xref: /linux/drivers/md/raid5.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/raid/pq.h>
42 #include <linux/async_tx.h>
43 #include <linux/module.h>
44 #include <linux/async.h>
45 #include <linux/seq_file.h>
46 #include <linux/cpu.h>
47 #include <linux/slab.h>
48 #include <linux/ratelimit.h>
49 #include <linux/nodemask.h>
50 
51 #include <trace/events/block.h>
52 #include <linux/list_sort.h>
53 
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "md-bitmap.h"
58 #include "raid5-log.h"
59 
60 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
61 
62 #define cpu_to_group(cpu) cpu_to_node(cpu)
63 #define ANY_GROUP NUMA_NO_NODE
64 
65 #define RAID5_MAX_REQ_STRIPES 256
66 
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
72 
73 static void raid5_quiesce(struct mddev *mddev, int quiesce);
74 
75 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
76 {
77 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
78 	return &conf->stripe_hashtbl[hash];
79 }
80 
81 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
82 {
83 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
84 }
85 
86 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
87 	__acquires(&conf->device_lock)
88 {
89 	spin_lock_irq(conf->hash_locks + hash);
90 	spin_lock(&conf->device_lock);
91 }
92 
93 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
94 	__releases(&conf->device_lock)
95 {
96 	spin_unlock(&conf->device_lock);
97 	spin_unlock_irq(conf->hash_locks + hash);
98 }
99 
100 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
101 	__acquires(&conf->device_lock)
102 {
103 	int i;
104 	spin_lock_irq(conf->hash_locks);
105 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
106 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
107 	spin_lock(&conf->device_lock);
108 }
109 
110 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
111 	__releases(&conf->device_lock)
112 {
113 	int i;
114 	spin_unlock(&conf->device_lock);
115 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 		spin_unlock(conf->hash_locks + i);
117 	spin_unlock_irq(conf->hash_locks);
118 }
119 
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 	if (sh->ddf_layout)
124 		/* ddf always start from first device */
125 		return 0;
126 	/* md starts just after Q block */
127 	if (sh->qd_idx == sh->disks - 1)
128 		return 0;
129 	else
130 		return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 	disk++;
135 	return (disk < raid_disks) ? disk : 0;
136 }
137 
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139  * We need to map each disk to a 'slot', where the data disks are slot
140  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141  * is raid_disks-1.  This help does that mapping.
142  */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 			     int *count, int syndrome_disks)
145 {
146 	int slot = *count;
147 
148 	if (sh->ddf_layout)
149 		(*count)++;
150 	if (idx == sh->pd_idx)
151 		return syndrome_disks;
152 	if (idx == sh->qd_idx)
153 		return syndrome_disks + 1;
154 	if (!sh->ddf_layout)
155 		(*count)++;
156 	return slot;
157 }
158 
159 static void print_raid5_conf (struct r5conf *conf);
160 
161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163 	return sh->check_state || sh->reconstruct_state ||
164 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167 
168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174 
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 	__must_hold(&sh->raid_conf->device_lock)
177 {
178 	struct r5conf *conf = sh->raid_conf;
179 	struct r5worker_group *group;
180 	int thread_cnt;
181 	int i, cpu = sh->cpu;
182 
183 	if (!cpu_online(cpu)) {
184 		cpu = cpumask_any(cpu_online_mask);
185 		sh->cpu = cpu;
186 	}
187 
188 	if (list_empty(&sh->lru)) {
189 		struct r5worker_group *group;
190 		group = conf->worker_groups + cpu_to_group(cpu);
191 		if (stripe_is_lowprio(sh))
192 			list_add_tail(&sh->lru, &group->loprio_list);
193 		else
194 			list_add_tail(&sh->lru, &group->handle_list);
195 		group->stripes_cnt++;
196 		sh->group = group;
197 	}
198 
199 	if (conf->worker_cnt_per_group == 0) {
200 		md_wakeup_thread(conf->mddev->thread);
201 		return;
202 	}
203 
204 	group = conf->worker_groups + cpu_to_group(sh->cpu);
205 
206 	group->workers[0].working = true;
207 	/* at least one worker should run to avoid race */
208 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209 
210 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 	/* wakeup more workers */
212 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 		if (group->workers[i].working == false) {
214 			group->workers[i].working = true;
215 			queue_work_on(sh->cpu, raid5_wq,
216 				      &group->workers[i].work);
217 			thread_cnt--;
218 		}
219 	}
220 }
221 
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 			      struct list_head *temp_inactive_list)
224 	__must_hold(&conf->device_lock)
225 {
226 	int i;
227 	int injournal = 0;	/* number of date pages with R5_InJournal */
228 
229 	BUG_ON(!list_empty(&sh->lru));
230 	BUG_ON(atomic_read(&conf->active_stripes)==0);
231 
232 	if (r5c_is_writeback(conf->log))
233 		for (i = sh->disks; i--; )
234 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
235 				injournal++;
236 	/*
237 	 * In the following cases, the stripe cannot be released to cached
238 	 * lists. Therefore, we make the stripe write out and set
239 	 * STRIPE_HANDLE:
240 	 *   1. when quiesce in r5c write back;
241 	 *   2. when resync is requested fot the stripe.
242 	 */
243 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
244 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
245 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
246 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
247 			r5c_make_stripe_write_out(sh);
248 		set_bit(STRIPE_HANDLE, &sh->state);
249 	}
250 
251 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
252 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
253 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
254 			list_add_tail(&sh->lru, &conf->delayed_list);
255 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
256 			   sh->bm_seq - conf->seq_write > 0)
257 			list_add_tail(&sh->lru, &conf->bitmap_list);
258 		else {
259 			clear_bit(STRIPE_DELAYED, &sh->state);
260 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
261 			if (conf->worker_cnt_per_group == 0) {
262 				if (stripe_is_lowprio(sh))
263 					list_add_tail(&sh->lru,
264 							&conf->loprio_list);
265 				else
266 					list_add_tail(&sh->lru,
267 							&conf->handle_list);
268 			} else {
269 				raid5_wakeup_stripe_thread(sh);
270 				return;
271 			}
272 		}
273 		md_wakeup_thread(conf->mddev->thread);
274 	} else {
275 		BUG_ON(stripe_operations_active(sh));
276 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
277 			if (atomic_dec_return(&conf->preread_active_stripes)
278 			    < IO_THRESHOLD)
279 				md_wakeup_thread(conf->mddev->thread);
280 		atomic_dec(&conf->active_stripes);
281 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
282 			if (!r5c_is_writeback(conf->log))
283 				list_add_tail(&sh->lru, temp_inactive_list);
284 			else {
285 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
286 				if (injournal == 0)
287 					list_add_tail(&sh->lru, temp_inactive_list);
288 				else if (injournal == conf->raid_disks - conf->max_degraded) {
289 					/* full stripe */
290 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
291 						atomic_inc(&conf->r5c_cached_full_stripes);
292 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
293 						atomic_dec(&conf->r5c_cached_partial_stripes);
294 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
295 					r5c_check_cached_full_stripe(conf);
296 				} else
297 					/*
298 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
299 					 * r5c_try_caching_write(). No need to
300 					 * set it again.
301 					 */
302 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
303 			}
304 		}
305 	}
306 }
307 
308 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
309 			     struct list_head *temp_inactive_list)
310 	__must_hold(&conf->device_lock)
311 {
312 	if (atomic_dec_and_test(&sh->count))
313 		do_release_stripe(conf, sh, temp_inactive_list);
314 }
315 
316 /*
317  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
318  *
319  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
320  * given time. Adding stripes only takes device lock, while deleting stripes
321  * only takes hash lock.
322  */
323 static void release_inactive_stripe_list(struct r5conf *conf,
324 					 struct list_head *temp_inactive_list,
325 					 int hash)
326 {
327 	int size;
328 	bool do_wakeup = false;
329 	unsigned long flags;
330 
331 	if (hash == NR_STRIPE_HASH_LOCKS) {
332 		size = NR_STRIPE_HASH_LOCKS;
333 		hash = NR_STRIPE_HASH_LOCKS - 1;
334 	} else
335 		size = 1;
336 	while (size) {
337 		struct list_head *list = &temp_inactive_list[size - 1];
338 
339 		/*
340 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
341 		 * remove stripes from the list
342 		 */
343 		if (!list_empty_careful(list)) {
344 			spin_lock_irqsave(conf->hash_locks + hash, flags);
345 			if (list_empty(conf->inactive_list + hash) &&
346 			    !list_empty(list))
347 				atomic_dec(&conf->empty_inactive_list_nr);
348 			list_splice_tail_init(list, conf->inactive_list + hash);
349 			do_wakeup = true;
350 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
351 		}
352 		size--;
353 		hash--;
354 	}
355 
356 	if (do_wakeup) {
357 		wake_up(&conf->wait_for_stripe);
358 		if (atomic_read(&conf->active_stripes) == 0)
359 			wake_up(&conf->wait_for_quiescent);
360 		if (conf->retry_read_aligned)
361 			md_wakeup_thread(conf->mddev->thread);
362 	}
363 }
364 
365 static int release_stripe_list(struct r5conf *conf,
366 			       struct list_head *temp_inactive_list)
367 	__must_hold(&conf->device_lock)
368 {
369 	struct stripe_head *sh, *t;
370 	int count = 0;
371 	struct llist_node *head;
372 
373 	head = llist_del_all(&conf->released_stripes);
374 	head = llist_reverse_order(head);
375 	llist_for_each_entry_safe(sh, t, head, release_list) {
376 		int hash;
377 
378 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
379 		smp_mb();
380 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
381 		/*
382 		 * Don't worry the bit is set here, because if the bit is set
383 		 * again, the count is always > 1. This is true for
384 		 * STRIPE_ON_UNPLUG_LIST bit too.
385 		 */
386 		hash = sh->hash_lock_index;
387 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
388 		count++;
389 	}
390 
391 	return count;
392 }
393 
394 void raid5_release_stripe(struct stripe_head *sh)
395 {
396 	struct r5conf *conf = sh->raid_conf;
397 	unsigned long flags;
398 	struct list_head list;
399 	int hash;
400 	bool wakeup;
401 
402 	/* Avoid release_list until the last reference.
403 	 */
404 	if (atomic_add_unless(&sh->count, -1, 1))
405 		return;
406 
407 	if (unlikely(!conf->mddev->thread) ||
408 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
409 		goto slow_path;
410 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
411 	if (wakeup)
412 		md_wakeup_thread(conf->mddev->thread);
413 	return;
414 slow_path:
415 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
416 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
417 		INIT_LIST_HEAD(&list);
418 		hash = sh->hash_lock_index;
419 		do_release_stripe(conf, sh, &list);
420 		spin_unlock_irqrestore(&conf->device_lock, flags);
421 		release_inactive_stripe_list(conf, &list, hash);
422 	}
423 }
424 
425 static inline void remove_hash(struct stripe_head *sh)
426 {
427 	pr_debug("remove_hash(), stripe %llu\n",
428 		(unsigned long long)sh->sector);
429 
430 	hlist_del_init(&sh->hash);
431 }
432 
433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434 {
435 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
436 
437 	pr_debug("insert_hash(), stripe %llu\n",
438 		(unsigned long long)sh->sector);
439 
440 	hlist_add_head(&sh->hash, hp);
441 }
442 
443 /* find an idle stripe, make sure it is unhashed, and return it. */
444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445 {
446 	struct stripe_head *sh = NULL;
447 	struct list_head *first;
448 
449 	if (list_empty(conf->inactive_list + hash))
450 		goto out;
451 	first = (conf->inactive_list + hash)->next;
452 	sh = list_entry(first, struct stripe_head, lru);
453 	list_del_init(first);
454 	remove_hash(sh);
455 	atomic_inc(&conf->active_stripes);
456 	BUG_ON(hash != sh->hash_lock_index);
457 	if (list_empty(conf->inactive_list + hash))
458 		atomic_inc(&conf->empty_inactive_list_nr);
459 out:
460 	return sh;
461 }
462 
463 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
464 static void free_stripe_pages(struct stripe_head *sh)
465 {
466 	int i;
467 	struct page *p;
468 
469 	/* Have not allocate page pool */
470 	if (!sh->pages)
471 		return;
472 
473 	for (i = 0; i < sh->nr_pages; i++) {
474 		p = sh->pages[i];
475 		if (p)
476 			put_page(p);
477 		sh->pages[i] = NULL;
478 	}
479 }
480 
481 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
482 {
483 	int i;
484 	struct page *p;
485 
486 	for (i = 0; i < sh->nr_pages; i++) {
487 		/* The page have allocated. */
488 		if (sh->pages[i])
489 			continue;
490 
491 		p = alloc_page(gfp);
492 		if (!p) {
493 			free_stripe_pages(sh);
494 			return -ENOMEM;
495 		}
496 		sh->pages[i] = p;
497 	}
498 	return 0;
499 }
500 
501 static int
502 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
503 {
504 	int nr_pages, cnt;
505 
506 	if (sh->pages)
507 		return 0;
508 
509 	/* Each of the sh->dev[i] need one conf->stripe_size */
510 	cnt = PAGE_SIZE / conf->stripe_size;
511 	nr_pages = (disks + cnt - 1) / cnt;
512 
513 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
514 	if (!sh->pages)
515 		return -ENOMEM;
516 	sh->nr_pages = nr_pages;
517 	sh->stripes_per_page = cnt;
518 	return 0;
519 }
520 #endif
521 
522 static void shrink_buffers(struct stripe_head *sh)
523 {
524 	int i;
525 	int num = sh->raid_conf->pool_size;
526 
527 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
528 	for (i = 0; i < num ; i++) {
529 		struct page *p;
530 
531 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
532 		p = sh->dev[i].page;
533 		if (!p)
534 			continue;
535 		sh->dev[i].page = NULL;
536 		put_page(p);
537 	}
538 #else
539 	for (i = 0; i < num; i++)
540 		sh->dev[i].page = NULL;
541 	free_stripe_pages(sh); /* Free pages */
542 #endif
543 }
544 
545 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
546 {
547 	int i;
548 	int num = sh->raid_conf->pool_size;
549 
550 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
551 	for (i = 0; i < num; i++) {
552 		struct page *page;
553 
554 		if (!(page = alloc_page(gfp))) {
555 			return 1;
556 		}
557 		sh->dev[i].page = page;
558 		sh->dev[i].orig_page = page;
559 		sh->dev[i].offset = 0;
560 	}
561 #else
562 	if (alloc_stripe_pages(sh, gfp))
563 		return -ENOMEM;
564 
565 	for (i = 0; i < num; i++) {
566 		sh->dev[i].page = raid5_get_dev_page(sh, i);
567 		sh->dev[i].orig_page = sh->dev[i].page;
568 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
569 	}
570 #endif
571 	return 0;
572 }
573 
574 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
575 			    struct stripe_head *sh);
576 
577 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
578 {
579 	struct r5conf *conf = sh->raid_conf;
580 	int i, seq;
581 
582 	BUG_ON(atomic_read(&sh->count) != 0);
583 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
584 	BUG_ON(stripe_operations_active(sh));
585 	BUG_ON(sh->batch_head);
586 
587 	pr_debug("init_stripe called, stripe %llu\n",
588 		(unsigned long long)sector);
589 retry:
590 	seq = read_seqcount_begin(&conf->gen_lock);
591 	sh->generation = conf->generation - previous;
592 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
593 	sh->sector = sector;
594 	stripe_set_idx(sector, conf, previous, sh);
595 	sh->state = 0;
596 
597 	for (i = sh->disks; i--; ) {
598 		struct r5dev *dev = &sh->dev[i];
599 
600 		if (dev->toread || dev->read || dev->towrite || dev->written ||
601 		    test_bit(R5_LOCKED, &dev->flags)) {
602 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
603 			       (unsigned long long)sh->sector, i, dev->toread,
604 			       dev->read, dev->towrite, dev->written,
605 			       test_bit(R5_LOCKED, &dev->flags));
606 			WARN_ON(1);
607 		}
608 		dev->flags = 0;
609 		dev->sector = raid5_compute_blocknr(sh, i, previous);
610 	}
611 	if (read_seqcount_retry(&conf->gen_lock, seq))
612 		goto retry;
613 	sh->overwrite_disks = 0;
614 	insert_hash(conf, sh);
615 	sh->cpu = smp_processor_id();
616 	set_bit(STRIPE_BATCH_READY, &sh->state);
617 }
618 
619 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
620 					 short generation)
621 {
622 	struct stripe_head *sh;
623 
624 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
625 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
626 		if (sh->sector == sector && sh->generation == generation)
627 			return sh;
628 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
629 	return NULL;
630 }
631 
632 static struct stripe_head *find_get_stripe(struct r5conf *conf,
633 		sector_t sector, short generation, int hash)
634 {
635 	int inc_empty_inactive_list_flag;
636 	struct stripe_head *sh;
637 
638 	sh = __find_stripe(conf, sector, generation);
639 	if (!sh)
640 		return NULL;
641 
642 	if (atomic_inc_not_zero(&sh->count))
643 		return sh;
644 
645 	/*
646 	 * Slow path. The reference count is zero which means the stripe must
647 	 * be on a list (sh->lru). Must remove the stripe from the list that
648 	 * references it with the device_lock held.
649 	 */
650 
651 	spin_lock(&conf->device_lock);
652 	if (!atomic_read(&sh->count)) {
653 		if (!test_bit(STRIPE_HANDLE, &sh->state))
654 			atomic_inc(&conf->active_stripes);
655 		BUG_ON(list_empty(&sh->lru) &&
656 		       !test_bit(STRIPE_EXPANDING, &sh->state));
657 		inc_empty_inactive_list_flag = 0;
658 		if (!list_empty(conf->inactive_list + hash))
659 			inc_empty_inactive_list_flag = 1;
660 		list_del_init(&sh->lru);
661 		if (list_empty(conf->inactive_list + hash) &&
662 		    inc_empty_inactive_list_flag)
663 			atomic_inc(&conf->empty_inactive_list_nr);
664 		if (sh->group) {
665 			sh->group->stripes_cnt--;
666 			sh->group = NULL;
667 		}
668 	}
669 	atomic_inc(&sh->count);
670 	spin_unlock(&conf->device_lock);
671 
672 	return sh;
673 }
674 
675 /*
676  * Need to check if array has failed when deciding whether to:
677  *  - start an array
678  *  - remove non-faulty devices
679  *  - add a spare
680  *  - allow a reshape
681  * This determination is simple when no reshape is happening.
682  * However if there is a reshape, we need to carefully check
683  * both the before and after sections.
684  * This is because some failed devices may only affect one
685  * of the two sections, and some non-in_sync devices may
686  * be insync in the section most affected by failed devices.
687  *
688  * Most calls to this function hold &conf->device_lock. Calls
689  * in raid5_run() do not require the lock as no other threads
690  * have been started yet.
691  */
692 int raid5_calc_degraded(struct r5conf *conf)
693 {
694 	int degraded, degraded2;
695 	int i;
696 
697 	degraded = 0;
698 	for (i = 0; i < conf->previous_raid_disks; i++) {
699 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
700 
701 		if (rdev && test_bit(Faulty, &rdev->flags))
702 			rdev = READ_ONCE(conf->disks[i].replacement);
703 		if (!rdev || test_bit(Faulty, &rdev->flags))
704 			degraded++;
705 		else if (test_bit(In_sync, &rdev->flags))
706 			;
707 		else
708 			/* not in-sync or faulty.
709 			 * If the reshape increases the number of devices,
710 			 * this is being recovered by the reshape, so
711 			 * this 'previous' section is not in_sync.
712 			 * If the number of devices is being reduced however,
713 			 * the device can only be part of the array if
714 			 * we are reverting a reshape, so this section will
715 			 * be in-sync.
716 			 */
717 			if (conf->raid_disks >= conf->previous_raid_disks)
718 				degraded++;
719 	}
720 	if (conf->raid_disks == conf->previous_raid_disks)
721 		return degraded;
722 	degraded2 = 0;
723 	for (i = 0; i < conf->raid_disks; i++) {
724 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
725 
726 		if (rdev && test_bit(Faulty, &rdev->flags))
727 			rdev = READ_ONCE(conf->disks[i].replacement);
728 		if (!rdev || test_bit(Faulty, &rdev->flags))
729 			degraded2++;
730 		else if (test_bit(In_sync, &rdev->flags))
731 			;
732 		else
733 			/* not in-sync or faulty.
734 			 * If reshape increases the number of devices, this
735 			 * section has already been recovered, else it
736 			 * almost certainly hasn't.
737 			 */
738 			if (conf->raid_disks <= conf->previous_raid_disks)
739 				degraded2++;
740 	}
741 	if (degraded2 > degraded)
742 		return degraded2;
743 	return degraded;
744 }
745 
746 static bool has_failed(struct r5conf *conf)
747 {
748 	int degraded = conf->mddev->degraded;
749 
750 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
751 		return true;
752 
753 	if (conf->mddev->reshape_position != MaxSector)
754 		degraded = raid5_calc_degraded(conf);
755 
756 	return degraded > conf->max_degraded;
757 }
758 
759 enum stripe_result {
760 	STRIPE_SUCCESS = 0,
761 	STRIPE_RETRY,
762 	STRIPE_SCHEDULE_AND_RETRY,
763 	STRIPE_FAIL,
764 	STRIPE_WAIT_RESHAPE,
765 };
766 
767 struct stripe_request_ctx {
768 	/* a reference to the last stripe_head for batching */
769 	struct stripe_head *batch_last;
770 
771 	/* first sector in the request */
772 	sector_t first_sector;
773 
774 	/* last sector in the request */
775 	sector_t last_sector;
776 
777 	/*
778 	 * bitmap to track stripe sectors that have been added to stripes
779 	 * add one to account for unaligned requests
780 	 */
781 	DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
782 
783 	/* the request had REQ_PREFLUSH, cleared after the first stripe_head */
784 	bool do_flush;
785 };
786 
787 /*
788  * Block until another thread clears R5_INACTIVE_BLOCKED or
789  * there are fewer than 3/4 the maximum number of active stripes
790  * and there is an inactive stripe available.
791  */
792 static bool is_inactive_blocked(struct r5conf *conf, int hash)
793 {
794 	if (list_empty(conf->inactive_list + hash))
795 		return false;
796 
797 	if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
798 		return true;
799 
800 	return (atomic_read(&conf->active_stripes) <
801 		(conf->max_nr_stripes * 3 / 4));
802 }
803 
804 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
805 		struct stripe_request_ctx *ctx, sector_t sector,
806 		unsigned int flags)
807 {
808 	struct stripe_head *sh;
809 	int hash = stripe_hash_locks_hash(conf, sector);
810 	int previous = !!(flags & R5_GAS_PREVIOUS);
811 
812 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
813 
814 	spin_lock_irq(conf->hash_locks + hash);
815 
816 	for (;;) {
817 		if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
818 			/*
819 			 * Must release the reference to batch_last before
820 			 * waiting, on quiesce, otherwise the batch_last will
821 			 * hold a reference to a stripe and raid5_quiesce()
822 			 * will deadlock waiting for active_stripes to go to
823 			 * zero.
824 			 */
825 			if (ctx && ctx->batch_last) {
826 				raid5_release_stripe(ctx->batch_last);
827 				ctx->batch_last = NULL;
828 			}
829 
830 			wait_event_lock_irq(conf->wait_for_quiescent,
831 					    !conf->quiesce,
832 					    *(conf->hash_locks + hash));
833 		}
834 
835 		sh = find_get_stripe(conf, sector, conf->generation - previous,
836 				     hash);
837 		if (sh)
838 			break;
839 
840 		if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
841 			sh = get_free_stripe(conf, hash);
842 			if (sh) {
843 				r5c_check_stripe_cache_usage(conf);
844 				init_stripe(sh, sector, previous);
845 				atomic_inc(&sh->count);
846 				break;
847 			}
848 
849 			if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
850 				set_bit(R5_ALLOC_MORE, &conf->cache_state);
851 		}
852 
853 		if (flags & R5_GAS_NOBLOCK)
854 			break;
855 
856 		set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
857 		r5l_wake_reclaim(conf->log, 0);
858 
859 		/* release batch_last before wait to avoid risk of deadlock */
860 		if (ctx && ctx->batch_last) {
861 			raid5_release_stripe(ctx->batch_last);
862 			ctx->batch_last = NULL;
863 		}
864 
865 		wait_event_lock_irq(conf->wait_for_stripe,
866 				    is_inactive_blocked(conf, hash),
867 				    *(conf->hash_locks + hash));
868 		clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
869 	}
870 
871 	spin_unlock_irq(conf->hash_locks + hash);
872 	return sh;
873 }
874 
875 static bool is_full_stripe_write(struct stripe_head *sh)
876 {
877 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
878 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
879 }
880 
881 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
882 		__acquires(&sh1->stripe_lock)
883 		__acquires(&sh2->stripe_lock)
884 {
885 	if (sh1 > sh2) {
886 		spin_lock_irq(&sh2->stripe_lock);
887 		spin_lock_nested(&sh1->stripe_lock, 1);
888 	} else {
889 		spin_lock_irq(&sh1->stripe_lock);
890 		spin_lock_nested(&sh2->stripe_lock, 1);
891 	}
892 }
893 
894 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
895 		__releases(&sh1->stripe_lock)
896 		__releases(&sh2->stripe_lock)
897 {
898 	spin_unlock(&sh1->stripe_lock);
899 	spin_unlock_irq(&sh2->stripe_lock);
900 }
901 
902 /* Only freshly new full stripe normal write stripe can be added to a batch list */
903 static bool stripe_can_batch(struct stripe_head *sh)
904 {
905 	struct r5conf *conf = sh->raid_conf;
906 
907 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
908 		return false;
909 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
910 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
911 		is_full_stripe_write(sh);
912 }
913 
914 /* we only do back search */
915 static void stripe_add_to_batch_list(struct r5conf *conf,
916 		struct stripe_head *sh, struct stripe_head *last_sh)
917 {
918 	struct stripe_head *head;
919 	sector_t head_sector, tmp_sec;
920 	int hash;
921 	int dd_idx;
922 
923 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
924 	tmp_sec = sh->sector;
925 	if (!sector_div(tmp_sec, conf->chunk_sectors))
926 		return;
927 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
928 
929 	if (last_sh && head_sector == last_sh->sector) {
930 		head = last_sh;
931 		atomic_inc(&head->count);
932 	} else {
933 		hash = stripe_hash_locks_hash(conf, head_sector);
934 		spin_lock_irq(conf->hash_locks + hash);
935 		head = find_get_stripe(conf, head_sector, conf->generation,
936 				       hash);
937 		spin_unlock_irq(conf->hash_locks + hash);
938 		if (!head)
939 			return;
940 		if (!stripe_can_batch(head))
941 			goto out;
942 	}
943 
944 	lock_two_stripes(head, sh);
945 	/* clear_batch_ready clear the flag */
946 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
947 		goto unlock_out;
948 
949 	if (sh->batch_head)
950 		goto unlock_out;
951 
952 	dd_idx = 0;
953 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
954 		dd_idx++;
955 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
956 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
957 		goto unlock_out;
958 
959 	if (head->batch_head) {
960 		spin_lock(&head->batch_head->batch_lock);
961 		/* This batch list is already running */
962 		if (!stripe_can_batch(head)) {
963 			spin_unlock(&head->batch_head->batch_lock);
964 			goto unlock_out;
965 		}
966 		/*
967 		 * We must assign batch_head of this stripe within the
968 		 * batch_lock, otherwise clear_batch_ready of batch head
969 		 * stripe could clear BATCH_READY bit of this stripe and
970 		 * this stripe->batch_head doesn't get assigned, which
971 		 * could confuse clear_batch_ready for this stripe
972 		 */
973 		sh->batch_head = head->batch_head;
974 
975 		/*
976 		 * at this point, head's BATCH_READY could be cleared, but we
977 		 * can still add the stripe to batch list
978 		 */
979 		list_add(&sh->batch_list, &head->batch_list);
980 		spin_unlock(&head->batch_head->batch_lock);
981 	} else {
982 		head->batch_head = head;
983 		sh->batch_head = head->batch_head;
984 		spin_lock(&head->batch_lock);
985 		list_add_tail(&sh->batch_list, &head->batch_list);
986 		spin_unlock(&head->batch_lock);
987 	}
988 
989 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
990 		if (atomic_dec_return(&conf->preread_active_stripes)
991 		    < IO_THRESHOLD)
992 			md_wakeup_thread(conf->mddev->thread);
993 
994 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
995 		int seq = sh->bm_seq;
996 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
997 		    sh->batch_head->bm_seq > seq)
998 			seq = sh->batch_head->bm_seq;
999 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
1000 		sh->batch_head->bm_seq = seq;
1001 	}
1002 
1003 	atomic_inc(&sh->count);
1004 unlock_out:
1005 	unlock_two_stripes(head, sh);
1006 out:
1007 	raid5_release_stripe(head);
1008 }
1009 
1010 /* Determine if 'data_offset' or 'new_data_offset' should be used
1011  * in this stripe_head.
1012  */
1013 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1014 {
1015 	sector_t progress = conf->reshape_progress;
1016 	/* Need a memory barrier to make sure we see the value
1017 	 * of conf->generation, or ->data_offset that was set before
1018 	 * reshape_progress was updated.
1019 	 */
1020 	smp_rmb();
1021 	if (progress == MaxSector)
1022 		return 0;
1023 	if (sh->generation == conf->generation - 1)
1024 		return 0;
1025 	/* We are in a reshape, and this is a new-generation stripe,
1026 	 * so use new_data_offset.
1027 	 */
1028 	return 1;
1029 }
1030 
1031 static void dispatch_bio_list(struct bio_list *tmp)
1032 {
1033 	struct bio *bio;
1034 
1035 	while ((bio = bio_list_pop(tmp)))
1036 		submit_bio_noacct(bio);
1037 }
1038 
1039 static int cmp_stripe(void *priv, const struct list_head *a,
1040 		      const struct list_head *b)
1041 {
1042 	const struct r5pending_data *da = list_entry(a,
1043 				struct r5pending_data, sibling);
1044 	const struct r5pending_data *db = list_entry(b,
1045 				struct r5pending_data, sibling);
1046 	if (da->sector > db->sector)
1047 		return 1;
1048 	if (da->sector < db->sector)
1049 		return -1;
1050 	return 0;
1051 }
1052 
1053 static void dispatch_defer_bios(struct r5conf *conf, int target,
1054 				struct bio_list *list)
1055 {
1056 	struct r5pending_data *data;
1057 	struct list_head *first, *next = NULL;
1058 	int cnt = 0;
1059 
1060 	if (conf->pending_data_cnt == 0)
1061 		return;
1062 
1063 	list_sort(NULL, &conf->pending_list, cmp_stripe);
1064 
1065 	first = conf->pending_list.next;
1066 
1067 	/* temporarily move the head */
1068 	if (conf->next_pending_data)
1069 		list_move_tail(&conf->pending_list,
1070 				&conf->next_pending_data->sibling);
1071 
1072 	while (!list_empty(&conf->pending_list)) {
1073 		data = list_first_entry(&conf->pending_list,
1074 			struct r5pending_data, sibling);
1075 		if (&data->sibling == first)
1076 			first = data->sibling.next;
1077 		next = data->sibling.next;
1078 
1079 		bio_list_merge(list, &data->bios);
1080 		list_move(&data->sibling, &conf->free_list);
1081 		cnt++;
1082 		if (cnt >= target)
1083 			break;
1084 	}
1085 	conf->pending_data_cnt -= cnt;
1086 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1087 
1088 	if (next != &conf->pending_list)
1089 		conf->next_pending_data = list_entry(next,
1090 				struct r5pending_data, sibling);
1091 	else
1092 		conf->next_pending_data = NULL;
1093 	/* list isn't empty */
1094 	if (first != &conf->pending_list)
1095 		list_move_tail(&conf->pending_list, first);
1096 }
1097 
1098 static void flush_deferred_bios(struct r5conf *conf)
1099 {
1100 	struct bio_list tmp = BIO_EMPTY_LIST;
1101 
1102 	if (conf->pending_data_cnt == 0)
1103 		return;
1104 
1105 	spin_lock(&conf->pending_bios_lock);
1106 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1107 	BUG_ON(conf->pending_data_cnt != 0);
1108 	spin_unlock(&conf->pending_bios_lock);
1109 
1110 	dispatch_bio_list(&tmp);
1111 }
1112 
1113 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1114 				struct bio_list *bios)
1115 {
1116 	struct bio_list tmp = BIO_EMPTY_LIST;
1117 	struct r5pending_data *ent;
1118 
1119 	spin_lock(&conf->pending_bios_lock);
1120 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1121 							sibling);
1122 	list_move_tail(&ent->sibling, &conf->pending_list);
1123 	ent->sector = sector;
1124 	bio_list_init(&ent->bios);
1125 	bio_list_merge(&ent->bios, bios);
1126 	conf->pending_data_cnt++;
1127 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1128 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1129 
1130 	spin_unlock(&conf->pending_bios_lock);
1131 
1132 	dispatch_bio_list(&tmp);
1133 }
1134 
1135 static void
1136 raid5_end_read_request(struct bio *bi);
1137 static void
1138 raid5_end_write_request(struct bio *bi);
1139 
1140 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1141 {
1142 	struct r5conf *conf = sh->raid_conf;
1143 	int i, disks = sh->disks;
1144 	struct stripe_head *head_sh = sh;
1145 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1146 	struct r5dev *dev;
1147 	bool should_defer;
1148 
1149 	might_sleep();
1150 
1151 	if (log_stripe(sh, s) == 0)
1152 		return;
1153 
1154 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1155 
1156 	for (i = disks; i--; ) {
1157 		enum req_op op;
1158 		blk_opf_t op_flags = 0;
1159 		int replace_only = 0;
1160 		struct bio *bi, *rbi;
1161 		struct md_rdev *rdev, *rrdev = NULL;
1162 
1163 		sh = head_sh;
1164 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1165 			op = REQ_OP_WRITE;
1166 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1167 				op_flags = REQ_FUA;
1168 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1169 				op = REQ_OP_DISCARD;
1170 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1171 			op = REQ_OP_READ;
1172 		else if (test_and_clear_bit(R5_WantReplace,
1173 					    &sh->dev[i].flags)) {
1174 			op = REQ_OP_WRITE;
1175 			replace_only = 1;
1176 		} else
1177 			continue;
1178 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1179 			op_flags |= REQ_SYNC;
1180 
1181 again:
1182 		dev = &sh->dev[i];
1183 		bi = &dev->req;
1184 		rbi = &dev->rreq; /* For writing to replacement */
1185 
1186 		rdev = conf->disks[i].rdev;
1187 		rrdev = conf->disks[i].replacement;
1188 		if (op_is_write(op)) {
1189 			if (replace_only)
1190 				rdev = NULL;
1191 			if (rdev == rrdev)
1192 				/* We raced and saw duplicates */
1193 				rrdev = NULL;
1194 		} else {
1195 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1196 				rdev = rrdev;
1197 			rrdev = NULL;
1198 		}
1199 
1200 		if (rdev && test_bit(Faulty, &rdev->flags))
1201 			rdev = NULL;
1202 		if (rdev)
1203 			atomic_inc(&rdev->nr_pending);
1204 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1205 			rrdev = NULL;
1206 		if (rrdev)
1207 			atomic_inc(&rrdev->nr_pending);
1208 
1209 		/* We have already checked bad blocks for reads.  Now
1210 		 * need to check for writes.  We never accept write errors
1211 		 * on the replacement, so we don't to check rrdev.
1212 		 */
1213 		while (op_is_write(op) && rdev &&
1214 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1215 			int bad = rdev_has_badblock(rdev, sh->sector,
1216 						    RAID5_STRIPE_SECTORS(conf));
1217 			if (!bad)
1218 				break;
1219 
1220 			if (bad < 0) {
1221 				set_bit(BlockedBadBlocks, &rdev->flags);
1222 				if (!conf->mddev->external &&
1223 				    conf->mddev->sb_flags) {
1224 					/* It is very unlikely, but we might
1225 					 * still need to write out the
1226 					 * bad block log - better give it
1227 					 * a chance*/
1228 					md_check_recovery(conf->mddev);
1229 				}
1230 				/*
1231 				 * Because md_wait_for_blocked_rdev
1232 				 * will dec nr_pending, we must
1233 				 * increment it first.
