xref: /linux/drivers/md/raid5.c (revision c6bd5bcc4983f1a2d2f87a3769bf309482ee8c04)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60 
61 /*
62  * Stripe cache
63  */
64 
65 #define NR_STRIPES		256
66 #define STRIPE_SIZE		PAGE_SIZE
67 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
69 #define	IO_THRESHOLD		1
70 #define BYPASS_THRESHOLD	1
71 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK		(NR_HASH - 1)
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 	int sectors = bio->bi_size >> 9;
92 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 		return bio->bi_next;
94 	else
95 		return NULL;
96 }
97 
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105 	return (atomic_read(segments) >> 16) & 0xffff;
106 }
107 
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111 	return atomic_sub_return(1, segments) & 0xffff;
112 }
113 
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117 	atomic_inc(segments);
118 }
119 
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121 	unsigned int cnt)
122 {
123 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124 	int old, new;
125 
126 	do {
127 		old = atomic_read(segments);
128 		new = (old & 0xffff) | (cnt << 16);
129 	} while (atomic_cmpxchg(segments, old, new) != old);
130 }
131 
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135 	atomic_set(segments, cnt);
136 }
137 
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141 	if (sh->ddf_layout)
142 		/* ddf always start from first device */
143 		return 0;
144 	/* md starts just after Q block */
145 	if (sh->qd_idx == sh->disks - 1)
146 		return 0;
147 	else
148 		return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152 	disk++;
153 	return (disk < raid_disks) ? disk : 0;
154 }
155 
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162 			     int *count, int syndrome_disks)
163 {
164 	int slot = *count;
165 
166 	if (sh->ddf_layout)
167 		(*count)++;
168 	if (idx == sh->pd_idx)
169 		return syndrome_disks;
170 	if (idx == sh->qd_idx)
171 		return syndrome_disks + 1;
172 	if (!sh->ddf_layout)
173 		(*count)++;
174 	return slot;
175 }
176 
177 static void return_io(struct bio *return_bi)
178 {
179 	struct bio *bi = return_bi;
180 	while (bi) {
181 
182 		return_bi = bi->bi_next;
183 		bi->bi_next = NULL;
184 		bi->bi_size = 0;
185 		bio_endio(bi, 0);
186 		bi = return_bi;
187 	}
188 }
189 
190 static void print_raid5_conf (struct r5conf *conf);
191 
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194 	return sh->check_state || sh->reconstruct_state ||
195 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198 
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201 	BUG_ON(!list_empty(&sh->lru));
202 	BUG_ON(atomic_read(&conf->active_stripes)==0);
203 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
204 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
205 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206 			list_add_tail(&sh->lru, &conf->delayed_list);
207 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208 			   sh->bm_seq - conf->seq_write > 0)
209 			list_add_tail(&sh->lru, &conf->bitmap_list);
210 		else {
211 			clear_bit(STRIPE_DELAYED, &sh->state);
212 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
213 			list_add_tail(&sh->lru, &conf->handle_list);
214 		}
215 		md_wakeup_thread(conf->mddev->thread);
216 	} else {
217 		BUG_ON(stripe_operations_active(sh));
218 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219 			if (atomic_dec_return(&conf->preread_active_stripes)
220 			    < IO_THRESHOLD)
221 				md_wakeup_thread(conf->mddev->thread);
222 		atomic_dec(&conf->active_stripes);
223 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224 			list_add_tail(&sh->lru, &conf->inactive_list);
225 			wake_up(&conf->wait_for_stripe);
226 			if (conf->retry_read_aligned)
227 				md_wakeup_thread(conf->mddev->thread);
228 		}
229 	}
230 }
231 
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234 	if (atomic_dec_and_test(&sh->count))
235 		do_release_stripe(conf, sh);
236 }
237 
238 static void release_stripe(struct stripe_head *sh)
239 {
240 	struct r5conf *conf = sh->raid_conf;
241 	unsigned long flags;
242 
243 	local_irq_save(flags);
244 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245 		do_release_stripe(conf, sh);
246 		spin_unlock(&conf->device_lock);
247 	}
248 	local_irq_restore(flags);
249 }
250 
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253 	pr_debug("remove_hash(), stripe %llu\n",
254 		(unsigned long long)sh->sector);
255 
256 	hlist_del_init(&sh->hash);
257 }
258 
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
262 
263 	pr_debug("insert_hash(), stripe %llu\n",
264 		(unsigned long long)sh->sector);
265 
266 	hlist_add_head(&sh->hash, hp);
267 }
268 
269 
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273 	struct stripe_head *sh = NULL;
274 	struct list_head *first;
275 
276 	if (list_empty(&conf->inactive_list))
277 		goto out;
278 	first = conf->inactive_list.next;
279 	sh = list_entry(first, struct stripe_head, lru);
280 	list_del_init(first);
281 	remove_hash(sh);
282 	atomic_inc(&conf->active_stripes);
283 out:
284 	return sh;
285 }
286 
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289 	struct page *p;
290 	int i;
291 	int num = sh->raid_conf->pool_size;
292 
293 	for (i = 0; i < num ; i++) {
294 		p = sh->dev[i].page;
295 		if (!p)
296 			continue;
297 		sh->dev[i].page = NULL;
298 		put_page(p);
299 	}
300 }
301 
302 static int grow_buffers(struct stripe_head *sh)
303 {
304 	int i;
305 	int num = sh->raid_conf->pool_size;
306 
307 	for (i = 0; i < num; i++) {
308 		struct page *page;
309 
310 		if (!(page = alloc_page(GFP_KERNEL))) {
311 			return 1;
312 		}
313 		sh->dev[i].page = page;
314 	}
315 	return 0;
316 }
317 
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320 			    struct stripe_head *sh);
321 
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324 	struct r5conf *conf = sh->raid_conf;
325 	int i;
326 
327 	BUG_ON(atomic_read(&sh->count) != 0);
328 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329 	BUG_ON(stripe_operations_active(sh));
330 
331 	pr_debug("init_stripe called, stripe %llu\n",
332 		(unsigned long long)sh->sector);
333 
334 	remove_hash(sh);
335 
336 	sh->generation = conf->generation - previous;
337 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338 	sh->sector = sector;
339 	stripe_set_idx(sector, conf, previous, sh);
340 	sh->state = 0;
341 
342 
343 	for (i = sh->disks; i--; ) {
344 		struct r5dev *dev = &sh->dev[i];
345 
346 		if (dev->toread || dev->read || dev->towrite || dev->written ||
347 		    test_bit(R5_LOCKED, &dev->flags)) {
348 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349 			       (unsigned long long)sh->sector, i, dev->toread,
350 			       dev->read, dev->towrite, dev->written,
351 			       test_bit(R5_LOCKED, &dev->flags));
352 			WARN_ON(1);
353 		}
354 		dev->flags = 0;
355 		raid5_build_block(sh, i, previous);
356 	}
357 	insert_hash(conf, sh);
358 }
359 
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361 					 short generation)
362 {
363 	struct stripe_head *sh;
364 	struct hlist_node *hn;
365 
366 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368 		if (sh->sector == sector && sh->generation == generation)
369 			return sh;
370 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371 	return NULL;
372 }
373 
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389 	int degraded, degraded2;
390 	int i;
391 
392 	rcu_read_lock();
393 	degraded = 0;
394 	for (i = 0; i < conf->previous_raid_disks; i++) {
395 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396 		if (rdev && test_bit(Faulty, &rdev->flags))
397 			rdev = rcu_dereference(conf->disks[i].replacement);
398 		if (!rdev || test_bit(Faulty, &rdev->flags))
399 			degraded++;
400 		else if (test_bit(In_sync, &rdev->flags))
401 			;
402 		else
403 			/* not in-sync or faulty.
404 			 * If the reshape increases the number of devices,
405 			 * this is being recovered by the reshape, so
406 			 * this 'previous' section is not in_sync.
407 			 * If the number of devices is being reduced however,
408 			 * the device can only be part of the array if
409 			 * we are reverting a reshape, so this section will
410 			 * be in-sync.
411 			 */
412 			if (conf->raid_disks >= conf->previous_raid_disks)
413 				degraded++;
414 	}
415 	rcu_read_unlock();
416 	if (conf->raid_disks == conf->previous_raid_disks)
417 		return degraded;
418 	rcu_read_lock();
419 	degraded2 = 0;
420 	for (i = 0; i < conf->raid_disks; i++) {
421 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
422 		if (rdev && test_bit(Faulty, &rdev->flags))
423 			rdev = rcu_dereference(conf->disks[i].replacement);
424 		if (!rdev || test_bit(Faulty, &rdev->flags))
425 			degraded2++;
426 		else if (test_bit(In_sync, &rdev->flags))
427 			;
428 		else
429 			/* not in-sync or faulty.
430 			 * If reshape increases the number of devices, this
431 			 * section has already been recovered, else it
432 			 * almost certainly hasn't.
433 			 */
434 			if (conf->raid_disks <= conf->previous_raid_disks)
435 				degraded2++;
436 	}
437 	rcu_read_unlock();
438 	if (degraded2 > degraded)
439 		return degraded2;
440 	return degraded;
441 }
442 
443 static int has_failed(struct r5conf *conf)
444 {
445 	int degraded;
446 
447 	if (conf->mddev->reshape_position == MaxSector)
448 		return conf->mddev->degraded > conf->max_degraded;
449 
450 	degraded = calc_degraded(conf);
451 	if (degraded > conf->max_degraded)
452 		return 1;
453 	return 0;
454 }
455 
456 static struct stripe_head *
457 get_active_stripe(struct r5conf *conf, sector_t sector,
458 		  int previous, int noblock, int noquiesce)
459 {
460 	struct stripe_head *sh;
461 
462 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
463 
464 	spin_lock_irq(&conf->device_lock);
465 
466 	do {
467 		wait_event_lock_irq(conf->wait_for_stripe,
468 				    conf->quiesce == 0 || noquiesce,
469 				    conf->device_lock, /* nothing */);
470 		sh = __find_stripe(conf, sector, conf->generation - previous);
471 		if (!sh) {
472 			if (!conf->inactive_blocked)
473 				sh = get_free_stripe(conf);
474 			if (noblock && sh == NULL)
475 				break;
476 			if (!sh) {
477 				conf->inactive_blocked = 1;
478 				wait_event_lock_irq(conf->wait_for_stripe,
479 						    !list_empty(&conf->inactive_list) &&
480 						    (atomic_read(&conf->active_stripes)
481 						     < (conf->max_nr_stripes *3/4)
482 						     || !conf->inactive_blocked),
483 						    conf->device_lock,
484 						    );
485 				conf->inactive_blocked = 0;
486 			} else
487 				init_stripe(sh, sector, previous);
488 		} else {
489 			if (atomic_read(&sh->count)) {
490 				BUG_ON(!list_empty(&sh->lru)
491 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
492 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493 			} else {
494 				if (!test_bit(STRIPE_HANDLE, &sh->state))
495 					atomic_inc(&conf->active_stripes);
496 				if (list_empty(&sh->lru) &&
497 				    !test_bit(STRIPE_EXPANDING, &sh->state))
498 					BUG();
499 				list_del_init(&sh->lru);
500 			}
501 		}
502 	} while (sh == NULL);
503 
504 	if (sh)
505 		atomic_inc(&sh->count);
506 
507 	spin_unlock_irq(&conf->device_lock);
508 	return sh;
509 }
510 
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
516 	sector_t progress = conf->reshape_progress;
517 	/* Need a memory barrier to make sure we see the value
518 	 * of conf->generation, or ->data_offset that was set before
519 	 * reshape_progress was updated.
