1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include "md.h" 57 #include "raid5.h" 58 #include "raid0.h" 59 #include "bitmap.h" 60 61 /* 62 * Stripe cache 63 */ 64 65 #define NR_STRIPES 256 66 #define STRIPE_SIZE PAGE_SIZE 67 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 68 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 69 #define IO_THRESHOLD 1 70 #define BYPASS_THRESHOLD 1 71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 72 #define HASH_MASK (NR_HASH - 1) 73 74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 75 { 76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 77 return &conf->stripe_hashtbl[hash]; 78 } 79 80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 81 * order without overlap. There may be several bio's per stripe+device, and 82 * a bio could span several devices. 83 * When walking this list for a particular stripe+device, we must never proceed 84 * beyond a bio that extends past this device, as the next bio might no longer 85 * be valid. 86 * This function is used to determine the 'next' bio in the list, given the sector 87 * of the current stripe+device 88 */ 89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 90 { 91 int sectors = bio->bi_size >> 9; 92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) 93 return bio->bi_next; 94 else 95 return NULL; 96 } 97 98 /* 99 * We maintain a biased count of active stripes in the bottom 16 bits of 100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 101 */ 102 static inline int raid5_bi_processed_stripes(struct bio *bio) 103 { 104 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 105 return (atomic_read(segments) >> 16) & 0xffff; 106 } 107 108 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 109 { 110 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 111 return atomic_sub_return(1, segments) & 0xffff; 112 } 113 114 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 115 { 116 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 117 atomic_inc(segments); 118 } 119 120 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 121 unsigned int cnt) 122 { 123 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 124 int old, new; 125 126 do { 127 old = atomic_read(segments); 128 new = (old & 0xffff) | (cnt << 16); 129 } while (atomic_cmpxchg(segments, old, new) != old); 130 } 131 132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 133 { 134 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 135 atomic_set(segments, cnt); 136 } 137 138 /* Find first data disk in a raid6 stripe */ 139 static inline int raid6_d0(struct stripe_head *sh) 140 { 141 if (sh->ddf_layout) 142 /* ddf always start from first device */ 143 return 0; 144 /* md starts just after Q block */ 145 if (sh->qd_idx == sh->disks - 1) 146 return 0; 147 else 148 return sh->qd_idx + 1; 149 } 150 static inline int raid6_next_disk(int disk, int raid_disks) 151 { 152 disk++; 153 return (disk < raid_disks) ? disk : 0; 154 } 155 156 /* When walking through the disks in a raid5, starting at raid6_d0, 157 * We need to map each disk to a 'slot', where the data disks are slot 158 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 159 * is raid_disks-1. This help does that mapping. 160 */ 161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 162 int *count, int syndrome_disks) 163 { 164 int slot = *count; 165 166 if (sh->ddf_layout) 167 (*count)++; 168 if (idx == sh->pd_idx) 169 return syndrome_disks; 170 if (idx == sh->qd_idx) 171 return syndrome_disks + 1; 172 if (!sh->ddf_layout) 173 (*count)++; 174 return slot; 175 } 176 177 static void return_io(struct bio *return_bi) 178 { 179 struct bio *bi = return_bi; 180 while (bi) { 181 182 return_bi = bi->bi_next; 183 bi->bi_next = NULL; 184 bi->bi_size = 0; 185 bio_endio(bi, 0); 186 bi = return_bi; 187 } 188 } 189 190 static void print_raid5_conf (struct r5conf *conf); 191 192 static int stripe_operations_active(struct stripe_head *sh) 193 { 194 return sh->check_state || sh->reconstruct_state || 195 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 196 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 197 } 198 199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh) 200 { 201 BUG_ON(!list_empty(&sh->lru)); 202 BUG_ON(atomic_read(&conf->active_stripes)==0); 203 if (test_bit(STRIPE_HANDLE, &sh->state)) { 204 if (test_bit(STRIPE_DELAYED, &sh->state) && 205 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 206 list_add_tail(&sh->lru, &conf->delayed_list); 207 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 208 sh->bm_seq - conf->seq_write > 0) 209 list_add_tail(&sh->lru, &conf->bitmap_list); 210 else { 211 clear_bit(STRIPE_DELAYED, &sh->state); 212 clear_bit(STRIPE_BIT_DELAY, &sh->state); 213 list_add_tail(&sh->lru, &conf->handle_list); 214 } 215 md_wakeup_thread(conf->mddev->thread); 216 } else { 217 BUG_ON(stripe_operations_active(sh)); 218 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 219 if (atomic_dec_return(&conf->preread_active_stripes) 220 < IO_THRESHOLD) 221 md_wakeup_thread(conf->mddev->thread); 222 atomic_dec(&conf->active_stripes); 223 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 224 list_add_tail(&sh->lru, &conf->inactive_list); 225 wake_up(&conf->wait_for_stripe); 226 if (conf->retry_read_aligned) 227 md_wakeup_thread(conf->mddev->thread); 228 } 229 } 230 } 231 232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh) 233 { 234 if (atomic_dec_and_test(&sh->count)) 235 do_release_stripe(conf, sh); 236 } 237 238 static void release_stripe(struct stripe_head *sh) 239 { 240 struct r5conf *conf = sh->raid_conf; 241 unsigned long flags; 242 243 local_irq_save(flags); 244 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 245 do_release_stripe(conf, sh); 246 spin_unlock(&conf->device_lock); 247 } 248 local_irq_restore(flags); 249 } 250 251 static inline void remove_hash(struct stripe_head *sh) 252 { 253 pr_debug("remove_hash(), stripe %llu\n", 254 (unsigned long long)sh->sector); 255 256 hlist_del_init(&sh->hash); 257 } 258 259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 260 { 261 struct hlist_head *hp = stripe_hash(conf, sh->sector); 262 263 pr_debug("insert_hash(), stripe %llu\n", 264 (unsigned long long)sh->sector); 265 266 hlist_add_head(&sh->hash, hp); 267 } 268 269 270 /* find an idle stripe, make sure it is unhashed, and return it. */ 271 static struct stripe_head *get_free_stripe(struct r5conf *conf) 272 { 273 struct stripe_head *sh = NULL; 274 struct list_head *first; 275 276 if (list_empty(&conf->inactive_list)) 277 goto out; 278 first = conf->inactive_list.next; 279 sh = list_entry(first, struct stripe_head, lru); 280 list_del_init(first); 281 remove_hash(sh); 282 atomic_inc(&conf->active_stripes); 283 out: 284 return sh; 285 } 286 287 static void shrink_buffers(struct stripe_head *sh) 288 { 289 struct page *p; 290 int i; 291 int num = sh->raid_conf->pool_size; 292 293 for (i = 0; i < num ; i++) { 294 p = sh->dev[i].page; 295 if (!p) 296 continue; 297 sh->dev[i].page = NULL; 298 put_page(p); 299 } 300 } 301 302 static int grow_buffers(struct stripe_head *sh) 303 { 304 int i; 305 int num = sh->raid_conf->pool_size; 306 307 for (i = 0; i < num; i++) { 308 struct page *page; 309 310 if (!(page = alloc_page(GFP_KERNEL))) { 311 return 1; 312 } 313 sh->dev[i].page = page; 314 } 315 return 0; 316 } 317 318 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 320 struct stripe_head *sh); 321 322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 323 { 324 struct r5conf *conf = sh->raid_conf; 325 int i; 326 327 BUG_ON(atomic_read(&sh->count) != 0); 328 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 329 BUG_ON(stripe_operations_active(sh)); 330 331 pr_debug("init_stripe called, stripe %llu\n", 332 (unsigned long long)sh->sector); 333 334 remove_hash(sh); 335 336 sh->generation = conf->generation - previous; 337 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 338 sh->sector = sector; 339 stripe_set_idx(sector, conf, previous, sh); 340 sh->state = 0; 341 342 343 for (i = sh->disks; i--; ) { 344 struct r5dev *dev = &sh->dev[i]; 345 346 if (dev->toread || dev->read || dev->towrite || dev->written || 347 test_bit(R5_LOCKED, &dev->flags)) { 348 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 349 (unsigned long long)sh->sector, i, dev->toread, 350 dev->read, dev->towrite, dev->written, 351 test_bit(R5_LOCKED, &dev->flags)); 352 WARN_ON(1); 353 } 354 dev->flags = 0; 355 raid5_build_block(sh, i, previous); 356 } 357 insert_hash(conf, sh); 358 } 359 360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 361 short generation) 362 { 363 struct stripe_head *sh; 364 struct hlist_node *hn; 365 366 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 367 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 368 if (sh->sector == sector && sh->generation == generation) 369 return sh; 370 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 371 return NULL; 372 } 373 374 /* 375 * Need to check if array has failed when deciding whether to: 376 * - start an array 377 * - remove non-faulty devices 378 * - add a spare 379 * - allow a reshape 380 * This determination is simple when no reshape is happening. 381 * However if there is a reshape, we need to carefully check 382 * both the before and after sections. 383 * This is because some failed devices may only affect one 384 * of the two sections, and some non-in_sync devices may 385 * be insync in the section most affected by failed devices. 386 */ 387 static int calc_degraded(struct r5conf *conf) 388 { 389 int degraded, degraded2; 390 int i; 391 392 rcu_read_lock(); 393 degraded = 0; 394 for (i = 0; i < conf->previous_raid_disks; i++) { 395 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 396 if (rdev && test_bit(Faulty, &rdev->flags)) 397 rdev = rcu_dereference(conf->disks[i].replacement); 398 if (!rdev || test_bit(Faulty, &rdev->flags)) 399 degraded++; 400 else if (test_bit(In_sync, &rdev->flags)) 401 ; 402 else 403 /* not in-sync or faulty. 404 * If the reshape increases the number of devices, 405 * this is being recovered by the reshape, so 406 * this 'previous' section is not in_sync. 407 * If the number of devices is being reduced however, 408 * the device can only be part of the array if 409 * we are reverting a reshape, so this section will 410 * be in-sync. 411 */ 412 if (conf->raid_disks >= conf->previous_raid_disks) 413 degraded++; 414 } 415 rcu_read_unlock(); 416 if (conf->raid_disks == conf->previous_raid_disks) 417 return degraded; 418 rcu_read_lock(); 419 degraded2 = 0; 420 for (i = 0; i < conf->raid_disks; i++) { 421 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 422 if (rdev && test_bit(Faulty, &rdev->flags)) 423 rdev = rcu_dereference(conf->disks[i].replacement); 424 if (!rdev || test_bit(Faulty, &rdev->flags)) 425 degraded2++; 426 else if (test_bit(In_sync, &rdev->flags)) 427 ; 428 else 429 /* not in-sync or faulty. 430 * If reshape increases the number of devices, this 431 * section has already been recovered, else it 432 * almost certainly hasn't. 433 */ 434 if (conf->raid_disks <= conf->previous_raid_disks) 435 degraded2++; 436 } 437 rcu_read_unlock(); 438 if (degraded2 > degraded) 439 return degraded2; 440 return degraded; 441 } 442 443 static int has_failed(struct r5conf *conf) 444 { 445 int degraded; 446 447 if (conf->mddev->reshape_position == MaxSector) 448 return conf->mddev->degraded > conf->max_degraded; 449 450 degraded = calc_degraded(conf); 451 if (degraded > conf->max_degraded) 452 return 1; 453 return 0; 454 } 455 456 static struct stripe_head * 457 get_active_stripe(struct r5conf *conf, sector_t sector, 458 int previous, int noblock, int noquiesce) 459 { 460 struct stripe_head *sh; 461 462 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 463 464 spin_lock_irq(&conf->device_lock); 465 466 do { 467 wait_event_lock_irq(conf->wait_for_stripe, 468 conf->quiesce == 0 || noquiesce, 469 conf->device_lock, /* nothing */); 470 sh = __find_stripe(conf, sector, conf->generation - previous); 471 if (!sh) { 472 if (!conf->inactive_blocked) 473 sh = get_free_stripe(conf); 474 if (noblock && sh == NULL) 475 break; 476 if (!sh) { 477 conf->inactive_blocked = 1; 478 wait_event_lock_irq(conf->wait_for_stripe, 479 !list_empty(&conf->inactive_list) && 480 (atomic_read(&conf->active_stripes) 481 < (conf->max_nr_stripes *3/4) 482 || !conf->inactive_blocked), 483 conf->device_lock, 484 ); 485 conf->inactive_blocked = 0; 486 } else 487 init_stripe(sh, sector, previous); 488 } else { 489 if (atomic_read(&sh->count)) { 490 BUG_ON(!list_empty(&sh->lru) 491 && !test_bit(STRIPE_EXPANDING, &sh->state) 492 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)); 493 } else { 494 if (!test_bit(STRIPE_HANDLE, &sh->state)) 495 atomic_inc(&conf->active_stripes); 496 if (list_empty(&sh->lru) && 497 !test_bit(STRIPE_EXPANDING, &sh->state)) 498 BUG(); 499 list_del_init(&sh->lru); 500 } 501 } 502 } while (sh == NULL); 503 504 if (sh) 505 atomic_inc(&sh->count); 506 507 spin_unlock_irq(&conf->device_lock); 508 return sh; 509 } 510 511 /* Determine if 'data_offset' or 'new_data_offset' should be used 512 * in this stripe_head. 513 */ 514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 515 { 516 sector_t progress = conf->reshape_progress; 517 /* Need a memory barrier to make sure we see the value 518 * of conf->generation, or ->data_offset that was set before 519 * reshape_progress was updated. 520 */ 521 smp_rmb(); 522 if (progress == MaxSector) 523 return 0; 524 if (sh->generation == conf->generation - 1) 525 return 0; 526 /* We are in a reshape, and this is a new-generation stripe, 527 * so use new_data_offset. 528 */ 529 return 1; 530 } 531 532 static void 533 raid5_end_read_request(struct bio *bi, int error); 534 static void 535 raid5_end_write_request(struct bio *bi, int error); 536 537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 538 { 539 struct r5conf *conf = sh->raid_conf; 540 int i, disks = sh->disks; 541 542 might_sleep(); 543 544 for (i = disks; i--; ) { 545 int rw; 546 int replace_only = 0; 547 struct bio *bi, *rbi; 548 struct md_rdev *rdev, *rrdev = NULL; 549 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 550 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 551 rw = WRITE_FUA; 552 else 553 rw = WRITE; 554 if (test_bit(R5_Discard, &sh->dev[i].flags)) 555 rw |= REQ_DISCARD; 556 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 557 rw = READ; 558 else if (test_and_clear_bit(R5_WantReplace, 559 &sh->dev[i].flags)) { 560 rw = WRITE; 561 replace_only = 1; 562 } else 563 continue; 564 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 565 rw |= REQ_SYNC; 566 567 bi = &sh->dev[i].req; 568 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 569 570 bi->bi_rw = rw; 571 rbi->bi_rw = rw; 572 if (rw & WRITE) { 573 bi->bi_end_io = raid5_end_write_request; 574 rbi->bi_end_io = raid5_end_write_request; 575 } else 576 bi->bi_end_io = raid5_end_read_request; 577 578 rcu_read_lock(); 579 rrdev = rcu_dereference(conf->disks[i].replacement); 580 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 581 rdev = rcu_dereference(conf->disks[i].rdev); 582 if (!rdev) { 583 rdev = rrdev; 584 rrdev = NULL; 585 } 586 if (rw & WRITE) { 587 if (replace_only) 588 rdev = NULL; 589 if (rdev == rrdev) 590 /* We raced and saw duplicates */ 591 rrdev = NULL; 592 } else { 593 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 594 rdev = rrdev; 595 rrdev = NULL; 596 } 597 598 if (rdev && test_bit(Faulty, &rdev->flags)) 599 rdev = NULL; 600 if (rdev) 601 atomic_inc(&rdev->nr_pending); 602 if (rrdev && test_bit(Faulty, &rrdev->flags)) 603 rrdev = NULL; 604 if (rrdev) 605 atomic_inc(&rrdev->nr_pending); 606 rcu_read_unlock(); 607 608 /* We have already checked bad blocks for reads. Now 609 * need to check for writes. We never accept write errors 610 * on the replacement, so we don't to check rrdev. 611 */ 612 while ((rw & WRITE) && rdev && 613 test_bit(WriteErrorSeen, &rdev->flags)) { 614 sector_t first_bad; 615 int bad_sectors; 616 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 617 &first_bad, &bad_sectors); 618 if (!bad) 619 break; 620 621 if (bad < 0) { 622 set_bit(BlockedBadBlocks, &rdev->flags); 623 if (!conf->mddev->external && 624 conf->mddev->flags) { 625 /* It is very unlikely, but we might 626 * still need to write out the 627 * bad block log - better give it 628 * a chance*/ 629 md_check_recovery(conf->mddev); 630 } 631 /* 632 * Because md_wait_for_blocked_rdev 633 * will dec nr_pending, we must 634 * increment it first. 635 */ 636 atomic_inc(&rdev->nr_pending); 637 md_wait_for_blocked_rdev(rdev, conf->mddev); 638 } else { 639 /* Acknowledged bad block - skip the write */ 640 rdev_dec_pending(rdev, conf->mddev); 641 rdev = NULL; 642 } 643 } 644 645 if (rdev) { 646 if (s->syncing || s->expanding || s->expanded 647 || s->replacing) 648 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 649 650 set_bit(STRIPE_IO_STARTED, &sh->state); 651 652 bi->bi_bdev = rdev->bdev; 653 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 654 __func__, (unsigned long long)sh->sector, 655 bi->bi_rw, i); 656 atomic_inc(&sh->count); 657 if (use_new_offset(conf, sh)) 658 bi->bi_sector = (sh->sector 659 + rdev->new_data_offset); 660 else 661 bi->bi_sector = (sh->sector 662 + rdev->data_offset); 663 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 664 bi->bi_rw |= REQ_FLUSH; 665 666 bi->bi_flags = 1 << BIO_UPTODATE; 667 bi->bi_idx = 0; 668 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 669 bi->bi_io_vec[0].bv_offset = 0; 670 bi->bi_size = STRIPE_SIZE; 671 bi->bi_next = NULL; 672 if (rrdev) 673 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 674 generic_make_request(bi); 675 } 676 if (rrdev) { 677 if (s->syncing || s->expanding || s->expanded 678 || s->replacing) 679 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 680 681 set_bit(STRIPE_IO_STARTED, &sh->state); 682 683 rbi->bi_bdev = rrdev->bdev; 684 pr_debug("%s: for %llu schedule op %ld on " 685 "replacement disc %d\n", 686 __func__, (unsigned long long)sh->sector, 687 rbi->bi_rw, i); 688 atomic_inc(&sh->count); 689 if (use_new_offset(conf, sh)) 690 rbi->bi_sector = (sh->sector 691 + rrdev->new_data_offset); 692 else 693 rbi->bi_sector = (sh->sector 694 + rrdev->data_offset); 695 rbi->bi_flags = 1 << BIO_UPTODATE; 696 rbi->bi_idx = 0; 697 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 698 rbi->bi_io_vec[0].bv_offset = 0; 699 rbi->bi_size = STRIPE_SIZE; 700 rbi->bi_next = NULL; 701 generic_make_request(rbi); 702 } 703 if (!rdev && !rrdev) { 704 if (rw & WRITE) 705 set_bit(STRIPE_DEGRADED, &sh->state); 706 pr_debug("skip op %ld on disc %d for sector %llu\n", 707 bi->bi_rw, i, (unsigned long long)sh->sector); 708 clear_bit(R5_LOCKED, &sh->dev[i].flags); 709 set_bit(STRIPE_HANDLE, &sh->state); 710 } 711 } 712 } 713 714 static struct dma_async_tx_descriptor * 715 async_copy_data(int frombio, struct bio *bio, struct page *page, 716 sector_t sector, struct dma_async_tx_descriptor *tx) 717 { 718 struct bio_vec *bvl; 719 struct page *bio_page; 720 int i; 721 int page_offset; 722 struct async_submit_ctl submit; 723 enum async_tx_flags flags = 0; 724 725 if (bio->bi_sector >= sector) 726 page_offset = (signed)(bio->bi_sector - sector) * 512; 727 else 728 page_offset = (signed)(sector - bio->bi_sector) * -512; 729 730 if (frombio) 731 flags |= ASYNC_TX_FENCE; 732 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 733 734 bio_for_each_segment(bvl, bio, i) { 735 int len = bvl->bv_len; 736 int clen; 737 int b_offset = 0; 738 739 if (page_offset < 0) { 740 b_offset = -page_offset; 741 page_offset += b_offset; 742 len -= b_offset; 743 } 744 745 if (len > 0 && page_offset + len > STRIPE_SIZE) 746 clen = STRIPE_SIZE - page_offset; 747 else 748 clen = len; 749 750 if (clen > 0) { 751 b_offset += bvl->bv_offset; 752 bio_page = bvl->bv_page; 753 if (frombio) 754 tx = async_memcpy(page, bio_page, page_offset, 755 b_offset, clen, &submit); 756 else 757 tx = async_memcpy(bio_page, page, b_offset, 758 page_offset, clen, &submit); 759 } 760 /* chain the operations */ 761 submit.depend_tx = tx; 762 763 if (clen < len) /* hit end of page */ 764 break; 765 page_offset += len; 766 } 767 768 return tx; 769 } 770 771 static void ops_complete_biofill(void *stripe_head_ref) 772 { 773 struct stripe_head *sh = stripe_head_ref; 774 struct bio *return_bi = NULL; 775 int i; 776 777 pr_debug("%s: stripe %llu\n", __func__, 778 (unsigned long long)sh->sector); 779 780 /* clear completed biofills */ 781 for (i = sh->disks; i--; ) { 782 struct r5dev *dev = &sh->dev[i]; 783 784 /* acknowledge completion of a biofill operation */ 785 /* and check if we need to reply to a read request, 786 * new R5_Wantfill requests are held off until 787 * !STRIPE_BIOFILL_RUN 788 */ 789 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 790 struct bio *rbi, *rbi2; 791 792 BUG_ON(!dev->read); 793 rbi = dev->read; 794 dev->read = NULL; 795 while (rbi && rbi->bi_sector < 796 dev->sector + STRIPE_SECTORS) { 797 rbi2 = r5_next_bio(rbi, dev->sector); 798 if (!raid5_dec_bi_active_stripes(rbi)) { 799 rbi->bi_next = return_bi; 800 return_bi = rbi; 801 } 802 rbi = rbi2; 803 } 804 } 805 } 806 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 807 808 return_io(return_bi); 809 810 set_bit(STRIPE_HANDLE, &sh->state); 811 release_stripe(sh); 812 } 813 814 static void ops_run_biofill(struct stripe_head *sh) 815 { 816 struct dma_async_tx_descriptor *tx = NULL; 817 struct async_submit_ctl submit; 818 int i; 819 820 pr_debug("%s: stripe %llu\n", __func__, 821 (unsigned long long)sh->sector); 822 823 for (i = sh->disks; i--; ) { 824 struct r5dev *dev = &sh->dev[i]; 825 if (test_bit(R5_Wantfill, &dev->flags)) { 826 struct bio *rbi; 827 spin_lock_irq(&sh->stripe_lock); 828 dev->read = rbi = dev->toread; 829 dev->toread = NULL; 830 spin_unlock_irq(&sh->stripe_lock); 831 while (rbi && rbi->bi_sector < 832 dev->sector + STRIPE_SECTORS) { 833 tx = async_copy_data(0, rbi, dev->page, 834 dev->sector, tx); 835 rbi = r5_next_bio(rbi, dev->sector); 836 } 837 } 838 } 839 840 atomic_inc(&sh->count); 841 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 842 async_trigger_callback(&submit); 843 } 844 845 static void mark_target_uptodate(struct stripe_head *sh, int target) 846 { 847 struct r5dev *tgt; 848 849 if (target < 0) 850 return; 851 852 tgt = &sh->dev[target]; 853 set_bit(R5_UPTODATE, &tgt->flags); 854 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 855 clear_bit(R5_Wantcompute, &tgt->flags); 856 } 857 858 static void ops_complete_compute(void *stripe_head_ref) 859 { 860 struct stripe_head *sh = stripe_head_ref; 861 862 pr_debug("%s: stripe %llu\n", __func__, 863 (unsigned long long)sh->sector); 864 865 /* mark the computed target(s) as uptodate */ 866 mark_target_uptodate(sh, sh->ops.target); 867 mark_target_uptodate(sh, sh->ops.target2); 868 869 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 870 if (sh->check_state == check_state_compute_run) 871 sh->check_state = check_state_compute_result; 872 set_bit(STRIPE_HANDLE, &sh->state); 873 release_stripe(sh); 874 } 875 876 /* return a pointer to the address conversion region of the scribble buffer */ 877 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 878 struct raid5_percpu *percpu) 879 { 880 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 881 } 882 883 static struct dma_async_tx_descriptor * 884 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 885 { 886 int disks = sh->disks; 887 struct page **xor_srcs = percpu->scribble; 888 int target = sh->ops.target; 889 struct r5dev *tgt = &sh->dev[target]; 890 struct page *xor_dest = tgt->page; 891 int count = 0; 892 struct dma_async_tx_descriptor *tx; 893 struct async_submit_ctl submit; 894 int i; 895 896 pr_debug("%s: stripe %llu block: %d\n", 897 __func__, (unsigned long long)sh->sector, target); 898 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 899 900 for (i = disks; i--; ) 901 if (i != target) 902 xor_srcs[count++] = sh->dev[i].page; 903 904 atomic_inc(&sh->count); 905 906 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 907 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 908 if (unlikely(count == 1)) 909 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 910 else 911 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 912 913 return tx; 914 } 915 916 /* set_syndrome_sources - populate source buffers for gen_syndrome 917 * @srcs - (struct page *) array of size sh->disks 918 * @sh - stripe_head to parse 919 * 920 * Populates srcs in proper layout order for the stripe and returns the 921 * 'count' of sources to be used in a call to async_gen_syndrome. The P 922 * destination buffer is recorded in srcs[count] and the Q destination 923 * is recorded in srcs[count+1]]. 