1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <trace/events/block.h> 57 58 #include "md.h" 59 #include "raid5.h" 60 #include "raid0.h" 61 #include "bitmap.h" 62 63 /* 64 * Stripe cache 65 */ 66 67 #define NR_STRIPES 256 68 #define STRIPE_SIZE PAGE_SIZE 69 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 70 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 71 #define IO_THRESHOLD 1 72 #define BYPASS_THRESHOLD 1 73 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 74 #define HASH_MASK (NR_HASH - 1) 75 76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 77 { 78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 79 return &conf->stripe_hashtbl[hash]; 80 } 81 82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 83 * order without overlap. There may be several bio's per stripe+device, and 84 * a bio could span several devices. 85 * When walking this list for a particular stripe+device, we must never proceed 86 * beyond a bio that extends past this device, as the next bio might no longer 87 * be valid. 88 * This function is used to determine the 'next' bio in the list, given the sector 89 * of the current stripe+device 90 */ 91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 92 { 93 int sectors = bio->bi_size >> 9; 94 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) 95 return bio->bi_next; 96 else 97 return NULL; 98 } 99 100 /* 101 * We maintain a biased count of active stripes in the bottom 16 bits of 102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 103 */ 104 static inline int raid5_bi_processed_stripes(struct bio *bio) 105 { 106 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 107 return (atomic_read(segments) >> 16) & 0xffff; 108 } 109 110 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 111 { 112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 113 return atomic_sub_return(1, segments) & 0xffff; 114 } 115 116 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 117 { 118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 119 atomic_inc(segments); 120 } 121 122 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 123 unsigned int cnt) 124 { 125 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 126 int old, new; 127 128 do { 129 old = atomic_read(segments); 130 new = (old & 0xffff) | (cnt << 16); 131 } while (atomic_cmpxchg(segments, old, new) != old); 132 } 133 134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 135 { 136 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 137 atomic_set(segments, cnt); 138 } 139 140 /* Find first data disk in a raid6 stripe */ 141 static inline int raid6_d0(struct stripe_head *sh) 142 { 143 if (sh->ddf_layout) 144 /* ddf always start from first device */ 145 return 0; 146 /* md starts just after Q block */ 147 if (sh->qd_idx == sh->disks - 1) 148 return 0; 149 else 150 return sh->qd_idx + 1; 151 } 152 static inline int raid6_next_disk(int disk, int raid_disks) 153 { 154 disk++; 155 return (disk < raid_disks) ? disk : 0; 156 } 157 158 /* When walking through the disks in a raid5, starting at raid6_d0, 159 * We need to map each disk to a 'slot', where the data disks are slot 160 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 161 * is raid_disks-1. This help does that mapping. 162 */ 163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 164 int *count, int syndrome_disks) 165 { 166 int slot = *count; 167 168 if (sh->ddf_layout) 169 (*count)++; 170 if (idx == sh->pd_idx) 171 return syndrome_disks; 172 if (idx == sh->qd_idx) 173 return syndrome_disks + 1; 174 if (!sh->ddf_layout) 175 (*count)++; 176 return slot; 177 } 178 179 static void return_io(struct bio *return_bi) 180 { 181 struct bio *bi = return_bi; 182 while (bi) { 183 184 return_bi = bi->bi_next; 185 bi->bi_next = NULL; 186 bi->bi_size = 0; 187 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 188 bi, 0); 189 bio_endio(bi, 0); 190 bi = return_bi; 191 } 192 } 193 194 static void print_raid5_conf (struct r5conf *conf); 195 196 static int stripe_operations_active(struct stripe_head *sh) 197 { 198 return sh->check_state || sh->reconstruct_state || 199 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 200 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 201 } 202 203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh) 204 { 205 BUG_ON(!list_empty(&sh->lru)); 206 BUG_ON(atomic_read(&conf->active_stripes)==0); 207 if (test_bit(STRIPE_HANDLE, &sh->state)) { 208 if (test_bit(STRIPE_DELAYED, &sh->state) && 209 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 210 list_add_tail(&sh->lru, &conf->delayed_list); 211 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 212 sh->bm_seq - conf->seq_write > 0) 213 list_add_tail(&sh->lru, &conf->bitmap_list); 214 else { 215 clear_bit(STRIPE_DELAYED, &sh->state); 216 clear_bit(STRIPE_BIT_DELAY, &sh->state); 217 list_add_tail(&sh->lru, &conf->handle_list); 218 } 219 md_wakeup_thread(conf->mddev->thread); 220 } else { 221 BUG_ON(stripe_operations_active(sh)); 222 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 223 if (atomic_dec_return(&conf->preread_active_stripes) 224 < IO_THRESHOLD) 225 md_wakeup_thread(conf->mddev->thread); 226 atomic_dec(&conf->active_stripes); 227 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 228 list_add_tail(&sh->lru, &conf->inactive_list); 229 wake_up(&conf->wait_for_stripe); 230 if (conf->retry_read_aligned) 231 md_wakeup_thread(conf->mddev->thread); 232 } 233 } 234 } 235 236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh) 237 { 238 if (atomic_dec_and_test(&sh->count)) 239 do_release_stripe(conf, sh); 240 } 241 242 static void release_stripe(struct stripe_head *sh) 243 { 244 struct r5conf *conf = sh->raid_conf; 245 unsigned long flags; 246 247 local_irq_save(flags); 248 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 249 do_release_stripe(conf, sh); 250 spin_unlock(&conf->device_lock); 251 } 252 local_irq_restore(flags); 253 } 254 255 static inline void remove_hash(struct stripe_head *sh) 256 { 257 pr_debug("remove_hash(), stripe %llu\n", 258 (unsigned long long)sh->sector); 259 260 hlist_del_init(&sh->hash); 261 } 262 263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 264 { 265 struct hlist_head *hp = stripe_hash(conf, sh->sector); 266 267 pr_debug("insert_hash(), stripe %llu\n", 268 (unsigned long long)sh->sector); 269 270 hlist_add_head(&sh->hash, hp); 271 } 272 273 274 /* find an idle stripe, make sure it is unhashed, and return it. */ 275 static struct stripe_head *get_free_stripe(struct r5conf *conf) 276 { 277 struct stripe_head *sh = NULL; 278 struct list_head *first; 279 280 if (list_empty(&conf->inactive_list)) 281 goto out; 282 first = conf->inactive_list.next; 283 sh = list_entry(first, struct stripe_head, lru); 284 list_del_init(first); 285 remove_hash(sh); 286 atomic_inc(&conf->active_stripes); 287 out: 288 return sh; 289 } 290 291 static void shrink_buffers(struct stripe_head *sh) 292 { 293 struct page *p; 294 int i; 295 int num = sh->raid_conf->pool_size; 296 297 for (i = 0; i < num ; i++) { 298 p = sh->dev[i].page; 299 if (!p) 300 continue; 301 sh->dev[i].page = NULL; 302 put_page(p); 303 } 304 } 305 306 static int grow_buffers(struct stripe_head *sh) 307 { 308 int i; 309 int num = sh->raid_conf->pool_size; 310 311 for (i = 0; i < num; i++) { 312 struct page *page; 313 314 if (!(page = alloc_page(GFP_KERNEL))) { 315 return 1; 316 } 317 sh->dev[i].page = page; 318 } 319 return 0; 320 } 321 322 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 324 struct stripe_head *sh); 325 326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 327 { 328 struct r5conf *conf = sh->raid_conf; 329 int i; 330 331 BUG_ON(atomic_read(&sh->count) != 0); 332 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 333 BUG_ON(stripe_operations_active(sh)); 334 335 pr_debug("init_stripe called, stripe %llu\n", 336 (unsigned long long)sh->sector); 337 338 remove_hash(sh); 339 340 sh->generation = conf->generation - previous; 341 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 342 sh->sector = sector; 343 stripe_set_idx(sector, conf, previous, sh); 344 sh->state = 0; 345 346 347 for (i = sh->disks; i--; ) { 348 struct r5dev *dev = &sh->dev[i]; 349 350 if (dev->toread || dev->read || dev->towrite || dev->written || 351 test_bit(R5_LOCKED, &dev->flags)) { 352 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 353 (unsigned long long)sh->sector, i, dev->toread, 354 dev->read, dev->towrite, dev->written, 355 test_bit(R5_LOCKED, &dev->flags)); 356 WARN_ON(1); 357 } 358 dev->flags = 0; 359 raid5_build_block(sh, i, previous); 360 } 361 insert_hash(conf, sh); 362 } 363 364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 365 short generation) 366 { 367 struct stripe_head *sh; 368 369 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 370 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 371 if (sh->sector == sector && sh->generation == generation) 372 return sh; 373 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 374 return NULL; 375 } 376 377 /* 378 * Need to check if array has failed when deciding whether to: 379 * - start an array 380 * - remove non-faulty devices 381 * - add a spare 382 * - allow a reshape 383 * This determination is simple when no reshape is happening. 384 * However if there is a reshape, we need to carefully check 385 * both the before and after sections. 386 * This is because some failed devices may only affect one 387 * of the two sections, and some non-in_sync devices may 388 * be insync in the section most affected by failed devices. 389 */ 390 static int calc_degraded(struct r5conf *conf) 391 { 392 int degraded, degraded2; 393 int i; 394 395 rcu_read_lock(); 396 degraded = 0; 397 for (i = 0; i < conf->previous_raid_disks; i++) { 398 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 399 if (rdev && test_bit(Faulty, &rdev->flags)) 400 rdev = rcu_dereference(conf->disks[i].replacement); 401 if (!rdev || test_bit(Faulty, &rdev->flags)) 402 degraded++; 403 else if (test_bit(In_sync, &rdev->flags)) 404 ; 405 else 406 /* not in-sync or faulty. 407 * If the reshape increases the number of devices, 408 * this is being recovered by the reshape, so 409 * this 'previous' section is not in_sync. 410 * If the number of devices is being reduced however, 411 * the device can only be part of the array if 412 * we are reverting a reshape, so this section will 413 * be in-sync. 414 */ 415 if (conf->raid_disks >= conf->previous_raid_disks) 416 degraded++; 417 } 418 rcu_read_unlock(); 419 if (conf->raid_disks == conf->previous_raid_disks) 420 return degraded; 421 rcu_read_lock(); 422 degraded2 = 0; 423 for (i = 0; i < conf->raid_disks; i++) { 424 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 425 if (rdev && test_bit(Faulty, &rdev->flags)) 426 rdev = rcu_dereference(conf->disks[i].replacement); 427 if (!rdev || test_bit(Faulty, &rdev->flags)) 428 degraded2++; 429 else if (test_bit(In_sync, &rdev->flags)) 430 ; 431 else 432 /* not in-sync or faulty. 433 * If reshape increases the number of devices, this 434 * section has already been recovered, else it 435 * almost certainly hasn't. 436 */ 437 if (conf->raid_disks <= conf->previous_raid_disks) 438 degraded2++; 439 } 440 rcu_read_unlock(); 441 if (degraded2 > degraded) 442 return degraded2; 443 return degraded; 444 } 445 446 static int has_failed(struct r5conf *conf) 447 { 448 int degraded; 449 450 if (conf->mddev->reshape_position == MaxSector) 451 return conf->mddev->degraded > conf->max_degraded; 452 453 degraded = calc_degraded(conf); 454 if (degraded > conf->max_degraded) 455 return 1; 456 return 0; 457 } 458 459 static struct stripe_head * 460 get_active_stripe(struct r5conf *conf, sector_t sector, 461 int previous, int noblock, int noquiesce) 462 { 463 struct stripe_head *sh; 464 465 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 466 467 spin_lock_irq(&conf->device_lock); 468 469 do { 470 wait_event_lock_irq(conf->wait_for_stripe, 471 conf->quiesce == 0 || noquiesce, 472 conf->device_lock); 473 sh = __find_stripe(conf, sector, conf->generation - previous); 474 if (!sh) { 475 if (!conf->inactive_blocked) 476 sh = get_free_stripe(conf); 477 if (noblock && sh == NULL) 478 break; 479 if (!sh) { 480 conf->inactive_blocked = 1; 481 wait_event_lock_irq(conf->wait_for_stripe, 482 !list_empty(&conf->inactive_list) && 483 (atomic_read(&conf->active_stripes) 484 < (conf->max_nr_stripes *3/4) 485 || !conf->inactive_blocked), 486 conf->device_lock); 487 conf->inactive_blocked = 0; 488 } else 489 init_stripe(sh, sector, previous); 490 } else { 491 if (atomic_read(&sh->count)) { 492 BUG_ON(!list_empty(&sh->lru) 493 && !test_bit(STRIPE_EXPANDING, &sh->state) 494 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)); 495 } else { 496 if (!test_bit(STRIPE_HANDLE, &sh->state)) 497 atomic_inc(&conf->active_stripes); 498 if (list_empty(&sh->lru) && 499 !test_bit(STRIPE_EXPANDING, &sh->state)) 500 BUG(); 501 list_del_init(&sh->lru); 502 } 503 } 504 } while (sh == NULL); 505 506 if (sh) 507 atomic_inc(&sh->count); 508 509 spin_unlock_irq(&conf->device_lock); 510 return sh; 511 } 512 513 /* Determine if 'data_offset' or 'new_data_offset' should be used 514 * in this stripe_head. 515 */ 516 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 517 { 518 sector_t progress = conf->reshape_progress; 519 /* Need a memory barrier to make sure we see the value 520 * of conf->generation, or ->data_offset that was set before 521 * reshape_progress was updated. 522 */ 523 smp_rmb(); 524 if (progress == MaxSector) 525 return 0; 526 if (sh->generation == conf->generation - 1) 527 return 0; 528 /* We are in a reshape, and this is a new-generation stripe, 529 * so use new_data_offset. 530 */ 531 return 1; 532 } 533 534 static void 535 raid5_end_read_request(struct bio *bi, int error); 536 static void 537 raid5_end_write_request(struct bio *bi, int error); 538 539 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 540 { 541 struct r5conf *conf = sh->raid_conf; 542 int i, disks = sh->disks; 543 544 might_sleep(); 545 546 for (i = disks; i--; ) { 547 int rw; 548 int replace_only = 0; 549 struct bio *bi, *rbi; 550 struct md_rdev *rdev, *rrdev = NULL; 551 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 552 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 553 rw = WRITE_FUA; 554 else 555 rw = WRITE; 556 if (test_bit(R5_Discard, &sh->dev[i].flags)) 557 rw |= REQ_DISCARD; 558 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 559 rw = READ; 560 else if (test_and_clear_bit(R5_WantReplace, 561 &sh->dev[i].flags)) { 562 rw = WRITE; 563 replace_only = 1; 564 } else 565 continue; 566 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 567 rw |= REQ_SYNC; 568 569 bi = &sh->dev[i].req; 570 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 571 572 bi->bi_rw = rw; 573 rbi->bi_rw = rw; 574 if (rw & WRITE) { 575 bi->bi_end_io = raid5_end_write_request; 576 rbi->bi_end_io = raid5_end_write_request; 577 } else 578 bi->bi_end_io = raid5_end_read_request; 579 580 rcu_read_lock(); 581 rrdev = rcu_dereference(conf->disks[i].replacement); 582 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 583 rdev = rcu_dereference(conf->disks[i].rdev); 584 if (!rdev) { 585 rdev = rrdev; 586 rrdev = NULL; 587 } 588 if (rw & WRITE) { 589 if (replace_only) 590 rdev = NULL; 591 if (rdev == rrdev) 592 /* We raced and saw duplicates */ 593 rrdev = NULL; 594 } else { 595 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 596 rdev = rrdev; 597 rrdev = NULL; 598 } 599 600 if (rdev && test_bit(Faulty, &rdev->flags)) 601 rdev = NULL; 602 if (rdev) 603 atomic_inc(&rdev->nr_pending); 604 if (rrdev && test_bit(Faulty, &rrdev->flags)) 605 rrdev = NULL; 606 if (rrdev) 607 atomic_inc(&rrdev->nr_pending); 608 rcu_read_unlock(); 609 610 /* We have already checked bad blocks for reads. Now 611 * need to check for writes. We never accept write errors 612 * on the replacement, so we don't to check rrdev. 613 */ 614 while ((rw & WRITE) && rdev && 615 test_bit(WriteErrorSeen, &rdev->flags)) { 616 sector_t first_bad; 617 int bad_sectors; 618 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 619 &first_bad, &bad_sectors); 620 if (!bad) 621 break; 622 623 if (bad < 0) { 624 set_bit(BlockedBadBlocks, &rdev->flags); 625 if (!conf->mddev->external && 626 conf->mddev->flags) { 627 /* It is very unlikely, but we might 628 * still need to write out the 629 * bad block log - better give it 630 * a chance*/ 631 md_check_recovery(conf->mddev); 632 } 633 /* 634 * Because md_wait_for_blocked_rdev 635 * will dec nr_pending, we must 636 * increment it first. 637 */ 638 atomic_inc(&rdev->nr_pending); 639 md_wait_for_blocked_rdev(rdev, conf->mddev); 640 } else { 641 /* Acknowledged bad block - skip the write */ 642 rdev_dec_pending(rdev, conf->mddev); 643 rdev = NULL; 644 } 645 } 646 647 if (rdev) { 648 if (s->syncing || s->expanding || s->expanded 649 || s->replacing) 650 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 651 652 set_bit(STRIPE_IO_STARTED, &sh->state); 653 654 bi->bi_bdev = rdev->bdev; 655 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 656 __func__, (unsigned long long)sh->sector, 657 bi->bi_rw, i); 658 atomic_inc(&sh->count); 659 if (use_new_offset(conf, sh)) 660 bi->bi_sector = (sh->sector 661 + rdev->new_data_offset); 662 else 663 bi->bi_sector = (sh->sector 664 + rdev->data_offset); 665 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 666 bi->bi_rw |= REQ_FLUSH; 667 668 bi->bi_flags = 1 << BIO_UPTODATE; 669 bi->bi_idx = 0; 670 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 671 bi->bi_io_vec[0].bv_offset = 0; 672 bi->bi_size = STRIPE_SIZE; 673 bi->bi_next = NULL; 674 if (rrdev) 675 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 676 677 if (conf->mddev->gendisk) 678 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 679 bi, disk_devt(conf->mddev->gendisk), 680 sh->dev[i].sector); 681 generic_make_request(bi); 682 } 683 if (rrdev) { 684 if (s->syncing || s->expanding || s->expanded 685 || s->replacing) 686 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 687 688 set_bit(STRIPE_IO_STARTED, &sh->state); 689 690 rbi->bi_bdev = rrdev->bdev; 691 pr_debug("%s: for %llu schedule op %ld on " 692 "replacement disc %d\n", 693 __func__, (unsigned long long)sh->sector, 694 rbi->bi_rw, i); 695 atomic_inc(&sh->count); 696 if (use_new_offset(conf, sh)) 697 rbi->bi_sector = (sh->sector 698 + rrdev->new_data_offset); 699 else 700 rbi->bi_sector = (sh->sector 701 + rrdev->data_offset); 702 rbi->bi_flags = 1 << BIO_UPTODATE; 703 rbi->bi_idx = 0; 704 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 705 rbi->bi_io_vec[0].bv_offset = 0; 706 rbi->bi_size = STRIPE_SIZE; 707 rbi->bi_next = NULL; 708 if (conf->mddev->gendisk) 709 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 710 rbi, disk_devt(conf->mddev->gendisk), 711 sh->dev[i].sector); 712 generic_make_request(rbi); 713 } 714 if (!rdev && !rrdev) { 715 if (rw & WRITE) 716 set_bit(STRIPE_DEGRADED, &sh->state); 717 pr_debug("skip op %ld on disc %d for sector %llu\n", 718 bi->bi_rw, i, (unsigned long long)sh->sector); 719 clear_bit(R5_LOCKED, &sh->dev[i].flags); 720 set_bit(STRIPE_HANDLE, &sh->state); 721 } 722 } 723 } 724 725 static struct dma_async_tx_descriptor * 726 async_copy_data(int frombio, struct bio *bio, struct page *page, 727 sector_t sector, struct dma_async_tx_descriptor *tx) 728 { 729 struct bio_vec *bvl; 730 struct page *bio_page; 731 int i; 732 int page_offset; 733 struct async_submit_ctl submit; 734 enum async_tx_flags flags = 0; 735 736 if (bio->bi_sector >= sector) 737 page_offset = (signed)(bio->bi_sector - sector) * 512; 738 else 739 page_offset = (signed)(sector - bio->bi_sector) * -512; 740 741 if (frombio) 742 flags |= ASYNC_TX_FENCE; 743 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 744 745 bio_for_each_segment(bvl, bio, i) { 746 int len = bvl->bv_len; 747 int clen; 748 int b_offset = 0; 749 750 if (page_offset < 0) { 751 b_offset = -page_offset; 752 page_offset += b_offset; 753 len -= b_offset; 754 } 755 756 if (len > 0 && page_offset + len > STRIPE_SIZE) 757 clen = STRIPE_SIZE - page_offset; 758 else 759 clen = len; 760 761 if (clen > 0) { 762 b_offset += bvl->bv_offset; 763 bio_page = bvl->bv_page; 764 if (frombio) 765 tx = async_memcpy(page, bio_page, page_offset, 766 b_offset, clen, &submit); 767 else 768 tx = async_memcpy(bio_page, page, b_offset, 769 page_offset, clen, &submit); 770 } 771 /* chain the operations */ 772 submit.depend_tx = tx; 773 774 if (clen < len) /* hit end of page */ 775 break; 776 page_offset += len; 777 } 778 779 return tx; 780 } 781 782 static void ops_complete_biofill(void *stripe_head_ref) 783 { 784 struct stripe_head *sh = stripe_head_ref; 785 struct bio *return_bi = NULL; 786 int i; 787 788 pr_debug("%s: stripe %llu\n", __func__, 789 (unsigned long long)sh->sector); 790 791 /* clear completed biofills */ 792 for (i = sh->disks; i--; ) { 793 struct r5dev *dev = &sh->dev[i]; 794 795 /* acknowledge completion of a biofill operation */ 796 /* and check if we need to reply to a read request, 797 * new R5_Wantfill requests are held off until 798 * !STRIPE_BIOFILL_RUN 799 */ 800 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 801 struct bio *rbi, *rbi2; 802 803 BUG_ON(!dev->read); 804 rbi = dev->read; 805 dev->read = NULL; 806 while (rbi && rbi->bi_sector < 807 dev->sector + STRIPE_SECTORS) { 808 rbi2 = r5_next_bio(rbi, dev->sector); 809 if (!raid5_dec_bi_active_stripes(rbi)) { 810 rbi->bi_next = return_bi; 811 return_bi = rbi; 812 } 813 rbi = rbi2; 814 } 815 } 816 } 817 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 818 819 return_io(return_bi); 820 821 set_bit(STRIPE_HANDLE, &sh->state); 822 release_stripe(sh); 823 } 824 825 static void ops_run_biofill(struct stripe_head *sh) 826 { 827 struct dma_async_tx_descriptor *tx = NULL; 828 struct async_submit_ctl submit; 829 int i; 830 831 pr_debug("%s: stripe %llu\n", __func__, 832 (unsigned long long)sh->sector); 833 834 for (i = sh->disks; i--; ) { 835 struct r5dev *dev = &sh->dev[i]; 836 if (test_bit(R5_Wantfill, &dev->flags)) { 837 struct bio *rbi; 838 spin_lock_irq(&sh->stripe_lock); 839 dev->read = rbi = dev->toread; 840 dev->toread = NULL; 841 spin_unlock_irq(&sh->stripe_lock); 842 while (rbi && rbi->bi_sector < 843 dev->sector + STRIPE_SECTORS) { 844 tx = async_copy_data(0, rbi, dev->page, 845 dev->sector, tx); 846 rbi = r5_next_bio(rbi, dev->sector); 847 } 848 } 849 } 850 851 atomic_inc(&sh->count); 852 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 853 async_trigger_callback(&submit); 854 } 855 856 static void mark_target_uptodate(struct stripe_head *sh, int target) 857 { 858 struct r5dev *tgt; 859 860 if (target < 0) 861 return; 862 863 tgt = &sh->dev[target]; 864 set_bit(R5_UPTODATE, &tgt->flags); 865 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 866 clear_bit(R5_Wantcompute, &tgt->flags); 867 } 868 869 static void ops_complete_compute(void *stripe_head_ref) 870 { 871 struct stripe_head *sh = stripe_head_ref; 872 873 pr_debug("%s: stripe %llu\n", __func__, 874 (unsigned long long)sh->sector); 875 876 /* mark the computed target(s) as uptodate */ 877 mark_target_uptodate(sh, sh->ops.target); 878 mark_target_uptodate(sh, sh->ops.target2); 879 880 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 881 if (sh->check_state == check_state_compute_run) 882 sh->check_state = check_state_compute_result; 883 set_bit(STRIPE_HANDLE, &sh->state); 884 release_stripe(sh); 885 } 886 887 /* return a pointer to the address conversion region of the scribble buffer */ 888 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 889 struct raid5_percpu *percpu) 890 { 891 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 892 } 893 894 static struct dma_async_tx_descriptor * 895 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 896 { 897 int disks = sh->disks; 898 struct page **xor_srcs = percpu->scribble; 899 int target = sh->ops.target; 900 struct r5dev *tgt = &sh->dev[target]; 901 struct page *xor_dest = tgt->page; 902 int count = 0; 903 struct dma_async_tx_descriptor *tx; 904 struct async_submit_ctl submit; 905 int i; 906 907 pr_debug("%s: stripe %llu block: %d\n", 908 __func__, (unsigned long long)sh->sector, target); 909 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 910 911 for (i = disks; i--; ) 912 if (i != target) 913 xor_srcs[count++] = sh->dev[i].page; 914 915 atomic_inc(&sh->count); 916 917 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 918 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 919 if (unlikely(count == 1)) 920 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 921 else 922 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 923 924 return tx; 925 } 926 927 /* set_syndrome_sources - populate source buffers for gen_syndrome 928 * @srcs - (struct page *) array of size sh->disks 929 * @sh - stripe_head to parse 930 * 931 * Populates srcs in proper layout order for the stripe and returns the 932 * 'count' of sources to be used in a call to async_gen_syndrome. The P 933 * destination buffer is recorded in srcs[count] and the Q destination 934 * is recorded in srcs[count+1]]. 