1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * 6 * RAID-5 management functions. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * You should have received a copy of the GNU General Public License 14 * (for example /usr/src/linux/COPYING); if not, write to the Free 15 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 16 */ 17 18 19 #include <linux/config.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/raid/raid5.h> 23 #include <linux/highmem.h> 24 #include <linux/bitops.h> 25 #include <linux/kthread.h> 26 #include <asm/atomic.h> 27 28 #include <linux/raid/bitmap.h> 29 30 /* 31 * Stripe cache 32 */ 33 34 #define NR_STRIPES 256 35 #define STRIPE_SIZE PAGE_SIZE 36 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 37 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 38 #define IO_THRESHOLD 1 39 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 40 #define HASH_MASK (NR_HASH - 1) 41 42 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) 43 44 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 45 * order without overlap. There may be several bio's per stripe+device, and 46 * a bio could span several devices. 47 * When walking this list for a particular stripe+device, we must never proceed 48 * beyond a bio that extends past this device, as the next bio might no longer 49 * be valid. 50 * This macro is used to determine the 'next' bio in the list, given the sector 51 * of the current stripe+device 52 */ 53 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) 54 /* 55 * The following can be used to debug the driver 56 */ 57 #define RAID5_DEBUG 0 58 #define RAID5_PARANOIA 1 59 #if RAID5_PARANOIA && defined(CONFIG_SMP) 60 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) 61 #else 62 # define CHECK_DEVLOCK() 63 #endif 64 65 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x))) 66 #if RAID5_DEBUG 67 #define inline 68 #define __inline__ 69 #endif 70 71 static void print_raid5_conf (raid5_conf_t *conf); 72 73 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) 74 { 75 if (atomic_dec_and_test(&sh->count)) { 76 BUG_ON(!list_empty(&sh->lru)); 77 BUG_ON(atomic_read(&conf->active_stripes)==0); 78 if (test_bit(STRIPE_HANDLE, &sh->state)) { 79 if (test_bit(STRIPE_DELAYED, &sh->state)) 80 list_add_tail(&sh->lru, &conf->delayed_list); 81 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 82 conf->seq_write == sh->bm_seq) 83 list_add_tail(&sh->lru, &conf->bitmap_list); 84 else { 85 clear_bit(STRIPE_BIT_DELAY, &sh->state); 86 list_add_tail(&sh->lru, &conf->handle_list); 87 } 88 md_wakeup_thread(conf->mddev->thread); 89 } else { 90 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 91 atomic_dec(&conf->preread_active_stripes); 92 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 93 md_wakeup_thread(conf->mddev->thread); 94 } 95 atomic_dec(&conf->active_stripes); 96 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 97 list_add_tail(&sh->lru, &conf->inactive_list); 98 wake_up(&conf->wait_for_stripe); 99 } 100 } 101 } 102 } 103 static void release_stripe(struct stripe_head *sh) 104 { 105 raid5_conf_t *conf = sh->raid_conf; 106 unsigned long flags; 107 108 spin_lock_irqsave(&conf->device_lock, flags); 109 __release_stripe(conf, sh); 110 spin_unlock_irqrestore(&conf->device_lock, flags); 111 } 112 113 static inline void remove_hash(struct stripe_head *sh) 114 { 115 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); 116 117 hlist_del_init(&sh->hash); 118 } 119 120 static void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) 121 { 122 struct hlist_head *hp = stripe_hash(conf, sh->sector); 123 124 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); 125 126 CHECK_DEVLOCK(); 127 hlist_add_head(&sh->hash, hp); 128 } 129 130 131 /* find an idle stripe, make sure it is unhashed, and return it. */ 132 static struct stripe_head *get_free_stripe(raid5_conf_t *conf) 133 { 134 struct stripe_head *sh = NULL; 135 struct list_head *first; 136 137 CHECK_DEVLOCK(); 138 if (list_empty(&conf->inactive_list)) 139 goto out; 140 first = conf->inactive_list.next; 141 sh = list_entry(first, struct stripe_head, lru); 142 list_del_init(first); 143 remove_hash(sh); 144 atomic_inc(&conf->active_stripes); 145 out: 146 return sh; 147 } 148 149 static void shrink_buffers(struct stripe_head *sh, int num) 150 { 151 struct page *p; 152 int i; 153 154 for (i=0; i<num ; i++) { 155 p = sh->dev[i].page; 156 if (!p) 157 continue; 158 sh->dev[i].page = NULL; 159 put_page(p); 160 } 161 } 162 163 static int grow_buffers(struct stripe_head *sh, int num) 164 { 165 int i; 166 167 for (i=0; i<num; i++) { 168 struct page *page; 169 170 if (!(page = alloc_page(GFP_KERNEL))) { 171 return 1; 172 } 173 sh->dev[i].page = page; 174 } 175 return 0; 176 } 177 178 static void raid5_build_block (struct stripe_head *sh, int i); 179 180 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks) 181 { 182 raid5_conf_t *conf = sh->raid_conf; 183 int i; 184 185 BUG_ON(atomic_read(&sh->count) != 0); 186 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 187 188 CHECK_DEVLOCK(); 189 PRINTK("init_stripe called, stripe %llu\n", 190 (unsigned long long)sh->sector); 191 192 remove_hash(sh); 193 194 sh->sector = sector; 195 sh->pd_idx = pd_idx; 196 sh->state = 0; 197 198 sh->disks = disks; 199 200 for (i = sh->disks; i--; ) { 201 struct r5dev *dev = &sh->dev[i]; 202 203 if (dev->toread || dev->towrite || dev->written || 204 test_bit(R5_LOCKED, &dev->flags)) { 205 printk("sector=%llx i=%d %p %p %p %d\n", 206 (unsigned long long)sh->sector, i, dev->toread, 207 dev->towrite, dev->written, 208 test_bit(R5_LOCKED, &dev->flags)); 209 BUG(); 210 } 211 dev->flags = 0; 212 raid5_build_block(sh, i); 213 } 214 insert_hash(conf, sh); 215 } 216 217 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks) 218 { 219 struct stripe_head *sh; 220 struct hlist_node *hn; 221 222 CHECK_DEVLOCK(); 223 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector); 224 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 225 if (sh->sector == sector && sh->disks == disks) 226 return sh; 227 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector); 228 return NULL; 229 } 230 231 static void unplug_slaves(mddev_t *mddev); 232 static void raid5_unplug_device(request_queue_t *q); 233 234 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks, 235 int pd_idx, int noblock) 236 { 237 struct stripe_head *sh; 238 239 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector); 240 241 spin_lock_irq(&conf->device_lock); 242 243 do { 244 wait_event_lock_irq(conf->wait_for_stripe, 245 conf->quiesce == 0, 246 conf->device_lock, /* nothing */); 247 sh = __find_stripe(conf, sector, disks); 248 if (!sh) { 249 if (!conf->inactive_blocked) 250 sh = get_free_stripe(conf); 251 if (noblock && sh == NULL) 252 break; 253 if (!sh) { 254 conf->inactive_blocked = 1; 255 wait_event_lock_irq(conf->wait_for_stripe, 256 !list_empty(&conf->inactive_list) && 257 (atomic_read(&conf->active_stripes) 258 < (conf->max_nr_stripes *3/4) 259 || !conf->inactive_blocked), 260 conf->device_lock, 261 unplug_slaves(conf->mddev) 262 ); 263 conf->inactive_blocked = 0; 264 } else 265 init_stripe(sh, sector, pd_idx, disks); 266 } else { 267 if (atomic_read(&sh->count)) { 268 BUG_ON(!list_empty(&sh->lru)); 269 } else { 270 if (!test_bit(STRIPE_HANDLE, &sh->state)) 271 atomic_inc(&conf->active_stripes); 272 if (!list_empty(&sh->lru)) 273 list_del_init(&sh->lru); 274 } 275 } 276 } while (sh == NULL); 277 278 if (sh) 279 atomic_inc(&sh->count); 280 281 spin_unlock_irq(&conf->device_lock); 282 return sh; 283 } 284 285 static int grow_one_stripe(raid5_conf_t *conf) 286 { 287 struct stripe_head *sh; 288 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); 289 if (!sh) 290 return 0; 291 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev)); 292 sh->raid_conf = conf; 293 spin_lock_init(&sh->lock); 294 295 if (grow_buffers(sh, conf->raid_disks)) { 296 shrink_buffers(sh, conf->raid_disks); 297 kmem_cache_free(conf->slab_cache, sh); 298 return 0; 299 } 300 sh->disks = conf->raid_disks; 301 /* we just created an active stripe so... */ 302 atomic_set(&sh->count, 1); 303 atomic_inc(&conf->active_stripes); 304 INIT_LIST_HEAD(&sh->lru); 305 release_stripe(sh); 306 return 1; 307 } 308 309 static int grow_stripes(raid5_conf_t *conf, int num) 310 { 311 kmem_cache_t *sc; 312 int devs = conf->raid_disks; 313 314 sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev)); 315 sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev)); 316 conf->active_name = 0; 317 sc = kmem_cache_create(conf->cache_name[conf->active_name], 318 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 319 0, 0, NULL, NULL); 320 if (!sc) 321 return 1; 322 conf->slab_cache = sc; 323 conf->pool_size = devs; 324 while (num--) { 325 if (!grow_one_stripe(conf)) 326 return 1; 327 } 328 return 0; 329 } 330 331 #ifdef CONFIG_MD_RAID5_RESHAPE 332 static int resize_stripes(raid5_conf_t *conf, int newsize) 333 { 334 /* Make all the stripes able to hold 'newsize' devices. 335 * New slots in each stripe get 'page' set to a new page. 336 * 337 * This happens in stages: 338 * 1/ create a new kmem_cache and allocate the required number of 339 * stripe_heads. 340 * 2/ gather all the old stripe_heads and tranfer the pages across 341 * to the new stripe_heads. This will have the side effect of 342 * freezing the array as once all stripe_heads have been collected, 343 * no IO will be possible. Old stripe heads are freed once their 344 * pages have been transferred over, and the old kmem_cache is 345 * freed when all stripes are done. 346 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 347 * we simple return a failre status - no need to clean anything up. 348 * 4/ allocate new pages for the new slots in the new stripe_heads. 349 * If this fails, we don't bother trying the shrink the 350 * stripe_heads down again, we just leave them as they are. 351 * As each stripe_head is processed the new one is released into 352 * active service. 353 * 354 * Once step2 is started, we cannot afford to wait for a write, 355 * so we use GFP_NOIO allocations. 