1234 				 */
1235 				atomic_inc(&rdev->nr_pending);
1236 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1237 			} else {
1238 				/* Acknowledged bad block - skip the write */
1239 				rdev_dec_pending(rdev, conf->mddev);
1240 				rdev = NULL;
1241 			}
1242 		}
1243 
1244 		if (rdev) {
1245 			if (s->syncing || s->expanding || s->expanded
1246 			    || s->replacing)
1247 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1248 
1249 			set_bit(STRIPE_IO_STARTED, &sh->state);
1250 
1251 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1252 			bi->bi_end_io = op_is_write(op)
1253 				? raid5_end_write_request
1254 				: raid5_end_read_request;
1255 			bi->bi_private = sh;
1256 
1257 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1258 				__func__, (unsigned long long)sh->sector,
1259 				bi->bi_opf, i);
1260 			atomic_inc(&sh->count);
1261 			if (sh != head_sh)
1262 				atomic_inc(&head_sh->count);
1263 			if (use_new_offset(conf, sh))
1264 				bi->bi_iter.bi_sector = (sh->sector
1265 						 + rdev->new_data_offset);
1266 			else
1267 				bi->bi_iter.bi_sector = (sh->sector
1268 						 + rdev->data_offset);
1269 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1270 				bi->bi_opf |= REQ_NOMERGE;
1271 
1272 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1273 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1274 
1275 			if (!op_is_write(op) &&
1276 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1277 				/*
1278 				 * issuing read for a page in journal, this
1279 				 * must be preparing for prexor in rmw; read
1280 				 * the data into orig_page
1281 				 */
1282 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1283 			else
1284 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1285 			bi->bi_vcnt = 1;
1286 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1287 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1288 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1289 			/*
1290 			 * If this is discard request, set bi_vcnt 0. We don't
1291 			 * want to confuse SCSI because SCSI will replace payload
1292 			 */
1293 			if (op == REQ_OP_DISCARD)
1294 				bi->bi_vcnt = 0;
1295 			if (rrdev)
1296 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1297 
1298 			mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1299 			if (should_defer && op_is_write(op))
1300 				bio_list_add(&pending_bios, bi);
1301 			else
1302 				submit_bio_noacct(bi);
1303 		}
1304 		if (rrdev) {
1305 			if (s->syncing || s->expanding || s->expanded
1306 			    || s->replacing)
1307 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1308 
1309 			set_bit(STRIPE_IO_STARTED, &sh->state);
1310 
1311 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1312 			BUG_ON(!op_is_write(op));
1313 			rbi->bi_end_io = raid5_end_write_request;
1314 			rbi->bi_private = sh;
1315 
1316 			pr_debug("%s: for %llu schedule op %d on "
1317 				 "replacement disc %d\n",
1318 				__func__, (unsigned long long)sh->sector,
1319 				rbi->bi_opf, i);
1320 			atomic_inc(&sh->count);
1321 			if (sh != head_sh)
1322 				atomic_inc(&head_sh->count);
1323 			if (use_new_offset(conf, sh))
1324 				rbi->bi_iter.bi_sector = (sh->sector
1325 						  + rrdev->new_data_offset);
1326 			else
1327 				rbi->bi_iter.bi_sector = (sh->sector
1328 						  + rrdev->data_offset);
1329 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1330 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1331 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1332 			rbi->bi_vcnt = 1;
1333 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1334 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1335 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1336 			/*
1337 			 * If this is discard request, set bi_vcnt 0. We don't
1338 			 * want to confuse SCSI because SCSI will replace payload
1339 			 */
1340 			if (op == REQ_OP_DISCARD)
1341 				rbi->bi_vcnt = 0;
1342 			mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1343 			if (should_defer && op_is_write(op))
1344 				bio_list_add(&pending_bios, rbi);
1345 			else
1346 				submit_bio_noacct(rbi);
1347 		}
1348 		if (!rdev && !rrdev) {
1349 			if (op_is_write(op))
1350 				set_bit(STRIPE_DEGRADED, &sh->state);
1351 			pr_debug("skip op %d on disc %d for sector %llu\n",
1352 				bi->bi_opf, i, (unsigned long long)sh->sector);
1353 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1354 			set_bit(STRIPE_HANDLE, &sh->state);
1355 		}
1356 
1357 		if (!head_sh->batch_head)
1358 			continue;
1359 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1360 				      batch_list);
1361 		if (sh != head_sh)
1362 			goto again;
1363 	}
1364 
1365 	if (should_defer && !bio_list_empty(&pending_bios))
1366 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1367 }
1368 
1369 static struct dma_async_tx_descriptor *
1370 async_copy_data(int frombio, struct bio *bio, struct page **page,
1371 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1372 	struct stripe_head *sh, int no_skipcopy)
1373 {
1374 	struct bio_vec bvl;
1375 	struct bvec_iter iter;
1376 	struct page *bio_page;
1377 	int page_offset;
1378 	struct async_submit_ctl submit;
1379 	enum async_tx_flags flags = 0;
1380 	struct r5conf *conf = sh->raid_conf;
1381 
1382 	if (bio->bi_iter.bi_sector >= sector)
1383 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1384 	else
1385 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1386 
1387 	if (frombio)
1388 		flags |= ASYNC_TX_FENCE;
1389 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1390 
1391 	bio_for_each_segment(bvl, bio, iter) {
1392 		int len = bvl.bv_len;
1393 		int clen;
1394 		int b_offset = 0;
1395 
1396 		if (page_offset < 0) {
1397 			b_offset = -page_offset;
1398 			page_offset += b_offset;
1399 			len -= b_offset;
1400 		}
1401 
1402 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1403 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1404 		else
1405 			clen = len;
1406 
1407 		if (clen > 0) {
1408 			b_offset += bvl.bv_offset;
1409 			bio_page = bvl.bv_page;
1410 			if (frombio) {
1411 				if (conf->skip_copy &&
1412 				    b_offset == 0 && page_offset == 0 &&
1413 				    clen == RAID5_STRIPE_SIZE(conf) &&
1414 				    !no_skipcopy)
1415 					*page = bio_page;
1416 				else
1417 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1418 						  b_offset, clen, &submit);
1419 			} else
1420 				tx = async_memcpy(bio_page, *page, b_offset,
1421 						  page_offset + poff, clen, &submit);
1422 		}
1423 		/* chain the operations */
1424 		submit.depend_tx = tx;
1425 
1426 		if (clen < len) /* hit end of page */
1427 			break;
1428 		page_offset +=  len;
1429 	}
1430 
1431 	return tx;
1432 }
1433 
1434 static void ops_complete_biofill(void *stripe_head_ref)
1435 {
1436 	struct stripe_head *sh = stripe_head_ref;
1437 	int i;
1438 	struct r5conf *conf = sh->raid_conf;
1439 
1440 	pr_debug("%s: stripe %llu\n", __func__,
1441 		(unsigned long long)sh->sector);
1442 
1443 	/* clear completed biofills */
1444 	for (i = sh->disks; i--; ) {
1445 		struct r5dev *dev = &sh->dev[i];
1446 
1447 		/* acknowledge completion of a biofill operation */
1448 		/* and check if we need to reply to a read request,
1449 		 * new R5_Wantfill requests are held off until
1450 		 * !STRIPE_BIOFILL_RUN
1451 		 */
1452 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1453 			struct bio *rbi, *rbi2;
1454 
1455 			BUG_ON(!dev->read);
1456 			rbi = dev->read;
1457 			dev->read = NULL;
1458 			while (rbi && rbi->bi_iter.bi_sector <
1459 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1460 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1461 				bio_endio(rbi);
1462 				rbi = rbi2;
1463 			}
1464 		}
1465 	}
1466 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1467 
1468 	set_bit(STRIPE_HANDLE, &sh->state);
1469 	raid5_release_stripe(sh);
1470 }
1471 
1472 static void ops_run_biofill(struct stripe_head *sh)
1473 {
1474 	struct dma_async_tx_descriptor *tx = NULL;
1475 	struct async_submit_ctl submit;
1476 	int i;
1477 	struct r5conf *conf = sh->raid_conf;
1478 
1479 	BUG_ON(sh->batch_head);
1480 	pr_debug("%s: stripe %llu\n", __func__,
1481 		(unsigned long long)sh->sector);
1482 
1483 	for (i = sh->disks; i--; ) {
1484 		struct r5dev *dev = &sh->dev[i];
1485 		if (test_bit(R5_Wantfill, &dev->flags)) {
1486 			struct bio *rbi;
1487 			spin_lock_irq(&sh->stripe_lock);
1488 			dev->read = rbi = dev->toread;
1489 			dev->toread = NULL;
1490 			spin_unlock_irq(&sh->stripe_lock);
1491 			while (rbi && rbi->bi_iter.bi_sector <
1492 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1493 				tx = async_copy_data(0, rbi, &dev->page,
1494 						     dev->offset,
1495 						     dev->sector, tx, sh, 0);
1496 				rbi = r5_next_bio(conf, rbi, dev->sector);
1497 			}
1498 		}
1499 	}
1500 
1501 	atomic_inc(&sh->count);
1502 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1503 	async_trigger_callback(&submit);
1504 }
1505 
1506 static void mark_target_uptodate(struct stripe_head *sh, int target)
1507 {
1508 	struct r5dev *tgt;
1509 
1510 	if (target < 0)
1511 		return;
1512 
1513 	tgt = &sh->dev[target];
1514 	set_bit(R5_UPTODATE, &tgt->flags);
1515 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1516 	clear_bit(R5_Wantcompute, &tgt->flags);
1517 }
1518 
1519 static void ops_complete_compute(void *stripe_head_ref)
1520 {
1521 	struct stripe_head *sh = stripe_head_ref;
1522 
1523 	pr_debug("%s: stripe %llu\n", __func__,
1524 		(unsigned long long)sh->sector);
1525 
1526 	/* mark the computed target(s) as uptodate */
1527 	mark_target_uptodate(sh, sh->ops.target);
1528 	mark_target_uptodate(sh, sh->ops.target2);
1529 
1530 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1531 	if (sh->check_state == check_state_compute_run)
1532 		sh->check_state = check_state_compute_result;
1533 	set_bit(STRIPE_HANDLE, &sh->state);
1534 	raid5_release_stripe(sh);
1535 }
1536 
1537 /* return a pointer to the address conversion region of the scribble buffer */
1538 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1539 {
1540 	return percpu->scribble + i * percpu->scribble_obj_size;
1541 }
1542 
1543 /* return a pointer to the address conversion region of the scribble buffer */
1544 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1545 				 struct raid5_percpu *percpu, int i)
1546 {
1547 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1548 }
1549 
1550 /*
1551  * Return a pointer to record offset address.
1552  */
1553 static unsigned int *
1554 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1555 {
1556 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1557 }
1558 
1559 static struct dma_async_tx_descriptor *
1560 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1561 {
1562 	int disks = sh->disks;
1563 	struct page **xor_srcs = to_addr_page(percpu, 0);
1564 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1565 	int target = sh->ops.target;
1566 	struct r5dev *tgt = &sh->dev[target];
1567 	struct page *xor_dest = tgt->page;
1568 	unsigned int off_dest = tgt->offset;
1569 	int count = 0;
1570 	struct dma_async_tx_descriptor *tx;
1571 	struct async_submit_ctl submit;
1572 	int i;
1573 
1574 	BUG_ON(sh->batch_head);
1575 
1576 	pr_debug("%s: stripe %llu block: %d\n",
1577 		__func__, (unsigned long long)sh->sector, target);
1578 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1579 
1580 	for (i = disks; i--; ) {
1581 		if (i != target) {
1582 			off_srcs[count] = sh->dev[i].offset;
1583 			xor_srcs[count++] = sh->dev[i].page;
1584 		}
1585 	}
1586 
1587 	atomic_inc(&sh->count);
1588 
1589 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1590 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1591 	if (unlikely(count == 1))
1592 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1593 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1594 	else
1595 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1596 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1597 
1598 	return tx;
1599 }
1600 
1601 /* set_syndrome_sources - populate source buffers for gen_syndrome
1602  * @srcs - (struct page *) array of size sh->disks
1603  * @offs - (unsigned int) array of offset for each page
1604  * @sh - stripe_head to parse
1605  *
1606  * Populates srcs in proper layout order for the stripe and returns the
1607  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1608  * destination buffer is recorded in srcs[count] and the Q destination
1609  * is recorded in srcs[count+1]].
1610  */
1611 static int set_syndrome_sources(struct page **srcs,
1612 				unsigned int *offs,
1613 				struct stripe_head *sh,
1614 				int srctype)
1615 {
1616 	int disks = sh->disks;
1617 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1618 	int d0_idx = raid6_d0(sh);
1619 	int count;
1620 	int i;
1621 
1622 	for (i = 0; i < disks; i++)
1623 		srcs[i] = NULL;
1624 
1625 	count = 0;
1626 	i = d0_idx;
1627 	do {
1628 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1629 		struct r5dev *dev = &sh->dev[i];
1630 
1631 		if (i == sh->qd_idx || i == sh->pd_idx ||
1632 		    (srctype == SYNDROME_SRC_ALL) ||
1633 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1634 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1635 		      test_bit(R5_InJournal, &dev->flags))) ||
1636 		    (srctype == SYNDROME_SRC_WRITTEN &&
1637 		     (dev->written ||
1638 		      test_bit(R5_InJournal, &dev->flags)))) {
1639 			if (test_bit(R5_InJournal, &dev->flags))
1640 				srcs[slot] = sh->dev[i].orig_page;
1641 			else
1642 				srcs[slot] = sh->dev[i].page;
1643 			/*
1644 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1645 			 * not shared page. In that case, dev[i].offset
1646 			 * is 0.
1647 			 */
1648 			offs[slot] = sh->dev[i].offset;
1649 		}
1650 		i = raid6_next_disk(i, disks);
1651 	} while (i != d0_idx);
1652 
1653 	return syndrome_disks;
1654 }
1655 
1656 static struct dma_async_tx_descriptor *
1657 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1658 {
1659 	int disks = sh->disks;
1660 	struct page **blocks = to_addr_page(percpu, 0);
1661 	unsigned int *offs = to_addr_offs(sh, percpu);
1662 	int target;
1663 	int qd_idx = sh->qd_idx;
1664 	struct dma_async_tx_descriptor *tx;
1665 	struct async_submit_ctl submit;
1666 	struct r5dev *tgt;
1667 	struct page *dest;
1668 	unsigned int dest_off;
1669 	int i;
1670 	int count;
1671 
1672 	BUG_ON(sh->batch_head);
1673 	if (sh->ops.target < 0)
1674 		target = sh->ops.target2;
1675 	else if (sh->ops.target2 < 0)
1676 		target = sh->ops.target;
1677 	else
1678 		/* we should only have one valid target */
1679 		BUG();
1680 	BUG_ON(target < 0);
1681 	pr_debug("%s: stripe %llu block: %d\n",
1682 		__func__, (unsigned long long)sh->sector, target);
1683 
1684 	tgt = &sh->dev[target];
1685 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1686 	dest = tgt->page;
1687 	dest_off = tgt->offset;
1688 
1689 	atomic_inc(&sh->count);
1690 
1691 	if (target == qd_idx) {
1692 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1693 		blocks[count] = NULL; /* regenerating p is not necessary */
1694 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1695 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1696 				  ops_complete_compute, sh,
1697 				  to_addr_conv(sh, percpu, 0));
1698 		tx = async_gen_syndrome(blocks, offs, count+2,
1699 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1700 	} else {
1701 		/* Compute any data- or p-drive using XOR */
1702 		count = 0;
1703 		for (i = disks; i-- ; ) {
1704 			if (i == target || i == qd_idx)
1705 				continue;
1706 			offs[count] = sh->dev[i].offset;
1707 			blocks[count++] = sh->dev[i].page;
1708 		}
1709 
1710 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1711 				  NULL, ops_complete_compute, sh,
1712 				  to_addr_conv(sh, percpu, 0));
1713 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1714 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1715 	}
1716 
1717 	return tx;
1718 }
1719 
1720 static struct dma_async_tx_descriptor *
1721 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1722 {
1723 	int i, count, disks = sh->disks;
1724 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1725 	int d0_idx = raid6_d0(sh);
1726 	int faila = -1, failb = -1;
1727 	int target = sh->ops.target;
1728 	int target2 = sh->ops.target2;
1729 	struct r5dev *tgt = &sh->dev[target];
1730 	struct r5dev *tgt2 = &sh->dev[target2];
1731 	struct dma_async_tx_descriptor *tx;
1732 	struct page **blocks = to_addr_page(percpu, 0);
1733 	unsigned int *offs = to_addr_offs(sh, percpu);
1734 	struct async_submit_ctl submit;
1735 
1736 	BUG_ON(sh->batch_head);
1737 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1738 		 __func__, (unsigned long long)sh->sector, target, target2);
1739 	BUG_ON(target < 0 || target2 < 0);
1740 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1741 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1742 
1743 	/* we need to open-code set_syndrome_sources to handle the
1744 	 * slot number conversion for 'faila' and 'failb'
1745 	 */
1746 	for (i = 0; i < disks ; i++) {
1747 		offs[i] = 0;
1748 		blocks[i] = NULL;
1749 	}
1750 	count = 0;
1751 	i = d0_idx;
1752 	do {
1753 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1754 
1755 		offs[slot] = sh->dev[i].offset;
1756 		blocks[slot] = sh->dev[i].page;
1757 
1758 		if (i == target)
1759 			faila = slot;
1760 		if (i == target2)
1761 			failb = slot;
1762 		i = raid6_next_disk(i, disks);
1763 	} while (i != d0_idx);
1764 
1765 	BUG_ON(faila == failb);
1766 	if (failb < faila)
1767 		swap(faila, failb);
1768 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1769 		 __func__, (unsigned long long)sh->sector, faila, failb);
1770 
1771 	atomic_inc(&sh->count);
1772 
1773 	if (failb == syndrome_disks+1) {
1774 		/* Q disk is one of the missing disks */
1775 		if (faila == syndrome_disks) {
1776 			/* Missing P+Q, just recompute */
1777 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1778 					  ops_complete_compute, sh,
1779 					  to_addr_conv(sh, percpu, 0));
1780 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1781 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1782 						  &submit);
1783 		} else {
1784 			struct page *dest;
1785 			unsigned int dest_off;
1786 			int data_target;
1787 			int qd_idx = sh->qd_idx;
1788 
1789 			/* Missing D+Q: recompute D from P, then recompute Q */
1790 			if (target == qd_idx)
1791 				data_target = target2;
1792 			else
1793 				data_target = target;
1794 
1795 			count = 0;
1796 			for (i = disks; i-- ; ) {
1797 				if (i == data_target || i == qd_idx)
1798 					continue;
1799 				offs[count] = sh->dev[i].offset;
1800 				blocks[count++] = sh->dev[i].page;
1801 			}
1802 			dest = sh->dev[data_target].page;
1803 			dest_off = sh->dev[data_target].offset;
1804 			init_async_submit(&submit,
1805 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1806 					  NULL, NULL, NULL,
1807 					  to_addr_conv(sh, percpu, 0));
1808 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1809 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1810 				       &submit);
1811 
1812 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1813 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1814 					  ops_complete_compute, sh,
1815 					  to_addr_conv(sh, percpu, 0));
1816 			return async_gen_syndrome(blocks, offs, count+2,
1817 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1818 						  &submit);
1819 		}
1820 	} else {
1821 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1822 				  ops_complete_compute, sh,
1823 				  to_addr_conv(sh, percpu, 0));
1824 		if (failb == syndrome_disks) {
1825 			/* We're missing D+P. */
1826 			return async_raid6_datap_recov(syndrome_disks+2,
1827 						RAID5_STRIPE_SIZE(sh->raid_conf),
1828 						faila,
1829 						blocks, offs, &submit);
1830 		} else {
1831 			/* We're missing D+D. */
1832 			return async_raid6_2data_recov(syndrome_disks+2,
1833 						RAID5_STRIPE_SIZE(sh->raid_conf),
1834 						faila, failb,
1835 						blocks, offs, &submit);
1836 		}
1837 	}
1838 }
1839 
1840 static void ops_complete_prexor(void *stripe_head_ref)
1841 {
1842 	struct stripe_head *sh = stripe_head_ref;
1843 
1844 	pr_debug("%s: stripe %llu\n", __func__,
1845 		(unsigned long long)sh->sector);
1846 
1847 	if (r5c_is_writeback(sh->raid_conf->log))
1848 		/*
1849 		 * raid5-cache write back uses orig_page during prexor.
1850 		 * After prexor, it is time to free orig_page
1851 		 */
1852 		r5c_release_extra_page(sh);
1853 }
1854 
1855 static struct dma_async_tx_descriptor *
1856 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1857 		struct dma_async_tx_descriptor *tx)
1858 {
1859 	int disks = sh->disks;
1860 	struct page **xor_srcs = to_addr_page(percpu, 0);
1861 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1862 	int count = 0, pd_idx = sh->pd_idx, i;
1863 	struct async_submit_ctl submit;
1864 
1865 	/* existing parity data subtracted */
1866 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1867 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1868 
1869 	BUG_ON(sh->batch_head);
1870 	pr_debug("%s: stripe %llu\n", __func__,
1871 		(unsigned long long)sh->sector);
1872 
1873 	for (i = disks; i--; ) {
1874 		struct r5dev *dev = &sh->dev[i];
1875 		/* Only process blocks that are known to be uptodate */
1876 		if (test_bit(R5_InJournal, &dev->flags)) {
1877 			/*
1878 			 * For this case, PAGE_SIZE must be equal to 4KB and
1879 			 * page offset is zero.
1880 			 */
1881 			off_srcs[count] = dev->offset;
1882 			xor_srcs[count++] = dev->orig_page;
1883 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1884 			off_srcs[count] = dev->offset;
1885 			xor_srcs[count++] = dev->page;
1886 		}
1887 	}
1888 
1889 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1890 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1891 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1892 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1893 
1894 	return tx;
1895 }
1896 
1897 static struct dma_async_tx_descriptor *
1898 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1899 		struct dma_async_tx_descriptor *tx)
1900 {
1901 	struct page **blocks = to_addr_page(percpu, 0);
1902 	unsigned int *offs = to_addr_offs(sh, percpu);
1903 	int count;
1904 	struct async_submit_ctl submit;
1905 
1906 	pr_debug("%s: stripe %llu\n", __func__,
1907 		(unsigned long long)sh->sector);
1908 
1909 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1910 
1911 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1912 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1913 	tx = async_gen_syndrome(blocks, offs, count+2,
1914 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1915 
1916 	return tx;
1917 }
1918 
1919 static struct dma_async_tx_descriptor *
1920 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1921 {
1922 	struct r5conf *conf = sh->raid_conf;
1923 	int disks = sh->disks;
1924 	int i;
1925 	struct stripe_head *head_sh = sh;
1926 
1927 	pr_debug("%s: stripe %llu\n", __func__,
1928 		(unsigned long long)sh->sector);
1929 
1930 	for (i = disks; i--; ) {
1931 		struct r5dev *dev;
1932 		struct bio *chosen;
1933 
1934 		sh = head_sh;
1935 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1936 			struct bio *wbi;
1937 
1938 again:
1939 			dev = &sh->dev[i];
1940 			/*
1941 			 * clear R5_InJournal, so when rewriting a page in
1942 			 * journal, it is not skipped by r5l_log_stripe()
1943 			 */
1944 			clear_bit(R5_InJournal, &dev->flags);
1945 			spin_lock_irq(&sh->stripe_lock);
1946 			chosen = dev->towrite;
1947 			dev->towrite = NULL;
1948 			sh->overwrite_disks = 0;
1949 			BUG_ON(dev->written);
1950 			wbi = dev->written = chosen;
1951 			spin_unlock_irq(&sh->stripe_lock);
1952 			WARN_ON(dev->page != dev->orig_page);
1953 
1954 			while (wbi && wbi->bi_iter.bi_sector <
1955 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1956 				if (wbi->bi_opf & REQ_FUA)
1957 					set_bit(R5_WantFUA, &dev->flags);
1958 				if (wbi->bi_opf & REQ_SYNC)
1959 					set_bit(R5_SyncIO, &dev->flags);
1960 				if (bio_op(wbi) == REQ_OP_DISCARD)
1961 					set_bit(R5_Discard, &dev->flags);
1962 				else {
1963 					tx = async_copy_data(1, wbi, &dev->page,
1964 							     dev->offset,
1965 							     dev->sector, tx, sh,
1966 							     r5c_is_writeback(conf->log));
1967 					if (dev->page != dev->orig_page &&
1968 					    !r5c_is_writeback(conf->log)) {
1969 						set_bit(R5_SkipCopy, &dev->flags);
1970 						clear_bit(R5_UPTODATE, &dev->flags);
1971 						clear_bit(R5_OVERWRITE, &dev->flags);
1972 					}
1973 				}
1974 				wbi = r5_next_bio(conf, wbi, dev->sector);
1975 			}
1976 
1977 			if (head_sh->batch_head) {
1978 				sh = list_first_entry(&sh->batch_list,
1979 						      struct stripe_head,
1980 						      batch_list);
1981 				if (sh == head_sh)
1982 					continue;
1983 				goto again;
1984 			}
1985 		}
1986 	}
1987 
1988 	return tx;
1989 }
1990 
1991 static void ops_complete_reconstruct(void *stripe_head_ref)
1992 {
1993 	struct stripe_head *sh = stripe_head_ref;
1994 	int disks = sh->disks;
1995 	int pd_idx = sh->pd_idx;
1996 	int qd_idx = sh->qd_idx;
1997 	int i;
1998 	bool fua = false, sync = false, discard = false;
1999 
2000 	pr_debug("%s: stripe %llu\n", __func__,
2001 		(unsigned long long)sh->sector);
2002 
2003 	for (i = disks; i--; ) {
2004 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2005 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2006 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2007 	}
2008 
2009 	for (i = disks; i--; ) {
2010 		struct r5dev *dev = &sh->dev[i];
2011 
2012 		if (dev->written || i == pd_idx || i == qd_idx) {
2013 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2014 				set_bit(R5_UPTODATE, &dev->flags);
2015 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2016 					set_bit(R5_Expanded, &dev->flags);
2017 			}
2018 			if (fua)
2019 				set_bit(R5_WantFUA, &dev->flags);
2020 			if (sync)
2021 				set_bit(R5_SyncIO, &dev->flags);
2022 		}
2023 	}
2024 
2025 	if (sh->reconstruct_state == reconstruct_state_drain_run)
2026 		sh->reconstruct_state = reconstruct_state_drain_result;
2027 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2028 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2029 	else {
2030 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2031 		sh->reconstruct_state = reconstruct_state_result;
2032 	}
2033 
2034 	set_bit(STRIPE_HANDLE, &sh->state);
2035 	raid5_release_stripe(sh);
2036 }
2037 
2038 static void
2039 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2040 		     struct dma_async_tx_descriptor *tx)
2041 {
2042 	int disks = sh->disks;
2043 	struct page **xor_srcs;
2044 	unsigned int *off_srcs;
2045 	struct async_submit_ctl submit;
2046 	int count, pd_idx = sh->pd_idx, i;
2047 	struct page *xor_dest;
2048 	unsigned int off_dest;
2049 	int prexor = 0;
2050 	unsigned long flags;
2051 	int j = 0;
2052 	struct stripe_head *head_sh = sh;
2053 	int last_stripe;
2054 
2055 	pr_debug("%s: stripe %llu\n", __func__,
2056 		(unsigned long long)sh->sector);
2057 
2058 	for (i = 0; i < sh->disks; i++) {
2059 		if (pd_idx == i)
2060 			continue;
2061 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2062 			break;
2063 	}
2064 	if (i >= sh->disks) {
2065 		atomic_inc(&sh->count);
2066 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2067 		ops_complete_reconstruct(sh);
2068 		return;
2069 	}
2070 again:
2071 	count = 0;
2072 	xor_srcs = to_addr_page(percpu, j);
2073 	off_srcs = to_addr_offs(sh, percpu);
2074 	/* check if prexor is active which means only process blocks
2075 	 * that are part of a read-modify-write (written)
2076 	 */
2077 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2078 		prexor = 1;
2079 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2080 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2081 		for (i = disks; i--; ) {
2082 			struct r5dev *dev = &sh->dev[i];
2083 			if (head_sh->dev[i].written ||
2084 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2085 				off_srcs[count] = dev->offset;
2086 				xor_srcs[count++] = dev->page;
2087 			}
2088 		}
2089 	} else {
2090 		xor_dest = sh->dev[pd_idx].page;
2091 		off_dest = sh->dev[pd_idx].offset;
2092 		for (i = disks; i--; ) {
2093 			struct r5dev *dev = &sh->dev[i];
2094 			if (i != pd_idx) {
2095 				off_srcs[count] = dev->offset;
2096 				xor_srcs[count++] = dev->page;
2097 			}
2098 		}
2099 	}
2100 
2101 	/* 1/ if we prexor'd then the dest is reused as a source
2102 	 * 2/ if we did not prexor then we are redoing the parity
2103 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2104 	 * for the synchronous xor case
2105 	 */
2106 	last_stripe = !head_sh->batch_head ||
2107 		list_first_entry(&sh->batch_list,
2108 				 struct stripe_head, batch_list) == head_sh;
2109 	if (last_stripe) {
2110 		flags = ASYNC_TX_ACK |
2111 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2112 
2113 		atomic_inc(&head_sh->count);
2114 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2115 				  to_addr_conv(sh, percpu, j));
2116 	} else {
2117 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2118 		init_async_submit(&submit, flags, tx, NULL, NULL,
2119 				  to_addr_conv(sh, percpu, j));
2120 	}
2121 
2122 	if (unlikely(count == 1))
2123 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2124 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2125 	else
2126 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2127 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2128 	if (!last_stripe) {
2129 		j++;
2130 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2131 				      batch_list);
2132 		goto again;
2133 	}
2134 }
2135 
2136 static void
2137 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2138 		     struct dma_async_tx_descriptor *tx)
2139 {
2140 	struct async_submit_ctl submit;
2141 	struct page **blocks;
2142 	unsigned int *offs;
2143 	int count, i, j = 0;
2144 	struct stripe_head *head_sh = sh;
2145 	int last_stripe;
2146 	int synflags;
2147 	unsigned long txflags;
2148 
2149 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2150 
2151 	for (i = 0; i < sh->disks; i++) {
2152 		if (sh->pd_idx == i || sh->qd_idx == i)
2153 			continue;
2154 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2155 			break;
2156 	}
2157 	if (i >= sh->disks) {
2158 		atomic_inc(&sh->count);
2159 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2160 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2161 		ops_complete_reconstruct(sh);
2162 		return;
2163 	}
2164 
2165 again:
2166 	blocks = to_addr_page(percpu, j);
2167 	offs = to_addr_offs(sh, percpu);
2168 
2169 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2170 		synflags = SYNDROME_SRC_WRITTEN;
2171 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2172 	} else {
2173 		synflags = SYNDROME_SRC_ALL;
2174 		txflags = ASYNC_TX_ACK;
2175 	}
2176 
2177 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2178 	last_stripe = !head_sh->batch_head ||
2179 		list_first_entry(&sh->batch_list,
2180 				 struct stripe_head, batch_list) == head_sh;
2181 
2182 	if (last_stripe) {
2183 		atomic_inc(&head_sh->count);
2184 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2185 				  head_sh, to_addr_conv(sh, percpu, j));
2186 	} else
2187 		init_async_submit(&submit, 0, tx, NULL, NULL,
2188 				  to_addr_conv(sh, percpu, j));
2189 	tx = async_gen_syndrome(blocks, offs, count+2,
2190 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2191 	if (!last_stripe) {
2192 		j++;
2193 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2194 				      batch_list);
2195 		goto again;
2196 	}
2197 }
2198 
2199 static void ops_complete_check(void *stripe_head_ref)
2200 {
2201 	struct stripe_head *sh = stripe_head_ref;
2202 
2203 	pr_debug("%s: stripe %llu\n", __func__,
2204 		(unsigned long long)sh->sector);
2205 
2206 	sh->check_state = check_state_check_result;
2207 	set_bit(STRIPE_HANDLE, &sh->state);
2208 	raid5_release_stripe(sh);
2209 }
2210 
2211 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2212 {
2213 	int disks = sh->disks;
2214 	int pd_idx = sh->pd_idx;
2215 	int qd_idx = sh->qd_idx;
2216 	struct page *xor_dest;
2217 	unsigned int off_dest;
2218 	struct page **xor_srcs = to_addr_page(percpu, 0);
2219 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2220 	struct dma_async_tx_descriptor *tx;
2221 	struct async_submit_ctl submit;
2222 	int count;
2223 	int i;
2224 
2225 	pr_debug("%s: stripe %llu\n", __func__,
2226 		(unsigned long long)sh->sector);
2227 
2228 	BUG_ON(sh->batch_head);
2229 	count = 0;
2230 	xor_dest = sh->dev[pd_idx].page;
2231 	off_dest = sh->dev[pd_idx].offset;
2232 	off_srcs[count] = off_dest;
2233 	xor_srcs[count++] = xor_dest;
2234 	for (i = disks; i--; ) {
2235 		if (i == pd_idx || i == qd_idx)
2236 			continue;
2237 		off_srcs[count] = sh->dev[i].offset;
2238 		xor_srcs[count++] = sh->dev[i].page;
2239 	}
2240 
2241 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2242 			  to_addr_conv(sh, percpu, 0));
2243 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2244 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2245 			   &sh->ops.zero_sum_result, &submit);
2246 
2247 	atomic_inc(&sh->count);
2248 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2249 	tx = async_trigger_callback(&submit);
2250 }
2251 
2252 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2253 {
2254 	struct page **srcs = to_addr_page(percpu, 0);
2255 	unsigned int *offs = to_addr_offs(sh, percpu);
2256 	struct async_submit_ctl submit;
2257 	int count;
2258 
2259 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2260 		(unsigned long long)sh->sector, checkp);
2261 
2262 	BUG_ON(sh->batch_head);
2263 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2264 	if (!checkp)
2265 		srcs[count] = NULL;
2266 
2267 	atomic_inc(&sh->count);
2268 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2269 			  sh, to_addr_conv(sh, percpu, 0));
2270 	async_syndrome_val(srcs, offs, count+2,
2271 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2272 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2273 }
2274 
2275 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2276 {
2277 	int overlap_clear = 0, i, disks = sh->disks;
2278 	struct dma_async_tx_descriptor *tx = NULL;
2279 	struct r5conf *conf = sh->raid_conf;
2280 	int level = conf->level;
2281 	struct raid5_percpu *percpu;
2282 
2283 	local_lock(&conf->percpu->lock);
2284 	percpu = this_cpu_ptr(conf->percpu);
2285 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2286 		ops_run_biofill(sh);
2287 		overlap_clear++;
2288 	}
2289 
2290 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2291 		if (level < 6)
2292 			tx = ops_run_compute5(sh, percpu);
2293 		else {
2294 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2295 				tx = ops_run_compute6_1(sh, percpu);
2296 			else
2297 				tx = ops_run_compute6_2(sh, percpu);
2298 		}
2299 		/* terminate the chain if reconstruct is not set to be run */
2300 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2301 			async_tx_ack(tx);
2302 	}
2303 
2304 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2305 		if (level < 6)
2306 			tx = ops_run_prexor5(sh, percpu, tx);
2307 		else
2308 			tx = ops_run_prexor6(sh, percpu, tx);
2309 	}
2310 
2311 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2312 		tx = ops_run_partial_parity(sh, percpu, tx);
2313 
2314 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2315 		tx = ops_run_biodrain(sh, tx);
2316 		overlap_clear++;
2317 	}
2318 
2319 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2320 		if (level < 6)
2321 			ops_run_reconstruct5(sh, percpu, tx);
2322 		else
2323 			ops_run_reconstruct6(sh, percpu, tx);
2324 	}
2325 
2326 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2327 		if (sh->check_state == check_state_run)
2328 			ops_run_check_p(sh, percpu);
2329 		else if (sh->check_state == check_state_run_q)
2330 			ops_run_check_pq(sh, percpu, 0);
2331 		else if (sh->check_state == check_state_run_pq)
2332 			ops_run_check_pq(sh, percpu, 1);
2333 		else
2334 			BUG();
2335 	}
2336 
2337 	if (overlap_clear && !sh->batch_head) {
2338 		for (i = disks; i--; ) {
2339 			struct r5dev *dev = &sh->dev[i];
2340 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2341 				wake_up(&sh->raid_conf->wait_for_overlap);
2342 		}
2343 	}
2344 	local_unlock(&conf->percpu->lock);
2345 }
2346 
2347 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2348 {
2349 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2350 	kfree(sh->pages);
2351 #endif
2352 	if (sh->ppl_page)
2353 		__free_page(sh->ppl_page);
2354 	kmem_cache_free(sc, sh);
2355 }
2356 
2357 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2358 	int disks, struct r5conf *conf)
2359 {
2360 	struct stripe_head *sh;
2361 
2362 	sh = kmem_cache_zalloc(sc, gfp);
2363 	if (sh) {
2364 		spin_lock_init(&sh->stripe_lock);
2365 		spin_lock_init(&sh->batch_lock);
2366 		INIT_LIST_HEAD(&sh->batch_list);
2367 		INIT_LIST_HEAD(&sh->lru);
2368 		INIT_LIST_HEAD(&sh->r5c);
2369 		INIT_LIST_HEAD(&sh->log_list);
2370 		atomic_set(&sh->count, 1);
2371 		sh->raid_conf = conf;
2372 		sh->log_start = MaxSector;
2373 
2374 		if (raid5_has_ppl(conf)) {
2375 			sh->ppl_page = alloc_page(gfp);
2376 			if (!sh->ppl_page) {
2377 				free_stripe(sc, sh);
2378 				return NULL;
2379 			}
2380 		}
2381 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2382 		if (init_stripe_shared_pages(sh, conf, disks)) {
2383 			free_stripe(sc, sh);
2384 			return NULL;
2385 		}
2386 #endif
2387 	}
2388 	return sh;
2389 }
2390 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2391 {
2392 	struct stripe_head *sh;
2393 
2394 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2395 	if (!sh)
2396 		return 0;
2397 
2398 	if (grow_buffers(sh, gfp)) {
2399 		shrink_buffers(sh);
2400 		free_stripe(conf->slab_cache, sh);
2401 		return 0;
2402 	}
2403 	sh->hash_lock_index =
2404 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2405 	/* we just created an active stripe so... */
2406 	atomic_inc(&conf->active_stripes);
2407 
2408 	raid5_release_stripe(sh);
2409 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2410 	return 1;
2411 }
2412 
2413 static int grow_stripes(struct r5conf *conf, int num)
2414 {
2415 	struct kmem_cache *sc;
2416 	size_t namelen = sizeof(conf->cache_name[0]);
2417 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2418 
2419 	if (mddev_is_dm(conf->mddev))
2420 		snprintf(conf->cache_name[0], namelen,
2421 			"raid%d-%p", conf->level, conf->mddev);
2422 	else
2423 		snprintf(conf->cache_name[0], namelen,
2424 			"raid%d-%s", conf->level, mdname(conf->mddev));
2425 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2426 
2427 	conf->active_name = 0;
2428 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2429 			       struct_size_t(struct stripe_head, dev, devs),
2430 			       0, 0, NULL);
2431 	if (!sc)
2432 		return 1;
2433 	conf->slab_cache = sc;
2434 	conf->pool_size = devs;
2435 	while (num--)
2436 		if (!grow_one_stripe(conf, GFP_KERNEL))
2437 			return 1;
2438 
2439 	return 0;
2440 }
2441 
2442 /**
2443  * scribble_alloc - allocate percpu scribble buffer for required size
2444  *		    of the scribble region
2445  * @percpu: from for_each_present_cpu() of the caller
2446  * @num: total number of disks in the array
2447  * @cnt: scribble objs count for required size of the scribble region
2448  *
2449  * The scribble buffer size must be enough to contain:
2450  * 1/ a struct page pointer for each device in the array +2
2451  * 2/ room to convert each entry in (1) to its corresponding dma
2452  *    (dma_map_page()) or page (page_address()) address.
