xref: /linux/drivers/md/raid5.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *
6  * RAID-5 management functions.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * You should have received a copy of the GNU General Public License
14  * (for example /usr/src/linux/COPYING); if not, write to the Free
15  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
16  */
17 
18 
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/raid/raid5.h>
23 #include <linux/highmem.h>
24 #include <linux/bitops.h>
25 #include <linux/kthread.h>
26 #include <asm/atomic.h>
27 
28 #include <linux/raid/bitmap.h>
29 
30 /*
31  * Stripe cache
32  */
33 
34 #define NR_STRIPES		256
35 #define STRIPE_SIZE		PAGE_SIZE
36 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
37 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
38 #define	IO_THRESHOLD		1
39 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
40 #define HASH_MASK		(NR_HASH - 1)
41 
42 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
43 
44 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
45  * order without overlap.  There may be several bio's per stripe+device, and
46  * a bio could span several devices.
47  * When walking this list for a particular stripe+device, we must never proceed
48  * beyond a bio that extends past this device, as the next bio might no longer
49  * be valid.
50  * This macro is used to determine the 'next' bio in the list, given the sector
51  * of the current stripe+device
52  */
53 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
54 /*
55  * The following can be used to debug the driver
56  */
57 #define RAID5_DEBUG	0
58 #define RAID5_PARANOIA	1
59 #if RAID5_PARANOIA && defined(CONFIG_SMP)
60 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
61 #else
62 # define CHECK_DEVLOCK()
63 #endif
64 
65 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
66 #if RAID5_DEBUG
67 #define inline
68 #define __inline__
69 #endif
70 
71 static void print_raid5_conf (raid5_conf_t *conf);
72 
73 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
74 {
75 	if (atomic_dec_and_test(&sh->count)) {
76 		BUG_ON(!list_empty(&sh->lru));
77 		BUG_ON(atomic_read(&conf->active_stripes)==0);
78 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
79 			if (test_bit(STRIPE_DELAYED, &sh->state))
80 				list_add_tail(&sh->lru, &conf->delayed_list);
81 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
82 				 conf->seq_write == sh->bm_seq)
83 				list_add_tail(&sh->lru, &conf->bitmap_list);
84 			else {
85 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
86 				list_add_tail(&sh->lru, &conf->handle_list);
87 			}
88 			md_wakeup_thread(conf->mddev->thread);
89 		} else {
90 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
91 				atomic_dec(&conf->preread_active_stripes);
92 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
93 					md_wakeup_thread(conf->mddev->thread);
94 			}
95 			atomic_dec(&conf->active_stripes);
96 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
97 				list_add_tail(&sh->lru, &conf->inactive_list);
98 				wake_up(&conf->wait_for_stripe);
99 			}
100 		}
101 	}
102 }
103 static void release_stripe(struct stripe_head *sh)
104 {
105 	raid5_conf_t *conf = sh->raid_conf;
106 	unsigned long flags;
107 
108 	spin_lock_irqsave(&conf->device_lock, flags);
109 	__release_stripe(conf, sh);
110 	spin_unlock_irqrestore(&conf->device_lock, flags);
111 }
112 
113 static inline void remove_hash(struct stripe_head *sh)
114 {
115 	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
116 
117 	hlist_del_init(&sh->hash);
118 }
119 
120 static void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
121 {
122 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
123 
124 	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
125 
126 	CHECK_DEVLOCK();
127 	hlist_add_head(&sh->hash, hp);
128 }
129 
130 
131 /* find an idle stripe, make sure it is unhashed, and return it. */
132 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
133 {
134 	struct stripe_head *sh = NULL;
135 	struct list_head *first;
136 
137 	CHECK_DEVLOCK();
138 	if (list_empty(&conf->inactive_list))
139 		goto out;
140 	first = conf->inactive_list.next;
141 	sh = list_entry(first, struct stripe_head, lru);
142 	list_del_init(first);
143 	remove_hash(sh);
144 	atomic_inc(&conf->active_stripes);
145 out:
146 	return sh;
147 }
148 
149 static void shrink_buffers(struct stripe_head *sh, int num)
150 {
151 	struct page *p;
152 	int i;
153 
154 	for (i=0; i<num ; i++) {
155 		p = sh->dev[i].page;
156 		if (!p)
157 			continue;
158 		sh->dev[i].page = NULL;
159 		put_page(p);
160 	}
161 }
162 
163 static int grow_buffers(struct stripe_head *sh, int num)
164 {
165 	int i;
166 
167 	for (i=0; i<num; i++) {
168 		struct page *page;
169 
170 		if (!(page = alloc_page(GFP_KERNEL))) {
171 			return 1;
172 		}
173 		sh->dev[i].page = page;
174 	}
175 	return 0;
176 }
177 
178 static void raid5_build_block (struct stripe_head *sh, int i);
179 
180 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
181 {
182 	raid5_conf_t *conf = sh->raid_conf;
183 	int i;
184 
185 	BUG_ON(atomic_read(&sh->count) != 0);
186 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
187 
188 	CHECK_DEVLOCK();
189 	PRINTK("init_stripe called, stripe %llu\n",
190 		(unsigned long long)sh->sector);
191 
192 	remove_hash(sh);
193 
194 	sh->sector = sector;
195 	sh->pd_idx = pd_idx;
196 	sh->state = 0;
197 
198 	sh->disks = disks;
199 
200 	for (i = sh->disks; i--; ) {
201 		struct r5dev *dev = &sh->dev[i];
202 
203 		if (dev->toread || dev->towrite || dev->written ||
204 		    test_bit(R5_LOCKED, &dev->flags)) {
205 			printk("sector=%llx i=%d %p %p %p %d\n",
206 			       (unsigned long long)sh->sector, i, dev->toread,
207 			       dev->towrite, dev->written,
208 			       test_bit(R5_LOCKED, &dev->flags));
209 			BUG();
210 		}
211 		dev->flags = 0;
212 		raid5_build_block(sh, i);
213 	}
214 	insert_hash(conf, sh);
215 }
216 
217 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
218 {
219 	struct stripe_head *sh;
220 	struct hlist_node *hn;
221 
222 	CHECK_DEVLOCK();
223 	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
224 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
225 		if (sh->sector == sector && sh->disks == disks)
226 			return sh;
227 	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
228 	return NULL;
229 }
230 
231 static void unplug_slaves(mddev_t *mddev);
232 static void raid5_unplug_device(request_queue_t *q);
233 
234 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
235 					     int pd_idx, int noblock)
236 {
237 	struct stripe_head *sh;
238 
239 	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
240 
241 	spin_lock_irq(&conf->device_lock);
242 
243 	do {
244 		wait_event_lock_irq(conf->wait_for_stripe,
245 				    conf->quiesce == 0,
246 				    conf->device_lock, /* nothing */);
247 		sh = __find_stripe(conf, sector, disks);
248 		if (!sh) {
249 			if (!conf->inactive_blocked)
250 				sh = get_free_stripe(conf);
251 			if (noblock && sh == NULL)
252 				break;
253 			if (!sh) {
254 				conf->inactive_blocked = 1;
255 				wait_event_lock_irq(conf->wait_for_stripe,
256 						    !list_empty(&conf->inactive_list) &&
257 						    (atomic_read(&conf->active_stripes)
258 						     < (conf->max_nr_stripes *3/4)
259 						     || !conf->inactive_blocked),
260 						    conf->device_lock,
261 						    unplug_slaves(conf->mddev)
262 					);
263 				conf->inactive_blocked = 0;
264 			} else
265 				init_stripe(sh, sector, pd_idx, disks);
266 		} else {
267 			if (atomic_read(&sh->count)) {
268 			  BUG_ON(!list_empty(&sh->lru));
269 			} else {
270 				if (!test_bit(STRIPE_HANDLE, &sh->state))
271 					atomic_inc(&conf->active_stripes);
272 				if (!list_empty(&sh->lru))
273 					list_del_init(&sh->lru);
274 			}
275 		}
276 	} while (sh == NULL);
277 
278 	if (sh)
279 		atomic_inc(&sh->count);
280 
281 	spin_unlock_irq(&conf->device_lock);
282 	return sh;
283 }
284 
285 static int grow_one_stripe(raid5_conf_t *conf)
286 {
287 	struct stripe_head *sh;
288 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
289 	if (!sh)
290 		return 0;
291 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
292 	sh->raid_conf = conf;
293 	spin_lock_init(&sh->lock);
294 
295 	if (grow_buffers(sh, conf->raid_disks)) {
296 		shrink_buffers(sh, conf->raid_disks);
297 		kmem_cache_free(conf->slab_cache, sh);
298 		return 0;
299 	}
300 	sh->disks = conf->raid_disks;
301 	/* we just created an active stripe so... */
302 	atomic_set(&sh->count, 1);
303 	atomic_inc(&conf->active_stripes);
304 	INIT_LIST_HEAD(&sh->lru);
305 	release_stripe(sh);
306 	return 1;
307 }
308 
309 static int grow_stripes(raid5_conf_t *conf, int num)
310 {
311 	kmem_cache_t *sc;
312 	int devs = conf->raid_disks;
313 
314 	sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
315 	sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
316 	conf->active_name = 0;
317 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
318 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
319 			       0, 0, NULL, NULL);
320 	if (!sc)
321 		return 1;
322 	conf->slab_cache = sc;
323 	conf->pool_size = devs;
324 	while (num--) {
325 		if (!grow_one_stripe(conf))
326 			return 1;
327 	}
328 	return 0;
329 }
330 
331 #ifdef CONFIG_MD_RAID5_RESHAPE
332 static int resize_stripes(raid5_conf_t *conf, int newsize)
333 {
334 	/* Make all the stripes able to hold 'newsize' devices.
335 	 * New slots in each stripe get 'page' set to a new page.
336 	 *
337 	 * This happens in stages:
338 	 * 1/ create a new kmem_cache and allocate the required number of
339 	 *    stripe_heads.
340 	 * 2/ gather all the old stripe_heads and tranfer the pages across
341 	 *    to the new stripe_heads.  This will have the side effect of
342 	 *    freezing the array as once all stripe_heads have been collected,
343 	 *    no IO will be possible.  Old stripe heads are freed once their
344 	 *    pages have been transferred over, and the old kmem_cache is
345 	 *    freed when all stripes are done.
346 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
347 	 *    we simple return a failre status - no need to clean anything up.
348 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
349 	 *    If this fails, we don't bother trying the shrink the
350 	 *    stripe_heads down again, we just leave them as they are.
351 	 *    As each stripe_head is processed the new one is released into
352 	 *    active service.
353 	 *
354 	 * Once step2 is started, we cannot afford to wait for a write,
355 	 * so we use GFP_NOIO allocations.
356 	 */
357 	struct stripe_head *osh, *nsh;
358 	LIST_HEAD(newstripes);
359 	struct disk_info *ndisks;
360 	int err = 0;
361 	kmem_cache_t *sc;
362 	int i;
363 
364 	if (newsize <= conf->pool_size)
365 		return 0; /* never bother to shrink */
366 
367 	/* Step 1 */
368 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
369 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
370 			       0, 0, NULL, NULL);
371 	if (!sc)
372 		return -ENOMEM;
373 
374 	for (i = conf->max_nr_stripes; i; i--) {
375 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
376 		if (!nsh)
377 			break;
378 
379 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
380 
381 		nsh->raid_conf = conf;
382 		spin_lock_init(&nsh->lock);
383 
384 		list_add(&nsh->lru, &newstripes);
385 	}
386 	if (i) {
387 		/* didn't get enough, give up */
388 		while (!list_empty(&newstripes)) {
389 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
390 			list_del(&nsh->lru);
391 			kmem_cache_free(sc, nsh);
392 		}
393 		kmem_cache_destroy(sc);
394 		return -ENOMEM;
395 	}
396 	/* Step 2 - Must use GFP_NOIO now.
