->lock is unlocked the main 1547 * thread will kick in and start transmitting these. 1548 * 1549 * If after this function is done (but before one or more of these 1550 * messages are actually transmitted) the CEC adapter is unconfigured, 1551 * then any remaining messages will be dropped by the main thread. 1552 */ 1553 for (i = 0; i < las->num_log_addrs; i++) { 1554 struct cec_msg msg = {}; 1555 1556 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || 1557 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) 1558 continue; 1559 1560 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; 1561 1562 /* Report Features must come first according to CEC 2.0 */ 1563 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && 1564 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { 1565 cec_fill_msg_report_features(adap, &msg, i); 1566 cec_transmit_msg_fh(adap, &msg, NULL, false); 1567 } 1568 1569 /* Report Physical Address */ 1570 cec_msg_report_physical_addr(&msg, adap->phys_addr, 1571 las->primary_device_type[i]); 1572 dprintk(1, "config: la %d pa %x.%x.%x.%x\n", 1573 las->log_addr[i], 1574 cec_phys_addr_exp(adap->phys_addr)); 1575 cec_transmit_msg_fh(adap, &msg, NULL, false); 1576 1577 /* Report Vendor ID */ 1578 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { 1579 cec_msg_device_vendor_id(&msg, 1580 adap->log_addrs.vendor_id); 1581 cec_transmit_msg_fh(adap, &msg, NULL, false); 1582 } 1583 } 1584 adap->kthread_config = NULL; 1585 complete(&adap->config_completion); 1586 mutex_unlock(&adap->lock); 1587 call_void_op(adap, configured); 1588 return 0; 1589 1590 unconfigure: 1591 for (i = 0; i < las->num_log_addrs; i++) 1592 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1593 cec_adap_unconfigure(adap); 1594 adap->is_configuring = false; 1595 adap->must_reconfigure = false; 1596 adap->kthread_config = NULL; 1597 complete(&adap->config_completion); 1598 mutex_unlock(&adap->lock); 1599 return 0; 1600 } 1601 1602 /* 1603 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the 1604 * logical addresses. 1605 * 1606 * This function is called with adap->lock held. 1607 */ 1608 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) 1609 { 1610 if (WARN_ON(adap->is_claiming_log_addrs || 1611 adap->is_configuring || adap->is_configured)) 1612 return; 1613 1614 adap->is_claiming_log_addrs = true; 1615 1616 init_completion(&adap->config_completion); 1617 1618 /* Ready to kick off the thread */ 1619 adap->is_configuring = true; 1620 adap->kthread_config = kthread_run(cec_config_thread_func, adap, 1621 "ceccfg-%s", adap->name); 1622 if (IS_ERR(adap->kthread_config)) { 1623 adap->kthread_config = NULL; 1624 adap->is_configuring = false; 1625 } else if (block) { 1626 mutex_unlock(&adap->lock); 1627 wait_for_completion(&adap->config_completion); 1628 mutex_lock(&adap->lock); 1629 } 1630 adap->is_claiming_log_addrs = false; 1631 } 1632 1633 /* 1634 * Helper function to enable/disable the CEC adapter. 1635 * 1636 * This function is called with adap->lock held. 1637 */ 1638 int cec_adap_enable(struct cec_adapter *adap) 1639 { 1640 bool enable; 1641 int ret = 0; 1642 1643 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt || 1644 adap->log_addrs.num_log_addrs; 1645 if (adap->needs_hpd) 1646 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID; 1647 1648 if (adap->devnode.unregistered) 1649 enable = false; 1650 1651 if (enable == adap->is_enabled) 1652 return 0; 1653 1654 /* serialize adap_enable */ 1655 mutex_lock(&adap->devnode.lock); 1656 if (enable) { 1657 adap->last_initiator = 0xff; 1658 adap->transmit_in_progress = false; 1659 adap->tx_low_drive_log_cnt = 0; 1660 adap->tx_error_log_cnt = 0; 1661 ret = adap->ops->adap_enable(adap, true); 1662 if (!ret) { 1663 /* 1664 * Enable monitor-all/pin modes if needed. We warn, but 1665 * continue if this fails as this is not a critical error. 