356 */ 357 struct stripe_head *osh, *nsh; 358 LIST_HEAD(newstripes); 359 struct disk_info *ndisks; 360 int err = 0; 361 kmem_cache_t *sc; 362 int i; 363 364 if (newsize <= conf->pool_size) 365 return 0; /* never bother to shrink */ 366 367 /* Step 1 */ 368 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 369 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 370 0, 0, NULL, NULL); 371 if (!sc) 372 return -ENOMEM; 373 374 for (i = conf->max_nr_stripes; i; i--) { 375 nsh = kmem_cache_alloc(sc, GFP_KERNEL); 376 if (!nsh) 377 break; 378 379 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); 380 381 nsh->raid_conf = conf; 382 spin_lock_init(&nsh->lock); 383 384 list_add(&nsh->lru, &newstripes); 385 } 386 if (i) { 387 /* didn't get enough, give up */ 388 while (!list_empty(&newstripes)) { 389 nsh = list_entry(newstripes.next, struct stripe_head, lru); 390 list_del(&nsh->lru); 391 kmem_cache_free(sc, nsh); 392 } 393 kmem_cache_destroy(sc); 394 return -ENOMEM; 395 } 396 /* Step 2 - Must use GFP_NOIO now. 397 * OK, we have enough stripes, start collecting inactive 398 * stripes and copying them over 399 */ 400 list_for_each_entry(nsh, &newstripes, lru) { 401 spin_lock_irq(&conf->device_lock); 402 wait_event_lock_irq(conf->wait_for_stripe, 403 !list_empty(&conf->inactive_list), 404 conf->device_lock, 405 unplug_slaves(conf->mddev) 406 ); 407 osh = get_free_stripe(conf); 408 spin_unlock_irq(&conf->device_lock); 409 atomic_set(&nsh->count, 1); 410 for(i=0; i<conf->pool_size; i++) 411 nsh->dev[i].page = osh->dev[i].page; 412 for( ; i<newsize; i++) 413 nsh->dev[i].page = NULL; 414 kmem_cache_free(conf->slab_cache, osh); 415 } 416 kmem_cache_destroy(conf->slab_cache); 417 418 /* Step 3. 419 * At this point, we are holding all the stripes so the array 420 * is completely stalled, so now is a good time to resize 421 * conf->disks. 422 */ 423 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 424 if (ndisks) { 425 for (i=0; i<conf->raid_disks; i++) 426 ndisks[i] = conf->disks[i]; 427 kfree(conf->disks); 428 conf->disks = ndisks; 429 } else 430 err = -ENOMEM; 431 432 /* Step 4, return new stripes to service */ 433 while(!list_empty(&newstripes)) { 434 nsh = list_entry(newstripes.next, struct stripe_head, lru); 435 list_del_init(&nsh->lru); 436 for (i=conf->raid_disks; i < newsize; i++) 437 if (nsh->dev[i].page == NULL) { 438 struct page *p = alloc_page(GFP_NOIO); 439 nsh->dev[i].page = p; 440 if (!p) 441 err = -ENOMEM; 442 } 443 release_stripe(nsh); 444 } 445 /* critical section pass, GFP_NOIO no longer needed */ 446 447 conf->slab_cache = sc; 448 conf->active_name = 1-conf->active_name; 449 conf->pool_size = newsize; 450 return err; 451 } 452 #endif 453 454 static int drop_one_stripe(raid5_conf_t *conf) 455 { 456 struct stripe_head *sh; 457 458 spin_lock_irq(&conf->device_lock); 459 sh = get_free_stripe(conf); 460 spin_unlock_irq(&conf->device_lock); 461 if (!sh) 462 return 0; 463 BUG_ON(atomic_read(&sh->count)); 464 shrink_buffers(sh, conf->pool_size); 465 kmem_cache_free(conf->slab_cache, sh); 466 atomic_dec(&conf->active_stripes); 467 return 1; 468 } 469 470 static void shrink_stripes(raid5_conf_t *conf) 471 { 472 while (drop_one_stripe(conf)) 473 ; 474 475 if (conf->slab_cache) 476 kmem_cache_destroy(conf->slab_cache); 477 conf->slab_cache = NULL; 478 } 479 480 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done, 481 int error) 482 { 483 struct stripe_head *sh = bi->bi_private; 484 raid5_conf_t *conf = sh->raid_conf; 485 int disks = sh->disks, i; 486 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 487 488 if (bi->bi_size) 489 return 1; 490 491 for (i=0 ; i<disks; i++) 492 if (bi == &sh->dev[i].req) 493 break; 494 495 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", 496 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 497 uptodate); 498 if (i == disks) { 499 BUG(); 500 return 0; 501 } 502 503 if (uptodate) { 504 #if 0 505 struct bio *bio; 506 unsigned long flags; 507 spin_lock_irqsave(&conf->device_lock, flags); 508 /* we can return a buffer if we bypassed the cache or 509 * if the top buffer is not in highmem. If there are 510 * multiple buffers, leave the extra work to 511 * handle_stripe 512 */ 513 buffer = sh->bh_read[i]; 514 if (buffer && 515 (!PageHighMem(buffer->b_page) 516 || buffer->b_page == bh->b_page ) 517 ) { 518 sh->bh_read[i] = buffer->b_reqnext; 519 buffer->b_reqnext = NULL; 520 } else 521 buffer = NULL; 522 spin_unlock_irqrestore(&conf->device_lock, flags); 523 if (sh->bh_page[i]==bh->b_page) 524 set_buffer_uptodate(bh); 525 if (buffer) { 526 if (buffer->b_page != bh->b_page) 527 memcpy(buffer->b_data, bh->b_data, bh->b_size); 528 buffer->b_end_io(buffer, 1); 529 } 530 #else 531 set_bit(R5_UPTODATE, &sh->dev[i].flags); 532 #endif 533 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 534 printk(KERN_INFO "raid5: read error corrected!!\n"); 535 clear_bit(R5_ReadError, &sh->dev[i].flags); 536 clear_bit(R5_ReWrite, &sh->dev[i].flags); 537 } 538 if (atomic_read(&conf->disks[i].rdev->read_errors)) 539 atomic_set(&conf->disks[i].rdev->read_errors, 0); 540 } else { 541 int retry = 0; 542 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 543 atomic_inc(&conf->disks[i].rdev->read_errors); 544 if (conf->mddev->degraded) 545 printk(KERN_WARNING "raid5: read error not correctable.\n"); 546 else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) 547 /* Oh, no!!! */ 548 printk(KERN_WARNING "raid5: read error NOT corrected!!\n"); 549 else if (atomic_read(&conf->disks[i].rdev->read_errors) 550 > conf->max_nr_stripes) 551 printk(KERN_WARNING 552 "raid5: Too many read errors, failing device.\n"); 553 else 554 retry = 1; 555 if (retry) 556 set_bit(R5_ReadError, &sh->dev[i].flags); 557 else { 558 clear_bit(R5_ReadError, &sh->dev[i].flags); 559 clear_bit(R5_ReWrite, &sh->dev[i].flags); 560 md_error(conf->mddev, conf->disks[i].rdev); 561 } 562 } 563 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 564 #if 0 565 /* must restore b_page before unlocking buffer... */ 566 if (sh->bh_page[i] != bh->b_page) { 567 bh->b_page = sh->bh_page[i]; 568 bh->b_data = page_address(bh->b_page); 569 clear_buffer_uptodate(bh); 570 } 571 #endif 572 clear_bit(R5_LOCKED, &sh->dev[i].flags); 573 set_bit(STRIPE_HANDLE, &sh->state); 574 release_stripe(sh); 575 return 0; 576 } 577 578 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done, 579 int error) 580 { 581 struct stripe_head *sh = bi->bi_private; 582 raid5_conf_t *conf = sh->raid_conf; 583 int disks = sh->disks, i; 584 unsigned long flags; 585 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 586 587 if (bi->bi_size) 588 return 1; 589 590 for (i=0 ; i<disks; i++) 591 if (bi == &sh->dev[i].req) 592 break; 593 594 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", 595 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 596 uptodate); 597 if (i == disks) { 598 BUG(); 599 return 0; 600 } 601 602 spin_lock_irqsave(&conf->device_lock, flags); 603 if (!uptodate) 604 md_error(conf->mddev, conf->disks[i].rdev); 605 606 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 607 608 clear_bit(R5_LOCKED, &sh->dev[i].flags); 609 set_bit(STRIPE_HANDLE, &sh->state); 610 __release_stripe(conf, sh); 611 spin_unlock_irqrestore(&conf->device_lock, flags); 612 return 0; 613 } 614 615 616 static sector_t compute_blocknr(struct stripe_head *sh, int i); 617 618 static void raid5_build_block (struct stripe_head *sh, int i) 619 { 620 struct r5dev *dev = &sh->dev[i]; 621 622 bio_init(&dev->req); 623 dev->req.bi_io_vec = &dev->vec; 624 dev->req.bi_vcnt++; 625 dev->req.bi_max_vecs++; 626 dev->vec.bv_page = dev->page; 627 dev->vec.bv_len = STRIPE_SIZE; 628 dev->vec.bv_offset = 0; 629 630 dev->req.bi_sector = sh->sector; 631 dev->req.bi_private = sh; 632 633 dev->flags = 0; 634 if (i != sh->pd_idx) 635 dev->sector = compute_blocknr(sh, i); 636 } 637 638 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 639 { 640 char b[BDEVNAME_SIZE]; 641 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 642 PRINTK("raid5: error called\n"); 643 644 if (!test_bit(Faulty, &rdev->flags)) { 645 mddev->sb_dirty = 1; 646 if (test_bit(In_sync, &rdev->flags)) { 647 conf->working_disks--; 648 mddev->degraded++; 649 conf->failed_disks++; 650 clear_bit(In_sync, &rdev->flags); 651 /* 652 * if recovery was running, make sure it aborts. 653 */ 654 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 655 } 656 set_bit(Faulty, &rdev->flags); 657 printk (KERN_ALERT 658 "raid5: Disk failure on %s, disabling device." 659 " Operation continuing on %d devices\n", 660 bdevname(rdev->bdev,b), conf->working_disks); 661 } 662 } 663 664 /* 665 * Input: a 'big' sector number, 666 * Output: index of the data and parity disk, and the sector # in them. 667 */ 668 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks, 669 unsigned int data_disks, unsigned int * dd_idx, 670 unsigned int * pd_idx, raid5_conf_t *conf) 671 { 672 long stripe; 673 unsigned long chunk_number; 674 unsigned int chunk_offset; 675 sector_t new_sector; 676 int sectors_per_chunk = conf->chunk_size >> 9; 677 678 /* First compute the information on this sector */ 679 680 /* 681 * Compute the chunk number and the sector offset inside the chunk 682 */ 683 chunk_offset = sector_div(r_sector, sectors_per_chunk); 684 chunk_number = r_sector; 685 BUG_ON(r_sector != chunk_number); 686 687 /* 688 * Compute the stripe number 689 */ 690 stripe = chunk_number / data_disks; 691 692 /* 693 * Compute the data disk and parity disk indexes inside the stripe 694 */ 695 *dd_idx = chunk_number % data_disks; 696 697 /* 698 * Select the parity disk based on the user selected algorithm. 699 */ 700 if (conf->level == 4) 701 *pd_idx = data_disks; 702 else switch (conf->algorithm) { 703 case ALGORITHM_LEFT_ASYMMETRIC: 704 *pd_idx = data_disks - stripe % raid_disks; 705 if (*dd_idx >= *pd_idx) 706 (*dd_idx)++; 707 break; 708 case ALGORITHM_RIGHT_ASYMMETRIC: 709 *pd_idx = stripe % raid_disks; 710 if (*dd_idx >= *pd_idx) 711 (*dd_idx)++; 712 break; 713 case ALGORITHM_LEFT_SYMMETRIC: 714 *pd_idx = data_disks - stripe % raid_disks; 715 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 716 break; 717 case ALGORITHM_RIGHT_SYMMETRIC: 718 *pd_idx = stripe % raid_disks; 719 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 720 break; 721 default: 722 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 723 conf->algorithm); 724 } 725 726 /* 727 * Finally, compute the new sector number 728 */ 729 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 730 return new_sector; 731 } 732 733 734 static sector_t compute_blocknr(struct stripe_head *sh, int i) 735 { 736 raid5_conf_t *conf = sh->raid_conf; 737 int raid_disks = sh->disks, data_disks = raid_disks - 1; 738 sector_t new_sector = sh->sector, check; 739 int sectors_per_chunk = conf->chunk_size >> 9; 740 sector_t stripe; 741 int chunk_offset; 742 int chunk_number, dummy1, dummy2, dd_idx = i; 743 sector_t r_sector; 744 745 chunk_offset = sector_div(new_sector, sectors_per_chunk); 746 stripe = new_sector; 747 BUG_ON(new_sector != stripe); 748 749 750 switch (conf->algorithm) { 751 case ALGORITHM_LEFT_ASYMMETRIC: 752 case ALGORITHM_RIGHT_ASYMMETRIC: 753 if (i > sh->pd_idx) 754 i--; 755 break; 756 case ALGORITHM_LEFT_SYMMETRIC: 757 case ALGORITHM_RIGHT_SYMMETRIC: 758 if (i < sh->pd_idx) 759 i += raid_disks; 760 i -= (sh->pd_idx + 1); 761 break; 762 default: 763 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 764 conf->algorithm); 765 } 766 767 chunk_number = stripe * data_disks + i; 768 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; 769 770 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); 771 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { 772 printk(KERN_ERR "compute_blocknr: map not correct\n"); 773 return 0; 774 } 775 return r_sector; 776 } 777 778 779 780 /* 781 * Copy data between a page in the stripe cache, and a bio. 782 * There are no alignment or size guarantees between the page or the 783 * bio except that there is some overlap. 