935 */ 936 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 937 { 938 int disks = sh->disks; 939 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 940 int d0_idx = raid6_d0(sh); 941 int count; 942 int i; 943 944 for (i = 0; i < disks; i++) 945 srcs[i] = NULL; 946 947 count = 0; 948 i = d0_idx; 949 do { 950 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 951 952 srcs[slot] = sh->dev[i].page; 953 i = raid6_next_disk(i, disks); 954 } while (i != d0_idx); 955 956 return syndrome_disks; 957 } 958 959 static struct dma_async_tx_descriptor * 960 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 961 { 962 int disks = sh->disks; 963 struct page **blocks = percpu->scribble; 964 int target; 965 int qd_idx = sh->qd_idx; 966 struct dma_async_tx_descriptor *tx; 967 struct async_submit_ctl submit; 968 struct r5dev *tgt; 969 struct page *dest; 970 int i; 971 int count; 972 973 if (sh->ops.target < 0) 974 target = sh->ops.target2; 975 else if (sh->ops.target2 < 0) 976 target = sh->ops.target; 977 else 978 /* we should only have one valid target */ 979 BUG(); 980 BUG_ON(target < 0); 981 pr_debug("%s: stripe %llu block: %d\n", 982 __func__, (unsigned long long)sh->sector, target); 983 984 tgt = &sh->dev[target]; 985 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 986 dest = tgt->page; 987 988 atomic_inc(&sh->count); 989 990 if (target == qd_idx) { 991 count = set_syndrome_sources(blocks, sh); 992 blocks[count] = NULL; /* regenerating p is not necessary */ 993 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 994 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 995 ops_complete_compute, sh, 996 to_addr_conv(sh, percpu)); 997 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 998 } else { 999 /* Compute any data- or p-drive using XOR */ 1000 count = 0; 1001 for (i = disks; i-- ; ) { 1002 if (i == target || i == qd_idx) 1003 continue; 1004 blocks[count++] = sh->dev[i].page; 1005 } 1006 1007 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1008 NULL, ops_complete_compute, sh, 1009 to_addr_conv(sh, percpu)); 1010 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1011 } 1012 1013 return tx; 1014 } 1015 1016 static struct dma_async_tx_descriptor * 1017 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1018 { 1019 int i, count, disks = sh->disks; 1020 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1021 int d0_idx = raid6_d0(sh); 1022 int faila = -1, failb = -1; 1023 int target = sh->ops.target; 1024 int target2 = sh->ops.target2; 1025 struct r5dev *tgt = &sh->dev[target]; 1026 struct r5dev *tgt2 = &sh->dev[target2]; 1027 struct dma_async_tx_descriptor *tx; 1028 struct page **blocks = percpu->scribble; 1029 struct async_submit_ctl submit; 1030 1031 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1032 __func__, (unsigned long long)sh->sector, target, target2); 1033 BUG_ON(target < 0 || target2 < 0); 1034 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1035 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1036 1037 /* we need to open-code set_syndrome_sources to handle the 1038 * slot number conversion for 'faila' and 'failb' 1039 */ 1040 for (i = 0; i < disks ; i++) 1041 blocks[i] = NULL; 1042 count = 0; 1043 i = d0_idx; 1044 do { 1045 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1046 1047 blocks[slot] = sh->dev[i].page; 1048 1049 if (i == target) 1050 faila = slot; 1051 if (i == target2) 1052 failb = slot; 1053 i = raid6_next_disk(i, disks); 1054 } while (i != d0_idx); 1055 1056 BUG_ON(faila == failb); 1057 if (failb < faila) 1058 swap(faila, failb); 1059 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1060 __func__, (unsigned long long)sh->sector, faila, failb); 1061 1062 atomic_inc(&sh->count); 1063 1064 if (failb == syndrome_disks+1) { 1065 /* Q disk is one of the missing disks */ 1066 if (faila == syndrome_disks) { 1067 /* Missing P+Q, just recompute */ 1068 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1069 ops_complete_compute, sh, 1070 to_addr_conv(sh, percpu)); 1071 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1072 STRIPE_SIZE, &submit); 1073 } else { 1074 struct page *dest; 1075 int data_target; 1076 int qd_idx = sh->qd_idx; 1077 1078 /* Missing D+Q: recompute D from P, then recompute Q */ 1079 if (target == qd_idx) 1080 data_target = target2; 1081 else 1082 data_target = target; 1083 1084 count = 0; 1085 for (i = disks; i-- ; ) { 1086 if (i == data_target || i == qd_idx) 1087 continue; 1088 blocks[count++] = sh->dev[i].page; 1089 } 1090 dest = sh->dev[data_target].page; 1091 init_async_submit(&submit, 1092 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1093 NULL, NULL, NULL, 1094 to_addr_conv(sh, percpu)); 1095 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1096 &submit); 1097 1098 count = set_syndrome_sources(blocks, sh); 1099 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1100 ops_complete_compute, sh, 1101 to_addr_conv(sh, percpu)); 1102 return async_gen_syndrome(blocks, 0, count+2, 1103 STRIPE_SIZE, &submit); 1104 } 1105 } else { 1106 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1107 ops_complete_compute, sh, 1108 to_addr_conv(sh, percpu)); 1109 if (failb == syndrome_disks) { 1110 /* We're missing D+P. */ 1111 return async_raid6_datap_recov(syndrome_disks+2, 1112 STRIPE_SIZE, faila, 1113 blocks, &submit); 1114 } else { 1115 /* We're missing D+D. */ 1116 return async_raid6_2data_recov(syndrome_disks+2, 1117 STRIPE_SIZE, faila, failb, 1118 blocks, &submit); 1119 } 1120 } 1121 } 1122 1123 1124 static void ops_complete_prexor(void *stripe_head_ref) 1125 { 1126 struct stripe_head *sh = stripe_head_ref; 1127 1128 pr_debug("%s: stripe %llu\n", __func__, 1129 (unsigned long long)sh->sector); 1130 } 1131 1132 static struct dma_async_tx_descriptor * 1133 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1134 struct dma_async_tx_descriptor *tx) 1135 { 1136 int disks = sh->disks; 1137 struct page **xor_srcs = percpu->scribble; 1138 int count = 0, pd_idx = sh->pd_idx, i; 1139 struct async_submit_ctl submit; 1140 1141 /* existing parity data subtracted */ 1142 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1143 1144 pr_debug("%s: stripe %llu\n", __func__, 1145 (unsigned long long)sh->sector); 1146 1147 for (i = disks; i--; ) { 1148 struct r5dev *dev = &sh->dev[i]; 1149 /* Only process blocks that are known to be uptodate */ 1150 if (test_bit(R5_Wantdrain, &dev->flags)) 1151 xor_srcs[count++] = dev->page; 1152 } 1153 1154 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1155 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1156 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1157 1158 return tx; 1159 } 1160 1161 static struct dma_async_tx_descriptor * 1162 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1163 { 1164 int disks = sh->disks; 1165 int i; 1166 1167 pr_debug("%s: stripe %llu\n", __func__, 1168 (unsigned long long)sh->sector); 1169 1170 for (i = disks; i--; ) { 1171 struct r5dev *dev = &sh->dev[i]; 1172 struct bio *chosen; 1173 1174 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1175 struct bio *wbi; 1176 1177 spin_lock_irq(&sh->stripe_lock); 1178 chosen = dev->towrite; 1179 dev->towrite = NULL; 1180 BUG_ON(dev->written); 1181 wbi = dev->written = chosen; 1182 spin_unlock_irq(&sh->stripe_lock); 1183 1184 while (wbi && wbi->bi_sector < 1185 dev->sector + STRIPE_SECTORS) { 1186 if (wbi->bi_rw & REQ_FUA) 1187 set_bit(R5_WantFUA, &dev->flags); 1188 if (wbi->bi_rw & REQ_SYNC) 1189 set_bit(R5_SyncIO, &dev->flags); 1190 if (wbi->bi_rw & REQ_DISCARD) 1191 set_bit(R5_Discard, &dev->flags); 1192 else 1193 tx = async_copy_data(1, wbi, dev->page, 1194 dev->sector, tx); 1195 wbi = r5_next_bio(wbi, dev->sector); 1196 } 1197 } 1198 } 1199 1200 return tx; 1201 } 1202 1203 static void ops_complete_reconstruct(void *stripe_head_ref) 1204 { 1205 struct stripe_head *sh = stripe_head_ref; 1206 int disks = sh->disks; 1207 int pd_idx = sh->pd_idx; 1208 int qd_idx = sh->qd_idx; 1209 int i; 1210 bool fua = false, sync = false, discard = false; 1211 1212 pr_debug("%s: stripe %llu\n", __func__, 1213 (unsigned long long)sh->sector); 1214 1215 for (i = disks; i--; ) { 1216 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1217 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1218 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1219 } 1220 1221 for (i = disks; i--; ) { 1222 struct r5dev *dev = &sh->dev[i]; 1223 1224 if (dev->written || i == pd_idx || i == qd_idx) { 1225 if (!discard) 1226 set_bit(R5_UPTODATE, &dev->flags); 1227 if (fua) 1228 set_bit(R5_WantFUA, &dev->flags); 1229 if (sync) 1230 set_bit(R5_SyncIO, &dev->flags); 1231 } 1232 } 1233 1234 if (sh->reconstruct_state == reconstruct_state_drain_run) 1235 sh->reconstruct_state = reconstruct_state_drain_result; 1236 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1237 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1238 else { 1239 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1240 sh->reconstruct_state = reconstruct_state_result; 1241 } 1242 1243 set_bit(STRIPE_HANDLE, &sh->state); 1244 release_stripe(sh); 1245 } 1246 1247 static void 1248 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1249 struct dma_async_tx_descriptor *tx) 1250 { 1251 int disks = sh->disks; 1252 struct page **xor_srcs = percpu->scribble; 1253 struct async_submit_ctl submit; 1254 int count = 0, pd_idx = sh->pd_idx, i; 1255 struct page *xor_dest; 1256 int prexor = 0; 1257 unsigned long flags; 1258 1259 pr_debug("%s: stripe %llu\n", __func__, 1260 (unsigned long long)sh->sector); 1261 1262 for (i = 0; i < sh->disks; i++) { 1263 if (pd_idx == i) 1264 continue; 1265 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1266 break; 1267 } 1268 if (i >= sh->disks) { 1269 atomic_inc(&sh->count); 1270 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1271 ops_complete_reconstruct(sh); 1272 return; 1273 } 1274 /* check if prexor is active which means only process blocks 1275 * that are part of a read-modify-write (written) 1276 */ 1277 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1278 prexor = 1; 1279 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1280 for (i = disks; i--; ) { 1281 struct r5dev *dev = &sh->dev[i]; 1282 if (dev->written) 1283 xor_srcs[count++] = dev->page; 1284 } 1285 } else { 1286 xor_dest = sh->dev[pd_idx].page; 1287 for (i = disks; i--; ) { 1288 struct r5dev *dev = &sh->dev[i]; 1289 if (i != pd_idx) 1290 xor_srcs[count++] = dev->page; 1291 } 1292 } 1293 1294 /* 1/ if we prexor'd then the dest is reused as a source 1295 * 2/ if we did not prexor then we are redoing the parity 1296 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1297 * for the synchronous xor case 1298 */ 1299 flags = ASYNC_TX_ACK | 1300 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1301 1302 atomic_inc(&sh->count); 1303 1304 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1305 to_addr_conv(sh, percpu)); 1306 if (unlikely(count == 1)) 1307 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1308 else 1309 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1310 } 1311 1312 static void 1313 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1314 struct dma_async_tx_descriptor *tx) 1315 { 1316 struct async_submit_ctl submit; 1317 struct page **blocks = percpu->scribble; 1318 int count, i; 1319 1320 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1321 1322 for (i = 0; i < sh->disks; i++) { 1323 if (sh->pd_idx == i || sh->qd_idx == i) 1324 continue; 1325 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1326 break; 1327 } 1328 if (i >= sh->disks) { 1329 atomic_inc(&sh->count); 1330 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1331 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1332 ops_complete_reconstruct(sh); 1333 return; 1334 } 1335 1336 count = set_syndrome_sources(blocks, sh); 1337 1338 atomic_inc(&sh->count); 1339 1340 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1341 sh, to_addr_conv(sh, percpu)); 1342 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1343 } 1344 1345 static void ops_complete_check(void *stripe_head_ref) 1346 { 1347 struct stripe_head *sh = stripe_head_ref; 1348 1349 pr_debug("%s: stripe %llu\n", __func__, 1350 (unsigned long long)sh->sector); 1351 1352 sh->check_state = check_state_check_result; 1353 set_bit(STRIPE_HANDLE, &sh->state); 1354 release_stripe(sh); 1355 } 1356 1357 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1358 { 1359 int disks = sh->disks; 1360 int pd_idx = sh->pd_idx; 1361 int qd_idx = sh->qd_idx; 1362 struct page *xor_dest; 1363 struct page **xor_srcs = percpu->scribble; 1364 struct dma_async_tx_descriptor *tx; 1365 struct async_submit_ctl submit; 1366 int count; 1367 int i; 1368 1369 pr_debug("%s: stripe %llu\n", __func__, 1370 (unsigned long long)sh->sector); 1371 1372 count = 0; 1373 xor_dest = sh->dev[pd_idx].page; 1374 xor_srcs[count++] = xor_dest; 1375 for (i = disks; i--; ) { 1376 if (i == pd_idx || i == qd_idx) 1377 continue; 1378 xor_srcs[count++] = sh->dev[i].page; 1379 } 1380 1381 init_async_submit(&submit, 0, NULL, NULL, NULL, 1382 to_addr_conv(sh, percpu)); 1383 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1384 &sh->ops.zero_sum_result, &submit); 1385 1386 atomic_inc(&sh->count); 1387 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1388 tx = async_trigger_callback(&submit); 1389 } 1390 1391 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1392 { 1393 struct page **srcs = percpu->scribble; 1394 struct async_submit_ctl submit; 1395 int count; 1396 1397 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1398 (unsigned long long)sh->sector, checkp); 1399 1400 count = set_syndrome_sources(srcs, sh); 1401 if (!checkp) 1402 srcs[count] = NULL; 1403 1404 atomic_inc(&sh->count); 1405 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1406 sh, to_addr_conv(sh, percpu)); 1407 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1408 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1409 } 1410 1411 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1412 { 1413 int overlap_clear = 0, i, disks = sh->disks; 1414 struct dma_async_tx_descriptor *tx = NULL; 1415 struct r5conf *conf = sh->raid_conf; 1416 int level = conf->level; 1417 struct raid5_percpu *percpu; 1418 unsigned long cpu; 1419 1420 cpu = get_cpu(); 1421 percpu = per_cpu_ptr(conf->percpu, cpu); 1422 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1423 ops_run_biofill(sh); 1424 overlap_clear++; 1425 } 1426 1427 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1428 if (level < 6) 1429 tx = ops_run_compute5(sh, percpu); 1430 else { 1431 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1432 tx = ops_run_compute6_1(sh, percpu); 1433 else 1434 tx = ops_run_compute6_2(sh, percpu); 1435 } 1436 /* terminate the chain if reconstruct is not set to be run */ 1437 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1438 async_tx_ack(tx); 1439 } 1440 1441 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1442 tx = ops_run_prexor(sh, percpu, tx); 1443 1444 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1445 tx = ops_run_biodrain(sh, tx); 1446 overlap_clear++; 1447 } 1448 1449 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1450 if (level < 6) 1451 ops_run_reconstruct5(sh, percpu, tx); 1452 else 1453 ops_run_reconstruct6(sh, percpu, tx); 1454 } 1455 1456 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1457 if (sh->check_state == check_state_run) 1458 ops_run_check_p(sh, percpu); 1459 else if (sh->check_state == check_state_run_q) 1460 ops_run_check_pq(sh, percpu, 0); 1461 else if (sh->check_state == check_state_run_pq) 1462 ops_run_check_pq(sh, percpu, 1); 1463 else 1464 BUG(); 1465 } 1466 1467 if (overlap_clear) 1468 for (i = disks; i--; ) { 1469 struct r5dev *dev = &sh->dev[i]; 1470 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1471 wake_up(&sh->raid_conf->wait_for_overlap); 1472 } 1473 put_cpu(); 1474 } 1475 1476 static int grow_one_stripe(struct r5conf *conf) 1477 { 1478 struct stripe_head *sh; 1479 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1480 if (!sh) 1481 return 0; 1482 1483 sh->raid_conf = conf; 1484 1485 spin_lock_init(&sh->stripe_lock); 1486 1487 if (grow_buffers(sh)) { 1488 shrink_buffers(sh); 1489 kmem_cache_free(conf->slab_cache, sh); 1490 return 0; 1491 } 1492 /* we just created an active stripe so... */ 1493 atomic_set(&sh->count, 1); 1494 atomic_inc(&conf->active_stripes); 1495 INIT_LIST_HEAD(&sh->lru); 1496 release_stripe(sh); 1497 return 1; 1498 } 1499 1500 static int grow_stripes(struct r5conf *conf, int num) 1501 { 1502 struct kmem_cache *sc; 1503 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1504 1505 if (conf->mddev->gendisk) 1506 sprintf(conf->cache_name[0], 1507 "raid%d-%s", conf->level, mdname(conf->mddev)); 1508 else 1509 sprintf(conf->cache_name[0], 1510 "raid%d-%p", conf->level, conf->mddev); 1511 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1512 1513 conf->active_name = 0; 1514 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1515 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1516 0, 0, NULL); 1517 if (!sc) 1518 return 1; 1519 conf->slab_cache = sc; 1520 conf->pool_size = devs; 1521 while (num--) 1522 if (!grow_one_stripe(conf)) 1523 return 1; 1524 return 0; 1525 } 1526 1527 /** 1528 * scribble_len - return the required size of the scribble region 1529 * @num - total number of disks in the array 1530 * 1531 * The size must be enough to contain: 1532 * 1/ a struct page pointer for each device in the array +2 1533 * 2/ room to convert each entry in (1) to its corresponding dma 1534 * (dma_map_page()) or page (page_address()) address. 1535 * 1536 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1537 * calculate over all devices (not just the data blocks), using zeros in place 1538 * of the P and Q blocks. 1539 */ 1540 static size_t scribble_len(int num) 1541 { 1542 size_t len; 1543 1544 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1545 1546 return len; 1547 } 1548 1549 static int resize_stripes(struct r5conf *conf, int newsize) 1550 { 1551 /* Make all the stripes able to hold 'newsize' devices. 1552 * New slots in each stripe get 'page' set to a new page. 1553 * 1554 * This happens in stages: 1555 * 1/ create a new kmem_cache and allocate the required number of 1556 * stripe_heads. 1557 * 2/ gather all the old stripe_heads and transfer the pages across 1558 * to the new stripe_heads. This will have the side effect of 1559 * freezing the array as once all stripe_heads have been collected, 1560 * no IO will be possible. Old stripe heads are freed once their 1561 * pages have been transferred over, and the old kmem_cache is 1562 * freed when all stripes are done. 1563 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1564 * we simple return a failre status - no need to clean anything up. 1565 * 4/ allocate new pages for the new slots in the new stripe_heads. 1566 * If this fails, we don't bother trying the shrink the 1567 * stripe_heads down again, we just leave them as they are. 1568 * As each stripe_head is processed the new one is released into 1569 * active service. 1570 * 1571 * Once step2 is started, we cannot afford to wait for a write, 1572 * so we use GFP_NOIO allocations. 1573 */ 1574 struct stripe_head *osh, *nsh; 1575 LIST_HEAD(newstripes); 1576 struct disk_info *ndisks; 1577 unsigned long cpu; 1578 int err; 1579 struct kmem_cache *sc; 1580 int i; 1581 1582 if (newsize <= conf->pool_size) 1583 return 0; /* never bother to shrink */ 1584 1585 err = md_allow_write(conf->mddev); 1586 if (err) 1587 return err; 1588 1589 /* Step 1 */ 1590 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1591 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1592 0, 0, NULL); 1593 if (!sc) 1594 return -ENOMEM; 1595 1596 for (i = conf->max_nr_stripes; i; i--) { 1597 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1598 if (!nsh) 1599 break; 1600 1601 nsh->raid_conf = conf; 1602 spin_lock_init(&nsh->stripe_lock); 1603 1604 list_add(&nsh->lru, &newstripes); 1605 } 1606 if (i) { 1607 /* didn't get enough, give up */ 1608 while (!list_empty(&newstripes)) { 1609 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1610 list_del(&nsh->lru); 1611 kmem_cache_free(sc, nsh); 1612 } 1613 kmem_cache_destroy(sc); 1614 return -ENOMEM; 1615 } 1616 /* Step 2 - Must use GFP_NOIO now. 1617 * OK, we have enough stripes, start collecting inactive 1618 * stripes and copying them over 1619 */ 1620 list_for_each_entry(nsh, &newstripes, lru) { 1621 spin_lock_irq(&conf->device_lock); 1622 wait_event_lock_irq(conf->wait_for_stripe, 1623 !list_empty(&conf->inactive_list), 1624 conf->device_lock); 1625 osh = get_free_stripe(conf); 1626 spin_unlock_irq(&conf->device_lock); 1627 atomic_set(&nsh->count, 1); 1628 for(i=0; i<conf->pool_size; i++) 1629 nsh->dev[i].page = osh->dev[i].page; 1630 for( ; i<newsize; i++) 1631 nsh->dev[i].page = NULL; 1632 kmem_cache_free(conf->slab_cache, osh); 1633 } 1634 kmem_cache_destroy(conf->slab_cache); 1635 1636 /* Step 3. 1637 * At this point, we are holding all the stripes so the array 1638 * is completely stalled, so now is a good time to resize 1639 * conf->disks and the scribble region 1640 */ 1641 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1642 if (ndisks) { 1643 for (i=0; i<conf->raid_disks; i++) 1644 ndisks[i] = conf->disks[i]; 1645 kfree(conf->disks); 1646 conf->disks = ndisks; 1647 } else 1648 err = -ENOMEM; 1649 1650 get_online_cpus(); 1651 conf->scribble_len = scribble_len(newsize); 1652 for_each_present_cpu(cpu) { 1653 struct raid5_percpu *percpu; 1654 void *scribble; 1655 1656 percpu = per_cpu_ptr(conf->percpu, cpu); 1657 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1658 1659 if (scribble) { 1660 kfree(percpu->scribble); 1661 percpu->scribble = scribble; 1662 } else { 1663 err = -ENOMEM; 1664 break; 1665 } 1666 } 1667 put_online_cpus(); 1668 1669 /* Step 4, return new stripes to service */ 1670 while(!list_empty(&newstripes)) { 1671 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1672 list_del_init(&nsh->lru); 1673 1674 for (i=conf->raid_disks; i < newsize; i++) 1675 if (nsh->dev[i].page == NULL) { 1676 struct page *p = alloc_page(GFP_NOIO); 1677 nsh->dev[i].page = p; 1678 if (!p) 1679 err = -ENOMEM; 1680 } 1681 release_stripe(nsh); 1682 } 1683 /* critical section pass, GFP_NOIO no longer needed */ 1684 1685 conf->slab_cache = sc; 1686 conf->active_name = 1-conf->active_name; 1687 conf->pool_size = newsize; 1688 return err; 1689 } 1690 1691 static int drop_one_stripe(struct r5conf *conf) 1692 { 1693 struct stripe_head *sh; 1694 1695 spin_lock_irq(&conf->device_lock); 1696 sh = get_free_stripe(conf); 1697 spin_unlock_irq(&conf->device_lock); 1698 if (!sh) 1699 return 0; 1700 BUG_ON(atomic_read(&sh->count)); 1701 shrink_buffers(sh); 1702 kmem_cache_free(conf->slab_cache, sh); 1703 atomic_dec(&conf->active_stripes); 1704 return 1; 1705 } 1706 1707 static void shrink_stripes(struct r5conf *conf) 1708 { 1709 while (drop_one_stripe(conf)) 1710 ; 1711 1712 if (conf->slab_cache) 1713 kmem_cache_destroy(conf->slab_cache); 1714 conf->slab_cache = NULL; 1715 } 1716 1717 static void raid5_end_read_request(struct bio * bi, int error) 1718 { 1719 struct stripe_head *sh = bi->bi_private; 1720 struct r5conf *conf = sh->raid_conf; 1721 int disks = sh->disks, i; 1722 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1723 char b[BDEVNAME_SIZE]; 1724 struct md_rdev *rdev = NULL; 1725 sector_t s; 1726 1727 for (i=0 ; i<disks; i++) 1728 if (bi == &sh->dev[i].req) 1729 break; 1730 1731 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1732 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1733 uptodate); 1734 if (i == disks) { 1735 BUG(); 1736 return; 1737 } 1738 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1739 /* If replacement finished while this request was outstanding, 1740 * 'replacement' might be NULL already. 1741 * In that case it moved down to 'rdev'. 1742 * rdev is not removed until all requests are finished. 