924 */ 925 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 926 { 927 int disks = sh->disks; 928 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 929 int d0_idx = raid6_d0(sh); 930 int count; 931 int i; 932 933 for (i = 0; i < disks; i++) 934 srcs[i] = NULL; 935 936 count = 0; 937 i = d0_idx; 938 do { 939 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 940 941 srcs[slot] = sh->dev[i].page; 942 i = raid6_next_disk(i, disks); 943 } while (i != d0_idx); 944 945 return syndrome_disks; 946 } 947 948 static struct dma_async_tx_descriptor * 949 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 950 { 951 int disks = sh->disks; 952 struct page **blocks = percpu->scribble; 953 int target; 954 int qd_idx = sh->qd_idx; 955 struct dma_async_tx_descriptor *tx; 956 struct async_submit_ctl submit; 957 struct r5dev *tgt; 958 struct page *dest; 959 int i; 960 int count; 961 962 if (sh->ops.target < 0) 963 target = sh->ops.target2; 964 else if (sh->ops.target2 < 0) 965 target = sh->ops.target; 966 else 967 /* we should only have one valid target */ 968 BUG(); 969 BUG_ON(target < 0); 970 pr_debug("%s: stripe %llu block: %d\n", 971 __func__, (unsigned long long)sh->sector, target); 972 973 tgt = &sh->dev[target]; 974 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 975 dest = tgt->page; 976 977 atomic_inc(&sh->count); 978 979 if (target == qd_idx) { 980 count = set_syndrome_sources(blocks, sh); 981 blocks[count] = NULL; /* regenerating p is not necessary */ 982 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 983 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 984 ops_complete_compute, sh, 985 to_addr_conv(sh, percpu)); 986 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 987 } else { 988 /* Compute any data- or p-drive using XOR */ 989 count = 0; 990 for (i = disks; i-- ; ) { 991 if (i == target || i == qd_idx) 992 continue; 993 blocks[count++] = sh->dev[i].page; 994 } 995 996 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 997 NULL, ops_complete_compute, sh, 998 to_addr_conv(sh, percpu)); 999 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1000 } 1001 1002 return tx; 1003 } 1004 1005 static struct dma_async_tx_descriptor * 1006 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1007 { 1008 int i, count, disks = sh->disks; 1009 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1010 int d0_idx = raid6_d0(sh); 1011 int faila = -1, failb = -1; 1012 int target = sh->ops.target; 1013 int target2 = sh->ops.target2; 1014 struct r5dev *tgt = &sh->dev[target]; 1015 struct r5dev *tgt2 = &sh->dev[target2]; 1016 struct dma_async_tx_descriptor *tx; 1017 struct page **blocks = percpu->scribble; 1018 struct async_submit_ctl submit; 1019 1020 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1021 __func__, (unsigned long long)sh->sector, target, target2); 1022 BUG_ON(target < 0 || target2 < 0); 1023 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1024 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1025 1026 /* we need to open-code set_syndrome_sources to handle the 1027 * slot number conversion for 'faila' and 'failb' 1028 */ 1029 for (i = 0; i < disks ; i++) 1030 blocks[i] = NULL; 1031 count = 0; 1032 i = d0_idx; 1033 do { 1034 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1035 1036 blocks[slot] = sh->dev[i].page; 1037 1038 if (i == target) 1039 faila = slot; 1040 if (i == target2) 1041 failb = slot; 1042 i = raid6_next_disk(i, disks); 1043 } while (i != d0_idx); 1044 1045 BUG_ON(faila == failb); 1046 if (failb < faila) 1047 swap(faila, failb); 1048 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1049 __func__, (unsigned long long)sh->sector, faila, failb); 1050 1051 atomic_inc(&sh->count); 1052 1053 if (failb == syndrome_disks+1) { 1054 /* Q disk is one of the missing disks */ 1055 if (faila == syndrome_disks) { 1056 /* Missing P+Q, just recompute */ 1057 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1058 ops_complete_compute, sh, 1059 to_addr_conv(sh, percpu)); 1060 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1061 STRIPE_SIZE, &submit); 1062 } else { 1063 struct page *dest; 1064 int data_target; 1065 int qd_idx = sh->qd_idx; 1066 1067 /* Missing D+Q: recompute D from P, then recompute Q */ 1068 if (target == qd_idx) 1069 data_target = target2; 1070 else 1071 data_target = target; 1072 1073 count = 0; 1074 for (i = disks; i-- ; ) { 1075 if (i == data_target || i == qd_idx) 1076 continue; 1077 blocks[count++] = sh->dev[i].page; 1078 } 1079 dest = sh->dev[data_target].page; 1080 init_async_submit(&submit, 1081 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1082 NULL, NULL, NULL, 1083 to_addr_conv(sh, percpu)); 1084 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1085 &submit); 1086 1087 count = set_syndrome_sources(blocks, sh); 1088 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1089 ops_complete_compute, sh, 1090 to_addr_conv(sh, percpu)); 1091 return async_gen_syndrome(blocks, 0, count+2, 1092 STRIPE_SIZE, &submit); 1093 } 1094 } else { 1095 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1096 ops_complete_compute, sh, 1097 to_addr_conv(sh, percpu)); 1098 if (failb == syndrome_disks) { 1099 /* We're missing D+P. */ 1100 return async_raid6_datap_recov(syndrome_disks+2, 1101 STRIPE_SIZE, faila, 1102 blocks, &submit); 1103 } else { 1104 /* We're missing D+D. */ 1105 return async_raid6_2data_recov(syndrome_disks+2, 1106 STRIPE_SIZE, faila, failb, 1107 blocks, &submit); 1108 } 1109 } 1110 } 1111 1112 1113 static void ops_complete_prexor(void *stripe_head_ref) 1114 { 1115 struct stripe_head *sh = stripe_head_ref; 1116 1117 pr_debug("%s: stripe %llu\n", __func__, 1118 (unsigned long long)sh->sector); 1119 } 1120 1121 static struct dma_async_tx_descriptor * 1122 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1123 struct dma_async_tx_descriptor *tx) 1124 { 1125 int disks = sh->disks; 1126 struct page **xor_srcs = percpu->scribble; 1127 int count = 0, pd_idx = sh->pd_idx, i; 1128 struct async_submit_ctl submit; 1129 1130 /* existing parity data subtracted */ 1131 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1132 1133 pr_debug("%s: stripe %llu\n", __func__, 1134 (unsigned long long)sh->sector); 1135 1136 for (i = disks; i--; ) { 1137 struct r5dev *dev = &sh->dev[i]; 1138 /* Only process blocks that are known to be uptodate */ 1139 if (test_bit(R5_Wantdrain, &dev->flags)) 1140 xor_srcs[count++] = dev->page; 1141 } 1142 1143 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1144 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1145 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1146 1147 return tx; 1148 } 1149 1150 static struct dma_async_tx_descriptor * 1151 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1152 { 1153 int disks = sh->disks; 1154 int i; 1155 1156 pr_debug("%s: stripe %llu\n", __func__, 1157 (unsigned long long)sh->sector); 1158 1159 for (i = disks; i--; ) { 1160 struct r5dev *dev = &sh->dev[i]; 1161 struct bio *chosen; 1162 1163 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1164 struct bio *wbi; 1165 1166 spin_lock_irq(&sh->stripe_lock); 1167 chosen = dev->towrite; 1168 dev->towrite = NULL; 1169 BUG_ON(dev->written); 1170 wbi = dev->written = chosen; 1171 spin_unlock_irq(&sh->stripe_lock); 1172 1173 while (wbi && wbi->bi_sector < 1174 dev->sector + STRIPE_SECTORS) { 1175 if (wbi->bi_rw & REQ_FUA) 1176 set_bit(R5_WantFUA, &dev->flags); 1177 if (wbi->bi_rw & REQ_SYNC) 1178 set_bit(R5_SyncIO, &dev->flags); 1179 if (wbi->bi_rw & REQ_DISCARD) 1180 set_bit(R5_Discard, &dev->flags); 1181 else 1182 tx = async_copy_data(1, wbi, dev->page, 1183 dev->sector, tx); 1184 wbi = r5_next_bio(wbi, dev->sector); 1185 } 1186 } 1187 } 1188 1189 return tx; 1190 } 1191 1192 static void ops_complete_reconstruct(void *stripe_head_ref) 1193 { 1194 struct stripe_head *sh = stripe_head_ref; 1195 int disks = sh->disks; 1196 int pd_idx = sh->pd_idx; 1197 int qd_idx = sh->qd_idx; 1198 int i; 1199 bool fua = false, sync = false, discard = false; 1200 1201 pr_debug("%s: stripe %llu\n", __func__, 1202 (unsigned long long)sh->sector); 1203 1204 for (i = disks; i--; ) { 1205 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1206 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1207 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1208 } 1209 1210 for (i = disks; i--; ) { 1211 struct r5dev *dev = &sh->dev[i]; 1212 1213 if (dev->written || i == pd_idx || i == qd_idx) { 1214 if (!discard) 1215 set_bit(R5_UPTODATE, &dev->flags); 1216 if (fua) 1217 set_bit(R5_WantFUA, &dev->flags); 1218 if (sync) 1219 set_bit(R5_SyncIO, &dev->flags); 1220 } 1221 } 1222 1223 if (sh->reconstruct_state == reconstruct_state_drain_run) 1224 sh->reconstruct_state = reconstruct_state_drain_result; 1225 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1226 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1227 else { 1228 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1229 sh->reconstruct_state = reconstruct_state_result; 1230 } 1231 1232 set_bit(STRIPE_HANDLE, &sh->state); 1233 release_stripe(sh); 1234 } 1235 1236 static void 1237 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1238 struct dma_async_tx_descriptor *tx) 1239 { 1240 int disks = sh->disks; 1241 struct page **xor_srcs = percpu->scribble; 1242 struct async_submit_ctl submit; 1243 int count = 0, pd_idx = sh->pd_idx, i; 1244 struct page *xor_dest; 1245 int prexor = 0; 1246 unsigned long flags; 1247 1248 pr_debug("%s: stripe %llu\n", __func__, 1249 (unsigned long long)sh->sector); 1250 1251 for (i = 0; i < sh->disks; i++) { 1252 if (pd_idx == i) 1253 continue; 1254 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1255 break; 1256 } 1257 if (i >= sh->disks) { 1258 atomic_inc(&sh->count); 1259 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1260 ops_complete_reconstruct(sh); 1261 return; 1262 } 1263 /* check if prexor is active which means only process blocks 1264 * that are part of a read-modify-write (written) 1265 */ 1266 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1267 prexor = 1; 1268 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1269 for (i = disks; i--; ) { 1270 struct r5dev *dev = &sh->dev[i]; 1271 if (dev->written) 1272 xor_srcs[count++] = dev->page; 1273 } 1274 } else { 1275 xor_dest = sh->dev[pd_idx].page; 1276 for (i = disks; i--; ) { 1277 struct r5dev *dev = &sh->dev[i]; 1278 if (i != pd_idx) 1279 xor_srcs[count++] = dev->page; 1280 } 1281 } 1282 1283 /* 1/ if we prexor'd then the dest is reused as a source 1284 * 2/ if we did not prexor then we are redoing the parity 1285 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1286 * for the synchronous xor case 1287 */ 1288 flags = ASYNC_TX_ACK | 1289 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1290 1291 atomic_inc(&sh->count); 1292 1293 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1294 to_addr_conv(sh, percpu)); 1295 if (unlikely(count == 1)) 1296 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1297 else 1298 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1299 } 1300 1301 static void 1302 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1303 struct dma_async_tx_descriptor *tx) 1304 { 1305 struct async_submit_ctl submit; 1306 struct page **blocks = percpu->scribble; 1307 int count, i; 1308 1309 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1310 1311 for (i = 0; i < sh->disks; i++) { 1312 if (sh->pd_idx == i || sh->qd_idx == i) 1313 continue; 1314 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1315 break; 1316 } 1317 if (i >= sh->disks) { 1318 atomic_inc(&sh->count); 1319 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1320 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1321 ops_complete_reconstruct(sh); 1322 return; 1323 } 1324 1325 count = set_syndrome_sources(blocks, sh); 1326 1327 atomic_inc(&sh->count); 1328 1329 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1330 sh, to_addr_conv(sh, percpu)); 1331 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1332 } 1333 1334 static void ops_complete_check(void *stripe_head_ref) 1335 { 1336 struct stripe_head *sh = stripe_head_ref; 1337 1338 pr_debug("%s: stripe %llu\n", __func__, 1339 (unsigned long long)sh->sector); 1340 1341 sh->check_state = check_state_check_result; 1342 set_bit(STRIPE_HANDLE, &sh->state); 1343 release_stripe(sh); 1344 } 1345 1346 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1347 { 1348 int disks = sh->disks; 1349 int pd_idx = sh->pd_idx; 1350 int qd_idx = sh->qd_idx; 1351 struct page *xor_dest; 1352 struct page **xor_srcs = percpu->scribble; 1353 struct dma_async_tx_descriptor *tx; 1354 struct async_submit_ctl submit; 1355 int count; 1356 int i; 1357 1358 pr_debug("%s: stripe %llu\n", __func__, 1359 (unsigned long long)sh->sector); 1360 1361 count = 0; 1362 xor_dest = sh->dev[pd_idx].page; 1363 xor_srcs[count++] = xor_dest; 1364 for (i = disks; i--; ) { 1365 if (i == pd_idx || i == qd_idx) 1366 continue; 1367 xor_srcs[count++] = sh->dev[i].page; 1368 } 1369 1370 init_async_submit(&submit, 0, NULL, NULL, NULL, 1371 to_addr_conv(sh, percpu)); 1372 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1373 &sh->ops.zero_sum_result, &submit); 1374 1375 atomic_inc(&sh->count); 1376 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1377 tx = async_trigger_callback(&submit); 1378 } 1379 1380 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1381 { 1382 struct page **srcs = percpu->scribble; 1383 struct async_submit_ctl submit; 1384 int count; 1385 1386 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1387 (unsigned long long)sh->sector, checkp); 1388 1389 count = set_syndrome_sources(srcs, sh); 1390 if (!checkp) 1391 srcs[count] = NULL; 1392 1393 atomic_inc(&sh->count); 1394 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1395 sh, to_addr_conv(sh, percpu)); 1396 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1397 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1398 } 1399 1400 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1401 { 1402 int overlap_clear = 0, i, disks = sh->disks; 1403 struct dma_async_tx_descriptor *tx = NULL; 1404 struct r5conf *conf = sh->raid_conf; 1405 int level = conf->level; 1406 struct raid5_percpu *percpu; 1407 unsigned long cpu; 1408 1409 cpu = get_cpu(); 1410 percpu = per_cpu_ptr(conf->percpu, cpu); 1411 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1412 ops_run_biofill(sh); 1413 overlap_clear++; 1414 } 1415 1416 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1417 if (level < 6) 1418 tx = ops_run_compute5(sh, percpu); 1419 else { 1420 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1421 tx = ops_run_compute6_1(sh, percpu); 1422 else 1423 tx = ops_run_compute6_2(sh, percpu); 1424 } 1425 /* terminate the chain if reconstruct is not set to be run */ 1426 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1427 async_tx_ack(tx); 1428 } 1429 1430 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1431 tx = ops_run_prexor(sh, percpu, tx); 1432 1433 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1434 tx = ops_run_biodrain(sh, tx); 1435 overlap_clear++; 1436 } 1437 1438 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1439 if (level < 6) 1440 ops_run_reconstruct5(sh, percpu, tx); 1441 else 1442 ops_run_reconstruct6(sh, percpu, tx); 1443 } 1444 1445 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1446 if (sh->check_state == check_state_run) 1447 ops_run_check_p(sh, percpu); 1448 else if (sh->check_state == check_state_run_q) 1449 ops_run_check_pq(sh, percpu, 0); 1450 else if (sh->check_state == check_state_run_pq) 1451 ops_run_check_pq(sh, percpu, 1); 1452 else 1453 BUG(); 1454 } 1455 1456 if (overlap_clear) 1457 for (i = disks; i--; ) { 1458 struct r5dev *dev = &sh->dev[i]; 1459 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1460 wake_up(&sh->raid_conf->wait_for_overlap); 1461 } 1462 put_cpu(); 1463 } 1464 1465 #ifdef CONFIG_MULTICORE_RAID456 1466 static void async_run_ops(void *param, async_cookie_t cookie) 1467 { 1468 struct stripe_head *sh = param; 1469 unsigned long ops_request = sh->ops.request; 1470 1471 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state); 1472 wake_up(&sh->ops.wait_for_ops); 1473 1474 __raid_run_ops(sh, ops_request); 1475 release_stripe(sh); 1476 } 1477 1478 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1479 { 1480 /* since handle_stripe can be called outside of raid5d context 1481 * we need to ensure sh->ops.request is de-staged before another 1482 * request arrives 1483 */ 1484 wait_event(sh->ops.wait_for_ops, 1485 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state)); 1486 sh->ops.request = ops_request; 1487 1488 atomic_inc(&sh->count); 1489 async_schedule(async_run_ops, sh); 1490 } 1491 #else 1492 #define raid_run_ops __raid_run_ops 1493 #endif 1494 1495 static int grow_one_stripe(struct r5conf *conf) 1496 { 1497 struct stripe_head *sh; 1498 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1499 if (!sh) 1500 return 0; 1501 1502 sh->raid_conf = conf; 1503 #ifdef CONFIG_MULTICORE_RAID456 1504 init_waitqueue_head(&sh->ops.wait_for_ops); 1505 #endif 1506 1507 spin_lock_init(&sh->stripe_lock); 1508 1509 if (grow_buffers(sh)) { 1510 shrink_buffers(sh); 1511 kmem_cache_free(conf->slab_cache, sh); 1512 return 0; 1513 } 1514 /* we just created an active stripe so... */ 1515 atomic_set(&sh->count, 1); 1516 atomic_inc(&conf->active_stripes); 1517 INIT_LIST_HEAD(&sh->lru); 1518 release_stripe(sh); 1519 return 1; 1520 } 1521 1522 static int grow_stripes(struct r5conf *conf, int num) 1523 { 1524 struct kmem_cache *sc; 1525 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1526 1527 if (conf->mddev->gendisk) 1528 sprintf(conf->cache_name[0], 1529 "raid%d-%s", conf->level, mdname(conf->mddev)); 1530 else 1531 sprintf(conf->cache_name[0], 1532 "raid%d-%p", conf->level, conf->mddev); 1533 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1534 1535 conf->active_name = 0; 1536 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1537 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1538 0, 0, NULL); 1539 if (!sc) 1540 return 1; 1541 conf->slab_cache = sc; 1542 conf->pool_size = devs; 1543 while (num--) 1544 if (!grow_one_stripe(conf)) 1545 return 1; 1546 return 0; 1547 } 1548 1549 /** 1550 * scribble_len - return the required size of the scribble region 1551 * @num - total number of disks in the array 1552 * 1553 * The size must be enough to contain: 1554 * 1/ a struct page pointer for each device in the array +2 1555 * 2/ room to convert each entry in (1) to its corresponding dma 1556 * (dma_map_page()) or page (page_address()) address. 1557 * 1558 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1559 * calculate over all devices (not just the data blocks), using zeros in place 1560 * of the P and Q blocks. 1561 */ 1562 static size_t scribble_len(int num) 1563 { 1564 size_t len; 1565 1566 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1567 1568 return len; 1569 } 1570 1571 static int resize_stripes(struct r5conf *conf, int newsize) 1572 { 1573 /* Make all the stripes able to hold 'newsize' devices. 1574 * New slots in each stripe get 'page' set to a new page. 1575 * 1576 * This happens in stages: 1577 * 1/ create a new kmem_cache and allocate the required number of 1578 * stripe_heads. 1579 * 2/ gather all the old stripe_heads and tranfer the pages across 1580 * to the new stripe_heads. This will have the side effect of 1581 * freezing the array as once all stripe_heads have been collected, 1582 * no IO will be possible. Old stripe heads are freed once their 1583 * pages have been transferred over, and the old kmem_cache is 1584 * freed when all stripes are done. 1585 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1586 * we simple return a failre status - no need to clean anything up. 1587 * 4/ allocate new pages for the new slots in the new stripe_heads. 1588 * If this fails, we don't bother trying the shrink the 1589 * stripe_heads down again, we just leave them as they are. 1590 * As each stripe_head is processed the new one is released into 1591 * active service. 1592 * 1593 * Once step2 is started, we cannot afford to wait for a write, 1594 * so we use GFP_NOIO allocations. 1595 */ 1596 struct stripe_head *osh, *nsh; 1597 LIST_HEAD(newstripes); 1598 struct disk_info *ndisks; 1599 unsigned long cpu; 1600 int err; 1601 struct kmem_cache *sc; 1602 int i; 1603 1604 if (newsize <= conf->pool_size) 1605 return 0; /* never bother to shrink */ 1606 1607 err = md_allow_write(conf->mddev); 1608 if (err) 1609 return err; 1610 1611 /* Step 1 */ 1612 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1613 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1614 0, 0, NULL); 1615 if (!sc) 1616 return -ENOMEM; 1617 1618 for (i = conf->max_nr_stripes; i; i--) { 1619 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1620 if (!nsh) 1621 break; 1622 1623 nsh->raid_conf = conf; 1624 #ifdef CONFIG_MULTICORE_RAID456 1625 init_waitqueue_head(&nsh->ops.wait_for_ops); 1626 #endif 1627 spin_lock_init(&nsh->stripe_lock); 1628 1629 list_add(&nsh->lru, &newstripes); 1630 } 1631 if (i) { 1632 /* didn't get enough, give up */ 1633 while (!list_empty(&newstripes)) { 1634 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1635 list_del(&nsh->lru); 1636 kmem_cache_free(sc, nsh); 1637 } 1638 kmem_cache_destroy(sc); 1639 return -ENOMEM; 1640 } 1641 /* Step 2 - Must use GFP_NOIO now. 1642 * OK, we have enough stripes, start collecting inactive 1643 * stripes and copying them over 1644 */ 1645 list_for_each_entry(nsh, &newstripes, lru) { 1646 spin_lock_irq(&conf->device_lock); 1647 wait_event_lock_irq(conf->wait_for_stripe, 1648 !list_empty(&conf->inactive_list), 1649 conf->device_lock, 1650 ); 1651 osh = get_free_stripe(conf); 1652 spin_unlock_irq(&conf->device_lock); 1653 atomic_set(&nsh->count, 1); 1654 for(i=0; i<conf->pool_size; i++) 1655 nsh->dev[i].page = osh->dev[i].page; 1656 for( ; i<newsize; i++) 1657 nsh->dev[i].page = NULL; 1658 kmem_cache_free(conf->slab_cache, osh); 1659 } 1660 kmem_cache_destroy(conf->slab_cache); 1661 1662 /* Step 3. 1663 * At this point, we are holding all the stripes so the array 1664 * is completely stalled, so now is a good time to resize 1665 * conf->disks and the scribble region 1666 */ 1667 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1668 if (ndisks) { 1669 for (i=0; i<conf->raid_disks; i++) 1670 ndisks[i] = conf->disks[i]; 1671 kfree(conf->disks); 1672 conf->disks = ndisks; 1673 } else 1674 err = -ENOMEM; 1675 1676 get_online_cpus(); 1677 conf->scribble_len = scribble_len(newsize); 1678 for_each_present_cpu(cpu) { 1679 struct raid5_percpu *percpu; 1680 void *scribble; 1681 1682 percpu = per_cpu_ptr(conf->percpu, cpu); 1683 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1684 1685 if (scribble) { 1686 kfree(percpu->scribble); 1687 percpu->scribble = scribble; 1688 } else { 1689 err = -ENOMEM; 1690 break; 1691 } 1692 } 1693 put_online_cpus(); 1694 1695 /* Step 4, return new stripes to service */ 1696 while(!list_empty(&newstripes)) { 1697 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1698 list_del_init(&nsh->lru); 1699 1700 for (i=conf->raid_disks; i < newsize; i++) 1701 if (nsh->dev[i].page == NULL) { 1702 struct page *p = alloc_page(GFP_NOIO); 1703 nsh->dev[i].page = p; 1704 if (!p) 1705 err = -ENOMEM; 1706 } 1707 release_stripe(nsh); 1708 } 1709 /* critical section pass, GFP_NOIO no longer needed */ 1710 1711 conf->slab_cache = sc; 1712 conf->active_name = 1-conf->active_name; 1713 conf->pool_size = newsize; 1714 return err; 1715 } 1716 1717 static int drop_one_stripe(struct r5conf *conf) 1718 { 1719 struct stripe_head *sh; 1720 1721 spin_lock_irq(&conf->device_lock); 1722 sh = get_free_stripe(conf); 1723 spin_unlock_irq(&conf->device_lock); 1724 if (!sh) 1725 return 0; 1726 BUG_ON(atomic_read(&sh->count)); 1727 shrink_buffers(sh); 1728 kmem_cache_free(conf->slab_cache, sh); 1729 atomic_dec(&conf->active_stripes); 1730 return 1; 1731 } 1732 1733 static void shrink_stripes(struct r5conf *conf) 1734 { 1735 while (drop_one_stripe(conf)) 1736 ; 1737 1738 if (conf->slab_cache) 1739 kmem_cache_destroy(conf->slab_cache); 1740 conf->slab_cache = NULL; 1741 } 1742 1743 static void raid5_end_read_request(struct bio * bi, int error) 1744 { 1745 struct stripe_head *sh = bi->bi_private; 1746 struct r5conf *conf = sh->raid_conf; 1747 int disks = sh->disks, i; 1748 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1749 char b[BDEVNAME_SIZE]; 1750 struct md_rdev *rdev = NULL; 1751 sector_t s; 1752 1753 for (i=0 ; i<disks; i++) 1754 if (bi == &sh->dev[i].req) 1755 break; 1756 1757 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1758 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1759 uptodate); 1760 if (i == disks) { 1761 BUG(); 1762 return; 1763 } 1764 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1765 /* If replacement finished while this request was outstanding, 1766 * 'replacement' might be NULL already. 