1666 */ 1667 if (adap->monitor_all_cnt) 1668 WARN_ON(call_op(adap, adap_monitor_all_enable, true)); 1669 if (adap->monitor_pin_cnt) 1670 WARN_ON(call_op(adap, adap_monitor_pin_enable, true)); 1671 } 1672 } else { 1673 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */ 1674 if (adap->monitor_all_cnt) 1675 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 1676 if (adap->monitor_pin_cnt) 1677 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 1678 WARN_ON(adap->ops->adap_enable(adap, false)); 1679 adap->last_initiator = 0xff; 1680 adap->transmit_in_progress = false; 1681 adap->transmit_in_progress_aborted = false; 1682 if (adap->transmitting) 1683 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0); 1684 } 1685 if (!ret) 1686 adap->is_enabled = enable; 1687 wake_up_interruptible(&adap->kthread_waitq); 1688 mutex_unlock(&adap->devnode.lock); 1689 return ret; 1690 } 1691 1692 /* Set a new physical address and send an event notifying userspace of this. 1693 * 1694 * This function is called with adap->lock held. 1695 */ 1696 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1697 { 1698 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID; 1699 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID; 1700 1701 if (phys_addr == adap->phys_addr) 1702 return; 1703 if (!becomes_invalid && adap->devnode.unregistered) 1704 return; 1705 1706 dprintk(1, "new physical address %x.%x.%x.%x\n", 1707 cec_phys_addr_exp(phys_addr)); 1708 if (becomes_invalid || !is_invalid) { 1709 adap->phys_addr = CEC_PHYS_ADDR_INVALID; 1710 cec_post_state_event(adap); 1711 cec_adap_unconfigure(adap); 1712 if (becomes_invalid) { 1713 cec_adap_enable(adap); 1714 return; 1715 } 1716 } 1717 1718 adap->phys_addr = phys_addr; 1719 if (is_invalid) 1720 cec_adap_enable(adap); 1721 1722 cec_post_state_event(adap); 1723 if (!adap->log_addrs.num_log_addrs) 1724 return; 1725 if (adap->is_configuring) 1726 adap->must_reconfigure = true; 1727 else 1728 cec_claim_log_addrs(adap, block); 1729 } 1730 1731 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1732 { 1733 if (IS_ERR_OR_NULL(adap)) 1734 return; 1735 1736 mutex_lock(&adap->lock); 1737 __cec_s_phys_addr(adap, phys_addr, block); 1738 mutex_unlock(&adap->lock); 1739 } 1740 EXPORT_SYMBOL_GPL(cec_s_phys_addr); 1741 1742 /* 1743 * Note: In the drm subsystem, prefer calling (if possible): 1744 * 1745 * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false); 1746 */ 1747 void cec_s_phys_addr_from_edid(struct cec_adapter *adap, 1748 const struct edid *edid) 1749 { 1750 u16 pa = CEC_PHYS_ADDR_INVALID; 1751 1752 if (edid && edid->extensions) 1753 pa = cec_get_edid_phys_addr((const u8 *)edid, 1754 EDID_LENGTH * (edid->extensions + 1), NULL); 1755 cec_s_phys_addr(adap, pa, false); 1756 } 1757 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); 1758 1759 void cec_s_conn_info(struct cec_adapter *adap, 1760 const struct cec_connector_info *conn_info) 1761 { 1762 if (IS_ERR_OR_NULL(adap)) 1763 return; 1764 1765 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) 1766 return; 1767 1768 mutex_lock(&adap->lock); 1769 if (conn_info) 1770 adap->conn_info = *conn_info; 1771 else 1772 memset(&adap->conn_info, 0, sizeof(adap->conn_info)); 1773 cec_post_state_event(adap); 1774 mutex_unlock(&adap->lock); 1775 } 1776 EXPORT_SYMBOL_GPL(cec_s_conn_info); 1777 1778 /* 1779 * Called from either the ioctl or a driver to set the logical addresses. 