2453  *
2454  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2455  * calculate over all devices (not just the data blocks), using zeros in place
2456  * of the P and Q blocks.
2457  */
2458 static int scribble_alloc(struct raid5_percpu *percpu,
2459 			  int num, int cnt)
2460 {
2461 	size_t obj_size =
2462 		sizeof(struct page *) * (num + 2) +
2463 		sizeof(addr_conv_t) * (num + 2) +
2464 		sizeof(unsigned int) * (num + 2);
2465 	void *scribble;
2466 
2467 	/*
2468 	 * If here is in raid array suspend context, it is in memalloc noio
2469 	 * context as well, there is no potential recursive memory reclaim
2470 	 * I/Os with the GFP_KERNEL flag.
2471 	 */
2472 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2473 	if (!scribble)
2474 		return -ENOMEM;
2475 
2476 	kvfree(percpu->scribble);
2477 
2478 	percpu->scribble = scribble;
2479 	percpu->scribble_obj_size = obj_size;
2480 	return 0;
2481 }
2482 
2483 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2484 {
2485 	unsigned long cpu;
2486 	int err = 0;
2487 
2488 	/* Never shrink. */
2489 	if (conf->scribble_disks >= new_disks &&
2490 	    conf->scribble_sectors >= new_sectors)
2491 		return 0;
2492 
2493 	raid5_quiesce(conf->mddev, true);
2494 	cpus_read_lock();
2495 
2496 	for_each_present_cpu(cpu) {
2497 		struct raid5_percpu *percpu;
2498 
2499 		percpu = per_cpu_ptr(conf->percpu, cpu);
2500 		err = scribble_alloc(percpu, new_disks,
2501 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2502 		if (err)
2503 			break;
2504 	}
2505 
2506 	cpus_read_unlock();
2507 	raid5_quiesce(conf->mddev, false);
2508 
2509 	if (!err) {
2510 		conf->scribble_disks = new_disks;
2511 		conf->scribble_sectors = new_sectors;
2512 	}
2513 	return err;
2514 }
2515 
2516 static int resize_stripes(struct r5conf *conf, int newsize)
2517 {
2518 	/* Make all the stripes able to hold 'newsize' devices.
2519 	 * New slots in each stripe get 'page' set to a new page.
2520 	 *
2521 	 * This happens in stages:
2522 	 * 1/ create a new kmem_cache and allocate the required number of
2523 	 *    stripe_heads.
2524 	 * 2/ gather all the old stripe_heads and transfer the pages across
2525 	 *    to the new stripe_heads.  This will have the side effect of
2526 	 *    freezing the array as once all stripe_heads have been collected,
2527 	 *    no IO will be possible.  Old stripe heads are freed once their
2528 	 *    pages have been transferred over, and the old kmem_cache is
2529 	 *    freed when all stripes are done.
2530 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2531 	 *    we simple return a failure status - no need to clean anything up.
2532 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2533 	 *    If this fails, we don't bother trying the shrink the
2534 	 *    stripe_heads down again, we just leave them as they are.
2535 	 *    As each stripe_head is processed the new one is released into
2536 	 *    active service.
2537 	 *
2538 	 * Once step2 is started, we cannot afford to wait for a write,
2539 	 * so we use GFP_NOIO allocations.
2540 	 */
2541 	struct stripe_head *osh, *nsh;
2542 	LIST_HEAD(newstripes);
2543 	struct disk_info *ndisks;
2544 	int err = 0;
2545 	struct kmem_cache *sc;
2546 	int i;
2547 	int hash, cnt;
2548 
2549 	md_allow_write(conf->mddev);
2550 
2551 	/* Step 1 */
2552 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2553 			       struct_size_t(struct stripe_head, dev, newsize),
2554 			       0, 0, NULL);
2555 	if (!sc)
2556 		return -ENOMEM;
2557 
2558 	/* Need to ensure auto-resizing doesn't interfere */
2559 	mutex_lock(&conf->cache_size_mutex);
2560 
2561 	for (i = conf->max_nr_stripes; i; i--) {
2562 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2563 		if (!nsh)
2564 			break;
2565 
2566 		list_add(&nsh->lru, &newstripes);
2567 	}
2568 	if (i) {
2569 		/* didn't get enough, give up */
2570 		while (!list_empty(&newstripes)) {
2571 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2572 			list_del(&nsh->lru);
2573 			free_stripe(sc, nsh);
2574 		}
2575 		kmem_cache_destroy(sc);
2576 		mutex_unlock(&conf->cache_size_mutex);
2577 		return -ENOMEM;
2578 	}
2579 	/* Step 2 - Must use GFP_NOIO now.
2580 	 * OK, we have enough stripes, start collecting inactive
2581 	 * stripes and copying them over
2582 	 */
2583 	hash = 0;
2584 	cnt = 0;
2585 	list_for_each_entry(nsh, &newstripes, lru) {
2586 		lock_device_hash_lock(conf, hash);
2587 		wait_event_cmd(conf->wait_for_stripe,
2588 				    !list_empty(conf->inactive_list + hash),
2589 				    unlock_device_hash_lock(conf, hash),
2590 				    lock_device_hash_lock(conf, hash));
2591 		osh = get_free_stripe(conf, hash);
2592 		unlock_device_hash_lock(conf, hash);
2593 
2594 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2595 	for (i = 0; i < osh->nr_pages; i++) {
2596 		nsh->pages[i] = osh->pages[i];
2597 		osh->pages[i] = NULL;
2598 	}
2599 #endif
2600 		for(i=0; i<conf->pool_size; i++) {
2601 			nsh->dev[i].page = osh->dev[i].page;
2602 			nsh->dev[i].orig_page = osh->dev[i].page;
2603 			nsh->dev[i].offset = osh->dev[i].offset;
2604 		}
2605 		nsh->hash_lock_index = hash;
2606 		free_stripe(conf->slab_cache, osh);
2607 		cnt++;
2608 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2609 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2610 			hash++;
2611 			cnt = 0;
2612 		}
2613 	}
2614 	kmem_cache_destroy(conf->slab_cache);
2615 
2616 	/* Step 3.
2617 	 * At this point, we are holding all the stripes so the array
2618 	 * is completely stalled, so now is a good time to resize
2619 	 * conf->disks and the scribble region
2620 	 */
2621 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2622 	if (ndisks) {
2623 		for (i = 0; i < conf->pool_size; i++)
2624 			ndisks[i] = conf->disks[i];
2625 
2626 		for (i = conf->pool_size; i < newsize; i++) {
2627 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2628 			if (!ndisks[i].extra_page)
2629 				err = -ENOMEM;
2630 		}
2631 
2632 		if (err) {
2633 			for (i = conf->pool_size; i < newsize; i++)
2634 				if (ndisks[i].extra_page)
2635 					put_page(ndisks[i].extra_page);
2636 			kfree(ndisks);
2637 		} else {
2638 			kfree(conf->disks);
2639 			conf->disks = ndisks;
2640 		}
2641 	} else
2642 		err = -ENOMEM;
2643 
2644 	conf->slab_cache = sc;
2645 	conf->active_name = 1-conf->active_name;
2646 
2647 	/* Step 4, return new stripes to service */
2648 	while(!list_empty(&newstripes)) {
2649 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2650 		list_del_init(&nsh->lru);
2651 
2652 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2653 		for (i = 0; i < nsh->nr_pages; i++) {
2654 			if (nsh->pages[i])
2655 				continue;
2656 			nsh->pages[i] = alloc_page(GFP_NOIO);
2657 			if (!nsh->pages[i])
2658 				err = -ENOMEM;
2659 		}
2660 
2661 		for (i = conf->raid_disks; i < newsize; i++) {
2662 			if (nsh->dev[i].page)
2663 				continue;
2664 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2665 			nsh->dev[i].orig_page = nsh->dev[i].page;
2666 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2667 		}
2668 #else
2669 		for (i=conf->raid_disks; i < newsize; i++)
2670 			if (nsh->dev[i].page == NULL) {
2671 				struct page *p = alloc_page(GFP_NOIO);
2672 				nsh->dev[i].page = p;
2673 				nsh->dev[i].orig_page = p;
2674 				nsh->dev[i].offset = 0;
2675 				if (!p)
2676 					err = -ENOMEM;
2677 			}
2678 #endif
2679 		raid5_release_stripe(nsh);
2680 	}
2681 	/* critical section pass, GFP_NOIO no longer needed */
2682 
2683 	if (!err)
2684 		conf->pool_size = newsize;
2685 	mutex_unlock(&conf->cache_size_mutex);
2686 
2687 	return err;
2688 }
2689 
2690 static int drop_one_stripe(struct r5conf *conf)
2691 {
2692 	struct stripe_head *sh;
2693 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2694 
2695 	spin_lock_irq(conf->hash_locks + hash);
2696 	sh = get_free_stripe(conf, hash);
2697 	spin_unlock_irq(conf->hash_locks + hash);
2698 	if (!sh)
2699 		return 0;
2700 	BUG_ON(atomic_read(&sh->count));
2701 	shrink_buffers(sh);
2702 	free_stripe(conf->slab_cache, sh);
2703 	atomic_dec(&conf->active_stripes);
2704 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2705 	return 1;
2706 }
2707 
2708 static void shrink_stripes(struct r5conf *conf)
2709 {
2710 	while (conf->max_nr_stripes &&
2711 	       drop_one_stripe(conf))
2712 		;
2713 
2714 	kmem_cache_destroy(conf->slab_cache);
2715 	conf->slab_cache = NULL;
2716 }
2717 
2718 static void raid5_end_read_request(struct bio * bi)
2719 {
2720 	struct stripe_head *sh = bi->bi_private;
2721 	struct r5conf *conf = sh->raid_conf;
2722 	int disks = sh->disks, i;
2723 	struct md_rdev *rdev = NULL;
2724 	sector_t s;
2725 
2726 	for (i=0 ; i<disks; i++)
2727 		if (bi == &sh->dev[i].req)
2728 			break;
2729 
2730 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2731 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2732 		bi->bi_status);
2733 	if (i == disks) {
2734 		BUG();
2735 		return;
2736 	}
2737 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2738 		/* If replacement finished while this request was outstanding,
2739 		 * 'replacement' might be NULL already.
2740 		 * In that case it moved down to 'rdev'.
2741 		 * rdev is not removed until all requests are finished.
2742 		 */
2743 		rdev = conf->disks[i].replacement;
2744 	if (!rdev)
2745 		rdev = conf->disks[i].rdev;
2746 
2747 	if (use_new_offset(conf, sh))
2748 		s = sh->sector + rdev->new_data_offset;
2749 	else
2750 		s = sh->sector + rdev->data_offset;
2751 	if (!bi->bi_status) {
2752 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2753 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2754 			/* Note that this cannot happen on a
2755 			 * replacement device.  We just fail those on
2756 			 * any error
2757 			 */
2758 			pr_info_ratelimited(
2759 				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2760 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2761 				(unsigned long long)s,
2762 				rdev->bdev);
2763 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2764 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2765 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2766 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2767 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2768 
2769 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2770 			/*
2771 			 * end read for a page in journal, this
2772 			 * must be preparing for prexor in rmw
2773 			 */
2774 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2775 
2776 		if (atomic_read(&rdev->read_errors))
2777 			atomic_set(&rdev->read_errors, 0);
2778 	} else {
2779 		int retry = 0;
2780 		int set_bad = 0;
2781 
2782 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2783 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2784 			atomic_inc(&rdev->read_errors);
2785 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2786 			pr_warn_ratelimited(
2787 				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2788 				mdname(conf->mddev),
2789 				(unsigned long long)s,
2790 				rdev->bdev);
2791 		else if (conf->mddev->degraded >= conf->max_degraded) {
2792 			set_bad = 1;
2793 			pr_warn_ratelimited(
2794 				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2795 				mdname(conf->mddev),
2796 				(unsigned long long)s,
2797 				rdev->bdev);
2798 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2799 			/* Oh, no!!! */
2800 			set_bad = 1;
2801 			pr_warn_ratelimited(
2802 				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2803 				mdname(conf->mddev),
2804 				(unsigned long long)s,
2805 				rdev->bdev);
2806 		} else if (atomic_read(&rdev->read_errors)
2807 			 > conf->max_nr_stripes) {
2808 			if (!test_bit(Faulty, &rdev->flags)) {
2809 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2810 				    mdname(conf->mddev),
2811 				    atomic_read(&rdev->read_errors),
2812 				    conf->max_nr_stripes);
2813 				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2814 				    mdname(conf->mddev), rdev->bdev);
2815 			}
2816 		} else
2817 			retry = 1;
2818 		if (set_bad && test_bit(In_sync, &rdev->flags)
2819 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2820 			retry = 1;
2821 		if (retry)
2822 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2823 				set_bit(R5_ReadError, &sh->dev[i].flags);
2824 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2825 				set_bit(R5_ReadError, &sh->dev[i].flags);
2826 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2827 			} else
2828 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2829 		else {
2830 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2831 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2832 			if (!(set_bad
2833 			      && test_bit(In_sync, &rdev->flags)
2834 			      && rdev_set_badblocks(
2835 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2836 				md_error(conf->mddev, rdev);
2837 		}
2838 	}
2839 	rdev_dec_pending(rdev, conf->mddev);
2840 	bio_uninit(bi);
2841 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2842 	set_bit(STRIPE_HANDLE, &sh->state);
2843 	raid5_release_stripe(sh);
2844 }
2845 
2846 static void raid5_end_write_request(struct bio *bi)
2847 {
2848 	struct stripe_head *sh = bi->bi_private;
2849 	struct r5conf *conf = sh->raid_conf;
2850 	int disks = sh->disks, i;
2851 	struct md_rdev *rdev;
2852 	int replacement = 0;
2853 
2854 	for (i = 0 ; i < disks; i++) {
2855 		if (bi == &sh->dev[i].req) {
2856 			rdev = conf->disks[i].rdev;
2857 			break;
2858 		}
2859 		if (bi == &sh->dev[i].rreq) {
2860 			rdev = conf->disks[i].replacement;
2861 			if (rdev)
2862 				replacement = 1;
2863 			else
2864 				/* rdev was removed and 'replacement'
2865 				 * replaced it.  rdev is not removed
2866 				 * until all requests are finished.
2867 				 */
2868 				rdev = conf->disks[i].rdev;
2869 			break;
2870 		}
2871 	}
2872 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2873 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2874 		bi->bi_status);
2875 	if (i == disks) {
2876 		BUG();
2877 		return;
2878 	}
2879 
2880 	if (replacement) {
2881 		if (bi->bi_status)
2882 			md_error(conf->mddev, rdev);
2883 		else if (rdev_has_badblock(rdev, sh->sector,
2884 					   RAID5_STRIPE_SECTORS(conf)))
2885 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2886 	} else {
2887 		if (bi->bi_status) {
2888 			set_bit(STRIPE_DEGRADED, &sh->state);
2889 			set_bit(WriteErrorSeen, &rdev->flags);
2890 			set_bit(R5_WriteError, &sh->dev[i].flags);
2891 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2892 				set_bit(MD_RECOVERY_NEEDED,
2893 					&rdev->mddev->recovery);
2894 		} else if (rdev_has_badblock(rdev, sh->sector,
2895 					     RAID5_STRIPE_SECTORS(conf))) {
2896 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2897 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2898 				/* That was a successful write so make
2899 				 * sure it looks like we already did
2900 				 * a re-write.
2901 				 */
2902 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2903 		}
2904 	}
2905 	rdev_dec_pending(rdev, conf->mddev);
2906 
2907 	if (sh->batch_head && bi->bi_status && !replacement)
2908 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2909 
2910 	bio_uninit(bi);
2911 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2912 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2913 	set_bit(STRIPE_HANDLE, &sh->state);
2914 
2915 	if (sh->batch_head && sh != sh->batch_head)
2916 		raid5_release_stripe(sh->batch_head);
2917 	raid5_release_stripe(sh);
2918 }
2919 
2920 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2921 {
2922 	struct r5conf *conf = mddev->private;
2923 	unsigned long flags;
2924 	pr_debug("raid456: error called\n");
2925 
2926 	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2927 		mdname(mddev), rdev->bdev);
2928 
2929 	spin_lock_irqsave(&conf->device_lock, flags);
2930 	set_bit(Faulty, &rdev->flags);
2931 	clear_bit(In_sync, &rdev->flags);
2932 	mddev->degraded = raid5_calc_degraded(conf);
2933 
2934 	if (has_failed(conf)) {
2935 		set_bit(MD_BROKEN, &conf->mddev->flags);
2936 		conf->recovery_disabled = mddev->recovery_disabled;
2937 
2938 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2939 			mdname(mddev), mddev->degraded, conf->raid_disks);
2940 	} else {
2941 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2942 			mdname(mddev), conf->raid_disks - mddev->degraded);
2943 	}
2944 
2945 	spin_unlock_irqrestore(&conf->device_lock, flags);
2946 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2947 
2948 	set_bit(Blocked, &rdev->flags);
2949 	set_mask_bits(&mddev->sb_flags, 0,
2950 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2951 	r5c_update_on_rdev_error(mddev, rdev);
2952 }
2953 
2954 /*
2955  * Input: a 'big' sector number,
2956  * Output: index of the data and parity disk, and the sector # in them.
2957  */
2958 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2959 			      int previous, int *dd_idx,
2960 			      struct stripe_head *sh)
2961 {
2962 	sector_t stripe, stripe2;
2963 	sector_t chunk_number;
2964 	unsigned int chunk_offset;
2965 	int pd_idx, qd_idx;
2966 	int ddf_layout = 0;
2967 	sector_t new_sector;
2968 	int algorithm = previous ? conf->prev_algo
2969 				 : conf->algorithm;
2970 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2971 					 : conf->chunk_sectors;
2972 	int raid_disks = previous ? conf->previous_raid_disks
2973 				  : conf->raid_disks;
2974 	int data_disks = raid_disks - conf->max_degraded;
2975 
2976 	/* First compute the information on this sector */
2977 
2978 	/*
2979 	 * Compute the chunk number and the sector offset inside the chunk
2980 	 */
2981 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2982 	chunk_number = r_sector;
2983 
2984 	/*
2985 	 * Compute the stripe number
2986 	 */
2987 	stripe = chunk_number;
2988 	*dd_idx = sector_div(stripe, data_disks);
2989 	stripe2 = stripe;
2990 	/*
2991 	 * Select the parity disk based on the user selected algorithm.
2992 	 */
2993 	pd_idx = qd_idx = -1;
2994 	switch(conf->level) {
2995 	case 4:
2996 		pd_idx = data_disks;
2997 		break;
2998 	case 5:
2999 		switch (algorithm) {
3000 		case ALGORITHM_LEFT_ASYMMETRIC:
3001 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3002 			if (*dd_idx >= pd_idx)
3003 				(*dd_idx)++;
3004 			break;
3005 		case ALGORITHM_RIGHT_ASYMMETRIC:
3006 			pd_idx = sector_div(stripe2, raid_disks);
3007 			if (*dd_idx >= pd_idx)
3008 				(*dd_idx)++;
3009 			break;
3010 		case ALGORITHM_LEFT_SYMMETRIC:
3011 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3012 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3013 			break;
3014 		case ALGORITHM_RIGHT_SYMMETRIC:
3015 			pd_idx = sector_div(stripe2, raid_disks);
3016 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3017 			break;
3018 		case ALGORITHM_PARITY_0:
3019 			pd_idx = 0;
3020 			(*dd_idx)++;
3021 			break;
3022 		case ALGORITHM_PARITY_N:
3023 			pd_idx = data_disks;
3024 			break;
3025 		default:
3026 			BUG();
3027 		}
3028 		break;
3029 	case 6:
3030 
3031 		switch (algorithm) {
3032 		case ALGORITHM_LEFT_ASYMMETRIC:
3033 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3034 			qd_idx = pd_idx + 1;
3035 			if (pd_idx == raid_disks-1) {
3036 				(*dd_idx)++;	/* Q D D D P */
3037 				qd_idx = 0;
3038 			} else if (*dd_idx >= pd_idx)
3039 				(*dd_idx) += 2; /* D D P Q D */
3040 			break;
3041 		case ALGORITHM_RIGHT_ASYMMETRIC:
3042 			pd_idx = sector_div(stripe2, raid_disks);
3043 			qd_idx = pd_idx + 1;
3044 			if (pd_idx == raid_disks-1) {
3045 				(*dd_idx)++;	/* Q D D D P */
3046 				qd_idx = 0;
3047 			} else if (*dd_idx >= pd_idx)
3048 				(*dd_idx) += 2; /* D D P Q D */
3049 			break;
3050 		case ALGORITHM_LEFT_SYMMETRIC:
3051 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3052 			qd_idx = (pd_idx + 1) % raid_disks;
3053 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3054 			break;
3055 		case ALGORITHM_RIGHT_SYMMETRIC:
3056 			pd_idx = sector_div(stripe2, raid_disks);
3057 			qd_idx = (pd_idx + 1) % raid_disks;
3058 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3059 			break;
3060 
3061 		case ALGORITHM_PARITY_0:
3062 			pd_idx = 0;
3063 			qd_idx = 1;
3064 			(*dd_idx) += 2;
3065 			break;
3066 		case ALGORITHM_PARITY_N:
3067 			pd_idx = data_disks;
3068 			qd_idx = data_disks + 1;
3069 			break;
3070 
3071 		case ALGORITHM_ROTATING_ZERO_RESTART:
3072 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3073 			 * of blocks for computing Q is different.
3074 			 */
3075 			pd_idx = sector_div(stripe2, raid_disks);
3076 			qd_idx = pd_idx + 1;
3077 			if (pd_idx == raid_disks-1) {
3078 				(*dd_idx)++;	/* Q D D D P */
3079 				qd_idx = 0;
3080 			} else if (*dd_idx >= pd_idx)
3081 				(*dd_idx) += 2; /* D D P Q D */
3082 			ddf_layout = 1;
3083 			break;
3084 
3085 		case ALGORITHM_ROTATING_N_RESTART:
3086 			/* Same a left_asymmetric, by first stripe is
3087 			 * D D D P Q  rather than
3088 			 * Q D D D P
3089 			 */
3090 			stripe2 += 1;
3091 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3092 			qd_idx = pd_idx + 1;
3093 			if (pd_idx == raid_disks-1) {
3094 				(*dd_idx)++;	/* Q D D D P */
3095 				qd_idx = 0;
3096 			} else if (*dd_idx >= pd_idx)
3097 				(*dd_idx) += 2; /* D D P Q D */
3098 			ddf_layout = 1;
3099 			break;
3100 
3101 		case ALGORITHM_ROTATING_N_CONTINUE:
3102 			/* Same as left_symmetric but Q is before P */
3103 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3104 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3105 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3106 			ddf_layout = 1;
3107 			break;
3108 
3109 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3110 			/* RAID5 left_asymmetric, with Q on last device */
3111 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3112 			if (*dd_idx >= pd_idx)
3113 				(*dd_idx)++;
3114 			qd_idx = raid_disks - 1;
3115 			break;
3116 
3117 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3118 			pd_idx = sector_div(stripe2, raid_disks-1);
3119 			if (*dd_idx >= pd_idx)
3120 				(*dd_idx)++;
3121 			qd_idx = raid_disks - 1;
3122 			break;
3123 
3124 		case ALGORITHM_LEFT_SYMMETRIC_6:
3125 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3126 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3127 			qd_idx = raid_disks - 1;
3128 			break;
3129 
3130 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3131 			pd_idx = sector_div(stripe2, raid_disks-1);
3132 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3133 			qd_idx = raid_disks - 1;
3134 			break;
3135 
3136 		case ALGORITHM_PARITY_0_6:
3137 			pd_idx = 0;
3138 			(*dd_idx)++;
3139 			qd_idx = raid_disks - 1;
3140 			break;
3141 
3142 		default:
3143 			BUG();
3144 		}
3145 		break;
3146 	}
3147 
3148 	if (sh) {
3149 		sh->pd_idx = pd_idx;
3150 		sh->qd_idx = qd_idx;
3151 		sh->ddf_layout = ddf_layout;
3152 	}
3153 	/*
3154 	 * Finally, compute the new sector number
3155 	 */
3156 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3157 	return new_sector;
3158 }
3159 
3160 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3161 {
3162 	struct r5conf *conf = sh->raid_conf;
3163 	int raid_disks = sh->disks;
3164 	int data_disks = raid_disks - conf->max_degraded;
3165 	sector_t new_sector = sh->sector, check;
3166 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3167 					 : conf->chunk_sectors;
3168 	int algorithm = previous ? conf->prev_algo
3169 				 : conf->algorithm;
3170 	sector_t stripe;
3171 	int chunk_offset;
3172 	sector_t chunk_number;
3173 	int dummy1, dd_idx = i;
3174 	sector_t r_sector;
3175 	struct stripe_head sh2;
3176 
3177 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3178 	stripe = new_sector;
3179 
3180 	if (i == sh->pd_idx)
3181 		return 0;
3182 	switch(conf->level) {
3183 	case 4: break;
3184 	case 5:
3185 		switch (algorithm) {
3186 		case ALGORITHM_LEFT_ASYMMETRIC:
3187 		case ALGORITHM_RIGHT_ASYMMETRIC:
3188 			if (i > sh->pd_idx)
3189 				i--;
3190 			break;
3191 		case ALGORITHM_LEFT_SYMMETRIC:
3192 		case ALGORITHM_RIGHT_SYMMETRIC:
3193 			if (i < sh->pd_idx)
3194 				i += raid_disks;
3195 			i -= (sh->pd_idx + 1);
3196 			break;
3197 		case ALGORITHM_PARITY_0:
3198 			i -= 1;
3199 			break;
3200 		case ALGORITHM_PARITY_N:
3201 			break;
3202 		default:
3203 			BUG();
3204 		}
3205 		break;
3206 	case 6:
3207 		if (i == sh->qd_idx)
3208 			return 0; /* It is the Q disk */
3209 		switch (algorithm) {
3210 		case ALGORITHM_LEFT_ASYMMETRIC:
3211 		case ALGORITHM_RIGHT_ASYMMETRIC:
3212 		case ALGORITHM_ROTATING_ZERO_RESTART:
3213 		case ALGORITHM_ROTATING_N_RESTART:
3214 			if (sh->pd_idx == raid_disks-1)
3215 				i--;	/* Q D D D P */
3216 			else if (i > sh->pd_idx)
3217 				i -= 2; /* D D P Q D */
3218 			break;
3219 		case ALGORITHM_LEFT_SYMMETRIC:
3220 		case ALGORITHM_RIGHT_SYMMETRIC:
3221 			if (sh->pd_idx == raid_disks-1)
3222 				i--; /* Q D D D P */
3223 			else {
3224 				/* D D P Q D */
3225 				if (i < sh->pd_idx)
3226 					i += raid_disks;
3227 				i -= (sh->pd_idx + 2);
3228 			}
3229 			break;
3230 		case ALGORITHM_PARITY_0:
3231 			i -= 2;
3232 			break;
3233 		case ALGORITHM_PARITY_N:
3234 			break;
3235 		case ALGORITHM_ROTATING_N_CONTINUE:
3236 			/* Like left_symmetric, but P is before Q */
3237 			if (sh->pd_idx == 0)
3238 				i--;	/* P D D D Q */
3239 			else {
3240 				/* D D Q P D */
3241 				if (i < sh->pd_idx)
3242 					i += raid_disks;
3243 				i -= (sh->pd_idx + 1);
3244 			}
3245 			break;
3246 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3247 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3248 			if (i > sh->pd_idx)
3249 				i--;
3250 			break;
3251 		case ALGORITHM_LEFT_SYMMETRIC_6:
3252 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3253 			if (i < sh->pd_idx)
3254 				i += data_disks + 1;
3255 			i -= (sh->pd_idx + 1);
3256 			break;
3257 		case ALGORITHM_PARITY_0_6:
3258 			i -= 1;
3259 			break;
3260 		default:
3261 			BUG();
3262 		}
3263 		break;
3264 	}
3265 
3266 	chunk_number = stripe * data_disks + i;
3267 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3268 
3269 	check = raid5_compute_sector(conf, r_sector,
3270 				     previous, &dummy1, &sh2);
3271 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3272 		|| sh2.qd_idx != sh->qd_idx) {
3273 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3274 			mdname(conf->mddev));
3275 		return 0;
3276 	}
3277 	return r_sector;
3278 }
3279 
3280 /*
3281  * There are cases where we want handle_stripe_dirtying() and
3282  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3283  *
3284  * This function checks whether we want to delay the towrite. Specifically,
3285  * we delay the towrite when:
3286  *
3287  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3288  *      stripe has data in journal (for other devices).
3289  *
3290  *      In this case, when reading data for the non-overwrite dev, it is
3291  *      necessary to handle complex rmw of write back cache (prexor with
3292  *      orig_page, and xor with page). To keep read path simple, we would
3293  *      like to flush data in journal to RAID disks first, so complex rmw
3294  *      is handled in the write patch (handle_stripe_dirtying).
3295  *
3296  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3297  *
3298  *      It is important to be able to flush all stripes in raid5-cache.
3299  *      Therefore, we need reserve some space on the journal device for
3300  *      these flushes. If flush operation includes pending writes to the
3301  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3302  *      for the flush out. If we exclude these pending writes from flush
3303  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3304  *      Therefore, excluding pending writes in these cases enables more
3305  *      efficient use of the journal device.
3306  *
3307  *      Note: To make sure the stripe makes progress, we only delay
3308  *      towrite for stripes with data already in journal (injournal > 0).
3309  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3310  *      no_space_stripes list.
3311  *
3312  *   3. during journal failure
3313  *      In journal failure, we try to flush all cached data to raid disks
3314  *      based on data in stripe cache. The array is read-only to upper
3315  *      layers, so we would skip all pending writes.
3316  *
3317  */
3318 static inline bool delay_towrite(struct r5conf *conf,
3319 				 struct r5dev *dev,
3320 				 struct stripe_head_state *s)
3321 {
3322 	/* case 1 above */
3323 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3324 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3325 		return true;
3326 	/* case 2 above */
3327 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3328 	    s->injournal > 0)
3329 		return true;
3330 	/* case 3 above */
3331 	if (s->log_failed && s->injournal)
3332 		return true;
3333 	return false;
3334 }
3335 
3336 static void
3337 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3338 			 int rcw, int expand)
3339 {
3340 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3341 	struct r5conf *conf = sh->raid_conf;
3342 	int level = conf->level;
3343 
3344 	if (rcw) {
3345 		/*
3346 		 * In some cases, handle_stripe_dirtying initially decided to
3347 		 * run rmw and allocates extra page for prexor. However, rcw is
3348 		 * cheaper later on. We need to free the extra page now,
3349 		 * because we won't be able to do that in ops_complete_prexor().
3350 		 */
3351 		r5c_release_extra_page(sh);
3352 
3353 		for (i = disks; i--; ) {
3354 			struct r5dev *dev = &sh->dev[i];
3355 
3356 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3357 				set_bit(R5_LOCKED, &dev->flags);
3358 				set_bit(R5_Wantdrain, &dev->flags);
3359 				if (!expand)
3360 					clear_bit(R5_UPTODATE, &dev->flags);
3361 				s->locked++;
3362 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3363 				set_bit(R5_LOCKED, &dev->flags);
3364 				s->locked++;
3365 			}
3366 		}
3367 		/* if we are not expanding this is a proper write request, and
3368 		 * there will be bios with new data to be drained into the
3369 		 * stripe cache
3370 		 */
3371 		if (!expand) {
3372 			if (!s->locked)
3373 				/* False alarm, nothing to do */
3374 				return;
3375 			sh->reconstruct_state = reconstruct_state_drain_run;
3376 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3377 		} else
3378 			sh->reconstruct_state = reconstruct_state_run;
3379 
3380 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3381 
3382 		if (s->locked + conf->max_degraded == disks)
3383 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3384 				atomic_inc(&conf->pending_full_writes);
3385 	} else {
3386 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3387 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3388 		BUG_ON(level == 6 &&
3389 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3390 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3391 
3392 		for (i = disks; i--; ) {
3393 			struct r5dev *dev = &sh->dev[i];
3394 			if (i == pd_idx || i == qd_idx)
3395 				continue;
3396 
3397 			if (dev->towrite &&
3398 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3399 			     test_bit(R5_Wantcompute, &dev->flags))) {
3400 				set_bit(R5_Wantdrain, &dev->flags);
3401 				set_bit(R5_LOCKED, &dev->flags);
3402 				clear_bit(R5_UPTODATE, &dev->flags);
3403 				s->locked++;
3404 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3405 				set_bit(R5_LOCKED, &dev->flags);
3406 				s->locked++;
3407 			}
3408 		}
3409 		if (!s->locked)
3410 			/* False alarm - nothing to do */
3411 			return;
3412 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3413 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3414 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3415 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3416 	}
3417 
3418 	/* keep the parity disk(s) locked while asynchronous operations
3419 	 * are in flight
3420 	 */
3421 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3422 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3423 	s->locked++;
3424 
3425 	if (level == 6) {
3426 		int qd_idx = sh->qd_idx;
3427 		struct r5dev *dev = &sh->dev[qd_idx];
3428 
3429 		set_bit(R5_LOCKED, &dev->flags);
3430 		clear_bit(R5_UPTODATE, &dev->flags);
3431 		s->locked++;
3432 	}
3433 
3434 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3435 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3436 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3437 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3438 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3439 
3440 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3441 		__func__, (unsigned long long)sh->sector,
3442 		s->locked, s->ops_request);
3443 }
3444 
3445 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3446 				int dd_idx, int forwrite)
3447 {
3448 	struct r5conf *conf = sh->raid_conf;
3449 	struct bio **bip;
3450 
3451 	pr_debug("checking bi b#%llu to stripe s#%llu\n",
3452 		 bi->bi_iter.bi_sector, sh->sector);
3453 
3454 	/* Don't allow new IO added to stripes in batch list */
3455 	if (sh->batch_head)
3456 		return true;
3457 
3458 	if (forwrite)
3459 		bip = &sh->dev[dd_idx].towrite;
3460 	else
3461 		bip = &sh->dev[dd_idx].toread;
3462 
3463 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3464 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3465 			return true;
3466 		bip = &(*bip)->bi_next;
3467 	}
3468 
3469 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3470 		return true;
3471 
3472 	if (forwrite && raid5_has_ppl(conf)) {
3473 		/*
3474 		 * With PPL only writes to consecutive data chunks within a
3475 		 * stripe are allowed because for a single stripe_head we can
3476 		 * only have one PPL entry at a time, which describes one data
3477 		 * range. Not really an overlap, but wait_for_overlap can be
3478 		 * used to handle this.
3479 		 */
3480 		sector_t sector;
3481 		sector_t first = 0;
3482 		sector_t last = 0;
3483 		int count = 0;
3484 		int i;
3485 
3486 		for (i = 0; i < sh->disks; i++) {
3487 			if (i != sh->pd_idx &&
3488 			    (i == dd_idx || sh->dev[i].towrite)) {
3489 				sector = sh->dev[i].sector;
3490 				if (count == 0 || sector < first)
3491 					first = sector;
3492 				if (sector > last)
3493 					last = sector;
3494 				count++;
3495 			}
3496 		}
3497 
3498 		if (first + conf->chunk_sectors * (count - 1) != last)
3499 			return true;
3500 	}
3501 
3502 	return false;
3503 }
3504 
3505 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3506 			     int dd_idx, int forwrite, int previous)
3507 {
3508 	struct r5conf *conf = sh->raid_conf;
3509 	struct bio **bip;
3510 	int firstwrite = 0;
3511 
3512 	if (forwrite) {
3513 		bip = &sh->dev[dd_idx].towrite;
3514 		if (!*bip)
3515 			firstwrite = 1;
3516 	} else {
3517 		bip = &sh->dev[dd_idx].toread;
3518 	}
3519 
3520 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3521 		bip = &(*bip)->bi_next;
3522 
3523 	if (!forwrite || previous)
3524 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3525 
3526 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3527 	if (*bip)
3528 		bi->bi_next = *bip;
3529 	*bip = bi;
3530 	bio_inc_remaining(bi);
3531 	md_write_inc(conf->mddev, bi);
3532 
3533 	if (forwrite) {
3534 		/* check if page is covered */
3535 		sector_t sector = sh->dev[dd_idx].sector;
3536 		for (bi=sh->dev[dd_idx].towrite;
3537 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3538 			     bi && bi->bi_iter.bi_sector <= sector;
3539 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3540 			if (bio_end_sector(bi) >= sector)
3541 				sector = bio_end_sector(bi);
3542 		}
3543 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3544 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3545 				sh->overwrite_disks++;
3546 	}
3547 
3548 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3549 		 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3550 		 sh->dev[dd_idx].sector);
3551 
3552 	if (conf->mddev->bitmap && firstwrite) {
3553 		/* Cannot hold spinlock over bitmap_startwrite,
3554 		 * but must ensure this isn't added to a batch until
3555 		 * we have added to the bitmap and set bm_seq.
