xref: /linux/drivers/md/raid5.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58 
59 /*
60  * Stripe cache
61  */
62 
63 #define NR_STRIPES		256
64 #define STRIPE_SIZE		PAGE_SIZE
65 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
67 #define	IO_THRESHOLD		1
68 #define BYPASS_THRESHOLD	1
69 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK		(NR_HASH - 1)
71 
72 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73 
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA	1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93 
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98 
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107 	return bio->bi_phys_segments & 0xffff;
108 }
109 
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112 	return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114 
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117 	--bio->bi_phys_segments;
118 	return raid5_bi_phys_segments(bio);
119 }
120 
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123 	unsigned short val = raid5_bi_hw_segments(bio);
124 
125 	--val;
126 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 	return val;
128 }
129 
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134 
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138 	if (sh->ddf_layout)
139 		/* ddf always start from first device */
140 		return 0;
141 	/* md starts just after Q block */
142 	if (sh->qd_idx == sh->disks - 1)
143 		return 0;
144 	else
145 		return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149 	disk++;
150 	return (disk < raid_disks) ? disk : 0;
151 }
152 
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 			     int *count, int syndrome_disks)
160 {
161 	int slot = *count;
162 
163 	if (sh->ddf_layout)
164 		(*count)++;
165 	if (idx == sh->pd_idx)
166 		return syndrome_disks;
167 	if (idx == sh->qd_idx)
168 		return syndrome_disks + 1;
169 	if (!sh->ddf_layout)
170 		(*count)++;
171 	return slot;
172 }
173 
174 static void return_io(struct bio *return_bi)
175 {
176 	struct bio *bi = return_bi;
177 	while (bi) {
178 
179 		return_bi = bi->bi_next;
180 		bi->bi_next = NULL;
181 		bi->bi_size = 0;
182 		bio_endio(bi, 0);
183 		bi = return_bi;
184 	}
185 }
186 
187 static void print_raid5_conf (raid5_conf_t *conf);
188 
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191 	return sh->check_state || sh->reconstruct_state ||
192 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195 
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198 	if (atomic_dec_and_test(&sh->count)) {
199 		BUG_ON(!list_empty(&sh->lru));
200 		BUG_ON(atomic_read(&conf->active_stripes)==0);
201 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 				list_add_tail(&sh->lru, &conf->delayed_list);
204 				plugger_set_plug(&conf->plug);
205 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 				   sh->bm_seq - conf->seq_write > 0) {
207 				list_add_tail(&sh->lru, &conf->bitmap_list);
208 				plugger_set_plug(&conf->plug);
209 			} else {
210 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 				list_add_tail(&sh->lru, &conf->handle_list);
212 			}
213 			md_wakeup_thread(conf->mddev->thread);
214 		} else {
215 			BUG_ON(stripe_operations_active(sh));
216 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 				atomic_dec(&conf->preread_active_stripes);
218 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 					md_wakeup_thread(conf->mddev->thread);
220 			}
221 			atomic_dec(&conf->active_stripes);
222 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 				list_add_tail(&sh->lru, &conf->inactive_list);
224 				wake_up(&conf->wait_for_stripe);
225 				if (conf->retry_read_aligned)
226 					md_wakeup_thread(conf->mddev->thread);
227 			}
228 		}
229 	}
230 }
231 
232 static void release_stripe(struct stripe_head *sh)
233 {
234 	raid5_conf_t *conf = sh->raid_conf;
235 	unsigned long flags;
236 
237 	spin_lock_irqsave(&conf->device_lock, flags);
238 	__release_stripe(conf, sh);
239 	spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241 
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244 	pr_debug("remove_hash(), stripe %llu\n",
245 		(unsigned long long)sh->sector);
246 
247 	hlist_del_init(&sh->hash);
248 }
249 
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
253 
254 	pr_debug("insert_hash(), stripe %llu\n",
255 		(unsigned long long)sh->sector);
256 
257 	CHECK_DEVLOCK();
258 	hlist_add_head(&sh->hash, hp);
259 }
260 
261 
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265 	struct stripe_head *sh = NULL;
266 	struct list_head *first;
267 
268 	CHECK_DEVLOCK();
269 	if (list_empty(&conf->inactive_list))
270 		goto out;
271 	first = conf->inactive_list.next;
272 	sh = list_entry(first, struct stripe_head, lru);
273 	list_del_init(first);
274 	remove_hash(sh);
275 	atomic_inc(&conf->active_stripes);
276 out:
277 	return sh;
278 }
279 
280 static void shrink_buffers(struct stripe_head *sh)
281 {
282 	struct page *p;
283 	int i;
284 	int num = sh->raid_conf->pool_size;
285 
286 	for (i = 0; i < num ; i++) {
287 		p = sh->dev[i].page;
288 		if (!p)
289 			continue;
290 		sh->dev[i].page = NULL;
291 		put_page(p);
292 	}
293 }
294 
295 static int grow_buffers(struct stripe_head *sh)
296 {
297 	int i;
298 	int num = sh->raid_conf->pool_size;
299 
300 	for (i = 0; i < num; i++) {
301 		struct page *page;
302 
303 		if (!(page = alloc_page(GFP_KERNEL))) {
304 			return 1;
305 		}
306 		sh->dev[i].page = page;
307 	}
308 	return 0;
309 }
310 
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 			    struct stripe_head *sh);
314 
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
316 {
317 	raid5_conf_t *conf = sh->raid_conf;
318 	int i;
319 
320 	BUG_ON(atomic_read(&sh->count) != 0);
321 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322 	BUG_ON(stripe_operations_active(sh));
323 
324 	CHECK_DEVLOCK();
325 	pr_debug("init_stripe called, stripe %llu\n",
326 		(unsigned long long)sh->sector);
327 
328 	remove_hash(sh);
329 
330 	sh->generation = conf->generation - previous;
331 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332 	sh->sector = sector;
333 	stripe_set_idx(sector, conf, previous, sh);
334 	sh->state = 0;
335 
336 
337 	for (i = sh->disks; i--; ) {
338 		struct r5dev *dev = &sh->dev[i];
339 
340 		if (dev->toread || dev->read || dev->towrite || dev->written ||
341 		    test_bit(R5_LOCKED, &dev->flags)) {
342 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343 			       (unsigned long long)sh->sector, i, dev->toread,
344 			       dev->read, dev->towrite, dev->written,
345 			       test_bit(R5_LOCKED, &dev->flags));
346 			BUG();
347 		}
348 		dev->flags = 0;
349 		raid5_build_block(sh, i, previous);
350 	}
351 	insert_hash(conf, sh);
352 }
353 
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355 					 short generation)
356 {
357 	struct stripe_head *sh;
358 	struct hlist_node *hn;
359 
360 	CHECK_DEVLOCK();
361 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363 		if (sh->sector == sector && sh->generation == generation)
364 			return sh;
365 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366 	return NULL;
367 }
368 
369 /*
370  * Need to check if array has failed when deciding whether to:
371  *  - start an array
372  *  - remove non-faulty devices
373  *  - add a spare
374  *  - allow a reshape
375  * This determination is simple when no reshape is happening.
376  * However if there is a reshape, we need to carefully check
377  * both the before and after sections.
378  * This is because some failed devices may only affect one
379  * of the two sections, and some non-in_sync devices may
380  * be insync in the section most affected by failed devices.
381  */
382 static int has_failed(raid5_conf_t *conf)
383 {
384 	int degraded;
385 	int i;
386 	if (conf->mddev->reshape_position == MaxSector)
387 		return conf->mddev->degraded > conf->max_degraded;
388 
389 	rcu_read_lock();
390 	degraded = 0;
391 	for (i = 0; i < conf->previous_raid_disks; i++) {
392 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 		if (!rdev || test_bit(Faulty, &rdev->flags))
394 			degraded++;
395 		else if (test_bit(In_sync, &rdev->flags))
396 			;
397 		else
398 			/* not in-sync or faulty.
399 			 * If the reshape increases the number of devices,
400 			 * this is being recovered by the reshape, so
401 			 * this 'previous' section is not in_sync.
402 			 * If the number of devices is being reduced however,
403 			 * the device can only be part of the array if
404 			 * we are reverting a reshape, so this section will
405 			 * be in-sync.
406 			 */
407 			if (conf->raid_disks >= conf->previous_raid_disks)
408 				degraded++;
409 	}
410 	rcu_read_unlock();
411 	if (degraded > conf->max_degraded)
412 		return 1;
413 	rcu_read_lock();
414 	degraded = 0;
415 	for (i = 0; i < conf->raid_disks; i++) {
416 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 		if (!rdev || test_bit(Faulty, &rdev->flags))
418 			degraded++;
419 		else if (test_bit(In_sync, &rdev->flags))
420 			;
421 		else
422 			/* not in-sync or faulty.
423 			 * If reshape increases the number of devices, this
424 			 * section has already been recovered, else it
425 			 * almost certainly hasn't.
426 			 */
427 			if (conf->raid_disks <= conf->previous_raid_disks)
428 				degraded++;
429 	}
430 	rcu_read_unlock();
431 	if (degraded > conf->max_degraded)
432 		return 1;
433 	return 0;
434 }
435 
436 static void unplug_slaves(mddev_t *mddev);
437 
438 static struct stripe_head *
439 get_active_stripe(raid5_conf_t *conf, sector_t sector,
440 		  int previous, int noblock, int noquiesce)
441 {
442 	struct stripe_head *sh;
443 
444 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
445 
446 	spin_lock_irq(&conf->device_lock);
447 
448 	do {
449 		wait_event_lock_irq(conf->wait_for_stripe,
450 				    conf->quiesce == 0 || noquiesce,
451 				    conf->device_lock, /* nothing */);
452 		sh = __find_stripe(conf, sector, conf->generation - previous);
453 		if (!sh) {
454 			if (!conf->inactive_blocked)
455 				sh = get_free_stripe(conf);
456 			if (noblock && sh == NULL)
457 				break;
458 			if (!sh) {
459 				conf->inactive_blocked = 1;
460 				wait_event_lock_irq(conf->wait_for_stripe,
461 						    !list_empty(&conf->inactive_list) &&
462 						    (atomic_read(&conf->active_stripes)
463 						     < (conf->max_nr_stripes *3/4)
464 						     || !conf->inactive_blocked),
465 						    conf->device_lock,
466 						    md_raid5_unplug_device(conf)
467 					);
468 				conf->inactive_blocked = 0;
469 			} else
470 				init_stripe(sh, sector, previous);
471 		} else {
472 			if (atomic_read(&sh->count)) {
473 				BUG_ON(!list_empty(&sh->lru)
474 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
475 			} else {
476 				if (!test_bit(STRIPE_HANDLE, &sh->state))
477 					atomic_inc(&conf->active_stripes);
478 				if (list_empty(&sh->lru) &&
479 				    !test_bit(STRIPE_EXPANDING, &sh->state))
480 					BUG();
481 				list_del_init(&sh->lru);
482 			}
483 		}
484 	} while (sh == NULL);
485 
486 	if (sh)
487 		atomic_inc(&sh->count);
488 
489 	spin_unlock_irq(&conf->device_lock);
490 	return sh;
491 }
492 
493 static void
494 raid5_end_read_request(struct bio *bi, int error);
495 static void
496 raid5_end_write_request(struct bio *bi, int error);
497 
498 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
499 {
500 	raid5_conf_t *conf = sh->raid_conf;
501 	int i, disks = sh->disks;
502 
503 	might_sleep();
504 
505 	for (i = disks; i--; ) {
506 		int rw;
507 		struct bio *bi;
508 		mdk_rdev_t *rdev;
509 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
510 			rw = WRITE;
511 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
512 			rw = READ;
513 		else
514 			continue;
515 
516 		bi = &sh->dev[i].req;
517 
518 		bi->bi_rw = rw;
519 		if (rw == WRITE)
520 			bi->bi_end_io = raid5_end_write_request;
521 		else
522 			bi->bi_end_io = raid5_end_read_request;
523 
524 		rcu_read_lock();
525 		rdev = rcu_dereference(conf->disks[i].rdev);
526 		if (rdev && test_bit(Faulty, &rdev->flags))
527 			rdev = NULL;
528 		if (rdev)
529 			atomic_inc(&rdev->nr_pending);
530 		rcu_read_unlock();
531 
532 		if (rdev) {
533 			if (s->syncing || s->expanding || s->expanded)
534 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
535 
536 			set_bit(STRIPE_IO_STARTED, &sh->state);
537 
538 			bi->bi_bdev = rdev->bdev;
539 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
540 				__func__, (unsigned long long)sh->sector,
541 				bi->bi_rw, i);
542 			atomic_inc(&sh->count);
543 			bi->bi_sector = sh->sector + rdev->data_offset;
544 			bi->bi_flags = 1 << BIO_UPTODATE;
545 			bi->bi_vcnt = 1;
546 			bi->bi_max_vecs = 1;
547 			bi->bi_idx = 0;
548 			bi->bi_io_vec = &sh->dev[i].vec;
549 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
550 			bi->bi_io_vec[0].bv_offset = 0;
551 			bi->bi_size = STRIPE_SIZE;
552 			bi->bi_next = NULL;
553 			if (rw == WRITE &&
554 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
555 				atomic_add(STRIPE_SECTORS,
556 					&rdev->corrected_errors);
557 			generic_make_request(bi);
558 		} else {
559 			if (rw == WRITE)
560 				set_bit(STRIPE_DEGRADED, &sh->state);
561 			pr_debug("skip op %ld on disc %d for sector %llu\n",
562 				bi->bi_rw, i, (unsigned long long)sh->sector);
563 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
564 			set_bit(STRIPE_HANDLE, &sh->state);
565 		}
566 	}
567 }
568 
569 static struct dma_async_tx_descriptor *
570 async_copy_data(int frombio, struct bio *bio, struct page *page,
571 	sector_t sector, struct dma_async_tx_descriptor *tx)
572 {
573 	struct bio_vec *bvl;
574 	struct page *bio_page;
575 	int i;
576 	int page_offset;
577 	struct async_submit_ctl submit;
578 	enum async_tx_flags flags = 0;
579 
580 	if (bio->bi_sector >= sector)
581 		page_offset = (signed)(bio->bi_sector - sector) * 512;
582 	else
583 		page_offset = (signed)(sector - bio->bi_sector) * -512;
584 
585 	if (frombio)
586 		flags |= ASYNC_TX_FENCE;
587 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
588 
589 	bio_for_each_segment(bvl, bio, i) {
590 		int len = bio_iovec_idx(bio, i)->bv_len;
591 		int clen;
592 		int b_offset = 0;
593 
594 		if (page_offset < 0) {
595 			b_offset = -page_offset;
596 			page_offset += b_offset;
597 			len -= b_offset;
598 		}
599 
600 		if (len > 0 && page_offset + len > STRIPE_SIZE)
601 			clen = STRIPE_SIZE - page_offset;
602 		else
603 			clen = len;
604 
605 		if (clen > 0) {
606 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
607 			bio_page = bio_iovec_idx(bio, i)->bv_page;
608 			if (frombio)
609 				tx = async_memcpy(page, bio_page, page_offset,
610 						  b_offset, clen, &submit);
611 			else
612 				tx = async_memcpy(bio_page, page, b_offset,
613 						  page_offset, clen, &submit);
614 		}
615 		/* chain the operations */
616 		submit.depend_tx = tx;
617 
618 		if (clen < len) /* hit end of page */
619 			break;
620 		page_offset +=  len;
621 	}
622 
623 	return tx;
624 }
625 
626 static void ops_complete_biofill(void *stripe_head_ref)
627 {
628 	struct stripe_head *sh = stripe_head_ref;
629 	struct bio *return_bi = NULL;
630 	raid5_conf_t *conf = sh->raid_conf;
631 	int i;
632 
633 	pr_debug("%s: stripe %llu\n", __func__,
634 		(unsigned long long)sh->sector);
635 
636 	/* clear completed biofills */
637 	spin_lock_irq(&conf->device_lock);
638 	for (i = sh->disks; i--; ) {
639 		struct r5dev *dev = &sh->dev[i];
640 
641 		/* acknowledge completion of a biofill operation */
642 		/* and check if we need to reply to a read request,
643 		 * new R5_Wantfill requests are held off until
644 		 * !STRIPE_BIOFILL_RUN
645 		 */
646 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
647 			struct bio *rbi, *rbi2;
648 
649 			BUG_ON(!dev->read);
650 			rbi = dev->read;
651 			dev->read = NULL;
652 			while (rbi && rbi->bi_sector <
653 				dev->sector + STRIPE_SECTORS) {
654 				rbi2 = r5_next_bio(rbi, dev->sector);
655 				if (!raid5_dec_bi_phys_segments(rbi)) {
656 					rbi->bi_next = return_bi;
657 					return_bi = rbi;
658 				}
659 				rbi = rbi2;
660 			}
661 		}
662 	}
663 	spin_unlock_irq(&conf->device_lock);
664 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
665 
666 	return_io(return_bi);
667 
668 	set_bit(STRIPE_HANDLE, &sh->state);
669 	release_stripe(sh);
670 }
671 
672 static void ops_run_biofill(struct stripe_head *sh)
673 {
674 	struct dma_async_tx_descriptor *tx = NULL;
675 	raid5_conf_t *conf = sh->raid_conf;
676 	struct async_submit_ctl submit;
677 	int i;
678 
679 	pr_debug("%s: stripe %llu\n", __func__,
680 		(unsigned long long)sh->sector);
681 
682 	for (i = sh->disks; i--; ) {
683 		struct r5dev *dev = &sh->dev[i];
684 		if (test_bit(R5_Wantfill, &dev->flags)) {
685 			struct bio *rbi;
686 			spin_lock_irq(&conf->device_lock);
687 			dev->read = rbi = dev->toread;
688 			dev->toread = NULL;
689 			spin_unlock_irq(&conf->device_lock);
690 			while (rbi && rbi->bi_sector <
691 				dev->sector + STRIPE_SECTORS) {
692 				tx = async_copy_data(0, rbi, dev->page,
693 					dev->sector, tx);
694 				rbi = r5_next_bio(rbi, dev->sector);
695 			}
696 		}
697 	}
698 
699 	atomic_inc(&sh->count);
700 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
701 	async_trigger_callback(&submit);
702 }
703 
704 static void mark_target_uptodate(struct stripe_head *sh, int target)
705 {
706 	struct r5dev *tgt;
707 
708 	if (target < 0)
709 		return;
710 
711 	tgt = &sh->dev[target];
712 	set_bit(R5_UPTODATE, &tgt->flags);
713 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
714 	clear_bit(R5_Wantcompute, &tgt->flags);
715 }
716 
717 static void ops_complete_compute(void *stripe_head_ref)
718 {
719 	struct stripe_head *sh = stripe_head_ref;
720 
721 	pr_debug("%s: stripe %llu\n", __func__,
722 		(unsigned long long)sh->sector);
723 
724 	/* mark the computed target(s) as uptodate */
725 	mark_target_uptodate(sh, sh->ops.target);
726 	mark_target_uptodate(sh, sh->ops.target2);
727 
728 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
729 	if (sh->check_state == check_state_compute_run)
730 		sh->check_state = check_state_compute_result;
731 	set_bit(STRIPE_HANDLE, &sh->state);
732 	release_stripe(sh);
733 }
734 
735 /* return a pointer to the address conversion region of the scribble buffer */
736 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
737 				 struct raid5_percpu *percpu)
738 {
739 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
740 }
741 
742 static struct dma_async_tx_descriptor *
743 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
744 {
745 	int disks = sh->disks;
746 	struct page **xor_srcs = percpu->scribble;
747 	int target = sh->ops.target;
748 	struct r5dev *tgt = &sh->dev[target];
749 	struct page *xor_dest = tgt->page;
750 	int count = 0;
751 	struct dma_async_tx_descriptor *tx;
752 	struct async_submit_ctl submit;
753 	int i;
754 
755 	pr_debug("%s: stripe %llu block: %d\n",
756 		__func__, (unsigned long long)sh->sector, target);
757 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
758 
759 	for (i = disks; i--; )
760 		if (i != target)
761 			xor_srcs[count++] = sh->dev[i].page;
762 
763 	atomic_inc(&sh->count);
764 
765 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
766 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
767 	if (unlikely(count == 1))
768 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
769 	else
770 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
771 
772 	return tx;
773 }
774 
775 /* set_syndrome_sources - populate source buffers for gen_syndrome
776  * @srcs - (struct page *) array of size sh->disks
777  * @sh - stripe_head to parse
778  *
779  * Populates srcs in proper layout order for the stripe and returns the
780  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
781  * destination buffer is recorded in srcs[count] and the Q destination
782  * is recorded in srcs[count+1]].