1780 * 1781 * This function is called with adap->lock held. 1782 */ 1783 int __cec_s_log_addrs(struct cec_adapter *adap, 1784 struct cec_log_addrs *log_addrs, bool block) 1785 { 1786 u16 type_mask = 0; 1787 int err; 1788 int i; 1789 1790 if (adap->devnode.unregistered) 1791 return -ENODEV; 1792 1793 if (!log_addrs || log_addrs->num_log_addrs == 0) { 1794 if (!adap->log_addrs.num_log_addrs) 1795 return 0; 1796 if (adap->is_configuring || adap->is_configured) 1797 cec_adap_unconfigure(adap); 1798 adap->log_addrs.num_log_addrs = 0; 1799 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) 1800 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; 1801 adap->log_addrs.osd_name[0] = '\0'; 1802 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; 1803 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; 1804 cec_adap_enable(adap); 1805 return 0; 1806 } 1807 1808 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { 1809 /* 1810 * Sanitize log_addrs fields if a CDC-Only device is 1811 * requested. 1812 */ 1813 log_addrs->num_log_addrs = 1; 1814 log_addrs->osd_name[0] = '\0'; 1815 log_addrs->vendor_id = CEC_VENDOR_ID_NONE; 1816 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; 1817 /* 1818 * This is just an internal convention since a CDC-Only device 1819 * doesn't have to be a switch. But switches already use 1820 * unregistered, so it makes some kind of sense to pick this 1821 * as the primary device. Since a CDC-Only device never sends 1822 * any 'normal' CEC messages this primary device type is never 1823 * sent over the CEC bus. 1824 */ 1825 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; 1826 log_addrs->all_device_types[0] = 0; 1827 log_addrs->features[0][0] = 0; 1828 log_addrs->features[0][1] = 0; 1829 } 1830 1831 /* Ensure the osd name is 0-terminated */ 1832 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; 1833 1834 /* Sanity checks */ 1835 if (log_addrs->num_log_addrs > adap->available_log_addrs) { 1836 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); 1837 return -EINVAL; 1838 } 1839 1840 /* 1841 * Vendor ID is a 24 bit number, so check if the value is 1842 * within the correct range. 1843 */ 1844 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && 1845 (log_addrs->vendor_id & 0xff000000) != 0) { 1846 dprintk(1, "invalid vendor ID\n"); 1847 return -EINVAL; 1848 } 1849 1850 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && 1851 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { 1852 dprintk(1, "invalid CEC version\n"); 1853 return -EINVAL; 1854 } 1855 1856 if (log_addrs->num_log_addrs > 1) 1857 for (i = 0; i < log_addrs->num_log_addrs; i++) 1858 if (log_addrs->log_addr_type[i] == 1859 CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1860 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); 1861 return -EINVAL; 1862 } 1863 1864 for (i = 0; i < log_addrs->num_log_addrs; i++) { 1865 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); 1866 u8 *features = log_addrs->features[i]; 1867 bool op_is_dev_features = false; 1868 unsigned int j; 1869 1870 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; 1871 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1872 dprintk(1, "unknown logical address type\n"); 1873 return -EINVAL; 1874 } 1875 if (type_mask & (1 << log_addrs->log_addr_type[i])) { 1876 dprintk(1, "duplicate logical address type\n"); 1877 return -EINVAL; 1878 } 1879 type_mask |= 1 << log_addrs->log_addr_type[i]; 1880 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && 1881 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { 1882 /* Record already contains the playback functionality */ 1883 dprintk(1, "invalid record + playback combination\n"); 1884 return -EINVAL; 1885 } 1886 if (log_addrs->primary_device_type[i] > 1887 CEC_OP_PRIM_DEVTYPE_PROCESSOR) { 1888 dprintk(1, "unknown primary device type\n"); 1889 return -EINVAL; 1890 } 1891 if (log_addrs->primary_device_type[i] == 2) { 1892 dprintk(1, "invalid primary device type\n"); 1893 return -EINVAL; 