1767 * In that case it moved down to 'rdev'. 1768 * rdev is not removed until all requests are finished. 1769 */ 1770 rdev = conf->disks[i].replacement; 1771 if (!rdev) 1772 rdev = conf->disks[i].rdev; 1773 1774 if (use_new_offset(conf, sh)) 1775 s = sh->sector + rdev->new_data_offset; 1776 else 1777 s = sh->sector + rdev->data_offset; 1778 if (uptodate) { 1779 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1780 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1781 /* Note that this cannot happen on a 1782 * replacement device. We just fail those on 1783 * any error 1784 */ 1785 printk_ratelimited( 1786 KERN_INFO 1787 "md/raid:%s: read error corrected" 1788 " (%lu sectors at %llu on %s)\n", 1789 mdname(conf->mddev), STRIPE_SECTORS, 1790 (unsigned long long)s, 1791 bdevname(rdev->bdev, b)); 1792 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1793 clear_bit(R5_ReadError, &sh->dev[i].flags); 1794 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1795 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 1796 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1797 1798 if (atomic_read(&rdev->read_errors)) 1799 atomic_set(&rdev->read_errors, 0); 1800 } else { 1801 const char *bdn = bdevname(rdev->bdev, b); 1802 int retry = 0; 1803 int set_bad = 0; 1804 1805 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1806 atomic_inc(&rdev->read_errors); 1807 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1808 printk_ratelimited( 1809 KERN_WARNING 1810 "md/raid:%s: read error on replacement device " 1811 "(sector %llu on %s).\n", 1812 mdname(conf->mddev), 1813 (unsigned long long)s, 1814 bdn); 1815 else if (conf->mddev->degraded >= conf->max_degraded) { 1816 set_bad = 1; 1817 printk_ratelimited( 1818 KERN_WARNING 1819 "md/raid:%s: read error not correctable " 1820 "(sector %llu on %s).\n", 1821 mdname(conf->mddev), 1822 (unsigned long long)s, 1823 bdn); 1824 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 1825 /* Oh, no!!! */ 1826 set_bad = 1; 1827 printk_ratelimited( 1828 KERN_WARNING 1829 "md/raid:%s: read error NOT corrected!! " 1830 "(sector %llu on %s).\n", 1831 mdname(conf->mddev), 1832 (unsigned long long)s, 1833 bdn); 1834 } else if (atomic_read(&rdev->read_errors) 1835 > conf->max_nr_stripes) 1836 printk(KERN_WARNING 1837 "md/raid:%s: Too many read errors, failing device %s.\n", 1838 mdname(conf->mddev), bdn); 1839 else 1840 retry = 1; 1841 if (retry) 1842 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 1843 set_bit(R5_ReadError, &sh->dev[i].flags); 1844 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1845 } else 1846 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1847 else { 1848 clear_bit(R5_ReadError, &sh->dev[i].flags); 1849 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1850 if (!(set_bad 1851 && test_bit(In_sync, &rdev->flags) 1852 && rdev_set_badblocks( 1853 rdev, sh->sector, STRIPE_SECTORS, 0))) 1854 md_error(conf->mddev, rdev); 1855 } 1856 } 1857 rdev_dec_pending(rdev, conf->mddev); 1858 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1859 set_bit(STRIPE_HANDLE, &sh->state); 1860 release_stripe(sh); 1861 } 1862 1863 static void raid5_end_write_request(struct bio *bi, int error) 1864 { 1865 struct stripe_head *sh = bi->bi_private; 1866 struct r5conf *conf = sh->raid_conf; 1867 int disks = sh->disks, i; 1868 struct md_rdev *uninitialized_var(rdev); 1869 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1870 sector_t first_bad; 1871 int bad_sectors; 1872 int replacement = 0; 1873 1874 for (i = 0 ; i < disks; i++) { 1875 if (bi == &sh->dev[i].req) { 1876 rdev = conf->disks[i].rdev; 1877 break; 1878 } 1879 if (bi == &sh->dev[i].rreq) { 1880 rdev = conf->disks[i].replacement; 1881 if (rdev) 1882 replacement = 1; 1883 else 1884 /* rdev was removed and 'replacement' 1885 * replaced it. rdev is not removed 1886 * until all requests are finished. 1887 */ 1888 rdev = conf->disks[i].rdev; 1889 break; 1890 } 1891 } 1892 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1893 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1894 uptodate); 1895 if (i == disks) { 1896 BUG(); 1897 return; 1898 } 1899 1900 if (replacement) { 1901 if (!uptodate) 1902 md_error(conf->mddev, rdev); 1903 else if (is_badblock(rdev, sh->sector, 1904 STRIPE_SECTORS, 1905 &first_bad, &bad_sectors)) 1906 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 1907 } else { 1908 if (!uptodate) { 1909 set_bit(WriteErrorSeen, &rdev->flags); 1910 set_bit(R5_WriteError, &sh->dev[i].flags); 1911 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1912 set_bit(MD_RECOVERY_NEEDED, 1913 &rdev->mddev->recovery); 1914 } else if (is_badblock(rdev, sh->sector, 1915 STRIPE_SECTORS, 1916 &first_bad, &bad_sectors)) 1917 set_bit(R5_MadeGood, &sh->dev[i].flags); 1918 } 1919 rdev_dec_pending(rdev, conf->mddev); 1920 1921 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 1922 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1923 set_bit(STRIPE_HANDLE, &sh->state); 1924 release_stripe(sh); 1925 } 1926 1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 1928 1929 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 1930 { 1931 struct r5dev *dev = &sh->dev[i]; 1932 1933 bio_init(&dev->req); 1934 dev->req.bi_io_vec = &dev->vec; 1935 dev->req.bi_vcnt++; 1936 dev->req.bi_max_vecs++; 1937 dev->req.bi_private = sh; 1938 dev->vec.bv_page = dev->page; 1939 1940 bio_init(&dev->rreq); 1941 dev->rreq.bi_io_vec = &dev->rvec; 1942 dev->rreq.bi_vcnt++; 1943 dev->rreq.bi_max_vecs++; 1944 dev->rreq.bi_private = sh; 1945 dev->rvec.bv_page = dev->page; 1946 1947 dev->flags = 0; 1948 dev->sector = compute_blocknr(sh, i, previous); 1949 } 1950 1951 static void error(struct mddev *mddev, struct md_rdev *rdev) 1952 { 1953 char b[BDEVNAME_SIZE]; 1954 struct r5conf *conf = mddev->private; 1955 unsigned long flags; 1956 pr_debug("raid456: error called\n"); 1957 1958 spin_lock_irqsave(&conf->device_lock, flags); 1959 clear_bit(In_sync, &rdev->flags); 1960 mddev->degraded = calc_degraded(conf); 1961 spin_unlock_irqrestore(&conf->device_lock, flags); 1962 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1963 1964 set_bit(Blocked, &rdev->flags); 1965 set_bit(Faulty, &rdev->flags); 1966 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1967 printk(KERN_ALERT 1968 "md/raid:%s: Disk failure on %s, disabling device.\n" 1969 "md/raid:%s: Operation continuing on %d devices.\n", 1970 mdname(mddev), 1971 bdevname(rdev->bdev, b), 1972 mdname(mddev), 1973 conf->raid_disks - mddev->degraded); 1974 } 1975 1976 /* 1977 * Input: a 'big' sector number, 1978 * Output: index of the data and parity disk, and the sector # in them. 1979 */ 1980 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 1981 int previous, int *dd_idx, 1982 struct stripe_head *sh) 1983 { 1984 sector_t stripe, stripe2; 1985 sector_t chunk_number; 1986 unsigned int chunk_offset; 1987 int pd_idx, qd_idx; 1988 int ddf_layout = 0; 1989 sector_t new_sector; 1990 int algorithm = previous ? conf->prev_algo 1991 : conf->algorithm; 1992 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1993 : conf->chunk_sectors; 1994 int raid_disks = previous ? conf->previous_raid_disks 1995 : conf->raid_disks; 1996 int data_disks = raid_disks - conf->max_degraded; 1997 1998 /* First compute the information on this sector */ 1999 2000 /* 2001 * Compute the chunk number and the sector offset inside the chunk 2002 */ 2003 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2004 chunk_number = r_sector; 2005 2006 /* 2007 * Compute the stripe number 2008 */ 2009 stripe = chunk_number; 2010 *dd_idx = sector_div(stripe, data_disks); 2011 stripe2 = stripe; 2012 /* 2013 * Select the parity disk based on the user selected algorithm. 2014 */ 2015 pd_idx = qd_idx = -1; 2016 switch(conf->level) { 2017 case 4: 2018 pd_idx = data_disks; 2019 break; 2020 case 5: 2021 switch (algorithm) { 2022 case ALGORITHM_LEFT_ASYMMETRIC: 2023 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2024 if (*dd_idx >= pd_idx) 2025 (*dd_idx)++; 2026 break; 2027 case ALGORITHM_RIGHT_ASYMMETRIC: 2028 pd_idx = sector_div(stripe2, raid_disks); 2029 if (*dd_idx >= pd_idx) 2030 (*dd_idx)++; 2031 break; 2032 case ALGORITHM_LEFT_SYMMETRIC: 2033 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2034 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2035 break; 2036 case ALGORITHM_RIGHT_SYMMETRIC: 2037 pd_idx = sector_div(stripe2, raid_disks); 2038 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2039 break; 2040 case ALGORITHM_PARITY_0: 2041 pd_idx = 0; 2042 (*dd_idx)++; 2043 break; 2044 case ALGORITHM_PARITY_N: 2045 pd_idx = data_disks; 2046 break; 2047 default: 2048 BUG(); 2049 } 2050 break; 2051 case 6: 2052 2053 switch (algorithm) { 2054 case ALGORITHM_LEFT_ASYMMETRIC: 2055 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2056 qd_idx = pd_idx + 1; 2057 if (pd_idx == raid_disks-1) { 2058 (*dd_idx)++; /* Q D D D P */ 2059 qd_idx = 0; 2060 } else if (*dd_idx >= pd_idx) 2061 (*dd_idx) += 2; /* D D P Q D */ 2062 break; 2063 case ALGORITHM_RIGHT_ASYMMETRIC: 2064 pd_idx = sector_div(stripe2, raid_disks); 2065 qd_idx = pd_idx + 1; 2066 if (pd_idx == raid_disks-1) { 2067 (*dd_idx)++; /* Q D D D P */ 2068 qd_idx = 0; 2069 } else if (*dd_idx >= pd_idx) 2070 (*dd_idx) += 2; /* D D P Q D */ 2071 break; 2072 case ALGORITHM_LEFT_SYMMETRIC: 2073 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2074 qd_idx = (pd_idx + 1) % raid_disks; 2075 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2076 break; 2077 case ALGORITHM_RIGHT_SYMMETRIC: 2078 pd_idx = sector_div(stripe2, raid_disks); 2079 qd_idx = (pd_idx + 1) % raid_disks; 2080 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2081 break; 2082 2083 case ALGORITHM_PARITY_0: 2084 pd_idx = 0; 2085 qd_idx = 1; 2086 (*dd_idx) += 2; 2087 break; 2088 case ALGORITHM_PARITY_N: 2089 pd_idx = data_disks; 2090 qd_idx = data_disks + 1; 2091 break; 2092 2093 case ALGORITHM_ROTATING_ZERO_RESTART: 2094 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2095 * of blocks for computing Q is different. 2096 */ 2097 pd_idx = sector_div(stripe2, raid_disks); 2098 qd_idx = pd_idx + 1; 2099 if (pd_idx == raid_disks-1) { 2100 (*dd_idx)++; /* Q D D D P */ 2101 qd_idx = 0; 2102 } else if (*dd_idx >= pd_idx) 2103 (*dd_idx) += 2; /* D D P Q D */ 2104 ddf_layout = 1; 2105 break; 2106 2107 case ALGORITHM_ROTATING_N_RESTART: 2108 /* Same a left_asymmetric, by first stripe is 2109 * D D D P Q rather than 2110 * Q D D D P 2111 */ 2112 stripe2 += 1; 2113 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2114 qd_idx = pd_idx + 1; 2115 if (pd_idx == raid_disks-1) { 2116 (*dd_idx)++; /* Q D D D P */ 2117 qd_idx = 0; 2118 } else if (*dd_idx >= pd_idx) 2119 (*dd_idx) += 2; /* D D P Q D */ 2120 ddf_layout = 1; 2121 break; 2122 2123 case ALGORITHM_ROTATING_N_CONTINUE: 2124 /* Same as left_symmetric but Q is before P */ 2125 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2126 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2127 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2128 ddf_layout = 1; 2129 break; 2130 2131 case ALGORITHM_LEFT_ASYMMETRIC_6: 2132 /* RAID5 left_asymmetric, with Q on last device */ 2133 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2134 if (*dd_idx >= pd_idx) 2135 (*dd_idx)++; 2136 qd_idx = raid_disks - 1; 2137 break; 2138 2139 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2140 pd_idx = sector_div(stripe2, raid_disks-1); 2141 if (*dd_idx >= pd_idx) 2142 (*dd_idx)++; 2143 qd_idx = raid_disks - 1; 2144 break; 2145 2146 case ALGORITHM_LEFT_SYMMETRIC_6: 2147 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2148 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2149 qd_idx = raid_disks - 1; 2150 break; 2151 2152 case ALGORITHM_RIGHT_SYMMETRIC_6: 2153 pd_idx = sector_div(stripe2, raid_disks-1); 2154 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2155 qd_idx = raid_disks - 1; 2156 break; 2157 2158 case ALGORITHM_PARITY_0_6: 2159 pd_idx = 0; 2160 (*dd_idx)++; 2161 qd_idx = raid_disks - 1; 2162 break; 2163 2164 default: 2165 BUG(); 2166 } 2167 break; 2168 } 2169 2170 if (sh) { 2171 sh->pd_idx = pd_idx; 2172 sh->qd_idx = qd_idx; 2173 sh->ddf_layout = ddf_layout; 2174 } 2175 /* 2176 * Finally, compute the new sector number 2177 */ 2178 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2179 return new_sector; 2180 } 2181 2182 2183 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2184 { 2185 struct r5conf *conf = sh->raid_conf; 2186 int raid_disks = sh->disks; 2187 int data_disks = raid_disks - conf->max_degraded; 2188 sector_t new_sector = sh->sector, check; 2189 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2190 : conf->chunk_sectors; 2191 int algorithm = previous ? conf->prev_algo 2192 : conf->algorithm; 2193 sector_t stripe; 2194 int chunk_offset; 2195 sector_t chunk_number; 2196 int dummy1, dd_idx = i; 2197 sector_t r_sector; 2198 struct stripe_head sh2; 2199 2200 2201 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2202 stripe = new_sector; 2203 2204 if (i == sh->pd_idx) 2205 return 0; 2206 switch(conf->level) { 2207 case 4: break; 2208 case 5: 2209 switch (algorithm) { 2210 case ALGORITHM_LEFT_ASYMMETRIC: 2211 case ALGORITHM_RIGHT_ASYMMETRIC: 2212 if (i > sh->pd_idx) 2213 i--; 2214 break; 2215 case ALGORITHM_LEFT_SYMMETRIC: 2216 case ALGORITHM_RIGHT_SYMMETRIC: 2217 if (i < sh->pd_idx) 2218 i += raid_disks; 2219 i -= (sh->pd_idx + 1); 2220 break; 2221 case ALGORITHM_PARITY_0: 2222 i -= 1; 2223 break; 2224 case ALGORITHM_PARITY_N: 2225 break; 2226 default: 2227 BUG(); 2228 } 2229 break; 2230 case 6: 2231 if (i == sh->qd_idx) 2232 return 0; /* It is the Q disk */ 2233 switch (algorithm) { 2234 case ALGORITHM_LEFT_ASYMMETRIC: 2235 case ALGORITHM_RIGHT_ASYMMETRIC: 2236 case ALGORITHM_ROTATING_ZERO_RESTART: 2237 case ALGORITHM_ROTATING_N_RESTART: 2238 if (sh->pd_idx == raid_disks-1) 2239 i--; /* Q D D D P */ 2240 else if (i > sh->pd_idx) 2241 i -= 2; /* D D P Q D */ 2242 break; 2243 case ALGORITHM_LEFT_SYMMETRIC: 2244 case ALGORITHM_RIGHT_SYMMETRIC: 2245 if (sh->pd_idx == raid_disks-1) 2246 i--; /* Q D D D P */ 2247 else { 2248 /* D D P Q D */ 2249 if (i < sh->pd_idx) 2250 i += raid_disks; 2251 i -= (sh->pd_idx + 2); 2252 } 2253 break; 2254 case ALGORITHM_PARITY_0: 2255 i -= 2; 2256 break; 2257 case ALGORITHM_PARITY_N: 2258 break; 2259 case ALGORITHM_ROTATING_N_CONTINUE: 2260 /* Like left_symmetric, but P is before Q */ 2261 if (sh->pd_idx == 0) 2262 i--; /* P D D D Q */ 2263 else { 2264 /* D D Q P D */ 2265 if (i < sh->pd_idx) 2266 i += raid_disks; 2267 i -= (sh->pd_idx + 1); 2268 } 2269 break; 2270 case ALGORITHM_LEFT_ASYMMETRIC_6: 2271 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2272 if (i > sh->pd_idx) 2273 i--; 2274 break; 2275 case ALGORITHM_LEFT_SYMMETRIC_6: 2276 case ALGORITHM_RIGHT_SYMMETRIC_6: 2277 if (i < sh->pd_idx) 2278 i += data_disks + 1; 2279 i -= (sh->pd_idx + 1); 2280 break; 2281 case ALGORITHM_PARITY_0_6: 2282 i -= 1; 2283 break; 2284 default: 2285 BUG(); 2286 } 2287 break; 2288 } 2289 2290 chunk_number = stripe * data_disks + i; 2291 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2292 2293 check = raid5_compute_sector(conf, r_sector, 2294 previous, &dummy1, &sh2); 2295 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2296 || sh2.qd_idx != sh->qd_idx) { 2297 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2298 mdname(conf->mddev)); 2299 return 0; 2300 } 2301 return r_sector; 2302 } 2303 2304 2305 static void 2306 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2307 int rcw, int expand) 2308 { 2309 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2310 struct r5conf *conf = sh->raid_conf; 2311 int level = conf->level; 2312 2313 if (rcw) { 2314 /* if we are not expanding this is a proper write request, and 2315 * there will be bios with new data to be drained into the 2316 * stripe cache 2317 */ 2318 if (!expand) { 2319 sh->reconstruct_state = reconstruct_state_drain_run; 2320 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2321 } else 2322 sh->reconstruct_state = reconstruct_state_run; 2323 2324 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2325 2326 for (i = disks; i--; ) { 2327 struct r5dev *dev = &sh->dev[i]; 2328 2329 if (dev->towrite) { 2330 set_bit(R5_LOCKED, &dev->flags); 2331 set_bit(R5_Wantdrain, &dev->flags); 2332 if (!expand) 2333 clear_bit(R5_UPTODATE, &dev->flags); 2334 s->locked++; 2335 } 2336 } 2337 if (s->locked + conf->max_degraded == disks) 2338 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2339 atomic_inc(&conf->pending_full_writes); 2340 } else { 2341 BUG_ON(level == 6); 2342 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2343 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2344 2345 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2346 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2347 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2348 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2349 2350 for (i = disks; i--; ) { 2351 struct r5dev *dev = &sh->dev[i]; 2352 if (i == pd_idx) 2353 continue; 2354 2355 if (dev->towrite && 2356 (test_bit(R5_UPTODATE, &dev->flags) || 2357 test_bit(R5_Wantcompute, &dev->flags))) { 2358 set_bit(R5_Wantdrain, &dev->flags); 2359 set_bit(R5_LOCKED, &dev->flags); 2360 clear_bit(R5_UPTODATE, &dev->flags); 2361 s->locked++; 2362 } 2363 } 2364 } 2365 2366 /* keep the parity disk(s) locked while asynchronous operations 2367 * are in flight 2368 */ 2369 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2370 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2371 s->locked++; 2372 2373 if (level == 6) { 2374 int qd_idx = sh->qd_idx; 2375 struct r5dev *dev = &sh->dev[qd_idx]; 2376 2377 set_bit(R5_LOCKED, &dev->flags); 2378 clear_bit(R5_UPTODATE, &dev->flags); 2379 s->locked++; 2380 } 2381 2382 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2383 __func__, (unsigned long long)sh->sector, 2384 s->locked, s->ops_request); 2385 } 2386 2387 /* 2388 * Each stripe/dev can have one or more bion attached. 2389 * toread/towrite point to the first in a chain. 2390 * The bi_next chain must be in order. 2391 */ 2392 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2393 { 2394 struct bio **bip; 2395 struct r5conf *conf = sh->raid_conf; 2396 int firstwrite=0; 2397 2398 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2399 (unsigned long long)bi->bi_sector, 2400 (unsigned long long)sh->sector); 2401 2402 /* 2403 * If several bio share a stripe. The bio bi_phys_segments acts as a 2404 * reference count to avoid race. The reference count should already be 2405 * increased before this function is called (for example, in 2406 * make_request()), so other bio sharing this stripe will not free the 2407 * stripe. If a stripe is owned by one stripe, the stripe lock will 2408 * protect it. 2409 */ 2410 spin_lock_irq(&sh->stripe_lock); 2411 if (forwrite) { 2412 bip = &sh->dev[dd_idx].towrite; 2413 if (*bip == NULL) 2414 firstwrite = 1; 2415 } else 2416 bip = &sh->dev[dd_idx].toread; 2417 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2418 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 2419 goto overlap; 2420 bip = & (*bip)->bi_next; 2421 } 2422 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 2423 goto overlap; 2424 2425 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2426 if (*bip) 2427 bi->bi_next = *bip; 2428 *bip = bi; 2429 raid5_inc_bi_active_stripes(bi); 2430 2431 if (forwrite) { 2432 /* check if page is covered */ 2433 sector_t sector = sh->dev[dd_idx].sector; 2434 for (bi=sh->dev[dd_idx].towrite; 2435 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2436 bi && bi->bi_sector <= sector; 2437 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2438 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 2439 sector = bi->bi_sector + (bi->bi_size>>9); 2440 } 2441 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2442 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2443 } 2444 2445 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2446 (unsigned long long)(*bip)->bi_sector, 2447 (unsigned long long)sh->sector, dd_idx); 2448 spin_unlock_irq(&sh->stripe_lock); 2449 2450 if (conf->mddev->bitmap && firstwrite) { 2451 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2452 STRIPE_SECTORS, 0); 2453 sh->bm_seq = conf->seq_flush+1; 2454 set_bit(STRIPE_BIT_DELAY, &sh->state); 2455 } 2456 return 1; 2457 2458 overlap: 2459 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2460 spin_unlock_irq(&sh->stripe_lock); 2461 return 0; 2462 } 2463 2464 static void end_reshape(struct r5conf *conf); 2465 2466 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2467 struct stripe_head *sh) 2468 { 2469 int sectors_per_chunk = 2470 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2471 int dd_idx; 2472 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2473 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2474 2475 raid5_compute_sector(conf, 2476 stripe * (disks - conf->max_degraded) 2477 *sectors_per_chunk + chunk_offset, 2478 previous, 2479 &dd_idx, sh); 2480 } 2481 2482 static void 2483 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2484 struct stripe_head_state *s, int disks, 2485 struct bio **return_bi) 2486 { 2487 int i; 2488 for (i = disks; i--; ) { 2489 struct bio *bi; 2490 int bitmap_end = 0; 2491 2492 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2493 struct md_rdev *rdev; 2494 rcu_read_lock(); 2495 rdev = rcu_dereference(conf->disks[i].rdev); 2496 if (rdev && test_bit(In_sync, &rdev->flags)) 2497 atomic_inc(&rdev->nr_pending); 2498 else 2499 rdev = NULL; 2500 rcu_read_unlock(); 2501 if (rdev) { 2502 if (!rdev_set_badblocks( 2503 rdev, 2504 sh->sector, 2505 STRIPE_SECTORS, 0)) 2506 md_error(conf->mddev, rdev); 2507 rdev_dec_pending(rdev, conf->mddev); 2508 } 2509 } 2510 spin_lock_irq(&sh->stripe_lock); 2511 /* fail all writes first */ 2512 bi = sh->dev[i].towrite; 2513 sh->dev[i].towrite = NULL; 2514 spin_unlock_irq(&sh->stripe_lock); 2515 if (bi) 2516 bitmap_end = 1; 2517 2518 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2519 wake_up(&conf->wait_for_overlap); 2520 2521 while (bi && bi->bi_sector < 2522 sh->dev[i].sector + STRIPE_SECTORS) { 2523 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2524 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2525 if (!raid5_dec_bi_active_stripes(bi)) { 2526 md_write_end(conf->mddev); 2527 bi->bi_next = *return_bi; 2528 *return_bi = bi; 2529 } 2530 bi = nextbi; 2531 } 2532 if (bitmap_end) 2533 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2534 STRIPE_SECTORS, 0, 0); 2535 bitmap_end = 0; 2536 /* and fail all 'written' */ 2537 bi = sh->dev[i].written; 2538 sh->dev[i].written = NULL; 2539 if (bi) bitmap_end = 1; 2540 while (bi && bi->bi_sector < 2541 sh->dev[i].sector + STRIPE_SECTORS) { 2542 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2543 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2544 if (!raid5_dec_bi_active_stripes(bi)) { 2545 md_write_end(conf->mddev); 2546 bi->bi_next = *return_bi; 2547 *return_bi = bi; 2548 } 2549 bi = bi2; 2550 } 2551 2552 /* fail any reads if this device is non-operational and 2553 * the data has not reached the cache yet. 2554 */ 2555 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2556 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2557 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2558 spin_lock_irq(&sh->stripe_lock); 2559 bi = sh->dev[i].toread; 2560 sh->dev[i].toread = NULL; 2561 spin_unlock_irq(&sh->stripe_lock); 2562 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2563 wake_up(&conf->wait_for_overlap); 2564 while (bi && bi->bi_sector < 2565 sh->dev[i].sector + STRIPE_SECTORS) { 2566 struct bio *nextbi = 2567 r5_next_bio(bi, sh->dev[i].sector); 2568 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2569 if (!raid5_dec_bi_active_stripes(bi)) { 2570 bi->bi_next = *return_bi; 2571 *return_bi = bi; 2572 } 2573 bi = nextbi; 2574 } 2575 } 2576 if (bitmap_end) 2577 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2578 STRIPE_SECTORS, 0, 0); 2579 /* If we were in the middle of a write the parity block might 2580 * still be locked - so just clear all R5_LOCKED flags 2581 */ 2582 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2583 } 2584 2585 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2586 if (atomic_dec_and_test(&conf->pending_full_writes)) 2587 md_wakeup_thread(conf->mddev->thread); 2588 } 2589 2590 static void 2591 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2592 struct stripe_head_state *s) 2593 { 2594 int abort = 0; 2595 int i; 2596 2597 clear_bit(STRIPE_SYNCING, &sh->state); 2598 s->syncing = 0; 2599 s->replacing = 0; 2600 /* There is nothing more to do for sync/check/repair. 