520 	 */
521 	smp_rmb();
522 	if (progress == MaxSector)
523 		return 0;
524 	if (sh->generation == conf->generation - 1)
525 		return 0;
526 	/* We are in a reshape, and this is a new-generation stripe,
527 	 * so use new_data_offset.
528 	 */
529 	return 1;
530 }
531 
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536 
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539 	struct r5conf *conf = sh->raid_conf;
540 	int i, disks = sh->disks;
541 
542 	might_sleep();
543 
544 	for (i = disks; i--; ) {
545 		int rw;
546 		int replace_only = 0;
547 		struct bio *bi, *rbi;
548 		struct md_rdev *rdev, *rrdev = NULL;
549 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551 				rw = WRITE_FUA;
552 			else
553 				rw = WRITE;
554 			if (test_bit(R5_Discard, &sh->dev[i].flags))
555 				rw |= REQ_DISCARD;
556 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557 			rw = READ;
558 		else if (test_and_clear_bit(R5_WantReplace,
559 					    &sh->dev[i].flags)) {
560 			rw = WRITE;
561 			replace_only = 1;
562 		} else
563 			continue;
564 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565 			rw |= REQ_SYNC;
566 
567 		bi = &sh->dev[i].req;
568 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
569 
570 		bi->bi_rw = rw;
571 		rbi->bi_rw = rw;
572 		if (rw & WRITE) {
573 			bi->bi_end_io = raid5_end_write_request;
574 			rbi->bi_end_io = raid5_end_write_request;
575 		} else
576 			bi->bi_end_io = raid5_end_read_request;
577 
578 		rcu_read_lock();
579 		rrdev = rcu_dereference(conf->disks[i].replacement);
580 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581 		rdev = rcu_dereference(conf->disks[i].rdev);
582 		if (!rdev) {
583 			rdev = rrdev;
584 			rrdev = NULL;
585 		}
586 		if (rw & WRITE) {
587 			if (replace_only)
588 				rdev = NULL;
589 			if (rdev == rrdev)
590 				/* We raced and saw duplicates */
591 				rrdev = NULL;
592 		} else {
593 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594 				rdev = rrdev;
595 			rrdev = NULL;
596 		}
597 
598 		if (rdev && test_bit(Faulty, &rdev->flags))
599 			rdev = NULL;
600 		if (rdev)
601 			atomic_inc(&rdev->nr_pending);
602 		if (rrdev && test_bit(Faulty, &rrdev->flags))
603 			rrdev = NULL;
604 		if (rrdev)
605 			atomic_inc(&rrdev->nr_pending);
606 		rcu_read_unlock();
607 
608 		/* We have already checked bad blocks for reads.  Now
609 		 * need to check for writes.  We never accept write errors
610 		 * on the replacement, so we don't to check rrdev.
611 		 */
612 		while ((rw & WRITE) && rdev &&
613 		       test_bit(WriteErrorSeen, &rdev->flags)) {
614 			sector_t first_bad;
615 			int bad_sectors;
616 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617 					      &first_bad, &bad_sectors);
618 			if (!bad)
619 				break;
620 
621 			if (bad < 0) {
622 				set_bit(BlockedBadBlocks, &rdev->flags);
623 				if (!conf->mddev->external &&
624 				    conf->mddev->flags) {
625 					/* It is very unlikely, but we might
626 					 * still need to write out the
627 					 * bad block log - better give it
628 					 * a chance*/
629 					md_check_recovery(conf->mddev);
630 				}
631 				/*
632 				 * Because md_wait_for_blocked_rdev
633 				 * will dec nr_pending, we must
634 				 * increment it first.
635 				 */
636 				atomic_inc(&rdev->nr_pending);
637 				md_wait_for_blocked_rdev(rdev, conf->mddev);
638 			} else {
639 				/* Acknowledged bad block - skip the write */
640 				rdev_dec_pending(rdev, conf->mddev);
641 				rdev = NULL;
642 			}
643 		}
644 
645 		if (rdev) {
646 			if (s->syncing || s->expanding || s->expanded
647 			    || s->replacing)
648 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
649 
650 			set_bit(STRIPE_IO_STARTED, &sh->state);
651 
652 			bi->bi_bdev = rdev->bdev;
653 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654 				__func__, (unsigned long long)sh->sector,
655 				bi->bi_rw, i);
656 			atomic_inc(&sh->count);
657 			if (use_new_offset(conf, sh))
658 				bi->bi_sector = (sh->sector
659 						 + rdev->new_data_offset);
660 			else
661 				bi->bi_sector = (sh->sector
662 						 + rdev->data_offset);
663 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664 				bi->bi_rw |= REQ_FLUSH;
665 
666 			bi->bi_flags = 1 << BIO_UPTODATE;
667 			bi->bi_idx = 0;
668 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669 			bi->bi_io_vec[0].bv_offset = 0;
670 			bi->bi_size = STRIPE_SIZE;
671 			bi->bi_next = NULL;
672 			if (rrdev)
673 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
674 			generic_make_request(bi);
675 		}
676 		if (rrdev) {
677 			if (s->syncing || s->expanding || s->expanded
678 			    || s->replacing)
679 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
680 
681 			set_bit(STRIPE_IO_STARTED, &sh->state);
682 
683 			rbi->bi_bdev = rrdev->bdev;
684 			pr_debug("%s: for %llu schedule op %ld on "
685 				 "replacement disc %d\n",
686 				__func__, (unsigned long long)sh->sector,
687 				rbi->bi_rw, i);
688 			atomic_inc(&sh->count);
689 			if (use_new_offset(conf, sh))
690 				rbi->bi_sector = (sh->sector
691 						  + rrdev->new_data_offset);
692 			else
693 				rbi->bi_sector = (sh->sector
694 						  + rrdev->data_offset);
695 			rbi->bi_flags = 1 << BIO_UPTODATE;
696 			rbi->bi_idx = 0;
697 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
698 			rbi->bi_io_vec[0].bv_offset = 0;
699 			rbi->bi_size = STRIPE_SIZE;
700 			rbi->bi_next = NULL;
701 			generic_make_request(rbi);
702 		}
703 		if (!rdev && !rrdev) {
704 			if (rw & WRITE)
705 				set_bit(STRIPE_DEGRADED, &sh->state);
706 			pr_debug("skip op %ld on disc %d for sector %llu\n",
707 				bi->bi_rw, i, (unsigned long long)sh->sector);
708 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
709 			set_bit(STRIPE_HANDLE, &sh->state);
710 		}
711 	}
712 }
713 
714 static struct dma_async_tx_descriptor *
715 async_copy_data(int frombio, struct bio *bio, struct page *page,
716 	sector_t sector, struct dma_async_tx_descriptor *tx)
717 {
718 	struct bio_vec *bvl;
719 	struct page *bio_page;
720 	int i;
721 	int page_offset;
722 	struct async_submit_ctl submit;
723 	enum async_tx_flags flags = 0;
724 
725 	if (bio->bi_sector >= sector)
726 		page_offset = (signed)(bio->bi_sector - sector) * 512;
727 	else
728 		page_offset = (signed)(sector - bio->bi_sector) * -512;
729 
730 	if (frombio)
731 		flags |= ASYNC_TX_FENCE;
732 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
733 
734 	bio_for_each_segment(bvl, bio, i) {
735 		int len = bvl->bv_len;
736 		int clen;
737 		int b_offset = 0;
738 
739 		if (page_offset < 0) {
740 			b_offset = -page_offset;
741 			page_offset += b_offset;
742 			len -= b_offset;
743 		}
744 
745 		if (len > 0 && page_offset + len > STRIPE_SIZE)
746 			clen = STRIPE_SIZE - page_offset;
747 		else
748 			clen = len;
749 
750 		if (clen > 0) {
751 			b_offset += bvl->bv_offset;
752 			bio_page = bvl->bv_page;
753 			if (frombio)
754 				tx = async_memcpy(page, bio_page, page_offset,
755 						  b_offset, clen, &submit);
756 			else
757 				tx = async_memcpy(bio_page, page, b_offset,
758 						  page_offset, clen, &submit);
759 		}
760 		/* chain the operations */
761 		submit.depend_tx = tx;
762 
763 		if (clen < len) /* hit end of page */
764 			break;
765 		page_offset +=  len;
766 	}
767 
768 	return tx;
769 }
770 
771 static void ops_complete_biofill(void *stripe_head_ref)
772 {
773 	struct stripe_head *sh = stripe_head_ref;
774 	struct bio *return_bi = NULL;
775 	int i;
776 
777 	pr_debug("%s: stripe %llu\n", __func__,
778 		(unsigned long long)sh->sector);
779 
780 	/* clear completed biofills */
781 	for (i = sh->disks; i--; ) {
782 		struct r5dev *dev = &sh->dev[i];
783 
784 		/* acknowledge completion of a biofill operation */
785 		/* and check if we need to reply to a read request,
786 		 * new R5_Wantfill requests are held off until
787 		 * !STRIPE_BIOFILL_RUN
788 		 */
789 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
790 			struct bio *rbi, *rbi2;
791 
792 			BUG_ON(!dev->read);
793 			rbi = dev->read;
794 			dev->read = NULL;
795 			while (rbi && rbi->bi_sector <
796 				dev->sector + STRIPE_SECTORS) {
797 				rbi2 = r5_next_bio(rbi, dev->sector);
798 				if (!raid5_dec_bi_active_stripes(rbi)) {
799 					rbi->bi_next = return_bi;
800 					return_bi = rbi;
801 				}
802 				rbi = rbi2;
803 			}
804 		}
805 	}
806 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
807 
808 	return_io(return_bi);
809 
810 	set_bit(STRIPE_HANDLE, &sh->state);
811 	release_stripe(sh);
812 }
813 
814 static void ops_run_biofill(struct stripe_head *sh)
815 {
816 	struct dma_async_tx_descriptor *tx = NULL;
817 	struct async_submit_ctl submit;
818 	int i;
819 
820 	pr_debug("%s: stripe %llu\n", __func__,
821 		(unsigned long long)sh->sector);
822 
823 	for (i = sh->disks; i--; ) {
824 		struct r5dev *dev = &sh->dev[i];
825 		if (test_bit(R5_Wantfill, &dev->flags)) {
826 			struct bio *rbi;
827 			spin_lock_irq(&sh->stripe_lock);
828 			dev->read = rbi = dev->toread;
829 			dev->toread = NULL;
830 			spin_unlock_irq(&sh->stripe_lock);
831 			while (rbi && rbi->bi_sector <
832 				dev->sector + STRIPE_SECTORS) {
833 				tx = async_copy_data(0, rbi, dev->page,
834 					dev->sector, tx);
835 				rbi = r5_next_bio(rbi, dev->sector);
836 			}
837 		}
838 	}
839 
840 	atomic_inc(&sh->count);
841 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
842 	async_trigger_callback(&submit);
843 }
844 
845 static void mark_target_uptodate(struct stripe_head *sh, int target)
846 {
847 	struct r5dev *tgt;
848 
849 	if (target < 0)
850 		return;
851 
852 	tgt = &sh->dev[target];
853 	set_bit(R5_UPTODATE, &tgt->flags);
854 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
855 	clear_bit(R5_Wantcompute, &tgt->flags);
856 }
857 
858 static void ops_complete_compute(void *stripe_head_ref)
859 {
860 	struct stripe_head *sh = stripe_head_ref;
861 
862 	pr_debug("%s: stripe %llu\n", __func__,
863 		(unsigned long long)sh->sector);
864 
865 	/* mark the computed target(s) as uptodate */
866 	mark_target_uptodate(sh, sh->ops.target);
867 	mark_target_uptodate(sh, sh->ops.target2);
868 
869 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
870 	if (sh->check_state == check_state_compute_run)
871 		sh->check_state = check_state_compute_result;
872 	set_bit(STRIPE_HANDLE, &sh->state);
873 	release_stripe(sh);
874 }
875 
876 /* return a pointer to the address conversion region of the scribble buffer */
877 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
878 				 struct raid5_percpu *percpu)
879 {
880 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
881 }
882 
883 static struct dma_async_tx_descriptor *
884 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
885 {
886 	int disks = sh->disks;
887 	struct page **xor_srcs = percpu->scribble;
888 	int target = sh->ops.target;
889 	struct r5dev *tgt = &sh->dev[target];
890 	struct page *xor_dest = tgt->page;
891 	int count = 0;
892 	struct dma_async_tx_descriptor *tx;
893 	struct async_submit_ctl submit;
894 	int i;
895 
896 	pr_debug("%s: stripe %llu block: %d\n",
897 		__func__, (unsigned long long)sh->sector, target);
898 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
899 
900 	for (i = disks; i--; )
901 		if (i != target)
902 			xor_srcs[count++] = sh->dev[i].page;
903 
904 	atomic_inc(&sh->count);
905 
906 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
907 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
908 	if (unlikely(count == 1))
909 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
910 	else
911 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
912 
913 	return tx;
914 }
915 
916 /* set_syndrome_sources - populate source buffers for gen_syndrome
917  * @srcs - (struct page *) array of size sh->disks
918  * @sh - stripe_head to parse
919  *
920  * Populates srcs in proper layout order for the stripe and returns the
921  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
922  * destination buffer is recorded in srcs[count] and the Q destination
923  * is recorded in srcs[count+1]].