1894 } 1895 for (j = 0; j < feature_sz; j++) { 1896 if ((features[j] & 0x80) == 0) { 1897 if (op_is_dev_features) 1898 break; 1899 op_is_dev_features = true; 1900 } 1901 } 1902 if (!op_is_dev_features || j == feature_sz) { 1903 dprintk(1, "malformed features\n"); 1904 return -EINVAL; 1905 } 1906 /* Zero unused part of the feature array */ 1907 memset(features + j + 1, 0, feature_sz - j - 1); 1908 } 1909 1910 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { 1911 if (log_addrs->num_log_addrs > 2) { 1912 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); 1913 return -EINVAL; 1914 } 1915 if (log_addrs->num_log_addrs == 2) { 1916 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | 1917 (1 << CEC_LOG_ADDR_TYPE_TV)))) { 1918 dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); 1919 return -EINVAL; 1920 } 1921 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | 1922 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { 1923 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); 1924 return -EINVAL; 1925 } 1926 } 1927 } 1928 1929 /* Zero unused LAs */ 1930 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { 1931 log_addrs->primary_device_type[i] = 0; 1932 log_addrs->log_addr_type[i] = 0; 1933 log_addrs->all_device_types[i] = 0; 1934 memset(log_addrs->features[i], 0, 1935 sizeof(log_addrs->features[i])); 1936 } 1937 1938 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; 1939 adap->log_addrs = *log_addrs; 1940 err = cec_adap_enable(adap); 1941 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1942 cec_claim_log_addrs(adap, block); 1943 return err; 1944 } 1945 1946 int cec_s_log_addrs(struct cec_adapter *adap, 1947 struct cec_log_addrs *log_addrs, bool block) 1948 { 1949 int err; 1950 1951 mutex_lock(&adap->lock); 1952 err = __cec_s_log_addrs(adap, log_addrs, block); 1953 mutex_unlock(&adap->lock); 1954 return err; 1955 } 1956 EXPORT_SYMBOL_GPL(cec_s_log_addrs); 1957 1958 /* High-level core CEC message handling */ 1959 1960 /* Fill in the Report Features message */ 1961 static void cec_fill_msg_report_features(struct cec_adapter *adap, 1962 struct cec_msg *msg, 1963 unsigned int la_idx) 1964 { 1965 const struct cec_log_addrs *las = &adap->log_addrs; 1966 const u8 *features = las->features[la_idx]; 1967 bool op_is_dev_features = false; 1968 unsigned int idx; 1969 1970 /* Report Features */ 1971 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; 1972 msg->len = 4; 1973 msg->msg[1] = CEC_MSG_REPORT_FEATURES; 1974 msg->msg[2] = adap->log_addrs.cec_version; 1975 msg->msg[3] = las->all_device_types[la_idx]; 1976 1977 /* Write RC Profiles first, then Device Features */ 1978 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { 1979 msg->msg[msg->len++] = features[idx]; 1980 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { 1981 if (op_is_dev_features) 1982 break; 1983 op_is_dev_features = true; 1984 } 1985 } 1986 } 1987 1988 /* Transmit the Feature Abort message */ 1989 static int cec_feature_abort_reason(struct cec_adapter *adap, 1990 struct cec_msg *msg, u8 reason) 1991 { 1992 struct cec_msg tx_msg = { }; 1993 1994 /* 1995 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT 1996 * message! 1997 */ 1998 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) 1999 return 0; 2000 /* Don't Feature Abort messages from 'Unregistered' */ 2001 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) 2002 return 0; 2003 cec_msg_set_reply_to(&tx_msg, msg); 2004 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); 2005 return cec_transmit_msg(adap, &tx_msg, false); 2006 } 2007 2008 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) 2009 { 2010 return cec_feature_abort_reason(adap, msg, 2011 CEC_OP_ABORT_UNRECOGNIZED_OP); 2012 } 2013 2014 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) 2015 { 2016 return cec_feature_abort_reason(adap, msg, 2017 CEC_OP_ABORT_REFUSED); 2018 } 2019 2020 /* 2021 * Called when a CEC message is received. This function will do any 2022 * necessary core processing. The is_reply bool is true if this message 2023 * is a reply to an earlier transmit. 