2601 * Don't even need to abort as that is handled elsewhere 2602 * if needed, and not always wanted e.g. if there is a known 2603 * bad block here. 2604 * For recover/replace we need to record a bad block on all 2605 * non-sync devices, or abort the recovery 2606 */ 2607 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2608 /* During recovery devices cannot be removed, so 2609 * locking and refcounting of rdevs is not needed 2610 */ 2611 for (i = 0; i < conf->raid_disks; i++) { 2612 struct md_rdev *rdev = conf->disks[i].rdev; 2613 if (rdev 2614 && !test_bit(Faulty, &rdev->flags) 2615 && !test_bit(In_sync, &rdev->flags) 2616 && !rdev_set_badblocks(rdev, sh->sector, 2617 STRIPE_SECTORS, 0)) 2618 abort = 1; 2619 rdev = conf->disks[i].replacement; 2620 if (rdev 2621 && !test_bit(Faulty, &rdev->flags) 2622 && !test_bit(In_sync, &rdev->flags) 2623 && !rdev_set_badblocks(rdev, sh->sector, 2624 STRIPE_SECTORS, 0)) 2625 abort = 1; 2626 } 2627 if (abort) 2628 conf->recovery_disabled = 2629 conf->mddev->recovery_disabled; 2630 } 2631 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2632 } 2633 2634 static int want_replace(struct stripe_head *sh, int disk_idx) 2635 { 2636 struct md_rdev *rdev; 2637 int rv = 0; 2638 /* Doing recovery so rcu locking not required */ 2639 rdev = sh->raid_conf->disks[disk_idx].replacement; 2640 if (rdev 2641 && !test_bit(Faulty, &rdev->flags) 2642 && !test_bit(In_sync, &rdev->flags) 2643 && (rdev->recovery_offset <= sh->sector 2644 || rdev->mddev->recovery_cp <= sh->sector)) 2645 rv = 1; 2646 2647 return rv; 2648 } 2649 2650 /* fetch_block - checks the given member device to see if its data needs 2651 * to be read or computed to satisfy a request. 2652 * 2653 * Returns 1 when no more member devices need to be checked, otherwise returns 2654 * 0 to tell the loop in handle_stripe_fill to continue 2655 */ 2656 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2657 int disk_idx, int disks) 2658 { 2659 struct r5dev *dev = &sh->dev[disk_idx]; 2660 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2661 &sh->dev[s->failed_num[1]] }; 2662 2663 /* is the data in this block needed, and can we get it? */ 2664 if (!test_bit(R5_LOCKED, &dev->flags) && 2665 !test_bit(R5_UPTODATE, &dev->flags) && 2666 (dev->toread || 2667 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2668 s->syncing || s->expanding || 2669 (s->replacing && want_replace(sh, disk_idx)) || 2670 (s->failed >= 1 && fdev[0]->toread) || 2671 (s->failed >= 2 && fdev[1]->toread) || 2672 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2673 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2674 (sh->raid_conf->level == 6 && s->failed && s->to_write))) { 2675 /* we would like to get this block, possibly by computing it, 2676 * otherwise read it if the backing disk is insync 2677 */ 2678 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2679 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2680 if ((s->uptodate == disks - 1) && 2681 (s->failed && (disk_idx == s->failed_num[0] || 2682 disk_idx == s->failed_num[1]))) { 2683 /* have disk failed, and we're requested to fetch it; 2684 * do compute it 2685 */ 2686 pr_debug("Computing stripe %llu block %d\n", 2687 (unsigned long long)sh->sector, disk_idx); 2688 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2689 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2690 set_bit(R5_Wantcompute, &dev->flags); 2691 sh->ops.target = disk_idx; 2692 sh->ops.target2 = -1; /* no 2nd target */ 2693 s->req_compute = 1; 2694 /* Careful: from this point on 'uptodate' is in the eye 2695 * of raid_run_ops which services 'compute' operations 2696 * before writes. R5_Wantcompute flags a block that will 2697 * be R5_UPTODATE by the time it is needed for a 2698 * subsequent operation. 2699 */ 2700 s->uptodate++; 2701 return 1; 2702 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2703 /* Computing 2-failure is *very* expensive; only 2704 * do it if failed >= 2 2705 */ 2706 int other; 2707 for (other = disks; other--; ) { 2708 if (other == disk_idx) 2709 continue; 2710 if (!test_bit(R5_UPTODATE, 2711 &sh->dev[other].flags)) 2712 break; 2713 } 2714 BUG_ON(other < 0); 2715 pr_debug("Computing stripe %llu blocks %d,%d\n", 2716 (unsigned long long)sh->sector, 2717 disk_idx, other); 2718 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2719 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2720 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2721 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2722 sh->ops.target = disk_idx; 2723 sh->ops.target2 = other; 2724 s->uptodate += 2; 2725 s->req_compute = 1; 2726 return 1; 2727 } else if (test_bit(R5_Insync, &dev->flags)) { 2728 set_bit(R5_LOCKED, &dev->flags); 2729 set_bit(R5_Wantread, &dev->flags); 2730 s->locked++; 2731 pr_debug("Reading block %d (sync=%d)\n", 2732 disk_idx, s->syncing); 2733 } 2734 } 2735 2736 return 0; 2737 } 2738 2739 /** 2740 * handle_stripe_fill - read or compute data to satisfy pending requests. 2741 */ 2742 static void handle_stripe_fill(struct stripe_head *sh, 2743 struct stripe_head_state *s, 2744 int disks) 2745 { 2746 int i; 2747 2748 /* look for blocks to read/compute, skip this if a compute 2749 * is already in flight, or if the stripe contents are in the 2750 * midst of changing due to a write 2751 */ 2752 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2753 !sh->reconstruct_state) 2754 for (i = disks; i--; ) 2755 if (fetch_block(sh, s, i, disks)) 2756 break; 2757 set_bit(STRIPE_HANDLE, &sh->state); 2758 } 2759 2760 2761 /* handle_stripe_clean_event 2762 * any written block on an uptodate or failed drive can be returned. 2763 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2764 * never LOCKED, so we don't need to test 'failed' directly. 2765 */ 2766 static void handle_stripe_clean_event(struct r5conf *conf, 2767 struct stripe_head *sh, int disks, struct bio **return_bi) 2768 { 2769 int i; 2770 struct r5dev *dev; 2771 2772 for (i = disks; i--; ) 2773 if (sh->dev[i].written) { 2774 dev = &sh->dev[i]; 2775 if (!test_bit(R5_LOCKED, &dev->flags) && 2776 (test_bit(R5_UPTODATE, &dev->flags) || 2777 test_and_clear_bit(R5_Discard, &dev->flags))) { 2778 /* We can return any write requests */ 2779 struct bio *wbi, *wbi2; 2780 pr_debug("Return write for disc %d\n", i); 2781 wbi = dev->written; 2782 dev->written = NULL; 2783 while (wbi && wbi->bi_sector < 2784 dev->sector + STRIPE_SECTORS) { 2785 wbi2 = r5_next_bio(wbi, dev->sector); 2786 if (!raid5_dec_bi_active_stripes(wbi)) { 2787 md_write_end(conf->mddev); 2788 wbi->bi_next = *return_bi; 2789 *return_bi = wbi; 2790 } 2791 wbi = wbi2; 2792 } 2793 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2794 STRIPE_SECTORS, 2795 !test_bit(STRIPE_DEGRADED, &sh->state), 2796 0); 2797 } 2798 } 2799 2800 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2801 if (atomic_dec_and_test(&conf->pending_full_writes)) 2802 md_wakeup_thread(conf->mddev->thread); 2803 } 2804 2805 static void handle_stripe_dirtying(struct r5conf *conf, 2806 struct stripe_head *sh, 2807 struct stripe_head_state *s, 2808 int disks) 2809 { 2810 int rmw = 0, rcw = 0, i; 2811 sector_t recovery_cp = conf->mddev->recovery_cp; 2812 2813 /* RAID6 requires 'rcw' in current implementation. 2814 * Otherwise, check whether resync is now happening or should start. 2815 * If yes, then the array is dirty (after unclean shutdown or 2816 * initial creation), so parity in some stripes might be inconsistent. 2817 * In this case, we need to always do reconstruct-write, to ensure 2818 * that in case of drive failure or read-error correction, we 2819 * generate correct data from the parity. 2820 */ 2821 if (conf->max_degraded == 2 || 2822 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { 2823 /* Calculate the real rcw later - for now make it 2824 * look like rcw is cheaper 2825 */ 2826 rcw = 1; rmw = 2; 2827 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", 2828 conf->max_degraded, (unsigned long long)recovery_cp, 2829 (unsigned long long)sh->sector); 2830 } else for (i = disks; i--; ) { 2831 /* would I have to read this buffer for read_modify_write */ 2832 struct r5dev *dev = &sh->dev[i]; 2833 if ((dev->towrite || i == sh->pd_idx) && 2834 !test_bit(R5_LOCKED, &dev->flags) && 2835 !(test_bit(R5_UPTODATE, &dev->flags) || 2836 test_bit(R5_Wantcompute, &dev->flags))) { 2837 if (test_bit(R5_Insync, &dev->flags)) 2838 rmw++; 2839 else 2840 rmw += 2*disks; /* cannot read it */ 2841 } 2842 /* Would I have to read this buffer for reconstruct_write */ 2843 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2844 !test_bit(R5_LOCKED, &dev->flags) && 2845 !(test_bit(R5_UPTODATE, &dev->flags) || 2846 test_bit(R5_Wantcompute, &dev->flags))) { 2847 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2848 else 2849 rcw += 2*disks; 2850 } 2851 } 2852 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2853 (unsigned long long)sh->sector, rmw, rcw); 2854 set_bit(STRIPE_HANDLE, &sh->state); 2855 if (rmw < rcw && rmw > 0) 2856 /* prefer read-modify-write, but need to get some data */ 2857 for (i = disks; i--; ) { 2858 struct r5dev *dev = &sh->dev[i]; 2859 if ((dev->towrite || i == sh->pd_idx) && 2860 !test_bit(R5_LOCKED, &dev->flags) && 2861 !(test_bit(R5_UPTODATE, &dev->flags) || 2862 test_bit(R5_Wantcompute, &dev->flags)) && 2863 test_bit(R5_Insync, &dev->flags)) { 2864 if ( 2865 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2866 pr_debug("Read_old block " 2867 "%d for r-m-w\n", i); 2868 set_bit(R5_LOCKED, &dev->flags); 2869 set_bit(R5_Wantread, &dev->flags); 2870 s->locked++; 2871 } else { 2872 set_bit(STRIPE_DELAYED, &sh->state); 2873 set_bit(STRIPE_HANDLE, &sh->state); 2874 } 2875 } 2876 } 2877 if (rcw <= rmw && rcw > 0) { 2878 /* want reconstruct write, but need to get some data */ 2879 rcw = 0; 2880 for (i = disks; i--; ) { 2881 struct r5dev *dev = &sh->dev[i]; 2882 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2883 i != sh->pd_idx && i != sh->qd_idx && 2884 !test_bit(R5_LOCKED, &dev->flags) && 2885 !(test_bit(R5_UPTODATE, &dev->flags) || 2886 test_bit(R5_Wantcompute, &dev->flags))) { 2887 rcw++; 2888 if (!test_bit(R5_Insync, &dev->flags)) 2889 continue; /* it's a failed drive */ 2890 if ( 2891 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2892 pr_debug("Read_old block " 2893 "%d for Reconstruct\n", i); 2894 set_bit(R5_LOCKED, &dev->flags); 2895 set_bit(R5_Wantread, &dev->flags); 2896 s->locked++; 2897 } else { 2898 set_bit(STRIPE_DELAYED, &sh->state); 2899 set_bit(STRIPE_HANDLE, &sh->state); 2900 } 2901 } 2902 } 2903 } 2904 /* now if nothing is locked, and if we have enough data, 2905 * we can start a write request 2906 */ 2907 /* since handle_stripe can be called at any time we need to handle the 2908 * case where a compute block operation has been submitted and then a 2909 * subsequent call wants to start a write request. raid_run_ops only 2910 * handles the case where compute block and reconstruct are requested 2911 * simultaneously. If this is not the case then new writes need to be 2912 * held off until the compute completes. 2913 */ 2914 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2915 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2916 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2917 schedule_reconstruction(sh, s, rcw == 0, 0); 2918 } 2919 2920 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 2921 struct stripe_head_state *s, int disks) 2922 { 2923 struct r5dev *dev = NULL; 2924 2925 set_bit(STRIPE_HANDLE, &sh->state); 2926 2927 switch (sh->check_state) { 2928 case check_state_idle: 2929 /* start a new check operation if there are no failures */ 2930 if (s->failed == 0) { 2931 BUG_ON(s->uptodate != disks); 2932 sh->check_state = check_state_run; 2933 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2934 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2935 s->uptodate--; 2936 break; 2937 } 2938 dev = &sh->dev[s->failed_num[0]]; 2939 /* fall through */ 2940 case check_state_compute_result: 2941 sh->check_state = check_state_idle; 2942 if (!dev) 2943 dev = &sh->dev[sh->pd_idx]; 2944 2945 /* check that a write has not made the stripe insync */ 2946 if (test_bit(STRIPE_INSYNC, &sh->state)) 2947 break; 2948 2949 /* either failed parity check, or recovery is happening */ 2950 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2951 BUG_ON(s->uptodate != disks); 2952 2953 set_bit(R5_LOCKED, &dev->flags); 2954 s->locked++; 2955 set_bit(R5_Wantwrite, &dev->flags); 2956 2957 clear_bit(STRIPE_DEGRADED, &sh->state); 2958 set_bit(STRIPE_INSYNC, &sh->state); 2959 break; 2960 case check_state_run: 2961 break; /* we will be called again upon completion */ 2962 case check_state_check_result: 2963 sh->check_state = check_state_idle; 2964 2965 /* if a failure occurred during the check operation, leave 2966 * STRIPE_INSYNC not set and let the stripe be handled again 2967 */ 2968 if (s->failed) 2969 break; 2970 2971 /* handle a successful check operation, if parity is correct 2972 * we are done. Otherwise update the mismatch count and repair 2973 * parity if !MD_RECOVERY_CHECK 2974 */ 2975 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 2976 /* parity is correct (on disc, 2977 * not in buffer any more) 2978 */ 2979 set_bit(STRIPE_INSYNC, &sh->state); 2980 else { 2981 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 2982 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2983 /* don't try to repair!! */ 2984 set_bit(STRIPE_INSYNC, &sh->state); 2985 else { 2986 sh->check_state = check_state_compute_run; 2987 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2988 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2989 set_bit(R5_Wantcompute, 2990 &sh->dev[sh->pd_idx].flags); 2991 sh->ops.target = sh->pd_idx; 2992 sh->ops.target2 = -1; 2993 s->uptodate++; 2994 } 2995 } 2996 break; 2997 case check_state_compute_run: 2998 break; 2999 default: 3000 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3001 __func__, sh->check_state, 3002 (unsigned long long) sh->sector); 3003 BUG(); 3004 } 3005 } 3006 3007 3008 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3009 struct stripe_head_state *s, 3010 int disks) 3011 { 3012 int pd_idx = sh->pd_idx; 3013 int qd_idx = sh->qd_idx; 3014 struct r5dev *dev; 3015 3016 set_bit(STRIPE_HANDLE, &sh->state); 3017 3018 BUG_ON(s->failed > 2); 3019 3020 /* Want to check and possibly repair P and Q. 3021 * However there could be one 'failed' device, in which 3022 * case we can only check one of them, possibly using the 3023 * other to generate missing data 3024 */ 3025 3026 switch (sh->check_state) { 3027 case check_state_idle: 3028 /* start a new check operation if there are < 2 failures */ 3029 if (s->failed == s->q_failed) { 3030 /* The only possible failed device holds Q, so it 3031 * makes sense to check P (If anything else were failed, 3032 * we would have used P to recreate it). 3033 */ 3034 sh->check_state = check_state_run; 3035 } 3036 if (!s->q_failed && s->failed < 2) { 3037 /* Q is not failed, and we didn't use it to generate 3038 * anything, so it makes sense to check it 3039 */ 3040 if (sh->check_state == check_state_run) 3041 sh->check_state = check_state_run_pq; 3042 else 3043 sh->check_state = check_state_run_q; 3044 } 3045 3046 /* discard potentially stale zero_sum_result */ 3047 sh->ops.zero_sum_result = 0; 3048 3049 if (sh->check_state == check_state_run) { 3050 /* async_xor_zero_sum destroys the contents of P */ 3051 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3052 s->uptodate--; 3053 } 3054 if (sh->check_state >= check_state_run && 3055 sh->check_state <= check_state_run_pq) { 3056 /* async_syndrome_zero_sum preserves P and Q, so 3057 * no need to mark them !uptodate here 3058 */ 3059 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3060 break; 3061 } 3062 3063 /* we have 2-disk failure */ 3064 BUG_ON(s->failed != 2); 3065 /* fall through */ 3066 case check_state_compute_result: 3067 sh->check_state = check_state_idle; 3068 3069 /* check that a write has not made the stripe insync */ 3070 if (test_bit(STRIPE_INSYNC, &sh->state)) 3071 break; 3072 3073 /* now write out any block on a failed drive, 3074 * or P or Q if they were recomputed 3075 */ 3076 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3077 if (s->failed == 2) { 3078 dev = &sh->dev[s->failed_num[1]]; 3079 s->locked++; 3080 set_bit(R5_LOCKED, &dev->flags); 3081 set_bit(R5_Wantwrite, &dev->flags); 3082 } 3083 if (s->failed >= 1) { 3084 dev = &sh->dev[s->failed_num[0]]; 3085 s->locked++; 3086 set_bit(R5_LOCKED, &dev->flags); 3087 set_bit(R5_Wantwrite, &dev->flags); 3088 } 3089 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3090 dev = &sh->dev[pd_idx]; 3091 s->locked++; 3092 set_bit(R5_LOCKED, &dev->flags); 3093 set_bit(R5_Wantwrite, &dev->flags); 3094 } 3095 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3096 dev = &sh->dev[qd_idx]; 3097 s->locked++; 3098 set_bit(R5_LOCKED, &dev->flags); 3099 set_bit(R5_Wantwrite, &dev->flags); 3100 } 3101 clear_bit(STRIPE_DEGRADED, &sh->state); 3102 3103 set_bit(STRIPE_INSYNC, &sh->state); 3104 break; 3105 case check_state_run: 3106 case check_state_run_q: 3107 case check_state_run_pq: 3108 break; /* we will be called again upon completion */ 3109 case check_state_check_result: 3110 sh->check_state = check_state_idle; 3111 3112 /* handle a successful check operation, if parity is correct 3113 * we are done. Otherwise update the mismatch count and repair 3114 * parity if !MD_RECOVERY_CHECK 3115 */ 3116 if (sh->ops.zero_sum_result == 0) { 3117 /* both parities are correct */ 3118 if (!s->failed) 3119 set_bit(STRIPE_INSYNC, &sh->state); 3120 else { 3121 /* in contrast to the raid5 case we can validate 3122 * parity, but still have a failure to write 3123 * back 3124 */ 3125 sh->check_state = check_state_compute_result; 3126 /* Returning at this point means that we may go 3127 * off and bring p and/or q uptodate again so 3128 * we make sure to check zero_sum_result again 3129 * to verify if p or q need writeback 3130 */ 3131 } 3132 } else { 3133 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3134 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3135 /* don't try to repair!! */ 3136 set_bit(STRIPE_INSYNC, &sh->state); 3137 else { 3138 int *target = &sh->ops.target; 3139 3140 sh->ops.target = -1; 3141 sh->ops.target2 = -1; 3142 sh->check_state = check_state_compute_run; 3143 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3144 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3145 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3146 set_bit(R5_Wantcompute, 3147 &sh->dev[pd_idx].flags); 3148 *target = pd_idx; 3149 target = &sh->ops.target2; 3150 s->uptodate++; 3151 } 3152 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3153 set_bit(R5_Wantcompute, 3154 &sh->dev[qd_idx].flags); 3155 *target = qd_idx; 3156 s->uptodate++; 3157 } 3158 } 3159 } 3160 break; 3161 case check_state_compute_run: 3162 break; 3163 default: 3164 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3165 __func__, sh->check_state, 3166 (unsigned long long) sh->sector); 3167 BUG(); 3168 } 3169 } 3170 3171 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3172 { 3173 int i; 3174 3175 /* We have read all the blocks in this stripe and now we need to 3176 * copy some of them into a target stripe for expand. 3177 */ 3178 struct dma_async_tx_descriptor *tx = NULL; 3179 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3180 for (i = 0; i < sh->disks; i++) 3181 if (i != sh->pd_idx && i != sh->qd_idx) { 3182 int dd_idx, j; 3183 struct stripe_head *sh2; 3184 struct async_submit_ctl submit; 3185 3186 sector_t bn = compute_blocknr(sh, i, 1); 3187 sector_t s = raid5_compute_sector(conf, bn, 0, 3188 &dd_idx, NULL); 3189 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3190 if (sh2 == NULL) 3191 /* so far only the early blocks of this stripe 3192 * have been requested. When later blocks 3193 * get requested, we will try again 3194 */ 3195 continue; 3196 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3197 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3198 /* must have already done this block */ 3199 release_stripe(sh2); 3200 continue; 3201 } 3202 3203 /* place all the copies on one channel */ 3204 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3205 tx = async_memcpy(sh2->dev[dd_idx].page, 3206 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3207 &submit); 3208 3209 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3210 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3211 for (j = 0; j < conf->raid_disks; j++) 3212 if (j != sh2->pd_idx && 3213 j != sh2->qd_idx && 3214 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3215 break; 3216 if (j == conf->raid_disks) { 3217 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3218 set_bit(STRIPE_HANDLE, &sh2->state); 3219 } 3220 release_stripe(sh2); 3221 3222 } 3223 /* done submitting copies, wait for them to complete */ 3224 if (tx) { 3225 async_tx_ack(tx); 3226 dma_wait_for_async_tx(tx); 3227 } 3228 } 3229 3230 /* 3231 * handle_stripe - do things to a stripe. 3232 * 3233 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3234 * state of various bits to see what needs to be done. 3235 * Possible results: 3236 * return some read requests which now have data 3237 * return some write requests which are safely on storage 3238 * schedule a read on some buffers 3239 * schedule a write of some buffers 3240 * return confirmation of parity correctness 3241 * 3242 */ 3243 3244 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3245 { 3246 struct r5conf *conf = sh->raid_conf; 3247 int disks = sh->disks; 3248 struct r5dev *dev; 3249 int i; 3250 int do_recovery = 0; 3251 3252 memset(s, 0, sizeof(*s)); 3253 3254 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3255 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3256 s->failed_num[0] = -1; 3257 s->failed_num[1] = -1; 3258 3259 /* Now to look around and see what can be done */ 3260 rcu_read_lock(); 3261 for (i=disks; i--; ) { 3262 struct md_rdev *rdev; 3263 sector_t first_bad; 3264 int bad_sectors; 3265 int is_bad = 0; 3266 3267 dev = &sh->dev[i]; 3268 3269 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3270 i, dev->flags, 3271 dev->toread, dev->towrite, dev->written); 3272 /* maybe we can reply to a read 3273 * 3274 * new wantfill requests are only permitted while 3275 * ops_complete_biofill is guaranteed to be inactive 3276 */ 3277 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3278 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3279 set_bit(R5_Wantfill, &dev->flags); 3280 3281 /* now count some things */ 3282 if (test_bit(R5_LOCKED, &dev->flags)) 3283 s->locked++; 3284 if (test_bit(R5_UPTODATE, &dev->flags)) 3285 s->uptodate++; 3286 if (test_bit(R5_Wantcompute, &dev->flags)) { 3287 s->compute++; 3288 BUG_ON(s->compute > 2); 3289 } 3290 3291 if (test_bit(R5_Wantfill, &dev->flags)) 3292 s->to_fill++; 3293 else if (dev->toread) 3294 s->to_read++; 3295 if (dev->towrite) { 3296 s->to_write++; 3297 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3298 s->non_overwrite++; 3299 } 3300 if (dev->written) 3301 s->written++; 3302 /* Prefer to use the replacement for reads, but only 3303 * if it is recovered enough and has no bad blocks. 