924  */
925 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
926 {
927 	int disks = sh->disks;
928 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
929 	int d0_idx = raid6_d0(sh);
930 	int count;
931 	int i;
932 
933 	for (i = 0; i < disks; i++)
934 		srcs[i] = NULL;
935 
936 	count = 0;
937 	i = d0_idx;
938 	do {
939 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
940 
941 		srcs[slot] = sh->dev[i].page;
942 		i = raid6_next_disk(i, disks);
943 	} while (i != d0_idx);
944 
945 	return syndrome_disks;
946 }
947 
948 static struct dma_async_tx_descriptor *
949 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
950 {
951 	int disks = sh->disks;
952 	struct page **blocks = percpu->scribble;
953 	int target;
954 	int qd_idx = sh->qd_idx;
955 	struct dma_async_tx_descriptor *tx;
956 	struct async_submit_ctl submit;
957 	struct r5dev *tgt;
958 	struct page *dest;
959 	int i;
960 	int count;
961 
962 	if (sh->ops.target < 0)
963 		target = sh->ops.target2;
964 	else if (sh->ops.target2 < 0)
965 		target = sh->ops.target;
966 	else
967 		/* we should only have one valid target */
968 		BUG();
969 	BUG_ON(target < 0);
970 	pr_debug("%s: stripe %llu block: %d\n",
971 		__func__, (unsigned long long)sh->sector, target);
972 
973 	tgt = &sh->dev[target];
974 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
975 	dest = tgt->page;
976 
977 	atomic_inc(&sh->count);
978 
979 	if (target == qd_idx) {
980 		count = set_syndrome_sources(blocks, sh);
981 		blocks[count] = NULL; /* regenerating p is not necessary */
982 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
983 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
984 				  ops_complete_compute, sh,
985 				  to_addr_conv(sh, percpu));
986 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
987 	} else {
988 		/* Compute any data- or p-drive using XOR */
989 		count = 0;
990 		for (i = disks; i-- ; ) {
991 			if (i == target || i == qd_idx)
992 				continue;
993 			blocks[count++] = sh->dev[i].page;
994 		}
995 
996 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
997 				  NULL, ops_complete_compute, sh,
998 				  to_addr_conv(sh, percpu));
999 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1000 	}
1001 
1002 	return tx;
1003 }
1004 
1005 static struct dma_async_tx_descriptor *
1006 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1007 {
1008 	int i, count, disks = sh->disks;
1009 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1010 	int d0_idx = raid6_d0(sh);
1011 	int faila = -1, failb = -1;
1012 	int target = sh->ops.target;
1013 	int target2 = sh->ops.target2;
1014 	struct r5dev *tgt = &sh->dev[target];
1015 	struct r5dev *tgt2 = &sh->dev[target2];
1016 	struct dma_async_tx_descriptor *tx;
1017 	struct page **blocks = percpu->scribble;
1018 	struct async_submit_ctl submit;
1019 
1020 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1021 		 __func__, (unsigned long long)sh->sector, target, target2);
1022 	BUG_ON(target < 0 || target2 < 0);
1023 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1024 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1025 
1026 	/* we need to open-code set_syndrome_sources to handle the
1027 	 * slot number conversion for 'faila' and 'failb'
1028 	 */
1029 	for (i = 0; i < disks ; i++)
1030 		blocks[i] = NULL;
1031 	count = 0;
1032 	i = d0_idx;
1033 	do {
1034 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1035 
1036 		blocks[slot] = sh->dev[i].page;
1037 
1038 		if (i == target)
1039 			faila = slot;
1040 		if (i == target2)
1041 			failb = slot;
1042 		i = raid6_next_disk(i, disks);
1043 	} while (i != d0_idx);
1044 
1045 	BUG_ON(faila == failb);
1046 	if (failb < faila)
1047 		swap(faila, failb);
1048 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1049 		 __func__, (unsigned long long)sh->sector, faila, failb);
1050 
1051 	atomic_inc(&sh->count);
1052 
1053 	if (failb == syndrome_disks+1) {
1054 		/* Q disk is one of the missing disks */
1055 		if (faila == syndrome_disks) {
1056 			/* Missing P+Q, just recompute */
1057 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1058 					  ops_complete_compute, sh,
1059 					  to_addr_conv(sh, percpu));
1060 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1061 						  STRIPE_SIZE, &submit);
1062 		} else {
1063 			struct page *dest;
1064 			int data_target;
1065 			int qd_idx = sh->qd_idx;
1066 
1067 			/* Missing D+Q: recompute D from P, then recompute Q */
1068 			if (target == qd_idx)
1069 				data_target = target2;
1070 			else
1071 				data_target = target;
1072 
1073 			count = 0;
1074 			for (i = disks; i-- ; ) {
1075 				if (i == data_target || i == qd_idx)
1076 					continue;
1077 				blocks[count++] = sh->dev[i].page;
1078 			}
1079 			dest = sh->dev[data_target].page;
1080 			init_async_submit(&submit,
1081 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1082 					  NULL, NULL, NULL,
1083 					  to_addr_conv(sh, percpu));
1084 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1085 				       &submit);
1086 
1087 			count = set_syndrome_sources(blocks, sh);
1088 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1089 					  ops_complete_compute, sh,
1090 					  to_addr_conv(sh, percpu));
1091 			return async_gen_syndrome(blocks, 0, count+2,
1092 						  STRIPE_SIZE, &submit);
1093 		}
1094 	} else {
1095 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1096 				  ops_complete_compute, sh,
1097 				  to_addr_conv(sh, percpu));
1098 		if (failb == syndrome_disks) {
1099 			/* We're missing D+P. */
1100 			return async_raid6_datap_recov(syndrome_disks+2,
1101 						       STRIPE_SIZE, faila,
1102 						       blocks, &submit);
1103 		} else {
1104 			/* We're missing D+D. */
1105 			return async_raid6_2data_recov(syndrome_disks+2,
1106 						       STRIPE_SIZE, faila, failb,
1107 						       blocks, &submit);
1108 		}
1109 	}
1110 }
1111 
1112 
1113 static void ops_complete_prexor(void *stripe_head_ref)
1114 {
1115 	struct stripe_head *sh = stripe_head_ref;
1116 
1117 	pr_debug("%s: stripe %llu\n", __func__,
1118 		(unsigned long long)sh->sector);
1119 }
1120 
1121 static struct dma_async_tx_descriptor *
1122 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1123 	       struct dma_async_tx_descriptor *tx)
1124 {
1125 	int disks = sh->disks;
1126 	struct page **xor_srcs = percpu->scribble;
1127 	int count = 0, pd_idx = sh->pd_idx, i;
1128 	struct async_submit_ctl submit;
1129 
1130 	/* existing parity data subtracted */
1131 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1132 
1133 	pr_debug("%s: stripe %llu\n", __func__,
1134 		(unsigned long long)sh->sector);
1135 
1136 	for (i = disks; i--; ) {
1137 		struct r5dev *dev = &sh->dev[i];
1138 		/* Only process blocks that are known to be uptodate */
1139 		if (test_bit(R5_Wantdrain, &dev->flags))
1140 			xor_srcs[count++] = dev->page;
1141 	}
1142 
1143 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1144 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1145 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1146 
1147 	return tx;
1148 }
1149 
1150 static struct dma_async_tx_descriptor *
1151 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1152 {
1153 	int disks = sh->disks;
1154 	int i;
1155 
1156 	pr_debug("%s: stripe %llu\n", __func__,
1157 		(unsigned long long)sh->sector);
1158 
1159 	for (i = disks; i--; ) {
1160 		struct r5dev *dev = &sh->dev[i];
1161 		struct bio *chosen;
1162 
1163 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1164 			struct bio *wbi;
1165 
1166 			spin_lock_irq(&sh->stripe_lock);
1167 			chosen = dev->towrite;
1168 			dev->towrite = NULL;
1169 			BUG_ON(dev->written);
1170 			wbi = dev->written = chosen;
1171 			spin_unlock_irq(&sh->stripe_lock);
1172 
1173 			while (wbi && wbi->bi_sector <
1174 				dev->sector + STRIPE_SECTORS) {
1175 				if (wbi->bi_rw & REQ_FUA)
1176 					set_bit(R5_WantFUA, &dev->flags);
1177 				if (wbi->bi_rw & REQ_SYNC)
1178 					set_bit(R5_SyncIO, &dev->flags);
1179 				if (wbi->bi_rw & REQ_DISCARD)
1180 					set_bit(R5_Discard, &dev->flags);
1181 				else
1182 					tx = async_copy_data(1, wbi, dev->page,
1183 						dev->sector, tx);
1184 				wbi = r5_next_bio(wbi, dev->sector);
1185 			}
1186 		}
1187 	}
1188 
1189 	return tx;
1190 }
1191 
1192 static void ops_complete_reconstruct(void *stripe_head_ref)
1193 {
1194 	struct stripe_head *sh = stripe_head_ref;
1195 	int disks = sh->disks;
1196 	int pd_idx = sh->pd_idx;
1197 	int qd_idx = sh->qd_idx;
1198 	int i;
1199 	bool fua = false, sync = false, discard = false;
1200 
1201 	pr_debug("%s: stripe %llu\n", __func__,
1202 		(unsigned long long)sh->sector);
1203 
1204 	for (i = disks; i--; ) {
1205 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1206 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1207 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1208 	}
1209 
1210 	for (i = disks; i--; ) {
1211 		struct r5dev *dev = &sh->dev[i];
1212 
1213 		if (dev->written || i == pd_idx || i == qd_idx) {
1214 			if (!discard)
1215 				set_bit(R5_UPTODATE, &dev->flags);
1216 			if (fua)
1217 				set_bit(R5_WantFUA, &dev->flags);
1218 			if (sync)
1219 				set_bit(R5_SyncIO, &dev->flags);
1220 		}
1221 	}
1222 
1223 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1224 		sh->reconstruct_state = reconstruct_state_drain_result;
1225 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1226 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1227 	else {
1228 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1229 		sh->reconstruct_state = reconstruct_state_result;
1230 	}
1231 
1232 	set_bit(STRIPE_HANDLE, &sh->state);
1233 	release_stripe(sh);
1234 }
1235 
1236 static void
1237 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1238 		     struct dma_async_tx_descriptor *tx)
1239 {