2024 * 2025 * The message is either a broadcast message or a valid directed message. 2026 */ 2027 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 2028 bool is_reply) 2029 { 2030 bool is_broadcast = cec_msg_is_broadcast(msg); 2031 u8 dest_laddr = cec_msg_destination(msg); 2032 u8 init_laddr = cec_msg_initiator(msg); 2033 u8 devtype = cec_log_addr2dev(adap, dest_laddr); 2034 int la_idx = cec_log_addr2idx(adap, dest_laddr); 2035 bool from_unregistered = init_laddr == 0xf; 2036 struct cec_msg tx_cec_msg = { }; 2037 2038 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 2039 2040 /* If this is a CDC-Only device, then ignore any non-CDC messages */ 2041 if (cec_is_cdc_only(&adap->log_addrs) && 2042 msg->msg[1] != CEC_MSG_CDC_MESSAGE) 2043 return 0; 2044 2045 /* Allow drivers to process the message first */ 2046 if (adap->ops->received && !adap->devnode.unregistered && 2047 adap->ops->received(adap, msg) != -ENOMSG) 2048 return 0; 2049 2050 /* 2051 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and 2052 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be 2053 * handled by the CEC core, even if the passthrough mode is on. 2054 * The others are just ignored if passthrough mode is on. 2055 */ 2056 switch (msg->msg[1]) { 2057 case CEC_MSG_GET_CEC_VERSION: 2058 case CEC_MSG_ABORT: 2059 case CEC_MSG_GIVE_DEVICE_POWER_STATUS: 2060 case CEC_MSG_GIVE_OSD_NAME: 2061 /* 2062 * These messages reply with a directed message, so ignore if 2063 * the initiator is Unregistered. 2064 */ 2065 if (!adap->passthrough && from_unregistered) 2066 return 0; 2067 fallthrough; 2068 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2069 case CEC_MSG_GIVE_FEATURES: 2070 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2071 /* 2072 * Skip processing these messages if the passthrough mode 2073 * is on. 2074 */ 2075 if (adap->passthrough) 2076 goto skip_processing; 2077 /* Ignore if addressing is wrong */ 2078 if (is_broadcast) 2079 return 0; 2080 break; 2081 2082 case CEC_MSG_USER_CONTROL_PRESSED: 2083 case CEC_MSG_USER_CONTROL_RELEASED: 2084 /* Wrong addressing mode: don't process */ 2085 if (is_broadcast || from_unregistered) 2086 goto skip_processing; 2087 break; 2088 2089 case CEC_MSG_REPORT_PHYSICAL_ADDR: 2090 /* 2091 * This message is always processed, regardless of the 2092 * passthrough setting. 2093 * 2094 * Exception: don't process if wrong addressing mode. 2095 */ 2096 if (!is_broadcast) 2097 goto skip_processing; 2098 break; 2099 2100 default: 2101 break; 2102 } 2103 2104 cec_msg_set_reply_to(&tx_cec_msg, msg); 2105 2106 switch (msg->msg[1]) { 2107 /* The following messages are processed but still passed through */ 2108 case CEC_MSG_REPORT_PHYSICAL_ADDR: { 2109 u16 pa = (msg->msg[2] << 8) | msg->msg[3]; 2110 2111 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", 2112 cec_phys_addr_exp(pa), init_laddr); 2113 break; 2114 } 2115 2116 case CEC_MSG_USER_CONTROL_PRESSED: 2117 if (!(adap->capabilities & CEC_CAP_RC) || 2118 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2119 break; 2120 2121 #ifdef CONFIG_MEDIA_CEC_RC 2122 switch (msg->msg[2]) { 2123 /* 2124 * Play function, this message can have variable length 2125 * depending on the specific play function that is used. 2126 */ 2127 case CEC_OP_UI_CMD_PLAY_FUNCTION: 2128 if (msg->len == 2) 2129 rc_keydown(adap->rc, RC_PROTO_CEC, 2130 msg->msg[2], 0); 2131 else 2132 rc_keydown(adap->rc, RC_PROTO_CEC, 2133 msg->msg[2] << 8 | msg->msg[3], 0); 2134 break; 2135 /* 2136 * Other function messages that are not handled. 