1743 */ 1744 rdev = conf->disks[i].replacement; 1745 if (!rdev) 1746 rdev = conf->disks[i].rdev; 1747 1748 if (use_new_offset(conf, sh)) 1749 s = sh->sector + rdev->new_data_offset; 1750 else 1751 s = sh->sector + rdev->data_offset; 1752 if (uptodate) { 1753 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1754 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1755 /* Note that this cannot happen on a 1756 * replacement device. We just fail those on 1757 * any error 1758 */ 1759 printk_ratelimited( 1760 KERN_INFO 1761 "md/raid:%s: read error corrected" 1762 " (%lu sectors at %llu on %s)\n", 1763 mdname(conf->mddev), STRIPE_SECTORS, 1764 (unsigned long long)s, 1765 bdevname(rdev->bdev, b)); 1766 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1767 clear_bit(R5_ReadError, &sh->dev[i].flags); 1768 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1769 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 1770 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1771 1772 if (atomic_read(&rdev->read_errors)) 1773 atomic_set(&rdev->read_errors, 0); 1774 } else { 1775 const char *bdn = bdevname(rdev->bdev, b); 1776 int retry = 0; 1777 int set_bad = 0; 1778 1779 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1780 atomic_inc(&rdev->read_errors); 1781 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1782 printk_ratelimited( 1783 KERN_WARNING 1784 "md/raid:%s: read error on replacement device " 1785 "(sector %llu on %s).\n", 1786 mdname(conf->mddev), 1787 (unsigned long long)s, 1788 bdn); 1789 else if (conf->mddev->degraded >= conf->max_degraded) { 1790 set_bad = 1; 1791 printk_ratelimited( 1792 KERN_WARNING 1793 "md/raid:%s: read error not correctable " 1794 "(sector %llu on %s).\n", 1795 mdname(conf->mddev), 1796 (unsigned long long)s, 1797 bdn); 1798 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 1799 /* Oh, no!!! */ 1800 set_bad = 1; 1801 printk_ratelimited( 1802 KERN_WARNING 1803 "md/raid:%s: read error NOT corrected!! " 1804 "(sector %llu on %s).\n", 1805 mdname(conf->mddev), 1806 (unsigned long long)s, 1807 bdn); 1808 } else if (atomic_read(&rdev->read_errors) 1809 > conf->max_nr_stripes) 1810 printk(KERN_WARNING 1811 "md/raid:%s: Too many read errors, failing device %s.\n", 1812 mdname(conf->mddev), bdn); 1813 else 1814 retry = 1; 1815 if (retry) 1816 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 1817 set_bit(R5_ReadError, &sh->dev[i].flags); 1818 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1819 } else 1820 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1821 else { 1822 clear_bit(R5_ReadError, &sh->dev[i].flags); 1823 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1824 if (!(set_bad 1825 && test_bit(In_sync, &rdev->flags) 1826 && rdev_set_badblocks( 1827 rdev, sh->sector, STRIPE_SECTORS, 0))) 1828 md_error(conf->mddev, rdev); 1829 } 1830 } 1831 rdev_dec_pending(rdev, conf->mddev); 1832 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1833 set_bit(STRIPE_HANDLE, &sh->state); 1834 release_stripe(sh); 1835 } 1836 1837 static void raid5_end_write_request(struct bio *bi, int error) 1838 { 1839 struct stripe_head *sh = bi->bi_private; 1840 struct r5conf *conf = sh->raid_conf; 1841 int disks = sh->disks, i; 1842 struct md_rdev *uninitialized_var(rdev); 1843 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1844 sector_t first_bad; 1845 int bad_sectors; 1846 int replacement = 0; 1847 1848 for (i = 0 ; i < disks; i++) { 1849 if (bi == &sh->dev[i].req) { 1850 rdev = conf->disks[i].rdev; 1851 break; 1852 } 1853 if (bi == &sh->dev[i].rreq) { 1854 rdev = conf->disks[i].replacement; 1855 if (rdev) 1856 replacement = 1; 1857 else 1858 /* rdev was removed and 'replacement' 1859 * replaced it. rdev is not removed 1860 * until all requests are finished. 1861 */ 1862 rdev = conf->disks[i].rdev; 1863 break; 1864 } 1865 } 1866 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1867 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1868 uptodate); 1869 if (i == disks) { 1870 BUG(); 1871 return; 1872 } 1873 1874 if (replacement) { 1875 if (!uptodate) 1876 md_error(conf->mddev, rdev); 1877 else if (is_badblock(rdev, sh->sector, 1878 STRIPE_SECTORS, 1879 &first_bad, &bad_sectors)) 1880 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 1881 } else { 1882 if (!uptodate) { 1883 set_bit(WriteErrorSeen, &rdev->flags); 1884 set_bit(R5_WriteError, &sh->dev[i].flags); 1885 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1886 set_bit(MD_RECOVERY_NEEDED, 1887 &rdev->mddev->recovery); 1888 } else if (is_badblock(rdev, sh->sector, 1889 STRIPE_SECTORS, 1890 &first_bad, &bad_sectors)) 1891 set_bit(R5_MadeGood, &sh->dev[i].flags); 1892 } 1893 rdev_dec_pending(rdev, conf->mddev); 1894 1895 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 1896 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1897 set_bit(STRIPE_HANDLE, &sh->state); 1898 release_stripe(sh); 1899 } 1900 1901 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 1902 1903 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 1904 { 1905 struct r5dev *dev = &sh->dev[i]; 1906 1907 bio_init(&dev->req); 1908 dev->req.bi_io_vec = &dev->vec; 1909 dev->req.bi_vcnt++; 1910 dev->req.bi_max_vecs++; 1911 dev->req.bi_private = sh; 1912 dev->vec.bv_page = dev->page; 1913 1914 bio_init(&dev->rreq); 1915 dev->rreq.bi_io_vec = &dev->rvec; 1916 dev->rreq.bi_vcnt++; 1917 dev->rreq.bi_max_vecs++; 1918 dev->rreq.bi_private = sh; 1919 dev->rvec.bv_page = dev->page; 1920 1921 dev->flags = 0; 1922 dev->sector = compute_blocknr(sh, i, previous); 1923 } 1924 1925 static void error(struct mddev *mddev, struct md_rdev *rdev) 1926 { 1927 char b[BDEVNAME_SIZE]; 1928 struct r5conf *conf = mddev->private; 1929 unsigned long flags; 1930 pr_debug("raid456: error called\n"); 1931 1932 spin_lock_irqsave(&conf->device_lock, flags); 1933 clear_bit(In_sync, &rdev->flags); 1934 mddev->degraded = calc_degraded(conf); 1935 spin_unlock_irqrestore(&conf->device_lock, flags); 1936 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1937 1938 set_bit(Blocked, &rdev->flags); 1939 set_bit(Faulty, &rdev->flags); 1940 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1941 printk(KERN_ALERT 1942 "md/raid:%s: Disk failure on %s, disabling device.\n" 1943 "md/raid:%s: Operation continuing on %d devices.\n", 1944 mdname(mddev), 1945 bdevname(rdev->bdev, b), 1946 mdname(mddev), 1947 conf->raid_disks - mddev->degraded); 1948 } 1949 1950 /* 1951 * Input: a 'big' sector number, 1952 * Output: index of the data and parity disk, and the sector # in them. 1953 */ 1954 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 1955 int previous, int *dd_idx, 1956 struct stripe_head *sh) 1957 { 1958 sector_t stripe, stripe2; 1959 sector_t chunk_number; 1960 unsigned int chunk_offset; 1961 int pd_idx, qd_idx; 1962 int ddf_layout = 0; 1963 sector_t new_sector; 1964 int algorithm = previous ? conf->prev_algo 1965 : conf->algorithm; 1966 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1967 : conf->chunk_sectors; 1968 int raid_disks = previous ? conf->previous_raid_disks 1969 : conf->raid_disks; 1970 int data_disks = raid_disks - conf->max_degraded; 1971 1972 /* First compute the information on this sector */ 1973 1974 /* 1975 * Compute the chunk number and the sector offset inside the chunk 1976 */ 1977 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1978 chunk_number = r_sector; 1979 1980 /* 1981 * Compute the stripe number 1982 */ 1983 stripe = chunk_number; 1984 *dd_idx = sector_div(stripe, data_disks); 1985 stripe2 = stripe; 1986 /* 1987 * Select the parity disk based on the user selected algorithm. 1988 */ 1989 pd_idx = qd_idx = -1; 1990 switch(conf->level) { 1991 case 4: 1992 pd_idx = data_disks; 1993 break; 1994 case 5: 1995 switch (algorithm) { 1996 case ALGORITHM_LEFT_ASYMMETRIC: 1997 pd_idx = data_disks - sector_div(stripe2, raid_disks); 1998 if (*dd_idx >= pd_idx) 1999 (*dd_idx)++; 2000 break; 2001 case ALGORITHM_RIGHT_ASYMMETRIC: 2002 pd_idx = sector_div(stripe2, raid_disks); 2003 if (*dd_idx >= pd_idx) 2004 (*dd_idx)++; 2005 break; 2006 case ALGORITHM_LEFT_SYMMETRIC: 2007 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2008 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2009 break; 2010 case ALGORITHM_RIGHT_SYMMETRIC: 2011 pd_idx = sector_div(stripe2, raid_disks); 2012 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2013 break; 2014 case ALGORITHM_PARITY_0: 2015 pd_idx = 0; 2016 (*dd_idx)++; 2017 break; 2018 case ALGORITHM_PARITY_N: 2019 pd_idx = data_disks; 2020 break; 2021 default: 2022 BUG(); 2023 } 2024 break; 2025 case 6: 2026 2027 switch (algorithm) { 2028 case ALGORITHM_LEFT_ASYMMETRIC: 2029 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2030 qd_idx = pd_idx + 1; 2031 if (pd_idx == raid_disks-1) { 2032 (*dd_idx)++; /* Q D D D P */ 2033 qd_idx = 0; 2034 } else if (*dd_idx >= pd_idx) 2035 (*dd_idx) += 2; /* D D P Q D */ 2036 break; 2037 case ALGORITHM_RIGHT_ASYMMETRIC: 2038 pd_idx = sector_div(stripe2, raid_disks); 2039 qd_idx = pd_idx + 1; 2040 if (pd_idx == raid_disks-1) { 2041 (*dd_idx)++; /* Q D D D P */ 2042 qd_idx = 0; 2043 } else if (*dd_idx >= pd_idx) 2044 (*dd_idx) += 2; /* D D P Q D */ 2045 break; 2046 case ALGORITHM_LEFT_SYMMETRIC: 2047 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2048 qd_idx = (pd_idx + 1) % raid_disks; 2049 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2050 break; 2051 case ALGORITHM_RIGHT_SYMMETRIC: 2052 pd_idx = sector_div(stripe2, raid_disks); 2053 qd_idx = (pd_idx + 1) % raid_disks; 2054 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2055 break; 2056 2057 case ALGORITHM_PARITY_0: 2058 pd_idx = 0; 2059 qd_idx = 1; 2060 (*dd_idx) += 2; 2061 break; 2062 case ALGORITHM_PARITY_N: 2063 pd_idx = data_disks; 2064 qd_idx = data_disks + 1; 2065 break; 2066 2067 case ALGORITHM_ROTATING_ZERO_RESTART: 2068 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2069 * of blocks for computing Q is different. 2070 */ 2071 pd_idx = sector_div(stripe2, raid_disks); 2072 qd_idx = pd_idx + 1; 2073 if (pd_idx == raid_disks-1) { 2074 (*dd_idx)++; /* Q D D D P */ 2075 qd_idx = 0; 2076 } else if (*dd_idx >= pd_idx) 2077 (*dd_idx) += 2; /* D D P Q D */ 2078 ddf_layout = 1; 2079 break; 2080 2081 case ALGORITHM_ROTATING_N_RESTART: 2082 /* Same a left_asymmetric, by first stripe is 2083 * D D D P Q rather than 2084 * Q D D D P 2085 */ 2086 stripe2 += 1; 2087 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2088 qd_idx = pd_idx + 1; 2089 if (pd_idx == raid_disks-1) { 2090 (*dd_idx)++; /* Q D D D P */ 2091 qd_idx = 0; 2092 } else if (*dd_idx >= pd_idx) 2093 (*dd_idx) += 2; /* D D P Q D */ 2094 ddf_layout = 1; 2095 break; 2096 2097 case ALGORITHM_ROTATING_N_CONTINUE: 2098 /* Same as left_symmetric but Q is before P */ 2099 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2100 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2101 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2102 ddf_layout = 1; 2103 break; 2104 2105 case ALGORITHM_LEFT_ASYMMETRIC_6: 2106 /* RAID5 left_asymmetric, with Q on last device */ 2107 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2108 if (*dd_idx >= pd_idx) 2109 (*dd_idx)++; 2110 qd_idx = raid_disks - 1; 2111 break; 2112 2113 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2114 pd_idx = sector_div(stripe2, raid_disks-1); 2115 if (*dd_idx >= pd_idx) 2116 (*dd_idx)++; 2117 qd_idx = raid_disks - 1; 2118 break; 2119 2120 case ALGORITHM_LEFT_SYMMETRIC_6: 2121 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2122 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2123 qd_idx = raid_disks - 1; 2124 break; 2125 2126 case ALGORITHM_RIGHT_SYMMETRIC_6: 2127 pd_idx = sector_div(stripe2, raid_disks-1); 2128 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2129 qd_idx = raid_disks - 1; 2130 break; 2131 2132 case ALGORITHM_PARITY_0_6: 2133 pd_idx = 0; 2134 (*dd_idx)++; 2135 qd_idx = raid_disks - 1; 2136 break; 2137 2138 default: 2139 BUG(); 2140 } 2141 break; 2142 } 2143 2144 if (sh) { 2145 sh->pd_idx = pd_idx; 2146 sh->qd_idx = qd_idx; 2147 sh->ddf_layout = ddf_layout; 2148 } 2149 /* 2150 * Finally, compute the new sector number 2151 */ 2152 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2153 return new_sector; 2154 } 2155 2156 2157 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2158 { 2159 struct r5conf *conf = sh->raid_conf; 2160 int raid_disks = sh->disks; 2161 int data_disks = raid_disks - conf->max_degraded; 2162 sector_t new_sector = sh->sector, check; 2163 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2164 : conf->chunk_sectors; 2165 int algorithm = previous ? conf->prev_algo 2166 : conf->algorithm; 2167 sector_t stripe; 2168 int chunk_offset; 2169 sector_t chunk_number; 2170 int dummy1, dd_idx = i; 2171 sector_t r_sector; 2172 struct stripe_head sh2; 2173 2174 2175 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2176 stripe = new_sector; 2177 2178 if (i == sh->pd_idx) 2179 return 0; 2180 switch(conf->level) { 2181 case 4: break; 2182 case 5: 2183 switch (algorithm) { 2184 case ALGORITHM_LEFT_ASYMMETRIC: 2185 case ALGORITHM_RIGHT_ASYMMETRIC: 2186 if (i > sh->pd_idx) 2187 i--; 2188 break; 2189 case ALGORITHM_LEFT_SYMMETRIC: 2190 case ALGORITHM_RIGHT_SYMMETRIC: 2191 if (i < sh->pd_idx) 2192 i += raid_disks; 2193 i -= (sh->pd_idx + 1); 2194 break; 2195 case ALGORITHM_PARITY_0: 2196 i -= 1; 2197 break; 2198 case ALGORITHM_PARITY_N: 2199 break; 2200 default: 2201 BUG(); 2202 } 2203 break; 2204 case 6: 2205 if (i == sh->qd_idx) 2206 return 0; /* It is the Q disk */ 2207 switch (algorithm) { 2208 case ALGORITHM_LEFT_ASYMMETRIC: 2209 case ALGORITHM_RIGHT_ASYMMETRIC: 2210 case ALGORITHM_ROTATING_ZERO_RESTART: 2211 case ALGORITHM_ROTATING_N_RESTART: 2212 if (sh->pd_idx == raid_disks-1) 2213 i--; /* Q D D D P */ 2214 else if (i > sh->pd_idx) 2215 i -= 2; /* D D P Q D */ 2216 break; 2217 case ALGORITHM_LEFT_SYMMETRIC: 2218 case ALGORITHM_RIGHT_SYMMETRIC: 2219 if (sh->pd_idx == raid_disks-1) 2220 i--; /* Q D D D P */ 2221 else { 2222 /* D D P Q D */ 2223 if (i < sh->pd_idx) 2224 i += raid_disks; 2225 i -= (sh->pd_idx + 2); 2226 } 2227 break; 2228 case ALGORITHM_PARITY_0: 2229 i -= 2; 2230 break; 2231 case ALGORITHM_PARITY_N: 2232 break; 2233 case ALGORITHM_ROTATING_N_CONTINUE: 2234 /* Like left_symmetric, but P is before Q */ 2235 if (sh->pd_idx == 0) 2236 i--; /* P D D D Q */ 2237 else { 2238 /* D D Q P D */ 2239 if (i < sh->pd_idx) 2240 i += raid_disks; 2241 i -= (sh->pd_idx + 1); 2242 } 2243 break; 2244 case ALGORITHM_LEFT_ASYMMETRIC_6: 2245 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2246 if (i > sh->pd_idx) 2247 i--; 2248 break; 2249 case ALGORITHM_LEFT_SYMMETRIC_6: 2250 case ALGORITHM_RIGHT_SYMMETRIC_6: 2251 if (i < sh->pd_idx) 2252 i += data_disks + 1; 2253 i -= (sh->pd_idx + 1); 2254 break; 2255 case ALGORITHM_PARITY_0_6: 2256 i -= 1; 2257 break; 2258 default: 2259 BUG(); 2260 } 2261 break; 2262 } 2263 2264 chunk_number = stripe * data_disks + i; 2265 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2266 2267 check = raid5_compute_sector(conf, r_sector, 2268 previous, &dummy1, &sh2); 2269 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2270 || sh2.qd_idx != sh->qd_idx) { 2271 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2272 mdname(conf->mddev)); 2273 return 0; 2274 } 2275 return r_sector; 2276 } 2277 2278 2279 static void 2280 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2281 int rcw, int expand) 2282 { 2283 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2284 struct r5conf *conf = sh->raid_conf; 2285 int level = conf->level; 2286 2287 if (rcw) { 2288 2289 for (i = disks; i--; ) { 2290 struct r5dev *dev = &sh->dev[i]; 2291 2292 if (dev->towrite) { 2293 set_bit(R5_LOCKED, &dev->flags); 2294 set_bit(R5_Wantdrain, &dev->flags); 2295 if (!expand) 2296 clear_bit(R5_UPTODATE, &dev->flags); 2297 s->locked++; 2298 } 2299 } 2300 /* if we are not expanding this is a proper write request, and 2301 * there will be bios with new data to be drained into the 2302 * stripe cache 2303 */ 2304 if (!expand) { 2305 if (!s->locked) 2306 /* False alarm, nothing to do */ 2307 return; 2308 sh->reconstruct_state = reconstruct_state_drain_run; 2309 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2310 } else 2311 sh->reconstruct_state = reconstruct_state_run; 2312 2313 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2314 2315 if (s->locked + conf->max_degraded == disks) 2316 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2317 atomic_inc(&conf->pending_full_writes); 2318 } else { 2319 BUG_ON(level == 6); 2320 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2321 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2322 2323 for (i = disks; i--; ) { 2324 struct r5dev *dev = &sh->dev[i]; 2325 if (i == pd_idx) 2326 continue; 2327 2328 if (dev->towrite && 2329 (test_bit(R5_UPTODATE, &dev->flags) || 2330 test_bit(R5_Wantcompute, &dev->flags))) { 2331 set_bit(R5_Wantdrain, &dev->flags); 2332 set_bit(R5_LOCKED, &dev->flags); 2333 clear_bit(R5_UPTODATE, &dev->flags); 2334 s->locked++; 2335 } 2336 } 2337 if (!s->locked) 2338 /* False alarm - nothing to do */ 2339 return; 2340 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2341 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2342 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2343 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2344 } 2345 2346 /* keep the parity disk(s) locked while asynchronous operations 2347 * are in flight 2348 */ 2349 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2350 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2351 s->locked++; 2352 2353 if (level == 6) { 2354 int qd_idx = sh->qd_idx; 2355 struct r5dev *dev = &sh->dev[qd_idx]; 2356 2357 set_bit(R5_LOCKED, &dev->flags); 2358 clear_bit(R5_UPTODATE, &dev->flags); 2359 s->locked++; 2360 } 2361 2362 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2363 __func__, (unsigned long long)sh->sector, 2364 s->locked, s->ops_request); 2365 } 2366 2367 /* 2368 * Each stripe/dev can have one or more bion attached. 2369 * toread/towrite point to the first in a chain. 2370 * The bi_next chain must be in order. 2371 */ 2372 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2373 { 2374 struct bio **bip; 2375 struct r5conf *conf = sh->raid_conf; 2376 int firstwrite=0; 2377 2378 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2379 (unsigned long long)bi->bi_sector, 2380 (unsigned long long)sh->sector); 2381 2382 /* 2383 * If several bio share a stripe. The bio bi_phys_segments acts as a 2384 * reference count to avoid race. The reference count should already be 2385 * increased before this function is called (for example, in 2386 * make_request()), so other bio sharing this stripe will not free the 2387 * stripe. If a stripe is owned by one stripe, the stripe lock will 2388 * protect it. 2389 */ 2390 spin_lock_irq(&sh->stripe_lock); 2391 if (forwrite) { 2392 bip = &sh->dev[dd_idx].towrite; 2393 if (*bip == NULL) 2394 firstwrite = 1; 2395 } else 2396 bip = &sh->dev[dd_idx].toread; 2397 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2398 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 2399 goto overlap; 2400 bip = & (*bip)->bi_next; 2401 } 2402 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 2403 goto overlap; 2404 2405 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2406 if (*bip) 2407 bi->bi_next = *bip; 2408 *bip = bi; 2409 raid5_inc_bi_active_stripes(bi); 2410 2411 if (forwrite) { 2412 /* check if page is covered */ 2413 sector_t sector = sh->dev[dd_idx].sector; 2414 for (bi=sh->dev[dd_idx].towrite; 2415 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2416 bi && bi->bi_sector <= sector; 2417 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2418 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 2419 sector = bi->bi_sector + (bi->bi_size>>9); 2420 } 2421 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2422 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2423 } 2424 2425 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2426 (unsigned long long)(*bip)->bi_sector, 2427 (unsigned long long)sh->sector, dd_idx); 2428 spin_unlock_irq(&sh->stripe_lock); 2429 2430 if (conf->mddev->bitmap && firstwrite) { 2431 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2432 STRIPE_SECTORS, 0); 2433 sh->bm_seq = conf->seq_flush+1; 2434 set_bit(STRIPE_BIT_DELAY, &sh->state); 2435 } 2436 return 1; 2437 2438 overlap: 2439 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2440 spin_unlock_irq(&sh->stripe_lock); 2441 return 0; 2442 } 2443 2444 static void end_reshape(struct r5conf *conf); 2445 2446 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2447 struct stripe_head *sh) 2448 { 2449 int sectors_per_chunk = 2450 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2451 int dd_idx; 2452 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2453 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2454 2455 raid5_compute_sector(conf, 2456 stripe * (disks - conf->max_degraded) 2457 *sectors_per_chunk + chunk_offset, 2458 previous, 2459 &dd_idx, sh); 2460 } 2461 2462 static void 2463 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2464 struct stripe_head_state *s, int disks, 2465 struct bio **return_bi) 2466 { 2467 int i; 2468 for (i = disks; i--; ) { 2469 struct bio *bi; 2470 int bitmap_end = 0; 2471 2472 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2473 struct md_rdev *rdev; 2474 rcu_read_lock(); 2475 rdev = rcu_dereference(conf->disks[i].rdev); 2476 if (rdev && test_bit(In_sync, &rdev->flags)) 2477 atomic_inc(&rdev->nr_pending); 2478 else 2479 rdev = NULL; 2480 rcu_read_unlock(); 2481 if (rdev) { 2482 if (!rdev_set_badblocks( 2483 rdev, 2484 sh->sector, 2485 STRIPE_SECTORS, 0)) 2486 md_error(conf->mddev, rdev); 2487 rdev_dec_pending(rdev, conf->mddev); 2488 } 2489 } 2490 spin_lock_irq(&sh->stripe_lock); 2491 /* fail all writes first */ 2492 bi = sh->dev[i].towrite; 2493 sh->dev[i].towrite = NULL; 2494 spin_unlock_irq(&sh->stripe_lock); 2495 if (bi) 2496 bitmap_end = 1; 2497 2498 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2499 wake_up(&conf->wait_for_overlap); 2500 2501 while (bi && bi->bi_sector < 2502 sh->dev[i].sector + STRIPE_SECTORS) { 2503 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2504 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2505 if (!raid5_dec_bi_active_stripes(bi)) { 2506 md_write_end(conf->mddev); 2507 bi->bi_next = *return_bi; 2508 *return_bi = bi; 2509 } 2510 bi = nextbi; 2511 } 2512 if (bitmap_end) 2513 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2514 STRIPE_SECTORS, 0, 0); 2515 bitmap_end = 0; 2516 /* and fail all 'written' */ 2517 bi = sh->dev[i].written; 2518 sh->dev[i].written = NULL; 2519 if (bi) bitmap_end = 1; 2520 while (bi && bi->bi_sector < 2521 sh->dev[i].sector + STRIPE_SECTORS) { 2522 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2523 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2524 if (!raid5_dec_bi_active_stripes(bi)) { 2525 md_write_end(conf->mddev); 2526 bi->bi_next = *return_bi; 2527 *return_bi = bi; 2528 } 2529 bi = bi2; 2530 } 2531 2532 /* fail any reads if this device is non-operational and 2533 * the data has not reached the cache yet. 2534 */ 2535 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2536 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2537 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2538 spin_lock_irq(&sh->stripe_lock); 2539 bi = sh->dev[i].toread; 2540 sh->dev[i].toread = NULL; 2541 spin_unlock_irq(&sh->stripe_lock); 2542 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2543 wake_up(&conf->wait_for_overlap); 2544 while (bi && bi->bi_sector < 2545 sh->dev[i].sector + STRIPE_SECTORS) { 2546 struct bio *nextbi = 2547 r5_next_bio(bi, sh->dev[i].sector); 2548 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2549 if (!raid5_dec_bi_active_stripes(bi)) { 2550 bi->bi_next = *return_bi; 2551 *return_bi = bi; 2552 } 2553 bi = nextbi; 2554 } 2555 } 2556 if (bitmap_end) 2557 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2558 STRIPE_SECTORS, 0, 0); 2559 /* If we were in the middle of a write the parity block might 2560 * still be locked - so just clear all R5_LOCKED flags 2561 */ 2562 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2563 } 2564 2565 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2566 if (atomic_dec_and_test(&conf->pending_full_writes)) 2567 md_wakeup_thread(conf->mddev->thread); 2568 } 2569 2570 static void 2571 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2572 struct stripe_head_state *s) 2573 { 2574 int abort = 0; 2575 int i; 2576 2577 clear_bit(STRIPE_SYNCING, &sh->state); 2578 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 2579 wake_up(&conf->wait_for_overlap); 2580 s->syncing = 0; 2581 s->replacing = 0; 2582 /* There is nothing more to do for sync/check/repair. 