783  */
784 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
785 {
786 	int disks = sh->disks;
787 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
788 	int d0_idx = raid6_d0(sh);
789 	int count;
790 	int i;
791 
792 	for (i = 0; i < disks; i++)
793 		srcs[i] = NULL;
794 
795 	count = 0;
796 	i = d0_idx;
797 	do {
798 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
799 
800 		srcs[slot] = sh->dev[i].page;
801 		i = raid6_next_disk(i, disks);
802 	} while (i != d0_idx);
803 
804 	return syndrome_disks;
805 }
806 
807 static struct dma_async_tx_descriptor *
808 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
809 {
810 	int disks = sh->disks;
811 	struct page **blocks = percpu->scribble;
812 	int target;
813 	int qd_idx = sh->qd_idx;
814 	struct dma_async_tx_descriptor *tx;
815 	struct async_submit_ctl submit;
816 	struct r5dev *tgt;
817 	struct page *dest;
818 	int i;
819 	int count;
820 
821 	if (sh->ops.target < 0)
822 		target = sh->ops.target2;
823 	else if (sh->ops.target2 < 0)
824 		target = sh->ops.target;
825 	else
826 		/* we should only have one valid target */
827 		BUG();
828 	BUG_ON(target < 0);
829 	pr_debug("%s: stripe %llu block: %d\n",
830 		__func__, (unsigned long long)sh->sector, target);
831 
832 	tgt = &sh->dev[target];
833 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
834 	dest = tgt->page;
835 
836 	atomic_inc(&sh->count);
837 
838 	if (target == qd_idx) {
839 		count = set_syndrome_sources(blocks, sh);
840 		blocks[count] = NULL; /* regenerating p is not necessary */
841 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
842 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
843 				  ops_complete_compute, sh,
844 				  to_addr_conv(sh, percpu));
845 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
846 	} else {
847 		/* Compute any data- or p-drive using XOR */
848 		count = 0;
849 		for (i = disks; i-- ; ) {
850 			if (i == target || i == qd_idx)
851 				continue;
852 			blocks[count++] = sh->dev[i].page;
853 		}
854 
855 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
856 				  NULL, ops_complete_compute, sh,
857 				  to_addr_conv(sh, percpu));
858 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
859 	}
860 
861 	return tx;
862 }
863 
864 static struct dma_async_tx_descriptor *
865 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
866 {
867 	int i, count, disks = sh->disks;
868 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
869 	int d0_idx = raid6_d0(sh);
870 	int faila = -1, failb = -1;
871 	int target = sh->ops.target;
872 	int target2 = sh->ops.target2;
873 	struct r5dev *tgt = &sh->dev[target];
874 	struct r5dev *tgt2 = &sh->dev[target2];
875 	struct dma_async_tx_descriptor *tx;
876 	struct page **blocks = percpu->scribble;
877 	struct async_submit_ctl submit;
878 
879 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
880 		 __func__, (unsigned long long)sh->sector, target, target2);
881 	BUG_ON(target < 0 || target2 < 0);
882 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
883 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
884 
885 	/* we need to open-code set_syndrome_sources to handle the
886 	 * slot number conversion for 'faila' and 'failb'
887 	 */
888 	for (i = 0; i < disks ; i++)
889 		blocks[i] = NULL;
890 	count = 0;
891 	i = d0_idx;
892 	do {
893 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
894 
895 		blocks[slot] = sh->dev[i].page;
896 
897 		if (i == target)
898 			faila = slot;
899 		if (i == target2)
900 			failb = slot;
901 		i = raid6_next_disk(i, disks);
902 	} while (i != d0_idx);
903 
904 	BUG_ON(faila == failb);
905 	if (failb < faila)
906 		swap(faila, failb);
907 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
908 		 __func__, (unsigned long long)sh->sector, faila, failb);
909 
910 	atomic_inc(&sh->count);
911 
912 	if (failb == syndrome_disks+1) {
913 		/* Q disk is one of the missing disks */
914 		if (faila == syndrome_disks) {
915 			/* Missing P+Q, just recompute */
916 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
917 					  ops_complete_compute, sh,
918 					  to_addr_conv(sh, percpu));
919 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
920 						  STRIPE_SIZE, &submit);
921 		} else {
922 			struct page *dest;
923 			int data_target;
924 			int qd_idx = sh->qd_idx;
925 
926 			/* Missing D+Q: recompute D from P, then recompute Q */
927 			if (target == qd_idx)
928 				data_target = target2;
929 			else
930 				data_target = target;
931 
932 			count = 0;
933 			for (i = disks; i-- ; ) {
934 				if (i == data_target || i == qd_idx)
935 					continue;
936 				blocks[count++] = sh->dev[i].page;
937 			}
938 			dest = sh->dev[data_target].page;
939 			init_async_submit(&submit,
940 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
941 					  NULL, NULL, NULL,
942 					  to_addr_conv(sh, percpu));
943 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
944 				       &submit);
945 
946 			count = set_syndrome_sources(blocks, sh);
947 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
948 					  ops_complete_compute, sh,
949 					  to_addr_conv(sh, percpu));
950 			return async_gen_syndrome(blocks, 0, count+2,
951 						  STRIPE_SIZE, &submit);
952 		}
953 	} else {
954 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
955 				  ops_complete_compute, sh,
956 				  to_addr_conv(sh, percpu));
957 		if (failb == syndrome_disks) {
958 			/* We're missing D+P. */
959 			return async_raid6_datap_recov(syndrome_disks+2,
960 						       STRIPE_SIZE, faila,
961 						       blocks, &submit);
962 		} else {
963 			/* We're missing D+D. */
964 			return async_raid6_2data_recov(syndrome_disks+2,
965 						       STRIPE_SIZE, faila, failb,
966 						       blocks, &submit);
967 		}
968 	}
969 }
970 
971 
972 static void ops_complete_prexor(void *stripe_head_ref)
973 {
974 	struct stripe_head *sh = stripe_head_ref;
975 
976 	pr_debug("%s: stripe %llu\n", __func__,
977 		(unsigned long long)sh->sector);
978 }
979 
980 static struct dma_async_tx_descriptor *
981 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
982 	       struct dma_async_tx_descriptor *tx)
983 {
984 	int disks = sh->disks;
985 	struct page **xor_srcs = percpu->scribble;
986 	int count = 0, pd_idx = sh->pd_idx, i;
987 	struct async_submit_ctl submit;
988 
989 	/* existing parity data subtracted */
990 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
991 
992 	pr_debug("%s: stripe %llu\n", __func__,
993 		(unsigned long long)sh->sector);
994 
995 	for (i = disks; i--; ) {
996 		struct r5dev *dev = &sh->dev[i];
997 		/* Only process blocks that are known to be uptodate */
998 		if (test_bit(R5_Wantdrain, &dev->flags))
999 			xor_srcs[count++] = dev->page;
1000 	}
1001 
1002 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1003 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1004 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1005 
1006 	return tx;
1007 }
1008 
1009 static struct dma_async_tx_descriptor *
1010 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1011 {
1012 	int disks = sh->disks;
1013 	int i;
1014 
1015 	pr_debug("%s: stripe %llu\n", __func__,
1016 		(unsigned long long)sh->sector);
1017 
1018 	for (i = disks; i--; ) {
1019 		struct r5dev *dev = &sh->dev[i];
1020 		struct bio *chosen;
1021 
1022 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1023 			struct bio *wbi;
1024 
1025 			spin_lock(&sh->lock);
1026 			chosen = dev->towrite;
1027 			dev->towrite = NULL;
1028 			BUG_ON(dev->written);
1029 			wbi = dev->written = chosen;
1030 			spin_unlock(&sh->lock);
1031 
1032 			while (wbi && wbi->bi_sector <
1033 				dev->sector + STRIPE_SECTORS) {
1034 				tx = async_copy_data(1, wbi, dev->page,
1035 					dev->sector, tx);
1036 				wbi = r5_next_bio(wbi, dev->sector);
1037 			}
1038 		}
1039 	}
1040 
1041 	return tx;
1042 }
1043 
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046 	struct stripe_head *sh = stripe_head_ref;
1047 	int disks = sh->disks;
1048 	int pd_idx = sh->pd_idx;
1049 	int qd_idx = sh->qd_idx;
1050 	int i;
1051 
1052 	pr_debug("%s: stripe %llu\n", __func__,
1053 		(unsigned long long)sh->sector);
1054 
1055 	for (i = disks; i--; ) {
1056 		struct r5dev *dev = &sh->dev[i];
1057 
1058 		if (dev->written || i == pd_idx || i == qd_idx)
1059 			set_bit(R5_UPTODATE, &dev->flags);
1060 	}
1061 
1062 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1063 		sh->reconstruct_state = reconstruct_state_drain_result;
1064 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1065 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1066 	else {
1067 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1068 		sh->reconstruct_state = reconstruct_state_result;
1069 	}
1070 
1071 	set_bit(STRIPE_HANDLE, &sh->state);
1072 	release_stripe(sh);
1073 }
1074 
1075 static void
1076 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1077 		     struct dma_async_tx_descriptor *tx)
1078 {
1079 	int disks = sh->disks;
1080 	struct page **xor_srcs = percpu->scribble;
1081 	struct async_submit_ctl submit;
1082 	int count = 0, pd_idx = sh->pd_idx, i;
1083 	struct page *xor_dest;
1084 	int prexor = 0;
1085 	unsigned long flags;
1086 
1087 	pr_debug("%s: stripe %llu\n", __func__,
1088 		(unsigned long long)sh->sector);
1089 
1090 	/* check if prexor is active which means only process blocks
1091 	 * that are part of a read-modify-write (written)
1092 	 */
1093 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1094 		prexor = 1;
1095 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1096 		for (i = disks; i--; ) {
1097 			struct r5dev *dev = &sh->dev[i];
1098 			if (dev->written)
1099 				xor_srcs[count++] = dev->page;
1100 		}
1101 	} else {
1102 		xor_dest = sh->dev[pd_idx].page;
1103 		for (i = disks; i--; ) {
1104 			struct r5dev *dev = &sh->dev[i];
1105 			if (i != pd_idx)
1106 				xor_srcs[count++] = dev->page;
1107 		}
1108 	}
1109 
1110 	/* 1/ if we prexor'd then the dest is reused as a source
1111 	 * 2/ if we did not prexor then we are redoing the parity
1112 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1113 	 * for the synchronous xor case
1114 	 */
1115 	flags = ASYNC_TX_ACK |
1116 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1117 
1118 	atomic_inc(&sh->count);
1119 
1120 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1121 			  to_addr_conv(sh, percpu));
1122 	if (unlikely(count == 1))
1123 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1124 	else
1125 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1126 }
1127 
1128 static void
1129 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1130 		     struct dma_async_tx_descriptor *tx)
1131 {
1132 	struct async_submit_ctl submit;
1133 	struct page **blocks = percpu->scribble;
1134 	int count;
1135 
1136 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1137 
1138 	count = set_syndrome_sources(blocks, sh);
1139 
1140 	atomic_inc(&sh->count);
1141 
1142 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1143 			  sh, to_addr_conv(sh, percpu));
1144 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1145 }
1146 
1147 static void ops_complete_check(void *stripe_head_ref)
1148 {
1149 	struct stripe_head *sh = stripe_head_ref;
1150 
1151 	pr_debug("%s: stripe %llu\n", __func__,
1152 		(unsigned long long)sh->sector);
1153 
1154 	sh->check_state = check_state_check_result;
1155 	set_bit(STRIPE_HANDLE, &sh->state);
1156 	release_stripe(sh);
1157 }
1158 
1159 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1160 {
1161 	int disks = sh->disks;
1162 	int pd_idx = sh->pd_idx;
1163 	int qd_idx = sh->qd_idx;
1164 	struct page *xor_dest;
1165 	struct page **xor_srcs = percpu->scribble;
1166 	struct dma_async_tx_descriptor *tx;
1167 	struct async_submit_ctl submit;
1168 	int count;
1169 	int i;
1170 
1171 	pr_debug("%s: stripe %llu\n", __func__,
1172 		(unsigned long long)sh->sector);
1173 
1174 	count = 0;
1175 	xor_dest = sh->dev[pd_idx].page;
1176 	xor_srcs[count++] = xor_dest;
1177 	for (i = disks; i--; ) {
1178 		if (i == pd_idx || i == qd_idx)
1179 			continue;
1180 		xor_srcs[count++] = sh->dev[i].page;
1181 	}
1182 
1183 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1184 			  to_addr_conv(sh, percpu));
1185 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1186 			   &sh->ops.zero_sum_result, &submit);
1187 
1188 	atomic_inc(&sh->count);
1189 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1190 	tx = async_trigger_callback(&submit);
1191 }
1192 
1193 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1194 {
1195 	struct page **srcs = percpu->scribble;
1196 	struct async_submit_ctl submit;
1197 	int count;
1198 
1199 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1200 		(unsigned long long)sh->sector, checkp);
1201 
1202 	count = set_syndrome_sources(srcs, sh);
1203 	if (!checkp)
1204 		srcs[count] = NULL;
1205 
1206 	atomic_inc(&sh->count);
1207 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1208 			  sh, to_addr_conv(sh, percpu));
1209 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1210 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1211 }
1212 
1213 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1214 {
1215 	int overlap_clear = 0, i, disks = sh->disks;
1216 	struct dma_async_tx_descriptor *tx = NULL;
1217 	raid5_conf_t *conf = sh->raid_conf;
1218 	int level = conf->level;
1219 	struct raid5_percpu *percpu;
1220 	unsigned long cpu;
1221 
1222 	cpu = get_cpu();
1223 	percpu = per_cpu_ptr(conf->percpu, cpu);
1224 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1225 		ops_run_biofill(sh);
1226 		overlap_clear++;
1227 	}
1228 
1229 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1230 		if (level < 6)
1231 			tx = ops_run_compute5(sh, percpu);
1232 		else {
1233 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1234 				tx = ops_run_compute6_1(sh, percpu);
1235 			else
1236 				tx = ops_run_compute6_2(sh, percpu);
1237 		}
1238 		/* terminate the chain if reconstruct is not set to be run */
1239 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1240 			async_tx_ack(tx);
1241 	}
1242 
1243 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1244 		tx = ops_run_prexor(sh, percpu, tx);
1245 
1246 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1247 		tx = ops_run_biodrain(sh, tx);
1248 		overlap_clear++;
1249 	}
1250 
1251 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1252 		if (level < 6)
1253 			ops_run_reconstruct5(sh, percpu, tx);
1254 		else
1255 			ops_run_reconstruct6(sh, percpu, tx);
1256 	}
1257 
1258 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1259 		if (sh->check_state == check_state_run)
1260 			ops_run_check_p(sh, percpu);
1261 		else if (sh->check_state == check_state_run_q)
1262 			ops_run_check_pq(sh, percpu, 0);
1263 		else if (sh->check_state == check_state_run_pq)
1264 			ops_run_check_pq(sh, percpu, 1);
1265 		else
1266 			BUG();
1267 	}
1268 
1269 	if (overlap_clear)
1270 		for (i = disks; i--; ) {
1271 			struct r5dev *dev = &sh->dev[i];
1272 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1273 				wake_up(&sh->raid_conf->wait_for_overlap);
1274 		}
1275 	put_cpu();
1276 }
1277 
1278 #ifdef CONFIG_MULTICORE_RAID456
1279 static void async_run_ops(void *param, async_cookie_t cookie)
1280 {
1281 	struct stripe_head *sh = param;
1282 	unsigned long ops_request = sh->ops.request;
1283 
1284 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1285 	wake_up(&sh->ops.wait_for_ops);
1286 
1287 	__raid_run_ops(sh, ops_request);
1288 	release_stripe(sh);
1289 }
1290 
1291 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1292 {
1293 	/* since handle_stripe can be called outside of raid5d context
1294 	 * we need to ensure sh->ops.request is de-staged before another
1295 	 * request arrives
1296 	 */
1297 	wait_event(sh->ops.wait_for_ops,
1298 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1299 	sh->ops.request = ops_request;
1300 
1301 	atomic_inc(&sh->count);
1302 	async_schedule(async_run_ops, sh);
1303 }
1304 #else
1305 #define raid_run_ops __raid_run_ops
1306 #endif
1307 
1308 static int grow_one_stripe(raid5_conf_t *conf)
1309 {
1310 	struct stripe_head *sh;
1311 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1312 	if (!sh)
1313 		return 0;
1314 	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1315 	sh->raid_conf = conf;
1316 	spin_lock_init(&sh->lock);
1317 	#ifdef CONFIG_MULTICORE_RAID456
1318 	init_waitqueue_head(&sh->ops.wait_for_ops);
1319 	#endif
1320 
1321 	if (grow_buffers(sh)) {
1322 		shrink_buffers(sh);
1323 		kmem_cache_free(conf->slab_cache, sh);
1324 		return 0;
1325 	}
1326 	/* we just created an active stripe so... */
1327 	atomic_set(&sh->count, 1);
1328 	atomic_inc(&conf->active_stripes);
1329 	INIT_LIST_HEAD(&sh->lru);
1330 	release_stripe(sh);
1331 	return 1;
1332 }
1333 
1334 static int grow_stripes(raid5_conf_t *conf, int num)
1335 {
1336 	struct kmem_cache *sc;
1337 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1338 
1339 	if (conf->mddev->gendisk)
1340 		sprintf(conf->cache_name[0],
1341 			"raid%d-%s", conf->level, mdname(conf->mddev));
1342 	else
1343 		sprintf(conf->cache_name[0],
1344 			"raid%d-%p", conf->level, conf->mddev);
1345 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1346 
1347 	conf->active_name = 0;
1348 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1349 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1350 			       0, 0, NULL);
1351 	if (!sc)
1352 		return 1;
1353 	conf->slab_cache = sc;
1354 	conf->pool_size = devs;
1355 	while (num--)
1356 		if (!grow_one_stripe(conf))
1357 			return 1;
1358 	return 0;
1359 }
1360 
1361 /**
1362  * scribble_len - return the required size of the scribble region
1363  * @num - total number of disks in the array
1364  *
1365  * The size must be enough to contain:
1366  * 1/ a struct page pointer for each device in the array +2
1367  * 2/ room to convert each entry in (1) to its corresponding dma
1368  *    (dma_map_page()) or page (page_address()) address.
1369  *
1370  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1371  * calculate over all devices (not just the data blocks), using zeros in place
1372  * of the P and Q blocks.
1373  */
1374 static size_t scribble_len(int num)
1375 {
1376 	size_t len;
1377 
1378 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1379 
1380 	return len;
1381 }
1382 
1383 static int resize_stripes(raid5_conf_t *conf, int newsize)
1384 {
1385 	/* Make all the stripes able to hold 'newsize' devices.
1386 	 * New slots in each stripe get 'page' set to a new page.
1387 	 *
1388 	 * This happens in stages:
1389 	 * 1/ create a new kmem_cache and allocate the required number of
1390 	 *    stripe_heads.
1391 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1392 	 *    to the new stripe_heads.  This will have the side effect of
1393 	 *    freezing the array as once all stripe_heads have been collected,
1394 	 *    no IO will be possible.  Old stripe heads are freed once their
1395 	 *    pages have been transferred over, and the old kmem_cache is
1396 	 *    freed when all stripes are done.
1397 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1398 	 *    we simple return a failre status - no need to clean anything up.
1399 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1400 	 *    If this fails, we don't bother trying the shrink the
1401 	 *    stripe_heads down again, we just leave them as they are.
1402 	 *    As each stripe_head is processed the new one is released into
1403 	 *    active service.
1404 	 *
1405 	 * Once step2 is started, we cannot afford to wait for a write,
1406 	 * so we use GFP_NOIO allocations.
1407 	 */
1408 	struct stripe_head *osh, *nsh;
1409 	LIST_HEAD(newstripes);
1410 	struct disk_info *ndisks;
1411 	unsigned long cpu;
1412 	int err;
1413 	struct kmem_cache *sc;
1414 	int i;
1415 
1416 	if (newsize <= conf->pool_size)
1417 		return 0; /* never bother to shrink */
1418 
1419 	err = md_allow_write(conf->mddev);
1420 	if (err)
1421 		return err;
1422 
1423 	/* Step 1 */
1424 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1425 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1426 			       0, 0, NULL);
1427 	if (!sc)
1428 		return -ENOMEM;
1429 
1430 	for (i = conf->max_nr_stripes; i; i--) {
1431 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1432 		if (!nsh)
1433 			break;
1434 
1435 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1436 
1437 		nsh->raid_conf = conf;
1438 		spin_lock_init(&nsh->lock);
1439 		#ifdef CONFIG_MULTICORE_RAID456
1440 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1441 		#endif
1442 
1443 		list_add(&nsh->lru, &newstripes);
1444 	}
1445 	if (i) {
1446 		/* didn't get enough, give up */
1447 		while (!list_empty(&newstripes)) {
1448 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1449 			list_del(&nsh->lru);
1450 			kmem_cache_free(sc, nsh);
1451 		}
1452 		kmem_cache_destroy(sc);
1453 		return -ENOMEM;
1454 	}
1455 	/* Step 2 - Must use GFP_NOIO now.
1456 	 * OK, we have enough stripes, start collecting inactive
1457 	 * stripes and copying them over
1458 	 */
1459 	list_for_each_entry(nsh, &newstripes, lru) {
1460 		spin_lock_irq(&conf->device_lock);
1461 		wait_event_lock_irq(conf->wait_for_stripe,
1462 				    !list_empty(&conf->inactive_list),
1463 				    conf->device_lock,
1464 				    unplug_slaves(conf->mddev)
1465 			);
1466 		osh = get_free_stripe(conf);
1467 		spin_unlock_irq(&conf->device_lock);
1468 		atomic_set(&nsh->count, 1);
1469 		for(i=0; i<conf->pool_size; i++)
1470 			nsh->dev[i].page = osh->dev[i].page;
1471 		for( ; i<newsize; i++)
1472 			nsh->dev[i].page = NULL;
1473 		kmem_cache_free(conf->slab_cache, osh);
1474 	}
1475 	kmem_cache_destroy(conf->slab_cache);
1476 
1477 	/* Step 3.
1478 	 * At this point, we are holding all the stripes so the array
1479 	 * is completely stalled, so now is a good time to resize
1480 	 * conf->disks and the scribble region
1481 	 */
1482 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1483 	if (ndisks) {
1484 		for (i=0; i<conf->raid_disks; i++)
1485 			ndisks[i] = conf->disks[i];
1486 		kfree(conf->disks);
1487 		conf->disks = ndisks;
1488 	} else
1489 		err = -ENOMEM;
1490 
1491 	get_online_cpus();
1492 	conf->scribble_len = scribble_len(newsize);
1493 	for_each_present_cpu(cpu) {
1494 		struct raid5_percpu *percpu;
1495 		void *scribble;
1496 
1497 		percpu = per_cpu_ptr(conf->percpu, cpu);
1498 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1499 
1500 		if (scribble) {
1501 			kfree(percpu->scribble);
1502 			percpu->scribble = scribble;
1503 		} else {
1504 			err = -ENOMEM;
1505 			break;
1506 		}
1507 	}
1508 	put_online_cpus();
1509 
1510 	/* Step 4, return new stripes to service */
1511 	while(!list_empty(&newstripes)) {
1512 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1513 		list_del_init(&nsh->lru);
1514 
1515 		for (i=conf->raid_disks; i < newsize; i++)
1516 			if (nsh->dev[i].page == NULL) {
1517 				struct page *p = alloc_page(GFP_NOIO);
1518 				nsh->dev[i].page = p;
1519 				if (!p)
1520 					err = -ENOMEM;
1521 			}
1522 		release_stripe(nsh);
1523 	}
1524 	/* critical section pass, GFP_NOIO no longer needed */
1525 
1526 	conf->slab_cache = sc;
1527 	conf->active_name = 1-conf->active_name;
1528 	conf->pool_size = newsize;
1529 	return err;
1530 }
1531 
1532 static int drop_one_stripe(raid5_conf_t *conf)
1533 {
1534 	struct stripe_head *sh;
1535 
1536 	spin_lock_irq(&conf->device_lock);
1537 	sh = get_free_stripe(conf);
1538 	spin_unlock_irq(&conf->device_lock);
1539 	if (!sh)
1540 		return 0;
1541 	BUG_ON(atomic_read(&sh->count));
1542 	shrink_buffers(sh);
1543 	kmem_cache_free(conf->slab_cache, sh);
1544 	atomic_dec(&conf->active_stripes);
1545 	return 1;
1546 }
1547 
1548 static void shrink_stripes(raid5_conf_t *conf)
1549 {
1550 	while (drop_one_stripe(conf))
1551 		;
1552 
1553 	if (conf->slab_cache)
1554 		kmem_cache_destroy(conf->slab_cache);
1555 	conf->slab_cache = NULL;
1556 }
1557 
1558 static void raid5_end_read_request(struct bio * bi, int error)
1559 {
1560 	struct stripe_head *sh = bi->bi_private;
1561 	raid5_conf_t *conf = sh->raid_conf;
1562 	int disks = sh->disks, i;
1563 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1564 	char b[BDEVNAME_SIZE];
1565 	mdk_rdev_t *rdev;
1566 
1567 
1568 	for (i=0 ; i<disks; i++)
1569 		if (bi == &sh->dev[i].req)
1570 			break;
1571 
1572 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1573 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1574 		uptodate);
1575 	if (i == disks) {
1576 		BUG();
1577 		return;
1578 	}
1579 
1580 	if (uptodate) {
1581 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1582 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1583 			rdev = conf->disks[i].rdev;
1584 			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1585 				  " (%lu sectors at %llu on %s)\n",
1586 				  mdname(conf->mddev), STRIPE_SECTORS,
1587 				  (unsigned long long)(sh->sector
1588 						       + rdev->data_offset),
1589 				  bdevname(rdev->bdev, b));
1590 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1591 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1592 		}
1593 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1594 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1595 	} else {
1596 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1597 		int retry = 0;
1598 		rdev = conf->disks[i].rdev;
1599 
1600 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1601 		atomic_inc(&rdev->read_errors);
1602 		if (conf->mddev->degraded >= conf->max_degraded)
1603 			printk_rl(KERN_WARNING
1604 				  "md/raid:%s: read error not correctable "
1605 				  "(sector %llu on %s).\n",
1606 				  mdname(conf->mddev),
1607 				  (unsigned long long)(sh->sector
1608 						       + rdev->data_offset),
1609 				  bdn);
1610 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1611 			/* Oh, no!!! */
1612 			printk_rl(KERN_WARNING
1613 				  "md/raid:%s: read error NOT corrected!! "
1614 				  "(sector %llu on %s).\n",
1615 				  mdname(conf->mddev),
1616 				  (unsigned long long)(sh->sector
1617 						       + rdev->data_offset),
1618 				  bdn);
1619 		else if (atomic_read(&rdev->read_errors)
1620 			 > conf->max_nr_stripes)
1621 			printk(KERN_WARNING
1622 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1623 			       mdname(conf->mddev), bdn);
1624 		else
1625 			retry = 1;
1626 		if (retry)
1627 			set_bit(R5_ReadError, &sh->dev[i].flags);
1628 		else {
1629 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1630 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1631 			md_error(conf->mddev, rdev);
1632 		}
1633 	}
1634 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1635 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1636 	set_bit(STRIPE_HANDLE, &sh->state);
1637 	release_stripe(sh);
1638 }
1639 
1640 static void raid5_end_write_request(struct bio *bi, int error)
1641 {
1642 	struct stripe_head *sh = bi->bi_private;
1643 	raid5_conf_t *conf = sh->raid_conf;
1644 	int disks = sh->disks, i;
1645 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1646 
1647 	for (i=0 ; i<disks; i++)
1648 		if (bi == &sh->dev[i].req)
1649 			break;
1650 
1651 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1652 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1653 		uptodate);
1654 	if (i == disks) {
1655 		BUG();
1656 		return;
1657 	}
1658 
1659 	if (!uptodate)
1660 		md_error(conf->mddev, conf->disks[i].rdev);
1661 
1662 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1663 
1664 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1665 	set_bit(STRIPE_HANDLE, &sh->state);
1666 	release_stripe(sh);
1667 }
1668 
1669 
1670 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1671 
1672 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1673 {
1674 	struct r5dev *dev = &sh->dev[i];
1675 
1676 	bio_init(&dev->req);
1677 	dev->req.bi_io_vec = &dev->vec;
1678 	dev->req.bi_vcnt++;
1679 	dev->req.bi_max_vecs++;
1680 	dev->vec.bv_page = dev->page;
1681 	dev->vec.bv_len = STRIPE_SIZE;
1682 	dev->vec.bv_offset = 0;
1683 
1684 	dev->req.bi_sector = sh->sector;
1685 	dev->req.bi_private = sh;
1686 
1687 	dev->flags = 0;
1688 	dev->sector = compute_blocknr(sh, i, previous);
1689 }
1690 
1691 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1692 {
1693 	char b[BDEVNAME_SIZE];
1694 	raid5_conf_t *conf = mddev->private;
1695 	pr_debug("raid456: error called\n");
1696 
1697 	if (!test_bit(Faulty, &rdev->flags)) {
1698 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1699 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700 			unsigned long flags;
1701 			spin_lock_irqsave(&conf->device_lock, flags);
1702 			mddev->degraded++;
1703 			spin_unlock_irqrestore(&conf->device_lock, flags);
1704 			/*
1705 			 * if recovery was running, make sure it aborts.