2137 * Currently the RC framework does not allow to supply an 2138 * additional parameter to a keypress. These "keys" contain 2139 * other information such as channel number, an input number 2140 * etc. 2141 * For the time being these messages are not processed by the 2142 * framework and are simply forwarded to the user space. 2143 */ 2144 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: 2145 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: 2146 case CEC_OP_UI_CMD_TUNE_FUNCTION: 2147 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: 2148 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: 2149 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: 2150 break; 2151 default: 2152 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); 2153 break; 2154 } 2155 #endif 2156 break; 2157 2158 case CEC_MSG_USER_CONTROL_RELEASED: 2159 if (!(adap->capabilities & CEC_CAP_RC) || 2160 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2161 break; 2162 #ifdef CONFIG_MEDIA_CEC_RC 2163 rc_keyup(adap->rc); 2164 #endif 2165 break; 2166 2167 /* 2168 * The remaining messages are only processed if the passthrough mode 2169 * is off. 2170 */ 2171 case CEC_MSG_GET_CEC_VERSION: 2172 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); 2173 return cec_transmit_msg(adap, &tx_cec_msg, false); 2174 2175 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2176 /* Do nothing for CEC switches using addr 15 */ 2177 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) 2178 return 0; 2179 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); 2180 return cec_transmit_msg(adap, &tx_cec_msg, false); 2181 2182 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2183 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) 2184 return cec_feature_abort(adap, msg); 2185 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); 2186 return cec_transmit_msg(adap, &tx_cec_msg, false); 2187 2188 case CEC_MSG_ABORT: 2189 /* Do nothing for CEC switches */ 2190 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) 2191 return 0; 2192 return cec_feature_refused(adap, msg); 2193 2194 case CEC_MSG_GIVE_OSD_NAME: { 2195 if (adap->log_addrs.osd_name[0] == 0) 2196 return cec_feature_abort(adap, msg); 2197 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); 2198 return cec_transmit_msg(adap, &tx_cec_msg, false); 2199 } 2200 2201 case CEC_MSG_GIVE_FEATURES: 2202 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) 2203 return cec_feature_abort(adap, msg); 2204 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); 2205 return cec_transmit_msg(adap, &tx_cec_msg, false); 2206 2207 default: 2208 /* 2209 * Unprocessed messages are aborted if userspace isn't doing 2210 * any processing either. 2211 */ 2212 if (!is_broadcast && !is_reply && !adap->follower_cnt && 2213 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) 2214 return cec_feature_abort(adap, msg); 2215 break; 2216 } 2217 2218 skip_processing: 2219 /* If this was a reply, then we're done, unless otherwise specified */ 2220 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) 2221 return 0; 2222 2223 /* 2224 * Send to the exclusive follower if there is one, otherwise send 2225 * to all followers. 2226 */ 2227 if (adap->cec_follower) 2228 cec_queue_msg_fh(adap->cec_follower, msg); 2229 else 2230 cec_queue_msg_followers(adap, msg); 2231 return 0; 2232 } 2233 2234 /* 2235 * Helper functions to keep track of the 'monitor all' use count. 