2583 * Don't even need to abort as that is handled elsewhere 2584 * if needed, and not always wanted e.g. if there is a known 2585 * bad block here. 2586 * For recover/replace we need to record a bad block on all 2587 * non-sync devices, or abort the recovery 2588 */ 2589 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2590 /* During recovery devices cannot be removed, so 2591 * locking and refcounting of rdevs is not needed 2592 */ 2593 for (i = 0; i < conf->raid_disks; i++) { 2594 struct md_rdev *rdev = conf->disks[i].rdev; 2595 if (rdev 2596 && !test_bit(Faulty, &rdev->flags) 2597 && !test_bit(In_sync, &rdev->flags) 2598 && !rdev_set_badblocks(rdev, sh->sector, 2599 STRIPE_SECTORS, 0)) 2600 abort = 1; 2601 rdev = conf->disks[i].replacement; 2602 if (rdev 2603 && !test_bit(Faulty, &rdev->flags) 2604 && !test_bit(In_sync, &rdev->flags) 2605 && !rdev_set_badblocks(rdev, sh->sector, 2606 STRIPE_SECTORS, 0)) 2607 abort = 1; 2608 } 2609 if (abort) 2610 conf->recovery_disabled = 2611 conf->mddev->recovery_disabled; 2612 } 2613 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2614 } 2615 2616 static int want_replace(struct stripe_head *sh, int disk_idx) 2617 { 2618 struct md_rdev *rdev; 2619 int rv = 0; 2620 /* Doing recovery so rcu locking not required */ 2621 rdev = sh->raid_conf->disks[disk_idx].replacement; 2622 if (rdev 2623 && !test_bit(Faulty, &rdev->flags) 2624 && !test_bit(In_sync, &rdev->flags) 2625 && (rdev->recovery_offset <= sh->sector 2626 || rdev->mddev->recovery_cp <= sh->sector)) 2627 rv = 1; 2628 2629 return rv; 2630 } 2631 2632 /* fetch_block - checks the given member device to see if its data needs 2633 * to be read or computed to satisfy a request. 2634 * 2635 * Returns 1 when no more member devices need to be checked, otherwise returns 2636 * 0 to tell the loop in handle_stripe_fill to continue 2637 */ 2638 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2639 int disk_idx, int disks) 2640 { 2641 struct r5dev *dev = &sh->dev[disk_idx]; 2642 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2643 &sh->dev[s->failed_num[1]] }; 2644 2645 /* is the data in this block needed, and can we get it? */ 2646 if (!test_bit(R5_LOCKED, &dev->flags) && 2647 !test_bit(R5_UPTODATE, &dev->flags) && 2648 (dev->toread || 2649 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2650 s->syncing || s->expanding || 2651 (s->replacing && want_replace(sh, disk_idx)) || 2652 (s->failed >= 1 && fdev[0]->toread) || 2653 (s->failed >= 2 && fdev[1]->toread) || 2654 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2655 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2656 (sh->raid_conf->level == 6 && s->failed && s->to_write))) { 2657 /* we would like to get this block, possibly by computing it, 2658 * otherwise read it if the backing disk is insync 2659 */ 2660 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2661 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2662 if ((s->uptodate == disks - 1) && 2663 (s->failed && (disk_idx == s->failed_num[0] || 2664 disk_idx == s->failed_num[1]))) { 2665 /* have disk failed, and we're requested to fetch it; 2666 * do compute it 2667 */ 2668 pr_debug("Computing stripe %llu block %d\n", 2669 (unsigned long long)sh->sector, disk_idx); 2670 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2671 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2672 set_bit(R5_Wantcompute, &dev->flags); 2673 sh->ops.target = disk_idx; 2674 sh->ops.target2 = -1; /* no 2nd target */ 2675 s->req_compute = 1; 2676 /* Careful: from this point on 'uptodate' is in the eye 2677 * of raid_run_ops which services 'compute' operations 2678 * before writes. R5_Wantcompute flags a block that will 2679 * be R5_UPTODATE by the time it is needed for a 2680 * subsequent operation. 2681 */ 2682 s->uptodate++; 2683 return 1; 2684 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2685 /* Computing 2-failure is *very* expensive; only 2686 * do it if failed >= 2 2687 */ 2688 int other; 2689 for (other = disks; other--; ) { 2690 if (other == disk_idx) 2691 continue; 2692 if (!test_bit(R5_UPTODATE, 2693 &sh->dev[other].flags)) 2694 break; 2695 } 2696 BUG_ON(other < 0); 2697 pr_debug("Computing stripe %llu blocks %d,%d\n", 2698 (unsigned long long)sh->sector, 2699 disk_idx, other); 2700 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2701 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2702 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2703 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2704 sh->ops.target = disk_idx; 2705 sh->ops.target2 = other; 2706 s->uptodate += 2; 2707 s->req_compute = 1; 2708 return 1; 2709 } else if (test_bit(R5_Insync, &dev->flags)) { 2710 set_bit(R5_LOCKED, &dev->flags); 2711 set_bit(R5_Wantread, &dev->flags); 2712 s->locked++; 2713 pr_debug("Reading block %d (sync=%d)\n", 2714 disk_idx, s->syncing); 2715 } 2716 } 2717 2718 return 0; 2719 } 2720 2721 /** 2722 * handle_stripe_fill - read or compute data to satisfy pending requests. 2723 */ 2724 static void handle_stripe_fill(struct stripe_head *sh, 2725 struct stripe_head_state *s, 2726 int disks) 2727 { 2728 int i; 2729 2730 /* look for blocks to read/compute, skip this if a compute 2731 * is already in flight, or if the stripe contents are in the 2732 * midst of changing due to a write 2733 */ 2734 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2735 !sh->reconstruct_state) 2736 for (i = disks; i--; ) 2737 if (fetch_block(sh, s, i, disks)) 2738 break; 2739 set_bit(STRIPE_HANDLE, &sh->state); 2740 } 2741 2742 2743 /* handle_stripe_clean_event 2744 * any written block on an uptodate or failed drive can be returned. 2745 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2746 * never LOCKED, so we don't need to test 'failed' directly. 2747 */ 2748 static void handle_stripe_clean_event(struct r5conf *conf, 2749 struct stripe_head *sh, int disks, struct bio **return_bi) 2750 { 2751 int i; 2752 struct r5dev *dev; 2753 int discard_pending = 0; 2754 2755 for (i = disks; i--; ) 2756 if (sh->dev[i].written) { 2757 dev = &sh->dev[i]; 2758 if (!test_bit(R5_LOCKED, &dev->flags) && 2759 (test_bit(R5_UPTODATE, &dev->flags) || 2760 test_bit(R5_Discard, &dev->flags))) { 2761 /* We can return any write requests */ 2762 struct bio *wbi, *wbi2; 2763 pr_debug("Return write for disc %d\n", i); 2764 if (test_and_clear_bit(R5_Discard, &dev->flags)) 2765 clear_bit(R5_UPTODATE, &dev->flags); 2766 wbi = dev->written; 2767 dev->written = NULL; 2768 while (wbi && wbi->bi_sector < 2769 dev->sector + STRIPE_SECTORS) { 2770 wbi2 = r5_next_bio(wbi, dev->sector); 2771 if (!raid5_dec_bi_active_stripes(wbi)) { 2772 md_write_end(conf->mddev); 2773 wbi->bi_next = *return_bi; 2774 *return_bi = wbi; 2775 } 2776 wbi = wbi2; 2777 } 2778 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2779 STRIPE_SECTORS, 2780 !test_bit(STRIPE_DEGRADED, &sh->state), 2781 0); 2782 } else if (test_bit(R5_Discard, &dev->flags)) 2783 discard_pending = 1; 2784 } 2785 if (!discard_pending && 2786 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 2787 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2788 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2789 if (sh->qd_idx >= 0) { 2790 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2791 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 2792 } 2793 /* now that discard is done we can proceed with any sync */ 2794 clear_bit(STRIPE_DISCARD, &sh->state); 2795 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2796 set_bit(STRIPE_HANDLE, &sh->state); 2797 2798 } 2799 2800 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2801 if (atomic_dec_and_test(&conf->pending_full_writes)) 2802 md_wakeup_thread(conf->mddev->thread); 2803 } 2804 2805 static void handle_stripe_dirtying(struct r5conf *conf, 2806 struct stripe_head *sh, 2807 struct stripe_head_state *s, 2808 int disks) 2809 { 2810 int rmw = 0, rcw = 0, i; 2811 sector_t recovery_cp = conf->mddev->recovery_cp; 2812 2813 /* RAID6 requires 'rcw' in current implementation. 2814 * Otherwise, check whether resync is now happening or should start. 2815 * If yes, then the array is dirty (after unclean shutdown or 2816 * initial creation), so parity in some stripes might be inconsistent. 2817 * In this case, we need to always do reconstruct-write, to ensure 2818 * that in case of drive failure or read-error correction, we 2819 * generate correct data from the parity. 2820 */ 2821 if (conf->max_degraded == 2 || 2822 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { 2823 /* Calculate the real rcw later - for now make it 2824 * look like rcw is cheaper 2825 */ 2826 rcw = 1; rmw = 2; 2827 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", 2828 conf->max_degraded, (unsigned long long)recovery_cp, 2829 (unsigned long long)sh->sector); 2830 } else for (i = disks; i--; ) { 2831 /* would I have to read this buffer for read_modify_write */ 2832 struct r5dev *dev = &sh->dev[i]; 2833 if ((dev->towrite || i == sh->pd_idx) && 2834 !test_bit(R5_LOCKED, &dev->flags) && 2835 !(test_bit(R5_UPTODATE, &dev->flags) || 2836 test_bit(R5_Wantcompute, &dev->flags))) { 2837 if (test_bit(R5_Insync, &dev->flags)) 2838 rmw++; 2839 else 2840 rmw += 2*disks; /* cannot read it */ 2841 } 2842 /* Would I have to read this buffer for reconstruct_write */ 2843 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2844 !test_bit(R5_LOCKED, &dev->flags) && 2845 !(test_bit(R5_UPTODATE, &dev->flags) || 2846 test_bit(R5_Wantcompute, &dev->flags))) { 2847 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2848 else 2849 rcw += 2*disks; 2850 } 2851 } 2852 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2853 (unsigned long long)sh->sector, rmw, rcw); 2854 set_bit(STRIPE_HANDLE, &sh->state); 2855 if (rmw < rcw && rmw > 0) { 2856 /* prefer read-modify-write, but need to get some data */ 2857 if (conf->mddev->queue) 2858 blk_add_trace_msg(conf->mddev->queue, 2859 "raid5 rmw %llu %d", 2860 (unsigned long long)sh->sector, rmw); 2861 for (i = disks; i--; ) { 2862 struct r5dev *dev = &sh->dev[i]; 2863 if ((dev->towrite || i == sh->pd_idx) && 2864 !test_bit(R5_LOCKED, &dev->flags) && 2865 !(test_bit(R5_UPTODATE, &dev->flags) || 2866 test_bit(R5_Wantcompute, &dev->flags)) && 2867 test_bit(R5_Insync, &dev->flags)) { 2868 if ( 2869 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2870 pr_debug("Read_old block " 2871 "%d for r-m-w\n", i); 2872 set_bit(R5_LOCKED, &dev->flags); 2873 set_bit(R5_Wantread, &dev->flags); 2874 s->locked++; 2875 } else { 2876 set_bit(STRIPE_DELAYED, &sh->state); 2877 set_bit(STRIPE_HANDLE, &sh->state); 2878 } 2879 } 2880 } 2881 } 2882 if (rcw <= rmw && rcw > 0) { 2883 /* want reconstruct write, but need to get some data */ 2884 int qread =0; 2885 rcw = 0; 2886 for (i = disks; i--; ) { 2887 struct r5dev *dev = &sh->dev[i]; 2888 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2889 i != sh->pd_idx && i != sh->qd_idx && 2890 !test_bit(R5_LOCKED, &dev->flags) && 2891 !(test_bit(R5_UPTODATE, &dev->flags) || 2892 test_bit(R5_Wantcompute, &dev->flags))) { 2893 rcw++; 2894 if (!test_bit(R5_Insync, &dev->flags)) 2895 continue; /* it's a failed drive */ 2896 if ( 2897 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2898 pr_debug("Read_old block " 2899 "%d for Reconstruct\n", i); 2900 set_bit(R5_LOCKED, &dev->flags); 2901 set_bit(R5_Wantread, &dev->flags); 2902 s->locked++; 2903 qread++; 2904 } else { 2905 set_bit(STRIPE_DELAYED, &sh->state); 2906 set_bit(STRIPE_HANDLE, &sh->state); 2907 } 2908 } 2909 } 2910 if (rcw && conf->mddev->queue) 2911 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 2912 (unsigned long long)sh->sector, 2913 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 2914 } 2915 /* now if nothing is locked, and if we have enough data, 2916 * we can start a write request 2917 */ 2918 /* since handle_stripe can be called at any time we need to handle the 2919 * case where a compute block operation has been submitted and then a 2920 * subsequent call wants to start a write request. raid_run_ops only 2921 * handles the case where compute block and reconstruct are requested 2922 * simultaneously. If this is not the case then new writes need to be 2923 * held off until the compute completes. 2924 */ 2925 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2926 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2927 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2928 schedule_reconstruction(sh, s, rcw == 0, 0); 2929 } 2930 2931 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 2932 struct stripe_head_state *s, int disks) 2933 { 2934 struct r5dev *dev = NULL; 2935 2936 set_bit(STRIPE_HANDLE, &sh->state); 2937 2938 switch (sh->check_state) { 2939 case check_state_idle: 2940 /* start a new check operation if there are no failures */ 2941 if (s->failed == 0) { 2942 BUG_ON(s->uptodate != disks); 2943 sh->check_state = check_state_run; 2944 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2945 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2946 s->uptodate--; 2947 break; 2948 } 2949 dev = &sh->dev[s->failed_num[0]]; 2950 /* fall through */ 2951 case check_state_compute_result: 2952 sh->check_state = check_state_idle; 2953 if (!dev) 2954 dev = &sh->dev[sh->pd_idx]; 2955 2956 /* check that a write has not made the stripe insync */ 2957 if (test_bit(STRIPE_INSYNC, &sh->state)) 2958 break; 2959 2960 /* either failed parity check, or recovery is happening */ 2961 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2962 BUG_ON(s->uptodate != disks); 2963 2964 set_bit(R5_LOCKED, &dev->flags); 2965 s->locked++; 2966 set_bit(R5_Wantwrite, &dev->flags); 2967 2968 clear_bit(STRIPE_DEGRADED, &sh->state); 2969 set_bit(STRIPE_INSYNC, &sh->state); 2970 break; 2971 case check_state_run: 2972 break; /* we will be called again upon completion */ 2973 case check_state_check_result: 2974 sh->check_state = check_state_idle; 2975 2976 /* if a failure occurred during the check operation, leave 2977 * STRIPE_INSYNC not set and let the stripe be handled again 2978 */ 2979 if (s->failed) 2980 break; 2981 2982 /* handle a successful check operation, if parity is correct 2983 * we are done. Otherwise update the mismatch count and repair 2984 * parity if !MD_RECOVERY_CHECK 2985 */ 2986 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 2987 /* parity is correct (on disc, 2988 * not in buffer any more) 2989 */ 2990 set_bit(STRIPE_INSYNC, &sh->state); 2991 else { 2992 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 2993 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2994 /* don't try to repair!! */ 2995 set_bit(STRIPE_INSYNC, &sh->state); 2996 else { 2997 sh->check_state = check_state_compute_run; 2998 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2999 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3000 set_bit(R5_Wantcompute, 3001 &sh->dev[sh->pd_idx].flags); 3002 sh->ops.target = sh->pd_idx; 3003 sh->ops.target2 = -1; 3004 s->uptodate++; 3005 } 3006 } 3007 break; 3008 case check_state_compute_run: 3009 break; 3010 default: 3011 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3012 __func__, sh->check_state, 3013 (unsigned long long) sh->sector); 3014 BUG(); 3015 } 3016 } 3017 3018 3019 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3020 struct stripe_head_state *s, 3021 int disks) 3022 { 3023 int pd_idx = sh->pd_idx; 3024 int qd_idx = sh->qd_idx; 3025 struct r5dev *dev; 3026 3027 set_bit(STRIPE_HANDLE, &sh->state); 3028 3029 BUG_ON(s->failed > 2); 3030 3031 /* Want to check and possibly repair P and Q. 3032 * However there could be one 'failed' device, in which 3033 * case we can only check one of them, possibly using the 3034 * other to generate missing data 3035 */ 3036 3037 switch (sh->check_state) { 3038 case check_state_idle: 3039 /* start a new check operation if there are < 2 failures */ 3040 if (s->failed == s->q_failed) { 3041 /* The only possible failed device holds Q, so it 3042 * makes sense to check P (If anything else were failed, 3043 * we would have used P to recreate it). 3044 */ 3045 sh->check_state = check_state_run; 3046 } 3047 if (!s->q_failed && s->failed < 2) { 3048 /* Q is not failed, and we didn't use it to generate 3049 * anything, so it makes sense to check it 3050 */ 3051 if (sh->check_state == check_state_run) 3052 sh->check_state = check_state_run_pq; 3053 else 3054 sh->check_state = check_state_run_q; 3055 } 3056 3057 /* discard potentially stale zero_sum_result */ 3058 sh->ops.zero_sum_result = 0; 3059 3060 if (sh->check_state == check_state_run) { 3061 /* async_xor_zero_sum destroys the contents of P */ 3062 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3063 s->uptodate--; 3064 } 3065 if (sh->check_state >= check_state_run && 3066 sh->check_state <= check_state_run_pq) { 3067 /* async_syndrome_zero_sum preserves P and Q, so 3068 * no need to mark them !uptodate here 3069 */ 3070 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3071 break; 3072 } 3073 3074 /* we have 2-disk failure */ 3075 BUG_ON(s->failed != 2); 3076 /* fall through */ 3077 case check_state_compute_result: 3078 sh->check_state = check_state_idle; 3079 3080 /* check that a write has not made the stripe insync */ 3081 if (test_bit(STRIPE_INSYNC, &sh->state)) 3082 break; 3083 3084 /* now write out any block on a failed drive, 3085 * or P or Q if they were recomputed 3086 */ 3087 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3088 if (s->failed == 2) { 3089 dev = &sh->dev[s->failed_num[1]]; 3090 s->locked++; 3091 set_bit(R5_LOCKED, &dev->flags); 3092 set_bit(R5_Wantwrite, &dev->flags); 3093 } 3094 if (s->failed >= 1) { 3095 dev = &sh->dev[s->failed_num[0]]; 3096 s->locked++; 3097 set_bit(R5_LOCKED, &dev->flags); 3098 set_bit(R5_Wantwrite, &dev->flags); 3099 } 3100 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3101 dev = &sh->dev[pd_idx]; 3102 s->locked++; 3103 set_bit(R5_LOCKED, &dev->flags); 3104 set_bit(R5_Wantwrite, &dev->flags); 3105 } 3106 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3107 dev = &sh->dev[qd_idx]; 3108 s->locked++; 3109 set_bit(R5_LOCKED, &dev->flags); 3110 set_bit(R5_Wantwrite, &dev->flags); 3111 } 3112 clear_bit(STRIPE_DEGRADED, &sh->state); 3113 3114 set_bit(STRIPE_INSYNC, &sh->state); 3115 break; 3116 case check_state_run: 3117 case check_state_run_q: 3118 case check_state_run_pq: 3119 break; /* we will be called again upon completion */ 3120 case check_state_check_result: 3121 sh->check_state = check_state_idle; 3122 3123 /* handle a successful check operation, if parity is correct 3124 * we are done. Otherwise update the mismatch count and repair 3125 * parity if !MD_RECOVERY_CHECK 3126 */ 3127 if (sh->ops.zero_sum_result == 0) { 3128 /* both parities are correct */ 3129 if (!s->failed) 3130 set_bit(STRIPE_INSYNC, &sh->state); 3131 else { 3132 /* in contrast to the raid5 case we can validate 3133 * parity, but still have a failure to write 3134 * back 3135 */ 3136 sh->check_state = check_state_compute_result; 3137 /* Returning at this point means that we may go 3138 * off and bring p and/or q uptodate again so 3139 * we make sure to check zero_sum_result again 3140 * to verify if p or q need writeback 3141 */ 3142 } 3143 } else { 3144 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3145 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3146 /* don't try to repair!! */ 3147 set_bit(STRIPE_INSYNC, &sh->state); 3148 else { 3149 int *target = &sh->ops.target; 3150 3151 sh->ops.target = -1; 3152 sh->ops.target2 = -1; 3153 sh->check_state = check_state_compute_run; 3154 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3155 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3156 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3157 set_bit(R5_Wantcompute, 3158 &sh->dev[pd_idx].flags); 3159 *target = pd_idx; 3160 target = &sh->ops.target2; 3161 s->uptodate++; 3162 } 3163 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3164 set_bit(R5_Wantcompute, 3165 &sh->dev[qd_idx].flags); 3166 *target = qd_idx; 3167 s->uptodate++; 3168 } 3169 } 3170 } 3171 break; 3172 case check_state_compute_run: 3173 break; 3174 default: 3175 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3176 __func__, sh->check_state, 3177 (unsigned long long) sh->sector); 3178 BUG(); 3179 } 3180 } 3181 3182 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3183 { 3184 int i; 3185 3186 /* We have read all the blocks in this stripe and now we need to 3187 * copy some of them into a target stripe for expand. 3188 */ 3189 struct dma_async_tx_descriptor *tx = NULL; 3190 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3191 for (i = 0; i < sh->disks; i++) 3192 if (i != sh->pd_idx && i != sh->qd_idx) { 3193 int dd_idx, j; 3194 struct stripe_head *sh2; 3195 struct async_submit_ctl submit; 3196 3197 sector_t bn = compute_blocknr(sh, i, 1); 3198 sector_t s = raid5_compute_sector(conf, bn, 0, 3199 &dd_idx, NULL); 3200 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3201 if (sh2 == NULL) 3202 /* so far only the early blocks of this stripe 3203 * have been requested. When later blocks 3204 * get requested, we will try again 3205 */ 3206 continue; 3207 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3208 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3209 /* must have already done this block */ 3210 release_stripe(sh2); 3211 continue; 3212 } 3213 3214 /* place all the copies on one channel */ 3215 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3216 tx = async_memcpy(sh2->dev[dd_idx].page, 3217 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3218 &submit); 3219 3220 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3221 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3222 for (j = 0; j < conf->raid_disks; j++) 3223 if (j != sh2->pd_idx && 3224 j != sh2->qd_idx && 3225 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3226 break; 3227 if (j == conf->raid_disks) { 3228 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3229 set_bit(STRIPE_HANDLE, &sh2->state); 3230 } 3231 release_stripe(sh2); 3232 3233 } 3234 /* done submitting copies, wait for them to complete */ 3235 async_tx_quiesce(&tx); 3236 } 3237 3238 /* 3239 * handle_stripe - do things to a stripe. 3240 * 3241 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3242 * state of various bits to see what needs to be done. 3243 * Possible results: 3244 * return some read requests which now have data 3245 * return some write requests which are safely on storage 3246 * schedule a read on some buffers 3247 * schedule a write of some buffers 3248 * return confirmation of parity correctness 3249 * 3250 */ 3251 3252 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3253 { 3254 struct r5conf *conf = sh->raid_conf; 3255 int disks = sh->disks; 3256 struct r5dev *dev; 3257 int i; 3258 int do_recovery = 0; 3259 3260 memset(s, 0, sizeof(*s)); 3261 3262 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3263 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3264 s->failed_num[0] = -1; 3265 s->failed_num[1] = -1; 3266 3267 /* Now to look around and see what can be done */ 3268 rcu_read_lock(); 3269 for (i=disks; i--; ) { 3270 struct md_rdev *rdev; 3271 sector_t first_bad; 3272 int bad_sectors; 3273 int is_bad = 0; 3274 3275 dev = &sh->dev[i]; 3276 3277 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3278 i, dev->flags, 3279 dev->toread, dev->towrite, dev->written); 3280 /* maybe we can reply to a read 3281 * 3282 * new wantfill requests are only permitted while 3283 * ops_complete_biofill is guaranteed to be inactive 3284 */ 3285 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3286 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3287 set_bit(R5_Wantfill, &dev->flags); 3288 3289 /* now count some things */ 3290 if (test_bit(R5_LOCKED, &dev->flags)) 3291 s->locked++; 3292 if (test_bit(R5_UPTODATE, &dev->flags)) 3293 s->uptodate++; 3294 if (test_bit(R5_Wantcompute, &dev->flags)) { 3295 s->compute++; 3296 BUG_ON(s->compute > 2); 3297 } 3298 3299 if (test_bit(R5_Wantfill, &dev->flags)) 3300 s->to_fill++; 3301 else if (dev->toread) 3302 s->to_read++; 3303 if (dev->towrite) { 3304 s->to_write++; 3305 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3306 s->non_overwrite++; 3307 } 3308 if (dev->written) 3309 s->written++; 3310 /* Prefer to use the replacement for reads, but only 3311 * if it is recovered enough and has no bad blocks. 3312 */ 3313 rdev = rcu_dereference(conf->disks[i].replacement); 3314 if (rdev && !test_bit(Faulty, &rdev->flags) && 3315 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3316 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3317 &first_bad, &bad_sectors)) 3318 set_bit(R5_ReadRepl, &dev->flags); 3319 else { 3320 if (rdev) 3321 set_bit(R5_NeedReplace, &dev->flags); 3322 rdev = rcu_dereference(conf->disks[i].rdev); 3323 clear_bit(R5_ReadRepl, &dev->flags); 3324 } 3325 if (rdev && test_bit(Faulty, &rdev->flags)) 3326 rdev = NULL; 3327 if (rdev) { 3328 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3329 &first_bad, &bad_sectors); 3330 if (s->blocked_rdev == NULL 3331 && (test_bit(Blocked, &rdev->flags) 3332 || is_bad < 0)) { 3333 if (is_bad < 0) 3334 set_bit(BlockedBadBlocks, 3335 &rdev->flags); 3336 s->blocked_rdev = rdev; 3337 atomic_inc(&rdev->nr_pending); 3338 } 3339 } 3340 clear_bit(R5_Insync, &dev->flags); 3341 if (!rdev) 3342 /* Not in-sync */; 3343 else if (is_bad) { 3344 /* also not in-sync */ 3345 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3346 test_bit(R5_UPTODATE, &dev->flags)) { 3347 /* treat as in-sync, but with a read error 3348 * which we can now try to correct 3349 */ 3350 set_bit(R5_Insync, &dev->flags); 3351 set_bit(R5_ReadError, &dev->flags); 3352 } 3353 } else if (test_bit(In_sync, &rdev->flags)) 3354 set_bit(R5_Insync, &dev->flags); 3355 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3356 /* in sync if before recovery_offset */ 3357 set_bit(R5_Insync, &dev->flags); 3358 else if (test_bit(R5_UPTODATE, &dev->flags) && 3359 test_bit(R5_Expanded, &dev->flags)) 3360 /* If we've reshaped into here, we assume it is Insync. 