1706 			 */
1707 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708 		}
1709 		set_bit(Faulty, &rdev->flags);
1710 		printk(KERN_ALERT
1711 		       "md/raid:%s: Disk failure on %s, disabling device.\n"
1712 		       KERN_ALERT
1713 		       "md/raid:%s: Operation continuing on %d devices.\n",
1714 		       mdname(mddev),
1715 		       bdevname(rdev->bdev, b),
1716 		       mdname(mddev),
1717 		       conf->raid_disks - mddev->degraded);
1718 	}
1719 }
1720 
1721 /*
1722  * Input: a 'big' sector number,
1723  * Output: index of the data and parity disk, and the sector # in them.
1724  */
1725 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1726 				     int previous, int *dd_idx,
1727 				     struct stripe_head *sh)
1728 {
1729 	sector_t stripe, stripe2;
1730 	sector_t chunk_number;
1731 	unsigned int chunk_offset;
1732 	int pd_idx, qd_idx;
1733 	int ddf_layout = 0;
1734 	sector_t new_sector;
1735 	int algorithm = previous ? conf->prev_algo
1736 				 : conf->algorithm;
1737 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1738 					 : conf->chunk_sectors;
1739 	int raid_disks = previous ? conf->previous_raid_disks
1740 				  : conf->raid_disks;
1741 	int data_disks = raid_disks - conf->max_degraded;
1742 
1743 	/* First compute the information on this sector */
1744 
1745 	/*
1746 	 * Compute the chunk number and the sector offset inside the chunk
1747 	 */
1748 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1749 	chunk_number = r_sector;
1750 
1751 	/*
1752 	 * Compute the stripe number
1753 	 */
1754 	stripe = chunk_number;
1755 	*dd_idx = sector_div(stripe, data_disks);
1756 	stripe2 = stripe;
1757 	/*
1758 	 * Select the parity disk based on the user selected algorithm.
1759 	 */
1760 	pd_idx = qd_idx = ~0;
1761 	switch(conf->level) {
1762 	case 4:
1763 		pd_idx = data_disks;
1764 		break;
1765 	case 5:
1766 		switch (algorithm) {
1767 		case ALGORITHM_LEFT_ASYMMETRIC:
1768 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1769 			if (*dd_idx >= pd_idx)
1770 				(*dd_idx)++;
1771 			break;
1772 		case ALGORITHM_RIGHT_ASYMMETRIC:
1773 			pd_idx = sector_div(stripe2, raid_disks);
1774 			if (*dd_idx >= pd_idx)
1775 				(*dd_idx)++;
1776 			break;
1777 		case ALGORITHM_LEFT_SYMMETRIC:
1778 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1779 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1780 			break;
1781 		case ALGORITHM_RIGHT_SYMMETRIC:
1782 			pd_idx = sector_div(stripe2, raid_disks);
1783 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1784 			break;
1785 		case ALGORITHM_PARITY_0:
1786 			pd_idx = 0;
1787 			(*dd_idx)++;
1788 			break;
1789 		case ALGORITHM_PARITY_N:
1790 			pd_idx = data_disks;
1791 			break;
1792 		default:
1793 			BUG();
1794 		}
1795 		break;
1796 	case 6:
1797 
1798 		switch (algorithm) {
1799 		case ALGORITHM_LEFT_ASYMMETRIC:
1800 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1801 			qd_idx = pd_idx + 1;
1802 			if (pd_idx == raid_disks-1) {
1803 				(*dd_idx)++;	/* Q D D D P */
1804 				qd_idx = 0;
1805 			} else if (*dd_idx >= pd_idx)
1806 				(*dd_idx) += 2; /* D D P Q D */
1807 			break;
1808 		case ALGORITHM_RIGHT_ASYMMETRIC:
1809 			pd_idx = sector_div(stripe2, raid_disks);
1810 			qd_idx = pd_idx + 1;
1811 			if (pd_idx == raid_disks-1) {
1812 				(*dd_idx)++;	/* Q D D D P */
1813 				qd_idx = 0;
1814 			} else if (*dd_idx >= pd_idx)
1815 				(*dd_idx) += 2; /* D D P Q D */
1816 			break;
1817 		case ALGORITHM_LEFT_SYMMETRIC:
1818 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1819 			qd_idx = (pd_idx + 1) % raid_disks;
1820 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1821 			break;
1822 		case ALGORITHM_RIGHT_SYMMETRIC:
1823 			pd_idx = sector_div(stripe2, raid_disks);
1824 			qd_idx = (pd_idx + 1) % raid_disks;
1825 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1826 			break;
1827 
1828 		case ALGORITHM_PARITY_0:
1829 			pd_idx = 0;
1830 			qd_idx = 1;
1831 			(*dd_idx) += 2;
1832 			break;
1833 		case ALGORITHM_PARITY_N:
1834 			pd_idx = data_disks;
1835 			qd_idx = data_disks + 1;
1836 			break;
1837 
1838 		case ALGORITHM_ROTATING_ZERO_RESTART:
1839 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1840 			 * of blocks for computing Q is different.
1841 			 */
1842 			pd_idx = sector_div(stripe2, raid_disks);
1843 			qd_idx = pd_idx + 1;
1844 			if (pd_idx == raid_disks-1) {
1845 				(*dd_idx)++;	/* Q D D D P */
1846 				qd_idx = 0;
1847 			} else if (*dd_idx >= pd_idx)
1848 				(*dd_idx) += 2; /* D D P Q D */
1849 			ddf_layout = 1;
1850 			break;
1851 
1852 		case ALGORITHM_ROTATING_N_RESTART:
1853 			/* Same a left_asymmetric, by first stripe is
1854 			 * D D D P Q  rather than
1855 			 * Q D D D P
1856 			 */
1857 			stripe2 += 1;
1858 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1859 			qd_idx = pd_idx + 1;
1860 			if (pd_idx == raid_disks-1) {
1861 				(*dd_idx)++;	/* Q D D D P */
1862 				qd_idx = 0;
1863 			} else if (*dd_idx >= pd_idx)
1864 				(*dd_idx) += 2; /* D D P Q D */
1865 			ddf_layout = 1;
1866 			break;
1867 
1868 		case ALGORITHM_ROTATING_N_CONTINUE:
1869 			/* Same as left_symmetric but Q is before P */
1870 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1871 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1872 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1873 			ddf_layout = 1;
1874 			break;
1875 
1876 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1877 			/* RAID5 left_asymmetric, with Q on last device */
1878 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1879 			if (*dd_idx >= pd_idx)
1880 				(*dd_idx)++;
1881 			qd_idx = raid_disks - 1;
1882 			break;
1883 
1884 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1885 			pd_idx = sector_div(stripe2, raid_disks-1);
1886 			if (*dd_idx >= pd_idx)
1887 				(*dd_idx)++;
1888 			qd_idx = raid_disks - 1;
1889 			break;
1890 
1891 		case ALGORITHM_LEFT_SYMMETRIC_6:
1892 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1893 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1894 			qd_idx = raid_disks - 1;
1895 			break;
1896 
1897 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1898 			pd_idx = sector_div(stripe2, raid_disks-1);
1899 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1900 			qd_idx = raid_disks - 1;
1901 			break;
1902 
1903 		case ALGORITHM_PARITY_0_6:
1904 			pd_idx = 0;
1905 			(*dd_idx)++;
1906 			qd_idx = raid_disks - 1;
1907 			break;
1908 
1909 		default:
1910 			BUG();
1911 		}
1912 		break;
1913 	}
1914 
1915 	if (sh) {
1916 		sh->pd_idx = pd_idx;
1917 		sh->qd_idx = qd_idx;
1918 		sh->ddf_layout = ddf_layout;
1919 	}
1920 	/*
1921 	 * Finally, compute the new sector number
1922 	 */
1923 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1924 	return new_sector;
1925 }
1926 
1927 
1928 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1929 {
1930 	raid5_conf_t *conf = sh->raid_conf;
1931 	int raid_disks = sh->disks;
1932 	int data_disks = raid_disks - conf->max_degraded;
1933 	sector_t new_sector = sh->sector, check;
1934 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1935 					 : conf->chunk_sectors;
1936 	int algorithm = previous ? conf->prev_algo
1937 				 : conf->algorithm;
1938 	sector_t stripe;
1939 	int chunk_offset;
1940 	sector_t chunk_number;
1941 	int dummy1, dd_idx = i;
1942 	sector_t r_sector;
1943 	struct stripe_head sh2;
1944 
1945 
1946 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1947 	stripe = new_sector;
1948 
1949 	if (i == sh->pd_idx)
1950 		return 0;
1951 	switch(conf->level) {
1952 	case 4: break;
1953 	case 5:
1954 		switch (algorithm) {
1955 		case ALGORITHM_LEFT_ASYMMETRIC:
1956 		case ALGORITHM_RIGHT_ASYMMETRIC:
1957 			if (i > sh->pd_idx)
1958 				i--;
1959 			break;
1960 		case ALGORITHM_LEFT_SYMMETRIC:
1961 		case ALGORITHM_RIGHT_SYMMETRIC:
1962 			if (i < sh->pd_idx)
1963 				i += raid_disks;
1964 			i -= (sh->pd_idx + 1);
1965 			break;
1966 		case ALGORITHM_PARITY_0:
1967 			i -= 1;
1968 			break;
1969 		case ALGORITHM_PARITY_N:
1970 			break;
1971 		default:
1972 			BUG();
1973 		}
1974 		break;
1975 	case 6:
1976 		if (i == sh->qd_idx)
1977 			return 0; /* It is the Q disk */
1978 		switch (algorithm) {
1979 		case ALGORITHM_LEFT_ASYMMETRIC:
1980 		case ALGORITHM_RIGHT_ASYMMETRIC:
1981 		case ALGORITHM_ROTATING_ZERO_RESTART:
1982 		case ALGORITHM_ROTATING_N_RESTART:
1983 			if (sh->pd_idx == raid_disks-1)
1984 				i--;	/* Q D D D P */
1985 			else if (i > sh->pd_idx)
1986 				i -= 2; /* D D P Q D */
1987 			break;
1988 		case ALGORITHM_LEFT_SYMMETRIC:
1989 		case ALGORITHM_RIGHT_SYMMETRIC:
1990 			if (sh->pd_idx == raid_disks-1)
1991 				i--; /* Q D D D P */
1992 			else {
1993 				/* D D P Q D */
1994 				if (i < sh->pd_idx)
1995 					i += raid_disks;
1996 				i -= (sh->pd_idx + 2);
1997 			}
1998 			break;
1999 		case ALGORITHM_PARITY_0:
2000 			i -= 2;
2001 			break;
2002 		case ALGORITHM_PARITY_N:
2003 			break;
2004 		case ALGORITHM_ROTATING_N_CONTINUE:
2005 			/* Like left_symmetric, but P is before Q */
2006 			if (sh->pd_idx == 0)
2007 				i--;	/* P D D D Q */
2008 			else {
2009 				/* D D Q P D */
2010 				if (i < sh->pd_idx)
2011 					i += raid_disks;
2012 				i -= (sh->pd_idx + 1);
2013 			}
2014 			break;
2015 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2016 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2017 			if (i > sh->pd_idx)
2018 				i--;
2019 			break;
2020 		case ALGORITHM_LEFT_SYMMETRIC_6:
2021 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2022 			if (i < sh->pd_idx)
2023 				i += data_disks + 1;
2024 			i -= (sh->pd_idx + 1);
2025 			break;
2026 		case ALGORITHM_PARITY_0_6:
2027 			i -= 1;
2028 			break;
2029 		default:
2030 			BUG();
2031 		}
2032 		break;
2033 	}
2034 
2035 	chunk_number = stripe * data_disks + i;
2036 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2037 
2038 	check = raid5_compute_sector(conf, r_sector,
2039 				     previous, &dummy1, &sh2);
2040 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2041 		|| sh2.qd_idx != sh->qd_idx) {
2042 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2043 		       mdname(conf->mddev));
2044 		return 0;
2045 	}
2046 	return r_sector;
2047 }
2048 
2049 
2050 static void
2051 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2052 			 int rcw, int expand)
2053 {
2054 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2055 	raid5_conf_t *conf = sh->raid_conf;
2056 	int level = conf->level;
2057 
2058 	if (rcw) {
2059 		/* if we are not expanding this is a proper write request, and
2060 		 * there will be bios with new data to be drained into the
2061 		 * stripe cache
2062 		 */
2063 		if (!expand) {
2064 			sh->reconstruct_state = reconstruct_state_drain_run;
2065 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2066 		} else
2067 			sh->reconstruct_state = reconstruct_state_run;
2068 
2069 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2070 
2071 		for (i = disks; i--; ) {
2072 			struct r5dev *dev = &sh->dev[i];
2073 
2074 			if (dev->towrite) {
2075 				set_bit(R5_LOCKED, &dev->flags);
2076 				set_bit(R5_Wantdrain, &dev->flags);
2077 				if (!expand)
2078 					clear_bit(R5_UPTODATE, &dev->flags);
2079 				s->locked++;
2080 			}
2081 		}
2082 		if (s->locked + conf->max_degraded == disks)
2083 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2084 				atomic_inc(&conf->pending_full_writes);
2085 	} else {
2086 		BUG_ON(level == 6);
2087 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2088 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2089 
2090 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2091 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2092 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2093 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2094 
2095 		for (i = disks; i--; ) {
2096 			struct r5dev *dev = &sh->dev[i];
2097 			if (i == pd_idx)
2098 				continue;
2099 
2100 			if (dev->towrite &&
2101 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2102 			     test_bit(R5_Wantcompute, &dev->flags))) {
2103 				set_bit(R5_Wantdrain, &dev->flags);
2104 				set_bit(R5_LOCKED, &dev->flags);
2105 				clear_bit(R5_UPTODATE, &dev->flags);
2106 				s->locked++;
2107 			}
2108 		}
2109 	}
2110 
2111 	/* keep the parity disk(s) locked while asynchronous operations
2112 	 * are in flight
2113 	 */
2114 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2115 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2116 	s->locked++;
2117 
2118 	if (level == 6) {
2119 		int qd_idx = sh->qd_idx;
2120 		struct r5dev *dev = &sh->dev[qd_idx];
2121 
2122 		set_bit(R5_LOCKED, &dev->flags);
2123 		clear_bit(R5_UPTODATE, &dev->flags);
2124 		s->locked++;
2125 	}
2126 
2127 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2128 		__func__, (unsigned long long)sh->sector,
2129 		s->locked, s->ops_request);
2130 }
2131 
2132 /*
2133  * Each stripe/dev can have one or more bion attached.
2134  * toread/towrite point to the first in a chain.
2135  * The bi_next chain must be in order.
2136  */
2137 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2138 {
2139 	struct bio **bip;
2140 	raid5_conf_t *conf = sh->raid_conf;
2141 	int firstwrite=0;
2142 
2143 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2144 		(unsigned long long)bi->bi_sector,
2145 		(unsigned long long)sh->sector);
2146 
2147 
2148 	spin_lock(&sh->lock);
2149 	spin_lock_irq(&conf->device_lock);
2150 	if (forwrite) {
2151 		bip = &sh->dev[dd_idx].towrite;
2152 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2153 			firstwrite = 1;
2154 	} else
2155 		bip = &sh->dev[dd_idx].toread;
2156 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2157 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2158 			goto overlap;
2159 		bip = & (*bip)->bi_next;
2160 	}
2161 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2162 		goto overlap;
2163 
2164 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2165 	if (*bip)
2166 		bi->bi_next = *bip;
2167 	*bip = bi;
2168 	bi->bi_phys_segments++;
2169 	spin_unlock_irq(&conf->device_lock);
2170 	spin_unlock(&sh->lock);
2171 
2172 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2173 		(unsigned long long)bi->bi_sector,
2174 		(unsigned long long)sh->sector, dd_idx);
2175 
2176 	if (conf->mddev->bitmap && firstwrite) {
2177 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2178 				  STRIPE_SECTORS, 0);
2179 		sh->bm_seq = conf->seq_flush+1;
2180 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2181 	}
2182 
2183 	if (forwrite) {
2184 		/* check if page is covered */
2185 		sector_t sector = sh->dev[dd_idx].sector;
2186 		for (bi=sh->dev[dd_idx].towrite;
2187 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2188 			     bi && bi->bi_sector <= sector;
2189 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2190 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2191 				sector = bi->bi_sector + (bi->bi_size>>9);
2192 		}
2193 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2194 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2195 	}
2196 	return 1;
2197 
2198  overlap:
2199 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2200 	spin_unlock_irq(&conf->device_lock);
2201 	spin_unlock(&sh->lock);
2202 	return 0;
2203 }
2204 
2205 static void end_reshape(raid5_conf_t *conf);
2206 
2207 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2208 			    struct stripe_head *sh)
2209 {
2210 	int sectors_per_chunk =
2211 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2212 	int dd_idx;
2213 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2214 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2215 
2216 	raid5_compute_sector(conf,
2217 			     stripe * (disks - conf->max_degraded)
2218 			     *sectors_per_chunk + chunk_offset,
2219 			     previous,
2220 			     &dd_idx, sh);
2221 }
2222 
2223 static void
2224 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2225 				struct stripe_head_state *s, int disks,
2226 				struct bio **return_bi)
2227 {
2228 	int i;
2229 	for (i = disks; i--; ) {
2230 		struct bio *bi;
2231 		int bitmap_end = 0;
2232 
2233 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2234 			mdk_rdev_t *rdev;
2235 			rcu_read_lock();
2236 			rdev = rcu_dereference(conf->disks[i].rdev);
2237 			if (rdev && test_bit(In_sync, &rdev->flags))
2238 				/* multiple read failures in one stripe */
2239 				md_error(conf->mddev, rdev);
2240 			rcu_read_unlock();
2241 		}
2242 		spin_lock_irq(&conf->device_lock);
2243 		/* fail all writes first */
2244 		bi = sh->dev[i].towrite;
2245 		sh->dev[i].towrite = NULL;
2246 		if (bi) {
2247 			s->to_write--;
2248 			bitmap_end = 1;
2249 		}
2250 
2251 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2252 			wake_up(&conf->wait_for_overlap);
2253 
2254 		while (bi && bi->bi_sector <
2255 			sh->dev[i].sector + STRIPE_SECTORS) {
2256 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2257 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2258 			if (!raid5_dec_bi_phys_segments(bi)) {
2259 				md_write_end(conf->mddev);
2260 				bi->bi_next = *return_bi;
2261 				*return_bi = bi;
2262 			}
2263 			bi = nextbi;
2264 		}
2265 		/* and fail all 'written' */
2266 		bi = sh->dev[i].written;
2267 		sh->dev[i].written = NULL;
2268 		if (bi) bitmap_end = 1;
2269 		while (bi && bi->bi_sector <
2270 		       sh->dev[i].sector + STRIPE_SECTORS) {
2271 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2272 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2273 			if (!raid5_dec_bi_phys_segments(bi)) {
2274 				md_write_end(conf->mddev);
2275 				bi->bi_next = *return_bi;
2276 				*return_bi = bi;
2277 			}
2278 			bi = bi2;
2279 		}
2280 
2281 		/* fail any reads if this device is non-operational and
2282 		 * the data has not reached the cache yet.
2283 		 */
2284 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2285 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2286 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2287 			bi = sh->dev[i].toread;
2288 			sh->dev[i].toread = NULL;
2289 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2290 				wake_up(&conf->wait_for_overlap);
2291 			if (bi) s->to_read--;
2292 			while (bi && bi->bi_sector <
2293 			       sh->dev[i].sector + STRIPE_SECTORS) {
2294 				struct bio *nextbi =
2295 					r5_next_bio(bi, sh->dev[i].sector);
2296 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2297 				if (!raid5_dec_bi_phys_segments(bi)) {
2298 					bi->bi_next = *return_bi;
2299 					*return_bi = bi;
2300 				}
2301 				bi = nextbi;
2302 			}
2303 		}
2304 		spin_unlock_irq(&conf->device_lock);
2305 		if (bitmap_end)
2306 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2307 					STRIPE_SECTORS, 0, 0);
2308 	}
2309 
2310 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2311 		if (atomic_dec_and_test(&conf->pending_full_writes))
2312 			md_wakeup_thread(conf->mddev->thread);
2313 }
2314 
2315 /* fetch_block5 - checks the given member device to see if its data needs
2316  * to be read or computed to satisfy a request.
2317  *
2318  * Returns 1 when no more member devices need to be checked, otherwise returns
2319  * 0 to tell the loop in handle_stripe_fill5 to continue
2320  */
2321 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2322 			int disk_idx, int disks)
2323 {
2324 	struct r5dev *dev = &sh->dev[disk_idx];
2325 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2326 
2327 	/* is the data in this block needed, and can we get it? */
2328 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2329 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2330 	    (dev->toread ||
2331 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2332 	     s->syncing || s->expanding ||
2333 	     (s->failed &&
2334 	      (failed_dev->toread ||
2335 	       (failed_dev->towrite &&
2336 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2337 		/* We would like to get this block, possibly by computing it,
2338 		 * otherwise read it if the backing disk is insync
2339 		 */
2340 		if ((s->uptodate == disks - 1) &&
2341 		    (s->failed && disk_idx == s->failed_num)) {
2342 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2343 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2344 			set_bit(R5_Wantcompute, &dev->flags);
2345 			sh->ops.target = disk_idx;
2346 			sh->ops.target2 = -1;
2347 			s->req_compute = 1;
2348 			/* Careful: from this point on 'uptodate' is in the eye
2349 			 * of raid_run_ops which services 'compute' operations
2350 			 * before writes. R5_Wantcompute flags a block that will
2351 			 * be R5_UPTODATE by the time it is needed for a
2352 			 * subsequent operation.
2353 			 */
2354 			s->uptodate++;
2355 			return 1; /* uptodate + compute == disks */
2356 		} else if (test_bit(R5_Insync, &dev->flags)) {
2357 			set_bit(R5_LOCKED, &dev->flags);
2358 			set_bit(R5_Wantread, &dev->flags);
2359 			s->locked++;
2360 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2361 				s->syncing);
2362 		}
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 /**
2369  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2370  */
2371 static void handle_stripe_fill5(struct stripe_head *sh,
2372 			struct stripe_head_state *s, int disks)
2373 {
2374 	int i;
2375 
2376 	/* look for blocks to read/compute, skip this if a compute
2377 	 * is already in flight, or if the stripe contents are in the
2378 	 * midst of changing due to a write
2379 	 */
2380 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2381 	    !sh->reconstruct_state)
2382 		for (i = disks; i--; )
2383 			if (fetch_block5(sh, s, i, disks))
2384 				break;
2385 	set_bit(STRIPE_HANDLE, &sh->state);
2386 }
2387 
2388 /* fetch_block6 - checks the given member device to see if its data needs
2389  * to be read or computed to satisfy a request.
2390  *
2391  * Returns 1 when no more member devices need to be checked, otherwise returns
2392  * 0 to tell the loop in handle_stripe_fill6 to continue
2393  */
2394 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2395 			 struct r6_state *r6s, int disk_idx, int disks)
2396 {
2397 	struct r5dev *dev = &sh->dev[disk_idx];
2398 	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2399 				  &sh->dev[r6s->failed_num[1]] };
2400 
2401 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2402 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2403 	    (dev->toread ||
2404 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2405 	     s->syncing || s->expanding ||
2406 	     (s->failed >= 1 &&
2407 	      (fdev[0]->toread || s->to_write)) ||
2408 	     (s->failed >= 2 &&
2409 	      (fdev[1]->toread || s->to_write)))) {
2410 		/* we would like to get this block, possibly by computing it,
2411 		 * otherwise read it if the backing disk is insync
2412 		 */
2413 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2414 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2415 		if ((s->uptodate == disks - 1) &&
2416 		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2417 				   disk_idx == r6s->failed_num[1]))) {
2418 			/* have disk failed, and we're requested to fetch it;
2419 			 * do compute it
2420 			 */
2421 			pr_debug("Computing stripe %llu block %d\n",
2422 			       (unsigned long long)sh->sector, disk_idx);
2423 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2424 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2425 			set_bit(R5_Wantcompute, &dev->flags);
2426 			sh->ops.target = disk_idx;
2427 			sh->ops.target2 = -1; /* no 2nd target */
2428 			s->req_compute = 1;
2429 			s->uptodate++;
2430 			return 1;
2431 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2432 			/* Computing 2-failure is *very* expensive; only
2433 			 * do it if failed >= 2
2434 			 */
2435 			int other;
2436 			for (other = disks; other--; ) {
2437 				if (other == disk_idx)
2438 					continue;
2439 				if (!test_bit(R5_UPTODATE,
2440 				      &sh->dev[other].flags))
2441 					break;
2442 			}
2443 			BUG_ON(other < 0);
2444 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2445 			       (unsigned long long)sh->sector,
2446 			       disk_idx, other);
2447 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2448 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2449 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2450 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2451 			sh->ops.target = disk_idx;
2452 			sh->ops.target2 = other;
2453 			s->uptodate += 2;
2454 			s->req_compute = 1;
2455 			return 1;
2456 		} else if (test_bit(R5_Insync, &dev->flags)) {
2457 			set_bit(R5_LOCKED, &dev->flags);
2458 			set_bit(R5_Wantread, &dev->flags);
2459 			s->locked++;
2460 			pr_debug("Reading block %d (sync=%d)\n",
2461 				disk_idx, s->syncing);
2462 		}
2463 	}
2464 
2465 	return 0;
2466 }
2467 
2468 /**
2469  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2470  */
2471 static void handle_stripe_fill6(struct stripe_head *sh,
2472 			struct stripe_head_state *s, struct r6_state *r6s,
2473 			int disks)
2474 {
2475 	int i;
2476 
2477 	/* look for blocks to read/compute, skip this if a compute
2478 	 * is already in flight, or if the stripe contents are in the
2479 	 * midst of changing due to a write
2480 	 */
2481 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2482 	    !sh->reconstruct_state)
2483 		for (i = disks; i--; )
2484 			if (fetch_block6(sh, s, r6s, i, disks))
2485 				break;
2486 	set_bit(STRIPE_HANDLE, &sh->state);
2487 }
2488 
2489 
2490 /* handle_stripe_clean_event
2491  * any written block on an uptodate or failed drive can be returned.