397 	 * OK, we have enough stripes, start collecting inactive
398 	 * stripes and copying them over
399 	 */
400 	list_for_each_entry(nsh, &newstripes, lru) {
401 		spin_lock_irq(&conf->device_lock);
402 		wait_event_lock_irq(conf->wait_for_stripe,
403 				    !list_empty(&conf->inactive_list),
404 				    conf->device_lock,
405 				    unplug_slaves(conf->mddev)
406 			);
407 		osh = get_free_stripe(conf);
408 		spin_unlock_irq(&conf->device_lock);
409 		atomic_set(&nsh->count, 1);
410 		for(i=0; i<conf->pool_size; i++)
411 			nsh->dev[i].page = osh->dev[i].page;
412 		for( ; i<newsize; i++)
413 			nsh->dev[i].page = NULL;
414 		kmem_cache_free(conf->slab_cache, osh);
415 	}
416 	kmem_cache_destroy(conf->slab_cache);
417 
418 	/* Step 3.
419 	 * At this point, we are holding all the stripes so the array
420 	 * is completely stalled, so now is a good time to resize
421 	 * conf->disks.
422 	 */
423 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
424 	if (ndisks) {
425 		for (i=0; i<conf->raid_disks; i++)
426 			ndisks[i] = conf->disks[i];
427 		kfree(conf->disks);
428 		conf->disks = ndisks;
429 	} else
430 		err = -ENOMEM;
431 
432 	/* Step 4, return new stripes to service */
433 	while(!list_empty(&newstripes)) {
434 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
435 		list_del_init(&nsh->lru);
436 		for (i=conf->raid_disks; i < newsize; i++)
437 			if (nsh->dev[i].page == NULL) {
438 				struct page *p = alloc_page(GFP_NOIO);
439 				nsh->dev[i].page = p;
440 				if (!p)
441 					err = -ENOMEM;
442 			}
443 		release_stripe(nsh);
444 	}
445 	/* critical section pass, GFP_NOIO no longer needed */
446 
447 	conf->slab_cache = sc;
448 	conf->active_name = 1-conf->active_name;
449 	conf->pool_size = newsize;
450 	return err;
451 }
452 #endif
453 
454 static int drop_one_stripe(raid5_conf_t *conf)
455 {
456 	struct stripe_head *sh;
457 
458 	spin_lock_irq(&conf->device_lock);
459 	sh = get_free_stripe(conf);
460 	spin_unlock_irq(&conf->device_lock);
461 	if (!sh)
462 		return 0;
463 	BUG_ON(atomic_read(&sh->count));
464 	shrink_buffers(sh, conf->pool_size);
465 	kmem_cache_free(conf->slab_cache, sh);
466 	atomic_dec(&conf->active_stripes);
467 	return 1;
468 }
469 
470 static void shrink_stripes(raid5_conf_t *conf)
471 {
472 	while (drop_one_stripe(conf))
473 		;
474 
475 	if (conf->slab_cache)
476 		kmem_cache_destroy(conf->slab_cache);
477 	conf->slab_cache = NULL;
478 }
479 
480 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
481 				   int error)
482 {
483  	struct stripe_head *sh = bi->bi_private;
484 	raid5_conf_t *conf = sh->raid_conf;
485 	int disks = sh->disks, i;
486 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
487 
488 	if (bi->bi_size)
489 		return 1;
490 
491 	for (i=0 ; i<disks; i++)
492 		if (bi == &sh->dev[i].req)
493 			break;
494 
495 	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
496 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
497 		uptodate);
498 	if (i == disks) {
499 		BUG();
500 		return 0;
501 	}
502 
503 	if (uptodate) {
504 #if 0
505 		struct bio *bio;
506 		unsigned long flags;
507 		spin_lock_irqsave(&conf->device_lock, flags);
508 		/* we can return a buffer if we bypassed the cache or
509 		 * if the top buffer is not in highmem.  If there are
510 		 * multiple buffers, leave the extra work to
511 		 * handle_stripe
512 		 */
513 		buffer = sh->bh_read[i];
514 		if (buffer &&
515 		    (!PageHighMem(buffer->b_page)
516 		     || buffer->b_page == bh->b_page )
517 			) {
518 			sh->bh_read[i] = buffer->b_reqnext;
519 			buffer->b_reqnext = NULL;
520 		} else
521 			buffer = NULL;
522 		spin_unlock_irqrestore(&conf->device_lock, flags);
523 		if (sh->bh_page[i]==bh->b_page)
524 			set_buffer_uptodate(bh);
525 		if (buffer) {
526 			if (buffer->b_page != bh->b_page)
527 				memcpy(buffer->b_data, bh->b_data, bh->b_size);
528 			buffer->b_end_io(buffer, 1);
529 		}
530 #else
531 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
532 #endif
533 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
534 			printk(KERN_INFO "raid5: read error corrected!!\n");
535 			clear_bit(R5_ReadError, &sh->dev[i].flags);
536 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
537 		}
538 		if (atomic_read(&conf->disks[i].rdev->read_errors))
539 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
540 	} else {
541 		int retry = 0;
542 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
543 		atomic_inc(&conf->disks[i].rdev->read_errors);
544 		if (conf->mddev->degraded)
545 			printk(KERN_WARNING "raid5: read error not correctable.\n");
546 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
547 			/* Oh, no!!! */
548 			printk(KERN_WARNING "raid5: read error NOT corrected!!\n");
549 		else if (atomic_read(&conf->disks[i].rdev->read_errors)
550 			 > conf->max_nr_stripes)
551 			printk(KERN_WARNING
552 			       "raid5: Too many read errors, failing device.\n");
553 		else
554 			retry = 1;
555 		if (retry)
556 			set_bit(R5_ReadError, &sh->dev[i].flags);
557 		else {
558 			clear_bit(R5_ReadError, &sh->dev[i].flags);
559 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
560 			md_error(conf->mddev, conf->disks[i].rdev);
561 		}
562 	}
563 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
564 #if 0
565 	/* must restore b_page before unlocking buffer... */
566 	if (sh->bh_page[i] != bh->b_page) {
567 		bh->b_page = sh->bh_page[i];
568 		bh->b_data = page_address(bh->b_page);
569 		clear_buffer_uptodate(bh);
570 	}
571 #endif
572 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
573 	set_bit(STRIPE_HANDLE, &sh->state);
574 	release_stripe(sh);
575 	return 0;
576 }
577 
578 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
579 				    int error)
580 {
581  	struct stripe_head *sh = bi->bi_private;
582 	raid5_conf_t *conf = sh->raid_conf;
583 	int disks = sh->disks, i;
584 	unsigned long flags;
585 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
586 
587 	if (bi->bi_size)
588 		return 1;
589 
590 	for (i=0 ; i<disks; i++)
591 		if (bi == &sh->dev[i].req)
592 			break;
593 
594 	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
595 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
596 		uptodate);
597 	if (i == disks) {
598 		BUG();
599 		return 0;
600 	}
601 
602 	spin_lock_irqsave(&conf->device_lock, flags);
603 	if (!uptodate)
604 		md_error(conf->mddev, conf->disks[i].rdev);
605 
606 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
607 
608 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
609 	set_bit(STRIPE_HANDLE, &sh->state);
610 	__release_stripe(conf, sh);
611 	spin_unlock_irqrestore(&conf->device_lock, flags);
612 	return 0;
613 }
614 
615 
616 static sector_t compute_blocknr(struct stripe_head *sh, int i);
617 
618 static void raid5_build_block (struct stripe_head *sh, int i)
619 {
620 	struct r5dev *dev = &sh->dev[i];
621 
622 	bio_init(&dev->req);
623 	dev->req.bi_io_vec = &dev->vec;
624 	dev->req.bi_vcnt++;
625 	dev->req.bi_max_vecs++;
626 	dev->vec.bv_page = dev->page;
627 	dev->vec.bv_len = STRIPE_SIZE;
628 	dev->vec.bv_offset = 0;
629 
630 	dev->req.bi_sector = sh->sector;
631 	dev->req.bi_private = sh;
632 
633 	dev->flags = 0;
634 	if (i != sh->pd_idx)
635 		dev->sector = compute_blocknr(sh, i);
636 }
637 
638 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
639 {
640 	char b[BDEVNAME_SIZE];
641 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
642 	PRINTK("raid5: error called\n");
643 
644 	if (!test_bit(Faulty, &rdev->flags)) {
645 		mddev->sb_dirty = 1;
646 		if (test_bit(In_sync, &rdev->flags)) {
647 			conf->working_disks--;
648 			mddev->degraded++;
649 			conf->failed_disks++;
650 			clear_bit(In_sync, &rdev->flags);
651 			/*
652 			 * if recovery was running, make sure it aborts.
653 			 */
654 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
655 		}
656 		set_bit(Faulty, &rdev->flags);
657 		printk (KERN_ALERT
658 			"raid5: Disk failure on %s, disabling device."
659 			" Operation continuing on %d devices\n",
660 			bdevname(rdev->bdev,b), conf->working_disks);
661 	}
662 }
663 
664 /*
665  * Input: a 'big' sector number,
666  * Output: index of the data and parity disk, and the sector # in them.
667  */
668 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
669 			unsigned int data_disks, unsigned int * dd_idx,
670 			unsigned int * pd_idx, raid5_conf_t *conf)
671 {
672 	long stripe;
673 	unsigned long chunk_number;
674 	unsigned int chunk_offset;
675 	sector_t new_sector;
676 	int sectors_per_chunk = conf->chunk_size >> 9;
677 
678 	/* First compute the information on this sector */
679 
680 	/*
681 	 * Compute the chunk number and the sector offset inside the chunk
682 	 */
683 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
684 	chunk_number = r_sector;
685 	BUG_ON(r_sector != chunk_number);
686 
687 	/*
688 	 * Compute the stripe number
689 	 */
690 	stripe = chunk_number / data_disks;
691 
692 	/*
693 	 * Compute the data disk and parity disk indexes inside the stripe
694 	 */
695 	*dd_idx = chunk_number % data_disks;
696 
697 	/*
698 	 * Select the parity disk based on the user selected algorithm.
699 	 */
700 	if (conf->level == 4)
701 		*pd_idx = data_disks;
702 	else switch (conf->algorithm) {
703 		case ALGORITHM_LEFT_ASYMMETRIC:
704 			*pd_idx = data_disks - stripe % raid_disks;
705 			if (*dd_idx >= *pd_idx)
706 				(*dd_idx)++;
707 			break;
708 		case ALGORITHM_RIGHT_ASYMMETRIC:
709 			*pd_idx = stripe % raid_disks;
710 			if (*dd_idx >= *pd_idx)
711 				(*dd_idx)++;
712 			break;
713 		case ALGORITHM_LEFT_SYMMETRIC:
714 			*pd_idx = data_disks - stripe % raid_disks;
715 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
716 			break;
717 		case ALGORITHM_RIGHT_SYMMETRIC:
718 			*pd_idx = stripe % raid_disks;
719 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
720 			break;
721 		default:
722 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
723 				conf->algorithm);
724 	}
725 
726 	/*
727 	 * Finally, compute the new sector number
728 	 */
729 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
730 	return new_sector;
731 }
732 
733 
734 static sector_t compute_blocknr(struct stripe_head *sh, int i)
735 {
736 	raid5_conf_t *conf = sh->raid_conf;
737 	int raid_disks = sh->disks, data_disks = raid_disks - 1;
738 	sector_t new_sector = sh->sector, check;
739 	int sectors_per_chunk = conf->chunk_size >> 9;
740 	sector_t stripe;
741 	int chunk_offset;
742 	int chunk_number, dummy1, dummy2, dd_idx = i;
743 	sector_t r_sector;
744 
745 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
746 	stripe = new_sector;
747 	BUG_ON(new_sector != stripe);
748 
749 
750 	switch (conf->algorithm) {
751 		case ALGORITHM_LEFT_ASYMMETRIC:
752 		case ALGORITHM_RIGHT_ASYMMETRIC:
753 			if (i > sh->pd_idx)
754 				i--;
755 			break;
756 		case ALGORITHM_LEFT_SYMMETRIC:
757 		case ALGORITHM_RIGHT_SYMMETRIC:
758 			if (i < sh->pd_idx)
759 				i += raid_disks;
760 			i -= (sh->pd_idx + 1);
761 			break;
762 		default:
763 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
764 				conf->algorithm);
765 	}
766 
767 	chunk_number = stripe * data_disks + i;
768 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
769 
770 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
771 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
772 		printk(KERN_ERR "compute_blocknr: map not correct\n");
773 		return 0;
774 	}
775 	return r_sector;
776 }
777 
778 
779 
780 /*
781  * Copy data between a page in the stripe cache, and a bio.