3361 * We will shortly update recovery_offset to make 3362 * it official. 3363 */ 3364 set_bit(R5_Insync, &dev->flags); 3365 3366 if (rdev && test_bit(R5_WriteError, &dev->flags)) { 3367 /* This flag does not apply to '.replacement' 3368 * only to .rdev, so make sure to check that*/ 3369 struct md_rdev *rdev2 = rcu_dereference( 3370 conf->disks[i].rdev); 3371 if (rdev2 == rdev) 3372 clear_bit(R5_Insync, &dev->flags); 3373 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3374 s->handle_bad_blocks = 1; 3375 atomic_inc(&rdev2->nr_pending); 3376 } else 3377 clear_bit(R5_WriteError, &dev->flags); 3378 } 3379 if (rdev && test_bit(R5_MadeGood, &dev->flags)) { 3380 /* This flag does not apply to '.replacement' 3381 * only to .rdev, so make sure to check that*/ 3382 struct md_rdev *rdev2 = rcu_dereference( 3383 conf->disks[i].rdev); 3384 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3385 s->handle_bad_blocks = 1; 3386 atomic_inc(&rdev2->nr_pending); 3387 } else 3388 clear_bit(R5_MadeGood, &dev->flags); 3389 } 3390 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3391 struct md_rdev *rdev2 = rcu_dereference( 3392 conf->disks[i].replacement); 3393 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3394 s->handle_bad_blocks = 1; 3395 atomic_inc(&rdev2->nr_pending); 3396 } else 3397 clear_bit(R5_MadeGoodRepl, &dev->flags); 3398 } 3399 if (!test_bit(R5_Insync, &dev->flags)) { 3400 /* The ReadError flag will just be confusing now */ 3401 clear_bit(R5_ReadError, &dev->flags); 3402 clear_bit(R5_ReWrite, &dev->flags); 3403 } 3404 if (test_bit(R5_ReadError, &dev->flags)) 3405 clear_bit(R5_Insync, &dev->flags); 3406 if (!test_bit(R5_Insync, &dev->flags)) { 3407 if (s->failed < 2) 3408 s->failed_num[s->failed] = i; 3409 s->failed++; 3410 if (rdev && !test_bit(Faulty, &rdev->flags)) 3411 do_recovery = 1; 3412 } 3413 } 3414 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3415 /* If there is a failed device being replaced, 3416 * we must be recovering. 3417 * else if we are after recovery_cp, we must be syncing 3418 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3419 * else we can only be replacing 3420 * sync and recovery both need to read all devices, and so 3421 * use the same flag. 3422 */ 3423 if (do_recovery || 3424 sh->sector >= conf->mddev->recovery_cp || 3425 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3426 s->syncing = 1; 3427 else 3428 s->replacing = 1; 3429 } 3430 rcu_read_unlock(); 3431 } 3432 3433 static void handle_stripe(struct stripe_head *sh) 3434 { 3435 struct stripe_head_state s; 3436 struct r5conf *conf = sh->raid_conf; 3437 int i; 3438 int prexor; 3439 int disks = sh->disks; 3440 struct r5dev *pdev, *qdev; 3441 3442 clear_bit(STRIPE_HANDLE, &sh->state); 3443 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3444 /* already being handled, ensure it gets handled 3445 * again when current action finishes */ 3446 set_bit(STRIPE_HANDLE, &sh->state); 3447 return; 3448 } 3449 3450 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3451 spin_lock(&sh->stripe_lock); 3452 /* Cannot process 'sync' concurrently with 'discard' */ 3453 if (!test_bit(STRIPE_DISCARD, &sh->state) && 3454 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3455 set_bit(STRIPE_SYNCING, &sh->state); 3456 clear_bit(STRIPE_INSYNC, &sh->state); 3457 } 3458 spin_unlock(&sh->stripe_lock); 3459 } 3460 clear_bit(STRIPE_DELAYED, &sh->state); 3461 3462 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3463 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3464 (unsigned long long)sh->sector, sh->state, 3465 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3466 sh->check_state, sh->reconstruct_state); 3467 3468 analyse_stripe(sh, &s); 3469 3470 if (s.handle_bad_blocks) { 3471 set_bit(STRIPE_HANDLE, &sh->state); 3472 goto finish; 3473 } 3474 3475 if (unlikely(s.blocked_rdev)) { 3476 if (s.syncing || s.expanding || s.expanded || 3477 s.replacing || s.to_write || s.written) { 3478 set_bit(STRIPE_HANDLE, &sh->state); 3479 goto finish; 3480 } 3481 /* There is nothing for the blocked_rdev to block */ 3482 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3483 s.blocked_rdev = NULL; 3484 } 3485 3486 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3487 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3488 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3489 } 3490 3491 pr_debug("locked=%d uptodate=%d to_read=%d" 3492 " to_write=%d failed=%d failed_num=%d,%d\n", 3493 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3494 s.failed_num[0], s.failed_num[1]); 3495 /* check if the array has lost more than max_degraded devices and, 3496 * if so, some requests might need to be failed. 3497 */ 3498 if (s.failed > conf->max_degraded) { 3499 sh->check_state = 0; 3500 sh->reconstruct_state = 0; 3501 if (s.to_read+s.to_write+s.written) 3502 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3503 if (s.syncing + s.replacing) 3504 handle_failed_sync(conf, sh, &s); 3505 } 3506 3507 /* Now we check to see if any write operations have recently 3508 * completed 3509 */ 3510 prexor = 0; 3511 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3512 prexor = 1; 3513 if (sh->reconstruct_state == reconstruct_state_drain_result || 3514 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3515 sh->reconstruct_state = reconstruct_state_idle; 3516 3517 /* All the 'written' buffers and the parity block are ready to 3518 * be written back to disk 3519 */ 3520 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 3521 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 3522 BUG_ON(sh->qd_idx >= 0 && 3523 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 3524 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 3525 for (i = disks; i--; ) { 3526 struct r5dev *dev = &sh->dev[i]; 3527 if (test_bit(R5_LOCKED, &dev->flags) && 3528 (i == sh->pd_idx || i == sh->qd_idx || 3529 dev->written)) { 3530 pr_debug("Writing block %d\n", i); 3531 set_bit(R5_Wantwrite, &dev->flags); 3532 if (prexor) 3533 continue; 3534 if (!test_bit(R5_Insync, &dev->flags) || 3535 ((i == sh->pd_idx || i == sh->qd_idx) && 3536 s.failed == 0)) 3537 set_bit(STRIPE_INSYNC, &sh->state); 3538 } 3539 } 3540 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3541 s.dec_preread_active = 1; 3542 } 3543 3544 /* 3545 * might be able to return some write requests if the parity blocks 3546 * are safe, or on a failed drive 3547 */ 3548 pdev = &sh->dev[sh->pd_idx]; 3549 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3550 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3551 qdev = &sh->dev[sh->qd_idx]; 3552 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3553 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3554 || conf->level < 6; 3555 3556 if (s.written && 3557 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3558 && !test_bit(R5_LOCKED, &pdev->flags) 3559 && (test_bit(R5_UPTODATE, &pdev->flags) || 3560 test_bit(R5_Discard, &pdev->flags))))) && 3561 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3562 && !test_bit(R5_LOCKED, &qdev->flags) 3563 && (test_bit(R5_UPTODATE, &qdev->flags) || 3564 test_bit(R5_Discard, &qdev->flags)))))) 3565 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3566 3567 /* Now we might consider reading some blocks, either to check/generate 3568 * parity, or to satisfy requests 3569 * or to load a block that is being partially written. 3570 */ 3571 if (s.to_read || s.non_overwrite 3572 || (conf->level == 6 && s.to_write && s.failed) 3573 || (s.syncing && (s.uptodate + s.compute < disks)) 3574 || s.replacing 3575 || s.expanding) 3576 handle_stripe_fill(sh, &s, disks); 3577 3578 /* Now to consider new write requests and what else, if anything 3579 * should be read. We do not handle new writes when: 3580 * 1/ A 'write' operation (copy+xor) is already in flight. 3581 * 2/ A 'check' operation is in flight, as it may clobber the parity 3582 * block. 3583 */ 3584 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3585 handle_stripe_dirtying(conf, sh, &s, disks); 3586 3587 /* maybe we need to check and possibly fix the parity for this stripe 3588 * Any reads will already have been scheduled, so we just see if enough 3589 * data is available. The parity check is held off while parity 3590 * dependent operations are in flight. 3591 */ 3592 if (sh->check_state || 3593 (s.syncing && s.locked == 0 && 3594 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3595 !test_bit(STRIPE_INSYNC, &sh->state))) { 3596 if (conf->level == 6) 3597 handle_parity_checks6(conf, sh, &s, disks); 3598 else 3599 handle_parity_checks5(conf, sh, &s, disks); 3600 } 3601 3602 if (s.replacing && s.locked == 0 3603 && !test_bit(STRIPE_INSYNC, &sh->state)) { 3604 /* Write out to replacement devices where possible */ 3605 for (i = 0; i < conf->raid_disks; i++) 3606 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) && 3607 test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3608 set_bit(R5_WantReplace, &sh->dev[i].flags); 3609 set_bit(R5_LOCKED, &sh->dev[i].flags); 3610 s.locked++; 3611 } 3612 set_bit(STRIPE_INSYNC, &sh->state); 3613 } 3614 if ((s.syncing || s.replacing) && s.locked == 0 && 3615 test_bit(STRIPE_INSYNC, &sh->state)) { 3616 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3617 clear_bit(STRIPE_SYNCING, &sh->state); 3618 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3619 wake_up(&conf->wait_for_overlap); 3620 } 3621 3622 /* If the failed drives are just a ReadError, then we might need 3623 * to progress the repair/check process 3624 */ 3625 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3626 for (i = 0; i < s.failed; i++) { 3627 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3628 if (test_bit(R5_ReadError, &dev->flags) 3629 && !test_bit(R5_LOCKED, &dev->flags) 3630 && test_bit(R5_UPTODATE, &dev->flags) 3631 ) { 3632 if (!test_bit(R5_ReWrite, &dev->flags)) { 3633 set_bit(R5_Wantwrite, &dev->flags); 3634 set_bit(R5_ReWrite, &dev->flags); 3635 set_bit(R5_LOCKED, &dev->flags); 3636 s.locked++; 3637 } else { 3638 /* let's read it back */ 3639 set_bit(R5_Wantread, &dev->flags); 3640 set_bit(R5_LOCKED, &dev->flags); 3641 s.locked++; 3642 } 3643 } 3644 } 3645 3646 3647 /* Finish reconstruct operations initiated by the expansion process */ 3648 if (sh->reconstruct_state == reconstruct_state_result) { 3649 struct stripe_head *sh_src 3650 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3651 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3652 /* sh cannot be written until sh_src has been read. 3653 * so arrange for sh to be delayed a little 3654 */ 3655 set_bit(STRIPE_DELAYED, &sh->state); 3656 set_bit(STRIPE_HANDLE, &sh->state); 3657 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3658 &sh_src->state)) 3659 atomic_inc(&conf->preread_active_stripes); 3660 release_stripe(sh_src); 3661 goto finish; 3662 } 3663 if (sh_src) 3664 release_stripe(sh_src); 3665 3666 sh->reconstruct_state = reconstruct_state_idle; 3667 clear_bit(STRIPE_EXPANDING, &sh->state); 3668 for (i = conf->raid_disks; i--; ) { 3669 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3670 set_bit(R5_LOCKED, &sh->dev[i].flags); 3671 s.locked++; 3672 } 3673 } 3674 3675 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3676 !sh->reconstruct_state) { 3677 /* Need to write out all blocks after computing parity */ 3678 sh->disks = conf->raid_disks; 3679 stripe_set_idx(sh->sector, conf, 0, sh); 3680 schedule_reconstruction(sh, &s, 1, 1); 3681 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3682 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3683 atomic_dec(&conf->reshape_stripes); 3684 wake_up(&conf->wait_for_overlap); 3685 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3686 } 3687 3688 if (s.expanding && s.locked == 0 && 3689 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3690 handle_stripe_expansion(conf, sh); 3691 3692 finish: 3693 /* wait for this device to become unblocked */ 3694 if (unlikely(s.blocked_rdev)) { 3695 if (conf->mddev->external) 3696 md_wait_for_blocked_rdev(s.blocked_rdev, 3697 conf->mddev); 3698 else 3699 /* Internal metadata will immediately 3700 * be written by raid5d, so we don't 3701 * need to wait here. 3702 */ 3703 rdev_dec_pending(s.blocked_rdev, 3704 conf->mddev); 3705 } 3706 3707 if (s.handle_bad_blocks) 3708 for (i = disks; i--; ) { 3709 struct md_rdev *rdev; 3710 struct r5dev *dev = &sh->dev[i]; 3711 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 3712 /* We own a safe reference to the rdev */ 3713 rdev = conf->disks[i].rdev; 3714 if (!rdev_set_badblocks(rdev, sh->sector, 3715 STRIPE_SECTORS, 0)) 3716 md_error(conf->mddev, rdev); 3717 rdev_dec_pending(rdev, conf->mddev); 3718 } 3719 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 3720 rdev = conf->disks[i].rdev; 3721 rdev_clear_badblocks(rdev, sh->sector, 3722 STRIPE_SECTORS, 0); 3723 rdev_dec_pending(rdev, conf->mddev); 3724 } 3725 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 3726 rdev = conf->disks[i].replacement; 3727 if (!rdev) 3728 /* rdev have been moved down */ 3729 rdev = conf->disks[i].rdev; 3730 rdev_clear_badblocks(rdev, sh->sector, 3731 STRIPE_SECTORS, 0); 3732 rdev_dec_pending(rdev, conf->mddev); 3733 } 3734 } 3735 3736 if (s.ops_request) 3737 raid_run_ops(sh, s.ops_request); 3738 3739 ops_run_io(sh, &s); 3740 3741 if (s.dec_preread_active) { 3742 /* We delay this until after ops_run_io so that if make_request 3743 * is waiting on a flush, it won't continue until the writes 3744 * have actually been submitted. 3745 */ 3746 atomic_dec(&conf->preread_active_stripes); 3747 if (atomic_read(&conf->preread_active_stripes) < 3748 IO_THRESHOLD) 3749 md_wakeup_thread(conf->mddev->thread); 3750 } 3751 3752 return_io(s.return_bi); 3753 3754 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 3755 } 3756 3757 static void raid5_activate_delayed(struct r5conf *conf) 3758 { 3759 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3760 while (!list_empty(&conf->delayed_list)) { 3761 struct list_head *l = conf->delayed_list.next; 3762 struct stripe_head *sh; 3763 sh = list_entry(l, struct stripe_head, lru); 3764 list_del_init(l); 3765 clear_bit(STRIPE_DELAYED, &sh->state); 3766 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3767 atomic_inc(&conf->preread_active_stripes); 3768 list_add_tail(&sh->lru, &conf->hold_list); 3769 } 3770 } 3771 } 3772 3773 static void activate_bit_delay(struct r5conf *conf) 3774 { 3775 /* device_lock is held */ 3776 struct list_head head; 3777 list_add(&head, &conf->bitmap_list); 3778 list_del_init(&conf->bitmap_list); 3779 while (!list_empty(&head)) { 3780 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3781 list_del_init(&sh->lru); 3782 atomic_inc(&sh->count); 3783 __release_stripe(conf, sh); 3784 } 3785 } 3786 3787 int md_raid5_congested(struct mddev *mddev, int bits) 3788 { 3789 struct r5conf *conf = mddev->private; 3790 3791 /* No difference between reads and writes. Just check 3792 * how busy the stripe_cache is 3793 */ 3794 3795 if (conf->inactive_blocked) 3796 return 1; 3797 if (conf->quiesce) 3798 return 1; 3799 if (list_empty_careful(&conf->inactive_list)) 3800 return 1; 3801 3802 return 0; 3803 } 3804 EXPORT_SYMBOL_GPL(md_raid5_congested); 3805 3806 static int raid5_congested(void *data, int bits) 3807 { 3808 struct mddev *mddev = data; 3809 3810 return mddev_congested(mddev, bits) || 3811 md_raid5_congested(mddev, bits); 3812 } 3813 3814 /* We want read requests to align with chunks where possible, 3815 * but write requests don't need to. 3816 */ 3817 static int raid5_mergeable_bvec(struct request_queue *q, 3818 struct bvec_merge_data *bvm, 3819 struct bio_vec *biovec) 3820 { 3821 struct mddev *mddev = q->queuedata; 3822 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 3823 int max; 3824 unsigned int chunk_sectors = mddev->chunk_sectors; 3825 unsigned int bio_sectors = bvm->bi_size >> 9; 3826 3827 if ((bvm->bi_rw & 1) == WRITE) 3828 return biovec->bv_len; /* always allow writes to be mergeable */ 3829 3830 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3831 chunk_sectors = mddev->new_chunk_sectors; 3832 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3833 if (max < 0) max = 0; 3834 if (max <= biovec->bv_len && bio_sectors == 0) 3835 return biovec->bv_len; 3836 else 3837 return max; 3838 } 3839 3840 3841 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 3842 { 3843 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3844 unsigned int chunk_sectors = mddev->chunk_sectors; 3845 unsigned int bio_sectors = bio->bi_size >> 9; 3846 3847 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3848 chunk_sectors = mddev->new_chunk_sectors; 3849 return chunk_sectors >= 3850 ((sector & (chunk_sectors - 1)) + bio_sectors); 3851 } 3852 3853 /* 3854 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3855 * later sampled by raid5d. 3856 */ 3857 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 3858 { 3859 unsigned long flags; 3860 3861 spin_lock_irqsave(&conf->device_lock, flags); 3862 3863 bi->bi_next = conf->retry_read_aligned_list; 3864 conf->retry_read_aligned_list = bi; 3865 3866 spin_unlock_irqrestore(&conf->device_lock, flags); 3867 md_wakeup_thread(conf->mddev->thread); 3868 } 3869 3870 3871 static struct bio *remove_bio_from_retry(struct r5conf *conf) 3872 { 3873 struct bio *bi; 3874 3875 bi = conf->retry_read_aligned; 3876 if (bi) { 3877 conf->retry_read_aligned = NULL; 3878 return bi; 3879 } 3880 bi = conf->retry_read_aligned_list; 3881 if(bi) { 3882 conf->retry_read_aligned_list = bi->bi_next; 3883 bi->bi_next = NULL; 3884 /* 3885 * this sets the active strip count to 1 and the processed 3886 * strip count to zero (upper 8 bits) 3887 */ 3888 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 3889 } 3890 3891 return bi; 3892 } 3893 3894 3895 /* 3896 * The "raid5_align_endio" should check if the read succeeded and if it 3897 * did, call bio_endio on the original bio (having bio_put the new bio 3898 * first). 3899 * If the read failed.. 3900 */ 3901 static void raid5_align_endio(struct bio *bi, int error) 3902 { 3903 struct bio* raid_bi = bi->bi_private; 3904 struct mddev *mddev; 3905 struct r5conf *conf; 3906 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3907 struct md_rdev *rdev; 3908 3909 bio_put(bi); 3910 3911 rdev = (void*)raid_bi->bi_next; 3912 raid_bi->bi_next = NULL; 3913 mddev = rdev->mddev; 3914 conf = mddev->private; 3915 3916 rdev_dec_pending(rdev, conf->mddev); 3917 3918 if (!error && uptodate) { 3919 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 3920 raid_bi, 0); 3921 bio_endio(raid_bi, 0); 3922 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3923 wake_up(&conf->wait_for_stripe); 3924 return; 3925 } 3926 3927 3928 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3929 3930 add_bio_to_retry(raid_bi, conf); 3931 } 3932 3933 static int bio_fits_rdev(struct bio *bi) 3934 { 3935 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3936 3937 if ((bi->bi_size>>9) > queue_max_sectors(q)) 3938 return 0; 3939 blk_recount_segments(q, bi); 3940 if (bi->bi_phys_segments > queue_max_segments(q)) 3941 return 0; 3942 3943 if (q->merge_bvec_fn) 3944 /* it's too hard to apply the merge_bvec_fn at this stage, 3945 * just just give up 3946 */ 3947 return 0; 3948 3949 return 1; 3950 } 3951 3952 3953 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 3954 { 3955 struct r5conf *conf = mddev->private; 3956 int dd_idx; 3957 struct bio* align_bi; 3958 struct md_rdev *rdev; 3959 sector_t end_sector; 3960 3961 if (!in_chunk_boundary(mddev, raid_bio)) { 3962 pr_debug("chunk_aligned_read : non aligned\n"); 3963 return 0; 3964 } 3965 /* 3966 * use bio_clone_mddev to make a copy of the bio 3967 */ 3968 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 3969 if (!align_bi) 3970 return 0; 3971 /* 3972 * set bi_end_io to a new function, and set bi_private to the 3973 * original bio. 3974 */ 3975 align_bi->bi_end_io = raid5_align_endio; 3976 align_bi->bi_private = raid_bio; 3977 /* 3978 * compute position 3979 */ 3980 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 3981 0, 3982 &dd_idx, NULL); 3983 3984 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9); 3985 rcu_read_lock(); 3986 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 3987 if (!rdev || test_bit(Faulty, &rdev->flags) || 3988 rdev->recovery_offset < end_sector) { 3989 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3990 if (rdev && 3991 (test_bit(Faulty, &rdev->flags) || 3992 !(test_bit(In_sync, &rdev->flags) || 3993 rdev->recovery_offset >= end_sector))) 3994 rdev = NULL; 3995 } 3996 if (rdev) { 3997 sector_t first_bad; 3998 int bad_sectors; 3999 4000 atomic_inc(&rdev->nr_pending); 4001 rcu_read_unlock(); 4002 raid_bio->bi_next = (void*)rdev; 4003 align_bi->bi_bdev = rdev->bdev; 4004 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 4005 4006 if (!bio_fits_rdev(align_bi) || 4007 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9, 4008 &first_bad, &bad_sectors)) { 4009 /* too big in some way, or has a known bad block */ 4010 bio_put(align_bi); 4011 rdev_dec_pending(rdev, mddev); 4012 return 0; 4013 } 4014 4015 /* No reshape active, so we can trust rdev->data_offset */ 4016 align_bi->bi_sector += rdev->data_offset; 4017 4018 spin_lock_irq(&conf->device_lock); 4019 wait_event_lock_irq(conf->wait_for_stripe, 4020 conf->quiesce == 0, 4021 conf->device_lock); 4022 atomic_inc(&conf->active_aligned_reads); 4023 spin_unlock_irq(&conf->device_lock); 4024 4025 if (mddev->gendisk) 4026 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4027 align_bi, disk_devt(mddev->gendisk), 4028 raid_bio->bi_sector); 4029 generic_make_request(align_bi); 4030 return 1; 4031 } else { 4032 rcu_read_unlock(); 4033 bio_put(align_bi); 4034 return 0; 4035 } 4036 } 4037 4038 /* __get_priority_stripe - get the next stripe to process 4039 * 4040 * Full stripe writes are allowed to pass preread active stripes up until 4041 * the bypass_threshold is exceeded. In general the bypass_count 4042 * increments when the handle_list is handled before the hold_list; however, it 4043 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4044 * stripe with in flight i/o. The bypass_count will be reset when the 4045 * head of the hold_list has changed, i.e. the head was promoted to the 4046 * handle_list. 4047 */ 4048 static struct stripe_head *__get_priority_stripe(struct r5conf *conf) 4049 { 4050 struct stripe_head *sh; 4051 4052 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4053 __func__, 4054 list_empty(&conf->handle_list) ? "empty" : "busy", 4055 list_empty(&conf->hold_list) ? "empty" : "busy", 4056 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4057 4058 if (!list_empty(&conf->handle_list)) { 4059 sh = list_entry(conf->handle_list.next, typeof(*sh), lru); 4060 4061 if (list_empty(&conf->hold_list)) 4062 conf->bypass_count = 0; 4063 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4064 if (conf->hold_list.next == conf->last_hold) 4065 conf->bypass_count++; 4066 else { 4067 conf->last_hold = conf->hold_list.next; 4068 conf->bypass_count -= conf->bypass_threshold; 4069 if (conf->bypass_count < 0) 4070 conf->bypass_count = 0; 4071 } 4072 } 4073 } else if (!list_empty(&conf->hold_list) && 4074 ((conf->bypass_threshold && 4075 conf->bypass_count > conf->bypass_threshold) || 4076 atomic_read(&conf->pending_full_writes) == 0)) { 4077 sh = list_entry(conf->hold_list.next, 4078 typeof(*sh), lru); 4079 conf->bypass_count -= conf->bypass_threshold; 4080 if (conf->bypass_count < 0) 4081 conf->bypass_count = 0; 4082 } else 4083 return NULL; 4084 4085 list_del_init(&sh->lru); 4086 atomic_inc(&sh->count); 4087 BUG_ON(atomic_read(&sh->count) != 1); 4088 return sh; 4089 } 4090 4091 struct raid5_plug_cb { 4092 struct blk_plug_cb cb; 4093 struct list_head list; 4094 }; 4095 4096 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4097 { 4098 struct raid5_plug_cb *cb = container_of( 4099 blk_cb, struct raid5_plug_cb, cb); 4100 struct stripe_head *sh; 4101 struct mddev *mddev = cb->cb.data; 4102 struct r5conf *conf = mddev->private; 4103 int cnt = 0; 4104 4105 if (cb->list.next && !list_empty(&cb->list)) { 4106 spin_lock_irq(&conf->device_lock); 4107 while (!list_empty(&cb->list)) { 4108 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4109 list_del_init(&sh->lru); 