784 * All iovecs in the bio must be considered. 785 */ 786 static void copy_data(int frombio, struct bio *bio, 787 struct page *page, 788 sector_t sector) 789 { 790 char *pa = page_address(page); 791 struct bio_vec *bvl; 792 int i; 793 int page_offset; 794 795 if (bio->bi_sector >= sector) 796 page_offset = (signed)(bio->bi_sector - sector) * 512; 797 else 798 page_offset = (signed)(sector - bio->bi_sector) * -512; 799 bio_for_each_segment(bvl, bio, i) { 800 int len = bio_iovec_idx(bio,i)->bv_len; 801 int clen; 802 int b_offset = 0; 803 804 if (page_offset < 0) { 805 b_offset = -page_offset; 806 page_offset += b_offset; 807 len -= b_offset; 808 } 809 810 if (len > 0 && page_offset + len > STRIPE_SIZE) 811 clen = STRIPE_SIZE - page_offset; 812 else clen = len; 813 814 if (clen > 0) { 815 char *ba = __bio_kmap_atomic(bio, i, KM_USER0); 816 if (frombio) 817 memcpy(pa+page_offset, ba+b_offset, clen); 818 else 819 memcpy(ba+b_offset, pa+page_offset, clen); 820 __bio_kunmap_atomic(ba, KM_USER0); 821 } 822 if (clen < len) /* hit end of page */ 823 break; 824 page_offset += len; 825 } 826 } 827 828 #define check_xor() do { \ 829 if (count == MAX_XOR_BLOCKS) { \ 830 xor_block(count, STRIPE_SIZE, ptr); \ 831 count = 1; \ 832 } \ 833 } while(0) 834 835 836 static void compute_block(struct stripe_head *sh, int dd_idx) 837 { 838 int i, count, disks = sh->disks; 839 void *ptr[MAX_XOR_BLOCKS], *p; 840 841 PRINTK("compute_block, stripe %llu, idx %d\n", 842 (unsigned long long)sh->sector, dd_idx); 843 844 ptr[0] = page_address(sh->dev[dd_idx].page); 845 memset(ptr[0], 0, STRIPE_SIZE); 846 count = 1; 847 for (i = disks ; i--; ) { 848 if (i == dd_idx) 849 continue; 850 p = page_address(sh->dev[i].page); 851 if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) 852 ptr[count++] = p; 853 else 854 printk(KERN_ERR "compute_block() %d, stripe %llu, %d" 855 " not present\n", dd_idx, 856 (unsigned long long)sh->sector, i); 857 858 check_xor(); 859 } 860 if (count != 1) 861 xor_block(count, STRIPE_SIZE, ptr); 862 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 863 } 864 865 static void compute_parity(struct stripe_head *sh, int method) 866 { 867 raid5_conf_t *conf = sh->raid_conf; 868 int i, pd_idx = sh->pd_idx, disks = sh->disks, count; 869 void *ptr[MAX_XOR_BLOCKS]; 870 struct bio *chosen; 871 872 PRINTK("compute_parity, stripe %llu, method %d\n", 873 (unsigned long long)sh->sector, method); 874 875 count = 1; 876 ptr[0] = page_address(sh->dev[pd_idx].page); 877 switch(method) { 878 case READ_MODIFY_WRITE: 879 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags)); 880 for (i=disks ; i-- ;) { 881 if (i==pd_idx) 882 continue; 883 if (sh->dev[i].towrite && 884 test_bit(R5_UPTODATE, &sh->dev[i].flags)) { 885 ptr[count++] = page_address(sh->dev[i].page); 886 chosen = sh->dev[i].towrite; 887 sh->dev[i].towrite = NULL; 888 889 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 890 wake_up(&conf->wait_for_overlap); 891 892 BUG_ON(sh->dev[i].written); 893 sh->dev[i].written = chosen; 894 check_xor(); 895 } 896 } 897 break; 898 case RECONSTRUCT_WRITE: 899 memset(ptr[0], 0, STRIPE_SIZE); 900 for (i= disks; i-- ;) 901 if (i!=pd_idx && sh->dev[i].towrite) { 902 chosen = sh->dev[i].towrite; 903 sh->dev[i].towrite = NULL; 904 905 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 906 wake_up(&conf->wait_for_overlap); 907 908 BUG_ON(sh->dev[i].written); 909 sh->dev[i].written = chosen; 910 } 911 break; 912 case CHECK_PARITY: 913 break; 914 } 915 if (count>1) { 916 xor_block(count, STRIPE_SIZE, ptr); 917 count = 1; 918 } 919 920 for (i = disks; i--;) 921 if (sh->dev[i].written) { 922 sector_t sector = sh->dev[i].sector; 923 struct bio *wbi = sh->dev[i].written; 924 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { 925 copy_data(1, wbi, sh->dev[i].page, sector); 926 wbi = r5_next_bio(wbi, sector); 927 } 928 929 set_bit(R5_LOCKED, &sh->dev[i].flags); 930 set_bit(R5_UPTODATE, &sh->dev[i].flags); 931 } 932 933 switch(method) { 934 case RECONSTRUCT_WRITE: 935 case CHECK_PARITY: 936 for (i=disks; i--;) 937 if (i != pd_idx) { 938 ptr[count++] = page_address(sh->dev[i].page); 939 check_xor(); 940 } 941 break; 942 case READ_MODIFY_WRITE: 943 for (i = disks; i--;) 944 if (sh->dev[i].written) { 945 ptr[count++] = page_address(sh->dev[i].page); 946 check_xor(); 947 } 948 } 949 if (count != 1) 950 xor_block(count, STRIPE_SIZE, ptr); 951 952 if (method != CHECK_PARITY) { 953 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 954 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 955 } else 956 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 957 } 958 959 /* 960 * Each stripe/dev can have one or more bion attached. 961 * toread/towrite point to the first in a chain. 962 * The bi_next chain must be in order. 963 */ 964 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 965 { 966 struct bio **bip; 967 raid5_conf_t *conf = sh->raid_conf; 968 int firstwrite=0; 969 970 PRINTK("adding bh b#%llu to stripe s#%llu\n", 971 (unsigned long long)bi->bi_sector, 972 (unsigned long long)sh->sector); 973 974 975 spin_lock(&sh->lock); 976 spin_lock_irq(&conf->device_lock); 977 if (forwrite) { 978 bip = &sh->dev[dd_idx].towrite; 979 if (*bip == NULL && sh->dev[dd_idx].written == NULL) 980 firstwrite = 1; 981 } else 982 bip = &sh->dev[dd_idx].toread; 983 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 984 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 985 goto overlap; 986 bip = & (*bip)->bi_next; 987 } 988 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 989 goto overlap; 990 991 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 992 if (*bip) 993 bi->bi_next = *bip; 994 *bip = bi; 995 bi->bi_phys_segments ++; 996 spin_unlock_irq(&conf->device_lock); 997 spin_unlock(&sh->lock); 998 999 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n", 1000 (unsigned long long)bi->bi_sector, 1001 (unsigned long long)sh->sector, dd_idx); 1002 1003 if (conf->mddev->bitmap && firstwrite) { 1004 sh->bm_seq = conf->seq_write; 1005 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 1006 STRIPE_SECTORS, 0); 1007 set_bit(STRIPE_BIT_DELAY, &sh->state); 1008 } 1009 1010 if (forwrite) { 1011 /* check if page is covered */ 1012 sector_t sector = sh->dev[dd_idx].sector; 1013 for (bi=sh->dev[dd_idx].towrite; 1014 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 1015 bi && bi->bi_sector <= sector; 1016 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 1017 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 1018 sector = bi->bi_sector + (bi->bi_size>>9); 1019 } 1020 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 1021 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 1022 } 1023 return 1; 1024 1025 overlap: 1026 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 1027 spin_unlock_irq(&conf->device_lock); 1028 spin_unlock(&sh->lock); 1029 return 0; 1030 } 1031 1032 static void end_reshape(raid5_conf_t *conf); 1033 1034 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks) 1035 { 1036 int sectors_per_chunk = conf->chunk_size >> 9; 1037 sector_t x = stripe; 1038 int pd_idx, dd_idx; 1039 int chunk_offset = sector_div(x, sectors_per_chunk); 1040 stripe = x; 1041 raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk 1042 + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf); 1043 return pd_idx; 1044 } 1045 1046 1047 /* 1048 * handle_stripe - do things to a stripe. 1049 * 1050 * We lock the stripe and then examine the state of various bits 1051 * to see what needs to be done. 1052 * Possible results: 1053 * return some read request which now have data 1054 * return some write requests which are safely on disc 1055 * schedule a read on some buffers 1056 * schedule a write of some buffers 1057 * return confirmation of parity correctness 1058 * 1059 * Parity calculations are done inside the stripe lock 1060 * buffers are taken off read_list or write_list, and bh_cache buffers 1061 * get BH_Lock set before the stripe lock is released. 1062 * 1063 */ 1064 1065 static void handle_stripe(struct stripe_head *sh) 1066 { 1067 raid5_conf_t *conf = sh->raid_conf; 1068 int disks = sh->disks; 1069 struct bio *return_bi= NULL; 1070 struct bio *bi; 1071 int i; 1072 int syncing, expanding, expanded; 1073 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; 1074 int non_overwrite = 0; 1075 int failed_num=0; 1076 struct r5dev *dev; 1077 1078 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n", 1079 (unsigned long long)sh->sector, atomic_read(&sh->count), 1080 sh->pd_idx); 1081 1082 spin_lock(&sh->lock); 1083 clear_bit(STRIPE_HANDLE, &sh->state); 1084 clear_bit(STRIPE_DELAYED, &sh->state); 1085 1086 syncing = test_bit(STRIPE_SYNCING, &sh->state); 1087 expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 1088 expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 1089 /* Now to look around and see what can be done */ 1090 1091 rcu_read_lock(); 1092 for (i=disks; i--; ) { 1093 mdk_rdev_t *rdev; 1094 dev = &sh->dev[i]; 1095 clear_bit(R5_Insync, &dev->flags); 1096 1097 PRINTK("check %d: state 0x%lx read %p write %p written %p\n", 1098 i, dev->flags, dev->toread, dev->towrite, dev->written); 1099 /* maybe we can reply to a read */ 1100 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { 1101 struct bio *rbi, *rbi2; 1102 PRINTK("Return read for disc %d\n", i); 1103 spin_lock_irq(&conf->device_lock); 1104 rbi = dev->toread; 1105 dev->toread = NULL; 1106 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1107 wake_up(&conf->wait_for_overlap); 1108 spin_unlock_irq(&conf->device_lock); 1109 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { 1110 copy_data(0, rbi, dev->page, dev->sector); 1111 rbi2 = r5_next_bio(rbi, dev->sector); 1112 spin_lock_irq(&conf->device_lock); 1113 if (--rbi->bi_phys_segments == 0) { 1114 rbi->bi_next = return_bi; 1115 return_bi = rbi; 1116 } 1117 spin_unlock_irq(&conf->device_lock); 1118 rbi = rbi2; 1119 } 1120 } 