2492  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2493  * never LOCKED, so we don't need to test 'failed' directly.
2494  */
2495 static void handle_stripe_clean_event(raid5_conf_t *conf,
2496 	struct stripe_head *sh, int disks, struct bio **return_bi)
2497 {
2498 	int i;
2499 	struct r5dev *dev;
2500 
2501 	for (i = disks; i--; )
2502 		if (sh->dev[i].written) {
2503 			dev = &sh->dev[i];
2504 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2505 				test_bit(R5_UPTODATE, &dev->flags)) {
2506 				/* We can return any write requests */
2507 				struct bio *wbi, *wbi2;
2508 				int bitmap_end = 0;
2509 				pr_debug("Return write for disc %d\n", i);
2510 				spin_lock_irq(&conf->device_lock);
2511 				wbi = dev->written;
2512 				dev->written = NULL;
2513 				while (wbi && wbi->bi_sector <
2514 					dev->sector + STRIPE_SECTORS) {
2515 					wbi2 = r5_next_bio(wbi, dev->sector);
2516 					if (!raid5_dec_bi_phys_segments(wbi)) {
2517 						md_write_end(conf->mddev);
2518 						wbi->bi_next = *return_bi;
2519 						*return_bi = wbi;
2520 					}
2521 					wbi = wbi2;
2522 				}
2523 				if (dev->towrite == NULL)
2524 					bitmap_end = 1;
2525 				spin_unlock_irq(&conf->device_lock);
2526 				if (bitmap_end)
2527 					bitmap_endwrite(conf->mddev->bitmap,
2528 							sh->sector,
2529 							STRIPE_SECTORS,
2530 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2531 							0);
2532 			}
2533 		}
2534 
2535 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2536 		if (atomic_dec_and_test(&conf->pending_full_writes))
2537 			md_wakeup_thread(conf->mddev->thread);
2538 }
2539 
2540 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2541 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2542 {
2543 	int rmw = 0, rcw = 0, i;
2544 	for (i = disks; i--; ) {
2545 		/* would I have to read this buffer for read_modify_write */
2546 		struct r5dev *dev = &sh->dev[i];
2547 		if ((dev->towrite || i == sh->pd_idx) &&
2548 		    !test_bit(R5_LOCKED, &dev->flags) &&
2549 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2550 		      test_bit(R5_Wantcompute, &dev->flags))) {
2551 			if (test_bit(R5_Insync, &dev->flags))
2552 				rmw++;
2553 			else
2554 				rmw += 2*disks;  /* cannot read it */
2555 		}
2556 		/* Would I have to read this buffer for reconstruct_write */
2557 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2558 		    !test_bit(R5_LOCKED, &dev->flags) &&
2559 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2560 		    test_bit(R5_Wantcompute, &dev->flags))) {
2561 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2562 			else
2563 				rcw += 2*disks;
2564 		}
2565 	}
2566 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2567 		(unsigned long long)sh->sector, rmw, rcw);
2568 	set_bit(STRIPE_HANDLE, &sh->state);
2569 	if (rmw < rcw && rmw > 0)
2570 		/* prefer read-modify-write, but need to get some data */
2571 		for (i = disks; i--; ) {
2572 			struct r5dev *dev = &sh->dev[i];
2573 			if ((dev->towrite || i == sh->pd_idx) &&
2574 			    !test_bit(R5_LOCKED, &dev->flags) &&
2575 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2576 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2577 			    test_bit(R5_Insync, &dev->flags)) {
2578 				if (
2579 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2580 					pr_debug("Read_old block "
2581 						"%d for r-m-w\n", i);
2582 					set_bit(R5_LOCKED, &dev->flags);
2583 					set_bit(R5_Wantread, &dev->flags);
2584 					s->locked++;
2585 				} else {
2586 					set_bit(STRIPE_DELAYED, &sh->state);
2587 					set_bit(STRIPE_HANDLE, &sh->state);
2588 				}
2589 			}
2590 		}
2591 	if (rcw <= rmw && rcw > 0)
2592 		/* want reconstruct write, but need to get some data */
2593 		for (i = disks; i--; ) {
2594 			struct r5dev *dev = &sh->dev[i];
2595 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2596 			    i != sh->pd_idx &&
2597 			    !test_bit(R5_LOCKED, &dev->flags) &&
2598 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2599 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2600 			    test_bit(R5_Insync, &dev->flags)) {
2601 				if (
2602 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2603 					pr_debug("Read_old block "
2604 						"%d for Reconstruct\n", i);
2605 					set_bit(R5_LOCKED, &dev->flags);
2606 					set_bit(R5_Wantread, &dev->flags);
2607 					s->locked++;
2608 				} else {
2609 					set_bit(STRIPE_DELAYED, &sh->state);
2610 					set_bit(STRIPE_HANDLE, &sh->state);
2611 				}
2612 			}
2613 		}
2614 	/* now if nothing is locked, and if we have enough data,
2615 	 * we can start a write request
2616 	 */
2617 	/* since handle_stripe can be called at any time we need to handle the
2618 	 * case where a compute block operation has been submitted and then a
2619 	 * subsequent call wants to start a write request.  raid_run_ops only
2620 	 * handles the case where compute block and reconstruct are requested
2621 	 * simultaneously.  If this is not the case then new writes need to be
2622 	 * held off until the compute completes.
2623 	 */
2624 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2625 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2626 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2627 		schedule_reconstruction(sh, s, rcw == 0, 0);
2628 }
2629 
2630 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2631 		struct stripe_head *sh,	struct stripe_head_state *s,
2632 		struct r6_state *r6s, int disks)
2633 {
2634 	int rcw = 0, pd_idx = sh->pd_idx, i;
2635 	int qd_idx = sh->qd_idx;
2636 
2637 	set_bit(STRIPE_HANDLE, &sh->state);
2638 	for (i = disks; i--; ) {
2639 		struct r5dev *dev = &sh->dev[i];
2640 		/* check if we haven't enough data */
2641 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2642 		    i != pd_idx && i != qd_idx &&
2643 		    !test_bit(R5_LOCKED, &dev->flags) &&
2644 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2645 		      test_bit(R5_Wantcompute, &dev->flags))) {
2646 			rcw++;
2647 			if (!test_bit(R5_Insync, &dev->flags))
2648 				continue; /* it's a failed drive */
2649 
2650 			if (
2651 			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2652 				pr_debug("Read_old stripe %llu "
2653 					"block %d for Reconstruct\n",
2654 				     (unsigned long long)sh->sector, i);
2655 				set_bit(R5_LOCKED, &dev->flags);
2656 				set_bit(R5_Wantread, &dev->flags);
2657 				s->locked++;
2658 			} else {
2659 				pr_debug("Request delayed stripe %llu "
2660 					"block %d for Reconstruct\n",
2661 				     (unsigned long long)sh->sector, i);
2662 				set_bit(STRIPE_DELAYED, &sh->state);
2663 				set_bit(STRIPE_HANDLE, &sh->state);
2664 			}
2665 		}
2666 	}
2667 	/* now if nothing is locked, and if we have enough data, we can start a
2668 	 * write request
2669 	 */
2670 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2671 	    s->locked == 0 && rcw == 0 &&
2672 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2673 		schedule_reconstruction(sh, s, 1, 0);
2674 	}
2675 }
2676 
2677 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2678 				struct stripe_head_state *s, int disks)
2679 {
2680 	struct r5dev *dev = NULL;
2681 
2682 	set_bit(STRIPE_HANDLE, &sh->state);
2683 
2684 	switch (sh->check_state) {
2685 	case check_state_idle:
2686 		/* start a new check operation if there are no failures */
2687 		if (s->failed == 0) {
2688 			BUG_ON(s->uptodate != disks);
2689 			sh->check_state = check_state_run;
2690 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2691 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2692 			s->uptodate--;
2693 			break;
2694 		}
2695 		dev = &sh->dev[s->failed_num];
2696 		/* fall through */
2697 	case check_state_compute_result:
2698 		sh->check_state = check_state_idle;
2699 		if (!dev)
2700 			dev = &sh->dev[sh->pd_idx];
2701 
2702 		/* check that a write has not made the stripe insync */
2703 		if (test_bit(STRIPE_INSYNC, &sh->state))
2704 			break;
2705 
2706 		/* either failed parity check, or recovery is happening */
2707 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2708 		BUG_ON(s->uptodate != disks);
2709 
2710 		set_bit(R5_LOCKED, &dev->flags);
2711 		s->locked++;
2712 		set_bit(R5_Wantwrite, &dev->flags);
2713 
2714 		clear_bit(STRIPE_DEGRADED, &sh->state);
2715 		set_bit(STRIPE_INSYNC, &sh->state);
2716 		break;
2717 	case check_state_run:
2718 		break; /* we will be called again upon completion */
2719 	case check_state_check_result:
2720 		sh->check_state = check_state_idle;
2721 
2722 		/* if a failure occurred during the check operation, leave
2723 		 * STRIPE_INSYNC not set and let the stripe be handled again
2724 		 */
2725 		if (s->failed)
2726 			break;
2727 
2728 		/* handle a successful check operation, if parity is correct
2729 		 * we are done.  Otherwise update the mismatch count and repair
2730 		 * parity if !MD_RECOVERY_CHECK
2731 		 */
2732 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2733 			/* parity is correct (on disc,
2734 			 * not in buffer any more)
2735 			 */
2736 			set_bit(STRIPE_INSYNC, &sh->state);
2737 		else {
2738 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2739 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2740 				/* don't try to repair!! */
2741 				set_bit(STRIPE_INSYNC, &sh->state);
2742 			else {
2743 				sh->check_state = check_state_compute_run;
2744 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2745 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2746 				set_bit(R5_Wantcompute,
2747 					&sh->dev[sh->pd_idx].flags);
2748 				sh->ops.target = sh->pd_idx;
2749 				sh->ops.target2 = -1;
2750 				s->uptodate++;
2751 			}
2752 		}
2753 		break;
2754 	case check_state_compute_run:
2755 		break;
2756 	default:
2757 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2758 		       __func__, sh->check_state,
2759 		       (unsigned long long) sh->sector);
2760 		BUG();
2761 	}
2762 }
2763 
2764 
2765 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2766 				  struct stripe_head_state *s,
2767 				  struct r6_state *r6s, int disks)
2768 {
2769 	int pd_idx = sh->pd_idx;
2770 	int qd_idx = sh->qd_idx;
2771 	struct r5dev *dev;
2772 
2773 	set_bit(STRIPE_HANDLE, &sh->state);
2774 
2775 	BUG_ON(s->failed > 2);
2776 
2777 	/* Want to check and possibly repair P and Q.
2778 	 * However there could be one 'failed' device, in which
2779 	 * case we can only check one of them, possibly using the
2780 	 * other to generate missing data
2781 	 */
2782 
2783 	switch (sh->check_state) {
2784 	case check_state_idle:
2785 		/* start a new check operation if there are < 2 failures */
2786 		if (s->failed == r6s->q_failed) {
2787 			/* The only possible failed device holds Q, so it
2788 			 * makes sense to check P (If anything else were failed,
2789 			 * we would have used P to recreate it).
2790 			 */
2791 			sh->check_state = check_state_run;
2792 		}
2793 		if (!r6s->q_failed && s->failed < 2) {
2794 			/* Q is not failed, and we didn't use it to generate
2795 			 * anything, so it makes sense to check it
2796 			 */
2797 			if (sh->check_state == check_state_run)
2798 				sh->check_state = check_state_run_pq;
2799 			else
2800 				sh->check_state = check_state_run_q;
2801 		}
2802 
2803 		/* discard potentially stale zero_sum_result */
2804 		sh->ops.zero_sum_result = 0;
2805 
2806 		if (sh->check_state == check_state_run) {
2807 			/* async_xor_zero_sum destroys the contents of P */
2808 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2809 			s->uptodate--;
2810 		}
2811 		if (sh->check_state >= check_state_run &&
2812 		    sh->check_state <= check_state_run_pq) {
2813 			/* async_syndrome_zero_sum preserves P and Q, so
2814 			 * no need to mark them !uptodate here
2815 			 */
2816 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2817 			break;
2818 		}
2819 
2820 		/* we have 2-disk failure */
2821 		BUG_ON(s->failed != 2);
2822 		/* fall through */
2823 	case check_state_compute_result:
2824 		sh->check_state = check_state_idle;
2825 
2826 		/* check that a write has not made the stripe insync */
2827 		if (test_bit(STRIPE_INSYNC, &sh->state))
2828 			break;
2829 
2830 		/* now write out any block on a failed drive,
2831 		 * or P or Q if they were recomputed
2832 		 */
2833 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2834 		if (s->failed == 2) {
2835 			dev = &sh->dev[r6s->failed_num[1]];
2836 			s->locked++;
2837 			set_bit(R5_LOCKED, &dev->flags);
2838 			set_bit(R5_Wantwrite, &dev->flags);
2839 		}
2840 		if (s->failed >= 1) {
2841 			dev = &sh->dev[r6s->failed_num[0]];
2842 			s->locked++;
2843 			set_bit(R5_LOCKED, &dev->flags);
2844 			set_bit(R5_Wantwrite, &dev->flags);
2845 		}
2846 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2847 			dev = &sh->dev[pd_idx];
2848 			s->locked++;
2849 			set_bit(R5_LOCKED, &dev->flags);
2850 			set_bit(R5_Wantwrite, &dev->flags);
2851 		}
2852 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2853 			dev = &sh->dev[qd_idx];
2854 			s->locked++;
2855 			set_bit(R5_LOCKED, &dev->flags);
2856 			set_bit(R5_Wantwrite, &dev->flags);
2857 		}
2858 		clear_bit(STRIPE_DEGRADED, &sh->state);
2859 
2860 		set_bit(STRIPE_INSYNC, &sh->state);
2861 		break;
2862 	case check_state_run:
2863 	case check_state_run_q:
2864 	case check_state_run_pq:
2865 		break; /* we will be called again upon completion */
2866 	case check_state_check_result:
2867 		sh->check_state = check_state_idle;
2868 
2869 		/* handle a successful check operation, if parity is correct
2870 		 * we are done.  Otherwise update the mismatch count and repair
2871 		 * parity if !MD_RECOVERY_CHECK
2872 		 */
2873 		if (sh->ops.zero_sum_result == 0) {
2874 			/* both parities are correct */
2875 			if (!s->failed)
2876 				set_bit(STRIPE_INSYNC, &sh->state);
2877 			else {
2878 				/* in contrast to the raid5 case we can validate
2879 				 * parity, but still have a failure to write
2880 				 * back
2881 				 */
2882 				sh->check_state = check_state_compute_result;
2883 				/* Returning at this point means that we may go
2884 				 * off and bring p and/or q uptodate again so
2885 				 * we make sure to check zero_sum_result again
2886 				 * to verify if p or q need writeback
2887 				 */
2888 			}
2889 		} else {
2890 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2891 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2892 				/* don't try to repair!! */
2893 				set_bit(STRIPE_INSYNC, &sh->state);
2894 			else {
2895 				int *target = &sh->ops.target;
2896 
2897 				sh->ops.target = -1;
2898 				sh->ops.target2 = -1;
2899 				sh->check_state = check_state_compute_run;
2900 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2901 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2902 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2903 					set_bit(R5_Wantcompute,
2904 						&sh->dev[pd_idx].flags);
2905 					*target = pd_idx;
2906 					target = &sh->ops.target2;
2907 					s->uptodate++;
2908 				}
2909 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2910 					set_bit(R5_Wantcompute,
2911 						&sh->dev[qd_idx].flags);
2912 					*target = qd_idx;
2913 					s->uptodate++;
2914 				}
2915 			}
2916 		}
2917 		break;
2918 	case check_state_compute_run:
2919 		break;
2920 	default:
2921 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2922 		       __func__, sh->check_state,
2923 		       (unsigned long long) sh->sector);
2924 		BUG();
2925 	}
2926 }
2927 
2928 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2929 				struct r6_state *r6s)
2930 {
2931 	int i;
2932 
2933 	/* We have read all the blocks in this stripe and now we need to
2934 	 * copy some of them into a target stripe for expand.
2935 	 */
2936 	struct dma_async_tx_descriptor *tx = NULL;
2937 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2938 	for (i = 0; i < sh->disks; i++)
2939 		if (i != sh->pd_idx && i != sh->qd_idx) {
2940 			int dd_idx, j;
2941 			struct stripe_head *sh2;
2942 			struct async_submit_ctl submit;
2943 
2944 			sector_t bn = compute_blocknr(sh, i, 1);
2945 			sector_t s = raid5_compute_sector(conf, bn, 0,
2946 							  &dd_idx, NULL);
2947 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2948 			if (sh2 == NULL)
2949 				/* so far only the early blocks of this stripe
2950 				 * have been requested.  When later blocks
2951 				 * get requested, we will try again
2952 				 */
2953 				continue;
2954 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2955 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2956 				/* must have already done this block */
2957 				release_stripe(sh2);
2958 				continue;
2959 			}
2960 
2961 			/* place all the copies on one channel */
2962 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2963 			tx = async_memcpy(sh2->dev[dd_idx].page,
2964 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2965 					  &submit);
2966 
2967 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2968 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2969 			for (j = 0; j < conf->raid_disks; j++)
2970 				if (j != sh2->pd_idx &&
2971 				    (!r6s || j != sh2->qd_idx) &&
2972 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2973 					break;
2974 			if (j == conf->raid_disks) {
2975 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2976 				set_bit(STRIPE_HANDLE, &sh2->state);
2977 			}
2978 			release_stripe(sh2);
2979 
2980 		}
2981 	/* done submitting copies, wait for them to complete */
2982 	if (tx) {
2983 		async_tx_ack(tx);
2984 		dma_wait_for_async_tx(tx);
2985 	}
2986 }
2987 
2988 
2989 /*
2990  * handle_stripe - do things to a stripe.
2991  *
2992  * We lock the stripe and then examine the state of various bits
2993  * to see what needs to be done.
2994  * Possible results:
2995  *    return some read request which now have data
2996  *    return some write requests which are safely on disc
2997  *    schedule a read on some buffers
2998  *    schedule a write of some buffers
2999  *    return confirmation of parity correctness
3000  *
3001  * buffers are taken off read_list or write_list, and bh_cache buffers
3002  * get BH_Lock set before the stripe lock is released.
3003  *
3004  */
3005 
3006 static void handle_stripe5(struct stripe_head *sh)
3007 {
3008 	raid5_conf_t *conf = sh->raid_conf;
3009 	int disks = sh->disks, i;
3010 	struct bio *return_bi = NULL;
3011 	struct stripe_head_state s;
3012 	struct r5dev *dev;
3013 	mdk_rdev_t *blocked_rdev = NULL;
3014 	int prexor;
3015 	int dec_preread_active = 0;
3016 
3017 	memset(&s, 0, sizeof(s));
3018 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3019 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3020 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3021 		 sh->reconstruct_state);
3022 
3023 	spin_lock(&sh->lock);
3024 	clear_bit(STRIPE_HANDLE, &sh->state);
3025 	clear_bit(STRIPE_DELAYED, &sh->state);
3026 
3027 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3028 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3029 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3030 
3031 	/* Now to look around and see what can be done */
3032 	rcu_read_lock();
3033 	for (i=disks; i--; ) {
3034 		mdk_rdev_t *rdev;
3035 
3036 		dev = &sh->dev[i];
3037 
3038 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3039 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
3040 			dev->towrite, dev->written);
3041 
3042 		/* maybe we can request a biofill operation
3043 		 *
3044 		 * new wantfill requests are only permitted while
3045 		 * ops_complete_biofill is guaranteed to be inactive
3046 		 */
3047 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3048 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3049 			set_bit(R5_Wantfill, &dev->flags);
3050 
3051 		/* now count some things */
3052 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3053 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3054 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3055 
3056 		if (test_bit(R5_Wantfill, &dev->flags))
3057 			s.to_fill++;
3058 		else if (dev->toread)
3059 			s.to_read++;
3060 		if (dev->towrite) {
3061 			s.to_write++;
3062 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3063 				s.non_overwrite++;
3064 		}
3065 		if (dev->written)
3066 			s.written++;
3067 		rdev = rcu_dereference(conf->disks[i].rdev);
3068 		if (blocked_rdev == NULL &&
3069 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3070 			blocked_rdev = rdev;
3071 			atomic_inc(&rdev->nr_pending);
3072 		}
3073 		clear_bit(R5_Insync, &dev->flags);
3074 		if (!rdev)
3075 			/* Not in-sync */;
3076 		else if (test_bit(In_sync, &rdev->flags))
3077 			set_bit(R5_Insync, &dev->flags);
3078 		else {
3079 			/* could be in-sync depending on recovery/reshape status */
3080 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3081 				set_bit(R5_Insync, &dev->flags);
3082 		}
3083 		if (!test_bit(R5_Insync, &dev->flags)) {
3084 			/* The ReadError flag will just be confusing now */
3085 			clear_bit(R5_ReadError, &dev->flags);
3086 			clear_bit(R5_ReWrite, &dev->flags);
3087 		}
3088 		if (test_bit(R5_ReadError, &dev->flags))
3089 			clear_bit(R5_Insync, &dev->flags);
3090 		if (!test_bit(R5_Insync, &dev->flags)) {
3091 			s.failed++;
3092 			s.failed_num = i;
3093 		}
3094 	}
3095 	rcu_read_unlock();
3096 
3097 	if (unlikely(blocked_rdev)) {
3098 		if (s.syncing || s.expanding || s.expanded ||
3099 		    s.to_write || s.written) {
3100 			set_bit(STRIPE_HANDLE, &sh->state);
3101 			goto unlock;
3102 		}
3103 		/* There is nothing for the blocked_rdev to block */
3104 		rdev_dec_pending(blocked_rdev, conf->mddev);
3105 		blocked_rdev = NULL;
3106 	}
3107 
3108 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3109 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3110 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3111 	}
3112 
3113 	pr_debug("locked=%d uptodate=%d to_read=%d"
3114 		" to_write=%d failed=%d failed_num=%d\n",
3115 		s.locked, s.uptodate, s.to_read, s.to_write,
3116 		s.failed, s.failed_num);
3117 	/* check if the array has lost two devices and, if so, some requests might
3118 	 * need to be failed
3119 	 */
3120 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3121 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3122 	if (s.failed > 1 && s.syncing) {
3123 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3124 		clear_bit(STRIPE_SYNCING, &sh->state);
3125 		s.syncing = 0;
3126 	}
3127 
3128 	/* might be able to return some write requests if the parity block
3129 	 * is safe, or on a failed drive
3130 	 */
3131 	dev = &sh->dev[sh->pd_idx];
3132 	if ( s.written &&
3133 	     ((test_bit(R5_Insync, &dev->flags) &&
3134 	       !test_bit(R5_LOCKED, &dev->flags) &&
3135 	       test_bit(R5_UPTODATE, &dev->flags)) ||
3136 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3137 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3138 
3139 	/* Now we might consider reading some blocks, either to check/generate
3140 	 * parity, or to satisfy requests
3141 	 * or to load a block that is being partially written.