4110 /* 4111 * avoid race release_stripe_plug() sees 4112 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4113 * is still in our list 4114 */ 4115 smp_mb__before_clear_bit(); 4116 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4117 __release_stripe(conf, sh); 4118 cnt++; 4119 } 4120 spin_unlock_irq(&conf->device_lock); 4121 } 4122 if (mddev->queue) 4123 trace_block_unplug(mddev->queue, cnt, !from_schedule); 4124 kfree(cb); 4125 } 4126 4127 static void release_stripe_plug(struct mddev *mddev, 4128 struct stripe_head *sh) 4129 { 4130 struct blk_plug_cb *blk_cb = blk_check_plugged( 4131 raid5_unplug, mddev, 4132 sizeof(struct raid5_plug_cb)); 4133 struct raid5_plug_cb *cb; 4134 4135 if (!blk_cb) { 4136 release_stripe(sh); 4137 return; 4138 } 4139 4140 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4141 4142 if (cb->list.next == NULL) 4143 INIT_LIST_HEAD(&cb->list); 4144 4145 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4146 list_add_tail(&sh->lru, &cb->list); 4147 else 4148 release_stripe(sh); 4149 } 4150 4151 static void make_discard_request(struct mddev *mddev, struct bio *bi) 4152 { 4153 struct r5conf *conf = mddev->private; 4154 sector_t logical_sector, last_sector; 4155 struct stripe_head *sh; 4156 int remaining; 4157 int stripe_sectors; 4158 4159 if (mddev->reshape_position != MaxSector) 4160 /* Skip discard while reshape is happening */ 4161 return; 4162 4163 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4164 last_sector = bi->bi_sector + (bi->bi_size>>9); 4165 4166 bi->bi_next = NULL; 4167 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4168 4169 stripe_sectors = conf->chunk_sectors * 4170 (conf->raid_disks - conf->max_degraded); 4171 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 4172 stripe_sectors); 4173 sector_div(last_sector, stripe_sectors); 4174 4175 logical_sector *= conf->chunk_sectors; 4176 last_sector *= conf->chunk_sectors; 4177 4178 for (; logical_sector < last_sector; 4179 logical_sector += STRIPE_SECTORS) { 4180 DEFINE_WAIT(w); 4181 int d; 4182 again: 4183 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 4184 prepare_to_wait(&conf->wait_for_overlap, &w, 4185 TASK_UNINTERRUPTIBLE); 4186 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4187 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4188 release_stripe(sh); 4189 schedule(); 4190 goto again; 4191 } 4192 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4193 spin_lock_irq(&sh->stripe_lock); 4194 for (d = 0; d < conf->raid_disks; d++) { 4195 if (d == sh->pd_idx || d == sh->qd_idx) 4196 continue; 4197 if (sh->dev[d].towrite || sh->dev[d].toread) { 4198 set_bit(R5_Overlap, &sh->dev[d].flags); 4199 spin_unlock_irq(&sh->stripe_lock); 4200 release_stripe(sh); 4201 schedule(); 4202 goto again; 4203 } 4204 } 4205 set_bit(STRIPE_DISCARD, &sh->state); 4206 finish_wait(&conf->wait_for_overlap, &w); 4207 for (d = 0; d < conf->raid_disks; d++) { 4208 if (d == sh->pd_idx || d == sh->qd_idx) 4209 continue; 4210 sh->dev[d].towrite = bi; 4211 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 4212 raid5_inc_bi_active_stripes(bi); 4213 } 4214 spin_unlock_irq(&sh->stripe_lock); 4215 if (conf->mddev->bitmap) { 4216 for (d = 0; 4217 d < conf->raid_disks - conf->max_degraded; 4218 d++) 4219 bitmap_startwrite(mddev->bitmap, 4220 sh->sector, 4221 STRIPE_SECTORS, 4222 0); 4223 sh->bm_seq = conf->seq_flush + 1; 4224 set_bit(STRIPE_BIT_DELAY, &sh->state); 4225 } 4226 4227 set_bit(STRIPE_HANDLE, &sh->state); 4228 clear_bit(STRIPE_DELAYED, &sh->state); 4229 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4230 atomic_inc(&conf->preread_active_stripes); 4231 release_stripe_plug(mddev, sh); 4232 } 4233 4234 remaining = raid5_dec_bi_active_stripes(bi); 4235 if (remaining == 0) { 4236 md_write_end(mddev); 4237 bio_endio(bi, 0); 4238 } 4239 } 4240 4241 static void make_request(struct mddev *mddev, struct bio * bi) 4242 { 4243 struct r5conf *conf = mddev->private; 4244 int dd_idx; 4245 sector_t new_sector; 4246 sector_t logical_sector, last_sector; 4247 struct stripe_head *sh; 4248 const int rw = bio_data_dir(bi); 4249 int remaining; 4250 4251 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4252 md_flush_request(mddev, bi); 4253 return; 4254 } 4255 4256 md_write_start(mddev, bi); 4257 4258 if (rw == READ && 4259 mddev->reshape_position == MaxSector && 4260 chunk_aligned_read(mddev,bi)) 4261 return; 4262 4263 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 4264 make_discard_request(mddev, bi); 4265 return; 4266 } 4267 4268 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4269 last_sector = bi->bi_sector + (bi->bi_size>>9); 4270 bi->bi_next = NULL; 4271 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4272 4273 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4274 DEFINE_WAIT(w); 4275 int previous; 4276 4277 retry: 4278 previous = 0; 4279 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4280 if (unlikely(conf->reshape_progress != MaxSector)) { 4281 /* spinlock is needed as reshape_progress may be 4282 * 64bit on a 32bit platform, and so it might be 4283 * possible to see a half-updated value 4284 * Of course reshape_progress could change after 4285 * the lock is dropped, so once we get a reference 4286 * to the stripe that we think it is, we will have 4287 * to check again. 4288 */ 4289 spin_lock_irq(&conf->device_lock); 4290 if (mddev->reshape_backwards 4291 ? logical_sector < conf->reshape_progress 4292 : logical_sector >= conf->reshape_progress) { 4293 previous = 1; 4294 } else { 4295 if (mddev->reshape_backwards 4296 ? logical_sector < conf->reshape_safe 4297 : logical_sector >= conf->reshape_safe) { 4298 spin_unlock_irq(&conf->device_lock); 4299 schedule(); 4300 goto retry; 4301 } 4302 } 4303 spin_unlock_irq(&conf->device_lock); 4304 } 4305 4306 new_sector = raid5_compute_sector(conf, logical_sector, 4307 previous, 4308 &dd_idx, NULL); 4309 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4310 (unsigned long long)new_sector, 4311 (unsigned long long)logical_sector); 4312 4313 sh = get_active_stripe(conf, new_sector, previous, 4314 (bi->bi_rw&RWA_MASK), 0); 4315 if (sh) { 4316 if (unlikely(previous)) { 4317 /* expansion might have moved on while waiting for a 4318 * stripe, so we must do the range check again. 4319 * Expansion could still move past after this 4320 * test, but as we are holding a reference to 4321 * 'sh', we know that if that happens, 4322 * STRIPE_EXPANDING will get set and the expansion 4323 * won't proceed until we finish with the stripe. 4324 */ 4325 int must_retry = 0; 4326 spin_lock_irq(&conf->device_lock); 4327 if (mddev->reshape_backwards 4328 ? logical_sector >= conf->reshape_progress 4329 : logical_sector < conf->reshape_progress) 4330 /* mismatch, need to try again */ 4331 must_retry = 1; 4332 spin_unlock_irq(&conf->device_lock); 4333 if (must_retry) { 4334 release_stripe(sh); 4335 schedule(); 4336 goto retry; 4337 } 4338 } 4339 4340 if (rw == WRITE && 4341 logical_sector >= mddev->suspend_lo && 4342 logical_sector < mddev->suspend_hi) { 4343 release_stripe(sh); 4344 /* As the suspend_* range is controlled by 4345 * userspace, we want an interruptible 4346 * wait. 4347 */ 4348 flush_signals(current); 4349 prepare_to_wait(&conf->wait_for_overlap, 4350 &w, TASK_INTERRUPTIBLE); 4351 if (logical_sector >= mddev->suspend_lo && 4352 logical_sector < mddev->suspend_hi) 4353 schedule(); 4354 goto retry; 4355 } 4356 4357 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4358 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4359 /* Stripe is busy expanding or 4360 * add failed due to overlap. Flush everything 4361 * and wait a while 4362 */ 4363 md_wakeup_thread(mddev->thread); 4364 release_stripe(sh); 4365 schedule(); 4366 goto retry; 4367 } 4368 finish_wait(&conf->wait_for_overlap, &w); 4369 set_bit(STRIPE_HANDLE, &sh->state); 4370 clear_bit(STRIPE_DELAYED, &sh->state); 4371 if ((bi->bi_rw & REQ_SYNC) && 4372 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4373 atomic_inc(&conf->preread_active_stripes); 4374 release_stripe_plug(mddev, sh); 4375 } else { 4376 /* cannot get stripe for read-ahead, just give-up */ 4377 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4378 finish_wait(&conf->wait_for_overlap, &w); 4379 break; 4380 } 4381 } 4382 4383 remaining = raid5_dec_bi_active_stripes(bi); 4384 if (remaining == 0) { 4385 4386 if ( rw == WRITE ) 4387 md_write_end(mddev); 4388 4389 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 4390 bi, 0); 4391 bio_endio(bi, 0); 4392 } 4393 } 4394 4395 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4396 4397 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4398 { 4399 /* reshaping is quite different to recovery/resync so it is 4400 * handled quite separately ... here. 4401 * 4402 * On each call to sync_request, we gather one chunk worth of 4403 * destination stripes and flag them as expanding. 4404 * Then we find all the source stripes and request reads. 4405 * As the reads complete, handle_stripe will copy the data 4406 * into the destination stripe and release that stripe. 4407 */ 4408 struct r5conf *conf = mddev->private; 4409 struct stripe_head *sh; 4410 sector_t first_sector, last_sector; 4411 int raid_disks = conf->previous_raid_disks; 4412 int data_disks = raid_disks - conf->max_degraded; 4413 int new_data_disks = conf->raid_disks - conf->max_degraded; 4414 int i; 4415 int dd_idx; 4416 sector_t writepos, readpos, safepos; 4417 sector_t stripe_addr; 4418 int reshape_sectors; 4419 struct list_head stripes; 4420 4421 if (sector_nr == 0) { 4422 /* If restarting in the middle, skip the initial sectors */ 4423 if (mddev->reshape_backwards && 4424 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4425 sector_nr = raid5_size(mddev, 0, 0) 4426 - conf->reshape_progress; 4427 } else if (!mddev->reshape_backwards && 4428 conf->reshape_progress > 0) 4429 sector_nr = conf->reshape_progress; 4430 sector_div(sector_nr, new_data_disks); 4431 if (sector_nr) { 4432 mddev->curr_resync_completed = sector_nr; 4433 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4434 *skipped = 1; 4435 return sector_nr; 4436 } 4437 } 4438 4439 /* We need to process a full chunk at a time. 4440 * If old and new chunk sizes differ, we need to process the 4441 * largest of these 4442 */ 4443 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4444 reshape_sectors = mddev->new_chunk_sectors; 4445 else 4446 reshape_sectors = mddev->chunk_sectors; 4447 4448 /* We update the metadata at least every 10 seconds, or when 4449 * the data about to be copied would over-write the source of 4450 * the data at the front of the range. i.e. one new_stripe 4451 * along from reshape_progress new_maps to after where 4452 * reshape_safe old_maps to 4453 */ 4454 writepos = conf->reshape_progress; 4455 sector_div(writepos, new_data_disks); 4456 readpos = conf->reshape_progress; 4457 sector_div(readpos, data_disks); 4458 safepos = conf->reshape_safe; 4459 sector_div(safepos, data_disks); 4460 if (mddev->reshape_backwards) { 4461 writepos -= min_t(sector_t, reshape_sectors, writepos); 4462 readpos += reshape_sectors; 4463 safepos += reshape_sectors; 4464 } else { 4465 writepos += reshape_sectors; 4466 readpos -= min_t(sector_t, reshape_sectors, readpos); 4467 safepos -= min_t(sector_t, reshape_sectors, safepos); 4468 } 4469 4470 /* Having calculated the 'writepos' possibly use it 4471 * to set 'stripe_addr' which is where we will write to. 4472 */ 4473 if (mddev->reshape_backwards) { 4474 BUG_ON(conf->reshape_progress == 0); 4475 stripe_addr = writepos; 4476 BUG_ON((mddev->dev_sectors & 4477 ~((sector_t)reshape_sectors - 1)) 4478 - reshape_sectors - stripe_addr 4479 != sector_nr); 4480 } else { 4481 BUG_ON(writepos != sector_nr + reshape_sectors); 4482 stripe_addr = sector_nr; 4483 } 4484 4485 /* 'writepos' is the most advanced device address we might write. 4486 * 'readpos' is the least advanced device address we might read. 4487 * 'safepos' is the least address recorded in the metadata as having 4488 * been reshaped. 4489 * If there is a min_offset_diff, these are adjusted either by 4490 * increasing the safepos/readpos if diff is negative, or 4491 * increasing writepos if diff is positive. 4492 * If 'readpos' is then behind 'writepos', there is no way that we can 4493 * ensure safety in the face of a crash - that must be done by userspace 4494 * making a backup of the data. So in that case there is no particular 4495 * rush to update metadata. 4496 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4497 * update the metadata to advance 'safepos' to match 'readpos' so that 4498 * we can be safe in the event of a crash. 4499 * So we insist on updating metadata if safepos is behind writepos and 4500 * readpos is beyond writepos. 4501 * In any case, update the metadata every 10 seconds. 4502 * Maybe that number should be configurable, but I'm not sure it is 4503 * worth it.... maybe it could be a multiple of safemode_delay??? 4504 */ 4505 if (conf->min_offset_diff < 0) { 4506 safepos += -conf->min_offset_diff; 4507 readpos += -conf->min_offset_diff; 4508 } else 4509 writepos += conf->min_offset_diff; 4510 4511 if ((mddev->reshape_backwards 4512 ? (safepos > writepos && readpos < writepos) 4513 : (safepos < writepos && readpos > writepos)) || 4514 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4515 /* Cannot proceed until we've updated the superblock... */ 4516 wait_event(conf->wait_for_overlap, 4517 atomic_read(&conf->reshape_stripes)==0); 4518 mddev->reshape_position = conf->reshape_progress; 4519 mddev->curr_resync_completed = sector_nr; 4520 conf->reshape_checkpoint = jiffies; 4521 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4522 md_wakeup_thread(mddev->thread); 4523 wait_event(mddev->sb_wait, mddev->flags == 0 || 4524 kthread_should_stop()); 4525 spin_lock_irq(&conf->device_lock); 4526 conf->reshape_safe = mddev->reshape_position; 4527 spin_unlock_irq(&conf->device_lock); 4528 wake_up(&conf->wait_for_overlap); 4529 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4530 } 4531 4532 INIT_LIST_HEAD(&stripes); 4533 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4534 int j; 4535 int skipped_disk = 0; 4536 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4537 set_bit(STRIPE_EXPANDING, &sh->state); 4538 atomic_inc(&conf->reshape_stripes); 4539 /* If any of this stripe is beyond the end of the old 4540 * array, then we need to zero those blocks 4541 */ 4542 for (j=sh->disks; j--;) { 4543 sector_t s; 4544 if (j == sh->pd_idx) 4545 continue; 4546 if (conf->level == 6 && 4547 j == sh->qd_idx) 4548 continue; 4549 s = compute_blocknr(sh, j, 0); 4550 if (s < raid5_size(mddev, 0, 0)) { 4551 skipped_disk = 1; 4552 continue; 4553 } 4554 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4555 set_bit(R5_Expanded, &sh->dev[j].flags); 4556 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4557 } 4558 if (!skipped_disk) { 4559 set_bit(STRIPE_EXPAND_READY, &sh->state); 4560 set_bit(STRIPE_HANDLE, &sh->state); 4561 } 4562 list_add(&sh->lru, &stripes); 4563 } 4564 spin_lock_irq(&conf->device_lock); 4565 if (mddev->reshape_backwards) 4566 conf->reshape_progress -= reshape_sectors * new_data_disks; 4567 else 4568 conf->reshape_progress += reshape_sectors * new_data_disks; 4569 spin_unlock_irq(&conf->device_lock); 4570 /* Ok, those stripe are ready. We can start scheduling 4571 * reads on the source stripes. 4572 * The source stripes are determined by mapping the first and last 4573 * block on the destination stripes. 4574 */ 4575 first_sector = 4576 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4577 1, &dd_idx, NULL); 4578 last_sector = 4579 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4580 * new_data_disks - 1), 4581 1, &dd_idx, NULL); 4582 if (last_sector >= mddev->dev_sectors) 4583 last_sector = mddev->dev_sectors - 1; 4584 while (first_sector <= last_sector) { 4585 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4586 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4587 set_bit(STRIPE_HANDLE, &sh->state); 4588 release_stripe(sh); 4589 first_sector += STRIPE_SECTORS; 4590 } 4591 /* Now that the sources are clearly marked, we can release 4592 * the destination stripes 4593 */ 4594 while (!list_empty(&stripes)) { 4595 sh = list_entry(stripes.next, struct stripe_head, lru); 4596 list_del_init(&sh->lru); 4597 release_stripe(sh); 4598 } 4599 /* If this takes us to the resync_max point where we have to pause, 4600 * then we need to write out the superblock. 4601 */ 4602 sector_nr += reshape_sectors; 4603 if ((sector_nr - mddev->curr_resync_completed) * 2 4604 >= mddev->resync_max - mddev->curr_resync_completed) { 4605 /* Cannot proceed until we've updated the superblock... */ 4606 wait_event(conf->wait_for_overlap, 4607 atomic_read(&conf->reshape_stripes) == 0); 4608 mddev->reshape_position = conf->reshape_progress; 4609 mddev->curr_resync_completed = sector_nr; 4610 conf->reshape_checkpoint = jiffies; 4611 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4612 md_wakeup_thread(mddev->thread); 4613 wait_event(mddev->sb_wait, 4614 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4615 || kthread_should_stop()); 4616 spin_lock_irq(&conf->device_lock); 4617 conf->reshape_safe = mddev->reshape_position; 4618 spin_unlock_irq(&conf->device_lock); 4619 wake_up(&conf->wait_for_overlap); 4620 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4621 } 4622 return reshape_sectors; 4623 } 4624 4625 /* FIXME go_faster isn't used */ 4626 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4627 { 4628 struct r5conf *conf = mddev->private; 4629 struct stripe_head *sh; 4630 sector_t max_sector = mddev->dev_sectors; 4631 sector_t sync_blocks; 4632 int still_degraded = 0; 4633 int i; 4634 4635 if (sector_nr >= max_sector) { 4636 /* just being told to finish up .. nothing much to do */ 4637 4638 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4639 end_reshape(conf); 4640 return 0; 4641 } 4642 4643 if (mddev->curr_resync < max_sector) /* aborted */ 4644 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4645 &sync_blocks, 1); 4646 else /* completed sync */ 4647 conf->fullsync = 0; 4648 bitmap_close_sync(mddev->bitmap); 4649 4650 return 0; 4651 } 4652 4653 /* Allow raid5_quiesce to complete */ 4654 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4655 4656 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4657 return reshape_request(mddev, sector_nr, skipped); 4658 4659 /* No need to check resync_max as we never do more than one 4660 * stripe, and as resync_max will always be on a chunk boundary, 4661 * if the check in md_do_sync didn't fire, there is no chance 4662 * of overstepping resync_max here 4663 */ 4664 4665 /* if there is too many failed drives and we are trying 4666 * to resync, then assert that we are finished, because there is 4667 * nothing we can do. 4668 */ 4669 if (mddev->degraded >= conf->max_degraded && 4670 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4671 sector_t rv = mddev->dev_sectors - sector_nr; 4672 *skipped = 1; 4673 return rv; 4674 } 4675 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 4676 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 4677 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 4678 /* we can skip this block, and probably more */ 4679 sync_blocks /= STRIPE_SECTORS; 4680 *skipped = 1; 4681 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 4682 } 4683 4684 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 4685 4686 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 4687 if (sh == NULL) { 4688 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 4689 /* make sure we don't swamp the stripe cache if someone else 4690 * is trying to get access 4691 */ 4692 schedule_timeout_uninterruptible(1); 4693 } 4694 /* Need to check if array will still be degraded after recovery/resync 4695 * We don't need to check the 'failed' flag as when that gets set, 4696 * recovery aborts. 4697 */ 4698 for (i = 0; i < conf->raid_disks; i++) 4699 if (conf->disks[i].rdev == NULL) 4700 still_degraded = 1; 4701 4702 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 4703 4704 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 4705 4706 handle_stripe(sh); 4707 release_stripe(sh); 4708 4709 return STRIPE_SECTORS; 4710 } 4711 4712 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 4713 { 4714 /* We may not be able to submit a whole bio at once as there 4715 * may not be enough stripe_heads available. 4716 * We cannot pre-allocate enough stripe_heads as we may need 4717 * more than exist in the cache (if we allow ever large chunks). 4718 * So we do one stripe head at a time and record in 4719 * ->bi_hw_segments how many have been done. 4720 * 4721 * We *know* that this entire raid_bio is in one chunk, so 4722 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 4723 */ 4724 struct stripe_head *sh; 4725 int dd_idx; 4726 sector_t sector, logical_sector, last_sector; 4727 int scnt = 0; 4728 int remaining; 4729 int handled = 0; 4730 4731 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4732 sector = raid5_compute_sector(conf, logical_sector, 4733 0, &dd_idx, NULL); 4734 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 4735 4736 for (; logical_sector < last_sector; 4737 logical_sector += STRIPE_SECTORS, 4738 sector += STRIPE_SECTORS, 4739 scnt++) { 4740 4741 if (scnt < raid5_bi_processed_stripes(raid_bio)) 4742 /* already done this stripe */ 4743 continue; 4744 4745 sh = get_active_stripe(conf, sector, 0, 1, 0); 4746 4747 if (!sh) { 4748 /* failed to get a stripe - must wait */ 4749 raid5_set_bi_processed_stripes(raid_bio, scnt); 4750 conf->retry_read_aligned = raid_bio; 4751 return handled; 4752 } 4753 4754 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 4755 release_stripe(sh); 4756 raid5_set_bi_processed_stripes(raid_bio, scnt); 4757 conf->retry_read_aligned = raid_bio; 4758 return handled; 4759 } 4760 4761 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 4762 handle_stripe(sh); 4763 release_stripe(sh); 4764 handled++; 4765 } 4766 remaining = raid5_dec_bi_active_stripes(raid_bio); 4767 if (remaining == 0) { 4768 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 4769 raid_bio, 0); 4770 bio_endio(raid_bio, 0); 4771 } 4772 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4773 wake_up(&conf->wait_for_stripe); 4774 return handled; 4775 } 4776 4777 #define MAX_STRIPE_BATCH 8 4778 static int handle_active_stripes(struct r5conf *conf) 4779 { 4780 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 4781 int i, batch_size = 0; 4782 4783 while (batch_size < MAX_STRIPE_BATCH && 4784 (sh = __get_priority_stripe(conf)) != NULL) 4785 batch[batch_size++] = sh; 4786 4787 if (batch_size == 0) 4788 return batch_size; 4789 spin_unlock_irq(&conf->device_lock); 4790 4791 for (i = 0; i < batch_size; i++) 4792 handle_stripe(batch[i]); 4793 4794 cond_resched(); 4795 4796 spin_lock_irq(&conf->device_lock); 4797 for (i = 0; i < batch_size; i++) 4798 __release_stripe(conf, batch[i]); 4799 return batch_size; 4800 } 4801 4802 /* 4803 * This is our raid5 kernel thread. 4804 * 4805 * We scan the hash table for stripes which can be handled now. 4806 * During the scan, completed stripes are saved for us by the interrupt 4807 * handler, so that they will not have to wait for our next wakeup. 