3556 		 * So set STRIPE_BITMAP_PENDING to prevent
3557 		 * batching.
3558 		 * If multiple __add_stripe_bio() calls race here they
3559 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3560 		 * to complete "bitmap_startwrite" gets to set
3561 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3562 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3563 		 * any more.
3564 		 */
3565 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3566 		spin_unlock_irq(&sh->stripe_lock);
3567 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3568 				     RAID5_STRIPE_SECTORS(conf), 0);
3569 		spin_lock_irq(&sh->stripe_lock);
3570 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3571 		if (!sh->batch_head) {
3572 			sh->bm_seq = conf->seq_flush+1;
3573 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3574 		}
3575 	}
3576 }
3577 
3578 /*
3579  * Each stripe/dev can have one or more bios attached.
3580  * toread/towrite point to the first in a chain.
3581  * The bi_next chain must be in order.
3582  */
3583 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3584 			   int dd_idx, int forwrite, int previous)
3585 {
3586 	spin_lock_irq(&sh->stripe_lock);
3587 
3588 	if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3589 		set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3590 		spin_unlock_irq(&sh->stripe_lock);
3591 		return false;
3592 	}
3593 
3594 	__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3595 	spin_unlock_irq(&sh->stripe_lock);
3596 	return true;
3597 }
3598 
3599 static void end_reshape(struct r5conf *conf);
3600 
3601 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3602 			    struct stripe_head *sh)
3603 {
3604 	int sectors_per_chunk =
3605 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3606 	int dd_idx;
3607 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3608 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3609 
3610 	raid5_compute_sector(conf,
3611 			     stripe * (disks - conf->max_degraded)
3612 			     *sectors_per_chunk + chunk_offset,
3613 			     previous,
3614 			     &dd_idx, sh);
3615 }
3616 
3617 static void
3618 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3619 		     struct stripe_head_state *s, int disks)
3620 {
3621 	int i;
3622 	BUG_ON(sh->batch_head);
3623 	for (i = disks; i--; ) {
3624 		struct bio *bi;
3625 		int bitmap_end = 0;
3626 
3627 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3628 			struct md_rdev *rdev = conf->disks[i].rdev;
3629 
3630 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3631 			    !test_bit(Faulty, &rdev->flags))
3632 				atomic_inc(&rdev->nr_pending);
3633 			else
3634 				rdev = NULL;
3635 			if (rdev) {
3636 				if (!rdev_set_badblocks(
3637 					    rdev,
3638 					    sh->sector,
3639 					    RAID5_STRIPE_SECTORS(conf), 0))
3640 					md_error(conf->mddev, rdev);
3641 				rdev_dec_pending(rdev, conf->mddev);
3642 			}
3643 		}
3644 		spin_lock_irq(&sh->stripe_lock);
3645 		/* fail all writes first */
3646 		bi = sh->dev[i].towrite;
3647 		sh->dev[i].towrite = NULL;
3648 		sh->overwrite_disks = 0;
3649 		spin_unlock_irq(&sh->stripe_lock);
3650 		if (bi)
3651 			bitmap_end = 1;
3652 
3653 		log_stripe_write_finished(sh);
3654 
3655 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3656 			wake_up(&conf->wait_for_overlap);
3657 
3658 		while (bi && bi->bi_iter.bi_sector <
3659 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3660 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3661 
3662 			md_write_end(conf->mddev);
3663 			bio_io_error(bi);
3664 			bi = nextbi;
3665 		}
3666 		if (bitmap_end)
3667 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3668 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3669 		bitmap_end = 0;
3670 		/* and fail all 'written' */
3671 		bi = sh->dev[i].written;
3672 		sh->dev[i].written = NULL;
3673 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3674 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3675 			sh->dev[i].page = sh->dev[i].orig_page;
3676 		}
3677 
3678 		if (bi) bitmap_end = 1;
3679 		while (bi && bi->bi_iter.bi_sector <
3680 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3681 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3682 
3683 			md_write_end(conf->mddev);
3684 			bio_io_error(bi);
3685 			bi = bi2;
3686 		}
3687 
3688 		/* fail any reads if this device is non-operational and
3689 		 * the data has not reached the cache yet.
3690 		 */
3691 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3692 		    s->failed > conf->max_degraded &&
3693 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3694 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3695 			spin_lock_irq(&sh->stripe_lock);
3696 			bi = sh->dev[i].toread;
3697 			sh->dev[i].toread = NULL;
3698 			spin_unlock_irq(&sh->stripe_lock);
3699 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3700 				wake_up(&conf->wait_for_overlap);
3701 			if (bi)
3702 				s->to_read--;
3703 			while (bi && bi->bi_iter.bi_sector <
3704 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3705 				struct bio *nextbi =
3706 					r5_next_bio(conf, bi, sh->dev[i].sector);
3707 
3708 				bio_io_error(bi);
3709 				bi = nextbi;
3710 			}
3711 		}
3712 		if (bitmap_end)
3713 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3714 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3715 		/* If we were in the middle of a write the parity block might
3716 		 * still be locked - so just clear all R5_LOCKED flags
3717 		 */
3718 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3719 	}
3720 	s->to_write = 0;
3721 	s->written = 0;
3722 
3723 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3724 		if (atomic_dec_and_test(&conf->pending_full_writes))
3725 			md_wakeup_thread(conf->mddev->thread);
3726 }
3727 
3728 static void
3729 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3730 		   struct stripe_head_state *s)
3731 {
3732 	int abort = 0;
3733 	int i;
3734 
3735 	BUG_ON(sh->batch_head);
3736 	clear_bit(STRIPE_SYNCING, &sh->state);
3737 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3738 		wake_up(&conf->wait_for_overlap);
3739 	s->syncing = 0;
3740 	s->replacing = 0;
3741 	/* There is nothing more to do for sync/check/repair.
3742 	 * Don't even need to abort as that is handled elsewhere
3743 	 * if needed, and not always wanted e.g. if there is a known
3744 	 * bad block here.
3745 	 * For recover/replace we need to record a bad block on all
3746 	 * non-sync devices, or abort the recovery
3747 	 */
3748 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3749 		/* During recovery devices cannot be removed, so
3750 		 * locking and refcounting of rdevs is not needed
3751 		 */
3752 		for (i = 0; i < conf->raid_disks; i++) {
3753 			struct md_rdev *rdev = conf->disks[i].rdev;
3754 
3755 			if (rdev
3756 			    && !test_bit(Faulty, &rdev->flags)
3757 			    && !test_bit(In_sync, &rdev->flags)
3758 			    && !rdev_set_badblocks(rdev, sh->sector,
3759 						   RAID5_STRIPE_SECTORS(conf), 0))
3760 				abort = 1;
3761 			rdev = conf->disks[i].replacement;
3762 
3763 			if (rdev
3764 			    && !test_bit(Faulty, &rdev->flags)
3765 			    && !test_bit(In_sync, &rdev->flags)
3766 			    && !rdev_set_badblocks(rdev, sh->sector,
3767 						   RAID5_STRIPE_SECTORS(conf), 0))
3768 				abort = 1;
3769 		}
3770 		if (abort)
3771 			conf->recovery_disabled =
3772 				conf->mddev->recovery_disabled;
3773 	}
3774 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3775 }
3776 
3777 static int want_replace(struct stripe_head *sh, int disk_idx)
3778 {
3779 	struct md_rdev *rdev;
3780 	int rv = 0;
3781 
3782 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3783 	if (rdev
3784 	    && !test_bit(Faulty, &rdev->flags)
3785 	    && !test_bit(In_sync, &rdev->flags)
3786 	    && (rdev->recovery_offset <= sh->sector
3787 		|| rdev->mddev->recovery_cp <= sh->sector))
3788 		rv = 1;
3789 	return rv;
3790 }
3791 
3792 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3793 			   int disk_idx, int disks)
3794 {
3795 	struct r5dev *dev = &sh->dev[disk_idx];
3796 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3797 				  &sh->dev[s->failed_num[1]] };
3798 	int i;
3799 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3800 
3801 
3802 	if (test_bit(R5_LOCKED, &dev->flags) ||
3803 	    test_bit(R5_UPTODATE, &dev->flags))
3804 		/* No point reading this as we already have it or have
3805 		 * decided to get it.
3806 		 */
3807 		return 0;
3808 
3809 	if (dev->toread ||
3810 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3811 		/* We need this block to directly satisfy a request */
3812 		return 1;
3813 
3814 	if (s->syncing || s->expanding ||
3815 	    (s->replacing && want_replace(sh, disk_idx)))
3816 		/* When syncing, or expanding we read everything.
3817 		 * When replacing, we need the replaced block.
3818 		 */
3819 		return 1;
3820 
3821 	if ((s->failed >= 1 && fdev[0]->toread) ||
3822 	    (s->failed >= 2 && fdev[1]->toread))
3823 		/* If we want to read from a failed device, then
3824 		 * we need to actually read every other device.
3825 		 */
3826 		return 1;
3827 
3828 	/* Sometimes neither read-modify-write nor reconstruct-write
3829 	 * cycles can work.  In those cases we read every block we
3830 	 * can.  Then the parity-update is certain to have enough to
3831 	 * work with.
3832 	 * This can only be a problem when we need to write something,
3833 	 * and some device has failed.  If either of those tests
3834 	 * fail we need look no further.
3835 	 */
3836 	if (!s->failed || !s->to_write)
3837 		return 0;
3838 
3839 	if (test_bit(R5_Insync, &dev->flags) &&
3840 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3841 		/* Pre-reads at not permitted until after short delay
3842 		 * to gather multiple requests.  However if this
3843 		 * device is no Insync, the block could only be computed
3844 		 * and there is no need to delay that.
3845 		 */
3846 		return 0;
3847 
3848 	for (i = 0; i < s->failed && i < 2; i++) {
3849 		if (fdev[i]->towrite &&
3850 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3851 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3852 			/* If we have a partial write to a failed
3853 			 * device, then we will need to reconstruct
3854 			 * the content of that device, so all other
3855 			 * devices must be read.
3856 			 */
3857 			return 1;
3858 
3859 		if (s->failed >= 2 &&
3860 		    (fdev[i]->towrite ||
3861 		     s->failed_num[i] == sh->pd_idx ||
3862 		     s->failed_num[i] == sh->qd_idx) &&
3863 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3864 			/* In max degraded raid6, If the failed disk is P, Q,
3865 			 * or we want to read the failed disk, we need to do
3866 			 * reconstruct-write.
3867 			 */
3868 			force_rcw = true;
3869 	}
3870 
3871 	/* If we are forced to do a reconstruct-write, because parity
3872 	 * cannot be trusted and we are currently recovering it, there
3873 	 * is extra need to be careful.
3874 	 * If one of the devices that we would need to read, because
3875 	 * it is not being overwritten (and maybe not written at all)
3876 	 * is missing/faulty, then we need to read everything we can.
3877 	 */
3878 	if (!force_rcw &&
3879 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3880 		/* reconstruct-write isn't being forced */
3881 		return 0;
3882 	for (i = 0; i < s->failed && i < 2; i++) {
3883 		if (s->failed_num[i] != sh->pd_idx &&
3884 		    s->failed_num[i] != sh->qd_idx &&
3885 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3886 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3887 			return 1;
3888 	}
3889 
3890 	return 0;
3891 }
3892 
3893 /* fetch_block - checks the given member device to see if its data needs
3894  * to be read or computed to satisfy a request.
3895  *
3896  * Returns 1 when no more member devices need to be checked, otherwise returns
3897  * 0 to tell the loop in handle_stripe_fill to continue
3898  */
3899 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3900 		       int disk_idx, int disks)
3901 {
3902 	struct r5dev *dev = &sh->dev[disk_idx];
3903 
3904 	/* is the data in this block needed, and can we get it? */
3905 	if (need_this_block(sh, s, disk_idx, disks)) {
3906 		/* we would like to get this block, possibly by computing it,
3907 		 * otherwise read it if the backing disk is insync
3908 		 */
3909 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3910 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3911 		BUG_ON(sh->batch_head);
3912 
3913 		/*
3914 		 * In the raid6 case if the only non-uptodate disk is P
3915 		 * then we already trusted P to compute the other failed
3916 		 * drives. It is safe to compute rather than re-read P.
3917 		 * In other cases we only compute blocks from failed
3918 		 * devices, otherwise check/repair might fail to detect
3919 		 * a real inconsistency.
3920 		 */
3921 
3922 		if ((s->uptodate == disks - 1) &&
3923 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3924 		    (s->failed && (disk_idx == s->failed_num[0] ||
3925 				   disk_idx == s->failed_num[1])))) {
3926 			/* have disk failed, and we're requested to fetch it;
3927 			 * do compute it
3928 			 */
3929 			pr_debug("Computing stripe %llu block %d\n",
3930 			       (unsigned long long)sh->sector, disk_idx);
3931 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3932 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3933 			set_bit(R5_Wantcompute, &dev->flags);
3934 			sh->ops.target = disk_idx;
3935 			sh->ops.target2 = -1; /* no 2nd target */
3936 			s->req_compute = 1;
3937 			/* Careful: from this point on 'uptodate' is in the eye
3938 			 * of raid_run_ops which services 'compute' operations
3939 			 * before writes. R5_Wantcompute flags a block that will
3940 			 * be R5_UPTODATE by the time it is needed for a
3941 			 * subsequent operation.
3942 			 */
3943 			s->uptodate++;
3944 			return 1;
3945 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3946 			/* Computing 2-failure is *very* expensive; only
3947 			 * do it if failed >= 2
3948 			 */
3949 			int other;
3950 			for (other = disks; other--; ) {
3951 				if (other == disk_idx)
3952 					continue;
3953 				if (!test_bit(R5_UPTODATE,
3954 				      &sh->dev[other].flags))
3955 					break;
3956 			}
3957 			BUG_ON(other < 0);
3958 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3959 			       (unsigned long long)sh->sector,
3960 			       disk_idx, other);
3961 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3962 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3963 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3964 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3965 			sh->ops.target = disk_idx;
3966 			sh->ops.target2 = other;
3967 			s->uptodate += 2;
3968 			s->req_compute = 1;
3969 			return 1;
3970 		} else if (test_bit(R5_Insync, &dev->flags)) {
3971 			set_bit(R5_LOCKED, &dev->flags);
3972 			set_bit(R5_Wantread, &dev->flags);
3973 			s->locked++;
3974 			pr_debug("Reading block %d (sync=%d)\n",
3975 				disk_idx, s->syncing);
3976 		}
3977 	}
3978 
3979 	return 0;
3980 }
3981 
3982 /*
3983  * handle_stripe_fill - read or compute data to satisfy pending requests.
3984  */
3985 static void handle_stripe_fill(struct stripe_head *sh,
3986 			       struct stripe_head_state *s,
3987 			       int disks)
3988 {
3989 	int i;
3990 
3991 	/* look for blocks to read/compute, skip this if a compute
3992 	 * is already in flight, or if the stripe contents are in the
3993 	 * midst of changing due to a write
3994 	 */
3995 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3996 	    !sh->reconstruct_state) {
3997 
3998 		/*
3999 		 * For degraded stripe with data in journal, do not handle
4000 		 * read requests yet, instead, flush the stripe to raid
4001 		 * disks first, this avoids handling complex rmw of write
4002 		 * back cache (prexor with orig_page, and then xor with
4003 		 * page) in the read path
4004 		 */
4005 		if (s->to_read && s->injournal && s->failed) {
4006 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4007 				r5c_make_stripe_write_out(sh);
4008 			goto out;
4009 		}
4010 
4011 		for (i = disks; i--; )
4012 			if (fetch_block(sh, s, i, disks))
4013 				break;
4014 	}
4015 out:
4016 	set_bit(STRIPE_HANDLE, &sh->state);
4017 }
4018 
4019 static void break_stripe_batch_list(struct stripe_head *head_sh,
4020 				    unsigned long handle_flags);
4021 /* handle_stripe_clean_event
4022  * any written block on an uptodate or failed drive can be returned.
4023  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4024  * never LOCKED, so we don't need to test 'failed' directly.
4025  */
4026 static void handle_stripe_clean_event(struct r5conf *conf,
4027 	struct stripe_head *sh, int disks)
4028 {
4029 	int i;
4030 	struct r5dev *dev;
4031 	int discard_pending = 0;
4032 	struct stripe_head *head_sh = sh;
4033 	bool do_endio = false;
4034 
4035 	for (i = disks; i--; )
4036 		if (sh->dev[i].written) {
4037 			dev = &sh->dev[i];
4038 			if (!test_bit(R5_LOCKED, &dev->flags) &&
4039 			    (test_bit(R5_UPTODATE, &dev->flags) ||
4040 			     test_bit(R5_Discard, &dev->flags) ||
4041 			     test_bit(R5_SkipCopy, &dev->flags))) {
4042 				/* We can return any write requests */
4043 				struct bio *wbi, *wbi2;
4044 				pr_debug("Return write for disc %d\n", i);
4045 				if (test_and_clear_bit(R5_Discard, &dev->flags))
4046 					clear_bit(R5_UPTODATE, &dev->flags);
4047 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4048 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4049 				}
4050 				do_endio = true;
4051 
4052 returnbi:
4053 				dev->page = dev->orig_page;
4054 				wbi = dev->written;
4055 				dev->written = NULL;
4056 				while (wbi && wbi->bi_iter.bi_sector <
4057 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4058 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4059 					md_write_end(conf->mddev);
4060 					bio_endio(wbi);
4061 					wbi = wbi2;
4062 				}
4063 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4064 						   RAID5_STRIPE_SECTORS(conf),
4065 						   !test_bit(STRIPE_DEGRADED, &sh->state),
4066 						   0);
4067 				if (head_sh->batch_head) {
4068 					sh = list_first_entry(&sh->batch_list,
4069 							      struct stripe_head,
4070 							      batch_list);
4071 					if (sh != head_sh) {
4072 						dev = &sh->dev[i];
4073 						goto returnbi;
4074 					}
4075 				}
4076 				sh = head_sh;
4077 				dev = &sh->dev[i];
4078 			} else if (test_bit(R5_Discard, &dev->flags))
4079 				discard_pending = 1;
4080 		}
4081 
4082 	log_stripe_write_finished(sh);
4083 
4084 	if (!discard_pending &&
4085 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4086 		int hash;
4087 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4088 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4089 		if (sh->qd_idx >= 0) {
4090 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4091 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4092 		}
4093 		/* now that discard is done we can proceed with any sync */
4094 		clear_bit(STRIPE_DISCARD, &sh->state);
4095 		/*
4096 		 * SCSI discard will change some bio fields and the stripe has
4097 		 * no updated data, so remove it from hash list and the stripe
4098 		 * will be reinitialized
4099 		 */
4100 unhash:
4101 		hash = sh->hash_lock_index;
4102 		spin_lock_irq(conf->hash_locks + hash);
4103 		remove_hash(sh);
4104 		spin_unlock_irq(conf->hash_locks + hash);
4105 		if (head_sh->batch_head) {
4106 			sh = list_first_entry(&sh->batch_list,
4107 					      struct stripe_head, batch_list);
4108 			if (sh != head_sh)
4109 					goto unhash;
4110 		}
4111 		sh = head_sh;
4112 
4113 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4114 			set_bit(STRIPE_HANDLE, &sh->state);
4115 
4116 	}
4117 
4118 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4119 		if (atomic_dec_and_test(&conf->pending_full_writes))
4120 			md_wakeup_thread(conf->mddev->thread);
4121 
4122 	if (head_sh->batch_head && do_endio)
4123 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4124 }
4125 
4126 /*
4127  * For RMW in write back cache, we need extra page in prexor to store the
4128  * old data. This page is stored in dev->orig_page.
4129  *
4130  * This function checks whether we have data for prexor. The exact logic
4131  * is:
4132  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4133  */
4134 static inline bool uptodate_for_rmw(struct r5dev *dev)
4135 {
4136 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4137 		(!test_bit(R5_InJournal, &dev->flags) ||
4138 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4139 }
4140 
4141 static int handle_stripe_dirtying(struct r5conf *conf,
4142 				  struct stripe_head *sh,
4143 				  struct stripe_head_state *s,
4144 				  int disks)
4145 {
4146 	int rmw = 0, rcw = 0, i;
4147 	sector_t recovery_cp = conf->mddev->recovery_cp;
4148 
4149 	/* Check whether resync is now happening or should start.
4150 	 * If yes, then the array is dirty (after unclean shutdown or
4151 	 * initial creation), so parity in some stripes might be inconsistent.
4152 	 * In this case, we need to always do reconstruct-write, to ensure
4153 	 * that in case of drive failure or read-error correction, we
4154 	 * generate correct data from the parity.
4155 	 */
4156 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4157 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4158 	     s->failed == 0)) {
4159 		/* Calculate the real rcw later - for now make it
4160 		 * look like rcw is cheaper
4161 		 */
4162 		rcw = 1; rmw = 2;
4163 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4164 			 conf->rmw_level, (unsigned long long)recovery_cp,
4165 			 (unsigned long long)sh->sector);
4166 	} else for (i = disks; i--; ) {
4167 		/* would I have to read this buffer for read_modify_write */
4168 		struct r5dev *dev = &sh->dev[i];
4169 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4170 		     i == sh->pd_idx || i == sh->qd_idx ||
4171 		     test_bit(R5_InJournal, &dev->flags)) &&
4172 		    !test_bit(R5_LOCKED, &dev->flags) &&
4173 		    !(uptodate_for_rmw(dev) ||
4174 		      test_bit(R5_Wantcompute, &dev->flags))) {
4175 			if (test_bit(R5_Insync, &dev->flags))
4176 				rmw++;
4177 			else
4178 				rmw += 2*disks;  /* cannot read it */
4179 		}
4180 		/* Would I have to read this buffer for reconstruct_write */
4181 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4182 		    i != sh->pd_idx && i != sh->qd_idx &&
4183 		    !test_bit(R5_LOCKED, &dev->flags) &&
4184 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4185 		      test_bit(R5_Wantcompute, &dev->flags))) {
4186 			if (test_bit(R5_Insync, &dev->flags))
4187 				rcw++;
4188 			else
4189 				rcw += 2*disks;
4190 		}
4191 	}
4192 
4193 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4194 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4195 	set_bit(STRIPE_HANDLE, &sh->state);
4196 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4197 		/* prefer read-modify-write, but need to get some data */
4198 		mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4199 				sh->sector, rmw);
4200 
4201 		for (i = disks; i--; ) {
4202 			struct r5dev *dev = &sh->dev[i];
4203 			if (test_bit(R5_InJournal, &dev->flags) &&
4204 			    dev->page == dev->orig_page &&
4205 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4206 				/* alloc page for prexor */
4207 				struct page *p = alloc_page(GFP_NOIO);
4208 
4209 				if (p) {
4210 					dev->orig_page = p;
4211 					continue;
4212 				}
4213 
4214 				/*
4215 				 * alloc_page() failed, try use
4216 				 * disk_info->extra_page
4217 				 */
4218 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4219 						      &conf->cache_state)) {
4220 					r5c_use_extra_page(sh);
4221 					break;
4222 				}
4223 
4224 				/* extra_page in use, add to delayed_list */
4225 				set_bit(STRIPE_DELAYED, &sh->state);
4226 				s->waiting_extra_page = 1;
4227 				return -EAGAIN;
4228 			}
4229 		}
4230 
4231 		for (i = disks; i--; ) {
4232 			struct r5dev *dev = &sh->dev[i];
4233 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4234 			     i == sh->pd_idx || i == sh->qd_idx ||
4235 			     test_bit(R5_InJournal, &dev->flags)) &&
4236 			    !test_bit(R5_LOCKED, &dev->flags) &&
4237 			    !(uptodate_for_rmw(dev) ||
4238 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4239 			    test_bit(R5_Insync, &dev->flags)) {
4240 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4241 					     &sh->state)) {
4242 					pr_debug("Read_old block %d for r-m-w\n",
4243 						 i);
4244 					set_bit(R5_LOCKED, &dev->flags);
4245 					set_bit(R5_Wantread, &dev->flags);
4246 					s->locked++;
4247 				} else
4248 					set_bit(STRIPE_DELAYED, &sh->state);
4249 			}
4250 		}
4251 	}
4252 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4253 		/* want reconstruct write, but need to get some data */
4254 		int qread =0;
4255 		rcw = 0;
4256 		for (i = disks; i--; ) {
4257 			struct r5dev *dev = &sh->dev[i];
4258 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4259 			    i != sh->pd_idx && i != sh->qd_idx &&
4260 			    !test_bit(R5_LOCKED, &dev->flags) &&
4261 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4262 			      test_bit(R5_Wantcompute, &dev->flags))) {
4263 				rcw++;
4264 				if (test_bit(R5_Insync, &dev->flags) &&
4265 				    test_bit(STRIPE_PREREAD_ACTIVE,
4266 					     &sh->state)) {
4267 					pr_debug("Read_old block "
4268 						"%d for Reconstruct\n", i);
4269 					set_bit(R5_LOCKED, &dev->flags);
4270 					set_bit(R5_Wantread, &dev->flags);
4271 					s->locked++;
4272 					qread++;
4273 				} else
4274 					set_bit(STRIPE_DELAYED, &sh->state);
4275 			}
4276 		}
4277 		if (rcw && !mddev_is_dm(conf->mddev))
4278 			blk_add_trace_msg(conf->mddev->gendisk->queue,
4279 				"raid5 rcw %llu %d %d %d",
4280 				(unsigned long long)sh->sector, rcw, qread,
4281 				test_bit(STRIPE_DELAYED, &sh->state));
4282 	}
4283 
4284 	if (rcw > disks && rmw > disks &&
4285 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4286 		set_bit(STRIPE_DELAYED, &sh->state);
4287 
4288 	/* now if nothing is locked, and if we have enough data,
4289 	 * we can start a write request
4290 	 */
4291 	/* since handle_stripe can be called at any time we need to handle the
4292 	 * case where a compute block operation has been submitted and then a
4293 	 * subsequent call wants to start a write request.  raid_run_ops only
4294 	 * handles the case where compute block and reconstruct are requested
4295 	 * simultaneously.  If this is not the case then new writes need to be
4296 	 * held off until the compute completes.
4297 	 */
4298 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4299 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4300 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4301 		schedule_reconstruction(sh, s, rcw == 0, 0);
4302 	return 0;
4303 }
4304 
4305 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4306 				struct stripe_head_state *s, int disks)
4307 {
4308 	struct r5dev *dev = NULL;
4309 
4310 	BUG_ON(sh->batch_head);
4311 	set_bit(STRIPE_HANDLE, &sh->state);
4312 
4313 	switch (sh->check_state) {
4314 	case check_state_idle:
4315 		/* start a new check operation if there are no failures */
4316 		if (s->failed == 0) {
4317 			BUG_ON(s->uptodate != disks);
4318 			sh->check_state = check_state_run;
4319 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4320 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4321 			s->uptodate--;
4322 			break;
4323 		}
4324 		dev = &sh->dev[s->failed_num[0]];
4325 		fallthrough;
4326 	case check_state_compute_result:
4327 		sh->check_state = check_state_idle;
4328 		if (!dev)
4329 			dev = &sh->dev[sh->pd_idx];
4330 
4331 		/* check that a write has not made the stripe insync */
4332 		if (test_bit(STRIPE_INSYNC, &sh->state))
4333 			break;
4334 
4335 		/* either failed parity check, or recovery is happening */
4336 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4337 		BUG_ON(s->uptodate != disks);
4338 
4339 		set_bit(R5_LOCKED, &dev->flags);
4340 		s->locked++;
4341 		set_bit(R5_Wantwrite, &dev->flags);
4342 
4343 		clear_bit(STRIPE_DEGRADED, &sh->state);
4344 		set_bit(STRIPE_INSYNC, &sh->state);
4345 		break;
4346 	case check_state_run:
4347 		break; /* we will be called again upon completion */
4348 	case check_state_check_result:
4349 		sh->check_state = check_state_idle;
4350 
4351 		/* if a failure occurred during the check operation, leave
4352 		 * STRIPE_INSYNC not set and let the stripe be handled again
4353 		 */
4354 		if (s->failed)
4355 			break;
4356 
4357 		/* handle a successful check operation, if parity is correct
4358 		 * we are done.  Otherwise update the mismatch count and repair
4359 		 * parity if !MD_RECOVERY_CHECK
4360 		 */
4361 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4362 			/* parity is correct (on disc,
4363 			 * not in buffer any more)
4364 			 */
4365 			set_bit(STRIPE_INSYNC, &sh->state);
4366 		else {
4367 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4368 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4369 				/* don't try to repair!! */
4370 				set_bit(STRIPE_INSYNC, &sh->state);
4371 				pr_warn_ratelimited("%s: mismatch sector in range "
4372 						    "%llu-%llu\n", mdname(conf->mddev),
4373 						    (unsigned long long) sh->sector,
4374 						    (unsigned long long) sh->sector +
4375 						    RAID5_STRIPE_SECTORS(conf));
4376 			} else {
4377 				sh->check_state = check_state_compute_run;
4378 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4379 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4380 				set_bit(R5_Wantcompute,
4381 					&sh->dev[sh->pd_idx].flags);
4382 				sh->ops.target = sh->pd_idx;
4383 				sh->ops.target2 = -1;
4384 				s->uptodate++;
4385 			}
4386 		}
4387 		break;
4388 	case check_state_compute_run:
4389 		break;
4390 	default:
4391 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4392 		       __func__, sh->check_state,
4393 		       (unsigned long long) sh->sector);
4394 		BUG();
4395 	}
4396 }
4397 
4398 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4399 				  struct stripe_head_state *s,
4400 				  int disks)
4401 {
4402 	int pd_idx = sh->pd_idx;
4403 	int qd_idx = sh->qd_idx;
4404 	struct r5dev *dev;
4405 
4406 	BUG_ON(sh->batch_head);
4407 	set_bit(STRIPE_HANDLE, &sh->state);
4408 
4409 	BUG_ON(s->failed > 2);
4410 
4411 	/* Want to check and possibly repair P and Q.
4412 	 * However there could be one 'failed' device, in which
4413 	 * case we can only check one of them, possibly using the
4414 	 * other to generate missing data
4415 	 */
4416 
4417 	switch (sh->check_state) {
4418 	case check_state_idle:
4419 		/* start a new check operation if there are < 2 failures */
4420 		if (s->failed == s->q_failed) {
4421 			/* The only possible failed device holds Q, so it
4422 			 * makes sense to check P (If anything else were failed,
4423 			 * we would have used P to recreate it).
4424 			 */
4425 			sh->check_state = check_state_run;
4426 		}
4427 		if (!s->q_failed && s->failed < 2) {
4428 			/* Q is not failed, and we didn't use it to generate
4429 			 * anything, so it makes sense to check it
4430 			 */
4431 			if (sh->check_state == check_state_run)
4432 				sh->check_state = check_state_run_pq;
4433 			else
4434 				sh->check_state = check_state_run_q;
4435 		}
4436 
4437 		/* discard potentially stale zero_sum_result */
4438 		sh->ops.zero_sum_result = 0;
4439 
4440 		if (sh->check_state == check_state_run) {
4441 			/* async_xor_zero_sum destroys the contents of P */
4442 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4443 			s->uptodate--;
4444 		}
4445 		if (sh->check_state >= check_state_run &&
4446 		    sh->check_state <= check_state_run_pq) {
4447 			/* async_syndrome_zero_sum preserves P and Q, so
4448 			 * no need to mark them !uptodate here
4449 			 */
4450 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4451 			break;
4452 		}
4453 
4454 		/* we have 2-disk failure */
4455 		BUG_ON(s->failed != 2);
4456 		fallthrough;
4457 	case check_state_compute_result:
4458 		sh->check_state = check_state_idle;
4459 
4460 		/* check that a write has not made the stripe insync */
4461 		if (test_bit(STRIPE_INSYNC, &sh->state))
4462 			break;
4463 
4464 		/* now write out any block on a failed drive,
4465 		 * or P or Q if they were recomputed
4466 		 */
4467 		dev = NULL;
4468 		if (s->failed == 2) {
4469 			dev = &sh->dev[s->failed_num[1]];
4470 			s->locked++;
4471 			set_bit(R5_LOCKED, &dev->flags);
4472 			set_bit(R5_Wantwrite, &dev->flags);
4473 		}
4474 		if (s->failed >= 1) {
4475 			dev = &sh->dev[s->failed_num[0]];
4476 			s->locked++;
4477 			set_bit(R5_LOCKED, &dev->flags);
4478 			set_bit(R5_Wantwrite, &dev->flags);
4479 		}
4480 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4481 			dev = &sh->dev[pd_idx];
4482 			s->locked++;
4483 			set_bit(R5_LOCKED, &dev->flags);
4484 			set_bit(R5_Wantwrite, &dev->flags);
4485 		}
4486 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4487 			dev = &sh->dev[qd_idx];
4488 			s->locked++;
4489 			set_bit(R5_LOCKED, &dev->flags);
4490 			set_bit(R5_Wantwrite, &dev->flags);
4491 		}
4492 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4493 			      "%s: disk%td not up to date\n",
4494 			      mdname(conf->mddev),
4495 			      dev - (struct r5dev *) &sh->dev)) {
4496 			clear_bit(R5_LOCKED, &dev->flags);
4497 			clear_bit(R5_Wantwrite, &dev->flags);
4498 			s->locked--;
4499 		}
4500 		clear_bit(STRIPE_DEGRADED, &sh->state);
4501 
4502 		set_bit(STRIPE_INSYNC, &sh->state);
4503 		break;
4504 	case check_state_run:
4505 	case check_state_run_q:
4506 	case check_state_run_pq:
4507 		break; /* we will be called again upon completion */
4508 	case check_state_check_result:
4509 		sh->check_state = check_state_idle;
4510 
4511 		/* handle a successful check operation, if parity is correct
4512 		 * we are done.  Otherwise update the mismatch count and repair
4513 		 * parity if !MD_RECOVERY_CHECK
4514 		 */
4515 		if (sh->ops.zero_sum_result == 0) {
4516 			/* both parities are correct */
4517 			if (!s->failed)
4518 				set_bit(STRIPE_INSYNC, &sh->state);
4519 			else {
4520 				/* in contrast to the raid5 case we can validate
4521 				 * parity, but still have a failure to write
4522 				 * back
4523 				 */
4524 				sh->check_state = check_state_compute_result;
4525 				/* Returning at this point means that we may go
4526 				 * off and bring p and/or q uptodate again so
4527 				 * we make sure to check zero_sum_result again
4528 				 * to verify if p or q need writeback
4529 				 */
4530 			}
4531 		} else {
4532 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4533 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4534 				/* don't try to repair!! */
4535 				set_bit(STRIPE_INSYNC, &sh->state);
4536 				pr_warn_ratelimited("%s: mismatch sector in range "
4537 						    "%llu-%llu\n", mdname(conf->mddev),
4538 						    (unsigned long long) sh->sector,
4539 						    (unsigned long long) sh->sector +
4540 						    RAID5_STRIPE_SECTORS(conf));
4541 			} else {
4542 				int *target = &sh->ops.target;
4543 
4544 				sh->ops.target = -1;
4545 				sh->ops.target2 = -1;
4546 				sh->check_state = check_state_compute_run;
4547 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4548 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4549 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4550 					set_bit(R5_Wantcompute,
4551 						&sh->dev[pd_idx].flags);
4552 					*target = pd_idx;
4553 					target = &sh->ops.target2;
4554 					s->uptodate++;
4555 				}
4556 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4557 					set_bit(R5_Wantcompute,
4558 						&sh->dev[qd_idx].flags);
4559 					*target = qd_idx;
4560 					s->uptodate++;
4561 				}
4562 			}
4563 		}
4564 		break;
4565 	case check_state_compute_run:
4566 		break;
4567 	default:
4568 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4569 			__func__, sh->check_state,
4570 			(unsigned long long) sh->sector);
4571 		BUG();
4572 	}
4573 }
4574 
4575 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4576 {
4577 	int i;
4578 
4579 	/* We have read all the blocks in this stripe and now we need to
4580 	 * copy some of them into a target stripe for expand.
4581 	 */
4582 	struct dma_async_tx_descriptor *tx = NULL;
4583 	BUG_ON(sh->batch_head);
4584 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4585 	for (i = 0; i < sh->disks; i++)
4586 		if (i != sh->pd_idx && i != sh->qd_idx) {
4587 			int dd_idx, j;
4588 			struct stripe_head *sh2;
4589 			struct async_submit_ctl submit;
4590 
4591 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4592 			sector_t s = raid5_compute_sector(conf, bn, 0,
4593 							  &dd_idx, NULL);
4594 			sh2 = raid5_get_active_stripe(conf, NULL, s,
4595 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4596 			if (sh2 == NULL)
4597 				/* so far only the early blocks of this stripe
4598 				 * have been requested.  When later blocks
4599 				 * get requested, we will try again
4600 				 */
4601 				continue;
4602 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4603 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4604 				/* must have already done this block */
4605 				raid5_release_stripe(sh2);
4606 				continue;
4607 			}
4608 
4609 			/* place all the copies on one channel */
4610 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4611 			tx = async_memcpy(sh2->dev[dd_idx].page,
4612 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4613 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4614 					  &submit);
4615 
4616 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4617 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4618 			for (j = 0; j < conf->raid_disks; j++)
4619 				if (j != sh2->pd_idx &&
4620 				    j != sh2->qd_idx &&
4621 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4622 					break;
4623 			if (j == conf->raid_disks) {
4624 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4625 				set_bit(STRIPE_HANDLE, &sh2->state);
4626 			}
4627 			raid5_release_stripe(sh2);
4628 
4629 		}
4630 	/* done submitting copies, wait for them to complete */
4631 	async_tx_quiesce(&tx);
4632 }
4633 
4634 /*
4635  * handle_stripe - do things to a stripe.