1121 1122 /* now count some things */ 1123 if (test_bit(R5_LOCKED, &dev->flags)) locked++; 1124 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; 1125 1126 1127 if (dev->toread) to_read++; 1128 if (dev->towrite) { 1129 to_write++; 1130 if (!test_bit(R5_OVERWRITE, &dev->flags)) 1131 non_overwrite++; 1132 } 1133 if (dev->written) written++; 1134 rdev = rcu_dereference(conf->disks[i].rdev); 1135 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 1136 /* The ReadError flag will just be confusing now */ 1137 clear_bit(R5_ReadError, &dev->flags); 1138 clear_bit(R5_ReWrite, &dev->flags); 1139 } 1140 if (!rdev || !test_bit(In_sync, &rdev->flags) 1141 || test_bit(R5_ReadError, &dev->flags)) { 1142 failed++; 1143 failed_num = i; 1144 } else 1145 set_bit(R5_Insync, &dev->flags); 1146 } 1147 rcu_read_unlock(); 1148 PRINTK("locked=%d uptodate=%d to_read=%d" 1149 " to_write=%d failed=%d failed_num=%d\n", 1150 locked, uptodate, to_read, to_write, failed, failed_num); 1151 /* check if the array has lost two devices and, if so, some requests might 1152 * need to be failed 1153 */ 1154 if (failed > 1 && to_read+to_write+written) { 1155 for (i=disks; i--; ) { 1156 int bitmap_end = 0; 1157 1158 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1159 mdk_rdev_t *rdev; 1160 rcu_read_lock(); 1161 rdev = rcu_dereference(conf->disks[i].rdev); 1162 if (rdev && test_bit(In_sync, &rdev->flags)) 1163 /* multiple read failures in one stripe */ 1164 md_error(conf->mddev, rdev); 1165 rcu_read_unlock(); 1166 } 1167 1168 spin_lock_irq(&conf->device_lock); 1169 /* fail all writes first */ 1170 bi = sh->dev[i].towrite; 1171 sh->dev[i].towrite = NULL; 1172 if (bi) { to_write--; bitmap_end = 1; } 1173 1174 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1175 wake_up(&conf->wait_for_overlap); 1176 1177 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 1178 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1179 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1180 if (--bi->bi_phys_segments == 0) { 1181 md_write_end(conf->mddev); 1182 bi->bi_next = return_bi; 1183 return_bi = bi; 1184 } 1185 bi = nextbi; 1186 } 1187 /* and fail all 'written' */ 1188 bi = sh->dev[i].written; 1189 sh->dev[i].written = NULL; 1190 if (bi) bitmap_end = 1; 1191 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { 1192 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 1193 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1194 if (--bi->bi_phys_segments == 0) { 1195 md_write_end(conf->mddev); 1196 bi->bi_next = return_bi; 1197 return_bi = bi; 1198 } 1199 bi = bi2; 1200 } 1201 1202 /* fail any reads if this device is non-operational */ 1203 if (!test_bit(R5_Insync, &sh->dev[i].flags) || 1204 test_bit(R5_ReadError, &sh->dev[i].flags)) { 1205 bi = sh->dev[i].toread; 1206 sh->dev[i].toread = NULL; 1207 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1208 wake_up(&conf->wait_for_overlap); 1209 if (bi) to_read--; 1210 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 1211 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1212 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1213 if (--bi->bi_phys_segments == 0) { 1214 bi->bi_next = return_bi; 1215 return_bi = bi; 1216 } 1217 bi = nextbi; 1218 } 1219 } 1220 spin_unlock_irq(&conf->device_lock); 1221 if (bitmap_end) 1222 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 1223 STRIPE_SECTORS, 0, 0); 1224 } 1225 } 1226 if (failed > 1 && syncing) { 1227 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 1228 clear_bit(STRIPE_SYNCING, &sh->state); 1229 syncing = 0; 1230 } 1231 1232 /* might be able to return some write requests if the parity block 1233 * is safe, or on a failed drive 1234 */ 1235 dev = &sh->dev[sh->pd_idx]; 1236 if ( written && 1237 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) && 1238 test_bit(R5_UPTODATE, &dev->flags)) 1239 || (failed == 1 && failed_num == sh->pd_idx)) 1240 ) { 1241 /* any written block on an uptodate or failed drive can be returned. 1242 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 1243 * never LOCKED, so we don't need to test 'failed' directly. 1244 */ 1245 for (i=disks; i--; ) 1246 if (sh->dev[i].written) { 1247 dev = &sh->dev[i]; 1248 if (!test_bit(R5_LOCKED, &dev->flags) && 1249 test_bit(R5_UPTODATE, &dev->flags) ) { 1250 /* We can return any write requests */ 1251 struct bio *wbi, *wbi2; 1252 int bitmap_end = 0; 1253 PRINTK("Return write for disc %d\n", i); 1254 spin_lock_irq(&conf->device_lock); 1255 wbi = dev->written; 1256 dev->written = NULL; 1257 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { 1258 wbi2 = r5_next_bio(wbi, dev->sector); 1259 if (--wbi->bi_phys_segments == 0) { 1260 md_write_end(conf->mddev); 1261 wbi->bi_next = return_bi; 1262 return_bi = wbi; 1263 } 1264 wbi = wbi2; 1265 } 1266 if (dev->towrite == NULL) 1267 bitmap_end = 1; 1268 spin_unlock_irq(&conf->device_lock); 1269 if (bitmap_end) 1270 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 1271 STRIPE_SECTORS, 1272 !test_bit(STRIPE_DEGRADED, &sh->state), 0); 1273 } 1274 } 1275 } 1276 1277 /* Now we might consider reading some blocks, either to check/generate 1278 * parity, or to satisfy requests 1279 * or to load a block that is being partially written. 1280 */ 1281 if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) { 1282 for (i=disks; i--;) { 1283 dev = &sh->dev[i]; 1284 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1285 (dev->toread || 1286 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 1287 syncing || 1288 expanding || 1289 (failed && (sh->dev[failed_num].toread || 1290 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags)))) 1291 ) 1292 ) { 1293 /* we would like to get this block, possibly 1294 * by computing it, but we might not be able to 1295 */ 1296 if (uptodate == disks-1) { 1297 PRINTK("Computing block %d\n", i); 1298 compute_block(sh, i); 1299 uptodate++; 1300 } else if (test_bit(R5_Insync, &dev->flags)) { 1301 set_bit(R5_LOCKED, &dev->flags); 1302 set_bit(R5_Wantread, &dev->flags); 1303 #if 0 1304 /* if I am just reading this block and we don't have 1305 a failed drive, or any pending writes then sidestep the cache */ 1306 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext && 1307 ! syncing && !failed && !to_write) { 1308 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page; 1309 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data; 1310 } 1311 #endif 1312 locked++; 1313 PRINTK("Reading block %d (sync=%d)\n", 1314 i, syncing); 1315 } 1316 } 1317 } 1318 set_bit(STRIPE_HANDLE, &sh->state); 1319 } 1320 1321 /* now to consider writing and what else, if anything should be read */ 1322 if (to_write) { 1323 int rmw=0, rcw=0; 1324 for (i=disks ; i--;) { 1325 /* would I have to read this buffer for read_modify_write */ 1326 dev = &sh->dev[i]; 1327 if ((dev->towrite || i == sh->pd_idx) && 1328 (!test_bit(R5_LOCKED, &dev->flags) 1329 #if 0 1330 || sh->bh_page[i]!=bh->b_page 1331 #endif 1332 ) && 1333 !test_bit(R5_UPTODATE, &dev->flags)) { 1334 if (test_bit(R5_Insync, &dev->flags) 1335 /* && !(!mddev->insync && i == sh->pd_idx) */ 1336 ) 1337 rmw++; 1338 else rmw += 2*disks; /* cannot read it */ 1339 } 1340 /* Would I have to read this buffer for reconstruct_write */ 1341 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 1342 (!test_bit(R5_LOCKED, &dev->flags) 1343 #if 0 1344 || sh->bh_page[i] != bh->b_page 1345 #endif 1346 ) && 1347 !test_bit(R5_UPTODATE, &dev->flags)) { 1348 if (test_bit(R5_Insync, &dev->flags)) rcw++; 1349 else rcw += 2*disks; 1350 } 1351 } 1352 PRINTK("for sector %llu, rmw=%d rcw=%d\n", 1353 (unsigned long long)sh->sector, rmw, rcw); 1354 set_bit(STRIPE_HANDLE, &sh->state); 1355 if (rmw < rcw && rmw > 0) 1356 /* prefer read-modify-write, but need to get some data */ 1357 for (i=disks; i--;) { 1358 dev = &sh->dev[i]; 1359 if ((dev->towrite || i == sh->pd_idx) && 1360 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1361 test_bit(R5_Insync, &dev->flags)) { 1362 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1363 { 1364 PRINTK("Read_old block %d for r-m-w\n", i); 1365 set_bit(R5_LOCKED, &dev->flags); 1366 set_bit(R5_Wantread, &dev->flags); 1367 locked++; 1368 } else { 1369 set_bit(STRIPE_DELAYED, &sh->state); 1370 set_bit(STRIPE_HANDLE, &sh->state); 1371 } 1372 } 1373 } 1374 if (rcw <= rmw && rcw > 0) 1375 /* want reconstruct write, but need to get some data */ 1376 for (i=disks; i--;) { 1377 dev = &sh->dev[i]; 1378 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 1379 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1380 test_bit(R5_Insync, &dev->flags)) { 1381 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1382 { 1383 PRINTK("Read_old block %d for Reconstruct\n", i); 1384 set_bit(R5_LOCKED, &dev->flags); 1385 set_bit(R5_Wantread, &dev->flags); 1386 locked++; 1387 } else { 1388 set_bit(STRIPE_DELAYED, &sh->state); 1389 set_bit(STRIPE_HANDLE, &sh->state); 1390 } 1391 } 1392 } 1393 /* now if nothing is locked, and if we have enough data, we can start a write request */ 1394 if (locked == 0 && (rcw == 0 ||rmw == 0) && 1395 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 1396 PRINTK("Computing parity...\n"); 1397 compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE); 1398 /* now every locked buffer is ready to be written */ 1399 for (i=disks; i--;) 1400 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { 1401 PRINTK("Writing block %d\n", i); 1402 locked++; 1403 set_bit(R5_Wantwrite, &sh->dev[i].flags); 1404 if (!test_bit(R5_Insync, &sh->dev[i].flags) 1405 || (i==sh->pd_idx && failed == 0)) 1406 set_bit(STRIPE_INSYNC, &sh->state); 1407 } 1408 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 1409 atomic_dec(&conf->preread_active_stripes); 1410 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 1411 md_wakeup_thread(conf->mddev->thread); 1412 } 1413 } 1414 } 1415 1416 /* maybe we need to check and possibly fix the parity for this stripe 1417 * Any reads will already have been scheduled, so we just see if enough data 1418 * is available 1419 */ 1420 if (syncing && locked == 0 && 1421 !test_bit(STRIPE_INSYNC, &sh->state)) { 1422 set_bit(STRIPE_HANDLE, &sh->state); 1423 if (failed == 0) { 1424 char *pagea; 1425 BUG_ON(uptodate != disks); 1426 compute_parity(sh, CHECK_PARITY); 1427 uptodate--; 1428 pagea = page_address(sh->dev[sh->pd_idx].page); 1429 if ((*(u32*)pagea) == 0 && 1430 !