4808 */ 4809 static void raid5d(struct md_thread *thread) 4810 { 4811 struct mddev *mddev = thread->mddev; 4812 struct r5conf *conf = mddev->private; 4813 int handled; 4814 struct blk_plug plug; 4815 4816 pr_debug("+++ raid5d active\n"); 4817 4818 md_check_recovery(mddev); 4819 4820 blk_start_plug(&plug); 4821 handled = 0; 4822 spin_lock_irq(&conf->device_lock); 4823 while (1) { 4824 struct bio *bio; 4825 int batch_size; 4826 4827 if ( 4828 !list_empty(&conf->bitmap_list)) { 4829 /* Now is a good time to flush some bitmap updates */ 4830 conf->seq_flush++; 4831 spin_unlock_irq(&conf->device_lock); 4832 bitmap_unplug(mddev->bitmap); 4833 spin_lock_irq(&conf->device_lock); 4834 conf->seq_write = conf->seq_flush; 4835 activate_bit_delay(conf); 4836 } 4837 raid5_activate_delayed(conf); 4838 4839 while ((bio = remove_bio_from_retry(conf))) { 4840 int ok; 4841 spin_unlock_irq(&conf->device_lock); 4842 ok = retry_aligned_read(conf, bio); 4843 spin_lock_irq(&conf->device_lock); 4844 if (!ok) 4845 break; 4846 handled++; 4847 } 4848 4849 batch_size = handle_active_stripes(conf); 4850 if (!batch_size) 4851 break; 4852 handled += batch_size; 4853 4854 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 4855 spin_unlock_irq(&conf->device_lock); 4856 md_check_recovery(mddev); 4857 spin_lock_irq(&conf->device_lock); 4858 } 4859 } 4860 pr_debug("%d stripes handled\n", handled); 4861 4862 spin_unlock_irq(&conf->device_lock); 4863 4864 async_tx_issue_pending_all(); 4865 blk_finish_plug(&plug); 4866 4867 pr_debug("--- raid5d inactive\n"); 4868 } 4869 4870 static ssize_t 4871 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 4872 { 4873 struct r5conf *conf = mddev->private; 4874 if (conf) 4875 return sprintf(page, "%d\n", conf->max_nr_stripes); 4876 else 4877 return 0; 4878 } 4879 4880 int 4881 raid5_set_cache_size(struct mddev *mddev, int size) 4882 { 4883 struct r5conf *conf = mddev->private; 4884 int err; 4885 4886 if (size <= 16 || size > 32768) 4887 return -EINVAL; 4888 while (size < conf->max_nr_stripes) { 4889 if (drop_one_stripe(conf)) 4890 conf->max_nr_stripes--; 4891 else 4892 break; 4893 } 4894 err = md_allow_write(mddev); 4895 if (err) 4896 return err; 4897 while (size > conf->max_nr_stripes) { 4898 if (grow_one_stripe(conf)) 4899 conf->max_nr_stripes++; 4900 else break; 4901 } 4902 return 0; 4903 } 4904 EXPORT_SYMBOL(raid5_set_cache_size); 4905 4906 static ssize_t 4907 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 4908 { 4909 struct r5conf *conf = mddev->private; 4910 unsigned long new; 4911 int err; 4912 4913 if (len >= PAGE_SIZE) 4914 return -EINVAL; 4915 if (!conf) 4916 return -ENODEV; 4917 4918 if (strict_strtoul(page, 10, &new)) 4919 return -EINVAL; 4920 err = raid5_set_cache_size(mddev, new); 4921 if (err) 4922 return err; 4923 return len; 4924 } 4925 4926 static struct md_sysfs_entry 4927 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 4928 raid5_show_stripe_cache_size, 4929 raid5_store_stripe_cache_size); 4930 4931 static ssize_t 4932 raid5_show_preread_threshold(struct mddev *mddev, char *page) 4933 { 4934 struct r5conf *conf = mddev->private; 4935 if (conf) 4936 return sprintf(page, "%d\n", conf->bypass_threshold); 4937 else 4938 return 0; 4939 } 4940 4941 static ssize_t 4942 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 4943 { 4944 struct r5conf *conf = mddev->private; 4945 unsigned long new; 4946 if (len >= PAGE_SIZE) 4947 return -EINVAL; 4948 if (!conf) 4949 return -ENODEV; 4950 4951 if (strict_strtoul(page, 10, &new)) 4952 return -EINVAL; 4953 if (new > conf->max_nr_stripes) 4954 return -EINVAL; 4955 conf->bypass_threshold = new; 4956 return len; 4957 } 4958 4959 static struct md_sysfs_entry 4960 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 4961 S_IRUGO | S_IWUSR, 4962 raid5_show_preread_threshold, 4963 raid5_store_preread_threshold); 4964 4965 static ssize_t 4966 stripe_cache_active_show(struct mddev *mddev, char *page) 4967 { 4968 struct r5conf *conf = mddev->private; 4969 if (conf) 4970 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 4971 else 4972 return 0; 4973 } 4974 4975 static struct md_sysfs_entry 4976 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 4977 4978 static struct attribute *raid5_attrs[] = { 4979 &raid5_stripecache_size.attr, 4980 &raid5_stripecache_active.attr, 4981 &raid5_preread_bypass_threshold.attr, 4982 NULL, 4983 }; 4984 static struct attribute_group raid5_attrs_group = { 4985 .name = NULL, 4986 .attrs = raid5_attrs, 4987 }; 4988 4989 static sector_t 4990 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 4991 { 4992 struct r5conf *conf = mddev->private; 4993 4994 if (!sectors) 4995 sectors = mddev->dev_sectors; 4996 if (!raid_disks) 4997 /* size is defined by the smallest of previous and new size */ 4998 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 4999 5000 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5001 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 5002 return sectors * (raid_disks - conf->max_degraded); 5003 } 5004 5005 static void raid5_free_percpu(struct r5conf *conf) 5006 { 5007 struct raid5_percpu *percpu; 5008 unsigned long cpu; 5009 5010 if (!conf->percpu) 5011 return; 5012 5013 get_online_cpus(); 5014 for_each_possible_cpu(cpu) { 5015 percpu = per_cpu_ptr(conf->percpu, cpu); 5016 safe_put_page(percpu->spare_page); 5017 kfree(percpu->scribble); 5018 } 5019 #ifdef CONFIG_HOTPLUG_CPU 5020 unregister_cpu_notifier(&conf->cpu_notify); 5021 #endif 5022 put_online_cpus(); 5023 5024 free_percpu(conf->percpu); 5025 } 5026 5027 static void free_conf(struct r5conf *conf) 5028 { 5029 shrink_stripes(conf); 5030 raid5_free_percpu(conf); 5031 kfree(conf->disks); 5032 kfree(conf->stripe_hashtbl); 5033 kfree(conf); 5034 } 5035 5036 #ifdef CONFIG_HOTPLUG_CPU 5037 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 5038 void *hcpu) 5039 { 5040 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 5041 long cpu = (long)hcpu; 5042 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 5043 5044 switch (action) { 5045 case CPU_UP_PREPARE: 5046 case CPU_UP_PREPARE_FROZEN: 5047 if (conf->level == 6 && !percpu->spare_page) 5048 percpu->spare_page = alloc_page(GFP_KERNEL); 5049 if (!percpu->scribble) 5050 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5051 5052 if (!percpu->scribble || 5053 (conf->level == 6 && !percpu->spare_page)) { 5054 safe_put_page(percpu->spare_page); 5055 kfree(percpu->scribble); 5056 pr_err("%s: failed memory allocation for cpu%ld\n", 5057 __func__, cpu); 5058 return notifier_from_errno(-ENOMEM); 5059 } 5060 break; 5061 case CPU_DEAD: 5062 case CPU_DEAD_FROZEN: 5063 safe_put_page(percpu->spare_page); 5064 kfree(percpu->scribble); 5065 percpu->spare_page = NULL; 5066 percpu->scribble = NULL; 5067 break; 5068 default: 5069 break; 5070 } 5071 return NOTIFY_OK; 5072 } 5073 #endif 5074 5075 static int raid5_alloc_percpu(struct r5conf *conf) 5076 { 5077 unsigned long cpu; 5078 struct page *spare_page; 5079 struct raid5_percpu __percpu *allcpus; 5080 void *scribble; 5081 int err; 5082 5083 allcpus = alloc_percpu(struct raid5_percpu); 5084 if (!allcpus) 5085 return -ENOMEM; 5086 conf->percpu = allcpus; 5087 5088 get_online_cpus(); 5089 err = 0; 5090 for_each_present_cpu(cpu) { 5091 if (conf->level == 6) { 5092 spare_page = alloc_page(GFP_KERNEL); 5093 if (!spare_page) { 5094 err = -ENOMEM; 5095 break; 5096 } 5097 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 5098 } 5099 scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5100 if (!scribble) { 5101 err = -ENOMEM; 5102 break; 5103 } 5104 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 5105 } 5106 #ifdef CONFIG_HOTPLUG_CPU 5107 conf->cpu_notify.notifier_call = raid456_cpu_notify; 5108 conf->cpu_notify.priority = 0; 5109 if (err == 0) 5110 err = register_cpu_notifier(&conf->cpu_notify); 5111 #endif 5112 put_online_cpus(); 5113 5114 return err; 5115 } 5116 5117 static struct r5conf *setup_conf(struct mddev *mddev) 5118 { 5119 struct r5conf *conf; 5120 int raid_disk, memory, max_disks; 5121 struct md_rdev *rdev; 5122 struct disk_info *disk; 5123 char pers_name[6]; 5124 5125 if (mddev->new_level != 5 5126 && mddev->new_level != 4 5127 && mddev->new_level != 6) { 5128 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 5129 mdname(mddev), mddev->new_level); 5130 return ERR_PTR(-EIO); 5131 } 5132 if ((mddev->new_level == 5 5133 && !algorithm_valid_raid5(mddev->new_layout)) || 5134 (mddev->new_level == 6 5135 && !algorithm_valid_raid6(mddev->new_layout))) { 5136 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 5137 mdname(mddev), mddev->new_layout); 5138 return ERR_PTR(-EIO); 5139 } 5140 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 5141 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 5142 mdname(mddev), mddev->raid_disks); 5143 return ERR_PTR(-EINVAL); 5144 } 5145 5146 if (!mddev->new_chunk_sectors || 5147 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 5148 !is_power_of_2(mddev->new_chunk_sectors)) { 5149 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 5150 mdname(mddev), mddev->new_chunk_sectors << 9); 5151 return ERR_PTR(-EINVAL); 5152 } 5153 5154 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 5155 if (conf == NULL) 5156 goto abort; 5157 spin_lock_init(&conf->device_lock); 5158 init_waitqueue_head(&conf->wait_for_stripe); 5159 init_waitqueue_head(&conf->wait_for_overlap); 5160 INIT_LIST_HEAD(&conf->handle_list); 5161 INIT_LIST_HEAD(&conf->hold_list); 5162 INIT_LIST_HEAD(&conf->delayed_list); 5163 INIT_LIST_HEAD(&conf->bitmap_list); 5164 INIT_LIST_HEAD(&conf->inactive_list); 5165 atomic_set(&conf->active_stripes, 0); 5166 atomic_set(&conf->preread_active_stripes, 0); 5167 atomic_set(&conf->active_aligned_reads, 0); 5168 conf->bypass_threshold = BYPASS_THRESHOLD; 5169 conf->recovery_disabled = mddev->recovery_disabled - 1; 5170 5171 conf->raid_disks = mddev->raid_disks; 5172 if (mddev->reshape_position == MaxSector) 5173 conf->previous_raid_disks = mddev->raid_disks; 5174 else 5175 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 5176 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 5177 conf->scribble_len = scribble_len(max_disks); 5178 5179 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5180 GFP_KERNEL); 5181 if (!conf->disks) 5182 goto abort; 5183 5184 conf->mddev = mddev; 5185 5186 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5187 goto abort; 5188 5189 conf->level = mddev->new_level; 5190 if (raid5_alloc_percpu(conf) != 0) 5191 goto abort; 5192 5193 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5194 5195 rdev_for_each(rdev, mddev) { 5196 raid_disk = rdev->raid_disk; 5197 if (raid_disk >= max_disks 5198 || raid_disk < 0) 5199 continue; 5200 disk = conf->disks + raid_disk; 5201 5202 if (test_bit(Replacement, &rdev->flags)) { 5203 if (disk->replacement) 5204 goto abort; 5205 disk->replacement = rdev; 5206 } else { 5207 if (disk->rdev) 5208 goto abort; 5209 disk->rdev = rdev; 5210 } 5211 5212 if (test_bit(In_sync, &rdev->flags)) { 5213 char b[BDEVNAME_SIZE]; 5214 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5215 " disk %d\n", 5216 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5217 } else if (rdev->saved_raid_disk != raid_disk) 5218 /* Cannot rely on bitmap to complete recovery */ 5219 conf->fullsync = 1; 5220 } 5221 5222 conf->chunk_sectors = mddev->new_chunk_sectors; 5223 conf->level = mddev->new_level; 5224 if (conf->level == 6) 5225 conf->max_degraded = 2; 5226 else 5227 conf->max_degraded = 1; 5228 conf->algorithm = mddev->new_layout; 5229 conf->max_nr_stripes = NR_STRIPES; 5230 conf->reshape_progress = mddev->reshape_position; 5231 if (conf->reshape_progress != MaxSector) { 5232 conf->prev_chunk_sectors = mddev->chunk_sectors; 5233 conf->prev_algo = mddev->layout; 5234 } 5235 5236 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5237 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5238 if (grow_stripes(conf, conf->max_nr_stripes)) { 5239 printk(KERN_ERR 5240 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5241 mdname(mddev), memory); 5242 goto abort; 5243 } else 5244 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5245 mdname(mddev), memory); 5246 5247 sprintf(pers_name, "raid%d", mddev->new_level); 5248 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5249 if (!conf->thread) { 5250 printk(KERN_ERR 5251 "md/raid:%s: couldn't allocate thread.\n", 5252 mdname(mddev)); 5253 goto abort; 5254 } 5255 5256 return conf; 5257 5258 abort: 5259 if (conf) { 5260 free_conf(conf); 5261 return ERR_PTR(-EIO); 5262 } else 5263 return ERR_PTR(-ENOMEM); 5264 } 5265 5266 5267 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5268 { 5269 switch (algo) { 5270 case ALGORITHM_PARITY_0: 5271 if (raid_disk < max_degraded) 5272 return 1; 5273 break; 5274 case ALGORITHM_PARITY_N: 5275 if (raid_disk >= raid_disks - max_degraded) 5276 return 1; 5277 break; 5278 case ALGORITHM_PARITY_0_6: 5279 if (raid_disk == 0 || 5280 raid_disk == raid_disks - 1) 5281 return 1; 5282 break; 5283 case ALGORITHM_LEFT_ASYMMETRIC_6: 5284 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5285 case ALGORITHM_LEFT_SYMMETRIC_6: 5286 case ALGORITHM_RIGHT_SYMMETRIC_6: 5287 if (raid_disk == raid_disks - 1) 5288 return 1; 5289 } 5290 return 0; 5291 } 5292 5293 static int run(struct mddev *mddev) 5294 { 5295 struct r5conf *conf; 5296 int working_disks = 0; 5297 int dirty_parity_disks = 0; 5298 struct md_rdev *rdev; 5299 sector_t reshape_offset = 0; 5300 int i; 5301 long long min_offset_diff = 0; 5302 int first = 1; 5303 5304 if (mddev->recovery_cp != MaxSector) 5305 printk(KERN_NOTICE "md/raid:%s: not clean" 5306 " -- starting background reconstruction\n", 5307 mdname(mddev)); 5308 5309 rdev_for_each(rdev, mddev) { 5310 long long diff; 5311 if (rdev->raid_disk < 0) 5312 continue; 5313 diff = (rdev->new_data_offset - rdev->data_offset); 5314 if (first) { 5315 min_offset_diff = diff; 5316 first = 0; 5317 } else if (mddev->reshape_backwards && 5318 diff < min_offset_diff) 5319 min_offset_diff = diff; 5320 else if (!mddev->reshape_backwards && 5321 diff > min_offset_diff) 5322 min_offset_diff = diff; 5323 } 5324 5325 if (mddev->reshape_position != MaxSector) { 5326 /* Check that we can continue the reshape. 5327 * Difficulties arise if the stripe we would write to 5328 * next is at or after the stripe we would read from next. 5329 * For a reshape that changes the number of devices, this 5330 * is only possible for a very short time, and mdadm makes 5331 * sure that time appears to have past before assembling 5332 * the array. So we fail if that time hasn't passed. 5333 * For a reshape that keeps the number of devices the same 5334 * mdadm must be monitoring the reshape can keeping the 5335 * critical areas read-only and backed up. It will start 5336 * the array in read-only mode, so we check for that. 5337 */ 5338 sector_t here_new, here_old; 5339 int old_disks; 5340 int max_degraded = (mddev->level == 6 ? 2 : 1); 5341 5342 if (mddev->new_level != mddev->level) { 5343 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5344 "required - aborting.\n", 5345 mdname(mddev)); 5346 return -EINVAL; 5347 } 5348 old_disks = mddev->raid_disks - mddev->delta_disks; 5349 /* reshape_position must be on a new-stripe boundary, and one 5350 * further up in new geometry must map after here in old 5351 * geometry. 5352 */ 5353 here_new = mddev->reshape_position; 5354 if (sector_div(here_new, mddev->new_chunk_sectors * 5355 (mddev->raid_disks - max_degraded))) { 5356 printk(KERN_ERR "md/raid:%s: reshape_position not " 5357 "on a stripe boundary\n", mdname(mddev)); 5358 return -EINVAL; 5359 } 5360 reshape_offset = here_new * mddev->new_chunk_sectors; 5361 /* here_new is the stripe we will write to */ 5362 here_old = mddev->reshape_position; 5363 sector_div(here_old, mddev->chunk_sectors * 5364 (old_disks-max_degraded)); 5365 /* here_old is the first stripe that we might need to read 5366 * from */ 5367 if (mddev->delta_disks == 0) { 5368 if ((here_new * mddev->new_chunk_sectors != 5369 here_old * mddev->chunk_sectors)) { 5370 printk(KERN_ERR "md/raid:%s: reshape position is" 5371 " confused - aborting\n", mdname(mddev)); 5372 return -EINVAL; 5373 } 5374 /* We cannot be sure it is safe to start an in-place 5375 * reshape. It is only safe if user-space is monitoring 5376 * and taking constant backups. 5377 * mdadm always starts a situation like this in 5378 * readonly mode so it can take control before 5379 * allowing any writes. So just check for that. 5380 */ 5381 if (abs(min_offset_diff) >= mddev->chunk_sectors && 5382 abs(min_offset_diff) >= mddev->new_chunk_sectors) 5383 /* not really in-place - so OK */; 5384 else if (mddev->ro == 0) { 5385 printk(KERN_ERR "md/raid:%s: in-place reshape " 5386 "must be started in read-only mode " 5387 "- aborting\n", 5388 mdname(mddev)); 5389 return -EINVAL; 5390 } 5391 } else if (mddev->reshape_backwards 5392 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 5393 here_old * mddev->chunk_sectors) 5394 : (here_new * mddev->new_chunk_sectors >= 5395 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 5396 /* Reading from the same stripe as writing to - bad */ 5397 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 5398 "auto-recovery - aborting.\n", 5399 mdname(mddev)); 5400 return -EINVAL; 5401 } 5402 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 5403 mdname(mddev)); 5404 /* OK, we should be able to continue; */ 5405 } else { 5406 BUG_ON(mddev->level != mddev->new_level); 5407 BUG_ON(mddev->layout != mddev->new_layout); 5408 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 5409 BUG_ON(mddev->delta_disks != 0); 5410 } 5411 5412 if (mddev->private == NULL) 5413 conf = setup_conf(mddev); 5414 else 5415 conf = mddev->private; 5416 5417 if (IS_ERR(conf)) 5418 return PTR_ERR(conf); 5419 5420 conf->min_offset_diff = min_offset_diff; 5421 mddev->thread = conf->thread; 5422 conf->thread = NULL; 5423 mddev->private = conf; 5424 5425 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 5426 i++) { 5427 rdev = conf->disks[i].rdev; 5428 if (!rdev && conf->disks[i].replacement) { 5429 /* The replacement is all we have yet */ 5430 rdev = conf->disks[i].replacement; 5431 conf->disks[i].replacement = NULL; 5432 clear_bit(Replacement, &rdev->flags); 5433 conf->disks[i].rdev = rdev; 5434 } 5435 if (!rdev) 5436 continue; 5437 if (conf->disks[i].replacement && 5438 conf->reshape_progress != MaxSector) { 5439 /* replacements and reshape simply do not mix. */ 5440 printk(KERN_ERR "md: cannot handle concurrent " 5441 "replacement and reshape.\n"); 5442 goto abort; 5443 } 5444 if (test_bit(In_sync, &rdev->flags)) { 5445 working_disks++; 5446 continue; 5447 } 5448 /* This disc is not fully in-sync. However if it 5449 * just stored parity (beyond the recovery_offset), 5450 * when we don't need to be concerned about the 5451 * array being dirty. 5452 * When reshape goes 'backwards', we never have 5453 * partially completed devices, so we only need 5454 * to worry about reshape going forwards. 5455 */ 5456 /* Hack because v0.91 doesn't store recovery_offset properly. */ 5457 if (mddev->major_version == 0 && 5458 mddev->minor_version > 90) 5459 rdev->recovery_offset = reshape_offset; 5460 5461 if (rdev->recovery_offset < reshape_offset) { 5462 /* We need to check old and new layout */ 5463 if (!only_parity(rdev->raid_disk, 5464 conf->algorithm, 5465 conf->raid_disks, 5466 conf->max_degraded)) 5467 continue; 5468 } 5469 if (!only_parity(rdev->raid_disk, 5470 conf->prev_algo, 5471 conf->previous_raid_disks, 5472 conf->max_degraded)) 5473 continue; 5474 dirty_parity_disks++; 5475 } 5476 5477 /* 5478 * 0 for a fully functional array, 1 or 2 for a degraded array. 5479 */ 5480 mddev->degraded = calc_degraded(conf); 5481 5482 if (has_failed(conf)) { 5483 printk(KERN_ERR "md/raid:%s: not enough operational devices" 5484 " (%d/%d failed)\n", 5485 mdname(mddev), mddev->degraded, conf->raid_disks); 5486 goto abort; 5487 } 5488 5489 /* device size must be a multiple of chunk size */ 5490 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 5491 mddev->resync_max_sectors = mddev->dev_sectors; 5492 5493 if (mddev->degraded > dirty_parity_disks && 5494 mddev->recovery_cp != MaxSector) { 5495 if (mddev->ok_start_degraded) 5496 printk(KERN_WARNING 5497 "md/raid:%s: starting dirty degraded array" 5498 " - data corruption possible.\n", 5499 mdname(mddev)); 5500 else { 5501 printk(KERN_ERR 5502 "md/raid:%s: cannot start dirty degraded array.\n", 5503 mdname(mddev)); 5504 goto abort; 5505 } 5506 } 5507 5508 if (mddev->degraded == 0) 5509 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 5510 " devices, algorithm %d\n", mdname(mddev), conf->level, 5511 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 5512 mddev->new_layout); 5513 else 5514 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 5515 " out of %d devices, algorithm %d\n", 5516 mdname(mddev), conf->level, 5517 mddev->raid_disks - mddev->degraded, 5518 mddev->raid_disks, mddev->new_layout); 5519 5520 print_raid5_conf(conf); 5521 5522 if (conf->reshape_progress != MaxSector) { 5523 conf->reshape_safe = conf->reshape_progress; 5524 atomic_set(&conf->reshape_stripes, 0); 5525 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5526 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5527 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5528 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5529 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5530 "reshape"); 5531 } 5532 5533 5534 /* Ok, everything is just fine now */ 5535 if (mddev->to_remove == &raid5_attrs_group) 5536 mddev->to_remove = NULL; 5537 else if (mddev->kobj.sd && 5538 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 5539 printk(KERN_WARNING 5540 "raid5: failed to create sysfs attributes for %s\n", 5541 mdname(mddev)); 5542 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5543 5544 if (mddev->queue) { 5545 int chunk_size; 5546 bool discard_supported = true; 5547 /* read-ahead size must cover two whole stripes, which 5548 * is 2 * (datadisks) * chunksize where 'n' is the 5549 * number of raid devices 5550 */ 5551 int data_disks = conf->previous_raid_disks - conf->max_degraded; 5552 int stripe = data_disks * 5553 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 5554 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5555 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5556 5557 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 5558 5559 mddev->queue->backing_dev_info.congested_data = mddev; 5560 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 5561 5562 chunk_size = mddev->chunk_sectors << 9; 5563 blk_queue_io_min(mddev->queue, chunk_size); 5564 blk_queue_io_opt(mddev->queue, chunk_size * 5565 (conf->raid_disks - conf->max_degraded)); 5566 /* 5567 * We can only discard a whole stripe. It doesn't make sense to 5568 * discard data disk but write parity disk 5569 */ 5570 stripe = stripe * PAGE_SIZE; 5571 /* Round up to power of 2, as discard handling 5572 * currently assumes that */ 5573 while ((stripe-1) & stripe) 5574 stripe = (stripe | (stripe-1)) + 1; 5575 mddev->queue->limits.discard_alignment = stripe; 5576 mddev->queue->limits.discard_granularity = stripe; 5577 /* 5578 * unaligned part of discard request will be ignored, so can't 5579 * guarantee discard_zerors_data 5580 */ 5581 mddev->queue->limits.discard_zeroes_data = 0; 5582 5583 rdev_for_each(rdev, mddev) { 5584 disk_stack_limits(mddev->gendisk, rdev->bdev, 5585 rdev->data_offset << 9); 5586 disk_stack_limits(mddev->gendisk, rdev->bdev, 5587 rdev->new_data_offset << 9); 5588 /* 5589 * discard_zeroes_data is required, otherwise data 5590 * could be lost. Consider a scenario: discard a stripe 5591 * (the stripe could be inconsistent if 5592 * discard_zeroes_data is 0); write one disk of the 5593 * stripe (the stripe could be inconsistent again 5594 * depending on which disks are used to calculate 5595 * parity); the disk is broken; The stripe data of this 5596 * disk is lost. 5597 */ 5598 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 5599 !bdev_get_queue(rdev->bdev)-> 5600 limits.discard_zeroes_data) 5601 discard_supported = false; 5602 } 5603 5604 if (discard_supported && 5605 mddev->queue->limits.max_discard_sectors >= stripe && 5606 mddev->queue->limits.discard_granularity >= stripe) 5607 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 5608 mddev->queue); 5609 else 5610 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 5611 mddev->queue); 5612 } 5613 5614 return 0; 5615 abort: 5616 md_unregister_thread(&mddev->thread); 5617 print_raid5_conf(conf); 5618 free_conf(conf); 5619 mddev->private = NULL; 5620 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 5621 return -EIO; 5622 } 5623 5624 static int stop(struct mddev *mddev) 5625 { 5626 struct r5conf *conf = mddev->private; 5627 5628 md_unregister_thread(&mddev->thread); 5629 if (mddev->queue) 5630 mddev->queue->backing_dev_info.congested_fn = NULL; 5631 free_conf(conf); 5632 mddev->private = NULL; 5633 mddev->to_remove = &raid5_attrs_group; 5634 return 0; 5635 } 5636 5637 static void status(struct seq_file *seq, struct mddev *mddev) 5638 { 5639 struct r5conf *conf = mddev->private; 5640 int i; 5641 5642 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 5643 mddev->chunk_sectors / 2, mddev->layout); 5644 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 5645 for (i = 0; i < conf->raid_disks; i++) 5646 seq_printf (seq, "%s", 5647 conf->disks[i].rdev && 5648 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 5649 seq_printf (seq, "]"); 5650 } 5651 5652 static void print_raid5_conf (struct r5conf *conf) 5653 { 5654 int i; 5655 struct disk_info *tmp; 5656 5657 printk(KERN_DEBUG "RAID conf printout:\n"); 5658 if (!conf) { 5659 printk("(conf==NULL)\n"); 5660 return; 5661 } 5662 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 5663 conf->raid_disks, 5664 conf->raid_disks - conf->mddev->degraded); 5665 5666 for (i = 0; i < conf->raid_disks; i++) { 5667 char b[BDEVNAME_SIZE]; 5668 tmp = conf->disks + i; 5669 if (tmp->rdev) 5670 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 5671 i, !test_bit(Faulty, &tmp->rdev->flags), 5672 bdevname(tmp->rdev->bdev, b)); 5673 } 5674 } 5675 5676 static int raid5_spare_active(struct mddev *mddev) 5677 { 5678 int i; 5679 struct r5conf *conf = mddev->private; 5680 struct disk_info *tmp; 5681 int count = 0; 5682 unsigned long flags; 5683 5684 for (i = 0; i < conf->raid_disks; i++) { 5685 tmp = conf->disks + i; 5686 if (tmp->replacement 5687 && tmp->replacement->recovery_offset == MaxSector 5688 && !test_bit(Faulty, &tmp->replacement->flags) 5689 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 5690 /* Replacement has just become active. */ 5691 if (!tmp->rdev 5692 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 5693 count++; 5694 if (tmp->rdev) { 5695 /* Replaced device not technically faulty, 5696 * but we need to be sure it gets removed 5697 * and never re-added. 