3304 */ 3305 rdev = rcu_dereference(conf->disks[i].replacement); 3306 if (rdev && !test_bit(Faulty, &rdev->flags) && 3307 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3308 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3309 &first_bad, &bad_sectors)) 3310 set_bit(R5_ReadRepl, &dev->flags); 3311 else { 3312 if (rdev) 3313 set_bit(R5_NeedReplace, &dev->flags); 3314 rdev = rcu_dereference(conf->disks[i].rdev); 3315 clear_bit(R5_ReadRepl, &dev->flags); 3316 } 3317 if (rdev && test_bit(Faulty, &rdev->flags)) 3318 rdev = NULL; 3319 if (rdev) { 3320 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3321 &first_bad, &bad_sectors); 3322 if (s->blocked_rdev == NULL 3323 && (test_bit(Blocked, &rdev->flags) 3324 || is_bad < 0)) { 3325 if (is_bad < 0) 3326 set_bit(BlockedBadBlocks, 3327 &rdev->flags); 3328 s->blocked_rdev = rdev; 3329 atomic_inc(&rdev->nr_pending); 3330 } 3331 } 3332 clear_bit(R5_Insync, &dev->flags); 3333 if (!rdev) 3334 /* Not in-sync */; 3335 else if (is_bad) { 3336 /* also not in-sync */ 3337 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3338 test_bit(R5_UPTODATE, &dev->flags)) { 3339 /* treat as in-sync, but with a read error 3340 * which we can now try to correct 3341 */ 3342 set_bit(R5_Insync, &dev->flags); 3343 set_bit(R5_ReadError, &dev->flags); 3344 } 3345 } else if (test_bit(In_sync, &rdev->flags)) 3346 set_bit(R5_Insync, &dev->flags); 3347 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3348 /* in sync if before recovery_offset */ 3349 set_bit(R5_Insync, &dev->flags); 3350 else if (test_bit(R5_UPTODATE, &dev->flags) && 3351 test_bit(R5_Expanded, &dev->flags)) 3352 /* If we've reshaped into here, we assume it is Insync. 3353 * We will shortly update recovery_offset to make 3354 * it official. 3355 */ 3356 set_bit(R5_Insync, &dev->flags); 3357 3358 if (rdev && test_bit(R5_WriteError, &dev->flags)) { 3359 /* This flag does not apply to '.replacement' 3360 * only to .rdev, so make sure to check that*/ 3361 struct md_rdev *rdev2 = rcu_dereference( 3362 conf->disks[i].rdev); 3363 if (rdev2 == rdev) 3364 clear_bit(R5_Insync, &dev->flags); 3365 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3366 s->handle_bad_blocks = 1; 3367 atomic_inc(&rdev2->nr_pending); 3368 } else 3369 clear_bit(R5_WriteError, &dev->flags); 3370 } 3371 if (rdev && test_bit(R5_MadeGood, &dev->flags)) { 3372 /* This flag does not apply to '.replacement' 3373 * only to .rdev, so make sure to check that*/ 3374 struct md_rdev *rdev2 = rcu_dereference( 3375 conf->disks[i].rdev); 3376 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3377 s->handle_bad_blocks = 1; 3378 atomic_inc(&rdev2->nr_pending); 3379 } else 3380 clear_bit(R5_MadeGood, &dev->flags); 3381 } 3382 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3383 struct md_rdev *rdev2 = rcu_dereference( 3384 conf->disks[i].replacement); 3385 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3386 s->handle_bad_blocks = 1; 3387 atomic_inc(&rdev2->nr_pending); 3388 } else 3389 clear_bit(R5_MadeGoodRepl, &dev->flags); 3390 } 3391 if (!test_bit(R5_Insync, &dev->flags)) { 3392 /* The ReadError flag will just be confusing now */ 3393 clear_bit(R5_ReadError, &dev->flags); 3394 clear_bit(R5_ReWrite, &dev->flags); 3395 } 3396 if (test_bit(R5_ReadError, &dev->flags)) 3397 clear_bit(R5_Insync, &dev->flags); 3398 if (!test_bit(R5_Insync, &dev->flags)) { 3399 if (s->failed < 2) 3400 s->failed_num[s->failed] = i; 3401 s->failed++; 3402 if (rdev && !test_bit(Faulty, &rdev->flags)) 3403 do_recovery = 1; 3404 } 3405 } 3406 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3407 /* If there is a failed device being replaced, 3408 * we must be recovering. 3409 * else if we are after recovery_cp, we must be syncing 3410 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3411 * else we can only be replacing 3412 * sync and recovery both need to read all devices, and so 3413 * use the same flag. 3414 */ 3415 if (do_recovery || 3416 sh->sector >= conf->mddev->recovery_cp || 3417 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3418 s->syncing = 1; 3419 else 3420 s->replacing = 1; 3421 } 3422 rcu_read_unlock(); 3423 } 3424 3425 static void handle_stripe(struct stripe_head *sh) 3426 { 3427 struct stripe_head_state s; 3428 struct r5conf *conf = sh->raid_conf; 3429 int i; 3430 int prexor; 3431 int disks = sh->disks; 3432 struct r5dev *pdev, *qdev; 3433 3434 clear_bit(STRIPE_HANDLE, &sh->state); 3435 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3436 /* already being handled, ensure it gets handled 3437 * again when current action finishes */ 3438 set_bit(STRIPE_HANDLE, &sh->state); 3439 return; 3440 } 3441 3442 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3443 set_bit(STRIPE_SYNCING, &sh->state); 3444 clear_bit(STRIPE_INSYNC, &sh->state); 3445 } 3446 clear_bit(STRIPE_DELAYED, &sh->state); 3447 3448 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3449 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3450 (unsigned long long)sh->sector, sh->state, 3451 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3452 sh->check_state, sh->reconstruct_state); 3453 3454 analyse_stripe(sh, &s); 3455 3456 if (s.handle_bad_blocks) { 3457 set_bit(STRIPE_HANDLE, &sh->state); 3458 goto finish; 3459 } 3460 3461 if (unlikely(s.blocked_rdev)) { 3462 if (s.syncing || s.expanding || s.expanded || 3463 s.replacing || s.to_write || s.written) { 3464 set_bit(STRIPE_HANDLE, &sh->state); 3465 goto finish; 3466 } 3467 /* There is nothing for the blocked_rdev to block */ 3468 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3469 s.blocked_rdev = NULL; 3470 } 3471 3472 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3473 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3474 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3475 } 3476 3477 pr_debug("locked=%d uptodate=%d to_read=%d" 3478 " to_write=%d failed=%d failed_num=%d,%d\n", 3479 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3480 s.failed_num[0], s.failed_num[1]); 3481 /* check if the array has lost more than max_degraded devices and, 3482 * if so, some requests might need to be failed. 3483 */ 3484 if (s.failed > conf->max_degraded) { 3485 sh->check_state = 0; 3486 sh->reconstruct_state = 0; 3487 if (s.to_read+s.to_write+s.written) 3488 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3489 if (s.syncing + s.replacing) 3490 handle_failed_sync(conf, sh, &s); 3491 } 3492 3493 /* 3494 * might be able to return some write requests if the parity blocks 3495 * are safe, or on a failed drive 3496 */ 3497 pdev = &sh->dev[sh->pd_idx]; 3498 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3499 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3500 qdev = &sh->dev[sh->qd_idx]; 3501 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3502 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3503 || conf->level < 6; 3504 3505 if (s.written && 3506 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3507 && !test_bit(R5_LOCKED, &pdev->flags) 3508 && (test_bit(R5_UPTODATE, &pdev->flags) || 3509 test_bit(R5_Discard, &pdev->flags))))) && 3510 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3511 && !test_bit(R5_LOCKED, &qdev->flags) 3512 && (test_bit(R5_UPTODATE, &qdev->flags) || 3513 test_bit(R5_Discard, &qdev->flags)))))) 3514 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3515 3516 /* Now we might consider reading some blocks, either to check/generate 3517 * parity, or to satisfy requests 3518 * or to load a block that is being partially written. 3519 */ 3520 if (s.to_read || s.non_overwrite 3521 || (conf->level == 6 && s.to_write && s.failed) 3522 || (s.syncing && (s.uptodate + s.compute < disks)) 3523 || s.replacing 3524 || s.expanding) 3525 handle_stripe_fill(sh, &s, disks); 3526 3527 /* Now we check to see if any write operations have recently 3528 * completed 3529 */ 3530 prexor = 0; 3531 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3532 prexor = 1; 3533 if (sh->reconstruct_state == reconstruct_state_drain_result || 3534 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3535 sh->reconstruct_state = reconstruct_state_idle; 3536 3537 /* All the 'written' buffers and the parity block are ready to 3538 * be written back to disk 3539 */ 3540 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 3541 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 3542 BUG_ON(sh->qd_idx >= 0 && 3543 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 3544 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 3545 for (i = disks; i--; ) { 3546 struct r5dev *dev = &sh->dev[i]; 3547 if (test_bit(R5_LOCKED, &dev->flags) && 3548 (i == sh->pd_idx || i == sh->qd_idx || 3549 dev->written)) { 3550 pr_debug("Writing block %d\n", i); 3551 set_bit(R5_Wantwrite, &dev->flags); 3552 if (prexor) 3553 continue; 3554 if (!test_bit(R5_Insync, &dev->flags) || 3555 ((i == sh->pd_idx || i == sh->qd_idx) && 3556 s.failed == 0)) 3557 set_bit(STRIPE_INSYNC, &sh->state); 3558 } 3559 } 3560 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3561 s.dec_preread_active = 1; 3562 } 3563 3564 /* Now to consider new write requests and what else, if anything 3565 * should be read. We do not handle new writes when: 3566 * 1/ A 'write' operation (copy+xor) is already in flight. 3567 * 2/ A 'check' operation is in flight, as it may clobber the parity 3568 * block. 3569 */ 3570 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3571 handle_stripe_dirtying(conf, sh, &s, disks); 3572 3573 /* maybe we need to check and possibly fix the parity for this stripe 3574 * Any reads will already have been scheduled, so we just see if enough 3575 * data is available. The parity check is held off while parity 3576 * dependent operations are in flight. 3577 */ 3578 if (sh->check_state || 3579 (s.syncing && s.locked == 0 && 3580 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3581 !test_bit(STRIPE_INSYNC, &sh->state))) { 3582 if (conf->level == 6) 3583 handle_parity_checks6(conf, sh, &s, disks); 3584 else 3585 handle_parity_checks5(conf, sh, &s, disks); 3586 } 3587 3588 if (s.replacing && s.locked == 0 3589 && !test_bit(STRIPE_INSYNC, &sh->state)) { 3590 /* Write out to replacement devices where possible */ 3591 for (i = 0; i < conf->raid_disks; i++) 3592 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) && 3593 test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3594 set_bit(R5_WantReplace, &sh->dev[i].flags); 3595 set_bit(R5_LOCKED, &sh->dev[i].flags); 3596 s.locked++; 3597 } 3598 set_bit(STRIPE_INSYNC, &sh->state); 3599 } 3600 if ((s.syncing || s.replacing) && s.locked == 0 && 3601 test_bit(STRIPE_INSYNC, &sh->state)) { 3602 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3603 clear_bit(STRIPE_SYNCING, &sh->state); 3604 } 3605 3606 /* If the failed drives are just a ReadError, then we might need 3607 * to progress the repair/check process 3608 */ 3609 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3610 for (i = 0; i < s.failed; i++) { 3611 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3612 if (test_bit(R5_ReadError, &dev->flags) 3613 && !test_bit(R5_LOCKED, &dev->flags) 3614 && test_bit(R5_UPTODATE, &dev->flags) 3615 ) { 3616 if (!test_bit(R5_ReWrite, &dev->flags)) { 3617 set_bit(R5_Wantwrite, &dev->flags); 3618 set_bit(R5_ReWrite, &dev->flags); 3619 set_bit(R5_LOCKED, &dev->flags); 3620 s.locked++; 3621 } else { 3622 /* let's read it back */ 3623 set_bit(R5_Wantread, &dev->flags); 3624 set_bit(R5_LOCKED, &dev->flags); 3625 s.locked++; 3626 } 3627 } 3628 } 3629 3630 3631 /* Finish reconstruct operations initiated by the expansion process */ 3632 if (sh->reconstruct_state == reconstruct_state_result) { 3633 struct stripe_head *sh_src 3634 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3635 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3636 /* sh cannot be written until sh_src has been read. 3637 * so arrange for sh to be delayed a little 3638 */ 3639 set_bit(STRIPE_DELAYED, &sh->state); 3640 set_bit(STRIPE_HANDLE, &sh->state); 3641 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3642 &sh_src->state)) 3643 atomic_inc(&conf->preread_active_stripes); 3644 release_stripe(sh_src); 3645 goto finish; 3646 } 3647 if (sh_src) 3648 release_stripe(sh_src); 3649 3650 sh->reconstruct_state = reconstruct_state_idle; 3651 clear_bit(STRIPE_EXPANDING, &sh->state); 3652 for (i = conf->raid_disks; i--; ) { 3653 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3654 set_bit(R5_LOCKED, &sh->dev[i].flags); 3655 s.locked++; 3656 } 3657 } 3658 3659 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3660 !sh->reconstruct_state) { 3661 /* Need to write out all blocks after computing parity */ 3662 sh->disks = conf->raid_disks; 3663 stripe_set_idx(sh->sector, conf, 0, sh); 3664 schedule_reconstruction(sh, &s, 1, 1); 3665 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3666 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3667 atomic_dec(&conf->reshape_stripes); 3668 wake_up(&conf->wait_for_overlap); 3669 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3670 } 3671 3672 if (s.expanding && s.locked == 0 && 3673 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3674 handle_stripe_expansion(conf, sh); 3675 3676 finish: 3677 /* wait for this device to become unblocked */ 3678 if (unlikely(s.blocked_rdev)) { 3679 if (conf->mddev->external) 3680 md_wait_for_blocked_rdev(s.blocked_rdev, 3681 conf->mddev); 3682 else 3683 /* Internal metadata will immediately 3684 * be written by raid5d, so we don't 3685 * need to wait here. 3686 */ 3687 rdev_dec_pending(s.blocked_rdev, 3688 conf->mddev); 3689 } 3690 3691 if (s.handle_bad_blocks) 3692 for (i = disks; i--; ) { 3693 struct md_rdev *rdev; 3694 struct r5dev *dev = &sh->dev[i]; 3695 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 3696 /* We own a safe reference to the rdev */ 3697 rdev = conf->disks[i].rdev; 3698 if (!rdev_set_badblocks(rdev, sh->sector, 3699 STRIPE_SECTORS, 0)) 3700 md_error(conf->mddev, rdev); 3701 rdev_dec_pending(rdev, conf->mddev); 3702 } 3703 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 3704 rdev = conf->disks[i].rdev; 3705 rdev_clear_badblocks(rdev, sh->sector, 3706 STRIPE_SECTORS, 0); 3707 rdev_dec_pending(rdev, conf->mddev); 3708 } 3709 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 3710 rdev = conf->disks[i].replacement; 3711 if (!rdev) 3712 /* rdev have been moved down */ 3713 rdev = conf->disks[i].rdev; 3714 rdev_clear_badblocks(rdev, sh->sector, 3715 STRIPE_SECTORS, 0); 3716 rdev_dec_pending(rdev, conf->mddev); 3717 } 3718 } 3719 3720 if (s.ops_request) 3721 raid_run_ops(sh, s.ops_request); 3722 3723 ops_run_io(sh, &s); 3724 3725 if (s.dec_preread_active) { 3726 /* We delay this until after ops_run_io so that if make_request 3727 * is waiting on a flush, it won't continue until the writes 3728 * have actually been submitted. 3729 */ 3730 atomic_dec(&conf->preread_active_stripes); 3731 if (atomic_read(&conf->preread_active_stripes) < 3732 IO_THRESHOLD) 3733 md_wakeup_thread(conf->mddev->thread); 3734 } 3735 3736 return_io(s.return_bi); 3737 3738 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 3739 } 3740 3741 static void raid5_activate_delayed(struct r5conf *conf) 3742 { 3743 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3744 while (!list_empty(&conf->delayed_list)) { 3745 struct list_head *l = conf->delayed_list.next; 3746 struct stripe_head *sh; 3747 sh = list_entry(l, struct stripe_head, lru); 3748 list_del_init(l); 3749 clear_bit(STRIPE_DELAYED, &sh->state); 3750 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3751 atomic_inc(&conf->preread_active_stripes); 3752 list_add_tail(&sh->lru, &conf->hold_list); 3753 } 3754 } 3755 } 3756 3757 static void activate_bit_delay(struct r5conf *conf) 3758 { 3759 /* device_lock is held */ 3760 struct list_head head; 3761 list_add(&head, &conf->bitmap_list); 3762 list_del_init(&conf->bitmap_list); 3763 while (!list_empty(&head)) { 3764 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3765 list_del_init(&sh->lru); 3766 atomic_inc(&sh->count); 3767 __release_stripe(conf, sh); 3768 } 3769 } 3770 3771 int md_raid5_congested(struct mddev *mddev, int bits) 3772 { 3773 struct r5conf *conf = mddev->private; 3774 3775 /* No difference between reads and writes. Just check 3776 * how busy the stripe_cache is 3777 */ 3778 3779 if (conf->inactive_blocked) 3780 return 1; 3781 if (conf->quiesce) 3782 return 1; 3783 if (list_empty_careful(&conf->inactive_list)) 3784 return 1; 3785 3786 return 0; 3787 } 3788 EXPORT_SYMBOL_GPL(md_raid5_congested); 3789 3790 static int raid5_congested(void *data, int bits) 3791 { 3792 struct mddev *mddev = data; 3793 3794 return mddev_congested(mddev, bits) || 3795 md_raid5_congested(mddev, bits); 3796 } 3797 3798 /* We want read requests to align with chunks where possible, 3799 * but write requests don't need to. 3800 */ 3801 static int raid5_mergeable_bvec(struct request_queue *q, 3802 struct bvec_merge_data *bvm, 3803 struct bio_vec *biovec) 3804 { 3805 struct mddev *mddev = q->queuedata; 3806 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 3807 int max; 3808 unsigned int chunk_sectors = mddev->chunk_sectors; 3809 unsigned int bio_sectors = bvm->bi_size >> 9; 3810 3811 if ((bvm->bi_rw & 1) == WRITE) 3812 return biovec->bv_len; /* always allow writes to be mergeable */ 3813 3814 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3815 chunk_sectors = mddev->new_chunk_sectors; 3816 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3817 if (max < 0) max = 0; 3818 if (max <= biovec->bv_len && bio_sectors == 0) 3819 return biovec->bv_len; 3820 else 3821 return max; 3822 } 3823 3824 3825 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 3826 { 3827 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3828 unsigned int chunk_sectors = mddev->chunk_sectors; 3829 unsigned int bio_sectors = bio->bi_size >> 9; 3830 3831 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3832 chunk_sectors = mddev->new_chunk_sectors; 3833 return chunk_sectors >= 3834 ((sector & (chunk_sectors - 1)) + bio_sectors); 3835 } 3836 3837 /* 3838 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3839 * later sampled by raid5d. 3840 */ 3841 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 3842 { 3843 unsigned long flags; 3844 3845 spin_lock_irqsave(&conf->device_lock, flags); 3846 3847 bi->bi_next = conf->retry_read_aligned_list; 3848 conf->retry_read_aligned_list = bi; 3849 3850 spin_unlock_irqrestore(&conf->device_lock, flags); 3851 md_wakeup_thread(conf->mddev->thread); 3852 } 3853 3854 3855 static struct bio *remove_bio_from_retry(struct r5conf *conf) 3856 { 3857 struct bio *bi; 3858 3859 bi = conf->retry_read_aligned; 3860 if (bi) { 3861 conf->retry_read_aligned = NULL; 3862 return bi; 3863 } 3864 bi = conf->retry_read_aligned_list; 3865 if(bi) { 3866 conf->retry_read_aligned_list = bi->bi_next; 3867 bi->bi_next = NULL; 3868 /* 3869 * this sets the active strip count to 1 and the processed 3870 * strip count to zero (upper 8 bits) 3871 */ 3872 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 3873 } 3874 3875 return bi; 3876 } 3877 3878 3879 /* 3880 * The "raid5_align_endio" should check if the read succeeded and if it 3881 * did, call bio_endio on the original bio (having bio_put the new bio 3882 * first). 3883 * If the read failed.. 3884 */ 3885 static void raid5_align_endio(struct bio *bi, int error) 3886 { 3887 struct bio* raid_bi = bi->bi_private; 3888 struct mddev *mddev; 3889 struct r5conf *conf; 3890 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3891 struct md_rdev *rdev; 3892 3893 bio_put(bi); 3894 3895 rdev = (void*)raid_bi->bi_next; 3896 raid_bi->bi_next = NULL; 3897 mddev = rdev->mddev; 3898 conf = mddev->private; 3899 3900 rdev_dec_pending(rdev, conf->mddev); 3901 3902 if (!error && uptodate) { 3903 bio_endio(raid_bi, 0); 3904 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3905 wake_up(&conf->wait_for_stripe); 3906 return; 3907 } 3908 3909 3910 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3911 3912 add_bio_to_retry(raid_bi, conf); 3913 } 3914 3915 static int bio_fits_rdev(struct bio *bi) 3916 { 3917 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3918 3919 if ((bi->bi_size>>9) > queue_max_sectors(q)) 3920 return 0; 3921 blk_recount_segments(q, bi); 3922 if (bi->bi_phys_segments > queue_max_segments(q)) 3923 return 0; 3924 3925 if (q->merge_bvec_fn) 3926 /* it's too hard to apply the merge_bvec_fn at this stage, 3927 * just just give up 3928 */ 3929 return 0; 3930 3931 return 1; 3932 } 3933 3934 3935 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 3936 { 3937 struct r5conf *conf = mddev->private; 3938 int dd_idx; 3939 struct bio* align_bi; 3940 struct md_rdev *rdev; 3941 sector_t end_sector; 3942 3943 if (!in_chunk_boundary(mddev, raid_bio)) { 3944 pr_debug("chunk_aligned_read : non aligned\n"); 3945 return 0; 3946 } 3947 /* 3948 * use bio_clone_mddev to make a copy of the bio 3949 */ 3950 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 3951 if (!align_bi) 3952 return 0; 3953 /* 3954 * set bi_end_io to a new function, and set bi_private to the 3955 * original bio. 3956 */ 3957 align_bi->bi_end_io = raid5_align_endio; 3958 align_bi->bi_private = raid_bio; 3959 /* 3960 * compute position 3961 */ 3962 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 3963 0, 3964 &dd_idx, NULL); 3965 3966 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9); 3967 rcu_read_lock(); 3968 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 3969 if (!rdev || test_bit(Faulty, &rdev->flags) || 3970 rdev->recovery_offset < end_sector) { 3971 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3972 if (rdev && 3973 (test_bit(Faulty, &rdev->flags) || 3974 !