1240 	int disks = sh->disks;
1241 	struct page **xor_srcs = percpu->scribble;
1242 	struct async_submit_ctl submit;
1243 	int count = 0, pd_idx = sh->pd_idx, i;
1244 	struct page *xor_dest;
1245 	int prexor = 0;
1246 	unsigned long flags;
1247 
1248 	pr_debug("%s: stripe %llu\n", __func__,
1249 		(unsigned long long)sh->sector);
1250 
1251 	for (i = 0; i < sh->disks; i++) {
1252 		if (pd_idx == i)
1253 			continue;
1254 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1255 			break;
1256 	}
1257 	if (i >= sh->disks) {
1258 		atomic_inc(&sh->count);
1259 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1260 		ops_complete_reconstruct(sh);
1261 		return;
1262 	}
1263 	/* check if prexor is active which means only process blocks
1264 	 * that are part of a read-modify-write (written)
1265 	 */
1266 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1267 		prexor = 1;
1268 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1269 		for (i = disks; i--; ) {
1270 			struct r5dev *dev = &sh->dev[i];
1271 			if (dev->written)
1272 				xor_srcs[count++] = dev->page;
1273 		}
1274 	} else {
1275 		xor_dest = sh->dev[pd_idx].page;
1276 		for (i = disks; i--; ) {
1277 			struct r5dev *dev = &sh->dev[i];
1278 			if (i != pd_idx)
1279 				xor_srcs[count++] = dev->page;
1280 		}
1281 	}
1282 
1283 	/* 1/ if we prexor'd then the dest is reused as a source
1284 	 * 2/ if we did not prexor then we are redoing the parity
1285 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1286 	 * for the synchronous xor case
1287 	 */
1288 	flags = ASYNC_TX_ACK |
1289 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1290 
1291 	atomic_inc(&sh->count);
1292 
1293 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1294 			  to_addr_conv(sh, percpu));
1295 	if (unlikely(count == 1))
1296 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1297 	else
1298 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1299 }
1300 
1301 static void
1302 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1303 		     struct dma_async_tx_descriptor *tx)
1304 {
1305 	struct async_submit_ctl submit;
1306 	struct page **blocks = percpu->scribble;
1307 	int count, i;
1308 
1309 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1310 
1311 	for (i = 0; i < sh->disks; i++) {
1312 		if (sh->pd_idx == i || sh->qd_idx == i)
1313 			continue;
1314 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1315 			break;
1316 	}
1317 	if (i >= sh->disks) {
1318 		atomic_inc(&sh->count);
1319 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1320 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1321 		ops_complete_reconstruct(sh);
1322 		return;
1323 	}
1324 
1325 	count = set_syndrome_sources(blocks, sh);
1326 
1327 	atomic_inc(&sh->count);
1328 
1329 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1330 			  sh, to_addr_conv(sh, percpu));
1331 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1332 }
1333 
1334 static void ops_complete_check(void *stripe_head_ref)
1335 {
1336 	struct stripe_head *sh = stripe_head_ref;
1337 
1338 	pr_debug("%s: stripe %llu\n", __func__,
1339 		(unsigned long long)sh->sector);
1340 
1341 	sh->check_state = check_state_check_result;
1342 	set_bit(STRIPE_HANDLE, &sh->state);
1343 	release_stripe(sh);
1344 }
1345 
1346 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1347 {
1348 	int disks = sh->disks;
1349 	int pd_idx = sh->pd_idx;
1350 	int qd_idx = sh->qd_idx;
1351 	struct page *xor_dest;
1352 	struct page **xor_srcs = percpu->scribble;
1353 	struct dma_async_tx_descriptor *tx;
1354 	struct async_submit_ctl submit;
1355 	int count;
1356 	int i;
1357 
1358 	pr_debug("%s: stripe %llu\n", __func__,
1359 		(unsigned long long)sh->sector);
1360 
1361 	count = 0;
1362 	xor_dest = sh->dev[pd_idx].page;
1363 	xor_srcs[count++] = xor_dest;
1364 	for (i = disks; i--; ) {
1365 		if (i == pd_idx || i == qd_idx)
1366 			continue;
1367 		xor_srcs[count++] = sh->dev[i].page;
1368 	}
1369 
1370 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1371 			  to_addr_conv(sh, percpu));
1372 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1373 			   &sh->ops.zero_sum_result, &submit);
1374 
1375 	atomic_inc(&sh->count);
1376 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1377 	tx = async_trigger_callback(&submit);
1378 }
1379 
1380 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1381 {
1382 	struct page **srcs = percpu->scribble;
1383 	struct async_submit_ctl submit;
1384 	int count;
1385 
1386 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1387 		(unsigned long long)sh->sector, checkp);
1388 
1389 	count = set_syndrome_sources(srcs, sh);
1390 	if (!checkp)
1391 		srcs[count] = NULL;
1392 
1393 	atomic_inc(&sh->count);
1394 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1395 			  sh, to_addr_conv(sh, percpu));
1396 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1397 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1398 }
1399 
1400 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1401 {
1402 	int overlap_clear = 0, i, disks = sh->disks;
1403 	struct dma_async_tx_descriptor *tx = NULL;
1404 	struct r5conf *conf = sh->raid_conf;
1405 	int level = conf->level;
1406 	struct raid5_percpu *percpu;
1407 	unsigned long cpu;
1408 
1409 	cpu = get_cpu();
1410 	percpu = per_cpu_ptr(conf->percpu, cpu);
1411 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1412 		ops_run_biofill(sh);
1413 		overlap_clear++;
1414 	}
1415 
1416 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1417 		if (level < 6)
1418 			tx = ops_run_compute5(sh, percpu);
1419 		else {
1420 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1421 				tx = ops_run_compute6_1(sh, percpu);
1422 			else
1423 				tx = ops_run_compute6_2(sh, percpu);
1424 		}
1425 		/* terminate the chain if reconstruct is not set to be run */
1426 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1427 			async_tx_ack(tx);
1428 	}
1429 
1430 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1431 		tx = ops_run_prexor(sh, percpu, tx);
1432 
1433 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1434 		tx = ops_run_biodrain(sh, tx);
1435 		overlap_clear++;
1436 	}
1437 
1438 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1439 		if (level < 6)
1440 			ops_run_reconstruct5(sh, percpu, tx);
1441 		else
1442 			ops_run_reconstruct6(sh, percpu, tx);
1443 	}
1444 
1445 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1446 		if (sh->check_state == check_state_run)
1447 			ops_run_check_p(sh, percpu);
1448 		else if (sh->check_state == check_state_run_q)
1449 			ops_run_check_pq(sh, percpu, 0);
1450 		else if (sh->check_state == check_state_run_pq)
1451 			ops_run_check_pq(sh, percpu, 1);
1452 		else
1453 			BUG();
1454 	}
1455 
1456 	if (overlap_clear)
1457 		for (i = disks; i--; ) {
1458 			struct r5dev *dev = &sh->dev[i];
1459 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1460 				wake_up(&sh->raid_conf->wait_for_overlap);
1461 		}
1462 	put_cpu();
1463 }
1464 
1465 #ifdef CONFIG_MULTICORE_RAID456
1466 static void async_run_ops(void *param, async_cookie_t cookie)
1467 {
1468 	struct stripe_head *sh = param;
1469 	unsigned long ops_request = sh->ops.request;
1470 
1471 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1472 	wake_up(&sh->ops.wait_for_ops);
1473 
1474 	__raid_run_ops(sh, ops_request);
1475 	release_stripe(sh);
1476 }
1477 
1478 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1479 {
1480 	/* since handle_stripe can be called outside of raid5d context
1481 	 * we need to ensure sh->ops.request is de-staged before another
1482 	 * request arrives
1483 	 */
1484 	wait_event(sh->ops.wait_for_ops,
1485 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1486 	sh->ops.request = ops_request;
1487 
1488 	atomic_inc(&sh->count);
1489 	async_schedule(async_run_ops, sh);
1490 }
1491 #else
1492 #define raid_run_ops __raid_run_ops
1493 #endif
1494 
1495 static int grow_one_stripe(struct r5conf *conf)
1496 {
1497 	struct stripe_head *sh;
1498 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1499 	if (!sh)
1500 		return 0;
1501 
1502 	sh->raid_conf = conf;
1503 	#ifdef CONFIG_MULTICORE_RAID456
1504 	init_waitqueue_head(&sh->ops.wait_for_ops);
1505 	#endif
1506 
1507 	spin_lock_init(&sh->stripe_lock);
1508 
1509 	if (grow_buffers(sh)) {
1510 		shrink_buffers(sh);
1511 		kmem_cache_free(conf->slab_cache, sh);
1512 		return 0;
1513 	}
1514 	/* we just created an active stripe so... */
1515 	atomic_set(&sh->count, 1);
1516 	atomic_inc(&conf->active_stripes);
1517 	INIT_LIST_HEAD(&sh->lru);
1518 	release_stripe(sh);
1519 	return 1;
1520 }
1521 
1522 static int grow_stripes(struct r5conf *conf, int num)
1523 {
1524 	struct kmem_cache *sc;
1525 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1526 
1527 	if (conf->mddev->gendisk)
1528 		sprintf(conf->cache_name[0],
1529 			"raid%d-%s", conf->level, mdname(conf->mddev));
1530 	else
1531 		sprintf(conf->cache_name[0],
1532 			"raid%d-%p", conf->level, conf->mddev);
1533 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1534 
1535 	conf->active_name = 0;
1536 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1537 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1538 			       0, 0, NULL);
1539 	if (!sc)
1540 		return 1;
1541 	conf->slab_cache = sc;
1542 	conf->pool_size = devs;
1543 	while (num--)
1544 		if (!grow_one_stripe(conf))
1545 			return 1;
1546 	return 0;
1547 }
1548 
1549 /**
1550  * scribble_len - return the required size of the scribble region
1551  * @num - total number of disks in the array
1552  *
1553  * The size must be enough to contain:
1554  * 1/ a struct page pointer for each device in the array +2
1555  * 2/ room to convert each entry in (1) to its corresponding dma
1556  *    (dma_map_page()) or page (page_address()) address.