3142 	 */
3143 	if (s.to_read || s.non_overwrite ||
3144 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3145 		handle_stripe_fill5(sh, &s, disks);
3146 
3147 	/* Now we check to see if any write operations have recently
3148 	 * completed
3149 	 */
3150 	prexor = 0;
3151 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3152 		prexor = 1;
3153 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3154 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3155 		sh->reconstruct_state = reconstruct_state_idle;
3156 
3157 		/* All the 'written' buffers and the parity block are ready to
3158 		 * be written back to disk
3159 		 */
3160 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3161 		for (i = disks; i--; ) {
3162 			dev = &sh->dev[i];
3163 			if (test_bit(R5_LOCKED, &dev->flags) &&
3164 				(i == sh->pd_idx || dev->written)) {
3165 				pr_debug("Writing block %d\n", i);
3166 				set_bit(R5_Wantwrite, &dev->flags);
3167 				if (prexor)
3168 					continue;
3169 				if (!test_bit(R5_Insync, &dev->flags) ||
3170 				    (i == sh->pd_idx && s.failed == 0))
3171 					set_bit(STRIPE_INSYNC, &sh->state);
3172 			}
3173 		}
3174 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3175 			dec_preread_active = 1;
3176 	}
3177 
3178 	/* Now to consider new write requests and what else, if anything
3179 	 * should be read.  We do not handle new writes when:
3180 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3181 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3182 	 *    block.
3183 	 */
3184 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3185 		handle_stripe_dirtying5(conf, sh, &s, disks);
3186 
3187 	/* maybe we need to check and possibly fix the parity for this stripe
3188 	 * Any reads will already have been scheduled, so we just see if enough
3189 	 * data is available.  The parity check is held off while parity
3190 	 * dependent operations are in flight.
3191 	 */
3192 	if (sh->check_state ||
3193 	    (s.syncing && s.locked == 0 &&
3194 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3195 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3196 		handle_parity_checks5(conf, sh, &s, disks);
3197 
3198 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3199 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3200 		clear_bit(STRIPE_SYNCING, &sh->state);
3201 	}
3202 
3203 	/* If the failed drive is just a ReadError, then we might need to progress
3204 	 * the repair/check process
3205 	 */
3206 	if (s.failed == 1 && !conf->mddev->ro &&
3207 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3208 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3209 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3210 		) {
3211 		dev = &sh->dev[s.failed_num];
3212 		if (!test_bit(R5_ReWrite, &dev->flags)) {
3213 			set_bit(R5_Wantwrite, &dev->flags);
3214 			set_bit(R5_ReWrite, &dev->flags);
3215 			set_bit(R5_LOCKED, &dev->flags);
3216 			s.locked++;
3217 		} else {
3218 			/* let's read it back */
3219 			set_bit(R5_Wantread, &dev->flags);
3220 			set_bit(R5_LOCKED, &dev->flags);
3221 			s.locked++;
3222 		}
3223 	}
3224 
3225 	/* Finish reconstruct operations initiated by the expansion process */
3226 	if (sh->reconstruct_state == reconstruct_state_result) {
3227 		struct stripe_head *sh2
3228 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3229 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3230 			/* sh cannot be written until sh2 has been read.
3231 			 * so arrange for sh to be delayed a little
3232 			 */
3233 			set_bit(STRIPE_DELAYED, &sh->state);
3234 			set_bit(STRIPE_HANDLE, &sh->state);
3235 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3236 					      &sh2->state))
3237 				atomic_inc(&conf->preread_active_stripes);
3238 			release_stripe(sh2);
3239 			goto unlock;
3240 		}
3241 		if (sh2)
3242 			release_stripe(sh2);
3243 
3244 		sh->reconstruct_state = reconstruct_state_idle;
3245 		clear_bit(STRIPE_EXPANDING, &sh->state);
3246 		for (i = conf->raid_disks; i--; ) {
3247 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3248 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3249 			s.locked++;
3250 		}
3251 	}
3252 
3253 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3254 	    !sh->reconstruct_state) {
3255 		/* Need to write out all blocks after computing parity */
3256 		sh->disks = conf->raid_disks;
3257 		stripe_set_idx(sh->sector, conf, 0, sh);
3258 		schedule_reconstruction(sh, &s, 1, 1);
3259 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3260 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3261 		atomic_dec(&conf->reshape_stripes);
3262 		wake_up(&conf->wait_for_overlap);
3263 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3264 	}
3265 
3266 	if (s.expanding && s.locked == 0 &&
3267 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3268 		handle_stripe_expansion(conf, sh, NULL);
3269 
3270  unlock:
3271 	spin_unlock(&sh->lock);
3272 
3273 	/* wait for this device to become unblocked */
3274 	if (unlikely(blocked_rdev))
3275 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3276 
3277 	if (s.ops_request)
3278 		raid_run_ops(sh, s.ops_request);
3279 
3280 	ops_run_io(sh, &s);
3281 
3282 	if (dec_preread_active) {
3283 		/* We delay this until after ops_run_io so that if make_request
3284 		 * is waiting on a barrier, it won't continue until the writes
3285 		 * have actually been submitted.
3286 		 */
3287 		atomic_dec(&conf->preread_active_stripes);
3288 		if (atomic_read(&conf->preread_active_stripes) <
3289 		    IO_THRESHOLD)
3290 			md_wakeup_thread(conf->mddev->thread);
3291 	}
3292 	return_io(return_bi);
3293 }
3294 
3295 static void handle_stripe6(struct stripe_head *sh)
3296 {
3297 	raid5_conf_t *conf = sh->raid_conf;
3298 	int disks = sh->disks;
3299 	struct bio *return_bi = NULL;
3300 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3301 	struct stripe_head_state s;
3302 	struct r6_state r6s;
3303 	struct r5dev *dev, *pdev, *qdev;
3304 	mdk_rdev_t *blocked_rdev = NULL;
3305 	int dec_preread_active = 0;
3306 
3307 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3308 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3309 	       (unsigned long long)sh->sector, sh->state,
3310 	       atomic_read(&sh->count), pd_idx, qd_idx,
3311 	       sh->check_state, sh->reconstruct_state);
3312 	memset(&s, 0, sizeof(s));
3313 
3314 	spin_lock(&sh->lock);
3315 	clear_bit(STRIPE_HANDLE, &sh->state);
3316 	clear_bit(STRIPE_DELAYED, &sh->state);
3317 
3318 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3319 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3320 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3321 	/* Now to look around and see what can be done */
3322 
3323 	rcu_read_lock();
3324 	for (i=disks; i--; ) {
3325 		mdk_rdev_t *rdev;
3326 		dev = &sh->dev[i];
3327 
3328 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3329 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3330 		/* maybe we can reply to a read
3331 		 *
3332 		 * new wantfill requests are only permitted while
3333 		 * ops_complete_biofill is guaranteed to be inactive
3334 		 */
3335 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3336 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3337 			set_bit(R5_Wantfill, &dev->flags);
3338 
3339 		/* now count some things */
3340 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3341 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3342 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3343 			s.compute++;
3344 			BUG_ON(s.compute > 2);
3345 		}
3346 
3347 		if (test_bit(R5_Wantfill, &dev->flags)) {
3348 			s.to_fill++;
3349 		} else if (dev->toread)
3350 			s.to_read++;
3351 		if (dev->towrite) {
3352 			s.to_write++;
3353 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3354 				s.non_overwrite++;
3355 		}
3356 		if (dev->written)
3357 			s.written++;
3358 		rdev = rcu_dereference(conf->disks[i].rdev);
3359 		if (blocked_rdev == NULL &&
3360 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3361 			blocked_rdev = rdev;
3362 			atomic_inc(&rdev->nr_pending);
3363 		}
3364 		clear_bit(R5_Insync, &dev->flags);
3365 		if (!rdev)
3366 			/* Not in-sync */;
3367 		else if (test_bit(In_sync, &rdev->flags))
3368 			set_bit(R5_Insync, &dev->flags);
3369 		else {
3370 			/* in sync if before recovery_offset */
3371 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3372 				set_bit(R5_Insync, &dev->flags);
3373 		}
3374 		if (!test_bit(R5_Insync, &dev->flags)) {
3375 			/* The ReadError flag will just be confusing now */
3376 			clear_bit(R5_ReadError, &dev->flags);
3377 			clear_bit(R5_ReWrite, &dev->flags);
3378 		}
3379 		if (test_bit(R5_ReadError, &dev->flags))
3380 			clear_bit(R5_Insync, &dev->flags);
3381 		if (!test_bit(R5_Insync, &dev->flags)) {
3382 			if (s.failed < 2)
3383 				r6s.failed_num[s.failed] = i;
3384 			s.failed++;
3385 		}
3386 	}
3387 	rcu_read_unlock();
3388 
3389 	if (unlikely(blocked_rdev)) {
3390 		if (s.syncing || s.expanding || s.expanded ||
3391 		    s.to_write || s.written) {
3392 			set_bit(STRIPE_HANDLE, &sh->state);
3393 			goto unlock;
3394 		}
3395 		/* There is nothing for the blocked_rdev to block */
3396 		rdev_dec_pending(blocked_rdev, conf->mddev);
3397 		blocked_rdev = NULL;
3398 	}
3399 
3400 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3401 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3402 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3403 	}
3404 
3405 	pr_debug("locked=%d uptodate=%d to_read=%d"
3406 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3407 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3408 	       r6s.failed_num[0], r6s.failed_num[1]);
3409 	/* check if the array has lost >2 devices and, if so, some requests
3410 	 * might need to be failed
3411 	 */
3412 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3413 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3414 	if (s.failed > 2 && s.syncing) {
3415 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3416 		clear_bit(STRIPE_SYNCING, &sh->state);
3417 		s.syncing = 0;
3418 	}
3419 
3420 	/*
3421 	 * might be able to return some write requests if the parity blocks
3422 	 * are safe, or on a failed drive
3423 	 */
3424 	pdev = &sh->dev[pd_idx];
3425 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3426 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3427 	qdev = &sh->dev[qd_idx];
3428 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3429 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3430 
3431 	if ( s.written &&
3432 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3433 			     && !test_bit(R5_LOCKED, &pdev->flags)
3434 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3435 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3436 			     && !test_bit(R5_LOCKED, &qdev->flags)
3437 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3438 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3439 
3440 	/* Now we might consider reading some blocks, either to check/generate
3441 	 * parity, or to satisfy requests
3442 	 * or to load a block that is being partially written.
3443 	 */
3444 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3445 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3446 		handle_stripe_fill6(sh, &s, &r6s, disks);
3447 
3448 	/* Now we check to see if any write operations have recently
3449 	 * completed
3450 	 */
3451 	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3452 
3453 		sh->reconstruct_state = reconstruct_state_idle;
3454 		/* All the 'written' buffers and the parity blocks are ready to
3455 		 * be written back to disk
3456 		 */
3457 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3458 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3459 		for (i = disks; i--; ) {
3460 			dev = &sh->dev[i];
3461 			if (test_bit(R5_LOCKED, &dev->flags) &&
3462 			    (i == sh->pd_idx || i == qd_idx ||
3463 			     dev->written)) {
3464 				pr_debug("Writing block %d\n", i);
3465 				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3466 				set_bit(R5_Wantwrite, &dev->flags);
3467 				if (!test_bit(R5_Insync, &dev->flags) ||
3468 				    ((i == sh->pd_idx || i == qd_idx) &&
3469 				      s.failed == 0))
3470 					set_bit(STRIPE_INSYNC, &sh->state);
3471 			}
3472 		}
3473 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3474 			dec_preread_active = 1;
3475 	}
3476 
3477 	/* Now to consider new write requests and what else, if anything
3478 	 * should be read.  We do not handle new writes when:
3479 	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3480 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3481 	 *    block.
3482 	 */
3483 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3484 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3485 
3486 	/* maybe we need to check and possibly fix the parity for this stripe
3487 	 * Any reads will already have been scheduled, so we just see if enough
3488 	 * data is available.  The parity check is held off while parity
3489 	 * dependent operations are in flight.
3490 	 */
3491 	if (sh->check_state ||
3492 	    (s.syncing && s.locked == 0 &&
3493 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3494 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3495 		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3496 
3497 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3498 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3499 		clear_bit(STRIPE_SYNCING, &sh->state);
3500 	}
3501 
3502 	/* If the failed drives are just a ReadError, then we might need
3503 	 * to progress the repair/check process
3504 	 */
3505 	if (s.failed <= 2 && !conf->mddev->ro)
3506 		for (i = 0; i < s.failed; i++) {
3507 			dev = &sh->dev[r6s.failed_num[i]];
3508 			if (test_bit(R5_ReadError, &dev->flags)
3509 			    && !test_bit(R5_LOCKED, &dev->flags)
3510 			    && test_bit(R5_UPTODATE, &dev->flags)
3511 				) {
3512 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3513 					set_bit(R5_Wantwrite, &dev->flags);
3514 					set_bit(R5_ReWrite, &dev->flags);
3515 					set_bit(R5_LOCKED, &dev->flags);
3516 					s.locked++;
3517 				} else {
3518 					/* let's read it back */
3519 					set_bit(R5_Wantread, &dev->flags);
3520 					set_bit(R5_LOCKED, &dev->flags);
3521 					s.locked++;
3522 				}
3523 			}
3524 		}
3525 
3526 	/* Finish reconstruct operations initiated by the expansion process */
3527 	if (sh->reconstruct_state == reconstruct_state_result) {
3528 		sh->reconstruct_state = reconstruct_state_idle;
3529 		clear_bit(STRIPE_EXPANDING, &sh->state);
3530 		for (i = conf->raid_disks; i--; ) {
3531 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3532 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3533 			s.locked++;
3534 		}
3535 	}
3536 
3537 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3538 	    !sh->reconstruct_state) {
3539 		struct stripe_head *sh2
3540 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3541 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3542 			/* sh cannot be written until sh2 has been read.
3543 			 * so arrange for sh to be delayed a little
3544 			 */
3545 			set_bit(STRIPE_DELAYED, &sh->state);
3546 			set_bit(STRIPE_HANDLE, &sh->state);
3547 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3548 					      &sh2->state))
3549 				atomic_inc(&conf->preread_active_stripes);
3550 			release_stripe(sh2);
3551 			goto unlock;
3552 		}
3553 		if (sh2)
3554 			release_stripe(sh2);
3555 
3556 		/* Need to write out all blocks after computing P&Q */
3557 		sh->disks = conf->raid_disks;
3558 		stripe_set_idx(sh->sector, conf, 0, sh);
3559 		schedule_reconstruction(sh, &s, 1, 1);
3560 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3561 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3562 		atomic_dec(&conf->reshape_stripes);
3563 		wake_up(&conf->wait_for_overlap);
3564 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3565 	}
3566 
3567 	if (s.expanding && s.locked == 0 &&
3568 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3569 		handle_stripe_expansion(conf, sh, &r6s);
3570 
3571  unlock:
3572 	spin_unlock(&sh->lock);
3573 
3574 	/* wait for this device to become unblocked */
3575 	if (unlikely(blocked_rdev))
3576 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3577 
3578 	if (s.ops_request)
3579 		raid_run_ops(sh, s.ops_request);
3580 
3581 	ops_run_io(sh, &s);
3582 
3583 
3584 	if (dec_preread_active) {
3585 		/* We delay this until after ops_run_io so that if make_request
3586 		 * is waiting on a barrier, it won't continue until the writes
3587 		 * have actually been submitted.
3588 		 */
3589 		atomic_dec(&conf->preread_active_stripes);
3590 		if (atomic_read(&conf->preread_active_stripes) <
3591 		    IO_THRESHOLD)
3592 			md_wakeup_thread(conf->mddev->thread);
3593 	}
3594 
3595 	return_io(return_bi);
3596 }
3597 
3598 static void handle_stripe(struct stripe_head *sh)
3599 {
3600 	if (sh->raid_conf->level == 6)
3601 		handle_stripe6(sh);
3602 	else
3603 		handle_stripe5(sh);
3604 }
3605 
3606 static void raid5_activate_delayed(raid5_conf_t *conf)
3607 {
3608 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3609 		while (!list_empty(&conf->delayed_list)) {
3610 			struct list_head *l = conf->delayed_list.next;
3611 			struct stripe_head *sh;
3612 			sh = list_entry(l, struct stripe_head, lru);
3613 			list_del_init(l);
3614 			clear_bit(STRIPE_DELAYED, &sh->state);
3615 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3616 				atomic_inc(&conf->preread_active_stripes);
3617 			list_add_tail(&sh->lru, &conf->hold_list);
3618 		}
3619 	} else
3620 		plugger_set_plug(&conf->plug);
3621 }
3622 
3623 static void activate_bit_delay(raid5_conf_t *conf)
3624 {
3625 	/* device_lock is held */
3626 	struct list_head head;
3627 	list_add(&head, &conf->bitmap_list);
3628 	list_del_init(&conf->bitmap_list);
3629 	while (!list_empty(&head)) {
3630 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3631 		list_del_init(&sh->lru);
3632 		atomic_inc(&sh->count);
3633 		__release_stripe(conf, sh);
3634 	}
3635 }
3636 
3637 static void unplug_slaves(mddev_t *mddev)
3638 {
3639 	raid5_conf_t *conf = mddev->private;
3640 	int i;
3641 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3642 
3643 	rcu_read_lock();
3644 	for (i = 0; i < devs; i++) {
3645 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3646 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3647 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3648 
3649 			atomic_inc(&rdev->nr_pending);
3650 			rcu_read_unlock();
3651 
3652 			blk_unplug(r_queue);
3653 
3654 			rdev_dec_pending(rdev, mddev);
3655 			rcu_read_lock();
3656 		}
3657 	}
3658 	rcu_read_unlock();
3659 }
3660 
3661 void md_raid5_unplug_device(raid5_conf_t *conf)
3662 {
3663 	unsigned long flags;
3664 
3665 	spin_lock_irqsave(&conf->device_lock, flags);
3666 
3667 	if (plugger_remove_plug(&conf->plug)) {
3668 		conf->seq_flush++;
3669 		raid5_activate_delayed(conf);
3670 	}
3671 	md_wakeup_thread(conf->mddev->thread);
3672 
3673 	spin_unlock_irqrestore(&conf->device_lock, flags);
3674 
3675 	unplug_slaves(conf->mddev);
3676 }
3677 EXPORT_SYMBOL_GPL(md_raid5_unplug_device);
3678 
3679 static void raid5_unplug(struct plug_handle *plug)
3680 {
3681 	raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3682 	md_raid5_unplug_device(conf);
3683 }
3684 
3685 static void raid5_unplug_queue(struct request_queue *q)
3686 {
3687 	mddev_t *mddev = q->queuedata;
3688 	md_raid5_unplug_device(mddev->private);
3689 }
3690 
3691 int md_raid5_congested(mddev_t *mddev, int bits)
3692 {
3693 	raid5_conf_t *conf = mddev->private;
3694 
3695 	/* No difference between reads and writes.  Just check
3696 	 * how busy the stripe_cache is
3697 	 */
3698 
3699 	if (conf->inactive_blocked)
3700 		return 1;
3701 	if (conf->quiesce)
3702 		return 1;
3703 	if (list_empty_careful(&conf->inactive_list))
3704 		return 1;
3705 
3706 	return 0;
3707 }
3708 EXPORT_SYMBOL_GPL(md_raid5_congested);
3709 
3710 static int raid5_congested(void *data, int bits)
3711 {
3712 	mddev_t *mddev = data;
3713 
3714 	return mddev_congested(mddev, bits) ||
3715 		md_raid5_congested(mddev, bits);
3716 }
3717 
3718 /* We want read requests to align with chunks where possible,
3719  * but write requests don't need to.
3720  */
3721 static int raid5_mergeable_bvec(struct request_queue *q,
3722 				struct bvec_merge_data *bvm,
3723 				struct bio_vec *biovec)
3724 {
3725 	mddev_t *mddev = q->queuedata;
3726 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3727 	int max;
3728 	unsigned int chunk_sectors = mddev->chunk_sectors;
3729 	unsigned int bio_sectors = bvm->bi_size >> 9;
3730 
3731 	if ((bvm->bi_rw & 1) == WRITE)
3732 		return biovec->bv_len; /* always allow writes to be mergeable */
3733 
3734 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3735 		chunk_sectors = mddev->new_chunk_sectors;
3736 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3737 	if (max < 0) max = 0;
3738 	if (max <= biovec->bv_len && bio_sectors == 0)
3739 		return biovec->bv_len;
3740 	else
3741 		return max;
3742 }
3743 
3744 
3745 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3746 {
3747 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3748 	unsigned int chunk_sectors = mddev->chunk_sectors;
3749 	unsigned int bio_sectors = bio->bi_size >> 9;
3750 
3751 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3752 		chunk_sectors = mddev->new_chunk_sectors;
3753 	return  chunk_sectors >=
3754 		((sector & (chunk_sectors - 1)) + bio_sectors);
3755 }
3756 
3757 /*
3758  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3759  *  later sampled by raid5d.
3760  */
3761 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3762 {
3763 	unsigned long flags;
3764 
3765 	spin_lock_irqsave(&conf->device_lock, flags);
3766 
3767 	bi->bi_next = conf->retry_read_aligned_list;
3768 	conf->retry_read_aligned_list = bi;
3769 
3770 	spin_unlock_irqrestore(&conf->device_lock, flags);
3771 	md_wakeup_thread(conf->mddev->thread);
3772 }
3773 
3774 
3775 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3776 {
3777 	struct bio *bi;
3778 
3779 	bi = conf->retry_read_aligned;
3780 	if (bi) {
3781 		conf->retry_read_aligned = NULL;
3782 		return bi;
3783 	}
3784 	bi = conf->retry_read_aligned_list;
3785 	if(bi) {
3786 		conf->retry_read_aligned_list = bi->bi_next;
3787 		bi->bi_next = NULL;
3788 		/*
3789 		 * this sets the active strip count to 1 and the processed
3790 		 * strip count to zero (upper 8 bits)
3791 		 */
3792 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3793 	}
3794 
3795 	return bi;
3796 }
3797 
3798 
3799 /*
3800  *  The "raid5_align_endio" should check if the read succeeded and if it
3801  *  did, call bio_endio on the original bio (having bio_put the new bio
3802  *  first).
3803  *  If the read failed..
3804  */
3805 static void raid5_align_endio(struct bio *bi, int error)
3806 {
3807 	struct bio* raid_bi  = bi->bi_private;
3808 	mddev_t *mddev;
3809 	raid5_conf_t *conf;
3810 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3811 	mdk_rdev_t *rdev;
3812 
3813 	bio_put(bi);
3814 
3815 	rdev = (void*)raid_bi->bi_next;
3816 	raid_bi->bi_next = NULL;
3817 	mddev = rdev->mddev;
3818 	conf = mddev->private;
3819 
3820 	rdev_dec_pending(rdev, conf->mddev);
3821 
3822 	if (!error && uptodate) {
3823 		bio_endio(raid_bi, 0);
3824 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3825 			wake_up(&conf->wait_for_stripe);
3826 		return;
3827 	}
3828 
3829 
3830 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3831 
3832 	add_bio_to_retry(raid_bi, conf);
3833 }
3834 
3835 static int bio_fits_rdev(struct bio *bi)
3836 {
3837 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3838 
3839 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3840 		return 0;
3841 	blk_recount_segments(q, bi);
3842 	if (bi->bi_phys_segments > queue_max_segments(q))
3843 		return 0;
3844 
3845 	if (q->merge_bvec_fn)
3846 		/* it's too hard to apply the merge_bvec_fn at this stage,
3847 		 * just just give up
3848 		 */
3849 		return 0;
3850 
3851 	return 1;
3852 }
3853 
3854 
3855 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3856 {
3857 	raid5_conf_t *conf = mddev->private;
3858 	int dd_idx;
3859 	struct bio* align_bi;
3860 	mdk_rdev_t *rdev;
3861 
3862 	if (!in_chunk_boundary(mddev, raid_bio)) {
3863 		pr_debug("chunk_aligned_read : non aligned\n");
3864 		return 0;
3865 	}
3866 	/*
3867 	 * use bio_clone to make a copy of the bio
3868 	 */
3869 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3870 	if (!align_bi)
3871 		return 0;
3872 	/*
3873 	 *   set bi_end_io to a new function, and set bi_private to the
3874 	 *     original bio.