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) { 1431 /* parity is correct (on disc, not in buffer any more) */ 1432 set_bit(STRIPE_INSYNC, &sh->state); 1433 } else { 1434 conf->mddev->resync_mismatches += STRIPE_SECTORS; 1435 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 1436 /* don't try to repair!! */ 1437 set_bit(STRIPE_INSYNC, &sh->state); 1438 else { 1439 compute_block(sh, sh->pd_idx); 1440 uptodate++; 1441 } 1442 } 1443 } 1444 if (!test_bit(STRIPE_INSYNC, &sh->state)) { 1445 /* either failed parity check, or recovery is happening */ 1446 if (failed==0) 1447 failed_num = sh->pd_idx; 1448 dev = &sh->dev[failed_num]; 1449 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 1450 BUG_ON(uptodate != disks); 1451 1452 set_bit(R5_LOCKED, &dev->flags); 1453 set_bit(R5_Wantwrite, &dev->flags); 1454 clear_bit(STRIPE_DEGRADED, &sh->state); 1455 locked++; 1456 set_bit(STRIPE_INSYNC, &sh->state); 1457 } 1458 } 1459 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 1460 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 1461 clear_bit(STRIPE_SYNCING, &sh->state); 1462 } 1463 1464 /* If the failed drive is just a ReadError, then we might need to progress 1465 * the repair/check process 1466 */ 1467 if (failed == 1 && ! conf->mddev->ro && 1468 test_bit(R5_ReadError, &sh->dev[failed_num].flags) 1469 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags) 1470 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags) 1471 ) { 1472 dev = &sh->dev[failed_num]; 1473 if (!test_bit(R5_ReWrite, &dev->flags)) { 1474 set_bit(R5_Wantwrite, &dev->flags); 1475 set_bit(R5_ReWrite, &dev->flags); 1476 set_bit(R5_LOCKED, &dev->flags); 1477 locked++; 1478 } else { 1479 /* let's read it back */ 1480 set_bit(R5_Wantread, &dev->flags); 1481 set_bit(R5_LOCKED, &dev->flags); 1482 locked++; 1483 } 1484 } 1485 1486 if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) { 1487 /* Need to write out all blocks after computing parity */ 1488 sh->disks = conf->raid_disks; 1489 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks); 1490 compute_parity(sh, RECONSTRUCT_WRITE); 1491 for (i= conf->raid_disks; i--;) { 1492 set_bit(R5_LOCKED, &sh->dev[i].flags); 1493 locked++; 1494 set_bit(R5_Wantwrite, &sh->dev[i].flags); 1495 } 1496 clear_bit(STRIPE_EXPANDING, &sh->state); 1497 } else if (expanded) { 1498 clear_bit(STRIPE_EXPAND_READY, &sh->state); 1499 atomic_dec(&conf->reshape_stripes); 1500 wake_up(&conf->wait_for_overlap); 1501 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 1502 } 1503 1504 if (expanding && locked == 0) { 1505 /* We have read all the blocks in this stripe and now we need to 1506 * copy some of them into a target stripe for expand. 1507 */ 1508 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 1509 for (i=0; i< sh->disks; i++) 1510 if (i != sh->pd_idx) { 1511 int dd_idx, pd_idx, j; 1512 struct stripe_head *sh2; 1513 1514 sector_t bn = compute_blocknr(sh, i); 1515 sector_t s = raid5_compute_sector(bn, conf->raid_disks, 1516 conf->raid_disks-1, 1517 &dd_idx, &pd_idx, conf); 1518 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1); 1519 if (sh2 == NULL) 1520 /* so far only the early blocks of this stripe 1521 * have been requested. When later blocks 1522 * get requested, we will try again 1523 */ 1524 continue; 1525 if(!test_bit(STRIPE_EXPANDING, &sh2->state) || 1526 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 1527 /* must have already done this block */ 1528 release_stripe(sh2); 1529 continue; 1530 } 1531 memcpy(page_address(sh2->dev[dd_idx].page), 1532 page_address(sh->dev[i].page), 1533 STRIPE_SIZE); 1534 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 1535 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 1536 for (j=0; j<conf->raid_disks; j++) 1537 if (j != sh2->pd_idx && 1538 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 1539 break; 1540 if (j == conf->raid_disks) { 1541 set_bit(STRIPE_EXPAND_READY, &sh2->state); 1542 set_bit(STRIPE_HANDLE, &sh2->state); 1543 } 1544 release_stripe(sh2); 1545 } 1546 } 1547 1548 spin_unlock(&sh->lock); 1549 1550 while ((bi=return_bi)) { 1551 int bytes = bi->bi_size; 1552 1553 return_bi = bi->bi_next; 1554 bi->bi_next = NULL; 1555 bi->bi_size = 0; 1556 bi->bi_end_io(bi, bytes, 0); 1557 } 1558 for (i=disks; i-- ;) { 1559 int rw; 1560 struct bio *bi; 1561 mdk_rdev_t *rdev; 1562 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 1563 rw = 1; 1564 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1565 rw = 0; 1566 else 1567 continue; 1568 1569 bi = &sh->dev[i].req; 1570 1571 bi->bi_rw = rw; 1572 if (rw) 1573 bi->bi_end_io = raid5_end_write_request; 1574 else 1575 bi->bi_end_io = raid5_end_read_request; 1576 1577 rcu_read_lock(); 1578 rdev = rcu_dereference(conf->disks[i].rdev); 1579 if (rdev && test_bit(Faulty, &rdev->flags)) 1580 rdev = NULL; 1581 if (rdev) 1582 atomic_inc(&rdev->nr_pending); 1583 rcu_read_unlock(); 1584 1585 if (rdev) { 1586 if (syncing || expanding || expanded) 1587 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1588 1589 bi->bi_bdev = rdev->bdev; 1590 PRINTK("for %llu schedule op %ld on disc %d\n", 1591 (unsigned long long)sh->sector, bi->bi_rw, i); 1592 atomic_inc(&sh->count); 1593 bi->bi_sector = sh->sector + rdev->data_offset; 1594 bi->bi_flags = 1 << BIO_UPTODATE; 1595 bi->bi_vcnt = 1; 1596 bi->bi_max_vecs = 1; 1597 bi->bi_idx = 0; 1598 bi->bi_io_vec = &sh->dev[i].vec; 1599 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1600 bi->bi_io_vec[0].bv_offset = 0; 1601 bi->bi_size = STRIPE_SIZE; 1602 bi->bi_next = NULL; 1603 if (rw == WRITE && 1604 test_bit(R5_ReWrite, &sh->dev[i].flags)) 1605 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1606 generic_make_request(bi); 1607 } else { 1608 if (rw == 1) 1609 set_bit(STRIPE_DEGRADED, &sh->state); 1610 PRINTK("skip op %ld on disc %d for sector %llu\n", 1611 bi->bi_rw, i, (unsigned long long)sh->sector); 1612 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1613 set_bit(STRIPE_HANDLE, &sh->state); 1614 } 1615 } 1616 } 1617 1618 static void raid5_activate_delayed(raid5_conf_t *conf) 1619 { 1620 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 1621 while (!list_empty(&conf->delayed_list)) { 1622 struct list_head *l = conf->delayed_list.next; 1623 struct stripe_head *sh; 1624 sh = list_entry(l, struct stripe_head, lru); 1625 list_del_init(l); 1626 clear_bit(STRIPE_DELAYED, &sh->state); 1627 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1628 atomic_inc(&conf->preread_active_stripes); 1629 list_add_tail(&sh->lru, &conf->handle_list); 1630 } 1631 } 1632 } 1633 1634 static void activate_bit_delay(raid5_conf_t *conf) 1635 { 1636 /* device_lock is held */ 1637 struct list_head head; 1638 list_add(&head, &conf->bitmap_list); 1639 list_del_init(&conf->bitmap_list); 1640 while (!list_empty(&head)) { 1641 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 1642 list_del_init(&sh->lru); 1643 atomic_inc(&sh->count); 1644 __release_stripe(conf, sh); 1645 } 1646 } 1647 1648 static void unplug_slaves(mddev_t *mddev) 1649 { 1650 raid5_conf_t *conf = mddev_to_conf(mddev); 1651 int i; 1652 1653 rcu_read_lock(); 1654 for (i=0; i<mddev->raid_disks; i++) { 1655 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 1656 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 1657 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 1658 1659 atomic_inc(&rdev->nr_pending); 1660 rcu_read_unlock(); 1661 1662 if (r_queue->unplug_fn) 1663 r_queue->unplug_fn(r_queue); 1664 1665 rdev_dec_pending(rdev, mddev); 1666 rcu_read_lock(); 1667 } 1668 } 1669 rcu_read_unlock(); 1670 } 1671 1672 static void raid5_unplug_device(request_queue_t *q) 1673 { 1674 mddev_t *mddev = q->queuedata; 1675 raid5_conf_t *conf = mddev_to_conf(mddev); 1676 unsigned long flags; 1677 1678 spin_lock_irqsave(&conf->device_lock, flags); 1679 1680 if (blk_remove_plug(q)) { 1681 conf->seq_flush++; 1682 raid5_activate_delayed(conf); 1683 } 1684 md_wakeup_thread(mddev->thread); 1685 1686 spin_unlock_irqrestore(&conf->device_lock, flags); 1687 1688 unplug_slaves(mddev); 1689 } 1690 1691 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk, 1692 sector_t *error_sector) 1693 { 1694 mddev_t *mddev = q->queuedata; 1695 raid5_conf_t *conf = mddev_to_conf(mddev); 1696 int i, ret = 0; 1697 1698 rcu_read_lock(); 1699 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 1700 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 1701 if (rdev && !test_bit(Faulty, &rdev->flags)) { 1702 struct block_device *bdev = rdev->bdev; 1703 request_queue_t *r_queue = bdev_get_queue(bdev); 1704 1705 if (!r_queue->issue_flush_fn) 1706 ret = -EOPNOTSUPP; 1707 else { 1708 atomic_inc(&rdev->nr_pending); 1709 rcu_read_unlock(); 1710 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 1711 error_sector); 1712 rdev_dec_pending(rdev, mddev); 1713 rcu_read_lock(); 1714 } 1715 } 1716 } 1717 rcu_read_unlock(); 1718 return ret; 1719 } 1720 1721 static inline void raid5_plug_device(raid5_conf_t *conf) 1722 { 1723 spin_lock_irq(&conf->device_lock); 1724 blk_plug_device(conf->mddev->queue); 1725 spin_unlock_irq(&conf->device_lock); 1726 } 1727 1728 static int make_request(request_queue_t *q, struct bio * bi) 1729 { 1730 mddev_t *mddev = q->queuedata; 1731 raid5_conf_t *conf = mddev_to_conf(mddev); 1732 unsigned int dd_idx, pd_idx; 1733 sector_t new_sector; 1734 sector_t logical_sector, last_sector; 1735 struct stripe_head *sh; 1736 const int rw = bio_data_dir(bi); 1737 int remaining; 1738 1739 if (unlikely(bio_barrier(bi))) { 1740 bio_endio(bi, bi->bi_size, -EOPNOTSUPP); 1741 return 0; 1742 } 1743 1744 md_write_start(mddev, bi); 1745 1746 disk_stat_inc(mddev->gendisk, ios[rw]); 1747 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi)); 1748 1749 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 1750 last_sector = bi->bi_sector + (bi->bi_size>>9); 1751 bi->bi_next = NULL; 1752 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 1753 1754 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 1755 DEFINE_WAIT(w); 1756 int disks; 1757 1758 retry: 1759 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 1760 if (likely(conf->expand_progress == MaxSector)) 1761 disks = conf->raid_disks; 1762 else { 1763 /* spinlock is needed as expand_progress may be 1764 * 64bit on a 32bit platform, and so it might be 1765 * possible to see a half-updated value 1766 * Ofcourse expand_progress could change after 1767 * the lock is dropped, so once we get a reference 1768 * to the stripe that we think it is, we will have 1769 * to check again. 1770 */ 1771 spin_lock_irq(&conf->device_lock); 1772 disks = conf->raid_disks; 1773 if (logical_sector >= conf->expand_progress) 1774 disks = conf->previous_raid_disks; 1775 else { 1776 if (logical_sector >= conf->expand_lo) { 1777 spin_unlock_irq(&conf->device_lock); 1778 schedule(); 1779 goto retry; 1780 } 1781 } 1782 spin_unlock_irq(&conf->device_lock); 1783 } 1784 new_sector = raid5_compute_sector(logical_sector, disks, disks - 1, 1785 &dd_idx, &pd_idx, conf); 1786 PRINTK("raid5: make_request, sector %llu logical %llu\n", 1787 (unsigned long long)new_sector, 1788 (unsigned long long)logical_sector); 1789 1790 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK)); 1791 if (sh) { 1792 if (unlikely(conf->expand_progress != MaxSector)) { 1793 /* expansion might have moved on while waiting for a 1794 * stripe, so we must do the range check again. 