1557  *
1558  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1559  * calculate over all devices (not just the data blocks), using zeros in place
1560  * of the P and Q blocks.
1561  */
1562 static size_t scribble_len(int num)
1563 {
1564 	size_t len;
1565 
1566 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1567 
1568 	return len;
1569 }
1570 
1571 static int resize_stripes(struct r5conf *conf, int newsize)
1572 {
1573 	/* Make all the stripes able to hold 'newsize' devices.
1574 	 * New slots in each stripe get 'page' set to a new page.
1575 	 *
1576 	 * This happens in stages:
1577 	 * 1/ create a new kmem_cache and allocate the required number of
1578 	 *    stripe_heads.
1579 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1580 	 *    to the new stripe_heads.  This will have the side effect of
1581 	 *    freezing the array as once all stripe_heads have been collected,
1582 	 *    no IO will be possible.  Old stripe heads are freed once their
1583 	 *    pages have been transferred over, and the old kmem_cache is
1584 	 *    freed when all stripes are done.
1585 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1586 	 *    we simple return a failre status - no need to clean anything up.
1587 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1588 	 *    If this fails, we don't bother trying the shrink the
1589 	 *    stripe_heads down again, we just leave them as they are.
1590 	 *    As each stripe_head is processed the new one is released into
1591 	 *    active service.
1592 	 *
1593 	 * Once step2 is started, we cannot afford to wait for a write,
1594 	 * so we use GFP_NOIO allocations.
1595 	 */
1596 	struct stripe_head *osh, *nsh;
1597 	LIST_HEAD(newstripes);
1598 	struct disk_info *ndisks;
1599 	unsigned long cpu;
1600 	int err;
1601 	struct kmem_cache *sc;
1602 	int i;
1603 
1604 	if (newsize <= conf->pool_size)
1605 		return 0; /* never bother to shrink */
1606 
1607 	err = md_allow_write(conf->mddev);
1608 	if (err)
1609 		return err;
1610 
1611 	/* Step 1 */
1612 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1613 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1614 			       0, 0, NULL);
1615 	if (!sc)
1616 		return -ENOMEM;
1617 
1618 	for (i = conf->max_nr_stripes; i; i--) {
1619 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1620 		if (!nsh)
1621 			break;
1622 
1623 		nsh->raid_conf = conf;
1624 		#ifdef CONFIG_MULTICORE_RAID456
1625 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1626 		#endif
1627 		spin_lock_init(&nsh->stripe_lock);
1628 
1629 		list_add(&nsh->lru, &newstripes);
1630 	}
1631 	if (i) {
1632 		/* didn't get enough, give up */
1633 		while (!list_empty(&newstripes)) {
1634 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1635 			list_del(&nsh->lru);
1636 			kmem_cache_free(sc, nsh);
1637 		}
1638 		kmem_cache_destroy(sc);
1639 		return -ENOMEM;
1640 	}
1641 	/* Step 2 - Must use GFP_NOIO now.
1642 	 * OK, we have enough stripes, start collecting inactive
1643 	 * stripes and copying them over
1644 	 */
1645 	list_for_each_entry(nsh, &newstripes, lru) {
1646 		spin_lock_irq(&conf->device_lock);
1647 		wait_event_lock_irq(conf->wait_for_stripe,
1648 				    !list_empty(&conf->inactive_list),
1649 				    conf->device_lock,
1650 				    );
1651 		osh = get_free_stripe(conf);
1652 		spin_unlock_irq(&conf->device_lock);
1653 		atomic_set(&nsh->count, 1);
1654 		for(i=0; i<conf->pool_size; i++)
1655 			nsh->dev[i].page = osh->dev[i].page;
1656 		for( ; i<newsize; i++)
1657 			nsh->dev[i].page = NULL;
1658 		kmem_cache_free(conf->slab_cache, osh);
1659 	}
1660 	kmem_cache_destroy(conf->slab_cache);
1661 
1662 	/* Step 3.
1663 	 * At this point, we are holding all the stripes so the array
1664 	 * is completely stalled, so now is a good time to resize
1665 	 * conf->disks and the scribble region
1666 	 */
1667 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1668 	if (ndisks) {
1669 		for (i=0; i<conf->raid_disks; i++)
1670 			ndisks[i] = conf->disks[i];
1671 		kfree(conf->disks);
1672 		conf->disks = ndisks;
1673 	} else
1674 		err = -ENOMEM;
1675 
1676 	get_online_cpus();
1677 	conf->scribble_len = scribble_len(newsize);
1678 	for_each_present_cpu(cpu) {
1679 		struct raid5_percpu *percpu;
1680 		void *scribble;
1681 
1682 		percpu = per_cpu_ptr(conf->percpu, cpu);
1683 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1684 
1685 		if (scribble) {
1686 			kfree(percpu->scribble);
1687 			percpu->scribble = scribble;
1688 		} else {
1689 			err = -ENOMEM;
1690 			break;
1691 		}
1692 	}
1693 	put_online_cpus();
1694 
1695 	/* Step 4, return new stripes to service */
1696 	while(!list_empty(&newstripes)) {
1697 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1698 		list_del_init(&nsh->lru);
1699 
1700 		for (i=conf->raid_disks; i < newsize; i++)
1701 			if (nsh->dev[i].page == NULL) {
1702 				struct page *p = alloc_page(GFP_NOIO);
1703 				nsh->dev[i].page = p;
1704 				if (!p)
1705 					err = -ENOMEM;
1706 			}
1707 		release_stripe(nsh);
1708 	}
1709 	/* critical section pass, GFP_NOIO no longer needed */
1710 
1711 	conf->slab_cache = sc;
1712 	conf->active_name = 1-conf->active_name;
1713 	conf->pool_size = newsize;
1714 	return err;
1715 }
1716 
1717 static int drop_one_stripe(struct r5conf *conf)
1718 {
1719 	struct stripe_head *sh;
1720 
1721 	spin_lock_irq(&conf->device_lock);
1722 	sh = get_free_stripe(conf);
1723 	spin_unlock_irq(&conf->device_lock);
1724 	if (!sh)
1725 		return 0;
1726 	BUG_ON(atomic_read(&sh->count));
1727 	shrink_buffers(sh);
1728 	kmem_cache_free(conf->slab_cache, sh);
1729 	atomic_dec(&conf->active_stripes);
1730 	return 1;
1731 }
1732 
1733 static void shrink_stripes(struct r5conf *conf)
1734 {
1735 	while (drop_one_stripe(conf))
1736 		;
1737 
1738 	if (conf->slab_cache)
1739 		kmem_cache_destroy(conf->slab_cache);
1740 	conf->slab_cache = NULL;
1741 }
1742 
1743 static void raid5_end_read_request(struct bio * bi, int error)
1744 {
1745 	struct stripe_head *sh = bi->bi_private;
1746 	struct r5conf *conf = sh->raid_conf;
1747 	int disks = sh->disks, i;
1748 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1749 	char b[BDEVNAME_SIZE];
1750 	struct md_rdev *rdev = NULL;
1751 	sector_t s;
1752 
1753 	for (i=0 ; i<disks; i++)
1754 		if (bi == &sh->dev[i].req)
1755 			break;
1756 
1757 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1758 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1759 		uptodate);
1760 	if (i == disks) {
1761 		BUG();
1762 		return;
1763 	}
1764 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1765 		/* If replacement finished while this request was outstanding,
1766 		 * 'replacement' might be NULL already.
1767 		 * In that case it moved down to 'rdev'.
1768 		 * rdev is not removed until all requests are finished.