3875 	 */
3876 	align_bi->bi_end_io  = raid5_align_endio;
3877 	align_bi->bi_private = raid_bio;
3878 	/*
3879 	 *	compute position
3880 	 */
3881 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3882 						    0,
3883 						    &dd_idx, NULL);
3884 
3885 	rcu_read_lock();
3886 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3887 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3888 		atomic_inc(&rdev->nr_pending);
3889 		rcu_read_unlock();
3890 		raid_bio->bi_next = (void*)rdev;
3891 		align_bi->bi_bdev =  rdev->bdev;
3892 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3893 		align_bi->bi_sector += rdev->data_offset;
3894 
3895 		if (!bio_fits_rdev(align_bi)) {
3896 			/* too big in some way */
3897 			bio_put(align_bi);
3898 			rdev_dec_pending(rdev, mddev);
3899 			return 0;
3900 		}
3901 
3902 		spin_lock_irq(&conf->device_lock);
3903 		wait_event_lock_irq(conf->wait_for_stripe,
3904 				    conf->quiesce == 0,
3905 				    conf->device_lock, /* nothing */);
3906 		atomic_inc(&conf->active_aligned_reads);
3907 		spin_unlock_irq(&conf->device_lock);
3908 
3909 		generic_make_request(align_bi);
3910 		return 1;
3911 	} else {
3912 		rcu_read_unlock();
3913 		bio_put(align_bi);
3914 		return 0;
3915 	}
3916 }
3917 
3918 /* __get_priority_stripe - get the next stripe to process
3919  *
3920  * Full stripe writes are allowed to pass preread active stripes up until
3921  * the bypass_threshold is exceeded.  In general the bypass_count
3922  * increments when the handle_list is handled before the hold_list; however, it
3923  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3924  * stripe with in flight i/o.  The bypass_count will be reset when the
3925  * head of the hold_list has changed, i.e. the head was promoted to the
3926  * handle_list.
3927  */
3928 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3929 {
3930 	struct stripe_head *sh;
3931 
3932 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3933 		  __func__,
3934 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3935 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3936 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3937 
3938 	if (!list_empty(&conf->handle_list)) {
3939 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3940 
3941 		if (list_empty(&conf->hold_list))
3942 			conf->bypass_count = 0;
3943 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3944 			if (conf->hold_list.next == conf->last_hold)
3945 				conf->bypass_count++;
3946 			else {
3947 				conf->last_hold = conf->hold_list.next;
3948 				conf->bypass_count -= conf->bypass_threshold;
3949 				if (conf->bypass_count < 0)
3950 					conf->bypass_count = 0;
3951 			}
3952 		}
3953 	} else if (!list_empty(&conf->hold_list) &&
3954 		   ((conf->bypass_threshold &&
3955 		     conf->bypass_count > conf->bypass_threshold) ||
3956 		    atomic_read(&conf->pending_full_writes) == 0)) {
3957 		sh = list_entry(conf->hold_list.next,
3958 				typeof(*sh), lru);
3959 		conf->bypass_count -= conf->bypass_threshold;
3960 		if (conf->bypass_count < 0)
3961 			conf->bypass_count = 0;
3962 	} else
3963 		return NULL;
3964 
3965 	list_del_init(&sh->lru);
3966 	atomic_inc(&sh->count);
3967 	BUG_ON(atomic_read(&sh->count) != 1);
3968 	return sh;
3969 }
3970 
3971 static int make_request(mddev_t *mddev, struct bio * bi)
3972 {
3973 	raid5_conf_t *conf = mddev->private;
3974 	int dd_idx;
3975 	sector_t new_sector;
3976 	sector_t logical_sector, last_sector;
3977 	struct stripe_head *sh;
3978 	const int rw = bio_data_dir(bi);
3979 	int remaining;
3980 
3981 	if (unlikely(bi->bi_rw & REQ_HARDBARRIER)) {
3982 		/* Drain all pending writes.  We only really need
3983 		 * to ensure they have been submitted, but this is
3984 		 * easier.
3985 		 */
3986 		mddev->pers->quiesce(mddev, 1);
3987 		mddev->pers->quiesce(mddev, 0);
3988 		md_barrier_request(mddev, bi);
3989 		return 0;
3990 	}
3991 
3992 	md_write_start(mddev, bi);
3993 
3994 	if (rw == READ &&
3995 	     mddev->reshape_position == MaxSector &&
3996 	     chunk_aligned_read(mddev,bi))
3997 		return 0;
3998 
3999 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4000 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4001 	bi->bi_next = NULL;
4002 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4003 
4004 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4005 		DEFINE_WAIT(w);
4006 		int disks, data_disks;
4007 		int previous;
4008 
4009 	retry:
4010 		previous = 0;
4011 		disks = conf->raid_disks;
4012 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4013 		if (unlikely(conf->reshape_progress != MaxSector)) {
4014 			/* spinlock is needed as reshape_progress may be
4015 			 * 64bit on a 32bit platform, and so it might be
4016 			 * possible to see a half-updated value
4017 			 * Ofcourse reshape_progress could change after
4018 			 * the lock is dropped, so once we get a reference
4019 			 * to the stripe that we think it is, we will have
4020 			 * to check again.
4021 			 */
4022 			spin_lock_irq(&conf->device_lock);
4023 			if (mddev->delta_disks < 0
4024 			    ? logical_sector < conf->reshape_progress
4025 			    : logical_sector >= conf->reshape_progress) {
4026 				disks = conf->previous_raid_disks;
4027 				previous = 1;
4028 			} else {
4029 				if (mddev->delta_disks < 0
4030 				    ? logical_sector < conf->reshape_safe
4031 				    : logical_sector >= conf->reshape_safe) {
4032 					spin_unlock_irq(&conf->device_lock);
4033 					schedule();
4034 					goto retry;
4035 				}
4036 			}
4037 			spin_unlock_irq(&conf->device_lock);
4038 		}
4039 		data_disks = disks - conf->max_degraded;
4040 
4041 		new_sector = raid5_compute_sector(conf, logical_sector,
4042 						  previous,
4043 						  &dd_idx, NULL);
4044 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4045 			(unsigned long long)new_sector,
4046 			(unsigned long long)logical_sector);
4047 
4048 		sh = get_active_stripe(conf, new_sector, previous,
4049 				       (bi->bi_rw&RWA_MASK), 0);
4050 		if (sh) {
4051 			if (unlikely(previous)) {
4052 				/* expansion might have moved on while waiting for a
4053 				 * stripe, so we must do the range check again.
4054 				 * Expansion could still move past after this
4055 				 * test, but as we are holding a reference to
4056 				 * 'sh', we know that if that happens,
4057 				 *  STRIPE_EXPANDING will get set and the expansion
4058 				 * won't proceed until we finish with the stripe.
4059 				 */
4060 				int must_retry = 0;
4061 				spin_lock_irq(&conf->device_lock);
4062 				if (mddev->delta_disks < 0
4063 				    ? logical_sector >= conf->reshape_progress
4064 				    : logical_sector < conf->reshape_progress)
4065 					/* mismatch, need to try again */
4066 					must_retry = 1;
4067 				spin_unlock_irq(&conf->device_lock);
4068 				if (must_retry) {
4069 					release_stripe(sh);
4070 					schedule();
4071 					goto retry;
4072 				}
4073 			}
4074 
4075 			if (bio_data_dir(bi) == WRITE &&
4076 			    logical_sector >= mddev->suspend_lo &&
4077 			    logical_sector < mddev->suspend_hi) {
4078 				release_stripe(sh);
4079 				/* As the suspend_* range is controlled by
4080 				 * userspace, we want an interruptible
4081 				 * wait.
4082 				 */
4083 				flush_signals(current);
4084 				prepare_to_wait(&conf->wait_for_overlap,
4085 						&w, TASK_INTERRUPTIBLE);
4086 				if (logical_sector >= mddev->suspend_lo &&
4087 				    logical_sector < mddev->suspend_hi)
4088 					schedule();
4089 				goto retry;
4090 			}
4091 
4092 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4093 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4094 				/* Stripe is busy expanding or
4095 				 * add failed due to overlap.  Flush everything
4096 				 * and wait a while
4097 				 */
4098 				md_raid5_unplug_device(conf);
4099 				release_stripe(sh);
4100 				schedule();
4101 				goto retry;
4102 			}
4103 			finish_wait(&conf->wait_for_overlap, &w);
4104 			set_bit(STRIPE_HANDLE, &sh->state);
4105 			clear_bit(STRIPE_DELAYED, &sh->state);
4106 			if (mddev->barrier &&
4107 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4108 				atomic_inc(&conf->preread_active_stripes);
4109 			release_stripe(sh);
4110 		} else {
4111 			/* cannot get stripe for read-ahead, just give-up */
4112 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4113 			finish_wait(&conf->wait_for_overlap, &w);
4114 			break;
4115 		}
4116 
4117 	}
4118 	spin_lock_irq(&conf->device_lock);
4119 	remaining = raid5_dec_bi_phys_segments(bi);
4120 	spin_unlock_irq(&conf->device_lock);
4121 	if (remaining == 0) {
4122 
4123 		if ( rw == WRITE )
4124 			md_write_end(mddev);
4125 
4126 		bio_endio(bi, 0);
4127 	}
4128 
4129 	if (mddev->barrier) {
4130 		/* We need to wait for the stripes to all be handled.
4131 		 * So: wait for preread_active_stripes to drop to 0.
4132 		 */
4133 		wait_event(mddev->thread->wqueue,
4134 			   atomic_read(&conf->preread_active_stripes) == 0);
4135 	}
4136 	return 0;
4137 }
4138 
4139 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4140 
4141 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4142 {
4143 	/* reshaping is quite different to recovery/resync so it is
4144 	 * handled quite separately ... here.
4145 	 *
4146 	 * On each call to sync_request, we gather one chunk worth of
4147 	 * destination stripes and flag them as expanding.
4148 	 * Then we find all the source stripes and request reads.
4149 	 * As the reads complete, handle_stripe will copy the data
4150 	 * into the destination stripe and release that stripe.
4151 	 */
4152 	raid5_conf_t *conf = mddev->private;
4153 	struct stripe_head *sh;
4154 	sector_t first_sector, last_sector;
4155 	int raid_disks = conf->previous_raid_disks;
4156 	int data_disks = raid_disks - conf->max_degraded;
4157 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4158 	int i;
4159 	int dd_idx;
4160 	sector_t writepos, readpos, safepos;
4161 	sector_t stripe_addr;
4162 	int reshape_sectors;
4163 	struct list_head stripes;
4164 
4165 	if (sector_nr == 0) {
4166 		/* If restarting in the middle, skip the initial sectors */
4167 		if (mddev->delta_disks < 0 &&
4168 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4169 			sector_nr = raid5_size(mddev, 0, 0)
4170 				- conf->reshape_progress;
4171 		} else if (mddev->delta_disks >= 0 &&
4172 			   conf->reshape_progress > 0)
4173 			sector_nr = conf->reshape_progress;
4174 		sector_div(sector_nr, new_data_disks);
4175 		if (sector_nr) {
4176 			mddev->curr_resync_completed = sector_nr;
4177 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4178 			*skipped = 1;
4179 			return sector_nr;
4180 		}
4181 	}
4182 
4183 	/* We need to process a full chunk at a time.
4184 	 * If old and new chunk sizes differ, we need to process the
4185 	 * largest of these
4186 	 */
4187 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4188 		reshape_sectors = mddev->new_chunk_sectors;
4189 	else
4190 		reshape_sectors = mddev->chunk_sectors;
4191 
4192 	/* we update the metadata when there is more than 3Meg
4193 	 * in the block range (that is rather arbitrary, should
4194 	 * probably be time based) or when the data about to be
4195 	 * copied would over-write the source of the data at
4196 	 * the front of the range.
4197 	 * i.e. one new_stripe along from reshape_progress new_maps
4198 	 * to after where reshape_safe old_maps to
4199 	 */
4200 	writepos = conf->reshape_progress;
4201 	sector_div(writepos, new_data_disks);
4202 	readpos = conf->reshape_progress;
4203 	sector_div(readpos, data_disks);
4204 	safepos = conf->reshape_safe;
4205 	sector_div(safepos, data_disks);
4206 	if (mddev->delta_disks < 0) {
4207 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4208 		readpos += reshape_sectors;
4209 		safepos += reshape_sectors;
4210 	} else {
4211 		writepos += reshape_sectors;
4212 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4213 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4214 	}
4215 
4216 	/* 'writepos' is the most advanced device address we might write.
4217 	 * 'readpos' is the least advanced device address we might read.
4218 	 * 'safepos' is the least address recorded in the metadata as having
4219 	 *     been reshaped.
4220 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4221 	 * ensure safety in the face of a crash - that must be done by userspace
4222 	 * making a backup of the data.  So in that case there is no particular
4223 	 * rush to update metadata.
4224 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4225 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4226 	 * we can be safe in the event of a crash.
4227 	 * So we insist on updating metadata if safepos is behind writepos and
4228 	 * readpos is beyond writepos.
4229 	 * In any case, update the metadata every 10 seconds.
4230 	 * Maybe that number should be configurable, but I'm not sure it is
4231 	 * worth it.... maybe it could be a multiple of safemode_delay???
4232 	 */
4233 	if ((mddev->delta_disks < 0
4234 	     ? (safepos > writepos && readpos < writepos)
4235 	     : (safepos < writepos && readpos > writepos)) ||
4236 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4237 		/* Cannot proceed until we've updated the superblock... */
4238 		wait_event(conf->wait_for_overlap,
4239 			   atomic_read(&conf->reshape_stripes)==0);
4240 		mddev->reshape_position = conf->reshape_progress;
4241 		mddev->curr_resync_completed = mddev->curr_resync;
4242 		conf->reshape_checkpoint = jiffies;
4243 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4244 		md_wakeup_thread(mddev->thread);
4245 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4246 			   kthread_should_stop());
4247 		spin_lock_irq(&conf->device_lock);
4248 		conf->reshape_safe = mddev->reshape_position;
4249 		spin_unlock_irq(&conf->device_lock);
4250 		wake_up(&conf->wait_for_overlap);
4251 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4252 	}
4253 
4254 	if (mddev->delta_disks < 0) {
4255 		BUG_ON(conf->reshape_progress == 0);
4256 		stripe_addr = writepos;
4257 		BUG_ON((mddev->dev_sectors &
4258 			~((sector_t)reshape_sectors - 1))
4259 		       - reshape_sectors - stripe_addr
4260 		       != sector_nr);
4261 	} else {
4262 		BUG_ON(writepos != sector_nr + reshape_sectors);
4263 		stripe_addr = sector_nr;
4264 	}
4265 	INIT_LIST_HEAD(&stripes);
4266 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4267 		int j;
4268 		int skipped_disk = 0;
4269 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4270 		set_bit(STRIPE_EXPANDING, &sh->state);
4271 		atomic_inc(&conf->reshape_stripes);
4272 		/* If any of this stripe is beyond the end of the old
4273 		 * array, then we need to zero those blocks
4274 		 */
4275 		for (j=sh->disks; j--;) {
4276 			sector_t s;
4277 			if (j == sh->pd_idx)
4278 				continue;
4279 			if (conf->level == 6 &&
4280 			    j == sh->qd_idx)
4281 				continue;
4282 			s = compute_blocknr(sh, j, 0);
4283 			if (s < raid5_size(mddev, 0, 0)) {
4284 				skipped_disk = 1;
4285 				continue;
4286 			}
4287 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4288 			set_bit(R5_Expanded, &sh->dev[j].flags);
4289 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4290 		}
4291 		if (!skipped_disk) {
4292 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4293 			set_bit(STRIPE_HANDLE, &sh->state);
4294 		}
4295 		list_add(&sh->lru, &stripes);
4296 	}
4297 	spin_lock_irq(&conf->device_lock);
4298 	if (mddev->delta_disks < 0)
4299 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4300 	else
4301 		conf->reshape_progress += reshape_sectors * new_data_disks;
4302 	spin_unlock_irq(&conf->device_lock);
4303 	/* Ok, those stripe are ready. We can start scheduling
4304 	 * reads on the source stripes.
4305 	 * The source stripes are determined by mapping the first and last
4306 	 * block on the destination stripes.
4307 	 */
4308 	first_sector =
4309 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4310 				     1, &dd_idx, NULL);
4311 	last_sector =
4312 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4313 					    * new_data_disks - 1),
4314 				     1, &dd_idx, NULL);
4315 	if (last_sector >= mddev->dev_sectors)
4316 		last_sector = mddev->dev_sectors - 1;
4317 	while (first_sector <= last_sector) {
4318 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4319 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4320 		set_bit(STRIPE_HANDLE, &sh->state);
4321 		release_stripe(sh);
4322 		first_sector += STRIPE_SECTORS;
4323 	}
4324 	/* Now that the sources are clearly marked, we can release
4325 	 * the destination stripes
4326 	 */
4327 	while (!list_empty(&stripes)) {
4328 		sh = list_entry(stripes.next, struct stripe_head, lru);
4329 		list_del_init(&sh->lru);
4330 		release_stripe(sh);
4331 	}
4332 	/* If this takes us to the resync_max point where we have to pause,
4333 	 * then we need to write out the superblock.
4334 	 */
4335 	sector_nr += reshape_sectors;
4336 	if ((sector_nr - mddev->curr_resync_completed) * 2
4337 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4338 		/* Cannot proceed until we've updated the superblock... */
4339 		wait_event(conf->wait_for_overlap,
4340 			   atomic_read(&conf->reshape_stripes) == 0);
4341 		mddev->reshape_position = conf->reshape_progress;
4342 		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4343 		conf->reshape_checkpoint = jiffies;
4344 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4345 		md_wakeup_thread(mddev->thread);
4346 		wait_event(mddev->sb_wait,
4347 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4348 			   || kthread_should_stop());
4349 		spin_lock_irq(&conf->device_lock);
4350 		conf->reshape_safe = mddev->reshape_position;
4351 		spin_unlock_irq(&conf->device_lock);
4352 		wake_up(&conf->wait_for_overlap);
4353 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4354 	}
4355 	return reshape_sectors;
4356 }
4357 
4358 /* FIXME go_faster isn't used */
4359 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4360 {
4361 	raid5_conf_t *conf = mddev->private;
4362 	struct stripe_head *sh;
4363 	sector_t max_sector = mddev->dev_sectors;
4364 	int sync_blocks;
4365 	int still_degraded = 0;
4366 	int i;
4367 
4368 	if (sector_nr >= max_sector) {
4369 		/* just being told to finish up .. nothing much to do */
4370 		unplug_slaves(mddev);
4371 
4372 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4373 			end_reshape(conf);
4374 			return 0;
4375 		}
4376 
4377 		if (mddev->curr_resync < max_sector) /* aborted */
4378 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4379 					&sync_blocks, 1);
4380 		else /* completed sync */
4381 			conf->fullsync = 0;
4382 		bitmap_close_sync(mddev->bitmap);
4383 
4384 		return 0;
4385 	}
4386 
4387 	/* Allow raid5_quiesce to complete */
4388 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4389 
4390 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4391 		return reshape_request(mddev, sector_nr, skipped);
4392 
4393 	/* No need to check resync_max as we never do more than one
4394 	 * stripe, and as resync_max will always be on a chunk boundary,
4395 	 * if the check in md_do_sync didn't fire, there is no chance
4396 	 * of overstepping resync_max here
4397 	 */
4398 
4399 	/* if there is too many failed drives and we are trying
4400 	 * to resync, then assert that we are finished, because there is
4401 	 * nothing we can do.
4402 	 */
4403 	if (mddev->degraded >= conf->max_degraded &&
4404 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4405 		sector_t rv = mddev->dev_sectors - sector_nr;
4406 		*skipped = 1;
4407 		return rv;
4408 	}
4409 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4410 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4411 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4412 		/* we can skip this block, and probably more */
4413 		sync_blocks /= STRIPE_SECTORS;
4414 		*skipped = 1;
4415 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4416 	}
4417 
4418 
4419 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4420 
4421 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4422 	if (sh == NULL) {
4423 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4424 		/* make sure we don't swamp the stripe cache if someone else
4425 		 * is trying to get access
4426 		 */
4427 		schedule_timeout_uninterruptible(1);
4428 	}
4429 	/* Need to check if array will still be degraded after recovery/resync
4430 	 * We don't need to check the 'failed' flag as when that gets set,
4431 	 * recovery aborts.
4432 	 */
4433 	for (i = 0; i < conf->raid_disks; i++)
4434 		if (conf->disks[i].rdev == NULL)
4435 			still_degraded = 1;
4436 
4437 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4438 
4439 	spin_lock(&sh->lock);
4440 	set_bit(STRIPE_SYNCING, &sh->state);
4441 	clear_bit(STRIPE_INSYNC, &sh->state);
4442 	spin_unlock(&sh->lock);
4443 
4444 	handle_stripe(sh);
4445 	release_stripe(sh);
4446 
4447 	return STRIPE_SECTORS;
4448 }
4449 
4450 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4451 {
4452 	/* We may not be able to submit a whole bio at once as there
4453 	 * may not be enough stripe_heads available.
4454 	 * We cannot pre-allocate enough stripe_heads as we may need
4455 	 * more than exist in the cache (if we allow ever large chunks).
4456 	 * So we do one stripe head at a time and record in
4457 	 * ->bi_hw_segments how many have been done.
4458 	 *
4459 	 * We *know* that this entire raid_bio is in one chunk, so
4460 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4461 	 */
4462 	struct stripe_head *sh;
4463 	int dd_idx;
4464 	sector_t sector, logical_sector, last_sector;
4465 	int scnt = 0;
4466 	int remaining;
4467 	int handled = 0;
4468 
4469 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4470 	sector = raid5_compute_sector(conf, logical_sector,
4471 				      0, &dd_idx, NULL);
4472 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4473 
4474 	for (; logical_sector < last_sector;
4475 	     logical_sector += STRIPE_SECTORS,
4476 		     sector += STRIPE_SECTORS,
4477 		     scnt++) {
4478 
4479 		if (scnt < raid5_bi_hw_segments(raid_bio))
4480 			/* already done this stripe */
4481 			continue;
4482 
4483 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4484 
4485 		if (!sh) {
4486 			/* failed to get a stripe - must wait */
4487 			raid5_set_bi_hw_segments(raid_bio, scnt);
4488 			conf->retry_read_aligned = raid_bio;
4489 			return handled;
4490 		}
4491 
4492 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4493 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4494 			release_stripe(sh);
4495 			raid5_set_bi_hw_segments(raid_bio, scnt);
4496 			conf->retry_read_aligned = raid_bio;
4497 			return handled;
4498 		}
4499 
4500 		handle_stripe(sh);
4501 		release_stripe(sh);
4502 		handled++;
4503 	}
4504 	spin_lock_irq(&conf->device_lock);
4505 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4506 	spin_unlock_irq(&conf->device_lock);
4507 	if (remaining == 0)
4508 		bio_endio(raid_bio, 0);
4509 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4510 		wake_up(&conf->wait_for_stripe);
4511 	return handled;
4512 }
4513 
4514 
4515 /*
4516  * This is our raid5 kernel thread.
4517  *
4518  * We scan the hash table for stripes which can be handled now.
4519  * During the scan, completed stripes are saved for us by the interrupt
4520  * handler, so that they will not have to wait for our next wakeup.