4636  *
4637  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4638  * state of various bits to see what needs to be done.
4639  * Possible results:
4640  *    return some read requests which now have data
4641  *    return some write requests which are safely on storage
4642  *    schedule a read on some buffers
4643  *    schedule a write of some buffers
4644  *    return confirmation of parity correctness
4645  *
4646  */
4647 
4648 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4649 {
4650 	struct r5conf *conf = sh->raid_conf;
4651 	int disks = sh->disks;
4652 	struct r5dev *dev;
4653 	int i;
4654 	int do_recovery = 0;
4655 
4656 	memset(s, 0, sizeof(*s));
4657 
4658 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4659 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4660 	s->failed_num[0] = -1;
4661 	s->failed_num[1] = -1;
4662 	s->log_failed = r5l_log_disk_error(conf);
4663 
4664 	/* Now to look around and see what can be done */
4665 	for (i=disks; i--; ) {
4666 		struct md_rdev *rdev;
4667 		int is_bad = 0;
4668 
4669 		dev = &sh->dev[i];
4670 
4671 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4672 			 i, dev->flags,
4673 			 dev->toread, dev->towrite, dev->written);
4674 		/* maybe we can reply to a read
4675 		 *
4676 		 * new wantfill requests are only permitted while
4677 		 * ops_complete_biofill is guaranteed to be inactive
4678 		 */
4679 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4680 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4681 			set_bit(R5_Wantfill, &dev->flags);
4682 
4683 		/* now count some things */
4684 		if (test_bit(R5_LOCKED, &dev->flags))
4685 			s->locked++;
4686 		if (test_bit(R5_UPTODATE, &dev->flags))
4687 			s->uptodate++;
4688 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4689 			s->compute++;
4690 			BUG_ON(s->compute > 2);
4691 		}
4692 
4693 		if (test_bit(R5_Wantfill, &dev->flags))
4694 			s->to_fill++;
4695 		else if (dev->toread)
4696 			s->to_read++;
4697 		if (dev->towrite) {
4698 			s->to_write++;
4699 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4700 				s->non_overwrite++;
4701 		}
4702 		if (dev->written)
4703 			s->written++;
4704 		/* Prefer to use the replacement for reads, but only
4705 		 * if it is recovered enough and has no bad blocks.
4706 		 */
4707 		rdev = conf->disks[i].replacement;
4708 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4709 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4710 		    !rdev_has_badblock(rdev, sh->sector,
4711 				       RAID5_STRIPE_SECTORS(conf)))
4712 			set_bit(R5_ReadRepl, &dev->flags);
4713 		else {
4714 			if (rdev && !test_bit(Faulty, &rdev->flags))
4715 				set_bit(R5_NeedReplace, &dev->flags);
4716 			else
4717 				clear_bit(R5_NeedReplace, &dev->flags);
4718 			rdev = conf->disks[i].rdev;
4719 			clear_bit(R5_ReadRepl, &dev->flags);
4720 		}
4721 		if (rdev && test_bit(Faulty, &rdev->flags))
4722 			rdev = NULL;
4723 		if (rdev) {
4724 			is_bad = rdev_has_badblock(rdev, sh->sector,
4725 						   RAID5_STRIPE_SECTORS(conf));
4726 			if (s->blocked_rdev == NULL
4727 			    && (test_bit(Blocked, &rdev->flags)
4728 				|| is_bad < 0)) {
4729 				if (is_bad < 0)
4730 					set_bit(BlockedBadBlocks,
4731 						&rdev->flags);
4732 				s->blocked_rdev = rdev;
4733 				atomic_inc(&rdev->nr_pending);
4734 			}
4735 		}
4736 		clear_bit(R5_Insync, &dev->flags);
4737 		if (!rdev)
4738 			/* Not in-sync */;
4739 		else if (is_bad) {
4740 			/* also not in-sync */
4741 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4742 			    test_bit(R5_UPTODATE, &dev->flags)) {
4743 				/* treat as in-sync, but with a read error
4744 				 * which we can now try to correct
4745 				 */
4746 				set_bit(R5_Insync, &dev->flags);
4747 				set_bit(R5_ReadError, &dev->flags);
4748 			}
4749 		} else if (test_bit(In_sync, &rdev->flags))
4750 			set_bit(R5_Insync, &dev->flags);
4751 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4752 			/* in sync if before recovery_offset */
4753 			set_bit(R5_Insync, &dev->flags);
4754 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4755 			 test_bit(R5_Expanded, &dev->flags))
4756 			/* If we've reshaped into here, we assume it is Insync.
4757 			 * We will shortly update recovery_offset to make
4758 			 * it official.
4759 			 */
4760 			set_bit(R5_Insync, &dev->flags);
4761 
4762 		if (test_bit(R5_WriteError, &dev->flags)) {
4763 			/* This flag does not apply to '.replacement'
4764 			 * only to .rdev, so make sure to check that*/
4765 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4766 
4767 			if (rdev2 == rdev)
4768 				clear_bit(R5_Insync, &dev->flags);
4769 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4770 				s->handle_bad_blocks = 1;
4771 				atomic_inc(&rdev2->nr_pending);
4772 			} else
4773 				clear_bit(R5_WriteError, &dev->flags);
4774 		}
4775 		if (test_bit(R5_MadeGood, &dev->flags)) {
4776 			/* This flag does not apply to '.replacement'
4777 			 * only to .rdev, so make sure to check that*/
4778 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4779 
4780 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4781 				s->handle_bad_blocks = 1;
4782 				atomic_inc(&rdev2->nr_pending);
4783 			} else
4784 				clear_bit(R5_MadeGood, &dev->flags);
4785 		}
4786 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4787 			struct md_rdev *rdev2 = conf->disks[i].replacement;
4788 
4789 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4790 				s->handle_bad_blocks = 1;
4791 				atomic_inc(&rdev2->nr_pending);
4792 			} else
4793 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4794 		}
4795 		if (!test_bit(R5_Insync, &dev->flags)) {
4796 			/* The ReadError flag will just be confusing now */
4797 			clear_bit(R5_ReadError, &dev->flags);
4798 			clear_bit(R5_ReWrite, &dev->flags);
4799 		}
4800 		if (test_bit(R5_ReadError, &dev->flags))
4801 			clear_bit(R5_Insync, &dev->flags);
4802 		if (!test_bit(R5_Insync, &dev->flags)) {
4803 			if (s->failed < 2)
4804 				s->failed_num[s->failed] = i;
4805 			s->failed++;
4806 			if (rdev && !test_bit(Faulty, &rdev->flags))
4807 				do_recovery = 1;
4808 			else if (!rdev) {
4809 				rdev = conf->disks[i].replacement;
4810 				if (rdev && !test_bit(Faulty, &rdev->flags))
4811 					do_recovery = 1;
4812 			}
4813 		}
4814 
4815 		if (test_bit(R5_InJournal, &dev->flags))
4816 			s->injournal++;
4817 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4818 			s->just_cached++;
4819 	}
4820 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4821 		/* If there is a failed device being replaced,
4822 		 *     we must be recovering.
4823 		 * else if we are after recovery_cp, we must be syncing
4824 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4825 		 * else we can only be replacing
4826 		 * sync and recovery both need to read all devices, and so
4827 		 * use the same flag.
4828 		 */
4829 		if (do_recovery ||
4830 		    sh->sector >= conf->mddev->recovery_cp ||
4831 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4832 			s->syncing = 1;
4833 		else
4834 			s->replacing = 1;
4835 	}
4836 }
4837 
4838 /*
4839  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4840  * a head which can now be handled.
4841  */
4842 static int clear_batch_ready(struct stripe_head *sh)
4843 {
4844 	struct stripe_head *tmp;
4845 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4846 		return (sh->batch_head && sh->batch_head != sh);
4847 	spin_lock(&sh->stripe_lock);
4848 	if (!sh->batch_head) {
4849 		spin_unlock(&sh->stripe_lock);
4850 		return 0;
4851 	}
4852 
4853 	/*
4854 	 * this stripe could be added to a batch list before we check
4855 	 * BATCH_READY, skips it
4856 	 */
4857 	if (sh->batch_head != sh) {
4858 		spin_unlock(&sh->stripe_lock);
4859 		return 1;
4860 	}
4861 	spin_lock(&sh->batch_lock);
4862 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4863 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4864 	spin_unlock(&sh->batch_lock);
4865 	spin_unlock(&sh->stripe_lock);
4866 
4867 	/*
4868 	 * BATCH_READY is cleared, no new stripes can be added.
4869 	 * batch_list can be accessed without lock
4870 	 */
4871 	return 0;
4872 }
4873 
4874 static void break_stripe_batch_list(struct stripe_head *head_sh,
4875 				    unsigned long handle_flags)
4876 {
4877 	struct stripe_head *sh, *next;
4878 	int i;
4879 	int do_wakeup = 0;
4880 
4881 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4882 
4883 		list_del_init(&sh->batch_list);
4884 
4885 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4886 					  (1 << STRIPE_SYNCING) |
4887 					  (1 << STRIPE_REPLACED) |
4888 					  (1 << STRIPE_DELAYED) |
4889 					  (1 << STRIPE_BIT_DELAY) |
4890 					  (1 << STRIPE_FULL_WRITE) |
4891 					  (1 << STRIPE_BIOFILL_RUN) |
4892 					  (1 << STRIPE_COMPUTE_RUN)  |
4893 					  (1 << STRIPE_DISCARD) |
4894 					  (1 << STRIPE_BATCH_READY) |
4895 					  (1 << STRIPE_BATCH_ERR) |
4896 					  (1 << STRIPE_BITMAP_PENDING)),
4897 			"stripe state: %lx\n", sh->state);
4898 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4899 					      (1 << STRIPE_REPLACED)),
4900 			"head stripe state: %lx\n", head_sh->state);
4901 
4902 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4903 					    (1 << STRIPE_PREREAD_ACTIVE) |
4904 					    (1 << STRIPE_DEGRADED) |
4905 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4906 			      head_sh->state & (1 << STRIPE_INSYNC));
4907 
4908 		sh->check_state = head_sh->check_state;
4909 		sh->reconstruct_state = head_sh->reconstruct_state;
4910 		spin_lock_irq(&sh->stripe_lock);
4911 		sh->batch_head = NULL;
4912 		spin_unlock_irq(&sh->stripe_lock);
4913 		for (i = 0; i < sh->disks; i++) {
4914 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4915 				do_wakeup = 1;
4916 			sh->dev[i].flags = head_sh->dev[i].flags &
4917 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4918 		}
4919 		if (handle_flags == 0 ||
4920 		    sh->state & handle_flags)
4921 			set_bit(STRIPE_HANDLE, &sh->state);
4922 		raid5_release_stripe(sh);
4923 	}
4924 	spin_lock_irq(&head_sh->stripe_lock);
4925 	head_sh->batch_head = NULL;
4926 	spin_unlock_irq(&head_sh->stripe_lock);
4927 	for (i = 0; i < head_sh->disks; i++)
4928 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4929 			do_wakeup = 1;
4930 	if (head_sh->state & handle_flags)
4931 		set_bit(STRIPE_HANDLE, &head_sh->state);
4932 
4933 	if (do_wakeup)
4934 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4935 }
4936 
4937 static void handle_stripe(struct stripe_head *sh)
4938 {
4939 	struct stripe_head_state s;
4940 	struct r5conf *conf = sh->raid_conf;
4941 	int i;
4942 	int prexor;
4943 	int disks = sh->disks;
4944 	struct r5dev *pdev, *qdev;
4945 
4946 	clear_bit(STRIPE_HANDLE, &sh->state);
4947 
4948 	/*
4949 	 * handle_stripe should not continue handle the batched stripe, only
4950 	 * the head of batch list or lone stripe can continue. Otherwise we
4951 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4952 	 * is set for the batched stripe.
4953 	 */
4954 	if (clear_batch_ready(sh))
4955 		return;
4956 
4957 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4958 		/* already being handled, ensure it gets handled
4959 		 * again when current action finishes */
4960 		set_bit(STRIPE_HANDLE, &sh->state);
4961 		return;
4962 	}
4963 
4964 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4965 		break_stripe_batch_list(sh, 0);
4966 
4967 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4968 		spin_lock(&sh->stripe_lock);
4969 		/*
4970 		 * Cannot process 'sync' concurrently with 'discard'.
4971 		 * Flush data in r5cache before 'sync'.
4972 		 */
4973 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4974 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4975 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4976 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4977 			set_bit(STRIPE_SYNCING, &sh->state);
4978 			clear_bit(STRIPE_INSYNC, &sh->state);
4979 			clear_bit(STRIPE_REPLACED, &sh->state);
4980 		}
4981 		spin_unlock(&sh->stripe_lock);
4982 	}
4983 	clear_bit(STRIPE_DELAYED, &sh->state);
4984 
4985 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4986 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4987 	       (unsigned long long)sh->sector, sh->state,
4988 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4989 	       sh->check_state, sh->reconstruct_state);
4990 
4991 	analyse_stripe(sh, &s);
4992 
4993 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4994 		goto finish;
4995 
4996 	if (s.handle_bad_blocks ||
4997 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4998 		set_bit(STRIPE_HANDLE, &sh->state);
4999 		goto finish;
5000 	}
5001 
5002 	if (unlikely(s.blocked_rdev)) {
5003 		if (s.syncing || s.expanding || s.expanded ||
5004 		    s.replacing || s.to_write || s.written) {
5005 			set_bit(STRIPE_HANDLE, &sh->state);
5006 			goto finish;
5007 		}
5008 		/* There is nothing for the blocked_rdev to block */
5009 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
5010 		s.blocked_rdev = NULL;
5011 	}
5012 
5013 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5014 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5015 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5016 	}
5017 
5018 	pr_debug("locked=%d uptodate=%d to_read=%d"
5019 	       " to_write=%d failed=%d failed_num=%d,%d\n",
5020 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5021 	       s.failed_num[0], s.failed_num[1]);
5022 	/*
5023 	 * check if the array has lost more than max_degraded devices and,
5024 	 * if so, some requests might need to be failed.
5025 	 *
5026 	 * When journal device failed (log_failed), we will only process
5027 	 * the stripe if there is data need write to raid disks
5028 	 */
5029 	if (s.failed > conf->max_degraded ||
5030 	    (s.log_failed && s.injournal == 0)) {
5031 		sh->check_state = 0;
5032 		sh->reconstruct_state = 0;
5033 		break_stripe_batch_list(sh, 0);
5034 		if (s.to_read+s.to_write+s.written)
5035 			handle_failed_stripe(conf, sh, &s, disks);
5036 		if (s.syncing + s.replacing)
5037 			handle_failed_sync(conf, sh, &s);
5038 	}
5039 
5040 	/* Now we check to see if any write operations have recently
5041 	 * completed
5042 	 */
5043 	prexor = 0;
5044 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5045 		prexor = 1;
5046 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
5047 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5048 		sh->reconstruct_state = reconstruct_state_idle;
5049 
5050 		/* All the 'written' buffers and the parity block are ready to
5051 		 * be written back to disk
5052 		 */
5053 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5054 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5055 		BUG_ON(sh->qd_idx >= 0 &&
5056 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5057 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5058 		for (i = disks; i--; ) {
5059 			struct r5dev *dev = &sh->dev[i];
5060 			if (test_bit(R5_LOCKED, &dev->flags) &&
5061 				(i == sh->pd_idx || i == sh->qd_idx ||
5062 				 dev->written || test_bit(R5_InJournal,
5063 							  &dev->flags))) {
5064 				pr_debug("Writing block %d\n", i);
5065 				set_bit(R5_Wantwrite, &dev->flags);
5066 				if (prexor)
5067 					continue;
5068 				if (s.failed > 1)
5069 					continue;
5070 				if (!test_bit(R5_Insync, &dev->flags) ||
5071 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5072 				     s.failed == 0))
5073 					set_bit(STRIPE_INSYNC, &sh->state);
5074 			}
5075 		}
5076 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5077 			s.dec_preread_active = 1;
5078 	}
5079 
5080 	/*
5081 	 * might be able to return some write requests if the parity blocks
5082 	 * are safe, or on a failed drive
5083 	 */
5084 	pdev = &sh->dev[sh->pd_idx];
5085 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5086 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5087 	qdev = &sh->dev[sh->qd_idx];
5088 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5089 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5090 		|| conf->level < 6;
5091 
5092 	if (s.written &&
5093 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5094 			     && !test_bit(R5_LOCKED, &pdev->flags)
5095 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5096 				 test_bit(R5_Discard, &pdev->flags))))) &&
5097 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5098 			     && !test_bit(R5_LOCKED, &qdev->flags)
5099 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5100 				 test_bit(R5_Discard, &qdev->flags))))))
5101 		handle_stripe_clean_event(conf, sh, disks);
5102 
5103 	if (s.just_cached)
5104 		r5c_handle_cached_data_endio(conf, sh, disks);
5105 	log_stripe_write_finished(sh);
5106 
5107 	/* Now we might consider reading some blocks, either to check/generate
5108 	 * parity, or to satisfy requests
5109 	 * or to load a block that is being partially written.
5110 	 */
5111 	if (s.to_read || s.non_overwrite
5112 	    || (s.to_write && s.failed)
5113 	    || (s.syncing && (s.uptodate + s.compute < disks))
5114 	    || s.replacing
5115 	    || s.expanding)
5116 		handle_stripe_fill(sh, &s, disks);
5117 
5118 	/*
5119 	 * When the stripe finishes full journal write cycle (write to journal
5120 	 * and raid disk), this is the clean up procedure so it is ready for
5121 	 * next operation.
5122 	 */
5123 	r5c_finish_stripe_write_out(conf, sh, &s);
5124 
5125 	/*
5126 	 * Now to consider new write requests, cache write back and what else,
5127 	 * if anything should be read.  We do not handle new writes when:
5128 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5129 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5130 	 *    block.
5131 	 * 3/ A r5c cache log write is in flight.
5132 	 */
5133 
5134 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5135 		if (!r5c_is_writeback(conf->log)) {
5136 			if (s.to_write)
5137 				handle_stripe_dirtying(conf, sh, &s, disks);
5138 		} else { /* write back cache */
5139 			int ret = 0;
5140 
5141 			/* First, try handle writes in caching phase */
5142 			if (s.to_write)
5143 				ret = r5c_try_caching_write(conf, sh, &s,
5144 							    disks);
5145 			/*
5146 			 * If caching phase failed: ret == -EAGAIN
5147 			 *    OR
5148 			 * stripe under reclaim: !caching && injournal
5149 			 *
5150 			 * fall back to handle_stripe_dirtying()
5151 			 */
5152 			if (ret == -EAGAIN ||
5153 			    /* stripe under reclaim: !caching && injournal */
5154 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5155 			     s.injournal > 0)) {
5156 				ret = handle_stripe_dirtying(conf, sh, &s,
5157 							     disks);
5158 				if (ret == -EAGAIN)
5159 					goto finish;
5160 			}
5161 		}
5162 	}
5163 
5164 	/* maybe we need to check and possibly fix the parity for this stripe
5165 	 * Any reads will already have been scheduled, so we just see if enough
5166 	 * data is available.  The parity check is held off while parity
5167 	 * dependent operations are in flight.
5168 	 */
5169 	if (sh->check_state ||
5170 	    (s.syncing && s.locked == 0 &&
5171 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5172 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5173 		if (conf->level == 6)
5174 			handle_parity_checks6(conf, sh, &s, disks);
5175 		else
5176 			handle_parity_checks5(conf, sh, &s, disks);
5177 	}
5178 
5179 	if ((s.replacing || s.syncing) && s.locked == 0
5180 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5181 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5182 		/* Write out to replacement devices where possible */
5183 		for (i = 0; i < conf->raid_disks; i++)
5184 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5185 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5186 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5187 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5188 				s.locked++;
5189 			}
5190 		if (s.replacing)
5191 			set_bit(STRIPE_INSYNC, &sh->state);
5192 		set_bit(STRIPE_REPLACED, &sh->state);
5193 	}
5194 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5195 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5196 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5197 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5198 		clear_bit(STRIPE_SYNCING, &sh->state);
5199 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5200 			wake_up(&conf->wait_for_overlap);
5201 	}
5202 
5203 	/* If the failed drives are just a ReadError, then we might need
5204 	 * to progress the repair/check process
5205 	 */
5206 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5207 		for (i = 0; i < s.failed; i++) {
5208 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5209 			if (test_bit(R5_ReadError, &dev->flags)
5210 			    && !test_bit(R5_LOCKED, &dev->flags)
5211 			    && test_bit(R5_UPTODATE, &dev->flags)
5212 				) {
5213 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5214 					set_bit(R5_Wantwrite, &dev->flags);
5215 					set_bit(R5_ReWrite, &dev->flags);
5216 				} else
5217 					/* let's read it back */
5218 					set_bit(R5_Wantread, &dev->flags);
5219 				set_bit(R5_LOCKED, &dev->flags);
5220 				s.locked++;
5221 			}
5222 		}
5223 
5224 	/* Finish reconstruct operations initiated by the expansion process */
5225 	if (sh->reconstruct_state == reconstruct_state_result) {
5226 		struct stripe_head *sh_src
5227 			= raid5_get_active_stripe(conf, NULL, sh->sector,
5228 					R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5229 					R5_GAS_NOQUIESCE);
5230 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5231 			/* sh cannot be written until sh_src has been read.
5232 			 * so arrange for sh to be delayed a little
5233 			 */
5234 			set_bit(STRIPE_DELAYED, &sh->state);
5235 			set_bit(STRIPE_HANDLE, &sh->state);
5236 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5237 					      &sh_src->state))
5238 				atomic_inc(&conf->preread_active_stripes);
5239 			raid5_release_stripe(sh_src);
5240 			goto finish;
5241 		}
5242 		if (sh_src)
5243 			raid5_release_stripe(sh_src);
5244 
5245 		sh->reconstruct_state = reconstruct_state_idle;
5246 		clear_bit(STRIPE_EXPANDING, &sh->state);
5247 		for (i = conf->raid_disks; i--; ) {
5248 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5249 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5250 			s.locked++;
5251 		}
5252 	}
5253 
5254 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5255 	    !sh->reconstruct_state) {
5256 		/* Need to write out all blocks after computing parity */
5257 		sh->disks = conf->raid_disks;
5258 		stripe_set_idx(sh->sector, conf, 0, sh);
5259 		schedule_reconstruction(sh, &s, 1, 1);
5260 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5261 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5262 		atomic_dec(&conf->reshape_stripes);
5263 		wake_up(&conf->wait_for_overlap);
5264 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5265 	}
5266 
5267 	if (s.expanding && s.locked == 0 &&
5268 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5269 		handle_stripe_expansion(conf, sh);
5270 
5271 finish:
5272 	/* wait for this device to become unblocked */
5273 	if (unlikely(s.blocked_rdev)) {
5274 		if (conf->mddev->external)
5275 			md_wait_for_blocked_rdev(s.blocked_rdev,
5276 						 conf->mddev);
5277 		else
5278 			/* Internal metadata will immediately
5279 			 * be written by raid5d, so we don't
5280 			 * need to wait here.
5281 			 */
5282 			rdev_dec_pending(s.blocked_rdev,
5283 					 conf->mddev);
5284 	}
5285 
5286 	if (s.handle_bad_blocks)
5287 		for (i = disks; i--; ) {
5288 			struct md_rdev *rdev;
5289 			struct r5dev *dev = &sh->dev[i];
5290 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5291 				/* We own a safe reference to the rdev */
5292 				rdev = conf->disks[i].rdev;
5293 				if (!rdev_set_badblocks(rdev, sh->sector,
5294 							RAID5_STRIPE_SECTORS(conf), 0))
5295 					md_error(conf->mddev, rdev);
5296 				rdev_dec_pending(rdev, conf->mddev);
5297 			}
5298 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5299 				rdev = conf->disks[i].rdev;
5300 				rdev_clear_badblocks(rdev, sh->sector,
5301 						     RAID5_STRIPE_SECTORS(conf), 0);
5302 				rdev_dec_pending(rdev, conf->mddev);
5303 			}
5304 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5305 				rdev = conf->disks[i].replacement;
5306 				if (!rdev)
5307 					/* rdev have been moved down */
5308 					rdev = conf->disks[i].rdev;
5309 				rdev_clear_badblocks(rdev, sh->sector,
5310 						     RAID5_STRIPE_SECTORS(conf), 0);
5311 				rdev_dec_pending(rdev, conf->mddev);
5312 			}
5313 		}
5314 
5315 	if (s.ops_request)
5316 		raid_run_ops(sh, s.ops_request);
5317 
5318 	ops_run_io(sh, &s);
5319 
5320 	if (s.dec_preread_active) {
5321 		/* We delay this until after ops_run_io so that if make_request
5322 		 * is waiting on a flush, it won't continue until the writes
5323 		 * have actually been submitted.
5324 		 */
5325 		atomic_dec(&conf->preread_active_stripes);
5326 		if (atomic_read(&conf->preread_active_stripes) <
5327 		    IO_THRESHOLD)
5328 			md_wakeup_thread(conf->mddev->thread);
5329 	}
5330 
5331 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5332 }
5333 
5334 static void raid5_activate_delayed(struct r5conf *conf)
5335 	__must_hold(&conf->device_lock)
5336 {
5337 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5338 		while (!list_empty(&conf->delayed_list)) {
5339 			struct list_head *l = conf->delayed_list.next;
5340 			struct stripe_head *sh;
5341 			sh = list_entry(l, struct stripe_head, lru);
5342 			list_del_init(l);
5343 			clear_bit(STRIPE_DELAYED, &sh->state);
5344 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5345 				atomic_inc(&conf->preread_active_stripes);
5346 			list_add_tail(&sh->lru, &conf->hold_list);
5347 			raid5_wakeup_stripe_thread(sh);
5348 		}
5349 	}
5350 }
5351 
5352 static void activate_bit_delay(struct r5conf *conf,
5353 		struct list_head *temp_inactive_list)
5354 	__must_hold(&conf->device_lock)
5355 {
5356 	struct list_head head;
5357 	list_add(&head, &conf->bitmap_list);
5358 	list_del_init(&conf->bitmap_list);
5359 	while (!list_empty(&head)) {
5360 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5361 		int hash;
5362 		list_del_init(&sh->lru);
5363 		atomic_inc(&sh->count);
5364 		hash = sh->hash_lock_index;
5365 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5366 	}
5367 }
5368 
5369 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5370 {
5371 	struct r5conf *conf = mddev->private;
5372 	sector_t sector = bio->bi_iter.bi_sector;
5373 	unsigned int chunk_sectors;
5374 	unsigned int bio_sectors = bio_sectors(bio);
5375 
5376 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5377 	return  chunk_sectors >=
5378 		((sector & (chunk_sectors - 1)) + bio_sectors);
5379 }
5380 
5381 /*
5382  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5383  *  later sampled by raid5d.
5384  */
5385 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5386 {
5387 	unsigned long flags;
5388 
5389 	spin_lock_irqsave(&conf->device_lock, flags);
5390 
5391 	bi->bi_next = conf->retry_read_aligned_list;
5392 	conf->retry_read_aligned_list = bi;
5393 
5394 	spin_unlock_irqrestore(&conf->device_lock, flags);
5395 	md_wakeup_thread(conf->mddev->thread);
5396 }
5397 
5398 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5399 					 unsigned int *offset)
5400 {
5401 	struct bio *bi;
5402 
5403 	bi = conf->retry_read_aligned;
5404 	if (bi) {
5405 		*offset = conf->retry_read_offset;
5406 		conf->retry_read_aligned = NULL;
5407 		return bi;
5408 	}
5409 	bi = conf->retry_read_aligned_list;
5410 	if(bi) {
5411 		conf->retry_read_aligned_list = bi->bi_next;
5412 		bi->bi_next = NULL;
5413 		*offset = 0;
5414 	}
5415 
5416 	return bi;
5417 }
5418 
5419 /*
5420  *  The "raid5_align_endio" should check if the read succeeded and if it
5421  *  did, call bio_endio on the original bio (having bio_put the new bio
5422  *  first).
5423  *  If the read failed..
5424  */
5425 static void raid5_align_endio(struct bio *bi)
5426 {
5427 	struct bio *raid_bi = bi->bi_private;
5428 	struct md_rdev *rdev = (void *)raid_bi->bi_next;
5429 	struct mddev *mddev = rdev->mddev;
5430 	struct r5conf *conf = mddev->private;
5431 	blk_status_t error = bi->bi_status;
5432 
5433 	bio_put(bi);
5434 	raid_bi->bi_next = NULL;
5435 	rdev_dec_pending(rdev, conf->mddev);
5436 
5437 	if (!error) {
5438 		bio_endio(raid_bi);
5439 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5440 			wake_up(&conf->wait_for_quiescent);
5441 		return;
5442 	}
5443 
5444 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5445 
5446 	add_bio_to_retry(raid_bi, conf);
5447 }
5448 
5449 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5450 {
5451 	struct r5conf *conf = mddev->private;
5452 	struct bio *align_bio;
5453 	struct md_rdev *rdev;
5454 	sector_t sector, end_sector;
5455 	int dd_idx;
5456 	bool did_inc;
5457 
5458 	if (!in_chunk_boundary(mddev, raid_bio)) {
5459 		pr_debug("%s: non aligned\n", __func__);
5460 		return 0;
5461 	}
5462 
5463 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5464 				      &dd_idx, NULL);
5465 	end_sector = sector + bio_sectors(raid_bio);
5466 
5467 	if (r5c_big_stripe_cached(conf, sector))
5468 		return 0;
5469 
5470 	rdev = conf->disks[dd_idx].replacement;
5471 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5472 	    rdev->recovery_offset < end_sector) {
5473 		rdev = conf->disks[dd_idx].rdev;
5474 		if (!rdev)
5475 			return 0;
5476 		if (test_bit(Faulty, &rdev->flags) ||
5477 		    !(test_bit(In_sync, &rdev->flags) ||
5478 		      rdev->recovery_offset >= end_sector))
5479 			return 0;
5480 	}
5481 
5482 	atomic_inc(&rdev->nr_pending);
5483 
5484 	if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5485 		rdev_dec_pending(rdev, mddev);
5486 		return 0;
5487 	}
5488 
5489 	md_account_bio(mddev, &raid_bio);
5490 	raid_bio->bi_next = (void *)rdev;
5491 
5492 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5493 				    &mddev->bio_set);
5494 	align_bio->bi_end_io = raid5_align_endio;
5495 	align_bio->bi_private = raid_bio;
5496 	align_bio->bi_iter.bi_sector = sector;
5497 
5498 	/* No reshape active, so we can trust rdev->data_offset */
5499 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5500 
5501 	did_inc = false;
5502 	if (conf->quiesce == 0) {
5503 		atomic_inc(&conf->active_aligned_reads);
5504 		did_inc = true;
5505 	}
5506 	/* need a memory barrier to detect the race with raid5_quiesce() */
5507 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5508 		/* quiesce is in progress, so we need to undo io activation and wait
5509 		 * for it to finish
5510 		 */
5511 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5512 			wake_up(&conf->wait_for_quiescent);
5513 		spin_lock_irq(&conf->device_lock);
5514 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5515 				    conf->device_lock);
5516 		atomic_inc(&conf->active_aligned_reads);
5517 		spin_unlock_irq(&conf->device_lock);
5518 	}
5519 
5520 	mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5521 	submit_bio_noacct(align_bio);
5522 	return 1;
5523 }
5524 
5525 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5526 {
5527 	struct bio *split;
5528 	sector_t sector = raid_bio->bi_iter.bi_sector;
5529 	unsigned chunk_sects = mddev->chunk_sectors;
5530 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5531 
5532 	if (sectors < bio_sectors(raid_bio)) {
5533 		struct r5conf *conf = mddev->private;
5534 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5535 		bio_chain(split, raid_bio);
5536 		submit_bio_noacct(raid_bio);
5537 		raid_bio = split;
5538 	}
5539 
5540 	if (!raid5_read_one_chunk(mddev, raid_bio))
5541 		return raid_bio;
5542 
5543 	return NULL;
5544 }
5545 
5546 /* __get_priority_stripe - get the next stripe to process
5547  *
5548  * Full stripe writes are allowed to pass preread active stripes up until
5549  * the bypass_threshold is exceeded.  In general the bypass_count
5550  * increments when the handle_list is handled before the hold_list; however, it
5551  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5552  * stripe with in flight i/o.  The bypass_count will be reset when the
5553  * head of the hold_list has changed, i.e. the head was promoted to the
5554  * handle_list.