2236 * 2237 * These functions are called with adap->lock held. 2238 */ 2239 int cec_monitor_all_cnt_inc(struct cec_adapter *adap) 2240 { 2241 int ret; 2242 2243 if (adap->monitor_all_cnt++) 2244 return 0; 2245 2246 ret = cec_adap_enable(adap); 2247 if (ret) 2248 adap->monitor_all_cnt--; 2249 return ret; 2250 } 2251 2252 void cec_monitor_all_cnt_dec(struct cec_adapter *adap) 2253 { 2254 if (WARN_ON(!adap->monitor_all_cnt)) 2255 return; 2256 if (--adap->monitor_all_cnt) 2257 return; 2258 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 2259 cec_adap_enable(adap); 2260 } 2261 2262 /* 2263 * Helper functions to keep track of the 'monitor pin' use count. 2264 * 2265 * These functions are called with adap->lock held. 2266 */ 2267 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) 2268 { 2269 int ret; 2270 2271 if (adap->monitor_pin_cnt++) 2272 return 0; 2273 2274 ret = cec_adap_enable(adap); 2275 if (ret) 2276 adap->monitor_pin_cnt--; 2277 return ret; 2278 } 2279 2280 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) 2281 { 2282 if (WARN_ON(!adap->monitor_pin_cnt)) 2283 return; 2284 if (--adap->monitor_pin_cnt) 2285 return; 2286 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 2287 cec_adap_enable(adap); 2288 } 2289 2290 #ifdef CONFIG_DEBUG_FS 2291 /* 2292 * Log the current state of the CEC adapter. 2293 * Very useful for debugging. 2294 */ 2295 int cec_adap_status(struct seq_file *file, void *priv) 2296 { 2297 struct cec_adapter *adap = dev_get_drvdata(file->private); 2298 struct cec_data *data; 2299 2300 mutex_lock(&adap->lock); 2301 seq_printf(file, "enabled: %d\n", adap->is_enabled); 2302 seq_printf(file, "configured: %d\n", adap->is_configured); 2303 seq_printf(file, "configuring: %d\n", adap->is_configuring); 2304 seq_printf(file, "phys_addr: %x.%x.%x.%x\n", 2305 cec_phys_addr_exp(adap->phys_addr)); 2306 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); 2307 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); 2308 if (adap->cec_follower) 2309 seq_printf(file, "has CEC follower%s\n", 2310 adap->passthrough ? " (in passthrough mode)" : ""); 2311 if (adap->cec_initiator) 2312 seq_puts(file, "has CEC initiator\n"); 2313 if (adap->monitor_all_cnt) 2314 seq_printf(file, "file handles in Monitor All mode: %u\n", 2315 adap->monitor_all_cnt); 2316 if (adap->monitor_pin_cnt) 2317 seq_printf(file, "file handles in Monitor Pin mode: %u\n", 2318 adap->monitor_pin_cnt); 2319 if (adap->tx_timeout_cnt) { 2320 seq_printf(file, "transmit timeout count: %u\n", 2321 adap->tx_timeout_cnt); 2322 adap->tx_timeout_cnt = 0; 2323 } 2324 if (adap->tx_low_drive_cnt) { 2325 seq_printf(file, "transmit low drive count: %u\n", 2326 adap->tx_low_drive_cnt); 2327 adap->tx_low_drive_cnt = 0; 2328 } 2329 if (adap->tx_arb_lost_cnt) { 2330 seq_printf(file, "transmit arbitration lost count: %u\n", 2331 adap->tx_arb_lost_cnt); 2332 adap->tx_arb_lost_cnt = 0; 2333 } 2334 if (adap->tx_error_cnt) { 2335 seq_printf(file, "transmit error count: %u\n", 2336 adap->tx_error_cnt); 2337 adap->tx_error_cnt = 0; 2338 } 2339 data = adap->transmitting; 2340 if (data) 2341 seq_printf(file, "transmitting message: %*ph (reply: %*ph, timeout: %ums)\n", 2342 data->msg.len, data->msg.msg, 2343 data->match_len, data->match_reply, 2344 data->msg.timeout); 2345 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); 2346 list_for_each_entry(data, &adap->transmit_queue, list) { 2347 seq_printf(file, "queued tx message: %*ph (reply: %*ph, timeout: %ums)\n", 2348 data->msg.len, data->msg.msg, 2349 data->match_len, data->match_reply, 2350 data->msg.timeout); 2351 } 2352 list_for_each_entry(data, &adap->wait_queue, list) { 2353 seq_printf(file, "message waiting for reply: %*ph (reply: %*ph, timeout: %ums)\n", 2354 data->msg.len, data->msg.msg, 2355 data->match_len, data->match_reply, 2356 data->msg.timeout); 2357 } 2358 2359 call_void_op(adap, adap_status, file); 2360 mutex_unlock(&adap->lock); 2361 return 0; 2362 } 2363 #endif 2364