4521  */
4522 static void raid5d(mddev_t *mddev)
4523 {
4524 	struct stripe_head *sh;
4525 	raid5_conf_t *conf = mddev->private;
4526 	int handled;
4527 
4528 	pr_debug("+++ raid5d active\n");
4529 
4530 	md_check_recovery(mddev);
4531 
4532 	handled = 0;
4533 	spin_lock_irq(&conf->device_lock);
4534 	while (1) {
4535 		struct bio *bio;
4536 
4537 		if (conf->seq_flush != conf->seq_write) {
4538 			int seq = conf->seq_flush;
4539 			spin_unlock_irq(&conf->device_lock);
4540 			bitmap_unplug(mddev->bitmap);
4541 			spin_lock_irq(&conf->device_lock);
4542 			conf->seq_write = seq;
4543 			activate_bit_delay(conf);
4544 		}
4545 
4546 		while ((bio = remove_bio_from_retry(conf))) {
4547 			int ok;
4548 			spin_unlock_irq(&conf->device_lock);
4549 			ok = retry_aligned_read(conf, bio);
4550 			spin_lock_irq(&conf->device_lock);
4551 			if (!ok)
4552 				break;
4553 			handled++;
4554 		}
4555 
4556 		sh = __get_priority_stripe(conf);
4557 
4558 		if (!sh)
4559 			break;
4560 		spin_unlock_irq(&conf->device_lock);
4561 
4562 		handled++;
4563 		handle_stripe(sh);
4564 		release_stripe(sh);
4565 		cond_resched();
4566 
4567 		spin_lock_irq(&conf->device_lock);
4568 	}
4569 	pr_debug("%d stripes handled\n", handled);
4570 
4571 	spin_unlock_irq(&conf->device_lock);
4572 
4573 	async_tx_issue_pending_all();
4574 	unplug_slaves(mddev);
4575 
4576 	pr_debug("--- raid5d inactive\n");
4577 }
4578 
4579 static ssize_t
4580 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4581 {
4582 	raid5_conf_t *conf = mddev->private;
4583 	if (conf)
4584 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4585 	else
4586 		return 0;
4587 }
4588 
4589 int
4590 raid5_set_cache_size(mddev_t *mddev, int size)
4591 {
4592 	raid5_conf_t *conf = mddev->private;
4593 	int err;
4594 
4595 	if (size <= 16 || size > 32768)
4596 		return -EINVAL;
4597 	while (size < conf->max_nr_stripes) {
4598 		if (drop_one_stripe(conf))
4599 			conf->max_nr_stripes--;
4600 		else
4601 			break;
4602 	}
4603 	err = md_allow_write(mddev);
4604 	if (err)
4605 		return err;
4606 	while (size > conf->max_nr_stripes) {
4607 		if (grow_one_stripe(conf))
4608 			conf->max_nr_stripes++;
4609 		else break;
4610 	}
4611 	return 0;
4612 }
4613 EXPORT_SYMBOL(raid5_set_cache_size);
4614 
4615 static ssize_t
4616 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4617 {
4618 	raid5_conf_t *conf = mddev->private;
4619 	unsigned long new;
4620 	int err;
4621 
4622 	if (len >= PAGE_SIZE)
4623 		return -EINVAL;
4624 	if (!conf)
4625 		return -ENODEV;
4626 
4627 	if (strict_strtoul(page, 10, &new))
4628 		return -EINVAL;
4629 	err = raid5_set_cache_size(mddev, new);
4630 	if (err)
4631 		return err;
4632 	return len;
4633 }
4634 
4635 static struct md_sysfs_entry
4636 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4637 				raid5_show_stripe_cache_size,
4638 				raid5_store_stripe_cache_size);
4639 
4640 static ssize_t
4641 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4642 {
4643 	raid5_conf_t *conf = mddev->private;
4644 	if (conf)
4645 		return sprintf(page, "%d\n", conf->bypass_threshold);
4646 	else
4647 		return 0;
4648 }
4649 
4650 static ssize_t
4651 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4652 {
4653 	raid5_conf_t *conf = mddev->private;
4654 	unsigned long new;
4655 	if (len >= PAGE_SIZE)
4656 		return -EINVAL;
4657 	if (!conf)
4658 		return -ENODEV;
4659 
4660 	if (strict_strtoul(page, 10, &new))
4661 		return -EINVAL;
4662 	if (new > conf->max_nr_stripes)
4663 		return -EINVAL;
4664 	conf->bypass_threshold = new;
4665 	return len;
4666 }
4667 
4668 static struct md_sysfs_entry
4669 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4670 					S_IRUGO | S_IWUSR,
4671 					raid5_show_preread_threshold,
4672 					raid5_store_preread_threshold);
4673 
4674 static ssize_t
4675 stripe_cache_active_show(mddev_t *mddev, char *page)
4676 {
4677 	raid5_conf_t *conf = mddev->private;
4678 	if (conf)
4679 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4680 	else
4681 		return 0;
4682 }
4683 
4684 static struct md_sysfs_entry
4685 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4686 
4687 static struct attribute *raid5_attrs[] =  {
4688 	&raid5_stripecache_size.attr,
4689 	&raid5_stripecache_active.attr,
4690 	&raid5_preread_bypass_threshold.attr,
4691 	NULL,
4692 };
4693 static struct attribute_group raid5_attrs_group = {
4694 	.name = NULL,
4695 	.attrs = raid5_attrs,
4696 };
4697 
4698 static sector_t
4699 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4700 {
4701 	raid5_conf_t *conf = mddev->private;
4702 
4703 	if (!sectors)
4704 		sectors = mddev->dev_sectors;
4705 	if (!raid_disks)
4706 		/* size is defined by the smallest of previous and new size */
4707 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4708 
4709 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4710 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4711 	return sectors * (raid_disks - conf->max_degraded);
4712 }
4713 
4714 static void raid5_free_percpu(raid5_conf_t *conf)
4715 {
4716 	struct raid5_percpu *percpu;
4717 	unsigned long cpu;
4718 
4719 	if (!conf->percpu)
4720 		return;
4721 
4722 	get_online_cpus();
4723 	for_each_possible_cpu(cpu) {
4724 		percpu = per_cpu_ptr(conf->percpu, cpu);
4725 		safe_put_page(percpu->spare_page);
4726 		kfree(percpu->scribble);
4727 	}
4728 #ifdef CONFIG_HOTPLUG_CPU
4729 	unregister_cpu_notifier(&conf->cpu_notify);
4730 #endif
4731 	put_online_cpus();
4732 
4733 	free_percpu(conf->percpu);
4734 }
4735 
4736 static void free_conf(raid5_conf_t *conf)
4737 {
4738 	shrink_stripes(conf);
4739 	raid5_free_percpu(conf);
4740 	kfree(conf->disks);
4741 	kfree(conf->stripe_hashtbl);
4742 	kfree(conf);
4743 }
4744 
4745 #ifdef CONFIG_HOTPLUG_CPU
4746 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4747 			      void *hcpu)
4748 {
4749 	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4750 	long cpu = (long)hcpu;
4751 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4752 
4753 	switch (action) {
4754 	case CPU_UP_PREPARE:
4755 	case CPU_UP_PREPARE_FROZEN:
4756 		if (conf->level == 6 && !percpu->spare_page)
4757 			percpu->spare_page = alloc_page(GFP_KERNEL);
4758 		if (!percpu->scribble)
4759 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4760 
4761 		if (!percpu->scribble ||
4762 		    (conf->level == 6 && !percpu->spare_page)) {
4763 			safe_put_page(percpu->spare_page);
4764 			kfree(percpu->scribble);
4765 			pr_err("%s: failed memory allocation for cpu%ld\n",
4766 			       __func__, cpu);
4767 			return notifier_from_errno(-ENOMEM);
4768 		}
4769 		break;
4770 	case CPU_DEAD:
4771 	case CPU_DEAD_FROZEN:
4772 		safe_put_page(percpu->spare_page);
4773 		kfree(percpu->scribble);
4774 		percpu->spare_page = NULL;
4775 		percpu->scribble = NULL;
4776 		break;
4777 	default:
4778 		break;
4779 	}
4780 	return NOTIFY_OK;
4781 }
4782 #endif
4783 
4784 static int raid5_alloc_percpu(raid5_conf_t *conf)
4785 {
4786 	unsigned long cpu;
4787 	struct page *spare_page;
4788 	struct raid5_percpu __percpu *allcpus;
4789 	void *scribble;
4790 	int err;
4791 
4792 	allcpus = alloc_percpu(struct raid5_percpu);
4793 	if (!allcpus)
4794 		return -ENOMEM;
4795 	conf->percpu = allcpus;
4796 
4797 	get_online_cpus();
4798 	err = 0;
4799 	for_each_present_cpu(cpu) {
4800 		if (conf->level == 6) {
4801 			spare_page = alloc_page(GFP_KERNEL);
4802 			if (!spare_page) {
4803 				err = -ENOMEM;
4804 				break;
4805 			}
4806 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4807 		}
4808 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4809 		if (!scribble) {
4810 			err = -ENOMEM;
4811 			break;
4812 		}
4813 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4814 	}
4815 #ifdef CONFIG_HOTPLUG_CPU
4816 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4817 	conf->cpu_notify.priority = 0;
4818 	if (err == 0)
4819 		err = register_cpu_notifier(&conf->cpu_notify);
4820 #endif
4821 	put_online_cpus();
4822 
4823 	return err;
4824 }
4825 
4826 static raid5_conf_t *setup_conf(mddev_t *mddev)
4827 {
4828 	raid5_conf_t *conf;
4829 	int raid_disk, memory, max_disks;
4830 	mdk_rdev_t *rdev;
4831 	struct disk_info *disk;
4832 
4833 	if (mddev->new_level != 5
4834 	    && mddev->new_level != 4
4835 	    && mddev->new_level != 6) {
4836 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4837 		       mdname(mddev), mddev->new_level);
4838 		return ERR_PTR(-EIO);
4839 	}
4840 	if ((mddev->new_level == 5
4841 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4842 	    (mddev->new_level == 6
4843 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4844 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4845 		       mdname(mddev), mddev->new_layout);
4846 		return ERR_PTR(-EIO);
4847 	}
4848 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4849 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4850 		       mdname(mddev), mddev->raid_disks);
4851 		return ERR_PTR(-EINVAL);
4852 	}
4853 
4854 	if (!mddev->new_chunk_sectors ||
4855 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4856 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4857 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4858 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4859 		return ERR_PTR(-EINVAL);
4860 	}
4861 
4862 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4863 	if (conf == NULL)
4864 		goto abort;
4865 	spin_lock_init(&conf->device_lock);
4866 	init_waitqueue_head(&conf->wait_for_stripe);
4867 	init_waitqueue_head(&conf->wait_for_overlap);
4868 	INIT_LIST_HEAD(&conf->handle_list);
4869 	INIT_LIST_HEAD(&conf->hold_list);
4870 	INIT_LIST_HEAD(&conf->delayed_list);
4871 	INIT_LIST_HEAD(&conf->bitmap_list);
4872 	INIT_LIST_HEAD(&conf->inactive_list);
4873 	atomic_set(&conf->active_stripes, 0);
4874 	atomic_set(&conf->preread_active_stripes, 0);
4875 	atomic_set(&conf->active_aligned_reads, 0);
4876 	conf->bypass_threshold = BYPASS_THRESHOLD;
4877 
4878 	conf->raid_disks = mddev->raid_disks;
4879 	if (mddev->reshape_position == MaxSector)
4880 		conf->previous_raid_disks = mddev->raid_disks;
4881 	else
4882 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4883 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4884 	conf->scribble_len = scribble_len(max_disks);
4885 
4886 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4887 			      GFP_KERNEL);
4888 	if (!conf->disks)
4889 		goto abort;
4890 
4891 	conf->mddev = mddev;
4892 
4893 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4894 		goto abort;
4895 
4896 	conf->level = mddev->new_level;
4897 	if (raid5_alloc_percpu(conf) != 0)
4898 		goto abort;
4899 
4900 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4901 
4902 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4903 		raid_disk = rdev->raid_disk;
4904 		if (raid_disk >= max_disks
4905 		    || raid_disk < 0)
4906 			continue;
4907 		disk = conf->disks + raid_disk;
4908 
4909 		disk->rdev = rdev;
4910 
4911 		if (test_bit(In_sync, &rdev->flags)) {
4912 			char b[BDEVNAME_SIZE];
4913 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4914 			       " disk %d\n",
4915 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4916 		} else
4917 			/* Cannot rely on bitmap to complete recovery */
4918 			conf->fullsync = 1;
4919 	}
4920 
4921 	conf->chunk_sectors = mddev->new_chunk_sectors;
4922 	conf->level = mddev->new_level;
4923 	if (conf->level == 6)
4924 		conf->max_degraded = 2;
4925 	else
4926 		conf->max_degraded = 1;
4927 	conf->algorithm = mddev->new_layout;
4928 	conf->max_nr_stripes = NR_STRIPES;
4929 	conf->reshape_progress = mddev->reshape_position;
4930 	if (conf->reshape_progress != MaxSector) {
4931 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4932 		conf->prev_algo = mddev->layout;
4933 	}
4934 
4935 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4936 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4937 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4938 		printk(KERN_ERR
4939 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4940 		       mdname(mddev), memory);
4941 		goto abort;
4942 	} else
4943 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4944 		       mdname(mddev), memory);
4945 
4946 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4947 	if (!conf->thread) {
4948 		printk(KERN_ERR
4949 		       "md/raid:%s: couldn't allocate thread.\n",
4950 		       mdname(mddev));
4951 		goto abort;
4952 	}
4953 
4954 	return conf;
4955 
4956  abort:
4957 	if (conf) {
4958 		free_conf(conf);
4959 		return ERR_PTR(-EIO);
4960 	} else
4961 		return ERR_PTR(-ENOMEM);
4962 }
4963 
4964 
4965 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4966 {
4967 	switch (algo) {
4968 	case ALGORITHM_PARITY_0:
4969 		if (raid_disk < max_degraded)
4970 			return 1;
4971 		break;
4972 	case ALGORITHM_PARITY_N:
4973 		if (raid_disk >= raid_disks - max_degraded)
4974 			return 1;
4975 		break;
4976 	case ALGORITHM_PARITY_0_6:
4977 		if (raid_disk == 0 ||
4978 		    raid_disk == raid_disks - 1)
4979 			return 1;
4980 		break;
4981 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4982 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4983 	case ALGORITHM_LEFT_SYMMETRIC_6:
4984 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4985 		if (raid_disk == raid_disks - 1)
4986 			return 1;
4987 	}
4988 	return 0;
4989 }
4990 
4991 static int run(mddev_t *mddev)
4992 {
4993 	raid5_conf_t *conf;
4994 	int working_disks = 0;
4995 	int dirty_parity_disks = 0;
4996 	mdk_rdev_t *rdev;
4997 	sector_t reshape_offset = 0;
4998 
4999 	if (mddev->recovery_cp != MaxSector)
5000 		printk(KERN_NOTICE "md/raid:%s: not clean"
5001 		       " -- starting background reconstruction\n",
5002 		       mdname(mddev));
5003 	if (mddev->reshape_position != MaxSector) {
5004 		/* Check that we can continue the reshape.
5005 		 * Currently only disks can change, it must
5006 		 * increase, and we must be past the point where
5007 		 * a stripe over-writes itself
5008 		 */
5009 		sector_t here_new, here_old;
5010 		int old_disks;
5011 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5012 
5013 		if (mddev->new_level != mddev->level) {
5014 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5015 			       "required - aborting.\n",
5016 			       mdname(mddev));
5017 			return -EINVAL;
5018 		}
5019 		old_disks = mddev->raid_disks - mddev->delta_disks;
5020 		/* reshape_position must be on a new-stripe boundary, and one
5021 		 * further up in new geometry must map after here in old
5022 		 * geometry.
5023 		 */
5024 		here_new = mddev->reshape_position;
5025 		if (sector_div(here_new, mddev->new_chunk_sectors *
5026 			       (mddev->raid_disks - max_degraded))) {
5027 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5028 			       "on a stripe boundary\n", mdname(mddev));
5029 			return -EINVAL;
5030 		}
5031 		reshape_offset = here_new * mddev->new_chunk_sectors;
5032 		/* here_new is the stripe we will write to */
5033 		here_old = mddev->reshape_position;
5034 		sector_div(here_old, mddev->chunk_sectors *
5035 			   (old_disks-max_degraded));
5036 		/* here_old is the first stripe that we might need to read
5037 		 * from */
5038 		if (mddev->delta_disks == 0) {
5039 			/* We cannot be sure it is safe to start an in-place
5040 			 * reshape.  It is only safe if user-space if monitoring
5041 			 * and taking constant backups.
5042 			 * mdadm always starts a situation like this in
5043 			 * readonly mode so it can take control before
5044 			 * allowing any writes.  So just check for that.
5045 			 */
5046 			if ((here_new * mddev->new_chunk_sectors !=
5047 			     here_old * mddev->chunk_sectors) ||
5048 			    mddev->ro == 0) {
5049 				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5050 				       " in read-only mode - aborting\n",
5051 				       mdname(mddev));
5052 				return -EINVAL;
5053 			}
5054 		} else if (mddev->delta_disks < 0
5055 		    ? (here_new * mddev->new_chunk_sectors <=
5056 		       here_old * mddev->chunk_sectors)
5057 		    : (here_new * mddev->new_chunk_sectors >=
5058 		       here_old * mddev->chunk_sectors)) {
5059 			/* Reading from the same stripe as writing to - bad */
5060 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5061 			       "auto-recovery - aborting.\n",
5062 			       mdname(mddev));
5063 			return -EINVAL;
5064 		}
5065 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5066 		       mdname(mddev));
5067 		/* OK, we should be able to continue; */
5068 	} else {
5069 		BUG_ON(mddev->level != mddev->new_level);
5070 		BUG_ON(mddev->layout != mddev->new_layout);
5071 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5072 		BUG_ON(mddev->delta_disks != 0);
5073 	}
5074 
5075 	if (mddev->private == NULL)
5076 		conf = setup_conf(mddev);
5077 	else
5078 		conf = mddev->private;
5079 
5080 	if (IS_ERR(conf))
5081 		return PTR_ERR(conf);
5082 
5083 	mddev->thread = conf->thread;
5084 	conf->thread = NULL;
5085 	mddev->private = conf;
5086 
5087 	/*
5088 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5089 	 */
5090 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5091 		if (rdev->raid_disk < 0)
5092 			continue;
5093 		if (test_bit(In_sync, &rdev->flags)) {
5094 			working_disks++;
5095 			continue;
5096 		}
5097 		/* This disc is not fully in-sync.  However if it
5098 		 * just stored parity (beyond the recovery_offset),
5099 		 * when we don't need to be concerned about the
5100 		 * array being dirty.
5101 		 * When reshape goes 'backwards', we never have
5102 		 * partially completed devices, so we only need
5103 		 * to worry about reshape going forwards.
5104 		 */
5105 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5106 		if (mddev->major_version == 0 &&
5107 		    mddev->minor_version > 90)
5108 			rdev->recovery_offset = reshape_offset;
5109 
5110 		if (rdev->recovery_offset < reshape_offset) {
5111 			/* We need to check old and new layout */
5112 			if (!only_parity(rdev->raid_disk,
5113 					 conf->algorithm,
5114 					 conf->raid_disks,
5115 					 conf->max_degraded))
5116 				continue;
5117 		}
5118 		if (!only_parity(rdev->raid_disk,
5119 				 conf->prev_algo,
5120 				 conf->previous_raid_disks,
5121 				 conf->max_degraded))
5122 			continue;
5123 		dirty_parity_disks++;
5124 	}
5125 
5126 	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5127 			   - working_disks);
5128 
5129 	if (has_failed(conf)) {
5130 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5131 			" (%d/%d failed)\n",
5132 			mdname(mddev), mddev->degraded, conf->raid_disks);
5133 		goto abort;
5134 	}
5135 
5136 	/* device size must be a multiple of chunk size */
5137 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5138 	mddev->resync_max_sectors = mddev->dev_sectors;
5139 
5140 	if (mddev->degraded > dirty_parity_disks &&
5141 	    mddev->recovery_cp != MaxSector) {
5142 		if (mddev->ok_start_degraded)
5143 			printk(KERN_WARNING
5144 			       "md/raid:%s: starting dirty degraded array"
5145 			       " - data corruption possible.\n",
5146 			       mdname(mddev));
5147 		else {
5148 			printk(KERN_ERR
5149 			       "md/raid:%s: cannot start dirty degraded array.\n",
5150 			       mdname(mddev));
5151 			goto abort;
5152 		}
5153 	}
5154 
5155 	if (mddev->degraded == 0)
5156 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5157 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5158 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5159 		       mddev->new_layout);
5160 	else
5161 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5162 		       " out of %d devices, algorithm %d\n",
5163 		       mdname(mddev), conf->level,
5164 		       mddev->raid_disks - mddev->degraded,
5165 		       mddev->raid_disks, mddev->new_layout);
5166 
5167 	print_raid5_conf(conf);
5168 
5169 	if (conf->reshape_progress != MaxSector) {
5170 		conf->reshape_safe = conf->reshape_progress;
5171 		atomic_set(&conf->reshape_stripes, 0);
5172 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5173 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5174 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5175 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5176 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5177 							"reshape");
5178 	}
5179 
5180 
5181 	/* Ok, everything is just fine now */
5182 	if (mddev->to_remove == &raid5_attrs_group)
5183 		mddev->to_remove = NULL;
5184 	else if (mddev->kobj.sd &&
5185 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5186 		printk(KERN_WARNING
5187 		       "raid5: failed to create sysfs attributes for %s\n",
5188 		       mdname(mddev));
5189 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5190 
5191 	plugger_init(&conf->plug, raid5_unplug);
5192 	mddev->plug = &conf->plug;
5193 	if (mddev->queue) {
5194 		int chunk_size;
5195 		/* read-ahead size must cover two whole stripes, which
5196 		 * is 2 * (datadisks) * chunksize where 'n' is the
5197 		 * number of raid devices
5198 		 */
5199 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5200 		int stripe = data_disks *
5201 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5202 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5203 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5204 
5205 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5206 
5207 		mddev->queue->backing_dev_info.congested_data = mddev;
5208 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5209 		mddev->queue->queue_lock = &conf->device_lock;
5210 		mddev->queue->unplug_fn = raid5_unplug_queue;
5211 
5212 		chunk_size = mddev->chunk_sectors << 9;
5213 		blk_queue_io_min(mddev->queue, chunk_size);
5214 		blk_queue_io_opt(mddev->queue, chunk_size *
5215 				 (conf->raid_disks - conf->max_degraded));
5216 
5217 		list_for_each_entry(rdev, &mddev->disks, same_set)
5218 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5219 					  rdev->data_offset << 9);
5220 	}
5221 
5222 	return 0;
5223 abort:
5224 	md_unregister_thread(mddev->thread);
5225 	mddev->thread = NULL;
5226 	if (conf) {
5227 		print_raid5_conf(conf);
5228 		free_conf(conf);
5229 	}
5230 	mddev->private = NULL;
5231 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5232 	return -EIO;
5233 }
5234 
5235 static int stop(mddev_t *mddev)
5236 {
5237 	raid5_conf_t *conf = mddev->private;
5238 
5239 	md_unregister_thread(mddev->thread);
5240 	mddev->thread = NULL;
5241 	if (mddev->queue)
5242 		mddev->queue->backing_dev_info.congested_fn = NULL;
5243 	plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5244 	free_conf(conf);
5245 	mddev->private = NULL;
5246 	mddev->to_remove = &raid5_attrs_group;
5247 	return 0;
5248 }
5249 
5250 #ifdef DEBUG
5251 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5252 {
5253 	int i;
5254 
5255 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5256 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5257 	seq_printf(seq, "sh %llu,  count %d.\n",
5258 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5259 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5260 	for (i = 0; i < sh->disks; i++) {
5261 		seq_printf(seq, "(cache%d: %p %ld) ",
5262 			   i, sh->dev[i].page, sh->dev[i].flags);
5263 	}
5264 	seq_printf(seq, "\n");
5265 }
5266 
5267 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5268 {
5269 	struct stripe_head *sh;
5270 	struct hlist_node *hn;
5271 	int i;
5272 
5273 	spin_lock_irq(&conf->device_lock);
5274 	for (i = 0; i < NR_HASH; i++) {
5275 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5276 			if (sh->raid_conf != conf)
5277 				continue;
5278 			print_sh(seq, sh);
5279 		}
5280 	}
5281 	spin_unlock_irq(&conf->device_lock);
5282 }
5283 #endif
5284 
5285 static void status(struct seq_file *seq, mddev_t *mddev)
5286 {
5287 	raid5_conf_t *conf = mddev->private;
5288 	int i;
5289 
5290 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5291 		mddev->chunk_sectors / 2, mddev->layout);
5292 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5293 	for (i = 0; i < conf->raid_disks; i++)
5294 		seq_printf (seq, "%s",
5295 			       conf->disks[i].rdev &&
5296 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5297 	seq_printf (seq, "]");
5298 #ifdef DEBUG
5299 	seq_printf (seq, "\n");
5300 	printall(seq, conf);
5301 #endif
5302 }
5303 
5304 static void print_raid5_conf (raid5_conf_t *conf)
5305 {
5306 	int i;
5307 	struct disk_info *tmp;
5308 
5309 	printk(KERN_DEBUG "RAID conf printout:\n");
5310 	if (!conf) {
5311 		printk("(conf==NULL)\n");
5312 		return;
5313 	}
5314 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5315 	       conf->raid_disks,
5316 	       conf->raid_disks - conf->mddev->degraded);
5317 
5318 	for (i = 0; i < conf->raid_disks; i++) {
5319 		char b[BDEVNAME_SIZE];
5320 		tmp = conf->disks + i;
5321 		if (tmp->rdev)
5322 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5323 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5324 			       bdevname(tmp->rdev->bdev, b));
5325 	}
5326 }
5327 
5328 static int raid5_spare_active(mddev_t *mddev)
5329 {
5330 	int i;
5331 	raid5_conf_t *conf = mddev->private;
5332 	struct disk_info *tmp;
5333 	int count = 0;
5334 	unsigned long flags;
5335 
5336 	for (i = 0; i < conf->raid_disks; i++) {
5337 		tmp = conf->disks + i;
5338 		if (tmp->rdev
5339 		    && tmp->rdev->recovery_offset == MaxSector
5340 		    && !test_bit(Faulty, &tmp->rdev->flags)
5341 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5342 			count++;
5343 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
5344 		}
5345 	}
5346 	spin_lock_irqsave(&conf->device_lock, flags);
5347 	mddev->degraded -= count;
5348 	spin_unlock_irqrestore(&conf->device_lock, flags);
5349 	print_raid5_conf(conf);
5350 	return count;
5351 }
5352 
5353 static int raid5_remove_disk(mddev_t *mddev, int number)
5354 {
5355 	raid5_conf_t *conf = mddev->private;
5356 	int err = 0;
5357 	mdk_rdev_t *rdev;
5358 	struct disk_info *p = conf->disks + number;
5359 
5360 	print_raid5_conf(conf);
5361 	rdev = p->rdev;
5362 	if (rdev) {
5363 		if (number >= conf->raid_disks &&
5364 		    conf->reshape_progress == MaxSector)
5365 			clear_bit(In_sync, &rdev->flags);
5366 
5367 		if (test_bit(In_sync, &rdev->flags) ||
5368 		    atomic_read(&rdev->nr_pending)) {
5369 			err = -EBUSY;
5370 			goto abort;
5371 		}
5372 		/* Only remove non-faulty devices if recovery
5373 		 * isn't possible.