782  * There are no alignment or size guarantees between the page or the
783  * bio except that there is some overlap.
784  * All iovecs in the bio must be considered.
785  */
786 static void copy_data(int frombio, struct bio *bio,
787 		     struct page *page,
788 		     sector_t sector)
789 {
790 	char *pa = page_address(page);
791 	struct bio_vec *bvl;
792 	int i;
793 	int page_offset;
794 
795 	if (bio->bi_sector >= sector)
796 		page_offset = (signed)(bio->bi_sector - sector) * 512;
797 	else
798 		page_offset = (signed)(sector - bio->bi_sector) * -512;
799 	bio_for_each_segment(bvl, bio, i) {
800 		int len = bio_iovec_idx(bio,i)->bv_len;
801 		int clen;
802 		int b_offset = 0;
803 
804 		if (page_offset < 0) {
805 			b_offset = -page_offset;
806 			page_offset += b_offset;
807 			len -= b_offset;
808 		}
809 
810 		if (len > 0 && page_offset + len > STRIPE_SIZE)
811 			clen = STRIPE_SIZE - page_offset;
812 		else clen = len;
813 
814 		if (clen > 0) {
815 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
816 			if (frombio)
817 				memcpy(pa+page_offset, ba+b_offset, clen);
818 			else
819 				memcpy(ba+b_offset, pa+page_offset, clen);
820 			__bio_kunmap_atomic(ba, KM_USER0);
821 		}
822 		if (clen < len) /* hit end of page */
823 			break;
824 		page_offset +=  len;
825 	}
826 }
827 
828 #define check_xor() 	do { 						\
829 			   if (count == MAX_XOR_BLOCKS) {		\
830 				xor_block(count, STRIPE_SIZE, ptr);	\
831 				count = 1;				\
832 			   }						\
833 			} while(0)
834 
835 
836 static void compute_block(struct stripe_head *sh, int dd_idx)
837 {
838 	int i, count, disks = sh->disks;
839 	void *ptr[MAX_XOR_BLOCKS], *p;
840 
841 	PRINTK("compute_block, stripe %llu, idx %d\n",
842 		(unsigned long long)sh->sector, dd_idx);
843 
844 	ptr[0] = page_address(sh->dev[dd_idx].page);
845 	memset(ptr[0], 0, STRIPE_SIZE);
846 	count = 1;
847 	for (i = disks ; i--; ) {
848 		if (i == dd_idx)
849 			continue;
850 		p = page_address(sh->dev[i].page);
851 		if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
852 			ptr[count++] = p;
853 		else
854 			printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
855 				" not present\n", dd_idx,
856 				(unsigned long long)sh->sector, i);
857 
858 		check_xor();
859 	}
860 	if (count != 1)
861 		xor_block(count, STRIPE_SIZE, ptr);
862 	set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
863 }
864 
865 static void compute_parity(struct stripe_head *sh, int method)
866 {
867 	raid5_conf_t *conf = sh->raid_conf;
868 	int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
869 	void *ptr[MAX_XOR_BLOCKS];
870 	struct bio *chosen;
871 
872 	PRINTK("compute_parity, stripe %llu, method %d\n",
873 		(unsigned long long)sh->sector, method);
874 
875 	count = 1;
876 	ptr[0] = page_address(sh->dev[pd_idx].page);
877 	switch(method) {
878 	case READ_MODIFY_WRITE:
879 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
880 		for (i=disks ; i-- ;) {
881 			if (i==pd_idx)
882 				continue;
883 			if (sh->dev[i].towrite &&
884 			    test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
885 				ptr[count++] = page_address(sh->dev[i].page);
886 				chosen = sh->dev[i].towrite;
887 				sh->dev[i].towrite = NULL;
888 
889 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
890 					wake_up(&conf->wait_for_overlap);
891 
892 				BUG_ON(sh->dev[i].written);
893 				sh->dev[i].written = chosen;
894 				check_xor();
895 			}
896 		}
897 		break;
898 	case RECONSTRUCT_WRITE:
899 		memset(ptr[0], 0, STRIPE_SIZE);
900 		for (i= disks; i-- ;)
901 			if (i!=pd_idx && sh->dev[i].towrite) {
902 				chosen = sh->dev[i].towrite;
903 				sh->dev[i].towrite = NULL;
904 
905 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
906 					wake_up(&conf->wait_for_overlap);
907 
908 				BUG_ON(sh->dev[i].written);
909 				sh->dev[i].written = chosen;
910 			}
911 		break;
912 	case CHECK_PARITY:
913 		break;
914 	}
915 	if (count>1) {
916 		xor_block(count, STRIPE_SIZE, ptr);
917 		count = 1;
918 	}
919 
920 	for (i = disks; i--;)
921 		if (sh->dev[i].written) {
922 			sector_t sector = sh->dev[i].sector;
923 			struct bio *wbi = sh->dev[i].written;
924 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
925 				copy_data(1, wbi, sh->dev[i].page, sector);
926 				wbi = r5_next_bio(wbi, sector);
927 			}
928 
929 			set_bit(R5_LOCKED, &sh->dev[i].flags);
930 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
931 		}
932 
933 	switch(method) {
934 	case RECONSTRUCT_WRITE:
935 	case CHECK_PARITY:
936 		for (i=disks; i--;)
937 			if (i != pd_idx) {
938 				ptr[count++] = page_address(sh->dev[i].page);
939 				check_xor();
940 			}
941 		break;
942 	case READ_MODIFY_WRITE:
943 		for (i = disks; i--;)
944 			if (sh->dev[i].written) {
945 				ptr[count++] = page_address(sh->dev[i].page);
946 				check_xor();
947 			}
948 	}
949 	if (count != 1)
950 		xor_block(count, STRIPE_SIZE, ptr);
951 
952 	if (method != CHECK_PARITY) {
953 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
954 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
955 	} else
956 		clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
957 }
958 
959 /*
960  * Each stripe/dev can have one or more bion attached.
961  * toread/towrite point to the first in a chain.
962  * The bi_next chain must be in order.
963  */
964 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
965 {
966 	struct bio **bip;
967 	raid5_conf_t *conf = sh->raid_conf;
968 	int firstwrite=0;
969 
970 	PRINTK("adding bh b#%llu to stripe s#%llu\n",
971 		(unsigned long long)bi->bi_sector,
972 		(unsigned long long)sh->sector);
973 
974 
975 	spin_lock(&sh->lock);
976 	spin_lock_irq(&conf->device_lock);
977 	if (forwrite) {
978 		bip = &sh->dev[dd_idx].towrite;
979 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
980 			firstwrite = 1;
981 	} else
982 		bip = &sh->dev[dd_idx].toread;
983 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
984 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
985 			goto overlap;
986 		bip = & (*bip)->bi_next;
987 	}
988 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
989 		goto overlap;
990 
991 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
992 	if (*bip)
993 		bi->bi_next = *bip;
994 	*bip = bi;
995 	bi->bi_phys_segments ++;
996 	spin_unlock_irq(&conf->device_lock);
997 	spin_unlock(&sh->lock);
998 
999 	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1000 		(unsigned long long)bi->bi_sector,
1001 		(unsigned long long)sh->sector, dd_idx);
1002 
1003 	if (conf->mddev->bitmap && firstwrite) {
1004 		sh->bm_seq = conf->seq_write;
1005 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1006 				  STRIPE_SECTORS, 0);
1007 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1008 	}
1009 
1010 	if (forwrite) {
1011 		/* check if page is covered */
1012 		sector_t sector = sh->dev[dd_idx].sector;
1013 		for (bi=sh->dev[dd_idx].towrite;
1014 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1015 			     bi && bi->bi_sector <= sector;
1016 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1017 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1018 				sector = bi->bi_sector + (bi->bi_size>>9);
1019 		}
1020 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1021 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1022 	}
1023 	return 1;
1024 
1025  overlap:
1026 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1027 	spin_unlock_irq(&conf->device_lock);
1028 	spin_unlock(&sh->lock);
1029 	return 0;
1030 }
1031 
1032 static void end_reshape(raid5_conf_t *conf);
1033 
1034 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1035 {
1036 	int sectors_per_chunk = conf->chunk_size >> 9;
1037 	sector_t x = stripe;
1038 	int pd_idx, dd_idx;
1039 	int chunk_offset = sector_div(x, sectors_per_chunk);
1040 	stripe = x;
1041 	raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1042 			     + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1043 	return pd_idx;
1044 }
1045 
1046 
1047 /*
1048  * handle_stripe - do things to a stripe.
1049  *
1050  * We lock the stripe and then examine the state of various bits
1051  * to see what needs to be done.
1052  * Possible results:
1053  *    return some read request which now have data
1054  *    return some write requests which are safely on disc
1055  *    schedule a read on some buffers
1056  *    schedule a write of some buffers
1057  *    return confirmation of parity correctness
1058  *
1059  * Parity calculations are done inside the stripe lock
1060  * buffers are taken off read_list or write_list, and bh_cache buffers
1061  * get BH_Lock set before the stripe lock is released.