5555  */
5556 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5557 	__must_hold(&conf->device_lock)
5558 {
5559 	struct stripe_head *sh, *tmp;
5560 	struct list_head *handle_list = NULL;
5561 	struct r5worker_group *wg;
5562 	bool second_try = !r5c_is_writeback(conf->log) &&
5563 		!r5l_log_disk_error(conf);
5564 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5565 		r5l_log_disk_error(conf);
5566 
5567 again:
5568 	wg = NULL;
5569 	sh = NULL;
5570 	if (conf->worker_cnt_per_group == 0) {
5571 		handle_list = try_loprio ? &conf->loprio_list :
5572 					&conf->handle_list;
5573 	} else if (group != ANY_GROUP) {
5574 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5575 				&conf->worker_groups[group].handle_list;
5576 		wg = &conf->worker_groups[group];
5577 	} else {
5578 		int i;
5579 		for (i = 0; i < conf->group_cnt; i++) {
5580 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5581 				&conf->worker_groups[i].handle_list;
5582 			wg = &conf->worker_groups[i];
5583 			if (!list_empty(handle_list))
5584 				break;
5585 		}
5586 	}
5587 
5588 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5589 		  __func__,
5590 		  list_empty(handle_list) ? "empty" : "busy",
5591 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5592 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5593 
5594 	if (!list_empty(handle_list)) {
5595 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5596 
5597 		if (list_empty(&conf->hold_list))
5598 			conf->bypass_count = 0;
5599 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5600 			if (conf->hold_list.next == conf->last_hold)
5601 				conf->bypass_count++;
5602 			else {
5603 				conf->last_hold = conf->hold_list.next;
5604 				conf->bypass_count -= conf->bypass_threshold;
5605 				if (conf->bypass_count < 0)
5606 					conf->bypass_count = 0;
5607 			}
5608 		}
5609 	} else if (!list_empty(&conf->hold_list) &&
5610 		   ((conf->bypass_threshold &&
5611 		     conf->bypass_count > conf->bypass_threshold) ||
5612 		    atomic_read(&conf->pending_full_writes) == 0)) {
5613 
5614 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5615 			if (conf->worker_cnt_per_group == 0 ||
5616 			    group == ANY_GROUP ||
5617 			    !cpu_online(tmp->cpu) ||
5618 			    cpu_to_group(tmp->cpu) == group) {
5619 				sh = tmp;
5620 				break;
5621 			}
5622 		}
5623 
5624 		if (sh) {
5625 			conf->bypass_count -= conf->bypass_threshold;
5626 			if (conf->bypass_count < 0)
5627 				conf->bypass_count = 0;
5628 		}
5629 		wg = NULL;
5630 	}
5631 
5632 	if (!sh) {
5633 		if (second_try)
5634 			return NULL;
5635 		second_try = true;
5636 		try_loprio = !try_loprio;
5637 		goto again;
5638 	}
5639 
5640 	if (wg) {
5641 		wg->stripes_cnt--;
5642 		sh->group = NULL;
5643 	}
5644 	list_del_init(&sh->lru);
5645 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5646 	return sh;
5647 }
5648 
5649 struct raid5_plug_cb {
5650 	struct blk_plug_cb	cb;
5651 	struct list_head	list;
5652 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5653 };
5654 
5655 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5656 {
5657 	struct raid5_plug_cb *cb = container_of(
5658 		blk_cb, struct raid5_plug_cb, cb);
5659 	struct stripe_head *sh;
5660 	struct mddev *mddev = cb->cb.data;
5661 	struct r5conf *conf = mddev->private;
5662 	int cnt = 0;
5663 	int hash;
5664 
5665 	if (cb->list.next && !list_empty(&cb->list)) {
5666 		spin_lock_irq(&conf->device_lock);
5667 		while (!list_empty(&cb->list)) {
5668 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5669 			list_del_init(&sh->lru);
5670 			/*
5671 			 * avoid race release_stripe_plug() sees
5672 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5673 			 * is still in our list
5674 			 */
5675 			smp_mb__before_atomic();
5676 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5677 			/*
5678 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5679 			 * case, the count is always > 1 here
5680 			 */
5681 			hash = sh->hash_lock_index;
5682 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5683 			cnt++;
5684 		}
5685 		spin_unlock_irq(&conf->device_lock);
5686 	}
5687 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5688 				     NR_STRIPE_HASH_LOCKS);
5689 	if (!mddev_is_dm(mddev))
5690 		trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5691 	kfree(cb);
5692 }
5693 
5694 static void release_stripe_plug(struct mddev *mddev,
5695 				struct stripe_head *sh)
5696 {
5697 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5698 		raid5_unplug, mddev,
5699 		sizeof(struct raid5_plug_cb));
5700 	struct raid5_plug_cb *cb;
5701 
5702 	if (!blk_cb) {
5703 		raid5_release_stripe(sh);
5704 		return;
5705 	}
5706 
5707 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5708 
5709 	if (cb->list.next == NULL) {
5710 		int i;
5711 		INIT_LIST_HEAD(&cb->list);
5712 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5713 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5714 	}
5715 
5716 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5717 		list_add_tail(&sh->lru, &cb->list);
5718 	else
5719 		raid5_release_stripe(sh);
5720 }
5721 
5722 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5723 {
5724 	struct r5conf *conf = mddev->private;
5725 	sector_t logical_sector, last_sector;
5726 	struct stripe_head *sh;
5727 	int stripe_sectors;
5728 
5729 	/* We need to handle this when io_uring supports discard/trim */
5730 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5731 		return;
5732 
5733 	if (mddev->reshape_position != MaxSector)
5734 		/* Skip discard while reshape is happening */
5735 		return;
5736 
5737 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5738 	last_sector = bio_end_sector(bi);
5739 
5740 	bi->bi_next = NULL;
5741 
5742 	stripe_sectors = conf->chunk_sectors *
5743 		(conf->raid_disks - conf->max_degraded);
5744 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5745 					       stripe_sectors);
5746 	sector_div(last_sector, stripe_sectors);
5747 
5748 	logical_sector *= conf->chunk_sectors;
5749 	last_sector *= conf->chunk_sectors;
5750 
5751 	for (; logical_sector < last_sector;
5752 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5753 		DEFINE_WAIT(w);
5754 		int d;
5755 	again:
5756 		sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5757 		prepare_to_wait(&conf->wait_for_overlap, &w,
5758 				TASK_UNINTERRUPTIBLE);
5759 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5760 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5761 			raid5_release_stripe(sh);
5762 			schedule();
5763 			goto again;
5764 		}
5765 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5766 		spin_lock_irq(&sh->stripe_lock);
5767 		for (d = 0; d < conf->raid_disks; d++) {
5768 			if (d == sh->pd_idx || d == sh->qd_idx)
5769 				continue;
5770 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5771 				set_bit(R5_Overlap, &sh->dev[d].flags);
5772 				spin_unlock_irq(&sh->stripe_lock);
5773 				raid5_release_stripe(sh);
5774 				schedule();
5775 				goto again;
5776 			}
5777 		}
5778 		set_bit(STRIPE_DISCARD, &sh->state);
5779 		finish_wait(&conf->wait_for_overlap, &w);
5780 		sh->overwrite_disks = 0;
5781 		for (d = 0; d < conf->raid_disks; d++) {
5782 			if (d == sh->pd_idx || d == sh->qd_idx)
5783 				continue;
5784 			sh->dev[d].towrite = bi;
5785 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5786 			bio_inc_remaining(bi);
5787 			md_write_inc(mddev, bi);
5788 			sh->overwrite_disks++;
5789 		}
5790 		spin_unlock_irq(&sh->stripe_lock);
5791 		if (conf->mddev->bitmap) {
5792 			for (d = 0;
5793 			     d < conf->raid_disks - conf->max_degraded;
5794 			     d++)
5795 				md_bitmap_startwrite(mddev->bitmap,
5796 						     sh->sector,
5797 						     RAID5_STRIPE_SECTORS(conf),
5798 						     0);
5799 			sh->bm_seq = conf->seq_flush + 1;
5800 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5801 		}
5802 
5803 		set_bit(STRIPE_HANDLE, &sh->state);
5804 		clear_bit(STRIPE_DELAYED, &sh->state);
5805 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5806 			atomic_inc(&conf->preread_active_stripes);
5807 		release_stripe_plug(mddev, sh);
5808 	}
5809 
5810 	bio_endio(bi);
5811 }
5812 
5813 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5814 			     sector_t reshape_sector)
5815 {
5816 	return mddev->reshape_backwards ? sector < reshape_sector :
5817 					  sector >= reshape_sector;
5818 }
5819 
5820 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5821 				   sector_t max, sector_t reshape_sector)
5822 {
5823 	return mddev->reshape_backwards ? max < reshape_sector :
5824 					  min >= reshape_sector;
5825 }
5826 
5827 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5828 				    struct stripe_head *sh)
5829 {
5830 	sector_t max_sector = 0, min_sector = MaxSector;
5831 	bool ret = false;
5832 	int dd_idx;
5833 
5834 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5835 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5836 			continue;
5837 
5838 		min_sector = min(min_sector, sh->dev[dd_idx].sector);
5839 		max_sector = max(max_sector, sh->dev[dd_idx].sector);
5840 	}
5841 
5842 	spin_lock_irq(&conf->device_lock);
5843 
5844 	if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5845 				     conf->reshape_progress))
5846 		/* mismatch, need to try again */
5847 		ret = true;
5848 
5849 	spin_unlock_irq(&conf->device_lock);
5850 
5851 	return ret;
5852 }
5853 
5854 static int add_all_stripe_bios(struct r5conf *conf,
5855 		struct stripe_request_ctx *ctx, struct stripe_head *sh,
5856 		struct bio *bi, int forwrite, int previous)
5857 {
5858 	int dd_idx;
5859 	int ret = 1;
5860 
5861 	spin_lock_irq(&sh->stripe_lock);
5862 
5863 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5864 		struct r5dev *dev = &sh->dev[dd_idx];
5865 
5866 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5867 			continue;
5868 
5869 		if (dev->sector < ctx->first_sector ||
5870 		    dev->sector >= ctx->last_sector)
5871 			continue;
5872 
5873 		if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5874 			set_bit(R5_Overlap, &dev->flags);
5875 			ret = 0;
5876 			continue;
5877 		}
5878 	}
5879 
5880 	if (!ret)
5881 		goto out;
5882 
5883 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5884 		struct r5dev *dev = &sh->dev[dd_idx];
5885 
5886 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5887 			continue;
5888 
5889 		if (dev->sector < ctx->first_sector ||
5890 		    dev->sector >= ctx->last_sector)
5891 			continue;
5892 
5893 		__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5894 		clear_bit((dev->sector - ctx->first_sector) >>
5895 			  RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5896 	}
5897 
5898 out:
5899 	spin_unlock_irq(&sh->stripe_lock);
5900 	return ret;
5901 }
5902 
5903 static enum stripe_result make_stripe_request(struct mddev *mddev,
5904 		struct r5conf *conf, struct stripe_request_ctx *ctx,
5905 		sector_t logical_sector, struct bio *bi)
5906 {
5907 	const int rw = bio_data_dir(bi);
5908 	enum stripe_result ret;
5909 	struct stripe_head *sh;
5910 	sector_t new_sector;
5911 	int previous = 0, flags = 0;
5912 	int seq, dd_idx;
5913 
5914 	seq = read_seqcount_begin(&conf->gen_lock);
5915 
5916 	if (unlikely(conf->reshape_progress != MaxSector)) {
5917 		/*
5918 		 * Spinlock is needed as reshape_progress may be
5919 		 * 64bit on a 32bit platform, and so it might be
5920 		 * possible to see a half-updated value
5921 		 * Of course reshape_progress could change after
5922 		 * the lock is dropped, so once we get a reference
5923 		 * to the stripe that we think it is, we will have
5924 		 * to check again.
5925 		 */
5926 		spin_lock_irq(&conf->device_lock);
5927 		if (ahead_of_reshape(mddev, logical_sector,
5928 				     conf->reshape_progress)) {
5929 			previous = 1;
5930 		} else {
5931 			if (ahead_of_reshape(mddev, logical_sector,
5932 					     conf->reshape_safe)) {
5933 				spin_unlock_irq(&conf->device_lock);
5934 				ret = STRIPE_SCHEDULE_AND_RETRY;
5935 				goto out;
5936 			}
5937 		}
5938 		spin_unlock_irq(&conf->device_lock);
5939 	}
5940 
5941 	new_sector = raid5_compute_sector(conf, logical_sector, previous,
5942 					  &dd_idx, NULL);
5943 	pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5944 		 new_sector, logical_sector);
5945 
5946 	if (previous)
5947 		flags |= R5_GAS_PREVIOUS;
5948 	if (bi->bi_opf & REQ_RAHEAD)
5949 		flags |= R5_GAS_NOBLOCK;
5950 	sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5951 	if (unlikely(!sh)) {
5952 		/* cannot get stripe, just give-up */
5953 		bi->bi_status = BLK_STS_IOERR;
5954 		return STRIPE_FAIL;
5955 	}
5956 
5957 	if (unlikely(previous) &&
5958 	    stripe_ahead_of_reshape(mddev, conf, sh)) {
5959 		/*
5960 		 * Expansion moved on while waiting for a stripe.
5961 		 * Expansion could still move past after this
5962 		 * test, but as we are holding a reference to
5963 		 * 'sh', we know that if that happens,
5964 		 *  STRIPE_EXPANDING will get set and the expansion
5965 		 * won't proceed until we finish with the stripe.
5966 		 */
5967 		ret = STRIPE_SCHEDULE_AND_RETRY;
5968 		goto out_release;
5969 	}
5970 
5971 	if (read_seqcount_retry(&conf->gen_lock, seq)) {
5972 		/* Might have got the wrong stripe_head by accident */
5973 		ret = STRIPE_RETRY;
5974 		goto out_release;
5975 	}
5976 
5977 	if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5978 	    !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5979 		/*
5980 		 * Stripe is busy expanding or add failed due to
5981 		 * overlap. Flush everything and wait a while.
5982 		 */
5983 		md_wakeup_thread(mddev->thread);
5984 		ret = STRIPE_SCHEDULE_AND_RETRY;
5985 		goto out_release;
5986 	}
5987 
5988 	if (stripe_can_batch(sh)) {
5989 		stripe_add_to_batch_list(conf, sh, ctx->batch_last);
5990 		if (ctx->batch_last)
5991 			raid5_release_stripe(ctx->batch_last);
5992 		atomic_inc(&sh->count);
5993 		ctx->batch_last = sh;
5994 	}
5995 
5996 	if (ctx->do_flush) {
5997 		set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5998 		/* we only need flush for one stripe */
5999 		ctx->do_flush = false;
6000 	}
6001 
6002 	set_bit(STRIPE_HANDLE, &sh->state);
6003 	clear_bit(STRIPE_DELAYED, &sh->state);
6004 	if ((!sh->batch_head || sh == sh->batch_head) &&
6005 	    (bi->bi_opf & REQ_SYNC) &&
6006 	    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6007 		atomic_inc(&conf->preread_active_stripes);
6008 
6009 	release_stripe_plug(mddev, sh);
6010 	return STRIPE_SUCCESS;
6011 
6012 out_release:
6013 	raid5_release_stripe(sh);
6014 out:
6015 	if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6016 		bi->bi_status = BLK_STS_RESOURCE;
6017 		ret = STRIPE_WAIT_RESHAPE;
6018 		pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6019 	}
6020 	return ret;
6021 }
6022 
6023 /*
6024  * If the bio covers multiple data disks, find sector within the bio that has
6025  * the lowest chunk offset in the first chunk.
6026  */
6027 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6028 					      struct bio *bi)
6029 {
6030 	int sectors_per_chunk = conf->chunk_sectors;
6031 	int raid_disks = conf->raid_disks;
6032 	int dd_idx;
6033 	struct stripe_head sh;
6034 	unsigned int chunk_offset;
6035 	sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6036 	sector_t sector;
6037 
6038 	/* We pass in fake stripe_head to get back parity disk numbers */
6039 	sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6040 	chunk_offset = sector_div(sector, sectors_per_chunk);
6041 	if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6042 		return r_sector;
6043 	/*
6044 	 * Bio crosses to the next data disk. Check whether it's in the same
6045 	 * chunk.
6046 	 */
6047 	dd_idx++;
6048 	while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6049 		dd_idx++;
6050 	if (dd_idx >= raid_disks)
6051 		return r_sector;
6052 	return r_sector + sectors_per_chunk - chunk_offset;
6053 }
6054 
6055 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6056 {
6057 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
6058 	struct r5conf *conf = mddev->private;
6059 	sector_t logical_sector;
6060 	struct stripe_request_ctx ctx = {};
6061 	const int rw = bio_data_dir(bi);
6062 	enum stripe_result res;
6063 	int s, stripe_cnt;
6064 
6065 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6066 		int ret = log_handle_flush_request(conf, bi);
6067 
6068 		if (ret == 0)
6069 			return true;
6070 		if (ret == -ENODEV) {
6071 			if (md_flush_request(mddev, bi))
6072 				return true;
6073 		}
6074 		/* ret == -EAGAIN, fallback */
6075 		/*
6076 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6077 		 * we need to flush journal device
6078 		 */
6079 		ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6080 	}
6081 
6082 	if (!md_write_start(mddev, bi))
6083 		return false;
6084 	/*
6085 	 * If array is degraded, better not do chunk aligned read because
6086 	 * later we might have to read it again in order to reconstruct
6087 	 * data on failed drives.
6088 	 */
6089 	if (rw == READ && mddev->degraded == 0 &&
6090 	    mddev->reshape_position == MaxSector) {
6091 		bi = chunk_aligned_read(mddev, bi);
6092 		if (!bi)
6093 			return true;
6094 	}
6095 
6096 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6097 		make_discard_request(mddev, bi);
6098 		md_write_end(mddev);
6099 		return true;
6100 	}
6101 
6102 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6103 	ctx.first_sector = logical_sector;
6104 	ctx.last_sector = bio_end_sector(bi);
6105 	bi->bi_next = NULL;
6106 
6107 	stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6108 					   RAID5_STRIPE_SECTORS(conf));
6109 	bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6110 
6111 	pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6112 		 bi->bi_iter.bi_sector, ctx.last_sector);
6113 
6114 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6115 	if ((bi->bi_opf & REQ_NOWAIT) &&
6116 	    (conf->reshape_progress != MaxSector) &&
6117 	    !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6118 	    ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
6119 		bio_wouldblock_error(bi);
6120 		if (rw == WRITE)
6121 			md_write_end(mddev);
6122 		return true;
6123 	}
6124 	md_account_bio(mddev, &bi);
6125 
6126 	/*
6127 	 * Lets start with the stripe with the lowest chunk offset in the first
6128 	 * chunk. That has the best chances of creating IOs adjacent to
6129 	 * previous IOs in case of sequential IO and thus creates the most
6130 	 * sequential IO pattern. We don't bother with the optimization when
6131 	 * reshaping as the performance benefit is not worth the complexity.
6132 	 */
6133 	if (likely(conf->reshape_progress == MaxSector))
6134 		logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6135 	s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6136 
6137 	add_wait_queue(&conf->wait_for_overlap, &wait);
6138 	while (1) {
6139 		res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6140 					  bi);
6141 		if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6142 			break;
6143 
6144 		if (res == STRIPE_RETRY)
6145 			continue;
6146 
6147 		if (res == STRIPE_SCHEDULE_AND_RETRY) {
6148 			/*
6149 			 * Must release the reference to batch_last before
6150 			 * scheduling and waiting for work to be done,
6151 			 * otherwise the batch_last stripe head could prevent
6152 			 * raid5_activate_delayed() from making progress
6153 			 * and thus deadlocking.
6154 			 */
6155 			if (ctx.batch_last) {
6156 				raid5_release_stripe(ctx.batch_last);
6157 				ctx.batch_last = NULL;
6158 			}
6159 
6160 			wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6161 				   MAX_SCHEDULE_TIMEOUT);
6162 			continue;
6163 		}
6164 
6165 		s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6166 		if (s == stripe_cnt)
6167 			break;
6168 
6169 		logical_sector = ctx.first_sector +
6170 			(s << RAID5_STRIPE_SHIFT(conf));
6171 	}
6172 	remove_wait_queue(&conf->wait_for_overlap, &wait);
6173 
6174 	if (ctx.batch_last)
6175 		raid5_release_stripe(ctx.batch_last);
6176 
6177 	if (rw == WRITE)
6178 		md_write_end(mddev);
6179 	if (res == STRIPE_WAIT_RESHAPE) {
6180 		md_free_cloned_bio(bi);
6181 		return false;
6182 	}
6183 
6184 	bio_endio(bi);
6185 	return true;
6186 }
6187 
6188 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6189 
6190 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6191 {
6192 	/* reshaping is quite different to recovery/resync so it is
6193 	 * handled quite separately ... here.
6194 	 *
6195 	 * On each call to sync_request, we gather one chunk worth of
6196 	 * destination stripes and flag them as expanding.
6197 	 * Then we find all the source stripes and request reads.
6198 	 * As the reads complete, handle_stripe will copy the data
6199 	 * into the destination stripe and release that stripe.
6200 	 */
6201 	struct r5conf *conf = mddev->private;
6202 	struct stripe_head *sh;
6203 	struct md_rdev *rdev;
6204 	sector_t first_sector, last_sector;
6205 	int raid_disks = conf->previous_raid_disks;
6206 	int data_disks = raid_disks - conf->max_degraded;
6207 	int new_data_disks = conf->raid_disks - conf->max_degraded;
6208 	int i;
6209 	int dd_idx;
6210 	sector_t writepos, readpos, safepos;
6211 	sector_t stripe_addr;
6212 	int reshape_sectors;
6213 	struct list_head stripes;
6214 	sector_t retn;
6215 
6216 	if (sector_nr == 0) {
6217 		/* If restarting in the middle, skip the initial sectors */
6218 		if (mddev->reshape_backwards &&
6219 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6220 			sector_nr = raid5_size(mddev, 0, 0)
6221 				- conf->reshape_progress;
6222 		} else if (mddev->reshape_backwards &&
6223 			   conf->reshape_progress == MaxSector) {
6224 			/* shouldn't happen, but just in case, finish up.*/
6225 			sector_nr = MaxSector;
6226 		} else if (!mddev->reshape_backwards &&
6227 			   conf->reshape_progress > 0)
6228 			sector_nr = conf->reshape_progress;
6229 		sector_div(sector_nr, new_data_disks);
6230 		if (sector_nr) {
6231 			mddev->curr_resync_completed = sector_nr;
6232 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6233 			*skipped = 1;
6234 			retn = sector_nr;
6235 			goto finish;
6236 		}
6237 	}
6238 
6239 	/* We need to process a full chunk at a time.
6240 	 * If old and new chunk sizes differ, we need to process the
6241 	 * largest of these
6242 	 */
6243 
6244 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6245 
6246 	/* We update the metadata at least every 10 seconds, or when
6247 	 * the data about to be copied would over-write the source of
6248 	 * the data at the front of the range.  i.e. one new_stripe
6249 	 * along from reshape_progress new_maps to after where
6250 	 * reshape_safe old_maps to
6251 	 */
6252 	writepos = conf->reshape_progress;
6253 	sector_div(writepos, new_data_disks);
6254 	readpos = conf->reshape_progress;
6255 	sector_div(readpos, data_disks);
6256 	safepos = conf->reshape_safe;
6257 	sector_div(safepos, data_disks);
6258 	if (mddev->reshape_backwards) {
6259 		BUG_ON(writepos < reshape_sectors);
6260 		writepos -= reshape_sectors;
6261 		readpos += reshape_sectors;
6262 		safepos += reshape_sectors;
6263 	} else {
6264 		writepos += reshape_sectors;
6265 		/* readpos and safepos are worst-case calculations.
6266 		 * A negative number is overly pessimistic, and causes
6267 		 * obvious problems for unsigned storage.  So clip to 0.
6268 		 */
6269 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6270 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6271 	}
6272 
6273 	/* Having calculated the 'writepos' possibly use it
6274 	 * to set 'stripe_addr' which is where we will write to.
6275 	 */
6276 	if (mddev->reshape_backwards) {
6277 		BUG_ON(conf->reshape_progress == 0);
6278 		stripe_addr = writepos;
6279 		BUG_ON((mddev->dev_sectors &
6280 			~((sector_t)reshape_sectors - 1))
6281 		       - reshape_sectors - stripe_addr
6282 		       != sector_nr);
6283 	} else {
6284 		BUG_ON(writepos != sector_nr + reshape_sectors);
6285 		stripe_addr = sector_nr;
6286 	}
6287 
6288 	/* 'writepos' is the most advanced device address we might write.
6289 	 * 'readpos' is the least advanced device address we might read.
6290 	 * 'safepos' is the least address recorded in the metadata as having
6291 	 *     been reshaped.
6292 	 * If there is a min_offset_diff, these are adjusted either by
6293 	 * increasing the safepos/readpos if diff is negative, or
6294 	 * increasing writepos if diff is positive.
6295 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6296 	 * ensure safety in the face of a crash - that must be done by userspace
6297 	 * making a backup of the data.  So in that case there is no particular
6298 	 * rush to update metadata.
6299 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6300 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6301 	 * we can be safe in the event of a crash.
6302 	 * So we insist on updating metadata if safepos is behind writepos and
6303 	 * readpos is beyond writepos.
6304 	 * In any case, update the metadata every 10 seconds.
6305 	 * Maybe that number should be configurable, but I'm not sure it is
6306 	 * worth it.... maybe it could be a multiple of safemode_delay???
6307 	 */
6308 	if (conf->min_offset_diff < 0) {
6309 		safepos += -conf->min_offset_diff;
6310 		readpos += -conf->min_offset_diff;
6311 	} else
6312 		writepos += conf->min_offset_diff;
6313 
6314 	if ((mddev->reshape_backwards
6315 	     ? (safepos > writepos && readpos < writepos)
6316 	     : (safepos < writepos && readpos > writepos)) ||
6317 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6318 		/* Cannot proceed until we've updated the superblock... */
6319 		wait_event(conf->wait_for_overlap,
6320 			   atomic_read(&conf->reshape_stripes)==0
6321 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6322 		if (atomic_read(&conf->reshape_stripes) != 0)
6323 			return 0;
6324 		mddev->reshape_position = conf->reshape_progress;
6325 		mddev->curr_resync_completed = sector_nr;
6326 		if (!mddev->reshape_backwards)
6327 			/* Can update recovery_offset */
6328 			rdev_for_each(rdev, mddev)
6329 				if (rdev->raid_disk >= 0 &&
6330 				    !test_bit(Journal, &rdev->flags) &&
6331 				    !test_bit(In_sync, &rdev->flags) &&
6332 				    rdev->recovery_offset < sector_nr)
6333 					rdev->recovery_offset = sector_nr;
6334 
6335 		conf->reshape_checkpoint = jiffies;
6336 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6337 		md_wakeup_thread(mddev->thread);
6338 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6339 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6340 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6341 			return 0;
6342 		spin_lock_irq(&conf->device_lock);
6343 		conf->reshape_safe = mddev->reshape_position;
6344 		spin_unlock_irq(&conf->device_lock);
6345 		wake_up(&conf->wait_for_overlap);
6346 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6347 	}
6348 
6349 	INIT_LIST_HEAD(&stripes);
6350 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6351 		int j;
6352 		int skipped_disk = 0;
6353 		sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6354 					     R5_GAS_NOQUIESCE);
6355 		set_bit(STRIPE_EXPANDING, &sh->state);
6356 		atomic_inc(&conf->reshape_stripes);
6357 		/* If any of this stripe is beyond the end of the old
6358 		 * array, then we need to zero those blocks
6359 		 */
6360 		for (j=sh->disks; j--;) {
6361 			sector_t s;
6362 			if (j == sh->pd_idx)
6363 				continue;
6364 			if (conf->level == 6 &&
6365 			    j == sh->qd_idx)
6366 				continue;
6367 			s = raid5_compute_blocknr(sh, j, 0);
6368 			if (s < raid5_size(mddev, 0, 0)) {
6369 				skipped_disk = 1;
6370 				continue;
6371 			}
6372 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6373 			set_bit(R5_Expanded, &sh->dev[j].flags);
6374 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6375 		}
6376 		if (!skipped_disk) {
6377 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6378 			set_bit(STRIPE_HANDLE, &sh->state);
6379 		}
6380 		list_add(&sh->lru, &stripes);
6381 	}
6382 	spin_lock_irq(&conf->device_lock);
6383 	if (mddev->reshape_backwards)
6384 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6385 	else
6386 		conf->reshape_progress += reshape_sectors * new_data_disks;
6387 	spin_unlock_irq(&conf->device_lock);
6388 	/* Ok, those stripe are ready. We can start scheduling
6389 	 * reads on the source stripes.
6390 	 * The source stripes are determined by mapping the first and last
6391 	 * block on the destination stripes.
6392 	 */
6393 	first_sector =
6394 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6395 				     1, &dd_idx, NULL);
6396 	last_sector =
6397 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6398 					    * new_data_disks - 1),
6399 				     1, &dd_idx, NULL);
6400 	if (last_sector >= mddev->dev_sectors)
6401 		last_sector = mddev->dev_sectors - 1;
6402 	while (first_sector <= last_sector) {
6403 		sh = raid5_get_active_stripe(conf, NULL, first_sector,
6404 				R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6405 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6406 		set_bit(STRIPE_HANDLE, &sh->state);
6407 		raid5_release_stripe(sh);
6408 		first_sector += RAID5_STRIPE_SECTORS(conf);
6409 	}
6410 	/* Now that the sources are clearly marked, we can release
6411 	 * the destination stripes
6412 	 */
6413 	while (!list_empty(&stripes)) {
6414 		sh = list_entry(stripes.next, struct stripe_head, lru);
6415 		list_del_init(&sh->lru);
6416 		raid5_release_stripe(sh);
6417 	}
6418 	/* If this takes us to the resync_max point where we have to pause,
6419 	 * then we need to write out the superblock.
6420 	 */
6421 	sector_nr += reshape_sectors;
6422 	retn = reshape_sectors;
6423 finish:
6424 	if (mddev->curr_resync_completed > mddev->resync_max ||
6425 	    (sector_nr - mddev->curr_resync_completed) * 2
6426 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6427 		/* Cannot proceed until we've updated the superblock... */
6428 		wait_event(conf->wait_for_overlap,
6429 			   atomic_read(&conf->reshape_stripes) == 0
6430 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6431 		if (atomic_read(&conf->reshape_stripes) != 0)
6432 			goto ret;
6433 		mddev->reshape_position = conf->reshape_progress;
6434 		mddev->curr_resync_completed = sector_nr;
6435 		if (!mddev->reshape_backwards)
6436 			/* Can update recovery_offset */
6437 			rdev_for_each(rdev, mddev)
6438 				if (rdev->raid_disk >= 0 &&
6439 				    !test_bit(Journal, &rdev->flags) &&
6440 				    !test_bit(In_sync, &rdev->flags) &&
6441 				    rdev->recovery_offset < sector_nr)
6442 					rdev->recovery_offset = sector_nr;
6443 		conf->reshape_checkpoint = jiffies;
6444 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6445 		md_wakeup_thread(mddev->thread);
6446 		wait_event(mddev->sb_wait,
6447 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6448 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6449 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6450 			goto ret;
6451 		spin_lock_irq(&conf->device_lock);
6452 		conf->reshape_safe = mddev->reshape_position;
6453 		spin_unlock_irq(&conf->device_lock);
6454 		wake_up(&conf->wait_for_overlap);
6455 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6456 	}
6457 ret:
6458 	return retn;
6459 }
6460 
6461 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6462 					  int *skipped)
6463 {
6464 	struct r5conf *conf = mddev->private;
6465 	struct stripe_head *sh;
6466 	sector_t max_sector = mddev->dev_sectors;
6467 	sector_t sync_blocks;
6468 	int still_degraded = 0;
6469 	int i;
6470 
6471 	if (sector_nr >= max_sector) {
6472 		/* just being told to finish up .. nothing much to do */
6473 
6474 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6475 			end_reshape(conf);
6476 			return 0;
6477 		}
6478 
6479 		if (mddev->curr_resync < max_sector) /* aborted */
6480 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6481 					   &sync_blocks, 1);
6482 		else /* completed sync */
6483 			conf->fullsync = 0;
6484 		md_bitmap_close_sync(mddev->bitmap);
6485 
6486 		return 0;
6487 	}
6488 
6489 	/* Allow raid5_quiesce to complete */
6490 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6491 
6492 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6493 		return reshape_request(mddev, sector_nr, skipped);
6494 
6495 	/* No need to check resync_max as we never do more than one
6496 	 * stripe, and as resync_max will always be on a chunk boundary,
6497 	 * if the check in md_do_sync didn't fire, there is no chance
6498 	 * of overstepping resync_max here
6499 	 */
6500 
6501 	/* if there is too many failed drives and we are trying
6502 	 * to resync, then assert that we are finished, because there is
6503 	 * nothing we can do.
6504 	 */
6505 	if (mddev->degraded >= conf->max_degraded &&
6506 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6507 		sector_t rv = mddev->dev_sectors - sector_nr;
6508 		*skipped = 1;
6509 		return rv;
6510 	}
6511 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6512 	    !conf->fullsync &&
6513 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6514 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6515 		/* we can skip this block, and probably more */
6516 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6517 		*skipped = 1;
6518 		/* keep things rounded to whole stripes */
6519 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6520 	}
6521 
6522 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6523 
6524 	sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6525 				     R5_GAS_NOBLOCK);
6526 	if (sh == NULL) {
6527 		sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6528 		/* make sure we don't swamp the stripe cache if someone else
6529 		 * is trying to get access
6530 		 */
6531 		schedule_timeout_uninterruptible(1);
6532 	}
6533 	/* Need to check if array will still be degraded after recovery/resync
6534 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6535 	 * one drive while leaving another faulty drive in array.
6536 	 */
6537 	for (i = 0; i < conf->raid_disks; i++) {
6538 		struct md_rdev *rdev = conf->disks[i].rdev;
6539 
6540 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6541 			still_degraded = 1;
6542 	}
6543 
6544 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6545 
6546 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6547 	set_bit(STRIPE_HANDLE, &sh->state);
6548 
6549 	raid5_release_stripe(sh);
6550 
6551 	return RAID5_STRIPE_SECTORS(conf);
6552 }
6553 
6554 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6555 			       unsigned int offset)
6556 {
6557 	/* We may not be able to submit a whole bio at once as there
6558 	 * may not be enough stripe_heads available.
6559 	 * We cannot pre-allocate enough stripe_heads as we may need
6560 	 * more than exist in the cache (if we allow ever large chunks).
6561 	 * So we do one stripe head at a time and record in
6562 	 * ->bi_hw_segments how many have been done.
6563 	 *
6564 	 * We *know* that this entire raid_bio is in one chunk, so
6565 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6566 	 */
6567 	struct stripe_head *sh;
6568 	int dd_idx;
6569 	sector_t sector, logical_sector, last_sector;
6570 	int scnt = 0;
6571 	int handled = 0;
6572 
6573 	logical_sector = raid_bio->bi_iter.bi_sector &
6574 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6575 	sector = raid5_compute_sector(conf, logical_sector,
6576 				      0, &dd_idx, NULL);
6577 	last_sector = bio_end_sector(raid_bio);
6578 
6579 	for (; logical_sector < last_sector;
6580 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6581 		     sector += RAID5_STRIPE_SECTORS(conf),
6582 		     scnt++) {
6583 
6584 		if (scnt < offset)
6585 			/* already done this stripe */
6586 			continue;
6587 
6588 		sh = raid5_get_active_stripe(conf, NULL, sector,
6589 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6590 		if (!sh) {
6591 			/* failed to get a stripe - must wait */
6592 			conf->retry_read_aligned = raid_bio;
6593 			conf->retry_read_offset = scnt;
6594 			return handled;
6595 		}
6596 
6597 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6598 			raid5_release_stripe(sh);
6599 			conf->retry_read_aligned = raid_bio;
6600 			conf->retry_read_offset = scnt;
6601 			return handled;
6602 		}
6603 
6604 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6605 		handle_stripe(sh);
6606 		raid5_release_stripe(sh);
6607 		handled++;
6608 	}
6609 
6610 	bio_endio(raid_bio);
6611 
6612 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6613 		wake_up(&conf->wait_for_quiescent);
6614 	return handled;
6615 }
6616 
6617 static int handle_active_stripes(struct r5conf *conf, int group,
6618 				 struct r5worker *worker,
6619 				 struct list_head *temp_inactive_list)
6620 		__must_hold(&conf->device_lock)
6621 {
6622 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6623 	int i, batch_size = 0, hash;
6624 	bool release_inactive = false;
6625 
6626 	while (batch_size < MAX_STRIPE_BATCH &&
6627 			(sh = __get_priority_stripe(conf, group)) != NULL)
6628 		batch[batch_size++] = sh;
6629 
6630 	if (batch_size == 0) {
6631 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6632 			if (!list_empty(temp_inactive_list + i))
6633 				break;
6634 		if (i == NR_STRIPE_HASH_LOCKS) {
6635 			spin_unlock_irq(&conf->device_lock);
6636 			log_flush_stripe_to_raid(conf);
6637 			spin_lock_irq(&conf->device_lock);
6638 			return batch_size;
6639 		}
6640 		release_inactive = true;
6641 	}
6642 	spin_unlock_irq(&conf->device_lock);
6643 
6644 	release_inactive_stripe_list(conf, temp_inactive_list,
6645 				     NR_STRIPE_HASH_LOCKS);
6646 
6647 	r5l_flush_stripe_to_raid(conf->log);
6648 	if (release_inactive) {
6649 		spin_lock_irq(&conf->device_lock);
6650 		return 0;
6651 	}
6652 
6653 	for (i = 0; i < batch_size; i++)
6654 		handle_stripe(batch[i]);
6655 	log_write_stripe_run(conf);
6656 
6657 	cond_resched();
6658 
6659 	spin_lock_irq(&conf->device_lock);
6660 	for (i = 0; i < batch_size; i++) {
6661 		hash = batch[i]->hash_lock_index;
6662 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6663 	}
6664 	return batch_size;
6665 }
6666 
6667 static void raid5_do_work(struct work_struct *work)
6668 {
6669 	struct r5worker *worker = container_of(work, struct r5worker, work);
6670 	struct r5worker_group *group = worker->group;
6671 	struct r5conf *conf = group->conf;
6672 	struct mddev *mddev = conf->mddev;
6673 	int group_id = group - conf->worker_groups;
6674 	int handled;
6675 	struct blk_plug plug;
6676 
6677 	pr_debug("+++ raid5worker active\n");
6678 
6679 	blk_start_plug(&plug);
6680 	handled = 0;
6681 	spin_lock_irq(&conf->device_lock);
6682 	while (1) {
6683 		int batch_size, released;
6684 
6685 		released = release_stripe_list(conf, worker->temp_inactive_list);
6686 
6687 		batch_size = handle_active_stripes(conf, group_id, worker,
6688 						   worker->temp_inactive_list);
6689 		worker->working = false;
6690 		if (!batch_size && !released)
6691 			break;
6692 		handled += batch_size;
6693 		wait_event_lock_irq(mddev->sb_wait,
6694 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6695 			conf->device_lock);
6696 	}
6697 	pr_debug("%d stripes handled\n", handled);
6698 
6699 	spin_unlock_irq(&conf->device_lock);
6700 
6701 	flush_deferred_bios(conf);
6702 
6703 	r5l_flush_stripe_to_raid(conf->log);
6704 
6705 	async_tx_issue_pending_all();
6706 	blk_finish_plug(&plug);
6707 
6708 	pr_debug("--- raid5worker inactive\n");
6709 }
6710 
6711 /*
6712  * This is our raid5 kernel thread.
6713  *
6714  * We scan the hash table for stripes which can be handled now.
6715  * During the scan, completed stripes are saved for us by the interrupt
6716  * handler, so that they will not have to wait for our next wakeup.
6717  */
6718 static void raid5d(struct md_thread *thread)
6719 {
6720 	struct mddev *mddev = thread->mddev;
6721 	struct r5conf *conf = mddev->private;
6722 	int handled;
6723 	struct blk_plug plug;
6724 
6725 	pr_debug("+++ raid5d active\n");
6726 
6727 	md_check_recovery(mddev);
6728 
6729 	blk_start_plug(&plug);
6730 	handled = 0;
6731 	spin_lock_irq(&conf->device_lock);
6732 	while (1) {
6733 		struct bio *bio;
6734 		int batch_size, released;
6735 		unsigned int offset;
6736 
6737 		released = release_stripe_list(conf, conf->temp_inactive_list);
6738 		if (released)
6739 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6740 
6741 		if (
6742 		    !list_empty(&conf->bitmap_list)) {
6743 			/* Now is a good time to flush some bitmap updates */
6744 			conf->seq_flush++;
6745 			spin_unlock_irq(&conf->device_lock);
6746 			md_bitmap_unplug(mddev->bitmap);
6747 			spin_lock_irq(&conf->device_lock);
6748 			conf->seq_write = conf->seq_flush;
6749 			activate_bit_delay(conf, conf->temp_inactive_list);
6750 		}
6751 		raid5_activate_delayed(conf);
6752 
6753 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6754 			int ok;
6755 			spin_unlock_irq(&conf->device_lock);
6756 			ok = retry_aligned_read(conf, bio, offset);
6757 			spin_lock_irq(&conf->device_lock);
6758 			if (!ok)
6759 				break;
6760 			handled++;
6761 		}
6762 
6763 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6764 						   conf->temp_inactive_list);
6765 		if (!batch_size && !released)
6766 			break;
6767 		handled += batch_size;
6768 
6769 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6770 			spin_unlock_irq(&conf->device_lock);
6771 			md_check_recovery(mddev);
6772 			spin_lock_irq(&conf->device_lock);
6773 
6774 			/*
6775 			 * Waiting on MD_SB_CHANGE_PENDING below may deadlock
6776 			 * seeing md_check_recovery() is needed to clear
6777 			 * the flag when using mdmon.