5698 */ 5699 set_bit(Faulty, &tmp->rdev->flags); 5700 sysfs_notify_dirent_safe( 5701 tmp->rdev->sysfs_state); 5702 } 5703 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 5704 } else if (tmp->rdev 5705 && tmp->rdev->recovery_offset == MaxSector 5706 && !test_bit(Faulty, &tmp->rdev->flags) 5707 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 5708 count++; 5709 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 5710 } 5711 } 5712 spin_lock_irqsave(&conf->device_lock, flags); 5713 mddev->degraded = calc_degraded(conf); 5714 spin_unlock_irqrestore(&conf->device_lock, flags); 5715 print_raid5_conf(conf); 5716 return count; 5717 } 5718 5719 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 5720 { 5721 struct r5conf *conf = mddev->private; 5722 int err = 0; 5723 int number = rdev->raid_disk; 5724 struct md_rdev **rdevp; 5725 struct disk_info *p = conf->disks + number; 5726 5727 print_raid5_conf(conf); 5728 if (rdev == p->rdev) 5729 rdevp = &p->rdev; 5730 else if (rdev == p->replacement) 5731 rdevp = &p->replacement; 5732 else 5733 return 0; 5734 5735 if (number >= conf->raid_disks && 5736 conf->reshape_progress == MaxSector) 5737 clear_bit(In_sync, &rdev->flags); 5738 5739 if (test_bit(In_sync, &rdev->flags) || 5740 atomic_read(&rdev->nr_pending)) { 5741 err = -EBUSY; 5742 goto abort; 5743 } 5744 /* Only remove non-faulty devices if recovery 5745 * isn't possible. 5746 */ 5747 if (!test_bit(Faulty, &rdev->flags) && 5748 mddev->recovery_disabled != conf->recovery_disabled && 5749 !has_failed(conf) && 5750 (!p->replacement || p->replacement == rdev) && 5751 number < conf->raid_disks) { 5752 err = -EBUSY; 5753 goto abort; 5754 } 5755 *rdevp = NULL; 5756 synchronize_rcu(); 5757 if (atomic_read(&rdev->nr_pending)) { 5758 /* lost the race, try later */ 5759 err = -EBUSY; 5760 *rdevp = rdev; 5761 } else if (p->replacement) { 5762 /* We must have just cleared 'rdev' */ 5763 p->rdev = p->replacement; 5764 clear_bit(Replacement, &p->replacement->flags); 5765 smp_mb(); /* Make sure other CPUs may see both as identical 5766 * but will never see neither - if they are careful 5767 */ 5768 p->replacement = NULL; 5769 clear_bit(WantReplacement, &rdev->flags); 5770 } else 5771 /* We might have just removed the Replacement as faulty- 5772 * clear the bit just in case 5773 */ 5774 clear_bit(WantReplacement, &rdev->flags); 5775 abort: 5776 5777 print_raid5_conf(conf); 5778 return err; 5779 } 5780 5781 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 5782 { 5783 struct r5conf *conf = mddev->private; 5784 int err = -EEXIST; 5785 int disk; 5786 struct disk_info *p; 5787 int first = 0; 5788 int last = conf->raid_disks - 1; 5789 5790 if (mddev->recovery_disabled == conf->recovery_disabled) 5791 return -EBUSY; 5792 5793 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 5794 /* no point adding a device */ 5795 return -EINVAL; 5796 5797 if (rdev->raid_disk >= 0) 5798 first = last = rdev->raid_disk; 5799 5800 /* 5801 * find the disk ... but prefer rdev->saved_raid_disk 5802 * if possible. 5803 */ 5804 if (rdev->saved_raid_disk >= 0 && 5805 rdev->saved_raid_disk >= first && 5806 conf->disks[rdev->saved_raid_disk].rdev == NULL) 5807 first = rdev->saved_raid_disk; 5808 5809 for (disk = first; disk <= last; disk++) { 5810 p = conf->disks + disk; 5811 if (p->rdev == NULL) { 5812 clear_bit(In_sync, &rdev->flags); 5813 rdev->raid_disk = disk; 5814 err = 0; 5815 if (rdev->saved_raid_disk != disk) 5816 conf->fullsync = 1; 5817 rcu_assign_pointer(p->rdev, rdev); 5818 goto out; 5819 } 5820 } 5821 for (disk = first; disk <= last; disk++) { 5822 p = conf->disks + disk; 5823 if (test_bit(WantReplacement, &p->rdev->flags) && 5824 p->replacement == NULL) { 5825 clear_bit(In_sync, &rdev->flags); 5826 set_bit(Replacement, &rdev->flags); 5827 rdev->raid_disk = disk; 5828 err = 0; 5829 conf->fullsync = 1; 5830 rcu_assign_pointer(p->replacement, rdev); 5831 break; 5832 } 5833 } 5834 out: 5835 print_raid5_conf(conf); 5836 return err; 5837 } 5838 5839 static int raid5_resize(struct mddev *mddev, sector_t sectors) 5840 { 5841 /* no resync is happening, and there is enough space 5842 * on all devices, so we can resize. 5843 * We need to make sure resync covers any new space. 5844 * If the array is shrinking we should possibly wait until 5845 * any io in the removed space completes, but it hardly seems 5846 * worth it. 5847 */ 5848 sector_t newsize; 5849 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5850 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 5851 if (mddev->external_size && 5852 mddev->array_sectors > newsize) 5853 return -EINVAL; 5854 if (mddev->bitmap) { 5855 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 5856 if (ret) 5857 return ret; 5858 } 5859 md_set_array_sectors(mddev, newsize); 5860 set_capacity(mddev->gendisk, mddev->array_sectors); 5861 revalidate_disk(mddev->gendisk); 5862 if (sectors > mddev->dev_sectors && 5863 mddev->recovery_cp > mddev->dev_sectors) { 5864 mddev->recovery_cp = mddev->dev_sectors; 5865 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5866 } 5867 mddev->dev_sectors = sectors; 5868 mddev->resync_max_sectors = sectors; 5869 return 0; 5870 } 5871 5872 static int check_stripe_cache(struct mddev *mddev) 5873 { 5874 /* Can only proceed if there are plenty of stripe_heads. 5875 * We need a minimum of one full stripe,, and for sensible progress 5876 * it is best to have about 4 times that. 5877 * If we require 4 times, then the default 256 4K stripe_heads will 5878 * allow for chunk sizes up to 256K, which is probably OK. 5879 * If the chunk size is greater, user-space should request more 5880 * stripe_heads first. 5881 */ 5882 struct r5conf *conf = mddev->private; 5883 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 5884 > conf->max_nr_stripes || 5885 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 5886 > conf->max_nr_stripes) { 5887 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 5888 mdname(mddev), 5889 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 5890 / STRIPE_SIZE)*4); 5891 return 0; 5892 } 5893 return 1; 5894 } 5895 5896 static int check_reshape(struct mddev *mddev) 5897 { 5898 struct r5conf *conf = mddev->private; 5899 5900 if (mddev->delta_disks == 0 && 5901 mddev->new_layout == mddev->layout && 5902 mddev->new_chunk_sectors == mddev->chunk_sectors) 5903 return 0; /* nothing to do */ 5904 if (has_failed(conf)) 5905 return -EINVAL; 5906 if (mddev->delta_disks < 0) { 5907 /* We might be able to shrink, but the devices must 5908 * be made bigger first. 5909 * For raid6, 4 is the minimum size. 5910 * Otherwise 2 is the minimum 5911 */ 5912 int min = 2; 5913 if (mddev->level == 6) 5914 min = 4; 5915 if (mddev->raid_disks + mddev->delta_disks < min) 5916 return -EINVAL; 5917 } 5918 5919 if (!check_stripe_cache(mddev)) 5920 return -ENOSPC; 5921 5922 return resize_stripes(conf, (conf->previous_raid_disks 5923 + mddev->delta_disks)); 5924 } 5925 5926 static int raid5_start_reshape(struct mddev *mddev) 5927 { 5928 struct r5conf *conf = mddev->private; 5929 struct md_rdev *rdev; 5930 int spares = 0; 5931 unsigned long flags; 5932 5933 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5934 return -EBUSY; 5935 5936 if (!check_stripe_cache(mddev)) 5937 return -ENOSPC; 5938 5939 if (has_failed(conf)) 5940 return -EINVAL; 5941 5942 rdev_for_each(rdev, mddev) { 5943 if (!test_bit(In_sync, &rdev->flags) 5944 && !test_bit(Faulty, &rdev->flags)) 5945 spares++; 5946 } 5947 5948 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 5949 /* Not enough devices even to make a degraded array 5950 * of that size 5951 */ 5952 return -EINVAL; 5953 5954 /* Refuse to reduce size of the array. Any reductions in 5955 * array size must be through explicit setting of array_size 5956 * attribute. 5957 */ 5958 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 5959 < mddev->array_sectors) { 5960 printk(KERN_ERR "md/raid:%s: array size must be reduced " 5961 "before number of disks\n", mdname(mddev)); 5962 return -EINVAL; 5963 } 5964 5965 atomic_set(&conf->reshape_stripes, 0); 5966 spin_lock_irq(&conf->device_lock); 5967 conf->previous_raid_disks = conf->raid_disks; 5968 conf->raid_disks += mddev->delta_disks; 5969 conf->prev_chunk_sectors = conf->chunk_sectors; 5970 conf->chunk_sectors = mddev->new_chunk_sectors; 5971 conf->prev_algo = conf->algorithm; 5972 conf->algorithm = mddev->new_layout; 5973 conf->generation++; 5974 /* Code that selects data_offset needs to see the generation update 5975 * if reshape_progress has been set - so a memory barrier needed. 5976 */ 5977 smp_mb(); 5978 if (mddev->reshape_backwards) 5979 conf->reshape_progress = raid5_size(mddev, 0, 0); 5980 else 5981 conf->reshape_progress = 0; 5982 conf->reshape_safe = conf->reshape_progress; 5983 spin_unlock_irq(&conf->device_lock); 5984 5985 /* Add some new drives, as many as will fit. 5986 * We know there are enough to make the newly sized array work. 5987 * Don't add devices if we are reducing the number of 5988 * devices in the array. This is because it is not possible 5989 * to correctly record the "partially reconstructed" state of 5990 * such devices during the reshape and confusion could result. 5991 */ 5992 if (mddev->delta_disks >= 0) { 5993 rdev_for_each(rdev, mddev) 5994 if (rdev->raid_disk < 0 && 5995 !test_bit(Faulty, &rdev->flags)) { 5996 if (raid5_add_disk(mddev, rdev) == 0) { 5997 if (rdev->raid_disk 5998 >= conf->previous_raid_disks) 5999 set_bit(In_sync, &rdev->flags); 6000 else 6001 rdev->recovery_offset = 0; 6002 6003 if (sysfs_link_rdev(mddev, rdev)) 6004 /* Failure here is OK */; 6005 } 6006 } else if (rdev->raid_disk >= conf->previous_raid_disks 6007 && !test_bit(Faulty, &rdev->flags)) { 6008 /* This is a spare that was manually added */ 6009 set_bit(In_sync, &rdev->flags); 6010 } 6011 6012 /* When a reshape changes the number of devices, 6013 * ->degraded is measured against the larger of the 6014 * pre and post number of devices. 6015 */ 6016 spin_lock_irqsave(&conf->device_lock, flags); 6017 mddev->degraded = calc_degraded(conf); 6018 spin_unlock_irqrestore(&conf->device_lock, flags); 6019 } 6020 mddev->raid_disks = conf->raid_disks; 6021 mddev->reshape_position = conf->reshape_progress; 6022 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6023 6024 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6025 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6026 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6027 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6028 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6029 "reshape"); 6030 if (!mddev->sync_thread) { 6031 mddev->recovery = 0; 6032 spin_lock_irq(&conf->device_lock); 6033 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 6034 rdev_for_each(rdev, mddev) 6035 rdev->new_data_offset = rdev->data_offset; 6036 smp_wmb(); 6037 conf->reshape_progress = MaxSector; 6038 mddev->reshape_position = MaxSector; 6039 spin_unlock_irq(&conf->device_lock); 6040 return -EAGAIN; 6041 } 6042 conf->reshape_checkpoint = jiffies; 6043 md_wakeup_thread(mddev->sync_thread); 6044 md_new_event(mddev); 6045 return 0; 6046 } 6047 6048 /* This is called from the reshape thread and should make any 6049 * changes needed in 'conf' 6050 */ 6051 static void end_reshape(struct r5conf *conf) 6052 { 6053 6054 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 6055 struct md_rdev *rdev; 6056 6057 spin_lock_irq(&conf->device_lock); 6058 conf->previous_raid_disks = conf->raid_disks; 6059 rdev_for_each(rdev, conf->mddev) 6060 rdev->data_offset = rdev->new_data_offset; 6061 smp_wmb(); 6062 conf->reshape_progress = MaxSector; 6063 spin_unlock_irq(&conf->device_lock); 6064 wake_up(&conf->wait_for_overlap); 6065 6066 /* read-ahead size must cover two whole stripes, which is 6067 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 6068 */ 6069 if (conf->mddev->queue) { 6070 int data_disks = conf->raid_disks - conf->max_degraded; 6071 int stripe = data_disks * ((conf->chunk_sectors << 9) 6072 / PAGE_SIZE); 6073 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6074 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6075 } 6076 } 6077 } 6078 6079 /* This is called from the raid5d thread with mddev_lock held. 6080 * It makes config changes to the device. 6081 */ 6082 static void raid5_finish_reshape(struct mddev *mddev) 6083 { 6084 struct r5conf *conf = mddev->private; 6085 6086 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6087 6088 if (mddev->delta_disks > 0) { 6089 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6090 set_capacity(mddev->gendisk, mddev->array_sectors); 6091 revalidate_disk(mddev->gendisk); 6092 } else { 6093 int d; 6094 spin_lock_irq(&conf->device_lock); 6095 mddev->degraded = calc_degraded(conf); 6096 spin_unlock_irq(&conf->device_lock); 6097 for (d = conf->raid_disks ; 6098 d < conf->raid_disks - mddev->delta_disks; 6099 d++) { 6100 struct md_rdev *rdev = conf->disks[d].rdev; 6101 if (rdev) 6102 clear_bit(In_sync, &rdev->flags); 6103 rdev = conf->disks[d].replacement; 6104 if (rdev) 6105 clear_bit(In_sync, &rdev->flags); 6106 } 6107 } 6108 mddev->layout = conf->algorithm; 6109 mddev->chunk_sectors = conf->chunk_sectors; 6110 mddev->reshape_position = MaxSector; 6111 mddev->delta_disks = 0; 6112 mddev->reshape_backwards = 0; 6113 } 6114 } 6115 6116 static void raid5_quiesce(struct mddev *mddev, int state) 6117 { 6118 struct r5conf *conf = mddev->private; 6119 6120 switch(state) { 6121 case 2: /* resume for a suspend */ 6122 wake_up(&conf->wait_for_overlap); 6123 break; 6124 6125 case 1: /* stop all writes */ 6126 spin_lock_irq(&conf->device_lock); 6127 /* '2' tells resync/reshape to pause so that all 6128 * active stripes can drain 6129 */ 6130 conf->quiesce = 2; 6131 wait_event_lock_irq(conf->wait_for_stripe, 6132 atomic_read(&conf->active_stripes) == 0 && 6133 atomic_read(&conf->active_aligned_reads) == 0, 6134 conf->device_lock); 6135 conf->quiesce = 1; 6136 spin_unlock_irq(&conf->device_lock); 6137 /* allow reshape to continue */ 6138 wake_up(&conf->wait_for_overlap); 6139 break; 6140 6141 case 0: /* re-enable writes */ 6142 spin_lock_irq(&conf->device_lock); 6143 conf->quiesce = 0; 6144 wake_up(&conf->wait_for_stripe); 6145 wake_up(&conf->wait_for_overlap); 6146 spin_unlock_irq(&conf->device_lock); 6147 break; 6148 } 6149 } 6150 6151 6152 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 6153 { 6154 struct r0conf *raid0_conf = mddev->private; 6155 sector_t sectors; 6156 6157 /* for raid0 takeover only one zone is supported */ 6158 if (raid0_conf->nr_strip_zones > 1) { 6159 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 6160 mdname(mddev)); 6161 return ERR_PTR(-EINVAL); 6162 } 6163 6164 sectors = raid0_conf->strip_zone[0].zone_end; 6165 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 6166 mddev->dev_sectors = sectors; 6167 mddev->new_level = level; 6168 mddev->new_layout = ALGORITHM_PARITY_N; 6169 mddev->new_chunk_sectors = mddev->chunk_sectors; 6170 mddev->raid_disks += 1; 6171 mddev->delta_disks = 1; 6172 /* make sure it will be not marked as dirty */ 6173 mddev->recovery_cp = MaxSector; 6174 6175 return setup_conf(mddev); 6176 } 6177 6178 6179 static void *raid5_takeover_raid1(struct mddev *mddev) 6180 { 6181 int chunksect; 6182 6183 if (mddev->raid_disks != 2 || 6184 mddev->degraded > 1) 6185 return ERR_PTR(-EINVAL); 6186 6187 /* Should check if there are write-behind devices? */ 6188 6189 chunksect = 64*2; /* 64K by default */ 6190 6191 /* The array must be an exact multiple of chunksize */ 6192 while (chunksect && (mddev->array_sectors & (chunksect-1))) 6193 chunksect >>= 1; 6194 6195 if ((chunksect<<9) < STRIPE_SIZE) 6196 /* array size does not allow a suitable chunk size */ 6197 return ERR_PTR(-EINVAL); 6198 6199 mddev->new_level = 5; 6200 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 6201 mddev->new_chunk_sectors = chunksect; 6202 6203 return setup_conf(mddev); 6204 } 6205 6206 static void *raid5_takeover_raid6(struct mddev *mddev) 6207 { 6208 int new_layout; 6209 6210 switch (mddev->layout) { 6211 case ALGORITHM_LEFT_ASYMMETRIC_6: 6212 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 6213 break; 6214 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6215 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 6216 break; 6217 case ALGORITHM_LEFT_SYMMETRIC_6: 6218 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6219 break; 6220 case ALGORITHM_RIGHT_SYMMETRIC_6: 6221 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6222 break; 6223 case ALGORITHM_PARITY_0_6: 6224 new_layout = ALGORITHM_PARITY_0; 6225 break; 6226 case ALGORITHM_PARITY_N: 6227 new_layout = ALGORITHM_PARITY_N; 6228 break; 6229 default: 6230 return ERR_PTR(-EINVAL); 6231 } 6232 mddev->new_level = 5; 6233 mddev->new_layout = new_layout; 6234 mddev->delta_disks = -1; 6235 mddev->raid_disks -= 1; 6236 return setup_conf(mddev); 6237 } 6238 6239 6240 static int raid5_check_reshape(struct mddev *mddev) 6241 { 6242 /* For a 2-drive array, the layout and chunk size can be changed 6243 * immediately as not restriping is needed. 6244 * For larger arrays we record the new value - after validation 6245 * to be used by a reshape pass. 6246 */ 6247 struct r5conf *conf = mddev->private; 6248 int new_chunk = mddev->new_chunk_sectors; 6249 6250 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6251 return -EINVAL; 6252 if (new_chunk > 0) { 6253 if (!is_power_of_2(new_chunk)) 6254 return -EINVAL; 6255 if (new_chunk < (PAGE_SIZE>>9)) 6256 return -EINVAL; 6257 if (mddev->array_sectors & (new_chunk-1)) 6258 /* not factor of array size */ 6259 return -EINVAL; 6260 } 6261 6262 /* They look valid */ 6263 6264 if (mddev->raid_disks == 2) { 6265 /* can make the change immediately */ 6266 if (mddev->new_layout >= 0) { 6267 conf->algorithm = mddev->new_layout; 6268 mddev->layout = mddev->new_layout; 6269 } 6270 if (new_chunk > 0) { 6271 conf->chunk_sectors = new_chunk ; 6272 mddev->chunk_sectors = new_chunk; 6273 } 6274 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6275 md_wakeup_thread(mddev->thread); 6276 } 6277 return check_reshape(mddev); 6278 } 6279 6280 static int raid6_check_reshape(struct mddev *mddev) 6281 { 6282 int new_chunk = mddev->new_chunk_sectors; 6283 6284 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6285 return -EINVAL; 6286 if (new_chunk > 0) { 6287 if (!is_power_of_2(new_chunk)) 6288 return -EINVAL; 6289 if (new_chunk < (PAGE_SIZE >> 9)) 6290 return -EINVAL; 6291 if (mddev->array_sectors & (new_chunk-1)) 6292 /* not factor of array size */ 6293 return -EINVAL; 6294 } 6295 6296 /* They look valid */ 6297 return check_reshape(mddev); 6298 } 6299 6300 static void *raid5_takeover(struct mddev *mddev) 6301 { 6302 /* raid5 can take over: 6303 * raid0 - if there is only one strip zone - make it a raid4 layout 6304 * raid1 - if there are two drives. We need to know the chunk size 6305 * raid4 - trivial - just use a raid4 layout. 6306 * raid6 - Providing it is a *_6 layout 6307 */ 6308 if (mddev->level == 0) 6309 return raid45_takeover_raid0(mddev, 5); 6310 if (mddev->level == 1) 6311 return raid5_takeover_raid1(mddev); 6312 if (mddev->level == 4) { 6313 mddev->new_layout = ALGORITHM_PARITY_N; 6314 mddev->new_level = 5; 6315 return setup_conf(mddev); 6316 } 6317 if (mddev->level == 6) 6318 return raid5_takeover_raid6(mddev); 6319 6320 return ERR_PTR(-EINVAL); 6321 } 6322 6323 static void *raid4_takeover(struct mddev *mddev) 6324 { 6325 /* raid4 can take over: 6326 * raid0 - if there is only one strip zone 6327 * raid5 - if layout is right 6328 */ 6329 if (mddev->level == 0) 6330 return raid45_takeover_raid0(mddev, 4); 6331 if (mddev->level == 5 && 6332 mddev->layout == ALGORITHM_PARITY_N) { 6333 mddev->new_layout = 0; 6334 mddev->new_level = 4; 6335 return setup_conf(mddev); 6336 } 6337 return ERR_PTR(-EINVAL); 6338 } 6339 6340 static struct md_personality raid5_personality; 6341 6342 static void *raid6_takeover(struct mddev *mddev) 6343 { 6344 /* Currently can only take over a raid5. We map the 6345 * personality to an equivalent raid6 personality 6346 * with the Q block at the end. 6347 */ 6348 int new_layout; 6349 6350 if (mddev->pers != &raid5_personality) 6351 return ERR_PTR(-EINVAL); 6352 if (mddev->degraded > 1) 6353 return ERR_PTR(-EINVAL); 6354 if (mddev->raid_disks > 253) 6355 return ERR_PTR(-EINVAL); 6356 if (mddev->raid_disks < 3) 6357 return ERR_PTR(-EINVAL); 6358 6359 switch (mddev->layout) { 6360 case ALGORITHM_LEFT_ASYMMETRIC: 6361 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 6362 break; 6363 case ALGORITHM_RIGHT_ASYMMETRIC: 6364 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 6365 break; 6366 case ALGORITHM_LEFT_SYMMETRIC: 6367 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 6368 break; 6369 case ALGORITHM_RIGHT_SYMMETRIC: 6370 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 6371 break; 6372 case ALGORITHM_PARITY_0: 6373 new_layout = ALGORITHM_PARITY_0_6; 6374 break; 6375 case ALGORITHM_PARITY_N: 6376 new_layout = ALGORITHM_PARITY_N; 6377 break; 6378 default: 6379 return ERR_PTR(-EINVAL); 6380 } 6381 mddev->new_level = 6; 6382 mddev->new_layout = new_layout; 6383 mddev->delta_disks = 1; 6384 mddev->raid_disks += 1; 6385 return setup_conf(mddev); 6386 } 6387 6388 6389 static struct md_personality raid6_personality = 6390 { 6391 .name = "raid6", 6392 .level = 6, 6393 .owner = THIS_MODULE, 6394 .make_request = make_request, 6395 .run = run, 6396 .stop = stop, 6397 .status = status, 6398 .error_handler = error, 6399 .hot_add_disk = raid5_add_disk, 6400 .hot_remove_disk= raid5_remove_disk, 6401 .spare_active = raid5_spare_active, 6402 .sync_request = sync_request, 6403 .resize = raid5_resize, 6404 .size = raid5_size, 6405 .check_reshape = raid6_check_reshape, 6406 .start_reshape = raid5_start_reshape, 6407 .finish_reshape = raid5_finish_reshape, 6408 .quiesce = raid5_quiesce, 6409 .takeover = raid6_takeover, 6410 }; 6411 static struct md_personality raid5_personality = 6412 { 6413 .name = "raid5", 6414 .level = 5, 6415 .owner = THIS_MODULE, 6416 .make_request = make_request, 6417 .run = run, 6418 .stop = stop, 6419 .status = status, 6420 .error_handler = error, 6421 .hot_add_disk = raid5_add_disk, 6422 .hot_remove_disk= raid5_remove_disk, 6423 .spare_active = raid5_spare_active, 6424 .sync_request = sync_request, 6425 .resize = raid5_resize, 6426 .size = raid5_size, 6427 .check_reshape = raid5_check_reshape, 6428 .start_reshape = raid5_start_reshape, 6429 .finish_reshape = raid5_finish_reshape, 6430 .quiesce = raid5_quiesce, 6431 .takeover = raid5_takeover, 6432 }; 6433 6434 static struct md_personality raid4_personality = 6435 { 6436 .name = "raid4", 6437 .level = 4, 6438 .owner = THIS_MODULE, 6439 .make_request = make_request, 6440 .run = run, 6441 .stop = stop, 6442 .status = status, 6443 .error_handler = error, 6444 .hot_add_disk = raid5_add_disk, 6445 .hot_remove_disk= raid5_remove_disk, 6446 .spare_active = raid5_spare_active, 6447 .sync_request = sync_request, 6448 .resize = raid5_resize, 6449 .size = raid5_size, 6450 .check_reshape = raid5_check_reshape, 6451 .start_reshape = raid5_start_reshape, 6452 .finish_reshape = raid5_finish_reshape, 6453 .quiesce = raid5_quiesce, 6454 .takeover = raid4_takeover, 6455 }; 6456 6457 static int __init raid5_init(void) 6458 { 6459 register_md_personality(&raid6_personality); 6460 register_md_personality(&raid5_personality); 6461 register_md_personality(&raid4_personality); 6462 return 0; 6463 } 6464 6465 static void raid5_exit(void) 6466 { 6467 unregister_md_personality(&raid6_personality); 6468 unregister_md_personality(&raid5_personality); 6469 unregister_md_personality(&raid4_personality); 6470 } 6471 6472 module_init(raid5_init); 6473 module_exit(raid5_exit); 6474 MODULE_LICENSE("GPL"); 6475 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 6476 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 6477 MODULE_ALIAS("md-raid5"); 6478 MODULE_ALIAS("md-raid4"); 6479 MODULE_ALIAS("md-level-5"); 6480 MODULE_ALIAS("md-level-4"); 6481 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 6482 MODULE_ALIAS("md-raid6"); 6483 MODULE_ALIAS("md-level-6"); 6484 6485 /* This used to be two separate modules, they were: */ 6486 MODULE_ALIAS("raid5"); 6487 MODULE_ALIAS("raid6"); 6488