1062  *
1063  */
1064 
1065 static void handle_stripe(struct stripe_head *sh)
1066 {
1067 	raid5_conf_t *conf = sh->raid_conf;
1068 	int disks = sh->disks;
1069 	struct bio *return_bi= NULL;
1070 	struct bio *bi;
1071 	int i;
1072 	int syncing, expanding, expanded;
1073 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1074 	int non_overwrite = 0;
1075 	int failed_num=0;
1076 	struct r5dev *dev;
1077 
1078 	PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1079 		(unsigned long long)sh->sector, atomic_read(&sh->count),
1080 		sh->pd_idx);
1081 
1082 	spin_lock(&sh->lock);
1083 	clear_bit(STRIPE_HANDLE, &sh->state);
1084 	clear_bit(STRIPE_DELAYED, &sh->state);
1085 
1086 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1087 	expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1088 	expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1089 	/* Now to look around and see what can be done */
1090 
1091 	rcu_read_lock();
1092 	for (i=disks; i--; ) {
1093 		mdk_rdev_t *rdev;
1094 		dev = &sh->dev[i];
1095 		clear_bit(R5_Insync, &dev->flags);
1096 
1097 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1098 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1099 		/* maybe we can reply to a read */
1100 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1101 			struct bio *rbi, *rbi2;
1102 			PRINTK("Return read for disc %d\n", i);
1103 			spin_lock_irq(&conf->device_lock);
1104 			rbi = dev->toread;
1105 			dev->toread = NULL;
1106 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1107 				wake_up(&conf->wait_for_overlap);
1108 			spin_unlock_irq(&conf->device_lock);
1109 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1110 				copy_data(0, rbi, dev->page, dev->sector);
1111 				rbi2 = r5_next_bio(rbi, dev->sector);
1112 				spin_lock_irq(&conf->device_lock);
1113 				if (--rbi->bi_phys_segments == 0) {
1114 					rbi->bi_next = return_bi;
1115 					return_bi = rbi;
1116 				}
1117 				spin_unlock_irq(&conf->device_lock);
1118 				rbi = rbi2;
1119 			}
1120 		}
1121 
1122 		/* now count some things */
1123 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1124 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1125 
1126 
1127 		if (dev->toread) to_read++;
1128 		if (dev->towrite) {
1129 			to_write++;
1130 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1131 				non_overwrite++;
1132 		}
1133 		if (dev->written) written++;
1134 		rdev = rcu_dereference(conf->disks[i].rdev);
1135 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1136 			/* The ReadError flag will just be confusing now */
1137 			clear_bit(R5_ReadError, &dev->flags);
1138 			clear_bit(R5_ReWrite, &dev->flags);
1139 		}
1140 		if (!rdev || !test_bit(In_sync, &rdev->flags)
1141 		    || test_bit(R5_ReadError, &dev->flags)) {
1142 			failed++;
1143 			failed_num = i;
1144 		} else
1145 			set_bit(R5_Insync, &dev->flags);
1146 	}
1147 	rcu_read_unlock();
1148 	PRINTK("locked=%d uptodate=%d to_read=%d"
1149 		" to_write=%d failed=%d failed_num=%d\n",
1150 		locked, uptodate, to_read, to_write, failed, failed_num);
1151 	/* check if the array has lost two devices and, if so, some requests might
1152 	 * need to be failed
1153 	 */
1154 	if (failed > 1 && to_read+to_write+written) {
1155 		for (i=disks; i--; ) {
1156 			int bitmap_end = 0;
1157 
1158 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1159 				mdk_rdev_t *rdev;
1160 				rcu_read_lock();
1161 				rdev = rcu_dereference(conf->disks[i].rdev);
1162 				if (rdev && test_bit(In_sync, &rdev->flags))
1163 					/* multiple read failures in one stripe */
1164 					md_error(conf->mddev, rdev);
1165 				rcu_read_unlock();
1166 			}
1167 
1168 			spin_lock_irq(&conf->device_lock);
1169 			/* fail all writes first */
1170 			bi = sh->dev[i].towrite;
1171 			sh->dev[i].towrite = NULL;
1172 			if (bi) { to_write--; bitmap_end = 1; }
1173 
1174 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1175 				wake_up(&conf->wait_for_overlap);
1176 
1177 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1178 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1179 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1180 				if (--bi->bi_phys_segments == 0) {
1181 					md_write_end(conf->mddev);
1182 					bi->bi_next = return_bi;
1183 					return_bi = bi;
1184 				}
1185 				bi = nextbi;
1186 			}
1187 			/* and fail all 'written' */
1188 			bi = sh->dev[i].written;
1189 			sh->dev[i].written = NULL;
1190 			if (bi) bitmap_end = 1;
1191 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1192 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1193 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1194 				if (--bi->bi_phys_segments == 0) {
1195 					md_write_end(conf->mddev);
1196 					bi->bi_next = return_bi;
1197 					return_bi = bi;
1198 				}
1199 				bi = bi2;
1200 			}
1201 
1202 			/* fail any reads if this device is non-operational */
1203 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1204 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
1205 				bi = sh->dev[i].toread;
1206 				sh->dev[i].toread = NULL;
1207 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1208 					wake_up(&conf->wait_for_overlap);
1209 				if (bi) to_read--;
1210 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1211 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1212 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
1213 					if (--bi->bi_phys_segments == 0) {
1214 						bi->bi_next = return_bi;
1215 						return_bi = bi;
1216 					}
1217 					bi = nextbi;
1218 				}
1219 			}
1220 			spin_unlock_irq(&conf->device_lock);
1221 			if (bitmap_end)
1222 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1223 						STRIPE_SECTORS, 0, 0);
1224 		}
1225 	}
1226 	if (failed > 1 && syncing) {
1227 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1228 		clear_bit(STRIPE_SYNCING, &sh->state);
1229 		syncing = 0;
1230 	}
1231 
1232 	/* might be able to return some write requests if the parity block
1233 	 * is safe, or on a failed drive
1234 	 */
1235 	dev = &sh->dev[sh->pd_idx];
1236 	if ( written &&
1237 	     ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1238 		test_bit(R5_UPTODATE, &dev->flags))
1239 	       || (failed == 1 && failed_num == sh->pd_idx))
1240 	    ) {
1241 	    /* any written block on an uptodate or failed drive can be returned.
1242 	     * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1243 	     * never LOCKED, so we don't need to test 'failed' directly.
1244 	     */
1245 	    for (i=disks; i--; )
1246 		if (sh->dev[i].written) {
1247 		    dev = &sh->dev[i];
1248 		    if (!test_bit(R5_LOCKED, &dev->flags) &&
1249 			 test_bit(R5_UPTODATE, &dev->flags) ) {
1250 			/* We can return any write requests */
1251 			    struct bio *wbi, *wbi2;
1252 			    int bitmap_end = 0;
1253 			    PRINTK("Return write for disc %d\n", i);
1254 			    spin_lock_irq(&conf->device_lock);
1255 			    wbi = dev->written;
1256 			    dev->written = NULL;
1257 			    while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1258 				    wbi2 = r5_next_bio(wbi, dev->sector);
1259 				    if (--wbi->bi_phys_segments == 0) {
1260 					    md_write_end(conf->mddev);
1261 					    wbi->bi_next = return_bi;
1262 					    return_bi = wbi;
1263 				    }
1264 				    wbi = wbi2;
1265 			    }
1266 			    if (dev->towrite == NULL)
1267 				    bitmap_end = 1;
1268 			    spin_unlock_irq(&conf->device_lock);
1269 			    if (bitmap_end)
1270 				    bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1271 						    STRIPE_SECTORS,
1272 						    !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1273 		    }
1274 		}
1275 	}
1276 
1277 	/* Now we might consider reading some blocks, either to check/generate
1278 	 * parity, or to satisfy requests
1279 	 * or to load a block that is being partially written.
1280 	 */
1281 	if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1282 		for (i=disks; i--;) {
1283 			dev = &sh->dev[i];
1284 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1285 			    (dev->toread ||
1286 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1287 			     syncing ||
1288 			     expanding ||
1289 			     (failed && (sh->dev[failed_num].toread ||
1290 					 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1291 				    )
1292 				) {
1293 				/* we would like to get this block, possibly
1294 				 * by computing it, but we might not be able to
1295 				 */
1296 				if (uptodate == disks-1) {
1297 					PRINTK("Computing block %d\n", i);
1298 					compute_block(sh, i);
1299 					uptodate++;
1300 				} else if (test_bit(R5_Insync, &dev->flags)) {
1301 					set_bit(R5_LOCKED, &dev->flags);
1302 					set_bit(R5_Wantread, &dev->flags);
1303 #if 0
1304 					/* if I am just reading this block and we don't have
1305 					   a failed drive, or any pending writes then sidestep the cache */
1306 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1307 					    ! syncing && !failed && !to_write) {
1308 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
1309 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
1310 					}
1311 #endif
1312 					locked++;
1313 					PRINTK("Reading block %d (sync=%d)\n",
1314 						i, syncing);
1315 				}
1316 			}
1317 		}
1318 		set_bit(STRIPE_HANDLE, &sh->state);
1319 	}
1320 
1321 	/* now to consider writing and what else, if anything should be read */
1322 	if (to_write) {
1323 		int rmw=0, rcw=0;
1324 		for (i=disks ; i--;) {
1325 			/* would I have to read this buffer for read_modify_write */
1326 			dev = &sh->dev[i];
1327 			if ((dev->towrite || i == sh->pd_idx) &&
1328 			    (!test_bit(R5_LOCKED, &dev->flags)
1329 #if 0
1330 || sh->bh_page[i]!=bh->b_page
1331 #endif
1332 				    ) &&
1333 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1334 				if (test_bit(R5_Insync, &dev->flags)
1335 /*				    && !(!mddev->insync && i == sh->pd_idx) */
1336 					)
1337 					rmw++;
1338 				else rmw += 2*disks;  /* cannot read it */
1339 			}
1340 			/* Would I have to read this buffer for reconstruct_write */
1341 			if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1342 			    (!test_bit(R5_LOCKED, &dev->flags)
1343 #if 0
1344 || sh->bh_page[i] != bh->b_page
1345 #endif
1346 				    ) &&
1347 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1348 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
1349 				else rcw += 2*disks;
1350 			}
1351 		}
1352 		PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1353 			(unsigned long long)sh->sector, rmw, rcw);
1354 		set_bit(STRIPE_HANDLE, &sh->state);
1355 		if (rmw < rcw && rmw > 0)
1356 			/* prefer read-modify-write, but need to get some data */
1357 			for (i=disks; i--;) {
1358 				dev = &sh->dev[i];
1359 				if ((dev->towrite || i == sh->pd_idx) &&
1360 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1361 				    test_bit(R5_Insync, &dev->flags)) {
1362 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1363 					{
1364 						PRINTK("Read_old block %d for r-m-w\n", i);
1365 						set_bit(R5_LOCKED, &dev->flags);
1366 						set_bit(R5_Wantread, &dev->flags);
1367 						locked++;
1368 					} else {
1369 						set_bit(STRIPE_DELAYED, &sh->state);
1370 						set_bit(STRIPE_HANDLE, &sh->state);
1371 					}
1372 				}
1373 			}
1374 		if (rcw <= rmw && rcw > 0)
1375 			/* want reconstruct write, but need to get some data */
1376 			for (i=disks; i--;) {
1377 				dev = &sh->dev[i];
1378 				if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1379 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1380 				    test_bit(R5_Insync, &dev->flags)) {
1381 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1382 					{
1383 						PRINTK("Read_old block %d for Reconstruct\n", i);
1384 						set_bit(R5_LOCKED, &dev->flags);
1385 						set_bit(R5_Wantread, &dev->flags);
1386 						locked++;
1387 					} else {
1388 						set_bit(STRIPE_DELAYED, &sh->state);
1389 						set_bit(STRIPE_HANDLE, &sh->state);
1390 					}
1391 				}
1392 			}
1393 		/* now if nothing is locked, and if we have enough data, we can start a write request */
1394 		if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1395 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1396 			PRINTK("Computing parity...\n");
1397 			compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1398 			/* now every locked buffer is ready to be written */
1399 			for (i=disks; i--;)
1400 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1401 					PRINTK("Writing block %d\n", i);
1402 					locked++;
1403 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
1404 					if (!test_bit(R5_Insync, &sh->dev[i].flags)
1405 					    || (i==sh->pd_idx && failed == 0))
1406 						set_bit(STRIPE_INSYNC, &sh->state);
1407 				}
1408 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1409 				atomic_dec(&conf->preread_active_stripes);
1410 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1411 					md_wakeup_thread(conf->mddev->thread);
1412 			}
1413 		}
1414 	}
1415 
1416 	/* maybe we need to check and possibly fix the parity for this stripe
1417 	 * Any reads will already have been scheduled, so we just see if enough data
1418 	 * is available
1419 	 */
1420 	if (syncing && locked == 0 &&
1421 	    !test_bit(STRIPE_INSYNC, &sh->state)) {
1422 		set_bit(STRIPE_HANDLE, &sh->state);
1423 		if (failed == 0) {
1424 			char *pagea;
1425 			BUG_ON(uptodate != disks);
1426 			compute_parity(sh, CHECK_PARITY);
1427 			uptodate--;
1428 			pagea = page_address(sh->dev[sh->pd_idx].page);
1429 			if ((*(u32*)pagea) == 0 &&
1430 			    !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) {
1431 				/* parity is correct (on disc, not in buffer any more) */
1432 				set_bit(STRIPE_INSYNC, &sh->state);
1433 			} else {
1434 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
1435 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1436 					/* don't try to repair!! */
1437 					set_bit(STRIPE_INSYNC, &sh->state);
1438 				else {
1439 					compute_block(sh, sh->pd_idx);
1440 					uptodate++;
1441 				}
1442 			}
1443 		}
1444 		if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1445 			/* either failed parity check, or recovery is happening */
1446 			if (failed==0)
1447 				failed_num = sh->pd_idx;
1448 			dev = &sh->dev[failed_num];
1449 			BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1450 			BUG_ON(uptodate != disks);
1451 
1452 			set_bit(R5_LOCKED, &dev->flags);
1453 			set_bit(R5_Wantwrite, &dev->flags);
1454 			clear_bit(STRIPE_DEGRADED, &sh->state);
1455 			locked++;
1456 			set_bit(STRIPE_INSYNC, &sh->state);
1457 		}
1458 	}
1459 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1460 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1461 		clear_bit(STRIPE_SYNCING, &sh->state);
1462 	}
1463 
1464 	/* If the failed drive is just a ReadError, then we might need to progress
1465 	 * the repair/check process
1466 	 */
1467 	if (failed == 1 && ! conf->mddev->ro &&
1468 	    test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1469 	    && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1470 	    && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1471 		) {
1472 		dev = &sh->dev[failed_num];
1473 		if (!test_bit(R5_ReWrite, &dev->flags)) {
1474 			set_bit(R5_Wantwrite, &dev->flags);
1475 			set_bit(R5_ReWrite, &dev->flags);
1476 			set_bit(R5_LOCKED, &dev->flags);
1477 			locked++;
1478 		} else {
1479 			/* let's read it back */
1480 			set_bit(R5_Wantread, &dev->flags);
1481 			set_bit(R5_LOCKED, &dev->flags);
1482 			locked++;
1483 		}
1484 	}
1485 
1486 	if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1487 		/* Need to write out all blocks after computing parity */
1488 		sh->disks = conf->raid_disks;
1489 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1490 		compute_parity(sh, RECONSTRUCT_WRITE);
1491 		for (i= conf->raid_disks; i--;) {
1492 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1493 			locked++;
1494 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
1495 		}
1496 		clear_bit(STRIPE_EXPANDING, &sh->state);
1497 	} else if (expanded) {
1498 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
1499 		atomic_dec(&conf->reshape_stripes);
1500 		wake_up(&conf->wait_for_overlap);
1501 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1502 	}
1503 
1504 	if (expanding && locked == 0) {
1505 		/* We have read all the blocks in this stripe and now we need to
1506 		 * copy some of them into a target stripe for expand.