1769 		 */
1770 		rdev = conf->disks[i].replacement;
1771 	if (!rdev)
1772 		rdev = conf->disks[i].rdev;
1773 
1774 	if (use_new_offset(conf, sh))
1775 		s = sh->sector + rdev->new_data_offset;
1776 	else
1777 		s = sh->sector + rdev->data_offset;
1778 	if (uptodate) {
1779 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1780 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1781 			/* Note that this cannot happen on a
1782 			 * replacement device.  We just fail those on
1783 			 * any error
1784 			 */
1785 			printk_ratelimited(
1786 				KERN_INFO
1787 				"md/raid:%s: read error corrected"
1788 				" (%lu sectors at %llu on %s)\n",
1789 				mdname(conf->mddev), STRIPE_SECTORS,
1790 				(unsigned long long)s,
1791 				bdevname(rdev->bdev, b));
1792 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1793 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1794 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1795 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1796 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1797 
1798 		if (atomic_read(&rdev->read_errors))
1799 			atomic_set(&rdev->read_errors, 0);
1800 	} else {
1801 		const char *bdn = bdevname(rdev->bdev, b);
1802 		int retry = 0;
1803 		int set_bad = 0;
1804 
1805 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1806 		atomic_inc(&rdev->read_errors);
1807 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1808 			printk_ratelimited(
1809 				KERN_WARNING
1810 				"md/raid:%s: read error on replacement device "
1811 				"(sector %llu on %s).\n",
1812 				mdname(conf->mddev),
1813 				(unsigned long long)s,
1814 				bdn);
1815 		else if (conf->mddev->degraded >= conf->max_degraded) {
1816 			set_bad = 1;
1817 			printk_ratelimited(
1818 				KERN_WARNING
1819 				"md/raid:%s: read error not correctable "
1820 				"(sector %llu on %s).\n",
1821 				mdname(conf->mddev),
1822 				(unsigned long long)s,
1823 				bdn);
1824 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1825 			/* Oh, no!!! */
1826 			set_bad = 1;
1827 			printk_ratelimited(
1828 				KERN_WARNING
1829 				"md/raid:%s: read error NOT corrected!! "
1830 				"(sector %llu on %s).\n",
1831 				mdname(conf->mddev),
1832 				(unsigned long long)s,
1833 				bdn);
1834 		} else if (atomic_read(&rdev->read_errors)
1835 			 > conf->max_nr_stripes)
1836 			printk(KERN_WARNING
1837 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1838 			       mdname(conf->mddev), bdn);
1839 		else
1840 			retry = 1;
1841 		if (retry)
1842 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1843 				set_bit(R5_ReadError, &sh->dev[i].flags);
1844 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1845 			} else
1846 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1847 		else {
1848 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1849 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1850 			if (!(set_bad
1851 			      && test_bit(In_sync, &rdev->flags)
1852 			      && rdev_set_badblocks(
1853 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1854 				md_error(conf->mddev, rdev);
1855 		}
1856 	}
1857 	rdev_dec_pending(rdev, conf->mddev);
1858 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1859 	set_bit(STRIPE_HANDLE, &sh->state);
1860 	release_stripe(sh);
1861 }
1862 
1863 static void raid5_end_write_request(struct bio *bi, int error)
1864 {
1865 	struct stripe_head *sh = bi->bi_private;
1866 	struct r5conf *conf = sh->raid_conf;
1867 	int disks = sh->disks, i;
1868 	struct md_rdev *uninitialized_var(rdev);
1869 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1870 	sector_t first_bad;
1871 	int bad_sectors;
1872 	int replacement = 0;
1873 
1874 	for (i = 0 ; i < disks; i++) {
1875 		if (bi == &sh->dev[i].req) {
1876 			rdev = conf->disks[i].rdev;
1877 			break;
1878 		}
1879 		if (bi == &sh->dev[i].rreq) {
1880 			rdev = conf->disks[i].replacement;
1881 			if (rdev)
1882 				replacement = 1;
1883 			else
1884 				/* rdev was removed and 'replacement'
1885 				 * replaced it.  rdev is not removed
1886 				 * until all requests are finished.
1887 				 */
1888 				rdev = conf->disks[i].rdev;
1889 			break;
1890 		}
1891 	}
1892 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1893 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1894 		uptodate);
1895 	if (i == disks) {
1896 		BUG();
1897 		return;
1898 	}
1899 
1900 	if (replacement) {
1901 		if (!uptodate)
1902 			md_error(conf->mddev, rdev);
1903 		else if (is_badblock(rdev, sh->sector,
1904 				     STRIPE_SECTORS,
1905 				     &first_bad, &bad_sectors))
1906 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1907 	} else {
1908 		if (!uptodate) {
1909 			set_bit(WriteErrorSeen, &rdev->flags);
1910 			set_bit(R5_WriteError, &sh->dev[i].flags);
1911 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1912 				set_bit(MD_RECOVERY_NEEDED,
1913 					&rdev->mddev->recovery);
1914 		} else if (is_badblock(rdev, sh->sector,
1915 				       STRIPE_SECTORS,
1916 				       &first_bad, &bad_sectors))
1917 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1918 	}
1919 	rdev_dec_pending(rdev, conf->mddev);
1920 
1921 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1922 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1923 	set_bit(STRIPE_HANDLE, &sh->state);
1924 	release_stripe(sh);
1925 }
1926 
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1928 
1929 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1930 {
1931 	struct r5dev *dev = &sh->dev[i];
1932 
1933 	bio_init(&dev->req);
1934 	dev->req.bi_io_vec = &dev->vec;
1935 	dev->req.bi_vcnt++;
1936 	dev->req.bi_max_vecs++;
1937 	dev->req.bi_private = sh;
1938 	dev->vec.bv_page = dev->page;
1939 
1940 	bio_init(&dev->rreq);
1941 	dev->rreq.bi_io_vec = &dev->rvec;
1942 	dev->rreq.bi_vcnt++;
1943 	dev->rreq.bi_max_vecs++;
1944 	dev->rreq.bi_private = sh;
1945 	dev->rvec.bv_page = dev->page;
1946 
1947 	dev->flags = 0;
1948 	dev->sector = compute_blocknr(sh, i, previous);
1949 }
1950 
1951 static void error(struct mddev *mddev, struct md_rdev *rdev)
1952 {
1953 	char b[BDEVNAME_SIZE];
1954 	struct r5conf *conf = mddev->private;
1955 	unsigned long flags;
1956 	pr_debug("raid456: error called\n");
1957 
1958 	spin_lock_irqsave(&conf->device_lock, flags);
1959 	clear_bit(In_sync, &rdev->flags);
1960 	mddev->degraded = calc_degraded(conf);
1961 	spin_unlock_irqrestore(&conf->device_lock, flags);
1962 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1963 
1964 	set_bit(Blocked, &rdev->flags);
1965 	set_bit(Faulty, &rdev->flags);
1966 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1967 	printk(KERN_ALERT
1968 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1969 	       "md/raid:%s: Operation continuing on %d devices.\n",
1970 	       mdname(mddev),
1971 	       bdevname(rdev->bdev, b),
1972 	       mdname(mddev),
1973 	       conf->raid_disks - mddev->degraded);
1974 }
1975 
1976 /*
1977  * Input: a 'big' sector number,
1978  * Output: index of the data and parity disk, and the sector # in them.
1979  */
1980 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1981 				     int previous, int *dd_idx,
1982 				     struct stripe_head *sh)
1983 {
1984 	sector_t stripe, stripe2;
1985 	sector_t chunk_number;
1986 	unsigned int chunk_offset;
1987 	int pd_idx, qd_idx;
1988 	int ddf_layout = 0;
1989 	sector_t new_sector;
1990 	int algorithm = previous ? conf->prev_algo
1991 				 : conf->algorithm;
1992 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1993 					 : conf->chunk_sectors;
1994 	int raid_disks = previous ? conf->previous_raid_disks
1995 				  : conf->raid_disks;
1996 	int data_disks = raid_disks - conf->max_degraded;
1997 
1998 	/* First compute the information on this sector */
1999 
2000 	/*
2001 	 * Compute the chunk number and the sector offset inside the chunk
2002 	 */
2003 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2004 	chunk_number = r_sector;
2005 
2006 	/*
2007 	 * Compute the stripe number
2008 	 */
2009 	stripe = chunk_number;
2010 	*dd_idx = sector_div(stripe, data_disks);
2011 	stripe2 = stripe;
2012 	/*
2013 	 * Select the parity disk based on the user selected algorithm.
2014 	 */
2015 	pd_idx = qd_idx = -1;
2016 	switch(conf->level) {
2017 	case 4:
2018 		pd_idx = data_disks;
2019 		break;
2020 	case 5:
2021 		switch (algorithm) {
2022 		case ALGORITHM_LEFT_ASYMMETRIC:
2023 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2024 			if (*dd_idx >= pd_idx)
2025 				(*dd_idx)++;
2026 			break;
2027 		case ALGORITHM_RIGHT_ASYMMETRIC:
2028 			pd_idx = sector_div(stripe2, raid_disks);
2029 			if (*dd_idx >= pd_idx)
2030 				(*dd_idx)++;
2031 			break;
2032 		case ALGORITHM_LEFT_SYMMETRIC:
2033 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2034 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2035 			break;
2036 		case ALGORITHM_RIGHT_SYMMETRIC:
2037 			pd_idx = sector_div(stripe2, raid_disks);
2038 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2039 			break;
2040 		case ALGORITHM_PARITY_0:
2041 			pd_idx = 0;
2042 			(*dd_idx)++;
2043 			break;
2044 		case ALGORITHM_PARITY_N:
2045 			pd_idx = data_disks;
2046 			break;
2047 		default:
2048 			BUG();
2049 		}
2050 		break;
2051 	case 6:
2052 
2053 		switch (algorithm) {
2054 		case ALGORITHM_LEFT_ASYMMETRIC:
2055 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2056 			qd_idx = pd_idx + 1;
2057 			if (pd_idx == raid_disks-1) {
2058 				(*dd_idx)++;	/* Q D D D P */
2059 				qd_idx = 0;
2060 			} else if (*dd_idx >= pd_idx)
2061 				(*dd_idx) += 2; /* D D P Q D */
2062 			break;
2063 		case ALGORITHM_RIGHT_ASYMMETRIC:
2064 			pd_idx = sector_div(stripe2, raid_disks);
2065 			qd_idx = pd_idx + 1;
2066 			if (pd_idx == raid_disks-1) {
2067 				(*dd_idx)++;	/* Q D D D P */
2068 				qd_idx = 0;
2069 			} else if (*dd_idx >= pd_idx)
2070 				(*dd_idx) += 2; /* D D P Q D */
2071 			break;
2072 		case ALGORITHM_LEFT_SYMMETRIC:
2073 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2074 			qd_idx = (pd_idx + 1) % raid_disks;
2075 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2076 			break;
2077 		case ALGORITHM_RIGHT_SYMMETRIC:
2078 			pd_idx = sector_div(stripe2, raid_disks);
2079 			qd_idx = (pd_idx + 1) % raid_disks;
2080 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2081 			break;
2082 
2083 		case ALGORITHM_PARITY_0:
2084 			pd_idx = 0;
2085 			qd_idx = 1;
2086 			(*dd_idx) += 2;
2087 			break;
2088 		case ALGORITHM_PARITY_N:
2089 			pd_idx = data_disks;
2090 			qd_idx = data_disks + 1;
2091 			break;
2092 
2093 		case ALGORITHM_ROTATING_ZERO_RESTART:
2094 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2095 			 * of blocks for computing Q is different.