(test_bit(In_sync, &rdev->flags) || 3975 rdev->recovery_offset >= end_sector))) 3976 rdev = NULL; 3977 } 3978 if (rdev) { 3979 sector_t first_bad; 3980 int bad_sectors; 3981 3982 atomic_inc(&rdev->nr_pending); 3983 rcu_read_unlock(); 3984 raid_bio->bi_next = (void*)rdev; 3985 align_bi->bi_bdev = rdev->bdev; 3986 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 3987 3988 if (!bio_fits_rdev(align_bi) || 3989 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9, 3990 &first_bad, &bad_sectors)) { 3991 /* too big in some way, or has a known bad block */ 3992 bio_put(align_bi); 3993 rdev_dec_pending(rdev, mddev); 3994 return 0; 3995 } 3996 3997 /* No reshape active, so we can trust rdev->data_offset */ 3998 align_bi->bi_sector += rdev->data_offset; 3999 4000 spin_lock_irq(&conf->device_lock); 4001 wait_event_lock_irq(conf->wait_for_stripe, 4002 conf->quiesce == 0, 4003 conf->device_lock, /* nothing */); 4004 atomic_inc(&conf->active_aligned_reads); 4005 spin_unlock_irq(&conf->device_lock); 4006 4007 generic_make_request(align_bi); 4008 return 1; 4009 } else { 4010 rcu_read_unlock(); 4011 bio_put(align_bi); 4012 return 0; 4013 } 4014 } 4015 4016 /* __get_priority_stripe - get the next stripe to process 4017 * 4018 * Full stripe writes are allowed to pass preread active stripes up until 4019 * the bypass_threshold is exceeded. In general the bypass_count 4020 * increments when the handle_list is handled before the hold_list; however, it 4021 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4022 * stripe with in flight i/o. The bypass_count will be reset when the 4023 * head of the hold_list has changed, i.e. the head was promoted to the 4024 * handle_list. 4025 */ 4026 static struct stripe_head *__get_priority_stripe(struct r5conf *conf) 4027 { 4028 struct stripe_head *sh; 4029 4030 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4031 __func__, 4032 list_empty(&conf->handle_list) ? "empty" : "busy", 4033 list_empty(&conf->hold_list) ? "empty" : "busy", 4034 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4035 4036 if (!list_empty(&conf->handle_list)) { 4037 sh = list_entry(conf->handle_list.next, typeof(*sh), lru); 4038 4039 if (list_empty(&conf->hold_list)) 4040 conf->bypass_count = 0; 4041 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4042 if (conf->hold_list.next == conf->last_hold) 4043 conf->bypass_count++; 4044 else { 4045 conf->last_hold = conf->hold_list.next; 4046 conf->bypass_count -= conf->bypass_threshold; 4047 if (conf->bypass_count < 0) 4048 conf->bypass_count = 0; 4049 } 4050 } 4051 } else if (!list_empty(&conf->hold_list) && 4052 ((conf->bypass_threshold && 4053 conf->bypass_count > conf->bypass_threshold) || 4054 atomic_read(&conf->pending_full_writes) == 0)) { 4055 sh = list_entry(conf->hold_list.next, 4056 typeof(*sh), lru); 4057 conf->bypass_count -= conf->bypass_threshold; 4058 if (conf->bypass_count < 0) 4059 conf->bypass_count = 0; 4060 } else 4061 return NULL; 4062 4063 list_del_init(&sh->lru); 4064 atomic_inc(&sh->count); 4065 BUG_ON(atomic_read(&sh->count) != 1); 4066 return sh; 4067 } 4068 4069 struct raid5_plug_cb { 4070 struct blk_plug_cb cb; 4071 struct list_head list; 4072 }; 4073 4074 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4075 { 4076 struct raid5_plug_cb *cb = container_of( 4077 blk_cb, struct raid5_plug_cb, cb); 4078 struct stripe_head *sh; 4079 struct mddev *mddev = cb->cb.data; 4080 struct r5conf *conf = mddev->private; 4081 4082 if (cb->list.next && !list_empty(&cb->list)) { 4083 spin_lock_irq(&conf->device_lock); 4084 while (!list_empty(&cb->list)) { 4085 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4086 list_del_init(&sh->lru); 4087 /* 4088 * avoid race release_stripe_plug() sees 4089 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4090 * is still in our list 4091 */ 4092 smp_mb__before_clear_bit(); 4093 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4094 __release_stripe(conf, sh); 4095 } 4096 spin_unlock_irq(&conf->device_lock); 4097 } 4098 kfree(cb); 4099 } 4100 4101 static void release_stripe_plug(struct mddev *mddev, 4102 struct stripe_head *sh) 4103 { 4104 struct blk_plug_cb *blk_cb = blk_check_plugged( 4105 raid5_unplug, mddev, 4106 sizeof(struct raid5_plug_cb)); 4107 struct raid5_plug_cb *cb; 4108 4109 if (!blk_cb) { 4110 release_stripe(sh); 4111 return; 4112 } 4113 4114 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4115 4116 if (cb->list.next == NULL) 4117 INIT_LIST_HEAD(&cb->list); 4118 4119 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4120 list_add_tail(&sh->lru, &cb->list); 4121 else 4122 release_stripe(sh); 4123 } 4124 4125 static void make_discard_request(struct mddev *mddev, struct bio *bi) 4126 { 4127 struct r5conf *conf = mddev->private; 4128 sector_t logical_sector, last_sector; 4129 struct stripe_head *sh; 4130 int remaining; 4131 int stripe_sectors; 4132 4133 if (mddev->reshape_position != MaxSector) 4134 /* Skip discard while reshape is happening */ 4135 return; 4136 4137 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4138 last_sector = bi->bi_sector + (bi->bi_size>>9); 4139 4140 bi->bi_next = NULL; 4141 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4142 4143 stripe_sectors = conf->chunk_sectors * 4144 (conf->raid_disks - conf->max_degraded); 4145 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 4146 stripe_sectors); 4147 sector_div(last_sector, stripe_sectors); 4148 4149 logical_sector *= conf->chunk_sectors; 4150 last_sector *= conf->chunk_sectors; 4151 4152 for (; logical_sector < last_sector; 4153 logical_sector += STRIPE_SECTORS) { 4154 DEFINE_WAIT(w); 4155 int d; 4156 again: 4157 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 4158 prepare_to_wait(&conf->wait_for_overlap, &w, 4159 TASK_UNINTERRUPTIBLE); 4160 spin_lock_irq(&sh->stripe_lock); 4161 for (d = 0; d < conf->raid_disks; d++) { 4162 if (d == sh->pd_idx || d == sh->qd_idx) 4163 continue; 4164 if (sh->dev[d].towrite || sh->dev[d].toread) { 4165 set_bit(R5_Overlap, &sh->dev[d].flags); 4166 spin_unlock_irq(&sh->stripe_lock); 4167 release_stripe(sh); 4168 schedule(); 4169 goto again; 4170 } 4171 } 4172 finish_wait(&conf->wait_for_overlap, &w); 4173 for (d = 0; d < conf->raid_disks; d++) { 4174 if (d == sh->pd_idx || d == sh->qd_idx) 4175 continue; 4176 sh->dev[d].towrite = bi; 4177 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 4178 raid5_inc_bi_active_stripes(bi); 4179 } 4180 spin_unlock_irq(&sh->stripe_lock); 4181 if (conf->mddev->bitmap) { 4182 for (d = 0; 4183 d < conf->raid_disks - conf->max_degraded; 4184 d++) 4185 bitmap_startwrite(mddev->bitmap, 4186 sh->sector, 4187 STRIPE_SECTORS, 4188 0); 4189 sh->bm_seq = conf->seq_flush + 1; 4190 set_bit(STRIPE_BIT_DELAY, &sh->state); 4191 } 4192 4193 set_bit(STRIPE_HANDLE, &sh->state); 4194 clear_bit(STRIPE_DELAYED, &sh->state); 4195 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4196 atomic_inc(&conf->preread_active_stripes); 4197 release_stripe_plug(mddev, sh); 4198 } 4199 4200 remaining = raid5_dec_bi_active_stripes(bi); 4201 if (remaining == 0) { 4202 md_write_end(mddev); 4203 bio_endio(bi, 0); 4204 } 4205 } 4206 4207 static void make_request(struct mddev *mddev, struct bio * bi) 4208 { 4209 struct r5conf *conf = mddev->private; 4210 int dd_idx; 4211 sector_t new_sector; 4212 sector_t logical_sector, last_sector; 4213 struct stripe_head *sh; 4214 const int rw = bio_data_dir(bi); 4215 int remaining; 4216 4217 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4218 md_flush_request(mddev, bi); 4219 return; 4220 } 4221 4222 md_write_start(mddev, bi); 4223 4224 if (rw == READ && 4225 mddev->reshape_position == MaxSector && 4226 chunk_aligned_read(mddev,bi)) 4227 return; 4228 4229 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 4230 make_discard_request(mddev, bi); 4231 return; 4232 } 4233 4234 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4235 last_sector = bi->bi_sector + (bi->bi_size>>9); 4236 bi->bi_next = NULL; 4237 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4238 4239 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4240 DEFINE_WAIT(w); 4241 int previous; 4242 4243 retry: 4244 previous = 0; 4245 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4246 if (unlikely(conf->reshape_progress != MaxSector)) { 4247 /* spinlock is needed as reshape_progress may be 4248 * 64bit on a 32bit platform, and so it might be 4249 * possible to see a half-updated value 4250 * Of course reshape_progress could change after 4251 * the lock is dropped, so once we get a reference 4252 * to the stripe that we think it is, we will have 4253 * to check again. 4254 */ 4255 spin_lock_irq(&conf->device_lock); 4256 if (mddev->reshape_backwards 4257 ? logical_sector < conf->reshape_progress 4258 : logical_sector >= conf->reshape_progress) { 4259 previous = 1; 4260 } else { 4261 if (mddev->reshape_backwards 4262 ? logical_sector < conf->reshape_safe 4263 : logical_sector >= conf->reshape_safe) { 4264 spin_unlock_irq(&conf->device_lock); 4265 schedule(); 4266 goto retry; 4267 } 4268 } 4269 spin_unlock_irq(&conf->device_lock); 4270 } 4271 4272 new_sector = raid5_compute_sector(conf, logical_sector, 4273 previous, 4274 &dd_idx, NULL); 4275 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4276 (unsigned long long)new_sector, 4277 (unsigned long long)logical_sector); 4278 4279 sh = get_active_stripe(conf, new_sector, previous, 4280 (bi->bi_rw&RWA_MASK), 0); 4281 if (sh) { 4282 if (unlikely(previous)) { 4283 /* expansion might have moved on while waiting for a 4284 * stripe, so we must do the range check again. 4285 * Expansion could still move past after this 4286 * test, but as we are holding a reference to 4287 * 'sh', we know that if that happens, 4288 * STRIPE_EXPANDING will get set and the expansion 4289 * won't proceed until we finish with the stripe. 4290 */ 4291 int must_retry = 0; 4292 spin_lock_irq(&conf->device_lock); 4293 if (mddev->reshape_backwards 4294 ? logical_sector >= conf->reshape_progress 4295 : logical_sector < conf->reshape_progress) 4296 /* mismatch, need to try again */ 4297 must_retry = 1; 4298 spin_unlock_irq(&conf->device_lock); 4299 if (must_retry) { 4300 release_stripe(sh); 4301 schedule(); 4302 goto retry; 4303 } 4304 } 4305 4306 if (rw == WRITE && 4307 logical_sector >= mddev->suspend_lo && 4308 logical_sector < mddev->suspend_hi) { 4309 release_stripe(sh); 4310 /* As the suspend_* range is controlled by 4311 * userspace, we want an interruptible 4312 * wait. 4313 */ 4314 flush_signals(current); 4315 prepare_to_wait(&conf->wait_for_overlap, 4316 &w, TASK_INTERRUPTIBLE); 4317 if (logical_sector >= mddev->suspend_lo && 4318 logical_sector < mddev->suspend_hi) 4319 schedule(); 4320 goto retry; 4321 } 4322 4323 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4324 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4325 /* Stripe is busy expanding or 4326 * add failed due to overlap. Flush everything 4327 * and wait a while 4328 */ 4329 md_wakeup_thread(mddev->thread); 4330 release_stripe(sh); 4331 schedule(); 4332 goto retry; 4333 } 4334 finish_wait(&conf->wait_for_overlap, &w); 4335 set_bit(STRIPE_HANDLE, &sh->state); 4336 clear_bit(STRIPE_DELAYED, &sh->state); 4337 if ((bi->bi_rw & REQ_SYNC) && 4338 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4339 atomic_inc(&conf->preread_active_stripes); 4340 release_stripe_plug(mddev, sh); 4341 } else { 4342 /* cannot get stripe for read-ahead, just give-up */ 4343 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4344 finish_wait(&conf->wait_for_overlap, &w); 4345 break; 4346 } 4347 } 4348 4349 remaining = raid5_dec_bi_active_stripes(bi); 4350 if (remaining == 0) { 4351 4352 if ( rw == WRITE ) 4353 md_write_end(mddev); 4354 4355 bio_endio(bi, 0); 4356 } 4357 } 4358 4359 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4360 4361 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4362 { 4363 /* reshaping is quite different to recovery/resync so it is 4364 * handled quite separately ... here. 4365 * 4366 * On each call to sync_request, we gather one chunk worth of 4367 * destination stripes and flag them as expanding. 4368 * Then we find all the source stripes and request reads. 4369 * As the reads complete, handle_stripe will copy the data 4370 * into the destination stripe and release that stripe. 4371 */ 4372 struct r5conf *conf = mddev->private; 4373 struct stripe_head *sh; 4374 sector_t first_sector, last_sector; 4375 int raid_disks = conf->previous_raid_disks; 4376 int data_disks = raid_disks - conf->max_degraded; 4377 int new_data_disks = conf->raid_disks - conf->max_degraded; 4378 int i; 4379 int dd_idx; 4380 sector_t writepos, readpos, safepos; 4381 sector_t stripe_addr; 4382 int reshape_sectors; 4383 struct list_head stripes; 4384 4385 if (sector_nr == 0) { 4386 /* If restarting in the middle, skip the initial sectors */ 4387 if (mddev->reshape_backwards && 4388 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4389 sector_nr = raid5_size(mddev, 0, 0) 4390 - conf->reshape_progress; 4391 } else if (!mddev->reshape_backwards && 4392 conf->reshape_progress > 0) 4393 sector_nr = conf->reshape_progress; 4394 sector_div(sector_nr, new_data_disks); 4395 if (sector_nr) { 4396 mddev->curr_resync_completed = sector_nr; 4397 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4398 *skipped = 1; 4399 return sector_nr; 4400 } 4401 } 4402 4403 /* We need to process a full chunk at a time. 4404 * If old and new chunk sizes differ, we need to process the 4405 * largest of these 4406 */ 4407 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4408 reshape_sectors = mddev->new_chunk_sectors; 4409 else 4410 reshape_sectors = mddev->chunk_sectors; 4411 4412 /* We update the metadata at least every 10 seconds, or when 4413 * the data about to be copied would over-write the source of 4414 * the data at the front of the range. i.e. one new_stripe 4415 * along from reshape_progress new_maps to after where 4416 * reshape_safe old_maps to 4417 */ 4418 writepos = conf->reshape_progress; 4419 sector_div(writepos, new_data_disks); 4420 readpos = conf->reshape_progress; 4421 sector_div(readpos, data_disks); 4422 safepos = conf->reshape_safe; 4423 sector_div(safepos, data_disks); 4424 if (mddev->reshape_backwards) { 4425 writepos -= min_t(sector_t, reshape_sectors, writepos); 4426 readpos += reshape_sectors; 4427 safepos += reshape_sectors; 4428 } else { 4429 writepos += reshape_sectors; 4430 readpos -= min_t(sector_t, reshape_sectors, readpos); 4431 safepos -= min_t(sector_t, reshape_sectors, safepos); 4432 } 4433 4434 /* Having calculated the 'writepos' possibly use it 4435 * to set 'stripe_addr' which is where we will write to. 4436 */ 4437 if (mddev->reshape_backwards) { 4438 BUG_ON(conf->reshape_progress == 0); 4439 stripe_addr = writepos; 4440 BUG_ON((mddev->dev_sectors & 4441 ~((sector_t)reshape_sectors - 1)) 4442 - reshape_sectors - stripe_addr 4443 != sector_nr); 4444 } else { 4445 BUG_ON(writepos != sector_nr + reshape_sectors); 4446 stripe_addr = sector_nr; 4447 } 4448 4449 /* 'writepos' is the most advanced device address we might write. 4450 * 'readpos' is the least advanced device address we might read. 4451 * 'safepos' is the least address recorded in the metadata as having 4452 * been reshaped. 4453 * If there is a min_offset_diff, these are adjusted either by 4454 * increasing the safepos/readpos if diff is negative, or 4455 * increasing writepos if diff is positive. 4456 * If 'readpos' is then behind 'writepos', there is no way that we can 4457 * ensure safety in the face of a crash - that must be done by userspace 4458 * making a backup of the data. So in that case there is no particular 4459 * rush to update metadata. 4460 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4461 * update the metadata to advance 'safepos' to match 'readpos' so that 4462 * we can be safe in the event of a crash. 4463 * So we insist on updating metadata if safepos is behind writepos and 4464 * readpos is beyond writepos. 4465 * In any case, update the metadata every 10 seconds. 4466 * Maybe that number should be configurable, but I'm not sure it is 4467 * worth it.... maybe it could be a multiple of safemode_delay??? 4468 */ 4469 if (conf->min_offset_diff < 0) { 4470 safepos += -conf->min_offset_diff; 4471 readpos += -conf->min_offset_diff; 4472 } else 4473 writepos += conf->min_offset_diff; 4474 4475 if ((mddev->reshape_backwards 4476 ? (safepos > writepos && readpos < writepos) 4477 : (safepos < writepos && readpos > writepos)) || 4478 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4479 /* Cannot proceed until we've updated the superblock... */ 4480 wait_event(conf->wait_for_overlap, 4481 atomic_read(&conf->reshape_stripes)==0); 4482 mddev->reshape_position = conf->reshape_progress; 4483 mddev->curr_resync_completed = sector_nr; 4484 conf->reshape_checkpoint = jiffies; 4485 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4486 md_wakeup_thread(mddev->thread); 4487 wait_event(mddev->sb_wait, mddev->flags == 0 || 4488 kthread_should_stop()); 4489 spin_lock_irq(&conf->device_lock); 4490 conf->reshape_safe = mddev->reshape_position; 4491 spin_unlock_irq(&conf->device_lock); 4492 wake_up(&conf->wait_for_overlap); 4493 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4494 } 4495 4496 INIT_LIST_HEAD(&stripes); 4497 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4498 int j; 4499 int skipped_disk = 0; 4500 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4501 set_bit(STRIPE_EXPANDING, &sh->state); 4502 atomic_inc(&conf->reshape_stripes); 4503 /* If any of this stripe is beyond the end of the old 4504 * array, then we need to zero those blocks 4505 */ 4506 for (j=sh->disks; j--;) { 4507 sector_t s; 4508 if (j == sh->pd_idx) 4509 continue; 4510 if (conf->level == 6 && 4511 j == sh->qd_idx) 4512 continue; 4513 s = compute_blocknr(sh, j, 0); 4514 if (s < raid5_size(mddev, 0, 0)) { 4515 skipped_disk = 1; 4516 continue; 4517 } 4518 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4519 set_bit(R5_Expanded, &sh->dev[j].flags); 4520 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4521 } 4522 if (!skipped_disk) { 4523 set_bit(STRIPE_EXPAND_READY, &sh->state); 4524 set_bit(STRIPE_HANDLE, &sh->state); 4525 } 4526 list_add(&sh->lru, &stripes); 4527 } 4528 spin_lock_irq(&conf->device_lock); 4529 if (mddev->reshape_backwards) 4530 conf->reshape_progress -= reshape_sectors * new_data_disks; 4531 else 4532 conf->reshape_progress += reshape_sectors * new_data_disks; 4533 spin_unlock_irq(&conf->device_lock); 4534 /* Ok, those stripe are ready. We can start scheduling 4535 * reads on the source stripes. 4536 * The source stripes are determined by mapping the first and last 4537 * block on the destination stripes. 4538 */ 4539 first_sector = 4540 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4541 1, &dd_idx, NULL); 4542 last_sector = 4543 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4544 * new_data_disks - 1), 4545 1, &dd_idx, NULL); 4546 if (last_sector >= mddev->dev_sectors) 4547 last_sector = mddev->dev_sectors - 1; 4548 while (first_sector <= last_sector) { 4549 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4550 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4551 set_bit(STRIPE_HANDLE, &sh->state); 4552 release_stripe(sh); 4553 first_sector += STRIPE_SECTORS; 4554 } 4555 /* Now that the sources are clearly marked, we can release 4556 * the destination stripes 4557 */ 4558 while (!list_empty(&stripes)) { 4559 sh = list_entry(stripes.next, struct stripe_head, lru); 4560 list_del_init(&sh->lru); 4561 release_stripe(sh); 4562 } 4563 /* If this takes us to the resync_max point where we have to pause, 4564 * then we need to write out the superblock. 4565 */ 4566 sector_nr += reshape_sectors; 4567 if ((sector_nr - mddev->curr_resync_completed) * 2 4568 >= mddev->resync_max - mddev->curr_resync_completed) { 4569 /* Cannot proceed until we've updated the superblock... */ 4570 wait_event(conf->wait_for_overlap, 4571 atomic_read(&conf->reshape_stripes) == 0); 4572 mddev->reshape_position = conf->reshape_progress; 4573 mddev->curr_resync_completed = sector_nr; 4574 conf->reshape_checkpoint = jiffies; 4575 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4576 md_wakeup_thread(mddev->thread); 4577 wait_event(mddev->sb_wait, 4578 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4579 || kthread_should_stop()); 4580 spin_lock_irq(&conf->device_lock); 4581 conf->reshape_safe = mddev->reshape_position; 4582 spin_unlock_irq(&conf->device_lock); 4583 wake_up(&conf->wait_for_overlap); 4584 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4585 } 4586 return reshape_sectors; 4587 } 4588 4589 /* FIXME go_faster isn't used */ 4590 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4591 { 4592 struct r5conf *conf = mddev->private; 4593 struct stripe_head *sh; 4594 sector_t max_sector = mddev->dev_sectors; 4595 sector_t sync_blocks; 4596 int still_degraded = 0; 4597 int i; 4598 4599 if (sector_nr >= max_sector) { 4600 /* just being told to finish up .. nothing much to do */ 4601 4602 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4603 end_reshape(conf); 4604 return 0; 4605 } 4606 4607 if (mddev->curr_resync < max_sector) /* aborted */ 4608 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4609 &sync_blocks, 1); 4610 else /* completed sync */ 4611 conf->fullsync = 0; 4612 bitmap_close_sync(mddev->bitmap); 4613 4614 return 0; 4615 } 4616 4617 /* Allow raid5_quiesce to complete */ 4618 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4619 4620 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4621 return reshape_request(mddev, sector_nr, skipped); 4622 4623 /* No need to check resync_max as we never do more than one 4624 * stripe, and as resync_max will always be on a chunk boundary, 4625 * if the check in md_do_sync didn't fire, there is no chance 4626 * of overstepping resync_max here 4627 */ 4628 4629 /* if there is too many failed drives and we are trying 4630 * to resync, then assert that we are finished, because there is 4631 * nothing we can do. 4632 */ 4633 if (mddev->degraded >= conf->max_degraded && 4634 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4635 sector_t rv = mddev->dev_sectors - sector_nr; 4636 *skipped = 1; 4637 return rv; 4638 } 4639 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 4640 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 4641 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 4642 /* we can skip this block, and probably more */ 4643 sync_blocks /= STRIPE_SECTORS; 4644 *skipped = 1; 4645 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 4646 } 4647 4648 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 4649 4650 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 4651 if (sh == NULL) { 4652 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 4653 /* make sure we don't swamp the stripe cache if someone else 4654 * is trying to get access 4655 */ 4656 schedule_timeout_uninterruptible(1); 4657 } 4658 /* Need to check if array will still be degraded after recovery/resync 4659 * We don't need to check the 'failed' flag as when that gets set, 4660 * recovery aborts. 4661 */ 4662 for (i = 0; i < conf->raid_disks; i++) 4663 if (conf->disks[i].rdev == NULL) 4664 still_degraded = 1; 4665 4666 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 4667 4668 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 4669 4670 handle_stripe(sh); 4671 release_stripe(sh); 4672 4673 return STRIPE_SECTORS; 4674 } 4675 4676 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 4677 { 4678 /* We may not be able to submit a whole bio at once as there 4679 * may not be enough stripe_heads available. 4680 * We cannot pre-allocate enough stripe_heads as we may need 4681 * more than exist in the cache (if we allow ever large chunks). 4682 * So we do one stripe head at a time and record in 4683 * ->bi_hw_segments how many have been done. 4684 * 4685 * We *know* that this entire raid_bio is in one chunk, so 4686 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 4687 */ 4688 struct stripe_head *sh; 4689 int dd_idx; 4690 sector_t sector, logical_sector, last_sector; 4691 int scnt = 0; 4692 int remaining; 4693 int handled = 0; 4694 4695 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4696 sector = raid5_compute_sector(conf, logical_sector, 4697 0, &dd_idx, NULL); 4698 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 4699 4700 for (; logical_sector < last_sector; 4701 logical_sector += STRIPE_SECTORS, 4702 sector += STRIPE_SECTORS, 4703 scnt++) { 4704 4705 if (scnt < raid5_bi_processed_stripes(raid_bio)) 4706 /* already done this stripe */ 4707 continue; 4708 4709 sh = get_active_stripe(conf, sector, 0, 1, 0); 4710 4711 if (!sh) { 4712 /* failed to get a stripe - must wait */ 4713 raid5_set_bi_processed_stripes(raid_bio, scnt); 4714 conf->retry_read_aligned = raid_bio; 4715 return handled; 4716 } 4717 4718 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 4719 release_stripe(sh); 4720 raid5_set_bi_processed_stripes(raid_bio, scnt); 4721 conf->retry_read_aligned = raid_bio; 4722 return handled; 4723 } 4724 4725 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 4726 handle_stripe(sh); 4727 release_stripe(sh); 4728 handled++; 4729 } 4730 remaining = raid5_dec_bi_active_stripes(raid_bio); 4731 if (remaining == 0) 4732 bio_endio(raid_bio, 0); 4733 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4734 wake_up(&conf->wait_for_stripe); 4735 return handled; 4736 } 4737 4738 #define MAX_STRIPE_BATCH 8 4739 static int handle_active_stripes(struct r5conf *conf) 4740 { 4741 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 4742 int i, batch_size = 0; 4743 4744 while (batch_size < MAX_STRIPE_BATCH && 4745 (sh = __get_priority_stripe(conf)) != NULL) 4746 batch[batch_size++] = sh; 4747 4748 if (batch_size == 0) 4749 return batch_size; 4750 spin_unlock_irq(&conf->device_lock); 4751 4752 for (i = 0; i < batch_size; i++) 4753 handle_stripe(batch[i]); 4754 4755 cond_resched(); 4756 4757 spin_lock_irq(&conf->device_lock); 4758 for (i = 0; i < batch_size; i++) 4759 __release_stripe(conf, batch[i]); 4760 return batch_size; 4761 } 4762 4763 /* 4764 * This is our raid5 kernel thread. 4765 * 4766 * We scan the hash table for stripes which can be handled now. 4767 * During the scan, completed stripes are saved for us by the interrupt 4768 * handler, so that they will not have to wait for our next wakeup. 