1507 		 */
1508 		clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1509 		for (i=0; i< sh->disks; i++)
1510 			if (i != sh->pd_idx) {
1511 				int dd_idx, pd_idx, j;
1512 				struct stripe_head *sh2;
1513 
1514 				sector_t bn = compute_blocknr(sh, i);
1515 				sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1516 								  conf->raid_disks-1,
1517 								  &dd_idx, &pd_idx, conf);
1518 				sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1519 				if (sh2 == NULL)
1520 					/* so far only the early blocks of this stripe
1521 					 * have been requested.  When later blocks
1522 					 * get requested, we will try again
1523 					 */
1524 					continue;
1525 				if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1526 				   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1527 					/* must have already done this block */
1528 					release_stripe(sh2);
1529 					continue;
1530 				}
1531 				memcpy(page_address(sh2->dev[dd_idx].page),
1532 				       page_address(sh->dev[i].page),
1533 				       STRIPE_SIZE);
1534 				set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1535 				set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1536 				for (j=0; j<conf->raid_disks; j++)
1537 					if (j != sh2->pd_idx &&
1538 					    !test_bit(R5_Expanded, &sh2->dev[j].flags))
1539 						break;
1540 				if (j == conf->raid_disks) {
1541 					set_bit(STRIPE_EXPAND_READY, &sh2->state);
1542 					set_bit(STRIPE_HANDLE, &sh2->state);
1543 				}
1544 				release_stripe(sh2);
1545 			}
1546 	}
1547 
1548 	spin_unlock(&sh->lock);
1549 
1550 	while ((bi=return_bi)) {
1551 		int bytes = bi->bi_size;
1552 
1553 		return_bi = bi->bi_next;
1554 		bi->bi_next = NULL;
1555 		bi->bi_size = 0;
1556 		bi->bi_end_io(bi, bytes, 0);
1557 	}
1558 	for (i=disks; i-- ;) {
1559 		int rw;
1560 		struct bio *bi;
1561 		mdk_rdev_t *rdev;
1562 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1563 			rw = 1;
1564 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1565 			rw = 0;
1566 		else
1567 			continue;
1568 
1569 		bi = &sh->dev[i].req;
1570 
1571 		bi->bi_rw = rw;
1572 		if (rw)
1573 			bi->bi_end_io = raid5_end_write_request;
1574 		else
1575 			bi->bi_end_io = raid5_end_read_request;
1576 
1577 		rcu_read_lock();
1578 		rdev = rcu_dereference(conf->disks[i].rdev);
1579 		if (rdev && test_bit(Faulty, &rdev->flags))
1580 			rdev = NULL;
1581 		if (rdev)
1582 			atomic_inc(&rdev->nr_pending);
1583 		rcu_read_unlock();
1584 
1585 		if (rdev) {
1586 			if (syncing || expanding || expanded)
1587 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1588 
1589 			bi->bi_bdev = rdev->bdev;
1590 			PRINTK("for %llu schedule op %ld on disc %d\n",
1591 				(unsigned long long)sh->sector, bi->bi_rw, i);
1592 			atomic_inc(&sh->count);
1593 			bi->bi_sector = sh->sector + rdev->data_offset;
1594 			bi->bi_flags = 1 << BIO_UPTODATE;
1595 			bi->bi_vcnt = 1;
1596 			bi->bi_max_vecs = 1;
1597 			bi->bi_idx = 0;
1598 			bi->bi_io_vec = &sh->dev[i].vec;
1599 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1600 			bi->bi_io_vec[0].bv_offset = 0;
1601 			bi->bi_size = STRIPE_SIZE;
1602 			bi->bi_next = NULL;
1603 			if (rw == WRITE &&
1604 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
1605 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1606 			generic_make_request(bi);
1607 		} else {
1608 			if (rw == 1)
1609 				set_bit(STRIPE_DEGRADED, &sh->state);
1610 			PRINTK("skip op %ld on disc %d for sector %llu\n",
1611 				bi->bi_rw, i, (unsigned long long)sh->sector);
1612 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1613 			set_bit(STRIPE_HANDLE, &sh->state);
1614 		}
1615 	}
1616 }
1617 
1618 static void raid5_activate_delayed(raid5_conf_t *conf)
1619 {
1620 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
1621 		while (!list_empty(&conf->delayed_list)) {
1622 			struct list_head *l = conf->delayed_list.next;
1623 			struct stripe_head *sh;
1624 			sh = list_entry(l, struct stripe_head, lru);
1625 			list_del_init(l);
1626 			clear_bit(STRIPE_DELAYED, &sh->state);
1627 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1628 				atomic_inc(&conf->preread_active_stripes);
1629 			list_add_tail(&sh->lru, &conf->handle_list);
1630 		}
1631 	}
1632 }
1633 
1634 static void activate_bit_delay(raid5_conf_t *conf)
1635 {
1636 	/* device_lock is held */
1637 	struct list_head head;
1638 	list_add(&head, &conf->bitmap_list);
1639 	list_del_init(&conf->bitmap_list);
1640 	while (!list_empty(&head)) {
1641 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
1642 		list_del_init(&sh->lru);
1643 		atomic_inc(&sh->count);
1644 		__release_stripe(conf, sh);
1645 	}
1646 }
1647 
1648 static void unplug_slaves(mddev_t *mddev)
1649 {
1650 	raid5_conf_t *conf = mddev_to_conf(mddev);
1651 	int i;
1652 
1653 	rcu_read_lock();
1654 	for (i=0; i<mddev->raid_disks; i++) {
1655 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1656 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
1657 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
1658 
1659 			atomic_inc(&rdev->nr_pending);
1660 			rcu_read_unlock();
1661 
1662 			if (r_queue->unplug_fn)
1663 				r_queue->unplug_fn(r_queue);
1664 
1665 			rdev_dec_pending(rdev, mddev);
1666 			rcu_read_lock();
1667 		}
1668 	}
1669 	rcu_read_unlock();
1670 }
1671 
1672 static void raid5_unplug_device(request_queue_t *q)
1673 {
1674 	mddev_t *mddev = q->queuedata;
1675 	raid5_conf_t *conf = mddev_to_conf(mddev);
1676 	unsigned long flags;
1677 
1678 	spin_lock_irqsave(&conf->device_lock, flags);
1679 
1680 	if (blk_remove_plug(q)) {
1681 		conf->seq_flush++;
1682 		raid5_activate_delayed(conf);
1683 	}
1684 	md_wakeup_thread(mddev->thread);
1685 
1686 	spin_unlock_irqrestore(&conf->device_lock, flags);
1687 
1688 	unplug_slaves(mddev);
1689 }
1690 
1691 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
1692 			     sector_t *error_sector)
1693 {
1694 	mddev_t *mddev = q->queuedata;
1695 	raid5_conf_t *conf = mddev_to_conf(mddev);
1696 	int i, ret = 0;
1697 
1698 	rcu_read_lock();
1699 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
1700 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1701 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
1702 			struct block_device *bdev = rdev->bdev;
1703 			request_queue_t *r_queue = bdev_get_queue(bdev);
1704 
1705 			if (!r_queue->issue_flush_fn)
1706 				ret = -EOPNOTSUPP;
1707 			else {
1708 				atomic_inc(&rdev->nr_pending);
1709 				rcu_read_unlock();
1710 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
1711 							      error_sector);
1712 				rdev_dec_pending(rdev, mddev);
1713 				rcu_read_lock();
1714 			}
1715 		}
1716 	}
1717 	rcu_read_unlock();
1718 	return ret;
1719 }
1720 
1721 static inline void raid5_plug_device(raid5_conf_t *conf)
1722 {
1723 	spin_lock_irq(&conf->device_lock);
1724 	blk_plug_device(conf->mddev->queue);
1725 	spin_unlock_irq(&conf->device_lock);
1726 }
1727 
1728 static int make_request(request_queue_t *q, struct bio * bi)
1729 {
1730 	mddev_t *mddev = q->queuedata;
1731 	raid5_conf_t *conf = mddev_to_conf(mddev);
1732 	unsigned int dd_idx, pd_idx;
1733 	sector_t new_sector;
1734 	sector_t logical_sector, last_sector;
1735 	struct stripe_head *sh;
1736 	const int rw = bio_data_dir(bi);
1737 	int remaining;
1738 
1739 	if (unlikely(bio_barrier(bi))) {
1740 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
1741 		return 0;
1742 	}
1743 
1744 	md_write_start(mddev, bi);
1745 
1746 	disk_stat_inc(mddev->gendisk, ios[rw]);
1747 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1748 
1749 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
1750 	last_sector = bi->bi_sector + (bi->bi_size>>9);
1751 	bi->bi_next = NULL;
1752 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
1753 
1754 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
1755 		DEFINE_WAIT(w);
1756 		int disks;
1757 
1758 	retry:
1759 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1760 		if (likely(conf->expand_progress == MaxSector))
1761 			disks = conf->raid_disks;
1762 		else {
1763 			/* spinlock is needed as expand_progress may be
1764 			 * 64bit on a 32bit platform, and so it might be
1765 			 * possible to see a half-updated value
1766 			 * Ofcourse expand_progress could change after
1767 			 * the lock is dropped, so once we get a reference
1768 			 * to the stripe that we think it is, we will have
1769 			 * to check again.
1770 			 */
1771 			spin_lock_irq(&conf->device_lock);
1772 			disks = conf->raid_disks;
1773 			if (logical_sector >= conf->expand_progress)
1774 				disks = conf->previous_raid_disks;
1775 			else {
1776 				if (logical_sector >= conf->expand_lo) {
1777 					spin_unlock_irq(&conf->device_lock);
1778 					schedule();
1779 					goto retry;
1780 				}
1781 			}
1782 			spin_unlock_irq(&conf->device_lock);
1783 		}
1784  		new_sector = raid5_compute_sector(logical_sector, disks, disks - 1,
1785 						  &dd_idx, &pd_idx, conf);
1786 		PRINTK("raid5: make_request, sector %llu logical %llu\n",
1787 			(unsigned long long)new_sector,
1788 			(unsigned long long)logical_sector);
1789 
1790 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1791 		if (sh) {
1792 			if (unlikely(conf->expand_progress != MaxSector)) {
1793 				/* expansion might have moved on while waiting for a
1794 				 * stripe, so we must do the range check again.
1795 				 * Expansion could still move past after this
1796 				 * test, but as we are holding a reference to
1797 				 * 'sh', we know that if that happens,
1798 				 *  STRIPE_EXPANDING will get set and the expansion
1799 				 * won't proceed until we finish with the stripe.