2096 			 */
2097 			pd_idx = sector_div(stripe2, raid_disks);
2098 			qd_idx = pd_idx + 1;
2099 			if (pd_idx == raid_disks-1) {
2100 				(*dd_idx)++;	/* Q D D D P */
2101 				qd_idx = 0;
2102 			} else if (*dd_idx >= pd_idx)
2103 				(*dd_idx) += 2; /* D D P Q D */
2104 			ddf_layout = 1;
2105 			break;
2106 
2107 		case ALGORITHM_ROTATING_N_RESTART:
2108 			/* Same a left_asymmetric, by first stripe is
2109 			 * D D D P Q  rather than
2110 			 * Q D D D P
2111 			 */
2112 			stripe2 += 1;
2113 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2114 			qd_idx = pd_idx + 1;
2115 			if (pd_idx == raid_disks-1) {
2116 				(*dd_idx)++;	/* Q D D D P */
2117 				qd_idx = 0;
2118 			} else if (*dd_idx >= pd_idx)
2119 				(*dd_idx) += 2; /* D D P Q D */
2120 			ddf_layout = 1;
2121 			break;
2122 
2123 		case ALGORITHM_ROTATING_N_CONTINUE:
2124 			/* Same as left_symmetric but Q is before P */
2125 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2126 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2127 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2128 			ddf_layout = 1;
2129 			break;
2130 
2131 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2132 			/* RAID5 left_asymmetric, with Q on last device */
2133 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2134 			if (*dd_idx >= pd_idx)
2135 				(*dd_idx)++;
2136 			qd_idx = raid_disks - 1;
2137 			break;
2138 
2139 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2140 			pd_idx = sector_div(stripe2, raid_disks-1);
2141 			if (*dd_idx >= pd_idx)
2142 				(*dd_idx)++;
2143 			qd_idx = raid_disks - 1;
2144 			break;
2145 
2146 		case ALGORITHM_LEFT_SYMMETRIC_6:
2147 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2148 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2149 			qd_idx = raid_disks - 1;
2150 			break;
2151 
2152 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2153 			pd_idx = sector_div(stripe2, raid_disks-1);
2154 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2155 			qd_idx = raid_disks - 1;
2156 			break;
2157 
2158 		case ALGORITHM_PARITY_0_6:
2159 			pd_idx = 0;
2160 			(*dd_idx)++;
2161 			qd_idx = raid_disks - 1;
2162 			break;
2163 
2164 		default:
2165 			BUG();
2166 		}
2167 		break;
2168 	}
2169 
2170 	if (sh) {
2171 		sh->pd_idx = pd_idx;
2172 		sh->qd_idx = qd_idx;
2173 		sh->ddf_layout = ddf_layout;
2174 	}
2175 	/*
2176 	 * Finally, compute the new sector number
2177 	 */
2178 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2179 	return new_sector;
2180 }
2181 
2182 
2183 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2184 {
2185 	struct r5conf *conf = sh->raid_conf;
2186 	int raid_disks = sh->disks;
2187 	int data_disks = raid_disks - conf->max_degraded;
2188 	sector_t new_sector = sh->sector, check;
2189 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2190 					 : conf->chunk_sectors;
2191 	int algorithm = previous ? conf->prev_algo
2192 				 : conf->algorithm;
2193 	sector_t stripe;
2194 	int chunk_offset;
2195 	sector_t chunk_number;
2196 	int dummy1, dd_idx = i;
2197 	sector_t r_sector;
2198 	struct stripe_head sh2;
2199 
2200 
2201 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2202 	stripe = new_sector;
2203 
2204 	if (i == sh->pd_idx)
2205 		return 0;
2206 	switch(conf->level) {
2207 	case 4: break;
2208 	case 5:
2209 		switch (algorithm) {
2210 		case ALGORITHM_LEFT_ASYMMETRIC:
2211 		case ALGORITHM_RIGHT_ASYMMETRIC:
2212 			if (i > sh->pd_idx)
2213 				i--;
2214 			break;
2215 		case ALGORITHM_LEFT_SYMMETRIC:
2216 		case ALGORITHM_RIGHT_SYMMETRIC:
2217 			if (i < sh->pd_idx)
2218 				i += raid_disks;
2219 			i -= (sh->pd_idx + 1);
2220 			break;
2221 		case ALGORITHM_PARITY_0:
2222 			i -= 1;
2223 			break;
2224 		case ALGORITHM_PARITY_N:
2225 			break;
2226 		default:
2227 			BUG();
2228 		}
2229 		break;
2230 	case 6:
2231 		if (i == sh->qd_idx)
2232 			return 0; /* It is the Q disk */
2233 		switch (algorithm) {
2234 		case ALGORITHM_LEFT_ASYMMETRIC:
2235 		case ALGORITHM_RIGHT_ASYMMETRIC:
2236 		case ALGORITHM_ROTATING_ZERO_RESTART:
2237 		case ALGORITHM_ROTATING_N_RESTART:
2238 			if (sh->pd_idx == raid_disks-1)
2239 				i--;	/* Q D D D P */
2240 			else if (i > sh->pd_idx)
2241 				i -= 2; /* D D P Q D */
2242 			break;
2243 		case ALGORITHM_LEFT_SYMMETRIC:
2244 		case ALGORITHM_RIGHT_SYMMETRIC:
2245 			if (sh->pd_idx == raid_disks-1)
2246 				i--; /* Q D D D P */
2247 			else {
2248 				/* D D P Q D */
2249 				if (i < sh->pd_idx)
2250 					i += raid_disks;
2251 				i -= (sh->pd_idx + 2);
2252 			}
2253 			break;
2254 		case ALGORITHM_PARITY_0:
2255 			i -= 2;
2256 			break;
2257 		case ALGORITHM_PARITY_N:
2258 			break;
2259 		case ALGORITHM_ROTATING_N_CONTINUE:
2260 			/* Like left_symmetric, but P is before Q */
2261 			if (sh->pd_idx == 0)
2262 				i--;	/* P D D D Q */
2263 			else {
2264 				/* D D Q P D */
2265 				if (i < sh->pd_idx)
2266 					i += raid_disks;
2267 				i -= (sh->pd_idx + 1);
2268 			}
2269 			break;
2270 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2271 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2272 			if (i > sh->pd_idx)
2273 				i--;
2274 			break;
2275 		case ALGORITHM_LEFT_SYMMETRIC_6:
2276 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2277 			if (i < sh->pd_idx)
2278 				i += data_disks + 1;
2279 			i -= (sh->pd_idx + 1);
2280 			break;
2281 		case ALGORITHM_PARITY_0_6:
2282 			i -= 1;
2283 			break;
2284 		default:
2285 			BUG();
2286 		}
2287 		break;
2288 	}
2289 
2290 	chunk_number = stripe * data_disks + i;
2291 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2292 
2293 	check = raid5_compute_sector(conf, r_sector,
2294 				     previous, &dummy1, &sh2);
2295 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2296 		|| sh2.qd_idx != sh->qd_idx) {
2297 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2298 		       mdname(conf->mddev));
2299 		return 0;
2300 	}
2301 	return r_sector;
2302 }
2303 
2304 
2305 static void
2306 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2307 			 int rcw, int expand)
2308 {
2309 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2310 	struct r5conf *conf = sh->raid_conf;
2311 	int level = conf->level;
2312 
2313 	if (rcw) {
2314 		/* if we are not expanding this is a proper write request, and
2315 		 * there will be bios with new data to be drained into the
2316 		 * stripe cache
2317 		 */
2318 		if (!expand) {
2319 			sh->reconstruct_state = reconstruct_state_drain_run;
2320 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2321 		} else
2322 			sh->reconstruct_state = reconstruct_state_run;
2323 
2324 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2325 
2326 		for (i = disks; i--; ) {
2327 			struct r5dev *dev = &sh->dev[i];
2328 
2329 			if (dev->towrite) {
2330 				set_bit(R5_LOCKED, &dev->flags);
2331 				set_bit(R5_Wantdrain, &dev->flags);
2332 				if (!expand)
2333 					clear_bit(R5_UPTODATE, &dev->flags);
2334 				s->locked++;
2335 			}
2336 		}
2337 		if (s->locked + conf->max_degraded == disks)
2338 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2339 				atomic_inc(&conf->pending_full_writes);
2340 	} else {
2341 		BUG_ON(level == 6);
2342 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2343 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2344 
2345 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2346 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2347 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2348 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2349 
2350 		for (i = disks; i--; ) {
2351 			struct r5dev *dev = &sh->dev[i];
2352 			if (i == pd_idx)
2353 				continue;
2354 
2355 			if (dev->towrite &&
2356 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2357 			     test_bit(R5_Wantcompute, &dev->flags))) {
2358 				set_bit(R5_Wantdrain, &dev->flags);
2359 				set_bit(R5_LOCKED, &dev->flags);
2360 				clear_bit(R5_UPTODATE, &dev->flags);
2361 				s->locked++;
2362 			}
2363 		}
2364 	}
2365 
2366 	/* keep the parity disk(s) locked while asynchronous operations
2367 	 * are in flight
2368 	 */
2369 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2370 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2371 	s->locked++;
2372 
2373 	if (level == 6) {
2374 		int qd_idx = sh->qd_idx;
2375 		struct r5dev *dev = &sh->dev[qd_idx];
2376 
2377 		set_bit(R5_LOCKED, &dev->flags);
2378 		clear_bit(R5_UPTODATE, &dev->flags);
2379 		s->locked++;
2380 	}
2381 
2382 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2383 		__func__, (unsigned long long)sh->sector,
2384 		s->locked, s->ops_request);
2385 }
2386 
2387 /*
2388  * Each stripe/dev can have one or more bion attached.
2389  * toread/towrite point to the first in a chain.
2390  * The bi_next chain must be in order.
2391  */
2392 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2393 {
2394 	struct bio **bip;
2395 	struct r5conf *conf = sh->raid_conf;
2396 	int firstwrite=0;
2397 
2398 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2399 		(unsigned long long)bi->bi_sector,
2400 		(unsigned long long)sh->sector);
2401 
2402 	/*
2403 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2404 	 * reference count to avoid race. The reference count should already be
2405 	 * increased before this function is called (for example, in
2406 	 * make_request()), so other bio sharing this stripe will not free the
2407 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2408 	 * protect it.