5374 		 */
5375 		if (!test_bit(Faulty, &rdev->flags) &&
5376 		    !has_failed(conf) &&
5377 		    number < conf->raid_disks) {
5378 			err = -EBUSY;
5379 			goto abort;
5380 		}
5381 		p->rdev = NULL;
5382 		synchronize_rcu();
5383 		if (atomic_read(&rdev->nr_pending)) {
5384 			/* lost the race, try later */
5385 			err = -EBUSY;
5386 			p->rdev = rdev;
5387 		}
5388 	}
5389 abort:
5390 
5391 	print_raid5_conf(conf);
5392 	return err;
5393 }
5394 
5395 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5396 {
5397 	raid5_conf_t *conf = mddev->private;
5398 	int err = -EEXIST;
5399 	int disk;
5400 	struct disk_info *p;
5401 	int first = 0;
5402 	int last = conf->raid_disks - 1;
5403 
5404 	if (has_failed(conf))
5405 		/* no point adding a device */
5406 		return -EINVAL;
5407 
5408 	if (rdev->raid_disk >= 0)
5409 		first = last = rdev->raid_disk;
5410 
5411 	/*
5412 	 * find the disk ... but prefer rdev->saved_raid_disk
5413 	 * if possible.
5414 	 */
5415 	if (rdev->saved_raid_disk >= 0 &&
5416 	    rdev->saved_raid_disk >= first &&
5417 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5418 		disk = rdev->saved_raid_disk;
5419 	else
5420 		disk = first;
5421 	for ( ; disk <= last ; disk++)
5422 		if ((p=conf->disks + disk)->rdev == NULL) {
5423 			clear_bit(In_sync, &rdev->flags);
5424 			rdev->raid_disk = disk;
5425 			err = 0;
5426 			if (rdev->saved_raid_disk != disk)
5427 				conf->fullsync = 1;
5428 			rcu_assign_pointer(p->rdev, rdev);
5429 			break;
5430 		}
5431 	print_raid5_conf(conf);
5432 	return err;
5433 }
5434 
5435 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5436 {
5437 	/* no resync is happening, and there is enough space
5438 	 * on all devices, so we can resize.
5439 	 * We need to make sure resync covers any new space.
5440 	 * If the array is shrinking we should possibly wait until
5441 	 * any io in the removed space completes, but it hardly seems
5442 	 * worth it.
5443 	 */
5444 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5445 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5446 					       mddev->raid_disks));
5447 	if (mddev->array_sectors >
5448 	    raid5_size(mddev, sectors, mddev->raid_disks))
5449 		return -EINVAL;
5450 	set_capacity(mddev->gendisk, mddev->array_sectors);
5451 	revalidate_disk(mddev->gendisk);
5452 	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5453 		mddev->recovery_cp = mddev->dev_sectors;
5454 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5455 	}
5456 	mddev->dev_sectors = sectors;
5457 	mddev->resync_max_sectors = sectors;
5458 	return 0;
5459 }
5460 
5461 static int check_stripe_cache(mddev_t *mddev)
5462 {
5463 	/* Can only proceed if there are plenty of stripe_heads.
5464 	 * We need a minimum of one full stripe,, and for sensible progress
5465 	 * it is best to have about 4 times that.
5466 	 * If we require 4 times, then the default 256 4K stripe_heads will
5467 	 * allow for chunk sizes up to 256K, which is probably OK.
5468 	 * If the chunk size is greater, user-space should request more
5469 	 * stripe_heads first.
5470 	 */
5471 	raid5_conf_t *conf = mddev->private;
5472 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5473 	    > conf->max_nr_stripes ||
5474 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5475 	    > conf->max_nr_stripes) {
5476 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5477 		       mdname(mddev),
5478 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5479 			/ STRIPE_SIZE)*4);
5480 		return 0;
5481 	}
5482 	return 1;
5483 }
5484 
5485 static int check_reshape(mddev_t *mddev)
5486 {
5487 	raid5_conf_t *conf = mddev->private;
5488 
5489 	if (mddev->delta_disks == 0 &&
5490 	    mddev->new_layout == mddev->layout &&
5491 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5492 		return 0; /* nothing to do */
5493 	if (mddev->bitmap)
5494 		/* Cannot grow a bitmap yet */
5495 		return -EBUSY;
5496 	if (has_failed(conf))
5497 		return -EINVAL;
5498 	if (mddev->delta_disks < 0) {
5499 		/* We might be able to shrink, but the devices must
5500 		 * be made bigger first.
5501 		 * For raid6, 4 is the minimum size.
5502 		 * Otherwise 2 is the minimum
5503 		 */
5504 		int min = 2;
5505 		if (mddev->level == 6)
5506 			min = 4;
5507 		if (mddev->raid_disks + mddev->delta_disks < min)
5508 			return -EINVAL;
5509 	}
5510 
5511 	if (!check_stripe_cache(mddev))
5512 		return -ENOSPC;
5513 
5514 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5515 }
5516 
5517 static int raid5_start_reshape(mddev_t *mddev)
5518 {
5519 	raid5_conf_t *conf = mddev->private;
5520 	mdk_rdev_t *rdev;
5521 	int spares = 0;
5522 	int added_devices = 0;
5523 	unsigned long flags;
5524 
5525 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5526 		return -EBUSY;
5527 
5528 	if (!check_stripe_cache(mddev))
5529 		return -ENOSPC;
5530 
5531 	list_for_each_entry(rdev, &mddev->disks, same_set)
5532 		if (rdev->raid_disk < 0 &&
5533 		    !test_bit(Faulty, &rdev->flags))
5534 			spares++;
5535 
5536 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5537 		/* Not enough devices even to make a degraded array
5538 		 * of that size
5539 		 */
5540 		return -EINVAL;
5541 
5542 	/* Refuse to reduce size of the array.  Any reductions in
5543 	 * array size must be through explicit setting of array_size
5544 	 * attribute.
5545 	 */
5546 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5547 	    < mddev->array_sectors) {
5548 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5549 		       "before number of disks\n", mdname(mddev));
5550 		return -EINVAL;
5551 	}
5552 
5553 	atomic_set(&conf->reshape_stripes, 0);
5554 	spin_lock_irq(&conf->device_lock);
5555 	conf->previous_raid_disks = conf->raid_disks;
5556 	conf->raid_disks += mddev->delta_disks;
5557 	conf->prev_chunk_sectors = conf->chunk_sectors;
5558 	conf->chunk_sectors = mddev->new_chunk_sectors;
5559 	conf->prev_algo = conf->algorithm;
5560 	conf->algorithm = mddev->new_layout;
5561 	if (mddev->delta_disks < 0)
5562 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5563 	else
5564 		conf->reshape_progress = 0;
5565 	conf->reshape_safe = conf->reshape_progress;
5566 	conf->generation++;
5567 	spin_unlock_irq(&conf->device_lock);
5568 
5569 	/* Add some new drives, as many as will fit.
5570 	 * We know there are enough to make the newly sized array work.
5571 	 * Don't add devices if we are reducing the number of
5572 	 * devices in the array.  This is because it is not possible
5573 	 * to correctly record the "partially reconstructed" state of
5574 	 * such devices during the reshape and confusion could result.
5575 	 */
5576 	if (mddev->delta_disks >= 0)
5577 	    list_for_each_entry(rdev, &mddev->disks, same_set)
5578 		if (rdev->raid_disk < 0 &&
5579 		    !test_bit(Faulty, &rdev->flags)) {
5580 			if (raid5_add_disk(mddev, rdev) == 0) {
5581 				char nm[20];
5582 				if (rdev->raid_disk >= conf->previous_raid_disks) {
5583 					set_bit(In_sync, &rdev->flags);
5584 					added_devices++;
5585 				} else
5586 					rdev->recovery_offset = 0;
5587 				sprintf(nm, "rd%d", rdev->raid_disk);
5588 				if (sysfs_create_link(&mddev->kobj,
5589 						      &rdev->kobj, nm))
5590 					/* Failure here is OK */;
5591 			} else
5592 				break;
5593 		}
5594 
5595 	/* When a reshape changes the number of devices, ->degraded
5596 	 * is measured against the larger of the pre and post number of
5597 	 * devices.*/
5598 	if (mddev->delta_disks > 0) {
5599 		spin_lock_irqsave(&conf->device_lock, flags);
5600 		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5601 			- added_devices;
5602 		spin_unlock_irqrestore(&conf->device_lock, flags);
5603 	}
5604 	mddev->raid_disks = conf->raid_disks;
5605 	mddev->reshape_position = conf->reshape_progress;
5606 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5607 
5608 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5609 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5610 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5611 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5612 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5613 						"reshape");
5614 	if (!mddev->sync_thread) {
5615 		mddev->recovery = 0;
5616 		spin_lock_irq(&conf->device_lock);
5617 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5618 		conf->reshape_progress = MaxSector;
5619 		spin_unlock_irq(&conf->device_lock);
5620 		return -EAGAIN;
5621 	}
5622 	conf->reshape_checkpoint = jiffies;
5623 	md_wakeup_thread(mddev->sync_thread);
5624 	md_new_event(mddev);
5625 	return 0;
5626 }
5627 
5628 /* This is called from the reshape thread and should make any
5629  * changes needed in 'conf'
5630  */
5631 static void end_reshape(raid5_conf_t *conf)
5632 {
5633 
5634 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5635 
5636 		spin_lock_irq(&conf->device_lock);
5637 		conf->previous_raid_disks = conf->raid_disks;
5638 		conf->reshape_progress = MaxSector;
5639 		spin_unlock_irq(&conf->device_lock);
5640 		wake_up(&conf->wait_for_overlap);
5641 
5642 		/* read-ahead size must cover two whole stripes, which is
5643 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5644 		 */
5645 		if (conf->mddev->queue) {
5646 			int data_disks = conf->raid_disks - conf->max_degraded;
5647 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5648 						   / PAGE_SIZE);
5649 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5650 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5651 		}
5652 	}
5653 }
5654 
5655 /* This is called from the raid5d thread with mddev_lock held.
5656  * It makes config changes to the device.
5657  */
5658 static void raid5_finish_reshape(mddev_t *mddev)
5659 {
5660 	raid5_conf_t *conf = mddev->private;
5661 
5662 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5663 
5664 		if (mddev->delta_disks > 0) {
5665 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5666 			set_capacity(mddev->gendisk, mddev->array_sectors);
5667 			revalidate_disk(mddev->gendisk);
5668 		} else {
5669 			int d;
5670 			mddev->degraded = conf->raid_disks;
5671 			for (d = 0; d < conf->raid_disks ; d++)
5672 				if (conf->disks[d].rdev &&
5673 				    test_bit(In_sync,
5674 					     &conf->disks[d].rdev->flags))
5675 					mddev->degraded--;
5676 			for (d = conf->raid_disks ;
5677 			     d < conf->raid_disks - mddev->delta_disks;
5678 			     d++) {
5679 				mdk_rdev_t *rdev = conf->disks[d].rdev;
5680 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5681 					char nm[20];
5682 					sprintf(nm, "rd%d", rdev->raid_disk);
5683 					sysfs_remove_link(&mddev->kobj, nm);
5684 					rdev->raid_disk = -1;
5685 				}
5686 			}
5687 		}
5688 		mddev->layout = conf->algorithm;
5689 		mddev->chunk_sectors = conf->chunk_sectors;
5690 		mddev->reshape_position = MaxSector;
5691 		mddev->delta_disks = 0;
5692 	}
5693 }
5694 
5695 static void raid5_quiesce(mddev_t *mddev, int state)
5696 {
5697 	raid5_conf_t *conf = mddev->private;
5698 
5699 	switch(state) {
5700 	case 2: /* resume for a suspend */
5701 		wake_up(&conf->wait_for_overlap);
5702 		break;
5703 
5704 	case 1: /* stop all writes */
5705 		spin_lock_irq(&conf->device_lock);
5706 		/* '2' tells resync/reshape to pause so that all
5707 		 * active stripes can drain
5708 		 */
5709 		conf->quiesce = 2;
5710 		wait_event_lock_irq(conf->wait_for_stripe,
5711 				    atomic_read(&conf->active_stripes) == 0 &&
5712 				    atomic_read(&conf->active_aligned_reads) == 0,
5713 				    conf->device_lock, /* nothing */);
5714 		conf->quiesce = 1;
5715 		spin_unlock_irq(&conf->device_lock);
5716 		/* allow reshape to continue */
5717 		wake_up(&conf->wait_for_overlap);
5718 		break;
5719 
5720 	case 0: /* re-enable writes */
5721 		spin_lock_irq(&conf->device_lock);
5722 		conf->quiesce = 0;
5723 		wake_up(&conf->wait_for_stripe);
5724 		wake_up(&conf->wait_for_overlap);
5725 		spin_unlock_irq(&conf->device_lock);
5726 		break;
5727 	}
5728 }
5729 
5730 
5731 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5732 {
5733 	struct raid0_private_data *raid0_priv = mddev->private;
5734 
5735 	/* for raid0 takeover only one zone is supported */
5736 	if (raid0_priv->nr_strip_zones > 1) {
5737 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5738 		       mdname(mddev));
5739 		return ERR_PTR(-EINVAL);
5740 	}
5741 
5742 	mddev->new_level = level;
5743 	mddev->new_layout = ALGORITHM_PARITY_N;
5744 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5745 	mddev->raid_disks += 1;
5746 	mddev->delta_disks = 1;
5747 	/* make sure it will be not marked as dirty */
5748 	mddev->recovery_cp = MaxSector;
5749 
5750 	return setup_conf(mddev);
5751 }
5752 
5753 
5754 static void *raid5_takeover_raid1(mddev_t *mddev)
5755 {
5756 	int chunksect;
5757 
5758 	if (mddev->raid_disks != 2 ||
5759 	    mddev->degraded > 1)
5760 		return ERR_PTR(-EINVAL);
5761 
5762 	/* Should check if there are write-behind devices? */
5763 
5764 	chunksect = 64*2; /* 64K by default */
5765 
5766 	/* The array must be an exact multiple of chunksize */
5767 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5768 		chunksect >>= 1;
5769 
5770 	if ((chunksect<<9) < STRIPE_SIZE)
5771 		/* array size does not allow a suitable chunk size */
5772 		return ERR_PTR(-EINVAL);
5773 
5774 	mddev->new_level = 5;
5775 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5776 	mddev->new_chunk_sectors = chunksect;
5777 
5778 	return setup_conf(mddev);
5779 }
5780 
5781 static void *raid5_takeover_raid6(mddev_t *mddev)
5782 {
5783 	int new_layout;
5784 
5785 	switch (mddev->layout) {
5786 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5787 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5788 		break;
5789 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5790 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5791 		break;
5792 	case ALGORITHM_LEFT_SYMMETRIC_6:
5793 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5794 		break;
5795 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5796 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5797 		break;
5798 	case ALGORITHM_PARITY_0_6:
5799 		new_layout = ALGORITHM_PARITY_0;
5800 		break;
5801 	case ALGORITHM_PARITY_N:
5802 		new_layout = ALGORITHM_PARITY_N;
5803 		break;
5804 	default:
5805 		return ERR_PTR(-EINVAL);
5806 	}
5807 	mddev->new_level = 5;
5808 	mddev->new_layout = new_layout;
5809 	mddev->delta_disks = -1;
5810 	mddev->raid_disks -= 1;
5811 	return setup_conf(mddev);
5812 }
5813 
5814 
5815 static int raid5_check_reshape(mddev_t *mddev)
5816 {
5817 	/* For a 2-drive array, the layout and chunk size can be changed
5818 	 * immediately as not restriping is needed.
5819 	 * For larger arrays we record the new value - after validation
5820 	 * to be used by a reshape pass.
5821 	 */
5822 	raid5_conf_t *conf = mddev->private;
5823 	int new_chunk = mddev->new_chunk_sectors;
5824 
5825 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5826 		return -EINVAL;
5827 	if (new_chunk > 0) {
5828 		if (!is_power_of_2(new_chunk))
5829 			return -EINVAL;
5830 		if (new_chunk < (PAGE_SIZE>>9))
5831 			return -EINVAL;
5832 		if (mddev->array_sectors & (new_chunk-1))
5833 			/* not factor of array size */
5834 			return -EINVAL;
5835 	}
5836 
5837 	/* They look valid */
5838 
5839 	if (mddev->raid_disks == 2) {
5840 		/* can make the change immediately */
5841 		if (mddev->new_layout >= 0) {
5842 			conf->algorithm = mddev->new_layout;
5843 			mddev->layout = mddev->new_layout;
5844 		}
5845 		if (new_chunk > 0) {
5846 			conf->chunk_sectors = new_chunk ;
5847 			mddev->chunk_sectors = new_chunk;
5848 		}
5849 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5850 		md_wakeup_thread(mddev->thread);
5851 	}
5852 	return check_reshape(mddev);
5853 }
5854 
5855 static int raid6_check_reshape(mddev_t *mddev)
5856 {
5857 	int new_chunk = mddev->new_chunk_sectors;
5858 
5859 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5860 		return -EINVAL;
5861 	if (new_chunk > 0) {
5862 		if (!is_power_of_2(new_chunk))
5863 			return -EINVAL;
5864 		if (new_chunk < (PAGE_SIZE >> 9))
5865 			return -EINVAL;
5866 		if (mddev->array_sectors & (new_chunk-1))
5867 			/* not factor of array size */
5868 			return -EINVAL;
5869 	}
5870 
5871 	/* They look valid */
5872 	return check_reshape(mddev);
5873 }
5874 
5875 static void *raid5_takeover(mddev_t *mddev)
5876 {
5877 	/* raid5 can take over:
5878 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5879 	 *  raid1 - if there are two drives.  We need to know the chunk size
5880 	 *  raid4 - trivial - just use a raid4 layout.
5881 	 *  raid6 - Providing it is a *_6 layout
5882 	 */
5883 	if (mddev->level == 0)
5884 		return raid45_takeover_raid0(mddev, 5);
5885 	if (mddev->level == 1)
5886 		return raid5_takeover_raid1(mddev);
5887 	if (mddev->level == 4) {
5888 		mddev->new_layout = ALGORITHM_PARITY_N;
5889 		mddev->new_level = 5;
5890 		return setup_conf(mddev);
5891 	}
5892 	if (mddev->level == 6)
5893 		return raid5_takeover_raid6(mddev);
5894 
5895 	return ERR_PTR(-EINVAL);
5896 }
5897 
5898 static void *raid4_takeover(mddev_t *mddev)
5899 {
5900 	/* raid4 can take over:
5901 	 *  raid0 - if there is only one strip zone
5902 	 *  raid5 - if layout is right
5903 	 */
5904 	if (mddev->level == 0)
5905 		return raid45_takeover_raid0(mddev, 4);
5906 	if (mddev->level == 5 &&
5907 	    mddev->layout == ALGORITHM_PARITY_N) {
5908 		mddev->new_layout = 0;
5909 		mddev->new_level = 4;
5910 		return setup_conf(mddev);
5911 	}
5912 	return ERR_PTR(-EINVAL);
5913 }
5914 
5915 static struct mdk_personality raid5_personality;
5916 
5917 static void *raid6_takeover(mddev_t *mddev)
5918 {
5919 	/* Currently can only take over a raid5.  We map the
5920 	 * personality to an equivalent raid6 personality
5921 	 * with the Q block at the end.
5922 	 */
5923 	int new_layout;
5924 
5925 	if (mddev->pers != &raid5_personality)
5926 		return ERR_PTR(-EINVAL);
5927 	if (mddev->degraded > 1)
5928 		return ERR_PTR(-EINVAL);
5929 	if (mddev->raid_disks > 253)
5930 		return ERR_PTR(-EINVAL);
5931 	if (mddev->raid_disks < 3)
5932 		return ERR_PTR(-EINVAL);
5933 
5934 	switch (mddev->layout) {
5935 	case ALGORITHM_LEFT_ASYMMETRIC:
5936 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5937 		break;
5938 	case ALGORITHM_RIGHT_ASYMMETRIC:
5939 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5940 		break;
5941 	case ALGORITHM_LEFT_SYMMETRIC:
5942 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5943 		break;
5944 	case ALGORITHM_RIGHT_SYMMETRIC:
5945 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5946 		break;
5947 	case ALGORITHM_PARITY_0:
5948 		new_layout = ALGORITHM_PARITY_0_6;
5949 		break;
5950 	case ALGORITHM_PARITY_N:
5951 		new_layout = ALGORITHM_PARITY_N;
5952 		break;
5953 	default:
5954 		return ERR_PTR(-EINVAL);
5955 	}
5956 	mddev->new_level = 6;
5957 	mddev->new_layout = new_layout;
5958 	mddev->delta_disks = 1;
5959 	mddev->raid_disks += 1;
5960 	return setup_conf(mddev);
5961 }
5962 
5963 
5964 static struct mdk_personality raid6_personality =
5965 {
5966 	.name		= "raid6",
5967 	.level		= 6,
5968 	.owner		= THIS_MODULE,
5969 	.make_request	= make_request,
5970 	.run		= run,
5971 	.stop		= stop,
5972 	.status		= status,
5973 	.error_handler	= error,
5974 	.hot_add_disk	= raid5_add_disk,
5975 	.hot_remove_disk= raid5_remove_disk,
5976 	.spare_active	= raid5_spare_active,
5977 	.sync_request	= sync_request,
5978 	.resize		= raid5_resize,
5979 	.size		= raid5_size,
5980 	.check_reshape	= raid6_check_reshape,
5981 	.start_reshape  = raid5_start_reshape,
5982 	.finish_reshape = raid5_finish_reshape,
5983 	.quiesce	= raid5_quiesce,
5984 	.takeover	= raid6_takeover,
5985 };
5986 static struct mdk_personality raid5_personality =
5987 {
5988 	.name		= "raid5",
5989 	.level		= 5,
5990 	.owner		= THIS_MODULE,
5991 	.make_request	= make_request,
5992 	.run		= run,
5993 	.stop		= stop,
5994 	.status		= status,
5995 	.error_handler	= error,
5996 	.hot_add_disk	= raid5_add_disk,
5997 	.hot_remove_disk= raid5_remove_disk,
5998 	.spare_active	= raid5_spare_active,
5999 	.sync_request	= sync_request,
6000 	.resize		= raid5_resize,
6001 	.size		= raid5_size,
6002 	.check_reshape	= raid5_check_reshape,
6003 	.start_reshape  = raid5_start_reshape,
6004 	.finish_reshape = raid5_finish_reshape,
6005 	.quiesce	= raid5_quiesce,
6006 	.takeover	= raid5_takeover,
6007 };
6008 
6009 static struct mdk_personality raid4_personality =
6010 {
6011 	.name		= "raid4",
6012 	.level		= 4,
6013 	.owner		= THIS_MODULE,
6014 	.make_request	= make_request,
6015 	.run		= run,
6016 	.stop		= stop,
6017 	.status		= status,
6018 	.error_handler	= error,
6019 	.hot_add_disk	= raid5_add_disk,
6020 	.hot_remove_disk= raid5_remove_disk,
6021 	.spare_active	= raid5_spare_active,
6022 	.sync_request	= sync_request,
6023 	.resize		= raid5_resize,
6024 	.size		= raid5_size,
6025 	.check_reshape	= raid5_check_reshape,
6026 	.start_reshape  = raid5_start_reshape,
6027 	.finish_reshape = raid5_finish_reshape,
6028 	.quiesce	= raid5_quiesce,
6029 	.takeover	= raid4_takeover,
6030 };
6031 
6032 static int __init raid5_init(void)
6033 {
6034 	register_md_personality(&raid6_personality);
6035 	register_md_personality(&raid5_personality);
6036 	register_md_personality(&raid4_personality);
6037 	return 0;
6038 }
6039 
6040 static void raid5_exit(void)
6041 {
6042 	unregister_md_personality(&raid6_personality);
6043 	unregister_md_personality(&raid5_personality);
6044 	unregister_md_personality(&raid4_personality);
6045 }
6046 
6047 module_init(raid5_init);
6048 module_exit(raid5_exit);
6049 MODULE_LICENSE("GPL");
6050 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6051 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6052 MODULE_ALIAS("md-raid5");
6053 MODULE_ALIAS("md-raid4");
6054 MODULE_ALIAS("md-level-5");
6055 MODULE_ALIAS("md-level-4");
6056 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6057 MODULE_ALIAS("md-raid6");
6058 MODULE_ALIAS("md-level-6");
6059 
6060 /* This used to be two separate modules, they were: */
6061 MODULE_ALIAS("raid5");
6062 MODULE_ALIAS("raid6");
6063