1800 				 */
1801 				int must_retry = 0;
1802 				spin_lock_irq(&conf->device_lock);
1803 				if (logical_sector <  conf->expand_progress &&
1804 				    disks == conf->previous_raid_disks)
1805 					/* mismatch, need to try again */
1806 					must_retry = 1;
1807 				spin_unlock_irq(&conf->device_lock);
1808 				if (must_retry) {
1809 					release_stripe(sh);
1810 					goto retry;
1811 				}
1812 			}
1813 			/* FIXME what if we get a false positive because these
1814 			 * are being updated.
1815 			 */
1816 			if (logical_sector >= mddev->suspend_lo &&
1817 			    logical_sector < mddev->suspend_hi) {
1818 				release_stripe(sh);
1819 				schedule();
1820 				goto retry;
1821 			}
1822 
1823 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
1824 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
1825 				/* Stripe is busy expanding or
1826 				 * add failed due to overlap.  Flush everything
1827 				 * and wait a while
1828 				 */
1829 				raid5_unplug_device(mddev->queue);
1830 				release_stripe(sh);
1831 				schedule();
1832 				goto retry;
1833 			}
1834 			finish_wait(&conf->wait_for_overlap, &w);
1835 			raid5_plug_device(conf);
1836 			handle_stripe(sh);
1837 			release_stripe(sh);
1838 		} else {
1839 			/* cannot get stripe for read-ahead, just give-up */
1840 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1841 			finish_wait(&conf->wait_for_overlap, &w);
1842 			break;
1843 		}
1844 
1845 	}
1846 	spin_lock_irq(&conf->device_lock);
1847 	remaining = --bi->bi_phys_segments;
1848 	spin_unlock_irq(&conf->device_lock);
1849 	if (remaining == 0) {
1850 		int bytes = bi->bi_size;
1851 
1852 		if ( bio_data_dir(bi) == WRITE )
1853 			md_write_end(mddev);
1854 		bi->bi_size = 0;
1855 		bi->bi_end_io(bi, bytes, 0);
1856 	}
1857 	return 0;
1858 }
1859 
1860 /* FIXME go_faster isn't used */
1861 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1862 {
1863 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1864 	struct stripe_head *sh;
1865 	int pd_idx;
1866 	sector_t first_sector, last_sector;
1867 	int raid_disks = conf->raid_disks;
1868 	int data_disks = raid_disks-1;
1869 	sector_t max_sector = mddev->size << 1;
1870 	int sync_blocks;
1871 
1872 	if (sector_nr >= max_sector) {
1873 		/* just being told to finish up .. nothing much to do */
1874 		unplug_slaves(mddev);
1875 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
1876 			end_reshape(conf);
1877 			return 0;
1878 		}
1879 
1880 		if (mddev->curr_resync < max_sector) /* aborted */
1881 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1882 					&sync_blocks, 1);
1883 		else /* compelted sync */
1884 			conf->fullsync = 0;
1885 		bitmap_close_sync(mddev->bitmap);
1886 
1887 		return 0;
1888 	}
1889 
1890 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
1891 		/* reshaping is quite different to recovery/resync so it is
1892 		 * handled quite separately ... here.
1893 		 *
1894 		 * On each call to sync_request, we gather one chunk worth of
1895 		 * destination stripes and flag them as expanding.
1896 		 * Then we find all the source stripes and request reads.
1897 		 * As the reads complete, handle_stripe will copy the data
1898 		 * into the destination stripe and release that stripe.
1899 		 */
1900 		int i;
1901 		int dd_idx;
1902 		sector_t writepos, safepos, gap;
1903 
1904 		if (sector_nr == 0 &&
1905 		    conf->expand_progress != 0) {
1906 			/* restarting in the middle, skip the initial sectors */
1907 			sector_nr = conf->expand_progress;
1908 			sector_div(sector_nr, conf->raid_disks-1);
1909 			*skipped = 1;
1910 			return sector_nr;
1911 		}
1912 
1913 		/* we update the metadata when there is more than 3Meg
1914 		 * in the block range (that is rather arbitrary, should
1915 		 * probably be time based) or when the data about to be
1916 		 * copied would over-write the source of the data at
1917 		 * the front of the range.
1918 		 * i.e. one new_stripe forward from expand_progress new_maps
1919 		 * to after where expand_lo old_maps to
1920 		 */
1921 		writepos = conf->expand_progress +
1922 			conf->chunk_size/512*(conf->raid_disks-1);
1923 		sector_div(writepos, conf->raid_disks-1);
1924 		safepos = conf->expand_lo;
1925 		sector_div(safepos, conf->previous_raid_disks-1);
1926 		gap = conf->expand_progress - conf->expand_lo;
1927 
1928 		if (writepos >= safepos ||
1929 		    gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
1930 			/* Cannot proceed until we've updated the superblock... */
1931 			wait_event(conf->wait_for_overlap,
1932 				   atomic_read(&conf->reshape_stripes)==0);
1933 			mddev->reshape_position = conf->expand_progress;
1934 			mddev->sb_dirty = 1;
1935 			md_wakeup_thread(mddev->thread);
1936 			wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
1937 				   kthread_should_stop());
1938 			spin_lock_irq(&conf->device_lock);
1939 			conf->expand_lo = mddev->reshape_position;
1940 			spin_unlock_irq(&conf->device_lock);
1941 			wake_up(&conf->wait_for_overlap);
1942 		}
1943 
1944 		for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
1945 			int j;
1946 			int skipped = 0;
1947 			pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
1948 			sh = get_active_stripe(conf, sector_nr+i,
1949 					       conf->raid_disks, pd_idx, 0);
1950 			set_bit(STRIPE_EXPANDING, &sh->state);
1951 			atomic_inc(&conf->reshape_stripes);
1952 			/* If any of this stripe is beyond the end of the old
1953 			 * array, then we need to zero those blocks
1954 			 */
1955 			for (j=sh->disks; j--;) {
1956 				sector_t s;
1957 				if (j == sh->pd_idx)
1958 					continue;
1959 				s = compute_blocknr(sh, j);
1960 				if (s < (mddev->array_size<<1)) {
1961 					skipped = 1;
1962 					continue;
1963 				}
1964 				memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
1965 				set_bit(R5_Expanded, &sh->dev[j].flags);
1966 				set_bit(R5_UPTODATE, &sh->dev[j].flags);
1967 			}
1968 			if (!skipped) {
1969 				set_bit(STRIPE_EXPAND_READY, &sh->state);
1970 				set_bit(STRIPE_HANDLE, &sh->state);
1971 			}
1972 			release_stripe(sh);
1973 		}
1974 		spin_lock_irq(&conf->device_lock);
1975 		conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
1976 		spin_unlock_irq(&conf->device_lock);
1977 		/* Ok, those stripe are ready. We can start scheduling
1978 		 * reads on the source stripes.
1979 		 * The source stripes are determined by mapping the first and last
1980 		 * block on the destination stripes.
1981 		 */
1982 		raid_disks = conf->previous_raid_disks;
1983 		data_disks = raid_disks - 1;
1984 		first_sector =
1985 			raid5_compute_sector(sector_nr*(conf->raid_disks-1),
1986 					     raid_disks, data_disks,
1987 					     &dd_idx, &pd_idx, conf);
1988 		last_sector =
1989 			raid5_compute_sector((sector_nr+conf->chunk_size/512)
1990 					       *(conf->raid_disks-1) -1,
1991 					     raid_disks, data_disks,
1992 					     &dd_idx, &pd_idx, conf);
1993 		if (last_sector >= (mddev->size<<1))
1994 			last_sector = (mddev->size<<1)-1;
1995 		while (first_sector <= last_sector) {
1996 			pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
1997 			sh = get_active_stripe(conf, first_sector,
1998 					       conf->previous_raid_disks, pd_idx, 0);
1999 			set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2000 			set_bit(STRIPE_HANDLE, &sh->state);
2001 			release_stripe(sh);
2002 			first_sector += STRIPE_SECTORS;
2003 		}
2004 		return conf->chunk_size>>9;
2005 	}
2006 	/* if there is 1 or more failed drives and we are trying
2007 	 * to resync, then assert that we are finished, because there is
2008 	 * nothing we can do.
2009 	 */
2010 	if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2011 		sector_t rv = (mddev->size << 1) - sector_nr;
2012 		*skipped = 1;
2013 		return rv;
2014 	}
2015 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2016 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2017 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2018 		/* we can skip this block, and probably more */
2019 		sync_blocks /= STRIPE_SECTORS;
2020 		*skipped = 1;
2021 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2022 	}
2023 
2024 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2025 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2026 	if (sh == NULL) {
2027 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2028 		/* make sure we don't swamp the stripe cache if someone else
2029 		 * is trying to get access
2030 		 */
2031 		schedule_timeout_uninterruptible(1);
2032 	}
2033 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 0);
2034 	spin_lock(&sh->lock);
2035 	set_bit(STRIPE_SYNCING, &sh->state);
2036 	clear_bit(STRIPE_INSYNC, &sh->state);
2037 	spin_unlock(&sh->lock);
2038 
2039 	handle_stripe(sh);
2040 	release_stripe(sh);
2041 
2042 	return STRIPE_SECTORS;
2043 }
2044 
2045 /*
2046  * This is our raid5 kernel thread.
2047  *
2048  * We scan the hash table for stripes which can be handled now.
2049  * During the scan, completed stripes are saved for us by the interrupt
2050  * handler, so that they will not have to wait for our next wakeup.
2051  */
2052 static void raid5d (mddev_t *mddev)
2053 {
2054 	struct stripe_head *sh;
2055 	raid5_conf_t *conf = mddev_to_conf(mddev);
2056 	int handled;
2057 
2058 	PRINTK("+++ raid5d active\n");
2059 
2060 	md_check_recovery(mddev);
2061 
2062 	handled = 0;
2063 	spin_lock_irq(&conf->device_lock);
2064 	while (1) {
2065 		struct list_head *first;
2066 
2067 		if (conf->seq_flush - conf->seq_write > 0) {
2068 			int seq = conf->seq_flush;
2069 			spin_unlock_irq(&conf->device_lock);
2070 			bitmap_unplug(mddev->bitmap);
2071 			spin_lock_irq(&conf->device_lock);
2072 			conf->seq_write = seq;
2073 			activate_bit_delay(conf);
2074 		}
2075 
2076 		if (list_empty(&conf->handle_list) &&
2077 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2078 		    !blk_queue_plugged(mddev->queue) &&
2079 		    !list_empty(&conf->delayed_list))
2080 			raid5_activate_delayed(conf);
2081 
2082 		if (list_empty(&conf->handle_list))
2083 			break;
2084 
2085 		first = conf->handle_list.next;
2086 		sh = list_entry(first, struct stripe_head, lru);
2087 
2088 		list_del_init(first);
2089 		atomic_inc(&sh->count);
2090 		BUG_ON(atomic_read(&sh->count)!= 1);
2091 		spin_unlock_irq(&conf->device_lock);
2092 
2093 		handled++;
2094 		handle_stripe(sh);
2095 		release_stripe(sh);
2096 
2097 		spin_lock_irq(&conf->device_lock);
2098 	}
2099 	PRINTK("%d stripes handled\n", handled);
2100 
2101 	spin_unlock_irq(&conf->device_lock);
2102 
2103 	unplug_slaves(mddev);
2104 
2105 	PRINTK("--- raid5d inactive\n");
2106 }
2107 
2108 static ssize_t
2109 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
2110 {
2111 	raid5_conf_t *conf = mddev_to_conf(mddev);
2112 	if (conf)
2113 		return sprintf(page, "%d\n", conf->max_nr_stripes);
2114 	else
2115 		return 0;
2116 }
2117 
2118 static ssize_t
2119 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
2120 {
2121 	raid5_conf_t *conf = mddev_to_conf(mddev);
2122 	char *end;
2123 	int new;
2124 	if (len >= PAGE_SIZE)
2125 		return -EINVAL;
2126 	if (!conf)
2127 		return -ENODEV;
2128 
2129 	new = simple_strtoul(page, &end, 10);
2130 	if (!*page || (*end && *end != '\n') )
2131 		return -EINVAL;
2132 	if (new <= 16 || new > 32768)
2133 		return -EINVAL;
2134 	while (new < conf->max_nr_stripes) {
2135 		if (drop_one_stripe(conf))
2136 			conf->max_nr_stripes--;
2137 		else
2138 			break;
2139 	}
2140 	while (new > conf->max_nr_stripes) {
2141 		if (grow_one_stripe(conf))
2142 			conf->max_nr_stripes++;
2143 		else break;
2144 	}
2145 	return len;
2146 }
2147 
2148 static struct md_sysfs_entry
2149 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
2150 				raid5_show_stripe_cache_size,
2151 				raid5_store_stripe_cache_size);
2152 
2153 static ssize_t
2154 stripe_cache_active_show(mddev_t *mddev, char *page)
2155 {
2156 	raid5_conf_t *conf = mddev_to_conf(mddev);
2157 	if (conf)
2158 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
2159 	else
2160 		return 0;
2161 }
2162 
2163 static struct md_sysfs_entry
2164 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
2165 
2166 static struct attribute *raid5_attrs[] =  {
2167 	&raid5_stripecache_size.attr,
2168 	&raid5_stripecache_active.attr,
2169 	NULL,
2170 };
2171 static struct attribute_group raid5_attrs_group = {
2172 	.name = NULL,
2173 	.attrs = raid5_attrs,
2174 };
2175 
2176 static int run(mddev_t *mddev)
2177 {
2178 	raid5_conf_t *conf;
2179 	int raid_disk, memory;
2180 	mdk_rdev_t *rdev;
2181 	struct disk_info *disk;
2182 	struct list_head *tmp;
2183 
2184 	if (mddev->level != 5 && mddev->level != 4) {
2185 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5 (%d)\n",
2186 		       mdname(mddev), mddev->level);
2187 		return -EIO;
2188 	}
2189 
2190 	if (mddev->reshape_position != MaxSector) {
2191 		/* Check that we can continue the reshape.