1795 * Expansion could still move past after this 1796 * test, but as we are holding a reference to 1797 * 'sh', we know that if that happens, 1798 * STRIPE_EXPANDING will get set and the expansion 1799 * won't proceed until we finish with the stripe. 1800 */ 1801 int must_retry = 0; 1802 spin_lock_irq(&conf->device_lock); 1803 if (logical_sector < conf->expand_progress && 1804 disks == conf->previous_raid_disks) 1805 /* mismatch, need to try again */ 1806 must_retry = 1; 1807 spin_unlock_irq(&conf->device_lock); 1808 if (must_retry) { 1809 release_stripe(sh); 1810 goto retry; 1811 } 1812 } 1813 /* FIXME what if we get a false positive because these 1814 * are being updated. 1815 */ 1816 if (logical_sector >= mddev->suspend_lo && 1817 logical_sector < mddev->suspend_hi) { 1818 release_stripe(sh); 1819 schedule(); 1820 goto retry; 1821 } 1822 1823 if (test_bit(STRIPE_EXPANDING, &sh->state) || 1824 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { 1825 /* Stripe is busy expanding or 1826 * add failed due to overlap. Flush everything 1827 * and wait a while 1828 */ 1829 raid5_unplug_device(mddev->queue); 1830 release_stripe(sh); 1831 schedule(); 1832 goto retry; 1833 } 1834 finish_wait(&conf->wait_for_overlap, &w); 1835 raid5_plug_device(conf); 1836 handle_stripe(sh); 1837 release_stripe(sh); 1838 } else { 1839 /* cannot get stripe for read-ahead, just give-up */ 1840 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1841 finish_wait(&conf->wait_for_overlap, &w); 1842 break; 1843 } 1844 1845 } 1846 spin_lock_irq(&conf->device_lock); 1847 remaining = --bi->bi_phys_segments; 1848 spin_unlock_irq(&conf->device_lock); 1849 if (remaining == 0) { 1850 int bytes = bi->bi_size; 1851 1852 if ( bio_data_dir(bi) == WRITE ) 1853 md_write_end(mddev); 1854 bi->bi_size = 0; 1855 bi->bi_end_io(bi, bytes, 0); 1856 } 1857 return 0; 1858 } 1859 1860 /* FIXME go_faster isn't used */ 1861 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1862 { 1863 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 1864 struct stripe_head *sh; 1865 int pd_idx; 1866 sector_t first_sector, last_sector; 1867 int raid_disks = conf->raid_disks; 1868 int data_disks = raid_disks-1; 1869 sector_t max_sector = mddev->size << 1; 1870 int sync_blocks; 1871 1872 if (sector_nr >= max_sector) { 1873 /* just being told to finish up .. nothing much to do */ 1874 unplug_slaves(mddev); 1875 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 1876 end_reshape(conf); 1877 return 0; 1878 } 1879 1880 if (mddev->curr_resync < max_sector) /* aborted */ 1881 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1882 &sync_blocks, 1); 1883 else /* compelted sync */ 1884 conf->fullsync = 0; 1885 bitmap_close_sync(mddev->bitmap); 1886 1887 return 0; 1888 } 1889 1890 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 1891 /* reshaping is quite different to recovery/resync so it is 1892 * handled quite separately ... here. 1893 * 1894 * On each call to sync_request, we gather one chunk worth of 1895 * destination stripes and flag them as expanding. 1896 * Then we find all the source stripes and request reads. 1897 * As the reads complete, handle_stripe will copy the data 1898 * into the destination stripe and release that stripe. 1899 */ 1900 int i; 1901 int dd_idx; 1902 sector_t writepos, safepos, gap; 1903 1904 if (sector_nr == 0 && 1905 conf->expand_progress != 0) { 1906 /* restarting in the middle, skip the initial sectors */ 1907 sector_nr = conf->expand_progress; 1908 sector_div(sector_nr, conf->raid_disks-1); 1909 *skipped = 1; 1910 return sector_nr; 1911 } 1912 1913 /* we update the metadata when there is more than 3Meg 1914 * in the block range (that is rather arbitrary, should 1915 * probably be time based) or when the data about to be 1916 * copied would over-write the source of the data at 1917 * the front of the range. 1918 * i.e. one new_stripe forward from expand_progress new_maps 1919 * to after where expand_lo old_maps to 1920 */ 1921 writepos = conf->expand_progress + 1922 conf->chunk_size/512*(conf->raid_disks-1); 1923 sector_div(writepos, conf->raid_disks-1); 1924 safepos = conf->expand_lo; 1925 sector_div(safepos, conf->previous_raid_disks-1); 1926 gap = conf->expand_progress - conf->expand_lo; 1927 1928 if (writepos >= safepos || 1929 gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) { 1930 /* Cannot proceed until we've updated the superblock... */ 1931 wait_event(conf->wait_for_overlap, 1932 atomic_read(&conf->reshape_stripes)==0); 1933 mddev->reshape_position = conf->expand_progress; 1934 mddev->sb_dirty = 1; 1935 md_wakeup_thread(mddev->thread); 1936 wait_event(mddev->sb_wait, mddev->sb_dirty == 0 || 1937 kthread_should_stop()); 1938 spin_lock_irq(&conf->device_lock); 1939 conf->expand_lo = mddev->reshape_position; 1940 spin_unlock_irq(&conf->device_lock); 1941 wake_up(&conf->wait_for_overlap); 1942 } 1943 1944 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) { 1945 int j; 1946 int skipped = 0; 1947 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks); 1948 sh = get_active_stripe(conf, sector_nr+i, 1949 conf->raid_disks, pd_idx, 0); 1950 set_bit(STRIPE_EXPANDING, &sh->state); 1951 atomic_inc(&conf->reshape_stripes); 1952 /* If any of this stripe is beyond the end of the old 1953 * array, then we need to zero those blocks 1954 */ 1955 for (j=sh->disks; j--;) { 1956 sector_t s; 1957 if (j == sh->pd_idx) 1958 continue; 1959 s = compute_blocknr(sh, j); 1960 if (s < (mddev->array_size<<1)) { 1961 skipped = 1; 1962 continue; 1963 } 1964 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 1965 set_bit(R5_Expanded, &sh->dev[j].flags); 1966 set_bit(R5_UPTODATE, &sh->dev[j].flags); 1967 } 1968 if (!skipped) { 1969 set_bit(STRIPE_EXPAND_READY, &sh->state); 1970 set_bit(STRIPE_HANDLE, &sh->state); 1971 } 1972 release_stripe(sh); 1973 } 1974 spin_lock_irq(&conf->device_lock); 1975 conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1); 1976 spin_unlock_irq(&conf->device_lock); 1977 /* Ok, those stripe are ready. We can start scheduling 1978 * reads on the source stripes. 1979 * The source stripes are determined by mapping the first and last 1980 * block on the destination stripes. 1981 */ 1982 raid_disks = conf->previous_raid_disks; 1983 data_disks = raid_disks - 1; 1984 first_sector = 1985 raid5_compute_sector(sector_nr*(conf->raid_disks-1), 1986 raid_disks, data_disks, 1987 &dd_idx, &pd_idx, conf); 1988 last_sector = 1989 raid5_compute_sector((sector_nr+conf->chunk_size/512) 1990 *(conf->raid_disks-1) -1, 1991 raid_disks, data_disks, 1992 &dd_idx, &pd_idx, conf); 1993 if (last_sector >= (mddev->size<<1)) 1994 last_sector = (mddev->size<<1)-1; 1995 while (first_sector <= last_sector) { 1996 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks); 1997 sh = get_active_stripe(conf, first_sector, 1998 conf->previous_raid_disks, pd_idx, 0); 1999 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2000 set_bit(STRIPE_HANDLE, &sh->state); 2001 release_stripe(sh); 2002 first_sector += STRIPE_SECTORS; 2003 } 2004 return conf->chunk_size>>9; 2005 } 2006 /* if there is 1 or more failed drives and we are trying 2007 * to resync, then assert that we are finished, because there is 2008 * nothing we can do. 2009 */ 2010 if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2011 sector_t rv = (mddev->size << 1) - sector_nr; 2012 *skipped = 1; 2013 return rv; 2014 } 2015 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2016 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2017 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 2018 /* we can skip this block, and probably more */ 2019 sync_blocks /= STRIPE_SECTORS; 2020 *skipped = 1; 2021 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 2022 } 2023 2024 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks); 2025 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1); 2026 if (sh == NULL) { 2027 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0); 2028 /* make sure we don't swamp the stripe cache if someone else 2029 * is trying to get access 2030 */ 2031 schedule_timeout_uninterruptible(1); 2032 } 2033 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 0); 2034 spin_lock(&sh->lock); 2035 set_bit(STRIPE_SYNCING, &sh->state); 2036 clear_bit(STRIPE_INSYNC, &sh->state); 2037 spin_unlock(&sh->lock); 2038 2039 handle_stripe(sh); 2040 release_stripe(sh); 2041 2042 return STRIPE_SECTORS; 2043 } 2044 2045 /* 2046 * This is our raid5 kernel thread. 2047 * 2048 * We scan the hash table for stripes which can be handled now. 2049 * During the scan, completed stripes are saved for us by the interrupt 2050 * handler, so that they will not have to wait for our next wakeup. 2051 */ 2052 static void raid5d (mddev_t *mddev) 2053 { 2054 struct stripe_head *sh; 2055 raid5_conf_t *conf = mddev_to_conf(mddev); 2056 int handled; 2057 2058 PRINTK("+++ raid5d active\n"); 2059 2060 md_check_recovery(mddev); 2061 2062 handled = 0; 2063 spin_lock_irq(&conf->device_lock); 2064 while (1) { 2065 struct list_head *first; 2066 2067 if (conf->seq_flush - conf->seq_write > 0) { 2068 int seq = conf->seq_flush; 2069 spin_unlock_irq(&conf->device_lock); 2070 bitmap_unplug(mddev->bitmap); 2071 spin_lock_irq(&conf->device_lock); 2072 conf->seq_write = seq; 2073 activate_bit_delay(conf); 2074 } 2075 2076 if (list_empty(&conf->handle_list) && 2077 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD && 2078 !blk_queue_plugged(mddev->queue) && 2079 !list_empty(&conf->delayed_list)) 2080 raid5_activate_delayed(conf); 2081 2082 if (list_empty(&conf->handle_list)) 2083 break; 2084 2085 first = conf->handle_list.next; 2086 sh = list_entry(first, struct stripe_head, lru); 2087 2088 list_del_init(first); 2089 atomic_inc(&sh->count); 2090 BUG_ON(atomic_read(&sh->count)!= 1); 2091 spin_unlock_irq(&conf->device_lock); 2092 2093 handled++; 2094 handle_stripe(sh); 2095 release_stripe(sh); 2096 2097 spin_lock_irq(&conf->device_lock); 2098 } 2099 PRINTK("%d stripes handled\n", handled); 2100 2101 spin_unlock_irq(&conf->device_lock); 2102 2103 unplug_slaves(mddev); 2104 2105 PRINTK("--- raid5d inactive\n"); 2106 } 2107 2108 static ssize_t 2109 raid5_show_stripe_cache_size(mddev_t *mddev, char *page) 2110 { 2111 raid5_conf_t *conf = mddev_to_conf(mddev); 2112 if (conf) 2113 return sprintf(page, "%d\n", conf->max_nr_stripes); 2114 else 2115 return 0; 2116 } 2117 2118 static ssize_t 2119 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len) 2120 { 2121 raid5_conf_t *conf = mddev_to_conf(mddev); 2122 char *end; 2123 int new; 2124 if (len >= PAGE_SIZE) 2125 return -EINVAL; 2126 if (!conf) 2127 return -ENODEV; 2128 2129 new = simple_strtoul(page, &end, 10); 2130 if (!