6778 			 */
6779 			continue;
6780 		}
6781 
6782 		wait_event_lock_irq(mddev->sb_wait,
6783 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6784 			conf->device_lock);
6785 	}
6786 	pr_debug("%d stripes handled\n", handled);
6787 
6788 	spin_unlock_irq(&conf->device_lock);
6789 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6790 	    mutex_trylock(&conf->cache_size_mutex)) {
6791 		grow_one_stripe(conf, __GFP_NOWARN);
6792 		/* Set flag even if allocation failed.  This helps
6793 		 * slow down allocation requests when mem is short
6794 		 */
6795 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6796 		mutex_unlock(&conf->cache_size_mutex);
6797 	}
6798 
6799 	flush_deferred_bios(conf);
6800 
6801 	r5l_flush_stripe_to_raid(conf->log);
6802 
6803 	async_tx_issue_pending_all();
6804 	blk_finish_plug(&plug);
6805 
6806 	pr_debug("--- raid5d inactive\n");
6807 }
6808 
6809 static ssize_t
6810 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6811 {
6812 	struct r5conf *conf;
6813 	int ret = 0;
6814 	spin_lock(&mddev->lock);
6815 	conf = mddev->private;
6816 	if (conf)
6817 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6818 	spin_unlock(&mddev->lock);
6819 	return ret;
6820 }
6821 
6822 int
6823 raid5_set_cache_size(struct mddev *mddev, int size)
6824 {
6825 	int result = 0;
6826 	struct r5conf *conf = mddev->private;
6827 
6828 	if (size <= 16 || size > 32768)
6829 		return -EINVAL;
6830 
6831 	WRITE_ONCE(conf->min_nr_stripes, size);
6832 	mutex_lock(&conf->cache_size_mutex);
6833 	while (size < conf->max_nr_stripes &&
6834 	       drop_one_stripe(conf))
6835 		;
6836 	mutex_unlock(&conf->cache_size_mutex);
6837 
6838 	md_allow_write(mddev);
6839 
6840 	mutex_lock(&conf->cache_size_mutex);
6841 	while (size > conf->max_nr_stripes)
6842 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6843 			WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6844 			result = -ENOMEM;
6845 			break;
6846 		}
6847 	mutex_unlock(&conf->cache_size_mutex);
6848 
6849 	return result;
6850 }
6851 EXPORT_SYMBOL(raid5_set_cache_size);
6852 
6853 static ssize_t
6854 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6855 {
6856 	struct r5conf *conf;
6857 	unsigned long new;
6858 	int err;
6859 
6860 	if (len >= PAGE_SIZE)
6861 		return -EINVAL;
6862 	if (kstrtoul(page, 10, &new))
6863 		return -EINVAL;
6864 	err = mddev_lock(mddev);
6865 	if (err)
6866 		return err;
6867 	conf = mddev->private;
6868 	if (!conf)
6869 		err = -ENODEV;
6870 	else
6871 		err = raid5_set_cache_size(mddev, new);
6872 	mddev_unlock(mddev);
6873 
6874 	return err ?: len;
6875 }
6876 
6877 static struct md_sysfs_entry
6878 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6879 				raid5_show_stripe_cache_size,
6880 				raid5_store_stripe_cache_size);
6881 
6882 static ssize_t
6883 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6884 {
6885 	struct r5conf *conf = mddev->private;
6886 	if (conf)
6887 		return sprintf(page, "%d\n", conf->rmw_level);
6888 	else
6889 		return 0;
6890 }
6891 
6892 static ssize_t
6893 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6894 {
6895 	struct r5conf *conf = mddev->private;
6896 	unsigned long new;
6897 
6898 	if (!conf)
6899 		return -ENODEV;
6900 
6901 	if (len >= PAGE_SIZE)
6902 		return -EINVAL;
6903 
6904 	if (kstrtoul(page, 10, &new))
6905 		return -EINVAL;
6906 
6907 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6908 		return -EINVAL;
6909 
6910 	if (new != PARITY_DISABLE_RMW &&
6911 	    new != PARITY_ENABLE_RMW &&
6912 	    new != PARITY_PREFER_RMW)
6913 		return -EINVAL;
6914 
6915 	conf->rmw_level = new;
6916 	return len;
6917 }
6918 
6919 static struct md_sysfs_entry
6920 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6921 			 raid5_show_rmw_level,
6922 			 raid5_store_rmw_level);
6923 
6924 static ssize_t
6925 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6926 {
6927 	struct r5conf *conf;
6928 	int ret = 0;
6929 
6930 	spin_lock(&mddev->lock);
6931 	conf = mddev->private;
6932 	if (conf)
6933 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6934 	spin_unlock(&mddev->lock);
6935 	return ret;
6936 }
6937 
6938 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6939 static ssize_t
6940 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6941 {
6942 	struct r5conf *conf;
6943 	unsigned long new;
6944 	int err;
6945 	int size;
6946 
6947 	if (len >= PAGE_SIZE)
6948 		return -EINVAL;
6949 	if (kstrtoul(page, 10, &new))
6950 		return -EINVAL;
6951 
6952 	/*
6953 	 * The value should not be bigger than PAGE_SIZE. It requires to
6954 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6955 	 * of two.
6956 	 */
6957 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6958 			new > PAGE_SIZE || new == 0 ||
6959 			new != roundup_pow_of_two(new))
6960 		return -EINVAL;
6961 
6962 	err = mddev_suspend_and_lock(mddev);
6963 	if (err)
6964 		return err;
6965 
6966 	conf = mddev->private;
6967 	if (!conf) {
6968 		err = -ENODEV;
6969 		goto out_unlock;
6970 	}
6971 
6972 	if (new == conf->stripe_size)
6973 		goto out_unlock;
6974 
6975 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6976 			conf->stripe_size, new);
6977 
6978 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6979 	    mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6980 		err = -EBUSY;
6981 		goto out_unlock;
6982 	}
6983 
6984 	mutex_lock(&conf->cache_size_mutex);
6985 	size = conf->max_nr_stripes;
6986 
6987 	shrink_stripes(conf);
6988 
6989 	conf->stripe_size = new;
6990 	conf->stripe_shift = ilog2(new) - 9;
6991 	conf->stripe_sectors = new >> 9;
6992 	if (grow_stripes(conf, size)) {
6993 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
6994 				mdname(mddev));
6995 		err = -ENOMEM;
6996 	}
6997 	mutex_unlock(&conf->cache_size_mutex);
6998 
6999 out_unlock:
7000 	mddev_unlock_and_resume(mddev);
7001 	return err ?: len;
7002 }
7003 
7004 static struct md_sysfs_entry
7005 raid5_stripe_size = __ATTR(stripe_size, 0644,
7006 			 raid5_show_stripe_size,
7007 			 raid5_store_stripe_size);
7008 #else
7009 static struct md_sysfs_entry
7010 raid5_stripe_size = __ATTR(stripe_size, 0444,
7011 			 raid5_show_stripe_size,
7012 			 NULL);
7013 #endif
7014 
7015 static ssize_t
7016 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7017 {
7018 	struct r5conf *conf;
7019 	int ret = 0;
7020 	spin_lock(&mddev->lock);
7021 	conf = mddev->private;
7022 	if (conf)
7023 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
7024 	spin_unlock(&mddev->lock);
7025 	return ret;
7026 }
7027 
7028 static ssize_t
7029 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7030 {
7031 	struct r5conf *conf;
7032 	unsigned long new;
7033 	int err;
7034 
7035 	if (len >= PAGE_SIZE)
7036 		return -EINVAL;
7037 	if (kstrtoul(page, 10, &new))
7038 		return -EINVAL;
7039 
7040 	err = mddev_lock(mddev);
7041 	if (err)
7042 		return err;
7043 	conf = mddev->private;
7044 	if (!conf)
7045 		err = -ENODEV;
7046 	else if (new > conf->min_nr_stripes)
7047 		err = -EINVAL;
7048 	else
7049 		conf->bypass_threshold = new;
7050 	mddev_unlock(mddev);
7051 	return err ?: len;
7052 }
7053 
7054 static struct md_sysfs_entry
7055 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7056 					S_IRUGO | S_IWUSR,
7057 					raid5_show_preread_threshold,
7058 					raid5_store_preread_threshold);
7059 
7060 static ssize_t
7061 raid5_show_skip_copy(struct mddev *mddev, char *page)
7062 {
7063 	struct r5conf *conf;
7064 	int ret = 0;
7065 	spin_lock(&mddev->lock);
7066 	conf = mddev->private;
7067 	if (conf)
7068 		ret = sprintf(page, "%d\n", conf->skip_copy);
7069 	spin_unlock(&mddev->lock);
7070 	return ret;
7071 }
7072 
7073 static ssize_t
7074 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7075 {
7076 	struct r5conf *conf;
7077 	unsigned long new;
7078 	int err;
7079 
7080 	if (len >= PAGE_SIZE)
7081 		return -EINVAL;
7082 	if (kstrtoul(page, 10, &new))
7083 		return -EINVAL;
7084 	new = !!new;
7085 
7086 	err = mddev_suspend_and_lock(mddev);
7087 	if (err)
7088 		return err;
7089 	conf = mddev->private;
7090 	if (!conf)
7091 		err = -ENODEV;
7092 	else if (new != conf->skip_copy) {
7093 		struct request_queue *q = mddev->gendisk->queue;
7094 
7095 		conf->skip_copy = new;
7096 		if (new)
7097 			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7098 		else
7099 			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7100 	}
7101 	mddev_unlock_and_resume(mddev);
7102 	return err ?: len;
7103 }
7104 
7105 static struct md_sysfs_entry
7106 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7107 					raid5_show_skip_copy,
7108 					raid5_store_skip_copy);
7109 
7110 static ssize_t
7111 stripe_cache_active_show(struct mddev *mddev, char *page)
7112 {
7113 	struct r5conf *conf = mddev->private;
7114 	if (conf)
7115 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7116 	else
7117 		return 0;
7118 }
7119 
7120 static struct md_sysfs_entry
7121 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7122 
7123 static ssize_t
7124 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7125 {
7126 	struct r5conf *conf;
7127 	int ret = 0;
7128 	spin_lock(&mddev->lock);
7129 	conf = mddev->private;
7130 	if (conf)
7131 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7132 	spin_unlock(&mddev->lock);
7133 	return ret;
7134 }
7135 
7136 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7137 			       int *group_cnt,
7138 			       struct r5worker_group **worker_groups);
7139 static ssize_t
7140 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7141 {
7142 	struct r5conf *conf;
7143 	unsigned int new;
7144 	int err;
7145 	struct r5worker_group *new_groups, *old_groups;
7146 	int group_cnt;
7147 
7148 	if (len >= PAGE_SIZE)
7149 		return -EINVAL;
7150 	if (kstrtouint(page, 10, &new))
7151 		return -EINVAL;
7152 	/* 8192 should be big enough */
7153 	if (new > 8192)
7154 		return -EINVAL;
7155 
7156 	err = mddev_suspend_and_lock(mddev);
7157 	if (err)
7158 		return err;
7159 	conf = mddev->private;
7160 	if (!conf)
7161 		err = -ENODEV;
7162 	else if (new != conf->worker_cnt_per_group) {
7163 		old_groups = conf->worker_groups;
7164 		if (old_groups)
7165 			flush_workqueue(raid5_wq);
7166 
7167 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7168 		if (!err) {
7169 			spin_lock_irq(&conf->device_lock);
7170 			conf->group_cnt = group_cnt;
7171 			conf->worker_cnt_per_group = new;
7172 			conf->worker_groups = new_groups;
7173 			spin_unlock_irq(&conf->device_lock);
7174 
7175 			if (old_groups)
7176 				kfree(old_groups[0].workers);
7177 			kfree(old_groups);
7178 		}
7179 	}
7180 	mddev_unlock_and_resume(mddev);
7181 
7182 	return err ?: len;
7183 }
7184 
7185 static struct md_sysfs_entry
7186 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7187 				raid5_show_group_thread_cnt,
7188 				raid5_store_group_thread_cnt);
7189 
7190 static struct attribute *raid5_attrs[] =  {
7191 	&raid5_stripecache_size.attr,
7192 	&raid5_stripecache_active.attr,
7193 	&raid5_preread_bypass_threshold.attr,
7194 	&raid5_group_thread_cnt.attr,
7195 	&raid5_skip_copy.attr,
7196 	&raid5_rmw_level.attr,
7197 	&raid5_stripe_size.attr,
7198 	&r5c_journal_mode.attr,
7199 	&ppl_write_hint.attr,
7200 	NULL,
7201 };
7202 static const struct attribute_group raid5_attrs_group = {
7203 	.name = NULL,
7204 	.attrs = raid5_attrs,
7205 };
7206 
7207 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7208 			       struct r5worker_group **worker_groups)
7209 {
7210 	int i, j, k;
7211 	ssize_t size;
7212 	struct r5worker *workers;
7213 
7214 	if (cnt == 0) {
7215 		*group_cnt = 0;
7216 		*worker_groups = NULL;
7217 		return 0;
7218 	}
7219 	*group_cnt = num_possible_nodes();
7220 	size = sizeof(struct r5worker) * cnt;
7221 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7222 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7223 				 GFP_NOIO);
7224 	if (!*worker_groups || !workers) {
7225 		kfree(workers);
7226 		kfree(*worker_groups);
7227 		return -ENOMEM;
7228 	}
7229 
7230 	for (i = 0; i < *group_cnt; i++) {
7231 		struct r5worker_group *group;
7232 
7233 		group = &(*worker_groups)[i];
7234 		INIT_LIST_HEAD(&group->handle_list);
7235 		INIT_LIST_HEAD(&group->loprio_list);
7236 		group->conf = conf;
7237 		group->workers = workers + i * cnt;
7238 
7239 		for (j = 0; j < cnt; j++) {
7240 			struct r5worker *worker = group->workers + j;
7241 			worker->group = group;
7242 			INIT_WORK(&worker->work, raid5_do_work);
7243 
7244 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7245 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7246 		}
7247 	}
7248 
7249 	return 0;
7250 }
7251 
7252 static void free_thread_groups(struct r5conf *conf)
7253 {
7254 	if (conf->worker_groups)
7255 		kfree(conf->worker_groups[0].workers);
7256 	kfree(conf->worker_groups);
7257 	conf->worker_groups = NULL;
7258 }
7259 
7260 static sector_t
7261 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7262 {
7263 	struct r5conf *conf = mddev->private;
7264 
7265 	if (!sectors)
7266 		sectors = mddev->dev_sectors;
7267 	if (!raid_disks)
7268 		/* size is defined by the smallest of previous and new size */
7269 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7270 
7271 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7272 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7273 	return sectors * (raid_disks - conf->max_degraded);
7274 }
7275 
7276 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7277 {
7278 	safe_put_page(percpu->spare_page);
7279 	percpu->spare_page = NULL;
7280 	kvfree(percpu->scribble);
7281 	percpu->scribble = NULL;
7282 }
7283 
7284 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7285 {
7286 	if (conf->level == 6 && !percpu->spare_page) {
7287 		percpu->spare_page = alloc_page(GFP_KERNEL);
7288 		if (!percpu->spare_page)
7289 			return -ENOMEM;
7290 	}
7291 
7292 	if (scribble_alloc(percpu,
7293 			   max(conf->raid_disks,
7294 			       conf->previous_raid_disks),
7295 			   max(conf->chunk_sectors,
7296 			       conf->prev_chunk_sectors)
7297 			   / RAID5_STRIPE_SECTORS(conf))) {
7298 		free_scratch_buffer(conf, percpu);
7299 		return -ENOMEM;
7300 	}
7301 
7302 	local_lock_init(&percpu->lock);
7303 	return 0;
7304 }
7305 
7306 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7307 {
7308 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7309 
7310 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7311 	return 0;
7312 }
7313 
7314 static void raid5_free_percpu(struct r5conf *conf)
7315 {
7316 	if (!conf->percpu)
7317 		return;
7318 
7319 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7320 	free_percpu(conf->percpu);
7321 }
7322 
7323 static void free_conf(struct r5conf *conf)
7324 {
7325 	int i;
7326 
7327 	log_exit(conf);
7328 
7329 	shrinker_free(conf->shrinker);
7330 	free_thread_groups(conf);
7331 	shrink_stripes(conf);
7332 	raid5_free_percpu(conf);
7333 	for (i = 0; i < conf->pool_size; i++)
7334 		if (conf->disks[i].extra_page)
7335 			put_page(conf->disks[i].extra_page);
7336 	kfree(conf->disks);
7337 	bioset_exit(&conf->bio_split);
7338 	kfree(conf->stripe_hashtbl);
7339 	kfree(conf->pending_data);
7340 	kfree(conf);
7341 }
7342 
7343 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7344 {
7345 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7346 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7347 
7348 	if (alloc_scratch_buffer(conf, percpu)) {
7349 		pr_warn("%s: failed memory allocation for cpu%u\n",
7350 			__func__, cpu);
7351 		return -ENOMEM;
7352 	}
7353 	return 0;
7354 }
7355 
7356 static int raid5_alloc_percpu(struct r5conf *conf)
7357 {
7358 	int err = 0;
7359 
7360 	conf->percpu = alloc_percpu(struct raid5_percpu);
7361 	if (!conf->percpu)
7362 		return -ENOMEM;
7363 
7364 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7365 	if (!err) {
7366 		conf->scribble_disks = max(conf->raid_disks,
7367 			conf->previous_raid_disks);
7368 		conf->scribble_sectors = max(conf->chunk_sectors,
7369 			conf->prev_chunk_sectors);
7370 	}
7371 	return err;
7372 }
7373 
7374 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7375 				      struct shrink_control *sc)
7376 {
7377 	struct r5conf *conf = shrink->private_data;
7378 	unsigned long ret = SHRINK_STOP;
7379 
7380 	if (mutex_trylock(&conf->cache_size_mutex)) {
7381 		ret= 0;
7382 		while (ret < sc->nr_to_scan &&
7383 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7384 			if (drop_one_stripe(conf) == 0) {
7385 				ret = SHRINK_STOP;
7386 				break;
7387 			}
7388 			ret++;
7389 		}
7390 		mutex_unlock(&conf->cache_size_mutex);
7391 	}
7392 	return ret;
7393 }
7394 
7395 static unsigned long raid5_cache_count(struct shrinker *shrink,
7396 				       struct shrink_control *sc)
7397 {
7398 	struct r5conf *conf = shrink->private_data;
7399 	int max_stripes = READ_ONCE(conf->max_nr_stripes);
7400 	int min_stripes = READ_ONCE(conf->min_nr_stripes);
7401 
7402 	if (max_stripes < min_stripes)
7403 		/* unlikely, but not impossible */
7404 		return 0;
7405 	return max_stripes - min_stripes;
7406 }
7407 
7408 static struct r5conf *setup_conf(struct mddev *mddev)
7409 {
7410 	struct r5conf *conf;
7411 	int raid_disk, memory, max_disks;
7412 	struct md_rdev *rdev;
7413 	struct disk_info *disk;
7414 	char pers_name[6];
7415 	int i;
7416 	int group_cnt;
7417 	struct r5worker_group *new_group;
7418 	int ret = -ENOMEM;
7419 
7420 	if (mddev->new_level != 5
7421 	    && mddev->new_level != 4
7422 	    && mddev->new_level != 6) {
7423 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7424 			mdname(mddev), mddev->new_level);
7425 		return ERR_PTR(-EIO);
7426 	}
7427 	if ((mddev->new_level == 5
7428 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7429 	    (mddev->new_level == 6
7430 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7431 		pr_warn("md/raid:%s: layout %d not supported\n",
7432 			mdname(mddev), mddev->new_layout);
7433 		return ERR_PTR(-EIO);
7434 	}
7435 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7436 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7437 			mdname(mddev), mddev->raid_disks);
7438 		return ERR_PTR(-EINVAL);
7439 	}
7440 
7441 	if (!mddev->new_chunk_sectors ||
7442 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7443 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7444 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7445 			mdname(mddev), mddev->new_chunk_sectors << 9);
7446 		return ERR_PTR(-EINVAL);
7447 	}
7448 
7449 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7450 	if (conf == NULL)
7451 		goto abort;
7452 
7453 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7454 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7455 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7456 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7457 #endif
7458 	INIT_LIST_HEAD(&conf->free_list);
7459 	INIT_LIST_HEAD(&conf->pending_list);
7460 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7461 				     sizeof(struct r5pending_data),
7462 				     GFP_KERNEL);
7463 	if (!conf->pending_data)
7464 		goto abort;
7465 	for (i = 0; i < PENDING_IO_MAX; i++)
7466 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7467 	/* Don't enable multi-threading by default*/
7468 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7469 		conf->group_cnt = group_cnt;
7470 		conf->worker_cnt_per_group = 0;
7471 		conf->worker_groups = new_group;
7472 	} else
7473 		goto abort;
7474 	spin_lock_init(&conf->device_lock);
7475 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7476 	mutex_init(&conf->cache_size_mutex);
7477 
7478 	init_waitqueue_head(&conf->wait_for_quiescent);
7479 	init_waitqueue_head(&conf->wait_for_stripe);
7480 	init_waitqueue_head(&conf->wait_for_overlap);
7481 	INIT_LIST_HEAD(&conf->handle_list);
7482 	INIT_LIST_HEAD(&conf->loprio_list);
7483 	INIT_LIST_HEAD(&conf->hold_list);
7484 	INIT_LIST_HEAD(&conf->delayed_list);
7485 	INIT_LIST_HEAD(&conf->bitmap_list);
7486 	init_llist_head(&conf->released_stripes);
7487 	atomic_set(&conf->active_stripes, 0);
7488 	atomic_set(&conf->preread_active_stripes, 0);
7489 	atomic_set(&conf->active_aligned_reads, 0);
7490 	spin_lock_init(&conf->pending_bios_lock);
7491 	conf->batch_bio_dispatch = true;
7492 	rdev_for_each(rdev, mddev) {
7493 		if (test_bit(Journal, &rdev->flags))
7494 			continue;
7495 		if (bdev_nonrot(rdev->bdev)) {
7496 			conf->batch_bio_dispatch = false;
7497 			break;
7498 		}
7499 	}
7500 
7501 	conf->bypass_threshold = BYPASS_THRESHOLD;
7502 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7503 
7504 	conf->raid_disks = mddev->raid_disks;
7505 	if (mddev->reshape_position == MaxSector)
7506 		conf->previous_raid_disks = mddev->raid_disks;
7507 	else
7508 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7509 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7510 
7511 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7512 			      GFP_KERNEL);
7513 
7514 	if (!conf->disks)
7515 		goto abort;
7516 
7517 	for (i = 0; i < max_disks; i++) {
7518 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7519 		if (!conf->disks[i].extra_page)
7520 			goto abort;
7521 	}
7522 
7523 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7524 	if (ret)
7525 		goto abort;
7526 	conf->mddev = mddev;
7527 
7528 	ret = -ENOMEM;
7529 	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7530 	if (!conf->stripe_hashtbl)
7531 		goto abort;
7532 
7533 	/* We init hash_locks[0] separately to that it can be used
7534 	 * as the reference lock in the spin_lock_nest_lock() call
7535 	 * in lock_all_device_hash_locks_irq in order to convince
7536 	 * lockdep that we know what we are doing.
7537 	 */
7538 	spin_lock_init(conf->hash_locks);
7539 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7540 		spin_lock_init(conf->hash_locks + i);
7541 
7542 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7543 		INIT_LIST_HEAD(conf->inactive_list + i);
7544 
7545 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7546 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7547 
7548 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7549 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7550 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7551 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7552 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7553 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7554 
7555 	conf->level = mddev->new_level;
7556 	conf->chunk_sectors = mddev->new_chunk_sectors;
7557 	ret = raid5_alloc_percpu(conf);
7558 	if (ret)
7559 		goto abort;
7560 
7561 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7562 
7563 	ret = -EIO;
7564 	rdev_for_each(rdev, mddev) {
7565 		raid_disk = rdev->raid_disk;
7566 		if (raid_disk >= max_disks
7567 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7568 			continue;
7569 		disk = conf->disks + raid_disk;
7570 
7571 		if (test_bit(Replacement, &rdev->flags)) {
7572 			if (disk->replacement)
7573 				goto abort;
7574 			RCU_INIT_POINTER(disk->replacement, rdev);
7575 		} else {
7576 			if (disk->rdev)
7577 				goto abort;
7578 			RCU_INIT_POINTER(disk->rdev, rdev);
7579 		}
7580 
7581 		if (test_bit(In_sync, &rdev->flags)) {
7582 			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7583 				mdname(mddev), rdev->bdev, raid_disk);
7584 		} else if (rdev->saved_raid_disk != raid_disk)
7585 			/* Cannot rely on bitmap to complete recovery */
7586 			conf->fullsync = 1;
7587 	}
7588 
7589 	conf->level = mddev->new_level;
7590 	if (conf->level == 6) {
7591 		conf->max_degraded = 2;
7592 		if (raid6_call.xor_syndrome)
7593 			conf->rmw_level = PARITY_ENABLE_RMW;
7594 		else
7595 			conf->rmw_level = PARITY_DISABLE_RMW;
7596 	} else {
7597 		conf->max_degraded = 1;
7598 		conf->rmw_level = PARITY_ENABLE_RMW;
7599 	}
7600 	conf->algorithm = mddev->new_layout;
7601 	conf->reshape_progress = mddev->reshape_position;
7602 	if (conf->reshape_progress != MaxSector) {
7603 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7604 		conf->prev_algo = mddev->layout;
7605 	} else {
7606 		conf->prev_chunk_sectors = conf->chunk_sectors;
7607 		conf->prev_algo = conf->algorithm;
7608 	}
7609 
7610 	conf->min_nr_stripes = NR_STRIPES;
7611 	if (mddev->reshape_position != MaxSector) {
7612 		int stripes = max_t(int,
7613 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7614 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7615 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7616 		if (conf->min_nr_stripes != NR_STRIPES)
7617 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7618 				mdname(mddev), conf->min_nr_stripes);
7619 	}
7620 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7621 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7622 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7623 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7624 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7625 			mdname(mddev), memory);
7626 		ret = -ENOMEM;
7627 		goto abort;
7628 	} else
7629 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7630 	/*
7631 	 * Losing a stripe head costs more than the time to refill it,
7632 	 * it reduces the queue depth and so can hurt throughput.
7633 	 * So set it rather large, scaled by number of devices.
7634 	 */
7635 	conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7636 	if (!conf->shrinker) {
7637 		ret = -ENOMEM;
7638 		pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7639 			mdname(mddev));
7640 		goto abort;
7641 	}
7642 
7643 	conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7644 	conf->shrinker->scan_objects = raid5_cache_scan;
7645 	conf->shrinker->count_objects = raid5_cache_count;
7646 	conf->shrinker->batch = 128;
7647 	conf->shrinker->private_data = conf;
7648 
7649 	shrinker_register(conf->shrinker);
7650 
7651 	sprintf(pers_name, "raid%d", mddev->new_level);
7652 	rcu_assign_pointer(conf->thread,
7653 			   md_register_thread(raid5d, mddev, pers_name));
7654 	if (!conf->thread) {
7655 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7656 			mdname(mddev));
7657 		ret = -ENOMEM;
7658 		goto abort;
7659 	}
7660 
7661 	return conf;
7662 
7663  abort:
7664 	if (conf)
7665 		free_conf(conf);
7666 	return ERR_PTR(ret);
7667 }
7668 
7669 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7670 {
7671 	switch (algo) {
7672 	case ALGORITHM_PARITY_0:
7673 		if (raid_disk < max_degraded)
7674 			return 1;
7675 		break;
7676 	case ALGORITHM_PARITY_N:
7677 		if (raid_disk >= raid_disks - max_degraded)
7678 			return 1;
7679 		break;
7680 	case ALGORITHM_PARITY_0_6:
7681 		if (raid_disk == 0 ||
7682 		    raid_disk == raid_disks - 1)
7683 			return 1;
7684 		break;
7685 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7686 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7687 	case ALGORITHM_LEFT_SYMMETRIC_6:
7688 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7689 		if (raid_disk == raid_disks - 1)
7690 			return 1;
7691 	}
7692 	return 0;
7693 }
7694 
7695 static int raid5_set_limits(struct mddev *mddev)
7696 {
7697 	struct r5conf *conf = mddev->private;
7698 	struct queue_limits lim;
7699 	int data_disks, stripe;
7700 	struct md_rdev *rdev;
7701 
7702 	/*
7703 	 * The read-ahead size must cover two whole stripes, which is
7704 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7705 	 */
7706 	data_disks = conf->previous_raid_disks - conf->max_degraded;
7707 
7708 	/*
7709 	 * We can only discard a whole stripe. It doesn't make sense to
7710 	 * discard data disk but write parity disk
7711 	 */
7712 	stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7713 
7714 	blk_set_stacking_limits(&lim);
7715 	lim.io_min = mddev->chunk_sectors << 9;
7716 	lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7717 	lim.raid_partial_stripes_expensive = 1;
7718 	lim.discard_granularity = stripe;
7719 	lim.max_write_zeroes_sectors = 0;
7720 	mddev_stack_rdev_limits(mddev, &lim);
7721 	rdev_for_each(rdev, mddev)
7722 		queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7723 				mddev->gendisk->disk_name);
7724 
7725 	/*
7726 	 * Zeroing is required for discard, otherwise data could be lost.
7727 	 *
7728 	 * Consider a scenario: discard a stripe (the stripe could be
7729 	 * inconsistent if discard_zeroes_data is 0); write one disk of the
7730 	 * stripe (the stripe could be inconsistent again depending on which
7731 	 * disks are used to calculate parity); the disk is broken; The stripe
7732 	 * data of this disk is lost.
7733 	 *
7734 	 * We only allow DISCARD if the sysadmin has confirmed that only safe
7735 	 * devices are in use by setting a module parameter.  A better idea
7736 	 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7737 	 * required to be safe.
7738 	 */
7739 	if (!devices_handle_discard_safely ||
7740 	    lim.max_discard_sectors < (stripe >> 9) ||
7741 	    lim.discard_granularity < stripe)
7742 		lim.max_hw_discard_sectors = 0;
7743 
7744 	/*
7745 	 * Requests require having a bitmap for each stripe.
7746 	 * Limit the max sectors based on this.
7747 	 */
7748 	lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7749 
7750 	/* No restrictions on the number of segments in the request */
7751 	lim.max_segments = USHRT_MAX;
7752 
7753 	return queue_limits_set(mddev->gendisk->queue, &lim);
7754 }
7755 
7756 static int raid5_run(struct mddev *mddev)
7757 {
7758 	struct r5conf *conf;
7759 	int dirty_parity_disks = 0;
7760 	struct md_rdev *rdev;
7761 	struct md_rdev *journal_dev = NULL;
7762 	sector_t reshape_offset = 0;
7763 	int i;
7764 	long long min_offset_diff = 0;
7765 	int first = 1;
7766 	int ret = -EIO;
7767 
7768 	if (mddev->recovery_cp != MaxSector)
7769 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7770 			  mdname(mddev));
7771 
7772 	rdev_for_each(rdev, mddev) {
7773 		long long diff;
7774 
7775 		if (test_bit(Journal, &rdev->flags)) {
7776 			journal_dev = rdev;
7777 			continue;
7778 		}
7779 		if (rdev->raid_disk < 0)
7780 			continue;
7781 		diff = (rdev->new_data_offset - rdev->data_offset);
7782 		if (first) {
7783 			min_offset_diff = diff;
7784 			first = 0;
7785 		} else if (mddev->reshape_backwards &&
7786 			 diff < min_offset_diff)
7787 			min_offset_diff = diff;
7788 		else if (!mddev->reshape_backwards &&
7789 			 diff > min_offset_diff)
7790 			min_offset_diff = diff;
7791 	}
7792 
7793 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7794 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7795 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7796 			  mdname(mddev));
7797 		return -EINVAL;
7798 	}
7799 
7800 	if (mddev->reshape_position != MaxSector) {
7801 		/* Check that we can continue the reshape.
7802 		 * Difficulties arise if the stripe we would write to
7803 		 * next is at or after the stripe we would read from next.
7804 		 * For a reshape that changes the number of devices, this
7805 		 * is only possible for a very short time, and mdadm makes
7806 		 * sure that time appears to have past before assembling
7807 		 * the array.  So we fail if that time hasn't passed.
7808 		 * For a reshape that keeps the number of devices the same
7809 		 * mdadm must be monitoring the reshape can keeping the
7810 		 * critical areas read-only and backed up.  It will start
7811 		 * the array in read-only mode, so we check for that.
7812 		 */
7813 		sector_t here_new, here_old;
7814 		int old_disks;
7815 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7816 		int chunk_sectors;
7817 		int new_data_disks;
7818 
7819 		if (journal_dev) {
7820 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7821 				mdname(mddev));
7822 			return -EINVAL;
7823 		}
7824 
7825 		if (mddev->new_level != mddev->level) {
7826 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7827 				mdname(mddev));
7828 			return -EINVAL;
7829 		}
7830 		old_disks = mddev->raid_disks - mddev->delta_disks;
7831 		/* reshape_position must be on a new-stripe boundary, and one
7832 		 * further up in new geometry must map after here in old
7833 		 * geometry.
7834 		 * If the chunk sizes are different, then as we perform reshape
7835 		 * in units of the largest of the two, reshape_position needs
7836 		 * be a multiple of the largest chunk size times new data disks.
7837 		 */
7838 		here_new = mddev->reshape_position;
7839 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7840 		new_data_disks = mddev->raid_disks - max_degraded;
7841 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7842 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7843 				mdname(mddev));
7844 			return -EINVAL;
7845 		}
7846 		reshape_offset = here_new * chunk_sectors;
7847 		/* here_new is the stripe we will write to */
7848 		here_old = mddev->reshape_position;
7849 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7850 		/* here_old is the first stripe that we might need to read
7851 		 * from */
7852 		if (mddev->delta_disks == 0) {
7853 			/* We cannot be sure it is safe to start an in-place
7854 			 * reshape.  It is only safe if user-space is monitoring
7855 			 * and taking constant backups.
7856 			 * mdadm always starts a situation like this in
7857 			 * readonly mode so it can take control before
7858 			 * allowing any writes.  So just check for that.
7859 			 */
7860 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7861 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7862 				/* not really in-place - so OK */;
7863 			else if (mddev->ro == 0) {
7864 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7865 					mdname(mddev));
7866 				return -EINVAL;
7867 			}
7868 		} else if (mddev->reshape_backwards
7869 		    ? (here_new * chunk_sectors + min_offset_diff <=
7870 		       here_old * chunk_sectors)
7871 		    : (here_new * chunk_sectors >=
7872 		       here_old * chunk_sectors + (-min_offset_diff))) {
7873 			/* Reading from the same stripe as writing to - bad */
7874 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7875 				mdname(mddev));
7876 			return -EINVAL;
7877 		}
7878 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7879 		/* OK, we should be able to continue; */
7880 	} else {
7881 		BUG_ON(mddev->level != mddev->new_level);
7882 		BUG_ON(mddev->layout != mddev->new_layout);
7883 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7884 		BUG_ON(mddev->delta_disks != 0);
7885 	}
7886 
7887 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7888 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7889 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7890 			mdname(mddev));
7891 		clear_bit(MD_HAS_PPL, &mddev->flags);
7892 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7893 	}
7894 
7895 	if (mddev->private == NULL)
7896 		conf = setup_conf(mddev);
7897 	else
7898 		conf = mddev->private;
7899 
7900 	if (IS_ERR(conf))
7901 		return PTR_ERR(conf);
7902 
7903 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7904 		if (!journal_dev) {
7905 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7906 				mdname(mddev));
7907 			mddev->ro = 1;
7908 			set_disk_ro(mddev->gendisk, 1);
7909 		} else if (mddev->recovery_cp == MaxSector)
7910 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7911 	}
7912 
7913 	conf->min_offset_diff = min_offset_diff;
7914 	rcu_assign_pointer(mddev->thread, conf->thread);
7915 	rcu_assign_pointer(conf->thread, NULL);
7916 	mddev->private = conf;
7917 
7918 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7919 	     i++) {
7920 		rdev = conf->disks[i].rdev;
7921 		if (!rdev)
7922 			continue;
7923 		if (conf->disks[i].replacement &&
7924 		    conf->reshape_progress != MaxSector) {
7925 			/* replacements and reshape simply do not mix. */
7926 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7927 			goto abort;
7928 		}
7929 		if (test_bit(In_sync, &rdev->flags))
7930 			continue;
7931 		/* This disc is not fully in-sync.  However if it
7932 		 * just stored parity (beyond the recovery_offset),
7933 		 * when we don't need to be concerned about the
7934 		 * array being dirty.
7935 		 * When reshape goes 'backwards', we never have
7936 		 * partially completed devices, so we only need
7937 		 * to worry about reshape going forwards.