2192 		 * Currently only disks can change, it must
2193 		 * increase, and we must be past the point where
2194 		 * a stripe over-writes itself
2195 		 */
2196 		sector_t here_new, here_old;
2197 		int old_disks;
2198 
2199 		if (mddev->new_level != mddev->level ||
2200 		    mddev->new_layout != mddev->layout ||
2201 		    mddev->new_chunk != mddev->chunk_size) {
2202 			printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
2203 			       mdname(mddev));
2204 			return -EINVAL;
2205 		}
2206 		if (mddev->delta_disks <= 0) {
2207 			printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
2208 			       mdname(mddev));
2209 			return -EINVAL;
2210 		}
2211 		old_disks = mddev->raid_disks - mddev->delta_disks;
2212 		/* reshape_position must be on a new-stripe boundary, and one
2213 		 * further up in new geometry must map after here in old geometry.
2214 		 */
2215 		here_new = mddev->reshape_position;
2216 		if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
2217 			printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
2218 			return -EINVAL;
2219 		}
2220 		/* here_new is the stripe we will write to */
2221 		here_old = mddev->reshape_position;
2222 		sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
2223 		/* here_old is the first stripe that we might need to read from */
2224 		if (here_new >= here_old) {
2225 			/* Reading from the same stripe as writing to - bad */
2226 			printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
2227 			return -EINVAL;
2228 		}
2229 		printk(KERN_INFO "raid5: reshape will continue\n");
2230 		/* OK, we should be able to continue; */
2231 	}
2232 
2233 
2234 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
2235 	if ((conf = mddev->private) == NULL)
2236 		goto abort;
2237 	if (mddev->reshape_position == MaxSector) {
2238 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
2239 	} else {
2240 		conf->raid_disks = mddev->raid_disks;
2241 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
2242 	}
2243 
2244 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
2245 			      GFP_KERNEL);
2246 	if (!conf->disks)
2247 		goto abort;
2248 
2249 	conf->mddev = mddev;
2250 
2251 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
2252 		goto abort;
2253 
2254 	spin_lock_init(&conf->device_lock);
2255 	init_waitqueue_head(&conf->wait_for_stripe);
2256 	init_waitqueue_head(&conf->wait_for_overlap);
2257 	INIT_LIST_HEAD(&conf->handle_list);
2258 	INIT_LIST_HEAD(&conf->delayed_list);
2259 	INIT_LIST_HEAD(&conf->bitmap_list);
2260 	INIT_LIST_HEAD(&conf->inactive_list);
2261 	atomic_set(&conf->active_stripes, 0);
2262 	atomic_set(&conf->preread_active_stripes, 0);
2263 
2264 	PRINTK("raid5: run(%s) called.\n", mdname(mddev));
2265 
2266 	ITERATE_RDEV(mddev,rdev,tmp) {
2267 		raid_disk = rdev->raid_disk;
2268 		if (raid_disk >= conf->raid_disks
2269 		    || raid_disk < 0)
2270 			continue;
2271 		disk = conf->disks + raid_disk;
2272 
2273 		disk->rdev = rdev;
2274 
2275 		if (test_bit(In_sync, &rdev->flags)) {
2276 			char b[BDEVNAME_SIZE];
2277 			printk(KERN_INFO "raid5: device %s operational as raid"
2278 				" disk %d\n", bdevname(rdev->bdev,b),
2279 				raid_disk);
2280 			conf->working_disks++;
2281 		}
2282 	}
2283 
2284 	/*
2285 	 * 0 for a fully functional array, 1 for a degraded array.
2286 	 */
2287 	mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
2288 	conf->mddev = mddev;
2289 	conf->chunk_size = mddev->chunk_size;
2290 	conf->level = mddev->level;
2291 	conf->algorithm = mddev->layout;
2292 	conf->max_nr_stripes = NR_STRIPES;
2293 	conf->expand_progress = mddev->reshape_position;
2294 
2295 	/* device size must be a multiple of chunk size */
2296 	mddev->size &= ~(mddev->chunk_size/1024 -1);
2297 	mddev->resync_max_sectors = mddev->size << 1;
2298 
2299 	if (!conf->chunk_size || conf->chunk_size % 4) {
2300 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
2301 			conf->chunk_size, mdname(mddev));
2302 		goto abort;
2303 	}
2304 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
2305 		printk(KERN_ERR
2306 			"raid5: unsupported parity algorithm %d for %s\n",
2307 			conf->algorithm, mdname(mddev));
2308 		goto abort;
2309 	}
2310 	if (mddev->degraded > 1) {
2311 		printk(KERN_ERR "raid5: not enough operational devices for %s"
2312 			" (%d/%d failed)\n",
2313 			mdname(mddev), conf->failed_disks, conf->raid_disks);
2314 		goto abort;
2315 	}
2316 
2317 	if (mddev->degraded == 1 &&
2318 	    mddev->recovery_cp != MaxSector) {
2319 		if (mddev->ok_start_degraded)
2320 			printk(KERN_WARNING
2321 			       "raid5: starting dirty degraded array: %s"
2322 			       "- data corruption possible.\n",
2323 			       mdname(mddev));
2324 		else {
2325 			printk(KERN_ERR
2326 			       "raid5: cannot start dirty degraded array for %s\n",
2327 			       mdname(mddev));
2328 			goto abort;
2329 		}
2330 	}
2331 
2332 	{
2333 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
2334 		if (!mddev->thread) {
2335 			printk(KERN_ERR
2336 				"raid5: couldn't allocate thread for %s\n",
2337 				mdname(mddev));
2338 			goto abort;
2339 		}
2340 	}
2341 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
2342 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
2343 	if (grow_stripes(conf, conf->max_nr_stripes)) {
2344 		printk(KERN_ERR
2345 			"raid5: couldn't allocate %dkB for buffers\n", memory);
2346 		shrink_stripes(conf);
2347 		md_unregister_thread(mddev->thread);
2348 		goto abort;
2349 	} else
2350 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
2351 			memory, mdname(mddev));
2352 
2353 	if (mddev->degraded == 0)
2354 		printk("raid5: raid level %d set %s active with %d out of %d"
2355 			" devices, algorithm %d\n", conf->level, mdname(mddev),
2356 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
2357 			conf->algorithm);
2358 	else
2359 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
2360 			" out of %d devices, algorithm %d\n", conf->level,
2361 			mdname(mddev), mddev->raid_disks - mddev->degraded,
2362 			mddev->raid_disks, conf->algorithm);
2363 
2364 	print_raid5_conf(conf);
2365 
2366 	if (conf->expand_progress != MaxSector) {
2367 		printk("...ok start reshape thread\n");
2368 		conf->expand_lo = conf->expand_progress;
2369 		atomic_set(&conf->reshape_stripes, 0);
2370 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2371 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2372 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
2373 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
2374 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
2375 							"%s_reshape");
2376 		/* FIXME if md_register_thread fails?? */
2377 		md_wakeup_thread(mddev->sync_thread);
2378 
2379 	}
2380 
2381 	/* read-ahead size must cover two whole stripes, which is
2382 	 * 2 * (n-1) * chunksize where 'n' is the number of raid devices
2383 	 */
2384 	{
2385 		int stripe = (mddev->raid_disks-1) * mddev->chunk_size
2386 			/ PAGE_SIZE;
2387 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
2388 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
2389 	}
2390 
2391 	/* Ok, everything is just fine now */
2392 	sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
2393 
2394 	mddev->queue->unplug_fn = raid5_unplug_device;
2395 	mddev->queue->issue_flush_fn = raid5_issue_flush;
2396 	mddev->array_size =  mddev->size * (conf->previous_raid_disks - 1);
2397 
2398 	return 0;
2399 abort:
2400 	if (conf) {
2401 		print_raid5_conf(conf);
2402 		kfree(conf->disks);
2403 		kfree(conf->stripe_hashtbl);
2404 		kfree(conf);
2405 	}
2406 	mddev->private = NULL;
2407 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
2408 	return -EIO;
2409 }
2410 
2411 
2412 
2413 static int stop(mddev_t *mddev)
2414 {
2415 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2416 
2417 	md_unregister_thread(mddev->thread);
2418 	mddev->thread = NULL;
2419 	shrink_stripes(conf);
2420 	kfree(conf->stripe_hashtbl);
2421 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2422 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
2423 	kfree(conf->disks);
2424 	kfree(conf);
2425 	mddev->private = NULL;
2426 	return 0;
2427 }
2428 
2429 #if RAID5_DEBUG
2430 static void print_sh (struct stripe_head *sh)
2431 {
2432 	int i;
2433 
2434 	printk("sh %llu, pd_idx %d, state %ld.\n",
2435 		(unsigned long long)sh->sector, sh->pd_idx, sh->state);
2436 	printk("sh %llu,  count %d.\n",
2437 		(unsigned long long)sh->sector, atomic_read(&sh->count));
2438 	printk("sh %llu, ", (unsigned long long)sh->sector);
2439 	for (i = 0; i < sh->disks; i++) {
2440 		printk("(cache%d: %p %ld) ",
2441 			i, sh->dev[i].page, sh->dev[i].flags);
2442 	}
2443 	printk("\n");
2444 }
2445 
2446 static void printall (raid5_conf_t *conf)
2447 {
2448 	struct stripe_head *sh;
2449 	struct hlist_node *hn;
2450 	int i;
2451 
2452 	spin_lock_irq(&conf->device_lock);
2453 	for (i = 0; i < NR_HASH; i++) {
2454 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
2455 			if (sh->raid_conf != conf)
2456 				continue;
2457 			print_sh(sh);
2458 		}
2459 	}
2460 	spin_unlock_irq(&conf->device_lock);
2461 }
2462 #endif
2463 
2464 static void status (struct seq_file *seq, mddev_t *mddev)
2465 {
2466 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2467 	int i;
2468 
2469 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
2470 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
2471 	for (i = 0; i < conf->raid_disks; i++)
2472 		seq_printf (seq, "%s",
2473 			       conf->disks[i].rdev &&
2474 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
2475 	seq_printf (seq, "]");
2476 #if RAID5_DEBUG
2477 #define D(x) \
2478 	seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x))
2479 	printall(conf);
2480 #endif
2481 }
2482 
2483 static void print_raid5_conf (raid5_conf_t *conf)
2484 {
2485 	int i;
2486 	struct disk_info *tmp;
2487 
2488 	printk("RAID5 conf printout:\n");
2489 	if (!conf) {
2490 		printk("(conf==NULL)\n");
2491 		return;
2492 	}
2493 	printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
2494 		 conf->working_disks, conf->failed_disks);
2495 
2496 	for (i = 0; i < conf->raid_disks; i++) {
2497 		char b[BDEVNAME_SIZE];
2498 		tmp = conf->disks + i;
2499 		if (tmp->rdev)
2500 		printk(" disk %d, o:%d, dev:%s\n",
2501 			i, !test_bit(Faulty, &tmp->rdev->flags),
2502 			bdevname(tmp->rdev->bdev,b));
2503 	}
2504 }
2505 
2506 static int raid5_spare_active(mddev_t *mddev)
2507 {
2508 	int i;
2509 	raid5_conf_t *conf = mddev->private;
2510 	struct disk_info *tmp;
2511 
2512 	for (i = 0; i < conf->raid_disks; i++) {
2513 		tmp = conf->disks + i;
2514 		if (tmp->rdev
2515 		    && !test_bit(Faulty, &tmp->rdev->flags)
2516 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
2517 			mddev->degraded--;
2518 			conf->failed_disks--;
2519 			conf->working_disks++;
2520 			set_bit(In_sync, &tmp->rdev->flags);
2521 		}
2522 	}
2523 	print_raid5_conf(conf);
2524 	return 0;
2525 }
2526 
2527 static int raid5_remove_disk(mddev_t *mddev, int number)
2528 {
2529 	raid5_conf_t *conf = mddev->private;
2530 	int err = 0;
2531 	mdk_rdev_t *rdev;
2532 	struct disk_info *p = conf->disks + number;
2533 
2534 	print_raid5_conf(conf);
2535 	rdev = p->rdev;
2536 	if (rdev) {
2537 		if (test_bit(In_sync, &rdev->flags) ||
2538 		    atomic_read(&rdev->nr_pending)) {
2539 			err = -EBUSY;
2540 			goto abort;
2541 		}
2542 		p->rdev = NULL;
2543 		synchronize_rcu();
2544 		if (atomic_read(&rdev->nr_pending)) {
2545 			/* lost the race, try later */
2546 			err = -EBUSY;
2547 			p->rdev = rdev;
2548 		}
2549 	}
2550 abort:
2551 
2552 	print_raid5_conf(conf);
2553 	return err;
2554 }
2555 
2556 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
2557 {
2558 	raid5_conf_t *conf = mddev->private;
2559 	int found = 0;
2560 	int disk;
2561 	struct disk_info *p;
2562 
2563 	if (mddev->degraded > 1)
2564 		/* no point adding a device */
2565 		return 0;
2566 
2567 	/*
2568 	 * find the disk ...