*page || (*end && *end != '\n') ) 2131 return -EINVAL; 2132 if (new <= 16 || new > 32768) 2133 return -EINVAL; 2134 while (new < conf->max_nr_stripes) { 2135 if (drop_one_stripe(conf)) 2136 conf->max_nr_stripes--; 2137 else 2138 break; 2139 } 2140 while (new > conf->max_nr_stripes) { 2141 if (grow_one_stripe(conf)) 2142 conf->max_nr_stripes++; 2143 else break; 2144 } 2145 return len; 2146 } 2147 2148 static struct md_sysfs_entry 2149 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 2150 raid5_show_stripe_cache_size, 2151 raid5_store_stripe_cache_size); 2152 2153 static ssize_t 2154 stripe_cache_active_show(mddev_t *mddev, char *page) 2155 { 2156 raid5_conf_t *conf = mddev_to_conf(mddev); 2157 if (conf) 2158 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 2159 else 2160 return 0; 2161 } 2162 2163 static struct md_sysfs_entry 2164 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 2165 2166 static struct attribute *raid5_attrs[] = { 2167 &raid5_stripecache_size.attr, 2168 &raid5_stripecache_active.attr, 2169 NULL, 2170 }; 2171 static struct attribute_group raid5_attrs_group = { 2172 .name = NULL, 2173 .attrs = raid5_attrs, 2174 }; 2175 2176 static int run(mddev_t *mddev) 2177 { 2178 raid5_conf_t *conf; 2179 int raid_disk, memory; 2180 mdk_rdev_t *rdev; 2181 struct disk_info *disk; 2182 struct list_head *tmp; 2183 2184 if (mddev->level != 5 && mddev->level != 4) { 2185 printk(KERN_ERR "raid5: %s: raid level not set to 4/5 (%d)\n", 2186 mdname(mddev), mddev->level); 2187 return -EIO; 2188 } 2189 2190 if (mddev->reshape_position != MaxSector) { 2191 /* Check that we can continue the reshape. 2192 * Currently only disks can change, it must 2193 * increase, and we must be past the point where 2194 * a stripe over-writes itself 2195 */ 2196 sector_t here_new, here_old; 2197 int old_disks; 2198 2199 if (mddev->new_level != mddev->level || 2200 mddev->new_layout != mddev->layout || 2201 mddev->new_chunk != mddev->chunk_size) { 2202 printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n", 2203 mdname(mddev)); 2204 return -EINVAL; 2205 } 2206 if (mddev->delta_disks <= 0) { 2207 printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n", 2208 mdname(mddev)); 2209 return -EINVAL; 2210 } 2211 old_disks = mddev->raid_disks - mddev->delta_disks; 2212 /* reshape_position must be on a new-stripe boundary, and one 2213 * further up in new geometry must map after here in old geometry. 2214 */ 2215 here_new = mddev->reshape_position; 2216 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) { 2217 printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n"); 2218 return -EINVAL; 2219 } 2220 /* here_new is the stripe we will write to */ 2221 here_old = mddev->reshape_position; 2222 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1)); 2223 /* here_old is the first stripe that we might need to read from */ 2224 if (here_new >= here_old) { 2225 /* Reading from the same stripe as writing to - bad */ 2226 printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n"); 2227 return -EINVAL; 2228 } 2229 printk(KERN_INFO "raid5: reshape will continue\n"); 2230 /* OK, we should be able to continue; */ 2231 } 2232 2233 2234 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL); 2235 if ((conf = mddev->private) == NULL) 2236 goto abort; 2237 if (mddev->reshape_position == MaxSector) { 2238 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks; 2239 } else { 2240 conf->raid_disks = mddev->raid_disks; 2241 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 2242 } 2243 2244 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info), 2245 GFP_KERNEL); 2246 if (!conf->disks) 2247 goto abort; 2248 2249 conf->mddev = mddev; 2250 2251 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 2252 goto abort; 2253 2254 spin_lock_init(&conf->device_lock); 2255 init_waitqueue_head(&conf->wait_for_stripe); 2256 init_waitqueue_head(&conf->wait_for_overlap); 2257 INIT_LIST_HEAD(&conf->handle_list); 2258 INIT_LIST_HEAD(&conf->delayed_list); 2259 INIT_LIST_HEAD(&conf->bitmap_list); 2260 INIT_LIST_HEAD(&conf->inactive_list); 2261 atomic_set(&conf->active_stripes, 0); 2262 atomic_set(&conf->preread_active_stripes, 0); 2263 2264 PRINTK("raid5: run(%s) called.\n", mdname(mddev)); 2265 2266 ITERATE_RDEV(mddev,rdev,tmp) { 2267 raid_disk = rdev->raid_disk; 2268 if (raid_disk >= conf->raid_disks 2269 || raid_disk < 0) 2270 continue; 2271 disk = conf->disks + raid_disk; 2272 2273 disk->rdev = rdev; 2274 2275 if (test_bit(In_sync, &rdev->flags)) { 2276 char b[BDEVNAME_SIZE]; 2277 printk(KERN_INFO "raid5: device %s operational as raid" 2278 " disk %d\n", bdevname(rdev->bdev,b), 2279 raid_disk); 2280 conf->working_disks++; 2281 } 2282 } 2283 2284 /* 2285 * 0 for a fully functional array, 1 for a degraded array. 2286 */ 2287 mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks; 2288 conf->mddev = mddev; 2289 conf->chunk_size = mddev->chunk_size; 2290 conf->level = mddev->level; 2291 conf->algorithm = mddev->layout; 2292 conf->max_nr_stripes = NR_STRIPES; 2293 conf->expand_progress = mddev->reshape_position; 2294 2295 /* device size must be a multiple of chunk size */ 2296 mddev->size &= ~(mddev->chunk_size/1024 -1); 2297 mddev->resync_max_sectors = mddev->size << 1; 2298 2299 if (!conf->chunk_size || conf->chunk_size % 4) { 2300 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", 2301 conf->chunk_size, mdname(mddev)); 2302 goto abort; 2303 } 2304 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { 2305 printk(KERN_ERR 2306 "raid5: unsupported parity algorithm %d for %s\n", 2307 conf->algorithm, mdname(mddev)); 2308 goto abort; 2309 } 2310 if (mddev->degraded > 1) { 2311 printk(KERN_ERR "raid5: not enough operational devices for %s" 2312 " (%d/%d failed)\n", 2313 mdname(mddev), conf->failed_disks, conf->raid_disks); 2314 goto abort; 2315 } 2316 2317 if (mddev->degraded == 1 && 2318 mddev->recovery_cp != MaxSector) { 2319 if (mddev->ok_start_degraded) 2320 printk(KERN_WARNING 2321 "raid5: starting dirty degraded array: %s" 2322 "- data corruption possible.\n", 2323 mdname(mddev)); 2324 else { 2325 printk(KERN_ERR 2326 "raid5: cannot start dirty degraded array for %s\n", 2327 mdname(mddev)); 2328 goto abort; 2329 } 2330 } 2331 2332 { 2333 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5"); 2334 if (!mddev->thread) { 2335 printk(KERN_ERR 2336 "raid5: couldn't allocate thread for %s\n", 2337 mdname(mddev)); 2338 goto abort; 2339 } 2340 } 2341 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 2342 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 2343 if (grow_stripes(conf, conf->max_nr_stripes)) { 2344 printk(KERN_ERR 2345 "raid5: couldn't allocate %dkB for buffers\n", memory); 2346 shrink_stripes(conf); 2347 md_unregister_thread(mddev->thread); 2348 goto abort; 2349 } else 2350 printk(KERN_INFO "raid5: allocated %dkB for %s\n", 2351 memory, mdname(mddev)); 2352 2353 if (mddev->degraded == 0) 2354 printk("raid5: raid level %d set %s active with %d out of %d" 2355 " devices, algorithm %d\n", conf->level, mdname(mddev), 2356 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 2357 conf->algorithm); 2358 else 2359 printk(KERN_ALERT "raid5: raid level %d set %s active with %d" 2360 " out of %d devices, algorithm %d\n", conf->level, 2361 mdname(mddev), mddev->raid_disks - mddev->degraded, 2362 mddev->raid_disks, conf->algorithm); 2363 2364 print_raid5_conf(conf); 2365 2366 if (conf->expand_progress != MaxSector) { 2367 printk("...ok start reshape thread\n"); 2368 conf->expand_lo = conf->expand_progress; 2369 atomic_set(&conf->reshape_stripes, 0); 2370 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 2371 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 2372 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 2373 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 2374 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 2375 "%s_reshape"); 2376 /* FIXME if md_register_thread fails?? */ 2377 md_wakeup_thread(mddev->sync_thread); 2378 2379 } 2380 2381 /* read-ahead size must cover two whole stripes, which is 2382 * 2 * (n-1) * chunksize where 'n' is the number of raid devices 2383 */ 2384 { 2385 int stripe = (mddev->raid_disks-1) * mddev->chunk_size 2386 / PAGE_SIZE; 2387 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 2388 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 2389 } 2390 2391 /* Ok, everything is just fine now */ 2392 sysfs_create_group(&mddev->kobj, &raid5_attrs_group); 2393 2394 mddev->queue->unplug_fn = raid5_unplug_device; 2395 mddev->queue->issue_flush_fn = raid5_issue_flush; 2396 mddev->array_size = mddev->size * (conf->previous_raid_disks - 1); 2397 2398 return 0; 2399 abort: 2400 if (conf) { 2401 print_raid5_conf(conf); 2402 kfree(conf->disks); 2403 kfree(conf->stripe_hashtbl); 2404 kfree(conf); 2405 } 2406 mddev->private = NULL; 2407 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev)); 2408 return -EIO; 2409 } 2410 2411 2412 2413 static int stop(mddev_t *mddev) 2414 { 2415 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 2416 2417 md_unregister_thread(mddev->thread); 2418 mddev->thread = NULL; 2419 shrink_stripes(conf); 2420 kfree(conf->stripe_hashtbl); 2421 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2422 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group); 2423 kfree(conf->disks); 2424 kfree(conf); 2425 mddev->private = NULL; 2426 return 0; 2427 } 2428 2429 #if RAID5_DEBUG 2430 static void print_sh (struct stripe_head *sh) 2431 { 2432 int i; 2433 2434 printk("sh %llu, pd_idx %d, state %ld.\n", 2435 (unsigned long long)sh->sector, sh->pd_idx, sh->state); 2436 printk("sh %llu, count %d.