7938 		 */
7939 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7940 		if (mddev->major_version == 0 &&
7941 		    mddev->minor_version > 90)
7942 			rdev->recovery_offset = reshape_offset;
7943 
7944 		if (rdev->recovery_offset < reshape_offset) {
7945 			/* We need to check old and new layout */
7946 			if (!only_parity(rdev->raid_disk,
7947 					 conf->algorithm,
7948 					 conf->raid_disks,
7949 					 conf->max_degraded))
7950 				continue;
7951 		}
7952 		if (!only_parity(rdev->raid_disk,
7953 				 conf->prev_algo,
7954 				 conf->previous_raid_disks,
7955 				 conf->max_degraded))
7956 			continue;
7957 		dirty_parity_disks++;
7958 	}
7959 
7960 	/*
7961 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7962 	 */
7963 	mddev->degraded = raid5_calc_degraded(conf);
7964 
7965 	if (has_failed(conf)) {
7966 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7967 			mdname(mddev), mddev->degraded, conf->raid_disks);
7968 		goto abort;
7969 	}
7970 
7971 	/* device size must be a multiple of chunk size */
7972 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7973 	mddev->resync_max_sectors = mddev->dev_sectors;
7974 
7975 	if (mddev->degraded > dirty_parity_disks &&
7976 	    mddev->recovery_cp != MaxSector) {
7977 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7978 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7979 				mdname(mddev));
7980 		else if (mddev->ok_start_degraded)
7981 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7982 				mdname(mddev));
7983 		else {
7984 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7985 				mdname(mddev));
7986 			goto abort;
7987 		}
7988 	}
7989 
7990 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7991 		mdname(mddev), conf->level,
7992 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7993 		mddev->new_layout);
7994 
7995 	print_raid5_conf(conf);
7996 
7997 	if (conf->reshape_progress != MaxSector) {
7998 		conf->reshape_safe = conf->reshape_progress;
7999 		atomic_set(&conf->reshape_stripes, 0);
8000 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8001 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8002 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8003 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8004 	}
8005 
8006 	/* Ok, everything is just fine now */
8007 	if (mddev->to_remove == &raid5_attrs_group)
8008 		mddev->to_remove = NULL;
8009 	else if (mddev->kobj.sd &&
8010 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8011 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
8012 			mdname(mddev));
8013 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8014 
8015 	if (!mddev_is_dm(mddev)) {
8016 		ret = raid5_set_limits(mddev);
8017 		if (ret)
8018 			goto abort;
8019 	}
8020 
8021 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8022 		goto abort;
8023 
8024 	return 0;
8025 abort:
8026 	md_unregister_thread(mddev, &mddev->thread);
8027 	print_raid5_conf(conf);
8028 	free_conf(conf);
8029 	mddev->private = NULL;
8030 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8031 	return ret;
8032 }
8033 
8034 static void raid5_free(struct mddev *mddev, void *priv)
8035 {
8036 	struct r5conf *conf = priv;
8037 
8038 	free_conf(conf);
8039 	mddev->to_remove = &raid5_attrs_group;
8040 }
8041 
8042 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8043 {
8044 	struct r5conf *conf = mddev->private;
8045 	int i;
8046 
8047 	lockdep_assert_held(&mddev->lock);
8048 
8049 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8050 		conf->chunk_sectors / 2, mddev->layout);
8051 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8052 	for (i = 0; i < conf->raid_disks; i++) {
8053 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8054 
8055 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8056 	}
8057 	seq_printf (seq, "]");
8058 }
8059 
8060 static void print_raid5_conf (struct r5conf *conf)
8061 {
8062 	struct md_rdev *rdev;
8063 	int i;
8064 
8065 	pr_debug("RAID conf printout:\n");
8066 	if (!conf) {
8067 		pr_debug("(conf==NULL)\n");
8068 		return;
8069 	}
8070 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8071 	       conf->raid_disks,
8072 	       conf->raid_disks - conf->mddev->degraded);
8073 
8074 	rcu_read_lock();
8075 	for (i = 0; i < conf->raid_disks; i++) {
8076 		rdev = rcu_dereference(conf->disks[i].rdev);
8077 		if (rdev)
8078 			pr_debug(" disk %d, o:%d, dev:%pg\n",
8079 			       i, !test_bit(Faulty, &rdev->flags),
8080 			       rdev->bdev);
8081 	}
8082 	rcu_read_unlock();
8083 }
8084 
8085 static int raid5_spare_active(struct mddev *mddev)
8086 {
8087 	int i;
8088 	struct r5conf *conf = mddev->private;
8089 	struct md_rdev *rdev, *replacement;
8090 	int count = 0;
8091 	unsigned long flags;
8092 
8093 	for (i = 0; i < conf->raid_disks; i++) {
8094 		rdev = conf->disks[i].rdev;
8095 		replacement = conf->disks[i].replacement;
8096 		if (replacement
8097 		    && replacement->recovery_offset == MaxSector
8098 		    && !test_bit(Faulty, &replacement->flags)
8099 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
8100 			/* Replacement has just become active. */
8101 			if (!rdev
8102 			    || !test_and_clear_bit(In_sync, &rdev->flags))
8103 				count++;
8104 			if (rdev) {
8105 				/* Replaced device not technically faulty,
8106 				 * but we need to be sure it gets removed
8107 				 * and never re-added.
8108 				 */
8109 				set_bit(Faulty, &rdev->flags);
8110 				sysfs_notify_dirent_safe(
8111 					rdev->sysfs_state);
8112 			}
8113 			sysfs_notify_dirent_safe(replacement->sysfs_state);
8114 		} else if (rdev
8115 		    && rdev->recovery_offset == MaxSector
8116 		    && !test_bit(Faulty, &rdev->flags)
8117 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
8118 			count++;
8119 			sysfs_notify_dirent_safe(rdev->sysfs_state);
8120 		}
8121 	}
8122 	spin_lock_irqsave(&conf->device_lock, flags);
8123 	mddev->degraded = raid5_calc_degraded(conf);
8124 	spin_unlock_irqrestore(&conf->device_lock, flags);
8125 	print_raid5_conf(conf);
8126 	return count;
8127 }
8128 
8129 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8130 {
8131 	struct r5conf *conf = mddev->private;
8132 	int err = 0;
8133 	int number = rdev->raid_disk;
8134 	struct md_rdev **rdevp;
8135 	struct disk_info *p;
8136 	struct md_rdev *tmp;
8137 
8138 	print_raid5_conf(conf);
8139 	if (test_bit(Journal, &rdev->flags) && conf->log) {
8140 		/*
8141 		 * we can't wait pending write here, as this is called in
8142 		 * raid5d, wait will deadlock.
8143 		 * neilb: there is no locking about new writes here,
8144 		 * so this cannot be safe.
8145 		 */
8146 		if (atomic_read(&conf->active_stripes) ||
8147 		    atomic_read(&conf->r5c_cached_full_stripes) ||
8148 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
8149 			return -EBUSY;
8150 		}
8151 		log_exit(conf);
8152 		return 0;
8153 	}
8154 	if (unlikely(number >= conf->pool_size))
8155 		return 0;
8156 	p = conf->disks + number;
8157 	if (rdev == p->rdev)
8158 		rdevp = &p->rdev;
8159 	else if (rdev == p->replacement)
8160 		rdevp = &p->replacement;
8161 	else
8162 		return 0;
8163 
8164 	if (number >= conf->raid_disks &&
8165 	    conf->reshape_progress == MaxSector)
8166 		clear_bit(In_sync, &rdev->flags);
8167 
8168 	if (test_bit(In_sync, &rdev->flags) ||
8169 	    atomic_read(&rdev->nr_pending)) {
8170 		err = -EBUSY;
8171 		goto abort;
8172 	}
8173 	/* Only remove non-faulty devices if recovery
8174 	 * isn't possible.
8175 	 */
8176 	if (!test_bit(Faulty, &rdev->flags) &&
8177 	    mddev->recovery_disabled != conf->recovery_disabled &&
8178 	    !has_failed(conf) &&
8179 	    (!p->replacement || p->replacement == rdev) &&
8180 	    number < conf->raid_disks) {
8181 		err = -EBUSY;
8182 		goto abort;
8183 	}
8184 	WRITE_ONCE(*rdevp, NULL);
8185 	if (!err) {
8186 		err = log_modify(conf, rdev, false);
8187 		if (err)
8188 			goto abort;
8189 	}
8190 
8191 	tmp = p->replacement;
8192 	if (tmp) {
8193 		/* We must have just cleared 'rdev' */
8194 		WRITE_ONCE(p->rdev, tmp);
8195 		clear_bit(Replacement, &tmp->flags);
8196 		WRITE_ONCE(p->replacement, NULL);
8197 
8198 		if (!err)
8199 			err = log_modify(conf, tmp, true);
8200 	}
8201 
8202 	clear_bit(WantReplacement, &rdev->flags);
8203 abort:
8204 
8205 	print_raid5_conf(conf);
8206 	return err;
8207 }
8208 
8209 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8210 {
8211 	struct r5conf *conf = mddev->private;
8212 	int ret, err = -EEXIST;
8213 	int disk;
8214 	struct disk_info *p;
8215 	struct md_rdev *tmp;
8216 	int first = 0;
8217 	int last = conf->raid_disks - 1;
8218 
8219 	if (test_bit(Journal, &rdev->flags)) {
8220 		if (conf->log)
8221 			return -EBUSY;
8222 
8223 		rdev->raid_disk = 0;
8224 		/*
8225 		 * The array is in readonly mode if journal is missing, so no
8226 		 * write requests running. We should be safe
8227 		 */
8228 		ret = log_init(conf, rdev, false);
8229 		if (ret)
8230 			return ret;
8231 
8232 		ret = r5l_start(conf->log);
8233 		if (ret)
8234 			return ret;
8235 
8236 		return 0;
8237 	}
8238 	if (mddev->recovery_disabled == conf->recovery_disabled)
8239 		return -EBUSY;
8240 
8241 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8242 		/* no point adding a device */
8243 		return -EINVAL;
8244 
8245 	if (rdev->raid_disk >= 0)
8246 		first = last = rdev->raid_disk;
8247 
8248 	/*
8249 	 * find the disk ... but prefer rdev->saved_raid_disk
8250 	 * if possible.
8251 	 */
8252 	if (rdev->saved_raid_disk >= first &&
8253 	    rdev->saved_raid_disk <= last &&
8254 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8255 		first = rdev->saved_raid_disk;
8256 
8257 	for (disk = first; disk <= last; disk++) {
8258 		p = conf->disks + disk;
8259 		if (p->rdev == NULL) {
8260 			clear_bit(In_sync, &rdev->flags);
8261 			rdev->raid_disk = disk;
8262 			if (rdev->saved_raid_disk != disk)
8263 				conf->fullsync = 1;
8264 			WRITE_ONCE(p->rdev, rdev);
8265 
8266 			err = log_modify(conf, rdev, true);
8267 
8268 			goto out;
8269 		}
8270 	}
8271 	for (disk = first; disk <= last; disk++) {
8272 		p = conf->disks + disk;
8273 		tmp = p->rdev;
8274 		if (test_bit(WantReplacement, &tmp->flags) &&
8275 		    mddev->reshape_position == MaxSector &&
8276 		    p->replacement == NULL) {
8277 			clear_bit(In_sync, &rdev->flags);
8278 			set_bit(Replacement, &rdev->flags);
8279 			rdev->raid_disk = disk;
8280 			err = 0;
8281 			conf->fullsync = 1;
8282 			WRITE_ONCE(p->replacement, rdev);
8283 			break;
8284 		}
8285 	}
8286 out:
8287 	print_raid5_conf(conf);
8288 	return err;
8289 }
8290 
8291 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8292 {
8293 	/* no resync is happening, and there is enough space
8294 	 * on all devices, so we can resize.
8295 	 * We need to make sure resync covers any new space.
8296 	 * If the array is shrinking we should possibly wait until
8297 	 * any io in the removed space completes, but it hardly seems
8298 	 * worth it.
8299 	 */
8300 	sector_t newsize;
8301 	struct r5conf *conf = mddev->private;
8302 
8303 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8304 		return -EINVAL;
8305 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8306 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8307 	if (mddev->external_size &&
8308 	    mddev->array_sectors > newsize)
8309 		return -EINVAL;
8310 	if (mddev->bitmap) {
8311 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8312 		if (ret)
8313 			return ret;
8314 	}
8315 	md_set_array_sectors(mddev, newsize);
8316 	if (sectors > mddev->dev_sectors &&
8317 	    mddev->recovery_cp > mddev->dev_sectors) {
8318 		mddev->recovery_cp = mddev->dev_sectors;
8319 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8320 	}
8321 	mddev->dev_sectors = sectors;
8322 	mddev->resync_max_sectors = sectors;
8323 	return 0;
8324 }
8325 
8326 static int check_stripe_cache(struct mddev *mddev)
8327 {
8328 	/* Can only proceed if there are plenty of stripe_heads.
8329 	 * We need a minimum of one full stripe,, and for sensible progress
8330 	 * it is best to have about 4 times that.
8331 	 * If we require 4 times, then the default 256 4K stripe_heads will
8332 	 * allow for chunk sizes up to 256K, which is probably OK.
8333 	 * If the chunk size is greater, user-space should request more
8334 	 * stripe_heads first.
8335 	 */
8336 	struct r5conf *conf = mddev->private;
8337 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8338 	    > conf->min_nr_stripes ||
8339 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8340 	    > conf->min_nr_stripes) {
8341 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8342 			mdname(mddev),
8343 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8344 			 / RAID5_STRIPE_SIZE(conf))*4);
8345 		return 0;
8346 	}
8347 	return 1;
8348 }
8349 
8350 static int check_reshape(struct mddev *mddev)
8351 {
8352 	struct r5conf *conf = mddev->private;
8353 
8354 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8355 		return -EINVAL;
8356 	if (mddev->delta_disks == 0 &&
8357 	    mddev->new_layout == mddev->layout &&
8358 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8359 		return 0; /* nothing to do */
8360 	if (has_failed(conf))
8361 		return -EINVAL;
8362 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8363 		/* We might be able to shrink, but the devices must
8364 		 * be made bigger first.
8365 		 * For raid6, 4 is the minimum size.
8366 		 * Otherwise 2 is the minimum
8367 		 */
8368 		int min = 2;
8369 		if (mddev->level == 6)
8370 			min = 4;
8371 		if (mddev->raid_disks + mddev->delta_disks < min)
8372 			return -EINVAL;
8373 	}
8374 
8375 	if (!check_stripe_cache(mddev))
8376 		return -ENOSPC;
8377 
8378 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8379 	    mddev->delta_disks > 0)
8380 		if (resize_chunks(conf,
8381 				  conf->previous_raid_disks
8382 				  + max(0, mddev->delta_disks),
8383 				  max(mddev->new_chunk_sectors,
8384 				      mddev->chunk_sectors)
8385 			    ) < 0)
8386 			return -ENOMEM;
8387 
8388 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8389 		return 0; /* never bother to shrink */
8390 	return resize_stripes(conf, (conf->previous_raid_disks
8391 				     + mddev->delta_disks));
8392 }
8393 
8394 static int raid5_start_reshape(struct mddev *mddev)
8395 {
8396 	struct r5conf *conf = mddev->private;
8397 	struct md_rdev *rdev;
8398 	int spares = 0;
8399 	int i;
8400 	unsigned long flags;
8401 
8402 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8403 		return -EBUSY;
8404 
8405 	if (!check_stripe_cache(mddev))
8406 		return -ENOSPC;
8407 
8408 	if (has_failed(conf))
8409 		return -EINVAL;
8410 
8411 	/* raid5 can't handle concurrent reshape and recovery */
8412 	if (mddev->recovery_cp < MaxSector)
8413 		return -EBUSY;
8414 	for (i = 0; i < conf->raid_disks; i++)
8415 		if (conf->disks[i].replacement)
8416 			return -EBUSY;
8417 
8418 	rdev_for_each(rdev, mddev) {
8419 		if (!test_bit(In_sync, &rdev->flags)
8420 		    && !test_bit(Faulty, &rdev->flags))
8421 			spares++;
8422 	}
8423 
8424 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8425 		/* Not enough devices even to make a degraded array
8426 		 * of that size
8427 		 */
8428 		return -EINVAL;
8429 
8430 	/* Refuse to reduce size of the array.  Any reductions in
8431 	 * array size must be through explicit setting of array_size
8432 	 * attribute.
8433 	 */
8434 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8435 	    < mddev->array_sectors) {
8436 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8437 			mdname(mddev));
8438 		return -EINVAL;
8439 	}
8440 
8441 	atomic_set(&conf->reshape_stripes, 0);
8442 	spin_lock_irq(&conf->device_lock);
8443 	write_seqcount_begin(&conf->gen_lock);
8444 	conf->previous_raid_disks = conf->raid_disks;
8445 	conf->raid_disks += mddev->delta_disks;
8446 	conf->prev_chunk_sectors = conf->chunk_sectors;
8447 	conf->chunk_sectors = mddev->new_chunk_sectors;
8448 	conf->prev_algo = conf->algorithm;
8449 	conf->algorithm = mddev->new_layout;
8450 	conf->generation++;
8451 	/* Code that selects data_offset needs to see the generation update
8452 	 * if reshape_progress has been set - so a memory barrier needed.
8453 	 */
8454 	smp_mb();
8455 	if (mddev->reshape_backwards)
8456 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8457 	else
8458 		conf->reshape_progress = 0;
8459 	conf->reshape_safe = conf->reshape_progress;
8460 	write_seqcount_end(&conf->gen_lock);
8461 	spin_unlock_irq(&conf->device_lock);
8462 
8463 	/* Now make sure any requests that proceeded on the assumption
8464 	 * the reshape wasn't running - like Discard or Read - have
8465 	 * completed.
8466 	 */
8467 	raid5_quiesce(mddev, true);
8468 	raid5_quiesce(mddev, false);
8469 
8470 	/* Add some new drives, as many as will fit.
8471 	 * We know there are enough to make the newly sized array work.
8472 	 * Don't add devices if we are reducing the number of
8473 	 * devices in the array.  This is because it is not possible
8474 	 * to correctly record the "partially reconstructed" state of
8475 	 * such devices during the reshape and confusion could result.
8476 	 */
8477 	if (mddev->delta_disks >= 0) {
8478 		rdev_for_each(rdev, mddev)
8479 			if (rdev->raid_disk < 0 &&
8480 			    !test_bit(Faulty, &rdev->flags)) {
8481 				if (raid5_add_disk(mddev, rdev) == 0) {
8482 					if (rdev->raid_disk
8483 					    >= conf->previous_raid_disks)
8484 						set_bit(In_sync, &rdev->flags);
8485 					else
8486 						rdev->recovery_offset = 0;
8487 
8488 					/* Failure here is OK */
8489 					sysfs_link_rdev(mddev, rdev);
8490 				}
8491 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8492 				   && !test_bit(Faulty, &rdev->flags)) {
8493 				/* This is a spare that was manually added */
8494 				set_bit(In_sync, &rdev->flags);
8495 			}
8496 
8497 		/* When a reshape changes the number of devices,
8498 		 * ->degraded is measured against the larger of the
8499 		 * pre and post number of devices.
8500 		 */
8501 		spin_lock_irqsave(&conf->device_lock, flags);
8502 		mddev->degraded = raid5_calc_degraded(conf);
8503 		spin_unlock_irqrestore(&conf->device_lock, flags);
8504 	}
8505 	mddev->raid_disks = conf->raid_disks;
8506 	mddev->reshape_position = conf->reshape_progress;
8507 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8508 
8509 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8510 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8511 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8512 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8513 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8514 	conf->reshape_checkpoint = jiffies;
8515 	md_new_event();
8516 	return 0;
8517 }
8518 
8519 /* This is called from the reshape thread and should make any
8520  * changes needed in 'conf'
8521  */
8522 static void end_reshape(struct r5conf *conf)
8523 {
8524 
8525 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8526 		struct md_rdev *rdev;
8527 
8528 		spin_lock_irq(&conf->device_lock);
8529 		conf->previous_raid_disks = conf->raid_disks;
8530 		md_finish_reshape(conf->mddev);
8531 		smp_wmb();
8532 		conf->reshape_progress = MaxSector;
8533 		conf->mddev->reshape_position = MaxSector;
8534 		rdev_for_each(rdev, conf->mddev)
8535 			if (rdev->raid_disk >= 0 &&
8536 			    !test_bit(Journal, &rdev->flags) &&
8537 			    !test_bit(In_sync, &rdev->flags))
8538 				rdev->recovery_offset = MaxSector;
8539 		spin_unlock_irq(&conf->device_lock);
8540 		wake_up(&conf->wait_for_overlap);
8541 
8542 		mddev_update_io_opt(conf->mddev,
8543 			conf->raid_disks - conf->max_degraded);
8544 	}
8545 }
8546 
8547 /* This is called from the raid5d thread with mddev_lock held.
8548  * It makes config changes to the device.
8549  */
8550 static void raid5_finish_reshape(struct mddev *mddev)
8551 {
8552 	struct r5conf *conf = mddev->private;
8553 	struct md_rdev *rdev;
8554 
8555 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8556 
8557 		if (mddev->delta_disks <= 0) {
8558 			int d;
8559 			spin_lock_irq(&conf->device_lock);
8560 			mddev->degraded = raid5_calc_degraded(conf);
8561 			spin_unlock_irq(&conf->device_lock);
8562 			for (d = conf->raid_disks ;
8563 			     d < conf->raid_disks - mddev->delta_disks;
8564 			     d++) {
8565 				rdev = conf->disks[d].rdev;
8566 				if (rdev)
8567 					clear_bit(In_sync, &rdev->flags);
8568 				rdev = conf->disks[d].replacement;
8569 				if (rdev)
8570 					clear_bit(In_sync, &rdev->flags);
8571 			}
8572 		}
8573 		mddev->layout = conf->algorithm;
8574 		mddev->chunk_sectors = conf->chunk_sectors;
8575 		mddev->reshape_position = MaxSector;
8576 		mddev->delta_disks = 0;
8577 		mddev->reshape_backwards = 0;
8578 	}
8579 }
8580 
8581 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8582 {
8583 	struct r5conf *conf = mddev->private;
8584 
8585 	if (quiesce) {
8586 		/* stop all writes */
8587 		lock_all_device_hash_locks_irq(conf);
8588 		/* '2' tells resync/reshape to pause so that all
8589 		 * active stripes can drain
8590 		 */
8591 		r5c_flush_cache(conf, INT_MAX);
8592 		/* need a memory barrier to make sure read_one_chunk() sees
8593 		 * quiesce started and reverts to slow (locked) path.
8594 		 */
8595 		smp_store_release(&conf->quiesce, 2);
8596 		wait_event_cmd(conf->wait_for_quiescent,
8597 				    atomic_read(&conf->active_stripes) == 0 &&
8598 				    atomic_read(&conf->active_aligned_reads) == 0,
8599 				    unlock_all_device_hash_locks_irq(conf),
8600 				    lock_all_device_hash_locks_irq(conf));
8601 		conf->quiesce = 1;
8602 		unlock_all_device_hash_locks_irq(conf);
8603 		/* allow reshape to continue */
8604 		wake_up(&conf->wait_for_overlap);
8605 	} else {
8606 		/* re-enable writes */
8607 		lock_all_device_hash_locks_irq(conf);
8608 		conf->quiesce = 0;
8609 		wake_up(&conf->wait_for_quiescent);
8610 		wake_up(&conf->wait_for_overlap);
8611 		unlock_all_device_hash_locks_irq(conf);
8612 	}
8613 	log_quiesce(conf, quiesce);
8614 }
8615 
8616 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8617 {
8618 	struct r0conf *raid0_conf = mddev->private;
8619 	sector_t sectors;
8620 
8621 	/* for raid0 takeover only one zone is supported */
8622 	if (raid0_conf->nr_strip_zones > 1) {
8623 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8624 			mdname(mddev));
8625 		return ERR_PTR(-EINVAL);
8626 	}
8627 
8628 	sectors = raid0_conf->strip_zone[0].zone_end;
8629 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8630 	mddev->dev_sectors = sectors;
8631 	mddev->new_level = level;
8632 	mddev->new_layout = ALGORITHM_PARITY_N;
8633 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8634 	mddev->raid_disks += 1;
8635 	mddev->delta_disks = 1;
8636 	/* make sure it will be not marked as dirty */
8637 	mddev->recovery_cp = MaxSector;
8638 
8639 	return setup_conf(mddev);
8640 }
8641 
8642 static void *raid5_takeover_raid1(struct mddev *mddev)
8643 {
8644 	int chunksect;
8645 	void *ret;
8646 
8647 	if (mddev->raid_disks != 2 ||
8648 	    mddev->degraded > 1)
8649 		return ERR_PTR(-EINVAL);
8650 
8651 	/* Should check if there are write-behind devices? */
8652 
8653 	chunksect = 64*2; /* 64K by default */
8654 
8655 	/* The array must be an exact multiple of chunksize */
8656 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8657 		chunksect >>= 1;
8658 
8659 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8660 		/* array size does not allow a suitable chunk size */
8661 		return ERR_PTR(-EINVAL);
8662 
8663 	mddev->new_level = 5;
8664 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8665 	mddev->new_chunk_sectors = chunksect;
8666 
8667 	ret = setup_conf(mddev);
8668 	if (!IS_ERR(ret))
8669 		mddev_clear_unsupported_flags(mddev,
8670 			UNSUPPORTED_MDDEV_FLAGS);
8671 	return ret;
8672 }
8673 
8674 static void *raid5_takeover_raid6(struct mddev *mddev)
8675 {
8676 	int new_layout;
8677 
8678 	switch (mddev->layout) {
8679 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8680 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8681 		break;
8682 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8683 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8684 		break;
8685 	case ALGORITHM_LEFT_SYMMETRIC_6:
8686 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8687 		break;
8688 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8689 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8690 		break;
8691 	case ALGORITHM_PARITY_0_6:
8692 		new_layout = ALGORITHM_PARITY_0;
8693 		break;
8694 	case ALGORITHM_PARITY_N:
8695 		new_layout = ALGORITHM_PARITY_N;
8696 		break;
8697 	default:
8698 		return ERR_PTR(-EINVAL);
8699 	}
8700 	mddev->new_level = 5;
8701 	mddev->new_layout = new_layout;
8702 	mddev->delta_disks = -1;
8703 	mddev->raid_disks -= 1;
8704 	return setup_conf(mddev);
8705 }
8706 
8707 static int raid5_check_reshape(struct mddev *mddev)
8708 {
8709 	/* For a 2-drive array, the layout and chunk size can be changed
8710 	 * immediately as not restriping is needed.
8711 	 * For larger arrays we record the new value - after validation
8712 	 * to be used by a reshape pass.
8713 	 */
8714 	struct r5conf *conf = mddev->private;
8715 	int new_chunk = mddev->new_chunk_sectors;
8716 
8717 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8718 		return -EINVAL;
8719 	if (new_chunk > 0) {
8720 		if (!is_power_of_2(new_chunk))
8721 			return -EINVAL;
8722 		if (new_chunk < (PAGE_SIZE>>9))
8723 			return -EINVAL;
8724 		if (mddev->array_sectors & (new_chunk-1))
8725 			/* not factor of array size */
8726 			return -EINVAL;
8727 	}
8728 
8729 	/* They look valid */
8730 
8731 	if (mddev->raid_disks == 2) {
8732 		/* can make the change immediately */
8733 		if (mddev->new_layout >= 0) {
8734 			conf->algorithm = mddev->new_layout;
8735 			mddev->layout = mddev->new_layout;
8736 		}
8737 		if (new_chunk > 0) {
8738 			conf->chunk_sectors = new_chunk ;
8739 			mddev->chunk_sectors = new_chunk;
8740 		}
8741 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8742 		md_wakeup_thread(mddev->thread);
8743 	}
8744 	return check_reshape(mddev);
8745 }
8746 
8747 static int raid6_check_reshape(struct mddev *mddev)
8748 {
8749 	int new_chunk = mddev->new_chunk_sectors;
8750 
8751 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8752 		return -EINVAL;
8753 	if (new_chunk > 0) {
8754 		if (!is_power_of_2(new_chunk))
8755 			return -EINVAL;
8756 		if (new_chunk < (PAGE_SIZE >> 9))
8757 			return -EINVAL;
8758 		if (mddev->array_sectors & (new_chunk-1))
8759 			/* not factor of array size */
8760 			return -EINVAL;
8761 	}
8762 
8763 	/* They look valid */
8764 	return check_reshape(mddev);
8765 }
8766 
8767 static void *raid5_takeover(struct mddev *mddev)
8768 {
8769 	/* raid5 can take over:
8770 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8771 	 *  raid1 - if there are two drives.  We need to know the chunk size
8772 	 *  raid4 - trivial - just use a raid4 layout.
8773 	 *  raid6 - Providing it is a *_6 layout
8774 	 */
8775 	if (mddev->level == 0)
8776 		return raid45_takeover_raid0(mddev, 5);
8777 	if (mddev->level == 1)
8778 		return raid5_takeover_raid1(mddev);
8779 	if (mddev->level == 4) {
8780 		mddev->new_layout = ALGORITHM_PARITY_N;
8781 		mddev->new_level = 5;
8782 		return setup_conf(mddev);
8783 	}
8784 	if (mddev->level == 6)
8785 		return raid5_takeover_raid6(mddev);
8786 
8787 	return ERR_PTR(-EINVAL);
8788 }
8789 
8790 static void *raid4_takeover(struct mddev *mddev)
8791 {
8792 	/* raid4 can take over:
8793 	 *  raid0 - if there is only one strip zone
8794 	 *  raid5 - if layout is right
8795 	 */
8796 	if (mddev->level == 0)
8797 		return raid45_takeover_raid0(mddev, 4);
8798 	if (mddev->level == 5 &&
8799 	    mddev->layout == ALGORITHM_PARITY_N) {
8800 		mddev->new_layout = 0;
8801 		mddev->new_level = 4;
8802 		return setup_conf(mddev);
8803 	}
8804 	return ERR_PTR(-EINVAL);
8805 }
8806 
8807 static struct md_personality raid5_personality;
8808 
8809 static void *raid6_takeover(struct mddev *mddev)
8810 {
8811 	/* Currently can only take over a raid5.  We map the
8812 	 * personality to an equivalent raid6 personality
8813 	 * with the Q block at the end.
8814 	 */
8815 	int new_layout;
8816 
8817 	if (mddev->pers != &raid5_personality)
8818 		return ERR_PTR(-EINVAL);
8819 	if (mddev->degraded > 1)
8820 		return ERR_PTR(-EINVAL);
8821 	if (mddev->raid_disks > 253)
8822 		return ERR_PTR(-EINVAL);
8823 	if (mddev->raid_disks < 3)
8824 		return ERR_PTR(-EINVAL);
8825 
8826 	switch (mddev->layout) {
8827 	case ALGORITHM_LEFT_ASYMMETRIC:
8828 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8829 		break;
8830 	case ALGORITHM_RIGHT_ASYMMETRIC:
8831 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8832 		break;
8833 	case ALGORITHM_LEFT_SYMMETRIC:
8834 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8835 		break;
8836 	case ALGORITHM_RIGHT_SYMMETRIC:
8837 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8838 		break;
8839 	case ALGORITHM_PARITY_0:
8840 		new_layout = ALGORITHM_PARITY_0_6;
8841 		break;
8842 	case ALGORITHM_PARITY_N:
8843 		new_layout = ALGORITHM_PARITY_N;
8844 		break;
8845 	default:
8846 		return ERR_PTR(-EINVAL);
8847 	}
8848 	mddev->new_level = 6;
8849 	mddev->new_layout = new_layout;
8850 	mddev->delta_disks = 1;
8851 	mddev->raid_disks += 1;
8852 	return setup_conf(mddev);
8853 }
8854 
8855 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8856 {
8857 	struct r5conf *conf;
8858 	int err;
8859 
8860 	err = mddev_suspend_and_lock(mddev);
8861 	if (err)
8862 		return err;
8863 	conf = mddev->private;
8864 	if (!conf) {
8865 		mddev_unlock_and_resume(mddev);
8866 		return -ENODEV;
8867 	}
8868 
8869 	if (strncmp(buf, "ppl", 3) == 0) {
8870 		/* ppl only works with RAID 5 */
8871 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8872 			err = log_init(conf, NULL, true);
8873 			if (!err) {
8874 				err = resize_stripes(conf, conf->pool_size);
8875 				if (err)
8876 					log_exit(conf);
8877 			}
8878 		} else
8879 			err = -EINVAL;
8880 	} else if (strncmp(buf, "resync", 6) == 0) {
8881 		if (raid5_has_ppl(conf)) {
8882 			log_exit(conf);
8883 			err = resize_stripes(conf, conf->pool_size);
8884 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8885 			   r5l_log_disk_error(conf)) {
8886 			bool journal_dev_exists = false;
8887 			struct md_rdev *rdev;
8888 
8889 			rdev_for_each(rdev, mddev)
8890 				if (test_bit(Journal, &rdev->flags)) {
8891 					journal_dev_exists = true;
8892 					break;
8893 				}
8894 
8895 			if (!journal_dev_exists)
8896 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8897 			else  /* need remove journal device first */
8898 				err = -EBUSY;
8899 		} else
8900 			err = -EINVAL;
8901 	} else {
8902 		err = -EINVAL;
8903 	}
8904 
8905 	if (!err)
8906 		md_update_sb(mddev, 1);
8907 
8908 	mddev_unlock_and_resume(mddev);
8909 
8910 	return err;
8911 }
8912 
8913 static int raid5_start(struct mddev *mddev)
8914 {
8915 	struct r5conf *conf = mddev->private;
8916 
8917 	return r5l_start(conf->log);
8918 }
8919 
8920 /*
8921  * This is only used for dm-raid456, caller already frozen sync_thread, hence
8922  * if rehsape is still in progress, io that is waiting for reshape can never be
8923  * done now, hence wake up and handle those IO.
8924  */
8925 static void raid5_prepare_suspend(struct mddev *mddev)
8926 {
8927 	struct r5conf *conf = mddev->private;
8928 
8929 	wake_up(&conf->wait_for_overlap);
8930 }
8931 
8932 static struct md_personality raid6_personality =
8933 {
8934 	.name		= "raid6",
8935 	.level		= 6,
8936 	.owner		= THIS_MODULE,
8937 	.make_request	= raid5_make_request,
8938 	.run		= raid5_run,
8939 	.start		= raid5_start,
8940 	.free		= raid5_free,
8941 	.status		= raid5_status,
8942 	.error_handler	= raid5_error,
8943 	.hot_add_disk	= raid5_add_disk,
8944 	.hot_remove_disk= raid5_remove_disk,
8945 	.spare_active	= raid5_spare_active,
8946 	.sync_request	= raid5_sync_request,
8947 	.resize		= raid5_resize,
8948 	.size		= raid5_size,
8949 	.check_reshape	= raid6_check_reshape,
8950 	.start_reshape  = raid5_start_reshape,
8951 	.finish_reshape = raid5_finish_reshape,
8952 	.quiesce	= raid5_quiesce,
8953 	.takeover	= raid6_takeover,
8954 	.change_consistency_policy = raid5_change_consistency_policy,
8955 	.prepare_suspend = raid5_prepare_suspend,
8956 };
8957 static struct md_personality raid5_personality =
8958 {
8959 	.name		= "raid5",
8960 	.level		= 5,
8961 	.owner		= THIS_MODULE,
8962 	.make_request	= raid5_make_request,
8963 	.run		= raid5_run,
8964 	.start		= raid5_start,
8965 	.free		= raid5_free,
8966 	.status		= raid5_status,
8967 	.error_handler	= raid5_error,
8968 	.hot_add_disk	= raid5_add_disk,
8969 	.hot_remove_disk= raid5_remove_disk,
8970 	.spare_active	= raid5_spare_active,
8971 	.sync_request	= raid5_sync_request,
8972 	.resize		= raid5_resize,
8973 	.size		= raid5_size,
8974 	.check_reshape	= raid5_check_reshape,
8975 	.start_reshape  = raid5_start_reshape,
8976 	.finish_reshape = raid5_finish_reshape,
8977 	.quiesce	= raid5_quiesce,
8978 	.takeover	= raid5_takeover,
8979 	.change_consistency_policy = raid5_change_consistency_policy,
8980 	.prepare_suspend = raid5_prepare_suspend,
8981 };
8982 
8983 static struct md_personality raid4_personality =
8984 {
8985 	.name		= "raid4",
8986 	.level		= 4,
8987 	.owner		= THIS_MODULE,
8988 	.make_request	= raid5_make_request,
8989 	.run		= raid5_run,
8990 	.start		= raid5_start,
8991 	.free		= raid5_free,
8992 	.status		= raid5_status,
8993 	.error_handler	= raid5_error,
8994 	.hot_add_disk	= raid5_add_disk,
8995 	.hot_remove_disk= raid5_remove_disk,
8996 	.spare_active	= raid5_spare_active,
8997 	.sync_request	= raid5_sync_request,
8998 	.resize		= raid5_resize,
8999 	.size		= raid5_size,
9000 	.check_reshape	= raid5_check_reshape,
9001 	.start_reshape  = raid5_start_reshape,
9002 	.finish_reshape = raid5_finish_reshape,
9003 	.quiesce	= raid5_quiesce,
9004 	.takeover	= raid4_takeover,
9005 	.change_consistency_policy = raid5_change_consistency_policy,
9006 	.prepare_suspend = raid5_prepare_suspend,
9007 };
9008 
9009 static int __init raid5_init(void)
9010 {
9011 	int ret;
9012 
9013 	raid5_wq = alloc_workqueue("raid5wq",
9014 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9015 	if (!raid5_wq)
9016 		return -ENOMEM;
9017 
9018 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9019 				      "md/raid5:prepare",
9020 				      raid456_cpu_up_prepare,
9021 				      raid456_cpu_dead);
9022 	if (ret) {
9023 		destroy_workqueue(raid5_wq);
9024 		return ret;
9025 	}
9026 	register_md_personality(&raid6_personality);
9027 	register_md_personality(&raid5_personality);
9028 	register_md_personality(&raid4_personality);
9029 	return 0;
9030 }
9031 
9032 static void raid5_exit(void)
9033 {
9034 	unregister_md_personality(&raid6_personality);
9035 	unregister_md_personality(&raid5_personality);
9036 	unregister_md_personality(&raid4_personality);
9037 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9038 	destroy_workqueue(raid5_wq);
9039 }
9040 
9041 module_init(raid5_init);
9042 module_exit(raid5_exit);
9043 MODULE_LICENSE("GPL");
9044 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9045 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9046 MODULE_ALIAS("md-raid5");
9047 MODULE_ALIAS("md-raid4");
9048 MODULE_ALIAS("md-level-5");
9049 MODULE_ALIAS("md-level-4");
9050 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9051 MODULE_ALIAS("md-raid6");
9052 MODULE_ALIAS("md-level-6");
9053 
9054 /* This used to be two separate modules, they were: */
9055 MODULE_ALIAS("raid5");
9056 MODULE_ALIAS("raid6");
9057