4769 */ 4770 static void raid5d(struct md_thread *thread) 4771 { 4772 struct mddev *mddev = thread->mddev; 4773 struct r5conf *conf = mddev->private; 4774 int handled; 4775 struct blk_plug plug; 4776 4777 pr_debug("+++ raid5d active\n"); 4778 4779 md_check_recovery(mddev); 4780 4781 blk_start_plug(&plug); 4782 handled = 0; 4783 spin_lock_irq(&conf->device_lock); 4784 while (1) { 4785 struct bio *bio; 4786 int batch_size; 4787 4788 if ( 4789 !list_empty(&conf->bitmap_list)) { 4790 /* Now is a good time to flush some bitmap updates */ 4791 conf->seq_flush++; 4792 spin_unlock_irq(&conf->device_lock); 4793 bitmap_unplug(mddev->bitmap); 4794 spin_lock_irq(&conf->device_lock); 4795 conf->seq_write = conf->seq_flush; 4796 activate_bit_delay(conf); 4797 } 4798 raid5_activate_delayed(conf); 4799 4800 while ((bio = remove_bio_from_retry(conf))) { 4801 int ok; 4802 spin_unlock_irq(&conf->device_lock); 4803 ok = retry_aligned_read(conf, bio); 4804 spin_lock_irq(&conf->device_lock); 4805 if (!ok) 4806 break; 4807 handled++; 4808 } 4809 4810 batch_size = handle_active_stripes(conf); 4811 if (!batch_size) 4812 break; 4813 handled += batch_size; 4814 4815 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 4816 spin_unlock_irq(&conf->device_lock); 4817 md_check_recovery(mddev); 4818 spin_lock_irq(&conf->device_lock); 4819 } 4820 } 4821 pr_debug("%d stripes handled\n", handled); 4822 4823 spin_unlock_irq(&conf->device_lock); 4824 4825 async_tx_issue_pending_all(); 4826 blk_finish_plug(&plug); 4827 4828 pr_debug("--- raid5d inactive\n"); 4829 } 4830 4831 static ssize_t 4832 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 4833 { 4834 struct r5conf *conf = mddev->private; 4835 if (conf) 4836 return sprintf(page, "%d\n", conf->max_nr_stripes); 4837 else 4838 return 0; 4839 } 4840 4841 int 4842 raid5_set_cache_size(struct mddev *mddev, int size) 4843 { 4844 struct r5conf *conf = mddev->private; 4845 int err; 4846 4847 if (size <= 16 || size > 32768) 4848 return -EINVAL; 4849 while (size < conf->max_nr_stripes) { 4850 if (drop_one_stripe(conf)) 4851 conf->max_nr_stripes--; 4852 else 4853 break; 4854 } 4855 err = md_allow_write(mddev); 4856 if (err) 4857 return err; 4858 while (size > conf->max_nr_stripes) { 4859 if (grow_one_stripe(conf)) 4860 conf->max_nr_stripes++; 4861 else break; 4862 } 4863 return 0; 4864 } 4865 EXPORT_SYMBOL(raid5_set_cache_size); 4866 4867 static ssize_t 4868 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 4869 { 4870 struct r5conf *conf = mddev->private; 4871 unsigned long new; 4872 int err; 4873 4874 if (len >= PAGE_SIZE) 4875 return -EINVAL; 4876 if (!conf) 4877 return -ENODEV; 4878 4879 if (strict_strtoul(page, 10, &new)) 4880 return -EINVAL; 4881 err = raid5_set_cache_size(mddev, new); 4882 if (err) 4883 return err; 4884 return len; 4885 } 4886 4887 static struct md_sysfs_entry 4888 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 4889 raid5_show_stripe_cache_size, 4890 raid5_store_stripe_cache_size); 4891 4892 static ssize_t 4893 raid5_show_preread_threshold(struct mddev *mddev, char *page) 4894 { 4895 struct r5conf *conf = mddev->private; 4896 if (conf) 4897 return sprintf(page, "%d\n", conf->bypass_threshold); 4898 else 4899 return 0; 4900 } 4901 4902 static ssize_t 4903 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 4904 { 4905 struct r5conf *conf = mddev->private; 4906 unsigned long new; 4907 if (len >= PAGE_SIZE) 4908 return -EINVAL; 4909 if (!conf) 4910 return -ENODEV; 4911 4912 if (strict_strtoul(page, 10, &new)) 4913 return -EINVAL; 4914 if (new > conf->max_nr_stripes) 4915 return -EINVAL; 4916 conf->bypass_threshold = new; 4917 return len; 4918 } 4919 4920 static struct md_sysfs_entry 4921 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 4922 S_IRUGO | S_IWUSR, 4923 raid5_show_preread_threshold, 4924 raid5_store_preread_threshold); 4925 4926 static ssize_t 4927 stripe_cache_active_show(struct mddev *mddev, char *page) 4928 { 4929 struct r5conf *conf = mddev->private; 4930 if (conf) 4931 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 4932 else 4933 return 0; 4934 } 4935 4936 static struct md_sysfs_entry 4937 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 4938 4939 static struct attribute *raid5_attrs[] = { 4940 &raid5_stripecache_size.attr, 4941 &raid5_stripecache_active.attr, 4942 &raid5_preread_bypass_threshold.attr, 4943 NULL, 4944 }; 4945 static struct attribute_group raid5_attrs_group = { 4946 .name = NULL, 4947 .attrs = raid5_attrs, 4948 }; 4949 4950 static sector_t 4951 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 4952 { 4953 struct r5conf *conf = mddev->private; 4954 4955 if (!sectors) 4956 sectors = mddev->dev_sectors; 4957 if (!raid_disks) 4958 /* size is defined by the smallest of previous and new size */ 4959 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 4960 4961 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 4962 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 4963 return sectors * (raid_disks - conf->max_degraded); 4964 } 4965 4966 static void raid5_free_percpu(struct r5conf *conf) 4967 { 4968 struct raid5_percpu *percpu; 4969 unsigned long cpu; 4970 4971 if (!conf->percpu) 4972 return; 4973 4974 get_online_cpus(); 4975 for_each_possible_cpu(cpu) { 4976 percpu = per_cpu_ptr(conf->percpu, cpu); 4977 safe_put_page(percpu->spare_page); 4978 kfree(percpu->scribble); 4979 } 4980 #ifdef CONFIG_HOTPLUG_CPU 4981 unregister_cpu_notifier(&conf->cpu_notify); 4982 #endif 4983 put_online_cpus(); 4984 4985 free_percpu(conf->percpu); 4986 } 4987 4988 static void free_conf(struct r5conf *conf) 4989 { 4990 shrink_stripes(conf); 4991 raid5_free_percpu(conf); 4992 kfree(conf->disks); 4993 kfree(conf->stripe_hashtbl); 4994 kfree(conf); 4995 } 4996 4997 #ifdef CONFIG_HOTPLUG_CPU 4998 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 4999 void *hcpu) 5000 { 5001 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 5002 long cpu = (long)hcpu; 5003 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 5004 5005 switch (action) { 5006 case CPU_UP_PREPARE: 5007 case CPU_UP_PREPARE_FROZEN: 5008 if (conf->level == 6 && !percpu->spare_page) 5009 percpu->spare_page = alloc_page(GFP_KERNEL); 5010 if (!percpu->scribble) 5011 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5012 5013 if (!percpu->scribble || 5014 (conf->level == 6 && !percpu->spare_page)) { 5015 safe_put_page(percpu->spare_page); 5016 kfree(percpu->scribble); 5017 pr_err("%s: failed memory allocation for cpu%ld\n", 5018 __func__, cpu); 5019 return notifier_from_errno(-ENOMEM); 5020 } 5021 break; 5022 case CPU_DEAD: 5023 case CPU_DEAD_FROZEN: 5024 safe_put_page(percpu->spare_page); 5025 kfree(percpu->scribble); 5026 percpu->spare_page = NULL; 5027 percpu->scribble = NULL; 5028 break; 5029 default: 5030 break; 5031 } 5032 return NOTIFY_OK; 5033 } 5034 #endif 5035 5036 static int raid5_alloc_percpu(struct r5conf *conf) 5037 { 5038 unsigned long cpu; 5039 struct page *spare_page; 5040 struct raid5_percpu __percpu *allcpus; 5041 void *scribble; 5042 int err; 5043 5044 allcpus = alloc_percpu(struct raid5_percpu); 5045 if (!allcpus) 5046 return -ENOMEM; 5047 conf->percpu = allcpus; 5048 5049 get_online_cpus(); 5050 err = 0; 5051 for_each_present_cpu(cpu) { 5052 if (conf->level == 6) { 5053 spare_page = alloc_page(GFP_KERNEL); 5054 if (!spare_page) { 5055 err = -ENOMEM; 5056 break; 5057 } 5058 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 5059 } 5060 scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5061 if (!scribble) { 5062 err = -ENOMEM; 5063 break; 5064 } 5065 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 5066 } 5067 #ifdef CONFIG_HOTPLUG_CPU 5068 conf->cpu_notify.notifier_call = raid456_cpu_notify; 5069 conf->cpu_notify.priority = 0; 5070 if (err == 0) 5071 err = register_cpu_notifier(&conf->cpu_notify); 5072 #endif 5073 put_online_cpus(); 5074 5075 return err; 5076 } 5077 5078 static struct r5conf *setup_conf(struct mddev *mddev) 5079 { 5080 struct r5conf *conf; 5081 int raid_disk, memory, max_disks; 5082 struct md_rdev *rdev; 5083 struct disk_info *disk; 5084 char pers_name[6]; 5085 5086 if (mddev->new_level != 5 5087 && mddev->new_level != 4 5088 && mddev->new_level != 6) { 5089 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 5090 mdname(mddev), mddev->new_level); 5091 return ERR_PTR(-EIO); 5092 } 5093 if ((mddev->new_level == 5 5094 && !algorithm_valid_raid5(mddev->new_layout)) || 5095 (mddev->new_level == 6 5096 && !algorithm_valid_raid6(mddev->new_layout))) { 5097 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 5098 mdname(mddev), mddev->new_layout); 5099 return ERR_PTR(-EIO); 5100 } 5101 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 5102 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 5103 mdname(mddev), mddev->raid_disks); 5104 return ERR_PTR(-EINVAL); 5105 } 5106 5107 if (!mddev->new_chunk_sectors || 5108 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 5109 !is_power_of_2(mddev->new_chunk_sectors)) { 5110 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 5111 mdname(mddev), mddev->new_chunk_sectors << 9); 5112 return ERR_PTR(-EINVAL); 5113 } 5114 5115 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 5116 if (conf == NULL) 5117 goto abort; 5118 spin_lock_init(&conf->device_lock); 5119 init_waitqueue_head(&conf->wait_for_stripe); 5120 init_waitqueue_head(&conf->wait_for_overlap); 5121 INIT_LIST_HEAD(&conf->handle_list); 5122 INIT_LIST_HEAD(&conf->hold_list); 5123 INIT_LIST_HEAD(&conf->delayed_list); 5124 INIT_LIST_HEAD(&conf->bitmap_list); 5125 INIT_LIST_HEAD(&conf->inactive_list); 5126 atomic_set(&conf->active_stripes, 0); 5127 atomic_set(&conf->preread_active_stripes, 0); 5128 atomic_set(&conf->active_aligned_reads, 0); 5129 conf->bypass_threshold = BYPASS_THRESHOLD; 5130 conf->recovery_disabled = mddev->recovery_disabled - 1; 5131 5132 conf->raid_disks = mddev->raid_disks; 5133 if (mddev->reshape_position == MaxSector) 5134 conf->previous_raid_disks = mddev->raid_disks; 5135 else 5136 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 5137 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 5138 conf->scribble_len = scribble_len(max_disks); 5139 5140 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5141 GFP_KERNEL); 5142 if (!conf->disks) 5143 goto abort; 5144 5145 conf->mddev = mddev; 5146 5147 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5148 goto abort; 5149 5150 conf->level = mddev->new_level; 5151 if (raid5_alloc_percpu(conf) != 0) 5152 goto abort; 5153 5154 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5155 5156 rdev_for_each(rdev, mddev) { 5157 raid_disk = rdev->raid_disk; 5158 if (raid_disk >= max_disks 5159 || raid_disk < 0) 5160 continue; 5161 disk = conf->disks + raid_disk; 5162 5163 if (test_bit(Replacement, &rdev->flags)) { 5164 if (disk->replacement) 5165 goto abort; 5166 disk->replacement = rdev; 5167 } else { 5168 if (disk->rdev) 5169 goto abort; 5170 disk->rdev = rdev; 5171 } 5172 5173 if (test_bit(In_sync, &rdev->flags)) { 5174 char b[BDEVNAME_SIZE]; 5175 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5176 " disk %d\n", 5177 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5178 } else if (rdev->saved_raid_disk != raid_disk) 5179 /* Cannot rely on bitmap to complete recovery */ 5180 conf->fullsync = 1; 5181 } 5182 5183 conf->chunk_sectors = mddev->new_chunk_sectors; 5184 conf->level = mddev->new_level; 5185 if (conf->level == 6) 5186 conf->max_degraded = 2; 5187 else 5188 conf->max_degraded = 1; 5189 conf->algorithm = mddev->new_layout; 5190 conf->max_nr_stripes = NR_STRIPES; 5191 conf->reshape_progress = mddev->reshape_position; 5192 if (conf->reshape_progress != MaxSector) { 5193 conf->prev_chunk_sectors = mddev->chunk_sectors; 5194 conf->prev_algo = mddev->layout; 5195 } 5196 5197 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5198 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5199 if (grow_stripes(conf, conf->max_nr_stripes)) { 5200 printk(KERN_ERR 5201 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5202 mdname(mddev), memory); 5203 goto abort; 5204 } else 5205 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5206 mdname(mddev), memory); 5207 5208 sprintf(pers_name, "raid%d", mddev->new_level); 5209 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5210 if (!conf->thread) { 5211 printk(KERN_ERR 5212 "md/raid:%s: couldn't allocate thread.\n", 5213 mdname(mddev)); 5214 goto abort; 5215 } 5216 5217 return conf; 5218 5219 abort: 5220 if (conf) { 5221 free_conf(conf); 5222 return ERR_PTR(-EIO); 5223 } else 5224 return ERR_PTR(-ENOMEM); 5225 } 5226 5227 5228 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5229 { 5230 switch (algo) { 5231 case ALGORITHM_PARITY_0: 5232 if (raid_disk < max_degraded) 5233 return 1; 5234 break; 5235 case ALGORITHM_PARITY_N: 5236 if (raid_disk >= raid_disks - max_degraded) 5237 return 1; 5238 break; 5239 case ALGORITHM_PARITY_0_6: 5240 if (raid_disk == 0 || 5241 raid_disk == raid_disks - 1) 5242 return 1; 5243 break; 5244 case ALGORITHM_LEFT_ASYMMETRIC_6: 5245 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5246 case ALGORITHM_LEFT_SYMMETRIC_6: 5247 case ALGORITHM_RIGHT_SYMMETRIC_6: 5248 if (raid_disk == raid_disks - 1) 5249 return 1; 5250 } 5251 return 0; 5252 } 5253 5254 static int run(struct mddev *mddev) 5255 { 5256 struct r5conf *conf; 5257 int working_disks = 0; 5258 int dirty_parity_disks = 0; 5259 struct md_rdev *rdev; 5260 sector_t reshape_offset = 0; 5261 int i; 5262 long long min_offset_diff = 0; 5263 int first = 1; 5264 5265 if (mddev->recovery_cp != MaxSector) 5266 printk(KERN_NOTICE "md/raid:%s: not clean" 5267 " -- starting background reconstruction\n", 5268 mdname(mddev)); 5269 5270 rdev_for_each(rdev, mddev) { 5271 long long diff; 5272 if (rdev->raid_disk < 0) 5273 continue; 5274 diff = (rdev->new_data_offset - rdev->data_offset); 5275 if (first) { 5276 min_offset_diff = diff; 5277 first = 0; 5278 } else if (mddev->reshape_backwards && 5279 diff < min_offset_diff) 5280 min_offset_diff = diff; 5281 else if (!mddev->reshape_backwards && 5282 diff > min_offset_diff) 5283 min_offset_diff = diff; 5284 } 5285 5286 if (mddev->reshape_position != MaxSector) { 5287 /* Check that we can continue the reshape. 5288 * Difficulties arise if the stripe we would write to 5289 * next is at or after the stripe we would read from next. 5290 * For a reshape that changes the number of devices, this 5291 * is only possible for a very short time, and mdadm makes 5292 * sure that time appears to have past before assembling 5293 * the array. So we fail if that time hasn't passed. 5294 * For a reshape that keeps the number of devices the same 5295 * mdadm must be monitoring the reshape can keeping the 5296 * critical areas read-only and backed up. It will start 5297 * the array in read-only mode, so we check for that. 5298 */ 5299 sector_t here_new, here_old; 5300 int old_disks; 5301 int max_degraded = (mddev->level == 6 ? 2 : 1); 5302 5303 if (mddev->new_level != mddev->level) { 5304 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5305 "required - aborting.\n", 5306 mdname(mddev)); 5307 return -EINVAL; 5308 } 5309 old_disks = mddev->raid_disks - mddev->delta_disks; 5310 /* reshape_position must be on a new-stripe boundary, and one 5311 * further up in new geometry must map after here in old 5312 * geometry. 5313 */ 5314 here_new = mddev->reshape_position; 5315 if (sector_div(here_new, mddev->new_chunk_sectors * 5316 (mddev->raid_disks - max_degraded))) { 5317 printk(KERN_ERR "md/raid:%s: reshape_position not " 5318 "on a stripe boundary\n", mdname(mddev)); 5319 return -EINVAL; 5320 } 5321 reshape_offset = here_new * mddev->new_chunk_sectors; 5322 /* here_new is the stripe we will write to */ 5323 here_old = mddev->reshape_position; 5324 sector_div(here_old, mddev->chunk_sectors * 5325 (old_disks-max_degraded)); 5326 /* here_old is the first stripe that we might need to read 5327 * from */ 5328 if (mddev->delta_disks == 0) { 5329 if ((here_new * mddev->new_chunk_sectors != 5330 here_old * mddev->chunk_sectors)) { 5331 printk(KERN_ERR "md/raid:%s: reshape position is" 5332 " confused - aborting\n", mdname(mddev)); 5333 return -EINVAL; 5334 } 5335 /* We cannot be sure it is safe to start an in-place 5336 * reshape. It is only safe if user-space is monitoring 5337 * and taking constant backups. 5338 * mdadm always starts a situation like this in 5339 * readonly mode so it can take control before 5340 * allowing any writes. So just check for that. 5341 */ 5342 if (abs(min_offset_diff) >= mddev->chunk_sectors && 5343 abs(min_offset_diff) >= mddev->new_chunk_sectors) 5344 /* not really in-place - so OK */; 5345 else if (mddev->ro == 0) { 5346 printk(KERN_ERR "md/raid:%s: in-place reshape " 5347 "must be started in read-only mode " 5348 "- aborting\n", 5349 mdname(mddev)); 5350 return -EINVAL; 5351 } 5352 } else if (mddev->reshape_backwards 5353 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 5354 here_old * mddev->chunk_sectors) 5355 : (here_new * mddev->new_chunk_sectors >= 5356 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 5357 /* Reading from the same stripe as writing to - bad */ 5358 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 5359 "auto-recovery - aborting.\n", 5360 mdname(mddev)); 5361 return -EINVAL; 5362 } 5363 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 5364 mdname(mddev)); 5365 /* OK, we should be able to continue; */ 5366 } else { 5367 BUG_ON(mddev->level != mddev->new_level); 5368 BUG_ON(mddev->layout != mddev->new_layout); 5369 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 5370 BUG_ON(mddev->delta_disks != 0); 5371 } 5372 5373 if (mddev->private == NULL) 5374 conf = setup_conf(mddev); 5375 else 5376 conf = mddev->private; 5377 5378 if (IS_ERR(conf)) 5379 return PTR_ERR(conf); 5380 5381 conf->min_offset_diff = min_offset_diff; 5382 mddev->thread = conf->thread; 5383 conf->thread = NULL; 5384 mddev->private = conf; 5385 5386 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 5387 i++) { 5388 rdev = conf->disks[i].rdev; 5389 if (!rdev && conf->disks[i].replacement) { 5390 /* The replacement is all we have yet */ 5391 rdev = conf->disks[i].replacement; 5392 conf->disks[i].replacement = NULL; 5393 clear_bit(Replacement, &rdev->flags); 5394 conf->disks[i].rdev = rdev; 5395 } 5396 if (!rdev) 5397 continue; 5398 if (conf->disks[i].replacement && 5399 conf->reshape_progress != MaxSector) { 5400 /* replacements and reshape simply do not mix. */ 5401 printk(KERN_ERR "md: cannot handle concurrent " 5402 "replacement and reshape.\n"); 5403 goto abort; 5404 } 5405 if (test_bit(In_sync, &rdev->flags)) { 5406 working_disks++; 5407 continue; 5408 } 5409 /* This disc is not fully in-sync. However if it 5410 * just stored parity (beyond the recovery_offset), 5411 * when we don't need to be concerned about the 5412 * array being dirty. 5413 * When reshape goes 'backwards', we never have 5414 * partially completed devices, so we only need 5415 * to worry about reshape going forwards. 5416 */ 5417 /* Hack because v0.91 doesn't store recovery_offset properly. */ 5418 if (mddev->major_version == 0 && 5419 mddev->minor_version > 90) 5420 rdev->recovery_offset = reshape_offset; 5421 5422 if (rdev->recovery_offset < reshape_offset) { 5423 /* We need to check old and new layout */ 5424 if (!only_parity(rdev->raid_disk, 5425 conf->algorithm, 5426 conf->raid_disks, 5427 conf->max_degraded)) 5428 continue; 5429 } 5430 if (!only_parity(rdev->raid_disk, 5431 conf->prev_algo, 5432 conf->previous_raid_disks, 5433 conf->max_degraded)) 5434 continue; 5435 dirty_parity_disks++; 5436 } 5437 5438 /* 5439 * 0 for a fully functional array, 1 or 2 for a degraded array. 5440 */ 5441 mddev->degraded = calc_degraded(conf); 5442 5443 if (has_failed(conf)) { 5444 printk(KERN_ERR "md/raid:%s: not enough operational devices" 5445 " (%d/%d failed)\n", 5446 mdname(mddev), mddev->degraded, conf->raid_disks); 5447 goto abort; 5448 } 5449 5450 /* device size must be a multiple of chunk size */ 5451 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 5452 mddev->resync_max_sectors = mddev->dev_sectors; 5453 5454 if (mddev->degraded > dirty_parity_disks && 5455 mddev->recovery_cp != MaxSector) { 5456 if (mddev->ok_start_degraded) 5457 printk(KERN_WARNING 5458 "md/raid:%s: starting dirty degraded array" 5459 " - data corruption possible.\n", 5460 mdname(mddev)); 5461 else { 5462 printk(KERN_ERR 5463 "md/raid:%s: cannot start dirty degraded array.\n", 5464 mdname(mddev)); 5465 goto abort; 5466 } 5467 } 5468 5469 if (mddev->degraded == 0) 5470 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 5471 " devices, algorithm %d\n", mdname(mddev), conf->level, 5472 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 5473 mddev->new_layout); 5474 else 5475 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 5476 " out of %d devices, algorithm %d\n", 5477 mdname(mddev), conf->level, 5478 mddev->raid_disks - mddev->degraded, 5479 mddev->raid_disks, mddev->new_layout); 5480 5481 print_raid5_conf(conf); 5482 5483 if (conf->reshape_progress != MaxSector) { 5484 conf->reshape_safe = conf->reshape_progress; 5485 atomic_set(&conf->reshape_stripes, 0); 5486 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5487 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5488 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5489 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5490 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5491 "reshape"); 5492 } 5493 5494 5495 /* Ok, everything is just fine now */ 5496 if (mddev->to_remove == &raid5_attrs_group) 5497 mddev->to_remove = NULL; 5498 else if (mddev->kobj.sd && 5499 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 5500 printk(KERN_WARNING 5501 "raid5: failed to create sysfs attributes for %s\n", 5502 mdname(mddev)); 5503 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5504 5505 if (mddev->queue) { 5506 int chunk_size; 5507 bool discard_supported = true; 5508 /* read-ahead size must cover two whole stripes, which 5509 * is 2 * (datadisks) * chunksize where 'n' is the 5510 * number of raid devices 5511 */ 5512 int data_disks = conf->previous_raid_disks - conf->max_degraded; 5513 int stripe = data_disks * 5514 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 5515 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5516 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5517 5518 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 5519 5520 mddev->queue->backing_dev_info.congested_data = mddev; 5521 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 5522 5523 chunk_size = mddev->chunk_sectors << 9; 5524 blk_queue_io_min(mddev->queue, chunk_size); 5525 blk_queue_io_opt(mddev->queue, chunk_size * 5526 (conf->raid_disks - conf->max_degraded)); 5527 /* 5528 * We can only discard a whole stripe. It doesn't make sense to 5529 * discard data disk but write parity disk 5530 */ 5531 stripe = stripe * PAGE_SIZE; 5532 mddev->queue->limits.discard_alignment = stripe; 5533 mddev->queue->limits.discard_granularity = stripe; 5534 /* 5535 * unaligned part of discard request will be ignored, so can't 5536 * guarantee discard_zerors_data 5537 */ 5538 mddev->queue->limits.discard_zeroes_data = 0; 5539 5540 rdev_for_each(rdev, mddev) { 5541 disk_stack_limits(mddev->gendisk, rdev->bdev, 5542 rdev->data_offset << 9); 5543 disk_stack_limits(mddev->gendisk, rdev->bdev, 5544 rdev->new_data_offset << 9); 5545 /* 5546 * discard_zeroes_data is required, otherwise data 5547 * could be lost. Consider a scenario: discard a stripe 5548 * (the stripe could be inconsistent if 5549 * discard_zeroes_data is 0); write one disk of the 5550 * stripe (the stripe could be inconsistent again 5551 * depending on which disks are used to calculate 5552 * parity); the disk is broken; The stripe data of this 5553 * disk is lost. 5554 */ 5555 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 5556 !bdev_get_queue(rdev->bdev)-> 5557 limits.discard_zeroes_data) 5558 discard_supported = false; 5559 } 5560 5561 if (discard_supported && 5562 mddev->queue->limits.max_discard_sectors >= stripe && 5563 mddev->queue->limits.discard_granularity >= stripe) 5564 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 5565 mddev->queue); 5566 else 5567 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 5568 mddev->queue); 5569 } 5570 5571 return 0; 5572 abort: 5573 md_unregister_thread(&mddev->thread); 5574 print_raid5_conf(conf); 5575 free_conf(conf); 5576 mddev->private = NULL; 5577 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 5578 return -EIO; 5579 } 5580 5581 static int stop(struct mddev *mddev) 5582 { 5583 struct r5conf *conf = mddev->private; 5584 5585 md_unregister_thread(&mddev->thread); 5586 if (mddev->queue) 5587 mddev->queue->backing_dev_info.congested_fn = NULL; 5588 free_conf(conf); 5589 mddev->private = NULL; 5590 mddev->to_remove = &raid5_attrs_group; 5591 return 0; 5592 } 5593 5594 static void status(struct seq_file *seq, struct mddev *mddev) 5595 { 5596 struct r5conf *conf = mddev->private; 5597 int i; 5598 5599 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 5600 mddev->chunk_sectors / 2, mddev->layout); 5601 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 5602 for (i = 0; i < conf->raid_disks; i++) 5603 seq_printf (seq, "%s", 5604 conf->disks[i].rdev && 5605 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 5606 seq_printf (seq, "]"); 5607 } 5608 5609 static void print_raid5_conf (struct r5conf *conf) 5610 { 5611 int i; 5612 struct disk_info *tmp; 5613 5614 printk(KERN_DEBUG "RAID conf printout:\n"); 5615 if (!conf) { 5616 printk("(conf==NULL)\n"); 5617 return; 5618 } 5619 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 5620 conf->raid_disks, 5621 conf->raid_disks - conf->mddev->degraded); 5622 5623 for (i = 0; i < conf->raid_disks; i++) { 5624 char b[BDEVNAME_SIZE]; 5625 tmp = conf->disks + i; 5626 if (tmp->rdev) 5627 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 5628 i, !test_bit(Faulty, &tmp->rdev->flags), 5629 bdevname(tmp->rdev->bdev, b)); 5630 } 5631 } 5632 5633 static int raid5_spare_active(struct mddev *mddev) 5634 { 5635 int i; 5636 struct r5conf *conf = mddev->private; 5637 struct disk_info *tmp; 5638 int count = 0; 5639 unsigned long flags; 5640 5641 for (i = 0; i < conf->raid_disks; i++) { 5642 tmp = conf->disks + i; 5643 if (tmp->replacement 5644 && tmp->replacement->recovery_offset == MaxSector 5645 && !test_bit(Faulty, &tmp->replacement->flags) 5646 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 5647 /* Replacement has just become active. */ 5648 if (!tmp->rdev 5649 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 5650 count++; 5651 if (tmp->rdev) { 5652 /* Replaced device not technically faulty, 5653 * but we need to be sure it gets removed 5654 * and never re-added. 