\n", 2437 (unsigned long long)sh->sector, atomic_read(&sh->count)); 2438 printk("sh %llu, ", (unsigned long long)sh->sector); 2439 for (i = 0; i < sh->disks; i++) { 2440 printk("(cache%d: %p %ld) ", 2441 i, sh->dev[i].page, sh->dev[i].flags); 2442 } 2443 printk("\n"); 2444 } 2445 2446 static void printall (raid5_conf_t *conf) 2447 { 2448 struct stripe_head *sh; 2449 struct hlist_node *hn; 2450 int i; 2451 2452 spin_lock_irq(&conf->device_lock); 2453 for (i = 0; i < NR_HASH; i++) { 2454 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) { 2455 if (sh->raid_conf != conf) 2456 continue; 2457 print_sh(sh); 2458 } 2459 } 2460 spin_unlock_irq(&conf->device_lock); 2461 } 2462 #endif 2463 2464 static void status (struct seq_file *seq, mddev_t *mddev) 2465 { 2466 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 2467 int i; 2468 2469 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); 2470 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks); 2471 for (i = 0; i < conf->raid_disks; i++) 2472 seq_printf (seq, "%s", 2473 conf->disks[i].rdev && 2474 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 2475 seq_printf (seq, "]"); 2476 #if RAID5_DEBUG 2477 #define D(x) \ 2478 seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x)) 2479 printall(conf); 2480 #endif 2481 } 2482 2483 static void print_raid5_conf (raid5_conf_t *conf) 2484 { 2485 int i; 2486 struct disk_info *tmp; 2487 2488 printk("RAID5 conf printout:\n"); 2489 if (!conf) { 2490 printk("(conf==NULL)\n"); 2491 return; 2492 } 2493 printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks, 2494 conf->working_disks, conf->failed_disks); 2495 2496 for (i = 0; i < conf->raid_disks; i++) { 2497 char b[BDEVNAME_SIZE]; 2498 tmp = conf->disks + i; 2499 if (tmp->rdev) 2500 printk(" disk %d, o:%d, dev:%s\n", 2501 i, !test_bit(Faulty, &tmp->rdev->flags), 2502 bdevname(tmp->rdev->bdev,b)); 2503 } 2504 } 2505 2506 static int raid5_spare_active(mddev_t *mddev) 2507 { 2508 int i; 2509 raid5_conf_t *conf = mddev->private; 2510 struct disk_info *tmp; 2511 2512 for (i = 0; i < conf->raid_disks; i++) { 2513 tmp = conf->disks + i; 2514 if (tmp->rdev 2515 && !test_bit(Faulty, &tmp->rdev->flags) 2516 && !test_bit(In_sync, &tmp->rdev->flags)) { 2517 mddev->degraded--; 2518 conf->failed_disks--; 2519 conf->working_disks++; 2520 set_bit(In_sync, &tmp->rdev->flags); 2521 } 2522 } 2523 print_raid5_conf(conf); 2524 return 0; 2525 } 2526 2527 static int raid5_remove_disk(mddev_t *mddev, int number) 2528 { 2529 raid5_conf_t *conf = mddev->private; 2530 int err = 0; 2531 mdk_rdev_t *rdev; 2532 struct disk_info *p = conf->disks + number; 2533 2534 print_raid5_conf(conf); 2535 rdev = p->rdev; 2536 if (rdev) { 2537 if (test_bit(In_sync, &rdev->flags) || 2538 atomic_read(&rdev->nr_pending)) { 2539 err = -EBUSY; 2540 goto abort; 2541 } 2542 p->rdev = NULL; 2543 synchronize_rcu(); 2544 if (atomic_read(&rdev->nr_pending)) { 2545 /* lost the race, try later */ 2546 err = -EBUSY; 2547 p->rdev = rdev; 2548 } 2549 } 2550 abort: 2551 2552 print_raid5_conf(conf); 2553 return err; 2554 } 2555 2556 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 2557 { 2558 raid5_conf_t *conf = mddev->private; 2559 int found = 0; 2560 int disk; 2561 struct disk_info *p; 2562 2563 if (mddev->degraded > 1) 2564 /* no point adding a device */ 2565 return 0; 2566 2567 /* 2568 * find the disk ... 2569 */ 2570 for (disk=0; disk < conf->raid_disks; disk++) 2571 if ((p=conf->disks + disk)->rdev == NULL) { 2572 clear_bit(In_sync, &rdev->flags); 2573 rdev->raid_disk = disk; 2574 found = 1; 2575 if (rdev->saved_raid_disk != disk) 2576 conf->fullsync = 1; 2577 rcu_assign_pointer(p->rdev, rdev); 2578 break; 2579 } 2580 print_raid5_conf(conf); 2581 return found; 2582 } 2583 2584 static int raid5_resize(mddev_t *mddev, sector_t sectors) 2585 { 2586 /* no resync is happening, and there is enough space 2587 * on all devices, so we can resize. 2588 * We need to make sure resync covers any new space. 2589 * If the array is shrinking we should possibly wait until 2590 * any io in the removed space completes, but it hardly seems 2591 * worth it. 2592 */ 2593 sectors &= ~((sector_t)mddev->chunk_size/512 - 1); 2594 mddev->array_size = (sectors * (mddev->raid_disks-1))>>1; 2595 set_capacity(mddev->gendisk, mddev->array_size << 1); 2596 mddev->changed = 1; 2597 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) { 2598 mddev->recovery_cp = mddev->size << 1; 2599 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2600 } 2601 mddev->size = sectors /2; 2602 mddev->resync_max_sectors = sectors; 2603 return 0; 2604 } 2605 2606 #ifdef CONFIG_MD_RAID5_RESHAPE 2607 static int raid5_check_reshape(mddev_t *mddev) 2608 { 2609 raid5_conf_t *conf = mddev_to_conf(mddev); 2610 int err; 2611 2612 if (mddev->delta_disks < 0 || 2613 mddev->new_level != mddev->level) 2614 return -EINVAL; /* Cannot shrink array or change level yet */ 2615 if (mddev->delta_disks == 0) 2616 return 0; /* nothing to do */ 2617 2618 /* Can only proceed if there are plenty of stripe_heads. 2619 * We need a minimum of one full stripe,, and for sensible progress 2620 * it is best to have about 4 times that. 2621 * If we require 4 times, then the default 256 4K stripe_heads will 2622 * allow for chunk sizes up to 256K, which is probably OK. 2623 * If the chunk size is greater, user-space should request more 2624 * stripe_heads first. 2625 */ 2626 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes || 2627 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) { 2628 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n", 2629 (mddev->chunk_size / STRIPE_SIZE)*4); 2630 return -ENOSPC; 2631 } 2632 2633 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks); 2634 if (err) 2635 return err; 2636 2637 /* looks like we might be able to manage this */ 2638 return 0; 2639 } 2640 2641 static int raid5_start_reshape(mddev_t *mddev) 2642 { 2643 raid5_conf_t *conf = mddev_to_conf(mddev); 2644 mdk_rdev_t *rdev; 2645 struct list_head *rtmp; 2646 int spares = 0; 2647 int added_devices = 0; 2648 2649 if (mddev->degraded || 2650 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2651 return -EBUSY; 2652 2653 ITERATE_RDEV(mddev, rdev, rtmp) 2654 if (rdev->raid_disk < 0 && 2655 !test_bit(Faulty, &rdev->flags)) 2656 spares++; 2657 2658 if (spares < mddev->delta_disks-1) 2659 /* Not enough devices even to make a degraded array 2660 * of that size 2661 */ 2662 return -EINVAL; 2663 2664 atomic_set(&conf->reshape_stripes, 0); 2665 spin_lock_irq(&conf->device_lock); 2666 conf->previous_raid_disks = conf->raid_disks; 2667 conf->raid_disks += mddev->delta_disks; 2668 conf->expand_progress = 0; 2669 conf->expand_lo = 0; 2670 spin_unlock_irq(&conf->device_lock); 2671 2672 /* Add some new drives, as many as will fit. 2673 * We know there are enough to make the newly sized array work. 2674 */ 2675 ITERATE_RDEV(mddev, rdev, rtmp) 2676 if (rdev->raid_disk < 0 && 2677 !test_bit(Faulty, &rdev->flags)) { 2678 if (raid5_add_disk(mddev, rdev)) { 2679 char nm[20]; 2680 set_bit(In_sync, &rdev->flags); 2681 conf->working_disks++; 2682 added_devices++; 2683 sprintf(nm, "rd%d", rdev->raid_disk); 2684 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); 2685 } else 2686 break; 2687 } 2688 2689 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices; 2690 mddev->raid_disks = conf->raid_disks; 2691 mddev->reshape_position = 0; 2692 mddev->sb_dirty = 1; 2693 2694 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 2695 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 2696 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 2697 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 2698 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 2699 "%s_reshape"); 2700 if (!mddev->sync_thread) { 2701 mddev->recovery = 0; 2702 spin_lock_irq(&conf->device_lock); 2703 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 2704 conf->expand_progress = MaxSector; 2705 spin_unlock_irq(&conf->device_lock); 2706 return -EAGAIN; 2707 } 2708 md_wakeup_thread(mddev->sync_thread); 2709 md_new_event(mddev); 2710 return 0; 2711 } 2712 #endif 2713 2714 static void end_reshape(raid5_conf_t *conf) 2715 { 2716 struct block_device *bdev; 2717 2718 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 2719 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1); 2720 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1); 2721 conf->mddev->changed = 1; 2722 2723 bdev = bdget_disk(conf->mddev->gendisk, 0); 2724 if (bdev) { 2725 mutex_lock(&bdev->bd_inode->i_mutex); 2726 i_size_write(bdev->bd_inode, conf->mddev->array_size << 10); 2727 mutex_unlock(&bdev->bd_inode->i_mutex); 2728 bdput(bdev); 2729 } 2730 spin_lock_irq(&conf->device_lock); 2731 conf->expand_progress = MaxSector; 2732 spin_unlock_irq(&conf->device_lock); 2733 conf->mddev->reshape_position = MaxSector; 2734 } 2735 } 2736 2737 static void raid5_quiesce(mddev_t *mddev, int state) 2738 { 2739 raid5_conf_t *conf = mddev_to_conf(mddev); 2740 2741 switch(state) { 2742 case 2: /* resume for a suspend */ 2743 wake_up(&conf->wait_for_overlap); 2744 break; 2745 2746 case 1: /* stop all writes */ 2747 spin_lock_irq(&conf->device_lock); 2748 conf->quiesce = 1; 2749 wait_event_lock_irq(conf->wait_for_stripe, 2750 atomic_read(&conf->active_stripes) == 0, 2751 conf->device_lock, /* nothing */); 2752 spin_unlock_irq(&conf->device_lock); 2753 break; 2754 2755 case 0: /* re-enable writes */ 2756 spin_lock_irq(&conf->device_lock); 2757 conf->quiesce = 0; 2758 wake_up(&conf->wait_for_stripe); 2759 wake_up(&conf->wait_for_overlap); 2760 spin_unlock_irq(&conf->device_lock); 2761 break; 2762 } 2763 } 2764 2765 static struct mdk_personality raid5_personality = 2766 { 2767 .name = "raid5", 2768 .level = 5, 2769 .owner = THIS_MODULE, 2770 .make_request = make_request, 2771 .run = run, 2772 .stop = stop, 2773 .status = status, 2774 .error_handler = error, 2775 .hot_add_disk = raid5_add_disk, 2776 .hot_remove_disk= raid5_remove_disk, 2777 .spare_active = raid5_spare_active, 2778 .sync_request = sync_request, 2779 .resize = raid5_resize, 2780 #ifdef CONFIG_MD_RAID5_RESHAPE 2781 .check_reshape = raid5_check_reshape, 2782 .start_reshape = raid5_start_reshape, 2783 #endif 2784 .quiesce = raid5_quiesce, 2785 }; 2786 2787 static struct mdk_personality raid4_personality = 2788 { 2789 .name = "raid4", 2790 .level = 4, 2791 .owner = THIS_MODULE, 2792 .make_request = make_request, 2793 .run = run, 2794 .stop = stop, 2795 .status = status, 2796 .error_handler = error, 2797 .hot_add_disk = raid5_add_disk, 2798 .hot_remove_disk= raid5_remove_disk, 2799 .spare_active = raid5_spare_active, 2800 .sync_request = sync_request, 2801 .resize = raid5_resize, 2802 .quiesce = raid5_quiesce, 2803 }; 2804 2805 static int __init raid5_init(void) 2806 { 2807 register_md_personality(&raid5_personality); 2808 register_md_personality(&raid4_personality); 2809 return 0; 2810 } 2811 2812 static void raid5_exit(void) 2813 { 2814 unregister_md_personality(&raid5_personality); 2815 unregister_md_personality(&raid4_personality); 2816 } 2817 2818 module_init(raid5_init); 2819 module_exit(raid5_exit); 2820 MODULE_LICENSE("GPL"); 2821 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 2822 MODULE_ALIAS("md-raid5"); 2823 MODULE_ALIAS("md-raid4"); 2824 MODULE_ALIAS("md-level-5"); 2825 MODULE_ALIAS("md-level-4"); 2826