2569 	 */
2570 	for (disk=0; disk < conf->raid_disks; disk++)
2571 		if ((p=conf->disks + disk)->rdev == NULL) {
2572 			clear_bit(In_sync, &rdev->flags);
2573 			rdev->raid_disk = disk;
2574 			found = 1;
2575 			if (rdev->saved_raid_disk != disk)
2576 				conf->fullsync = 1;
2577 			rcu_assign_pointer(p->rdev, rdev);
2578 			break;
2579 		}
2580 	print_raid5_conf(conf);
2581 	return found;
2582 }
2583 
2584 static int raid5_resize(mddev_t *mddev, sector_t sectors)
2585 {
2586 	/* no resync is happening, and there is enough space
2587 	 * on all devices, so we can resize.
2588 	 * We need to make sure resync covers any new space.
2589 	 * If the array is shrinking we should possibly wait until
2590 	 * any io in the removed space completes, but it hardly seems
2591 	 * worth it.
2592 	 */
2593 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
2594 	mddev->array_size = (sectors * (mddev->raid_disks-1))>>1;
2595 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2596 	mddev->changed = 1;
2597 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
2598 		mddev->recovery_cp = mddev->size << 1;
2599 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2600 	}
2601 	mddev->size = sectors /2;
2602 	mddev->resync_max_sectors = sectors;
2603 	return 0;
2604 }
2605 
2606 #ifdef CONFIG_MD_RAID5_RESHAPE
2607 static int raid5_check_reshape(mddev_t *mddev)
2608 {
2609 	raid5_conf_t *conf = mddev_to_conf(mddev);
2610 	int err;
2611 
2612 	if (mddev->delta_disks < 0 ||
2613 	    mddev->new_level != mddev->level)
2614 		return -EINVAL; /* Cannot shrink array or change level yet */
2615 	if (mddev->delta_disks == 0)
2616 		return 0; /* nothing to do */
2617 
2618 	/* Can only proceed if there are plenty of stripe_heads.
2619 	 * We need a minimum of one full stripe,, and for sensible progress
2620 	 * it is best to have about 4 times that.
2621 	 * If we require 4 times, then the default 256 4K stripe_heads will
2622 	 * allow for chunk sizes up to 256K, which is probably OK.
2623 	 * If the chunk size is greater, user-space should request more
2624 	 * stripe_heads first.
2625 	 */
2626 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
2627 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
2628 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
2629 		       (mddev->chunk_size / STRIPE_SIZE)*4);
2630 		return -ENOSPC;
2631 	}
2632 
2633 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
2634 	if (err)
2635 		return err;
2636 
2637 	/* looks like we might be able to manage this */
2638 	return 0;
2639 }
2640 
2641 static int raid5_start_reshape(mddev_t *mddev)
2642 {
2643 	raid5_conf_t *conf = mddev_to_conf(mddev);
2644 	mdk_rdev_t *rdev;
2645 	struct list_head *rtmp;
2646 	int spares = 0;
2647 	int added_devices = 0;
2648 
2649 	if (mddev->degraded ||
2650 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2651 		return -EBUSY;
2652 
2653 	ITERATE_RDEV(mddev, rdev, rtmp)
2654 		if (rdev->raid_disk < 0 &&
2655 		    !test_bit(Faulty, &rdev->flags))
2656 			spares++;
2657 
2658 	if (spares < mddev->delta_disks-1)
2659 		/* Not enough devices even to make a degraded array
2660 		 * of that size
2661 		 */
2662 		return -EINVAL;
2663 
2664 	atomic_set(&conf->reshape_stripes, 0);
2665 	spin_lock_irq(&conf->device_lock);
2666 	conf->previous_raid_disks = conf->raid_disks;
2667 	conf->raid_disks += mddev->delta_disks;
2668 	conf->expand_progress = 0;
2669 	conf->expand_lo = 0;
2670 	spin_unlock_irq(&conf->device_lock);
2671 
2672 	/* Add some new drives, as many as will fit.
2673 	 * We know there are enough to make the newly sized array work.
2674 	 */
2675 	ITERATE_RDEV(mddev, rdev, rtmp)
2676 		if (rdev->raid_disk < 0 &&
2677 		    !test_bit(Faulty, &rdev->flags)) {
2678 			if (raid5_add_disk(mddev, rdev)) {
2679 				char nm[20];
2680 				set_bit(In_sync, &rdev->flags);
2681 				conf->working_disks++;
2682 				added_devices++;
2683 				sprintf(nm, "rd%d", rdev->raid_disk);
2684 				sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2685 			} else
2686 				break;
2687 		}
2688 
2689 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
2690 	mddev->raid_disks = conf->raid_disks;
2691 	mddev->reshape_position = 0;
2692 	mddev->sb_dirty = 1;
2693 
2694 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2695 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2696 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
2697 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
2698 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
2699 						"%s_reshape");
2700 	if (!mddev->sync_thread) {
2701 		mddev->recovery = 0;
2702 		spin_lock_irq(&conf->device_lock);
2703 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
2704 		conf->expand_progress = MaxSector;
2705 		spin_unlock_irq(&conf->device_lock);
2706 		return -EAGAIN;
2707 	}
2708 	md_wakeup_thread(mddev->sync_thread);
2709 	md_new_event(mddev);
2710 	return 0;
2711 }
2712 #endif
2713 
2714 static void end_reshape(raid5_conf_t *conf)
2715 {
2716 	struct block_device *bdev;
2717 
2718 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
2719 		conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
2720 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
2721 		conf->mddev->changed = 1;
2722 
2723 		bdev = bdget_disk(conf->mddev->gendisk, 0);
2724 		if (bdev) {
2725 			mutex_lock(&bdev->bd_inode->i_mutex);
2726 			i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
2727 			mutex_unlock(&bdev->bd_inode->i_mutex);
2728 			bdput(bdev);
2729 		}
2730 		spin_lock_irq(&conf->device_lock);
2731 		conf->expand_progress = MaxSector;
2732 		spin_unlock_irq(&conf->device_lock);
2733 		conf->mddev->reshape_position = MaxSector;
2734 	}
2735 }
2736 
2737 static void raid5_quiesce(mddev_t *mddev, int state)
2738 {
2739 	raid5_conf_t *conf = mddev_to_conf(mddev);
2740 
2741 	switch(state) {
2742 	case 2: /* resume for a suspend */
2743 		wake_up(&conf->wait_for_overlap);
2744 		break;
2745 
2746 	case 1: /* stop all writes */
2747 		spin_lock_irq(&conf->device_lock);
2748 		conf->quiesce = 1;
2749 		wait_event_lock_irq(conf->wait_for_stripe,
2750 				    atomic_read(&conf->active_stripes) == 0,
2751 				    conf->device_lock, /* nothing */);
2752 		spin_unlock_irq(&conf->device_lock);
2753 		break;
2754 
2755 	case 0: /* re-enable writes */
2756 		spin_lock_irq(&conf->device_lock);
2757 		conf->quiesce = 0;
2758 		wake_up(&conf->wait_for_stripe);
2759 		wake_up(&conf->wait_for_overlap);
2760 		spin_unlock_irq(&conf->device_lock);
2761 		break;
2762 	}
2763 }
2764 
2765 static struct mdk_personality raid5_personality =
2766 {
2767 	.name		= "raid5",
2768 	.level		= 5,
2769 	.owner		= THIS_MODULE,
2770 	.make_request	= make_request,
2771 	.run		= run,
2772 	.stop		= stop,
2773 	.status		= status,
2774 	.error_handler	= error,
2775 	.hot_add_disk	= raid5_add_disk,
2776 	.hot_remove_disk= raid5_remove_disk,
2777 	.spare_active	= raid5_spare_active,
2778 	.sync_request	= sync_request,
2779 	.resize		= raid5_resize,
2780 #ifdef CONFIG_MD_RAID5_RESHAPE
2781 	.check_reshape	= raid5_check_reshape,
2782 	.start_reshape  = raid5_start_reshape,
2783 #endif
2784 	.quiesce	= raid5_quiesce,
2785 };
2786 
2787 static struct mdk_personality raid4_personality =
2788 {
2789 	.name		= "raid4",
2790 	.level		= 4,
2791 	.owner		= THIS_MODULE,
2792 	.make_request	= make_request,
2793 	.run		= run,
2794 	.stop		= stop,
2795 	.status		= status,
2796 	.error_handler	= error,
2797 	.hot_add_disk	= raid5_add_disk,
2798 	.hot_remove_disk= raid5_remove_disk,
2799 	.spare_active	= raid5_spare_active,
2800 	.sync_request	= sync_request,
2801 	.resize		= raid5_resize,
2802 	.quiesce	= raid5_quiesce,
2803 };
2804 
2805 static int __init raid5_init(void)
2806 {
2807 	register_md_personality(&raid5_personality);
2808 	register_md_personality(&raid4_personality);
2809 	return 0;
2810 }
2811 
2812 static void raid5_exit(void)
2813 {
2814 	unregister_md_personality(&raid5_personality);
2815 	unregister_md_personality(&raid4_personality);
2816 }
2817 
2818 module_init(raid5_init);
2819 module_exit(raid5_exit);
2820 MODULE_LICENSE("GPL");
2821 MODULE_ALIAS("md-personality-4"); /* RAID5 */
2822 MODULE_ALIAS("md-raid5");
2823 MODULE_ALIAS("md-raid4");
2824 MODULE_ALIAS("md-level-5");
2825 MODULE_ALIAS("md-level-4");
2826