5655 */ 5656 set_bit(Faulty, &tmp->rdev->flags); 5657 sysfs_notify_dirent_safe( 5658 tmp->rdev->sysfs_state); 5659 } 5660 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 5661 } else if (tmp->rdev 5662 && tmp->rdev->recovery_offset == MaxSector 5663 && !test_bit(Faulty, &tmp->rdev->flags) 5664 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 5665 count++; 5666 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 5667 } 5668 } 5669 spin_lock_irqsave(&conf->device_lock, flags); 5670 mddev->degraded = calc_degraded(conf); 5671 spin_unlock_irqrestore(&conf->device_lock, flags); 5672 print_raid5_conf(conf); 5673 return count; 5674 } 5675 5676 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 5677 { 5678 struct r5conf *conf = mddev->private; 5679 int err = 0; 5680 int number = rdev->raid_disk; 5681 struct md_rdev **rdevp; 5682 struct disk_info *p = conf->disks + number; 5683 5684 print_raid5_conf(conf); 5685 if (rdev == p->rdev) 5686 rdevp = &p->rdev; 5687 else if (rdev == p->replacement) 5688 rdevp = &p->replacement; 5689 else 5690 return 0; 5691 5692 if (number >= conf->raid_disks && 5693 conf->reshape_progress == MaxSector) 5694 clear_bit(In_sync, &rdev->flags); 5695 5696 if (test_bit(In_sync, &rdev->flags) || 5697 atomic_read(&rdev->nr_pending)) { 5698 err = -EBUSY; 5699 goto abort; 5700 } 5701 /* Only remove non-faulty devices if recovery 5702 * isn't possible. 5703 */ 5704 if (!test_bit(Faulty, &rdev->flags) && 5705 mddev->recovery_disabled != conf->recovery_disabled && 5706 !has_failed(conf) && 5707 (!p->replacement || p->replacement == rdev) && 5708 number < conf->raid_disks) { 5709 err = -EBUSY; 5710 goto abort; 5711 } 5712 *rdevp = NULL; 5713 synchronize_rcu(); 5714 if (atomic_read(&rdev->nr_pending)) { 5715 /* lost the race, try later */ 5716 err = -EBUSY; 5717 *rdevp = rdev; 5718 } else if (p->replacement) { 5719 /* We must have just cleared 'rdev' */ 5720 p->rdev = p->replacement; 5721 clear_bit(Replacement, &p->replacement->flags); 5722 smp_mb(); /* Make sure other CPUs may see both as identical 5723 * but will never see neither - if they are careful 5724 */ 5725 p->replacement = NULL; 5726 clear_bit(WantReplacement, &rdev->flags); 5727 } else 5728 /* We might have just removed the Replacement as faulty- 5729 * clear the bit just in case 5730 */ 5731 clear_bit(WantReplacement, &rdev->flags); 5732 abort: 5733 5734 print_raid5_conf(conf); 5735 return err; 5736 } 5737 5738 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 5739 { 5740 struct r5conf *conf = mddev->private; 5741 int err = -EEXIST; 5742 int disk; 5743 struct disk_info *p; 5744 int first = 0; 5745 int last = conf->raid_disks - 1; 5746 5747 if (mddev->recovery_disabled == conf->recovery_disabled) 5748 return -EBUSY; 5749 5750 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 5751 /* no point adding a device */ 5752 return -EINVAL; 5753 5754 if (rdev->raid_disk >= 0) 5755 first = last = rdev->raid_disk; 5756 5757 /* 5758 * find the disk ... but prefer rdev->saved_raid_disk 5759 * if possible. 5760 */ 5761 if (rdev->saved_raid_disk >= 0 && 5762 rdev->saved_raid_disk >= first && 5763 conf->disks[rdev->saved_raid_disk].rdev == NULL) 5764 first = rdev->saved_raid_disk; 5765 5766 for (disk = first; disk <= last; disk++) { 5767 p = conf->disks + disk; 5768 if (p->rdev == NULL) { 5769 clear_bit(In_sync, &rdev->flags); 5770 rdev->raid_disk = disk; 5771 err = 0; 5772 if (rdev->saved_raid_disk != disk) 5773 conf->fullsync = 1; 5774 rcu_assign_pointer(p->rdev, rdev); 5775 goto out; 5776 } 5777 } 5778 for (disk = first; disk <= last; disk++) { 5779 p = conf->disks + disk; 5780 if (test_bit(WantReplacement, &p->rdev->flags) && 5781 p->replacement == NULL) { 5782 clear_bit(In_sync, &rdev->flags); 5783 set_bit(Replacement, &rdev->flags); 5784 rdev->raid_disk = disk; 5785 err = 0; 5786 conf->fullsync = 1; 5787 rcu_assign_pointer(p->replacement, rdev); 5788 break; 5789 } 5790 } 5791 out: 5792 print_raid5_conf(conf); 5793 return err; 5794 } 5795 5796 static int raid5_resize(struct mddev *mddev, sector_t sectors) 5797 { 5798 /* no resync is happening, and there is enough space 5799 * on all devices, so we can resize. 5800 * We need to make sure resync covers any new space. 5801 * If the array is shrinking we should possibly wait until 5802 * any io in the removed space completes, but it hardly seems 5803 * worth it. 5804 */ 5805 sector_t newsize; 5806 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5807 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 5808 if (mddev->external_size && 5809 mddev->array_sectors > newsize) 5810 return -EINVAL; 5811 if (mddev->bitmap) { 5812 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 5813 if (ret) 5814 return ret; 5815 } 5816 md_set_array_sectors(mddev, newsize); 5817 set_capacity(mddev->gendisk, mddev->array_sectors); 5818 revalidate_disk(mddev->gendisk); 5819 if (sectors > mddev->dev_sectors && 5820 mddev->recovery_cp > mddev->dev_sectors) { 5821 mddev->recovery_cp = mddev->dev_sectors; 5822 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5823 } 5824 mddev->dev_sectors = sectors; 5825 mddev->resync_max_sectors = sectors; 5826 return 0; 5827 } 5828 5829 static int check_stripe_cache(struct mddev *mddev) 5830 { 5831 /* Can only proceed if there are plenty of stripe_heads. 5832 * We need a minimum of one full stripe,, and for sensible progress 5833 * it is best to have about 4 times that. 5834 * If we require 4 times, then the default 256 4K stripe_heads will 5835 * allow for chunk sizes up to 256K, which is probably OK. 5836 * If the chunk size is greater, user-space should request more 5837 * stripe_heads first. 5838 */ 5839 struct r5conf *conf = mddev->private; 5840 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 5841 > conf->max_nr_stripes || 5842 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 5843 > conf->max_nr_stripes) { 5844 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 5845 mdname(mddev), 5846 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 5847 / STRIPE_SIZE)*4); 5848 return 0; 5849 } 5850 return 1; 5851 } 5852 5853 static int check_reshape(struct mddev *mddev) 5854 { 5855 struct r5conf *conf = mddev->private; 5856 5857 if (mddev->delta_disks == 0 && 5858 mddev->new_layout == mddev->layout && 5859 mddev->new_chunk_sectors == mddev->chunk_sectors) 5860 return 0; /* nothing to do */ 5861 if (has_failed(conf)) 5862 return -EINVAL; 5863 if (mddev->delta_disks < 0) { 5864 /* We might be able to shrink, but the devices must 5865 * be made bigger first. 5866 * For raid6, 4 is the minimum size. 5867 * Otherwise 2 is the minimum 5868 */ 5869 int min = 2; 5870 if (mddev->level == 6) 5871 min = 4; 5872 if (mddev->raid_disks + mddev->delta_disks < min) 5873 return -EINVAL; 5874 } 5875 5876 if (!check_stripe_cache(mddev)) 5877 return -ENOSPC; 5878 5879 return resize_stripes(conf, (conf->previous_raid_disks 5880 + mddev->delta_disks)); 5881 } 5882 5883 static int raid5_start_reshape(struct mddev *mddev) 5884 { 5885 struct r5conf *conf = mddev->private; 5886 struct md_rdev *rdev; 5887 int spares = 0; 5888 unsigned long flags; 5889 5890 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5891 return -EBUSY; 5892 5893 if (!check_stripe_cache(mddev)) 5894 return -ENOSPC; 5895 5896 if (has_failed(conf)) 5897 return -EINVAL; 5898 5899 rdev_for_each(rdev, mddev) { 5900 if (!test_bit(In_sync, &rdev->flags) 5901 && !test_bit(Faulty, &rdev->flags)) 5902 spares++; 5903 } 5904 5905 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 5906 /* Not enough devices even to make a degraded array 5907 * of that size 5908 */ 5909 return -EINVAL; 5910 5911 /* Refuse to reduce size of the array. Any reductions in 5912 * array size must be through explicit setting of array_size 5913 * attribute. 5914 */ 5915 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 5916 < mddev->array_sectors) { 5917 printk(KERN_ERR "md/raid:%s: array size must be reduced " 5918 "before number of disks\n", mdname(mddev)); 5919 return -EINVAL; 5920 } 5921 5922 atomic_set(&conf->reshape_stripes, 0); 5923 spin_lock_irq(&conf->device_lock); 5924 conf->previous_raid_disks = conf->raid_disks; 5925 conf->raid_disks += mddev->delta_disks; 5926 conf->prev_chunk_sectors = conf->chunk_sectors; 5927 conf->chunk_sectors = mddev->new_chunk_sectors; 5928 conf->prev_algo = conf->algorithm; 5929 conf->algorithm = mddev->new_layout; 5930 conf->generation++; 5931 /* Code that selects data_offset needs to see the generation update 5932 * if reshape_progress has been set - so a memory barrier needed. 5933 */ 5934 smp_mb(); 5935 if (mddev->reshape_backwards) 5936 conf->reshape_progress = raid5_size(mddev, 0, 0); 5937 else 5938 conf->reshape_progress = 0; 5939 conf->reshape_safe = conf->reshape_progress; 5940 spin_unlock_irq(&conf->device_lock); 5941 5942 /* Add some new drives, as many as will fit. 5943 * We know there are enough to make the newly sized array work. 5944 * Don't add devices if we are reducing the number of 5945 * devices in the array. This is because it is not possible 5946 * to correctly record the "partially reconstructed" state of 5947 * such devices during the reshape and confusion could result. 5948 */ 5949 if (mddev->delta_disks >= 0) { 5950 rdev_for_each(rdev, mddev) 5951 if (rdev->raid_disk < 0 && 5952 !test_bit(Faulty, &rdev->flags)) { 5953 if (raid5_add_disk(mddev, rdev) == 0) { 5954 if (rdev->raid_disk 5955 >= conf->previous_raid_disks) 5956 set_bit(In_sync, &rdev->flags); 5957 else 5958 rdev->recovery_offset = 0; 5959 5960 if (sysfs_link_rdev(mddev, rdev)) 5961 /* Failure here is OK */; 5962 } 5963 } else if (rdev->raid_disk >= conf->previous_raid_disks 5964 && !test_bit(Faulty, &rdev->flags)) { 5965 /* This is a spare that was manually added */ 5966 set_bit(In_sync, &rdev->flags); 5967 } 5968 5969 /* When a reshape changes the number of devices, 5970 * ->degraded is measured against the larger of the 5971 * pre and post number of devices. 5972 */ 5973 spin_lock_irqsave(&conf->device_lock, flags); 5974 mddev->degraded = calc_degraded(conf); 5975 spin_unlock_irqrestore(&conf->device_lock, flags); 5976 } 5977 mddev->raid_disks = conf->raid_disks; 5978 mddev->reshape_position = conf->reshape_progress; 5979 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5980 5981 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5982 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5983 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5984 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5985 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5986 "reshape"); 5987 if (!mddev->sync_thread) { 5988 mddev->recovery = 0; 5989 spin_lock_irq(&conf->device_lock); 5990 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 5991 rdev_for_each(rdev, mddev) 5992 rdev->new_data_offset = rdev->data_offset; 5993 smp_wmb(); 5994 conf->reshape_progress = MaxSector; 5995 mddev->reshape_position = MaxSector; 5996 spin_unlock_irq(&conf->device_lock); 5997 return -EAGAIN; 5998 } 5999 conf->reshape_checkpoint = jiffies; 6000 md_wakeup_thread(mddev->sync_thread); 6001 md_new_event(mddev); 6002 return 0; 6003 } 6004 6005 /* This is called from the reshape thread and should make any 6006 * changes needed in 'conf' 6007 */ 6008 static void end_reshape(struct r5conf *conf) 6009 { 6010 6011 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 6012 struct md_rdev *rdev; 6013 6014 spin_lock_irq(&conf->device_lock); 6015 conf->previous_raid_disks = conf->raid_disks; 6016 rdev_for_each(rdev, conf->mddev) 6017 rdev->data_offset = rdev->new_data_offset; 6018 smp_wmb(); 6019 conf->reshape_progress = MaxSector; 6020 spin_unlock_irq(&conf->device_lock); 6021 wake_up(&conf->wait_for_overlap); 6022 6023 /* read-ahead size must cover two whole stripes, which is 6024 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 6025 */ 6026 if (conf->mddev->queue) { 6027 int data_disks = conf->raid_disks - conf->max_degraded; 6028 int stripe = data_disks * ((conf->chunk_sectors << 9) 6029 / PAGE_SIZE); 6030 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6031 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6032 } 6033 } 6034 } 6035 6036 /* This is called from the raid5d thread with mddev_lock held. 6037 * It makes config changes to the device. 6038 */ 6039 static void raid5_finish_reshape(struct mddev *mddev) 6040 { 6041 struct r5conf *conf = mddev->private; 6042 6043 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6044 6045 if (mddev->delta_disks > 0) { 6046 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6047 set_capacity(mddev->gendisk, mddev->array_sectors); 6048 revalidate_disk(mddev->gendisk); 6049 } else { 6050 int d; 6051 spin_lock_irq(&conf->device_lock); 6052 mddev->degraded = calc_degraded(conf); 6053 spin_unlock_irq(&conf->device_lock); 6054 for (d = conf->raid_disks ; 6055 d < conf->raid_disks - mddev->delta_disks; 6056 d++) { 6057 struct md_rdev *rdev = conf->disks[d].rdev; 6058 if (rdev) 6059 clear_bit(In_sync, &rdev->flags); 6060 rdev = conf->disks[d].replacement; 6061 if (rdev) 6062 clear_bit(In_sync, &rdev->flags); 6063 } 6064 } 6065 mddev->layout = conf->algorithm; 6066 mddev->chunk_sectors = conf->chunk_sectors; 6067 mddev->reshape_position = MaxSector; 6068 mddev->delta_disks = 0; 6069 mddev->reshape_backwards = 0; 6070 } 6071 } 6072 6073 static void raid5_quiesce(struct mddev *mddev, int state) 6074 { 6075 struct r5conf *conf = mddev->private; 6076 6077 switch(state) { 6078 case 2: /* resume for a suspend */ 6079 wake_up(&conf->wait_for_overlap); 6080 break; 6081 6082 case 1: /* stop all writes */ 6083 spin_lock_irq(&conf->device_lock); 6084 /* '2' tells resync/reshape to pause so that all 6085 * active stripes can drain 6086 */ 6087 conf->quiesce = 2; 6088 wait_event_lock_irq(conf->wait_for_stripe, 6089 atomic_read(&conf->active_stripes) == 0 && 6090 atomic_read(&conf->active_aligned_reads) == 0, 6091 conf->device_lock, /* nothing */); 6092 conf->quiesce = 1; 6093 spin_unlock_irq(&conf->device_lock); 6094 /* allow reshape to continue */ 6095 wake_up(&conf->wait_for_overlap); 6096 break; 6097 6098 case 0: /* re-enable writes */ 6099 spin_lock_irq(&conf->device_lock); 6100 conf->quiesce = 0; 6101 wake_up(&conf->wait_for_stripe); 6102 wake_up(&conf->wait_for_overlap); 6103 spin_unlock_irq(&conf->device_lock); 6104 break; 6105 } 6106 } 6107 6108 6109 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 6110 { 6111 struct r0conf *raid0_conf = mddev->private; 6112 sector_t sectors; 6113 6114 /* for raid0 takeover only one zone is supported */ 6115 if (raid0_conf->nr_strip_zones > 1) { 6116 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 6117 mdname(mddev)); 6118 return ERR_PTR(-EINVAL); 6119 } 6120 6121 sectors = raid0_conf->strip_zone[0].zone_end; 6122 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 6123 mddev->dev_sectors = sectors; 6124 mddev->new_level = level; 6125 mddev->new_layout = ALGORITHM_PARITY_N; 6126 mddev->new_chunk_sectors = mddev->chunk_sectors; 6127 mddev->raid_disks += 1; 6128 mddev->delta_disks = 1; 6129 /* make sure it will be not marked as dirty */ 6130 mddev->recovery_cp = MaxSector; 6131 6132 return setup_conf(mddev); 6133 } 6134 6135 6136 static void *raid5_takeover_raid1(struct mddev *mddev) 6137 { 6138 int chunksect; 6139 6140 if (mddev->raid_disks != 2 || 6141 mddev->degraded > 1) 6142 return ERR_PTR(-EINVAL); 6143 6144 /* Should check if there are write-behind devices? */ 6145 6146 chunksect = 64*2; /* 64K by default */ 6147 6148 /* The array must be an exact multiple of chunksize */ 6149 while (chunksect && (mddev->array_sectors & (chunksect-1))) 6150 chunksect >>= 1; 6151 6152 if ((chunksect<<9) < STRIPE_SIZE) 6153 /* array size does not allow a suitable chunk size */ 6154 return ERR_PTR(-EINVAL); 6155 6156 mddev->new_level = 5; 6157 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 6158 mddev->new_chunk_sectors = chunksect; 6159 6160 return setup_conf(mddev); 6161 } 6162 6163 static void *raid5_takeover_raid6(struct mddev *mddev) 6164 { 6165 int new_layout; 6166 6167 switch (mddev->layout) { 6168 case ALGORITHM_LEFT_ASYMMETRIC_6: 6169 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 6170 break; 6171 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6172 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 6173 break; 6174 case ALGORITHM_LEFT_SYMMETRIC_6: 6175 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6176 break; 6177 case ALGORITHM_RIGHT_SYMMETRIC_6: 6178 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6179 break; 6180 case ALGORITHM_PARITY_0_6: 6181 new_layout = ALGORITHM_PARITY_0; 6182 break; 6183 case ALGORITHM_PARITY_N: 6184 new_layout = ALGORITHM_PARITY_N; 6185 break; 6186 default: 6187 return ERR_PTR(-EINVAL); 6188 } 6189 mddev->new_level = 5; 6190 mddev->new_layout = new_layout; 6191 mddev->delta_disks = -1; 6192 mddev->raid_disks -= 1; 6193 return setup_conf(mddev); 6194 } 6195 6196 6197 static int raid5_check_reshape(struct mddev *mddev) 6198 { 6199 /* For a 2-drive array, the layout and chunk size can be changed 6200 * immediately as not restriping is needed. 6201 * For larger arrays we record the new value - after validation 6202 * to be used by a reshape pass. 6203 */ 6204 struct r5conf *conf = mddev->private; 6205 int new_chunk = mddev->new_chunk_sectors; 6206 6207 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6208 return -EINVAL; 6209 if (new_chunk > 0) { 6210 if (!is_power_of_2(new_chunk)) 6211 return -EINVAL; 6212 if (new_chunk < (PAGE_SIZE>>9)) 6213 return -EINVAL; 6214 if (mddev->array_sectors & (new_chunk-1)) 6215 /* not factor of array size */ 6216 return -EINVAL; 6217 } 6218 6219 /* They look valid */ 6220 6221 if (mddev->raid_disks == 2) { 6222 /* can make the change immediately */ 6223 if (mddev->new_layout >= 0) { 6224 conf->algorithm = mddev->new_layout; 6225 mddev->layout = mddev->new_layout; 6226 } 6227 if (new_chunk > 0) { 6228 conf->chunk_sectors = new_chunk ; 6229 mddev->chunk_sectors = new_chunk; 6230 } 6231 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6232 md_wakeup_thread(mddev->thread); 6233 } 6234 return check_reshape(mddev); 6235 } 6236 6237 static int raid6_check_reshape(struct mddev *mddev) 6238 { 6239 int new_chunk = mddev->new_chunk_sectors; 6240 6241 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6242 return -EINVAL; 6243 if (new_chunk > 0) { 6244 if (!is_power_of_2(new_chunk)) 6245 return -EINVAL; 6246 if (new_chunk < (PAGE_SIZE >> 9)) 6247 return -EINVAL; 6248 if (mddev->array_sectors & (new_chunk-1)) 6249 /* not factor of array size */ 6250 return -EINVAL; 6251 } 6252 6253 /* They look valid */ 6254 return check_reshape(mddev); 6255 } 6256 6257 static void *raid5_takeover(struct mddev *mddev) 6258 { 6259 /* raid5 can take over: 6260 * raid0 - if there is only one strip zone - make it a raid4 layout 6261 * raid1 - if there are two drives. We need to know the chunk size 6262 * raid4 - trivial - just use a raid4 layout. 6263 * raid6 - Providing it is a *_6 layout 6264 */ 6265 if (mddev->level == 0) 6266 return raid45_takeover_raid0(mddev, 5); 6267 if (mddev->level == 1) 6268 return raid5_takeover_raid1(mddev); 6269 if (mddev->level == 4) { 6270 mddev->new_layout = ALGORITHM_PARITY_N; 6271 mddev->new_level = 5; 6272 return setup_conf(mddev); 6273 } 6274 if (mddev->level == 6) 6275 return raid5_takeover_raid6(mddev); 6276 6277 return ERR_PTR(-EINVAL); 6278 } 6279 6280 static void *raid4_takeover(struct mddev *mddev) 6281 { 6282 /* raid4 can take over: 6283 * raid0 - if there is only one strip zone 6284 * raid5 - if layout is right 6285 */ 6286 if (mddev->level == 0) 6287 return raid45_takeover_raid0(mddev, 4); 6288 if (mddev->level == 5 && 6289 mddev->layout == ALGORITHM_PARITY_N) { 6290 mddev->new_layout = 0; 6291 mddev->new_level = 4; 6292 return setup_conf(mddev); 6293 } 6294 return ERR_PTR(-EINVAL); 6295 } 6296 6297 static struct md_personality raid5_personality; 6298 6299 static void *raid6_takeover(struct mddev *mddev) 6300 { 6301 /* Currently can only take over a raid5. We map the 6302 * personality to an equivalent raid6 personality 6303 * with the Q block at the end. 6304 */ 6305 int new_layout; 6306 6307 if (mddev->pers != &raid5_personality) 6308 return ERR_PTR(-EINVAL); 6309 if (mddev->degraded > 1) 6310 return ERR_PTR(-EINVAL); 6311 if (mddev->raid_disks > 253) 6312 return ERR_PTR(-EINVAL); 6313 if (mddev->raid_disks < 3) 6314 return ERR_PTR(-EINVAL); 6315 6316 switch (mddev->layout) { 6317 case ALGORITHM_LEFT_ASYMMETRIC: 6318 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 6319 break; 6320 case ALGORITHM_RIGHT_ASYMMETRIC: 6321 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 6322 break; 6323 case ALGORITHM_LEFT_SYMMETRIC: 6324 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 6325 break; 6326 case ALGORITHM_RIGHT_SYMMETRIC: 6327 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 6328 break; 6329 case ALGORITHM_PARITY_0: 6330 new_layout = ALGORITHM_PARITY_0_6; 6331 break; 6332 case ALGORITHM_PARITY_N: 6333 new_layout = ALGORITHM_PARITY_N; 6334 break; 6335 default: 6336 return ERR_PTR(-EINVAL); 6337 } 6338 mddev->new_level = 6; 6339 mddev->new_layout = new_layout; 6340 mddev->delta_disks = 1; 6341 mddev->raid_disks += 1; 6342 return setup_conf(mddev); 6343 } 6344 6345 6346 static struct md_personality raid6_personality = 6347 { 6348 .name = "raid6", 6349 .level = 6, 6350 .owner = THIS_MODULE, 6351 .make_request = make_request, 6352 .run = run, 6353 .stop = stop, 6354 .status = status, 6355 .error_handler = error, 6356 .hot_add_disk = raid5_add_disk, 6357 .hot_remove_disk= raid5_remove_disk, 6358 .spare_active = raid5_spare_active, 6359 .sync_request = sync_request, 6360 .resize = raid5_resize, 6361 .size = raid5_size, 6362 .check_reshape = raid6_check_reshape, 6363 .start_reshape = raid5_start_reshape, 6364 .finish_reshape = raid5_finish_reshape, 6365 .quiesce = raid5_quiesce, 6366 .takeover = raid6_takeover, 6367 }; 6368 static struct md_personality raid5_personality = 6369 { 6370 .name = "raid5", 6371 .level = 5, 6372 .owner = THIS_MODULE, 6373 .make_request = make_request, 6374 .run = run, 6375 .stop = stop, 6376 .status = status, 6377 .error_handler = error, 6378 .hot_add_disk = raid5_add_disk, 6379 .hot_remove_disk= raid5_remove_disk, 6380 .spare_active = raid5_spare_active, 6381 .sync_request = sync_request, 6382 .resize = raid5_resize, 6383 .size = raid5_size, 6384 .check_reshape = raid5_check_reshape, 6385 .start_reshape = raid5_start_reshape, 6386 .finish_reshape = raid5_finish_reshape, 6387 .quiesce = raid5_quiesce, 6388 .takeover = raid5_takeover, 6389 }; 6390 6391 static struct md_personality raid4_personality = 6392 { 6393 .name = "raid4", 6394 .level = 4, 6395 .owner = THIS_MODULE, 6396 .make_request = make_request, 6397 .run = run, 6398 .stop = stop, 6399 .status = status, 6400 .error_handler = error, 6401 .hot_add_disk = raid5_add_disk, 6402 .hot_remove_disk= raid5_remove_disk, 6403 .spare_active = raid5_spare_active, 6404 .sync_request = sync_request, 6405 .resize = raid5_resize, 6406 .size = raid5_size, 6407 .check_reshape = raid5_check_reshape, 6408 .start_reshape = raid5_start_reshape, 6409 .finish_reshape = raid5_finish_reshape, 6410 .quiesce = raid5_quiesce, 6411 .takeover = raid4_takeover, 6412 }; 6413 6414 static int __init raid5_init(void) 6415 { 6416 register_md_personality(&raid6_personality); 6417 register_md_personality(&raid5_personality); 6418 register_md_personality(&raid4_personality); 6419 return 0; 6420 } 6421 6422 static void raid5_exit(void) 6423 { 6424 unregister_md_personality(&raid6_personality); 6425 unregister_md_personality(&raid5_personality); 6426 unregister_md_personality(&raid4_personality); 6427 } 6428 6429 module_init(raid5_init); 6430 module_exit(raid5_exit); 6431 MODULE_LICENSE("GPL"); 6432 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 6433 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 6434 MODULE_ALIAS("md-raid5"); 6435 MODULE_ALIAS("md-raid4"); 6436 MODULE_ALIAS("md-level-5"); 6437 MODULE_ALIAS("md-level-4"); 6438 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 6439 MODULE_ALIAS("md-raid6"); 6440 MODULE_ALIAS("md-level-6"); 6441 6442 /* This used to be two separate modules, they were: */ 6443 MODULE_ALIAS("raid5"); 6444 MODULE_ALIAS("raid6"); 6445