2409 	 */
2410 	spin_lock_irq(&sh->stripe_lock);
2411 	if (forwrite) {
2412 		bip = &sh->dev[dd_idx].towrite;
2413 		if (*bip == NULL)
2414 			firstwrite = 1;
2415 	} else
2416 		bip = &sh->dev[dd_idx].toread;
2417 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2418 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2419 			goto overlap;
2420 		bip = & (*bip)->bi_next;
2421 	}
2422 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2423 		goto overlap;
2424 
2425 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2426 	if (*bip)
2427 		bi->bi_next = *bip;
2428 	*bip = bi;
2429 	raid5_inc_bi_active_stripes(bi);
2430 
2431 	if (forwrite) {
2432 		/* check if page is covered */
2433 		sector_t sector = sh->dev[dd_idx].sector;
2434 		for (bi=sh->dev[dd_idx].towrite;
2435 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2436 			     bi && bi->bi_sector <= sector;
2437 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2438 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2439 				sector = bi->bi_sector + (bi->bi_size>>9);
2440 		}
2441 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2442 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2443 	}
2444 
2445 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2446 		(unsigned long long)(*bip)->bi_sector,
2447 		(unsigned long long)sh->sector, dd_idx);
2448 	spin_unlock_irq(&sh->stripe_lock);
2449 
2450 	if (conf->mddev->bitmap && firstwrite) {
2451 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2452 				  STRIPE_SECTORS, 0);
2453 		sh->bm_seq = conf->seq_flush+1;
2454 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2455 	}
2456 	return 1;
2457 
2458  overlap:
2459 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2460 	spin_unlock_irq(&sh->stripe_lock);
2461 	return 0;
2462 }
2463 
2464 static void end_reshape(struct r5conf *conf);
2465 
2466 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2467 			    struct stripe_head *sh)
2468 {
2469 	int sectors_per_chunk =
2470 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2471 	int dd_idx;
2472 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2473 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2474 
2475 	raid5_compute_sector(conf,
2476 			     stripe * (disks - conf->max_degraded)
2477 			     *sectors_per_chunk + chunk_offset,
2478 			     previous,
2479 			     &dd_idx, sh);
2480 }
2481 
2482 static void
2483 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2484 				struct stripe_head_state *s, int disks,
2485 				struct bio **return_bi)
2486 {
2487 	int i;
2488 	for (i = disks; i--; ) {
2489 		struct bio *bi;
2490 		int bitmap_end = 0;
2491 
2492 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2493 			struct md_rdev *rdev;
2494 			rcu_read_lock();
2495 			rdev = rcu_dereference(conf->disks[i].rdev);
2496 			if (rdev && test_bit(In_sync, &rdev->flags))
2497 				atomic_inc(&rdev->nr_pending);
2498 			else
2499 				rdev = NULL;
2500 			rcu_read_unlock();
2501 			if (rdev) {
2502 				if (!rdev_set_badblocks(
2503 					    rdev,
2504 					    sh->sector,
2505 					    STRIPE_SECTORS, 0))
2506 					md_error(conf->mddev, rdev);
2507 				rdev_dec_pending(rdev, conf->mddev);
2508 			}
2509 		}
2510 		spin_lock_irq(&sh->stripe_lock);
2511 		/* fail all writes first */
2512 		bi = sh->dev[i].towrite;
2513 		sh->dev[i].towrite = NULL;
2514 		spin_unlock_irq(&sh->stripe_lock);
2515 		if (bi)
2516 			bitmap_end = 1;
2517 
2518 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2519 			wake_up(&conf->wait_for_overlap);
2520 
2521 		while (bi && bi->bi_sector <
2522 			sh->dev[i].sector + STRIPE_SECTORS) {
2523 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2524 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2525 			if (!raid5_dec_bi_active_stripes(bi)) {
2526 				md_write_end(conf->mddev);
2527 				bi->bi_next = *return_bi;
2528 				*return_bi = bi;
2529 			}
2530 			bi = nextbi;
2531 		}
2532 		if (bitmap_end)
2533 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2534 				STRIPE_SECTORS, 0, 0);
2535 		bitmap_end = 0;
2536 		/* and fail all 'written' */
2537 		bi = sh->dev[i].written;
2538 		sh->dev[i].written = NULL;
2539 		if (bi) bitmap_end = 1;
2540 		while (bi && bi->bi_sector <
2541 		       sh->dev[i].sector + STRIPE_SECTORS) {
2542 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2543 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2544 			if (!raid5_dec_bi_active_stripes(bi)) {
2545 				md_write_end(conf->mddev);
2546 				bi->bi_next = *return_bi;
2547 				*return_bi = bi;
2548 			}
2549 			bi = bi2;
2550 		}
2551 
2552 		/* fail any reads if this device is non-operational and
2553 		 * the data has not reached the cache yet.
2554 		 */
2555 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2556 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2557 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2558 			spin_lock_irq(&sh->stripe_lock);
2559 			bi = sh->dev[i].toread;
2560 			sh->dev[i].toread = NULL;
2561 			spin_unlock_irq(&sh->stripe_lock);
2562 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2563 				wake_up(&conf->wait_for_overlap);
2564 			while (bi && bi->bi_sector <
2565 			       sh->dev[i].sector + STRIPE_SECTORS) {
2566 				struct bio *nextbi =
2567 					r5_next_bio(bi, sh->dev[i].sector);
2568 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2569 				if (!raid5_dec_bi_active_stripes(bi)) {
2570 					bi->bi_next = *return_bi;
2571 					*return_bi = bi;
2572 				}
2573 				bi = nextbi;
2574 			}
2575 		}
2576 		if (bitmap_end)
2577 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2578 					STRIPE_SECTORS, 0, 0);
2579 		/* If we were in the middle of a write the parity block might
2580 		 * still be locked - so just clear all R5_LOCKED flags
2581 		 */
2582 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583 	}
2584 
2585 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2586 		if (atomic_dec_and_test(&conf->pending_full_writes))
2587 			md_wakeup_thread(conf->mddev->thread);
2588 }
2589 
2590 static void
2591 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2592 		   struct stripe_head_state *s)
2593 {
2594 	int abort = 0;
2595 	int i;
2596 
2597 	clear_bit(STRIPE_SYNCING, &sh->state);
2598 	s->syncing = 0;
2599 	s->replacing = 0;
2600 	/* There is nothing more to do for sync/check/repair.
2601 	 * Don't even need to abort as that is handled elsewhere
2602 	 * if needed, and not always wanted e.g. if there is a known
2603 	 * bad block here.
2604 	 * For recover/replace we need to record a bad block on all
2605 	 * non-sync devices, or abort the recovery
2606 	 */
2607 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2608 		/* During recovery devices cannot be removed, so
2609 		 * locking and refcounting of rdevs is not needed
2610 		 */
2611 		for (i = 0; i < conf->raid_disks; i++) {
2612 			struct md_rdev *rdev = conf->disks[i].rdev;
2613 			if (rdev
2614 			    && !test_bit(Faulty, &rdev->flags)
2615 			    && !test_bit(In_sync, &rdev->flags)
2616 			    && !rdev_set_badblocks(rdev, sh->sector,
2617 						   STRIPE_SECTORS, 0))
2618 				abort = 1;
2619 			rdev = conf->disks[i].replacement;
2620 			if (rdev
2621 			    && !test_bit(Faulty, &rdev->flags)
2622 			    && !test_bit(In_sync, &rdev->flags)
2623 			    && !rdev_set_badblocks(rdev, sh->sector,
2624 						   STRIPE_SECTORS, 0))
2625 				abort = 1;
2626 		}
2627 		if (abort)
2628 			conf->recovery_disabled =
2629 				conf->mddev->recovery_disabled;
2630 	}
2631 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2632 }
2633 
2634 static int want_replace(struct stripe_head *sh, int disk_idx)
2635 {
2636 	struct md_rdev *rdev;
2637 	int rv = 0;
2638 	/* Doing recovery so rcu locking not required */
2639 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2640 	if (rdev
2641 	    && !test_bit(Faulty, &rdev->flags)
2642 	    && !test_bit(In_sync, &rdev->flags)
2643 	    && (rdev->recovery_offset <= sh->sector
2644 		|| rdev->mddev->recovery_cp <= sh->sector))
2645 		rv = 1;
2646 
2647 	return rv;
2648 }
2649 
2650 /* fetch_block - checks the given member device to see if its data needs
2651  * to be read or computed to satisfy a request.
2652  *
2653  * Returns 1 when no more member devices need to be checked, otherwise returns
2654  * 0 to tell the loop in handle_stripe_fill to continue
2655  */
2656 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2657 		       int disk_idx, int disks)
2658 {
2659 	struct r5dev *dev = &sh->dev[disk_idx];
2660 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2661 				  &sh->dev[s->failed_num[1]] };
2662 
2663 	/* is the data in this block needed, and can we get it? */
2664 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2665 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2666 	    (dev->toread ||
2667 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2668 	     s->syncing || s->expanding ||
2669 	     (s->replacing && want_replace(sh, disk_idx)) ||
2670 	     (s->failed >= 1 && fdev[0]->toread) ||
2671 	     (s->failed >= 2 && fdev[1]->toread) ||
2672 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2673 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2674 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2675 		/* we would like to get this block, possibly by computing it,
2676 		 * otherwise read it if the backing disk is insync
2677 		 */
2678 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2679 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2680 		if ((s->uptodate == disks - 1) &&
2681 		    (s->failed && (disk_idx == s->failed_num[0] ||
2682 				   disk_idx == s->failed_num[1]))) {
2683 			/* have disk failed, and we're requested to fetch it;
2684 			 * do compute it
2685 			 */
2686 			pr_debug("Computing stripe %llu block %d\n",
2687 			       (unsigned long long)sh->sector, disk_idx);
2688 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2689 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2690 			set_bit(R5_Wantcompute, &dev->flags);
2691 			sh->ops.target = disk_idx;
2692 			sh->ops.target2 = -1; /* no 2nd target */
2693 			s->req_compute = 1;
2694 			/* Careful: from this point on 'uptodate' is in the eye
2695 			 * of raid_run_ops which services 'compute' operations
2696 			 * before writes. R5_Wantcompute flags a block that will
2697 			 * be R5_UPTODATE by the time it is needed for a
2698 			 * subsequent operation.
2699 			 */
2700 			s->uptodate++;
2701 			return 1;
2702 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2703 			/* Computing 2-failure is *very* expensive; only
2704 			 * do it if failed >= 2
2705 			 */
2706 			int other;
2707 			for (other = disks; other--; ) {
2708 				if (other == disk_idx)
2709 					continue;
2710 				if (!test_bit(R5_UPTODATE,
2711 				      &sh->dev[other].flags))
2712 					break;
2713 			}
2714 			BUG_ON(other < 0);
2715 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2716 			       (unsigned long long)sh->sector,
2717 			       disk_idx, other);
2718 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2719 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2720 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2721 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2722 			sh->ops.target = disk_idx;
2723 			sh->ops.target2 = other;
2724 			s->uptodate += 2;
2725 			s->req_compute = 1;
2726 			return 1;
2727 		} else if (test_bit(R5_Insync, &dev->flags)) {
2728 			set_bit(R5_LOCKED, &dev->flags);
2729 			set_bit(R5_Wantread, &dev->flags);
2730 			s->locked++;
2731 			pr_debug("Reading block %d (sync=%d)\n",
2732 				disk_idx, s->syncing);
2733 		}
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 /**
2740  * handle_stripe_fill - read or compute data to satisfy pending requests.
2741  */
2742 static void handle_stripe_fill(struct stripe_head *sh,
2743 			       struct stripe_head_state *s,
2744 			       int disks)
2745 {
2746 	int i;
2747 
2748 	/* look for blocks to read/compute, skip this if a compute
2749 	 * is already in flight, or if the stripe contents are in the
2750 	 * midst of changing due to a write
2751 	 */
2752 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2753 	    !sh->reconstruct_state)
2754 		for (i = disks; i--; )
2755 			if (fetch_block(sh, s, i, disks))
2756 				break;
2757 	set_bit(STRIPE_HANDLE, &sh->state);
2758 }
2759 
2760 
2761 /* handle_stripe_clean_event
2762  * any written block on an uptodate or failed drive can be returned.
2763  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2764  * never LOCKED, so we don't need to test 'failed' directly.
2765  */
2766 static void handle_stripe_clean_event(struct r5conf *conf,
2767 	struct stripe_head *sh, int disks, struct bio **return_bi)
2768 {
2769 	int i;
2770 	struct r5dev *dev;
2771 
2772 	for (i = disks; i--; )
2773 		if (sh->dev[i].written) {
2774 			dev = &sh->dev[i];
2775 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2776 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2777 			     test_bit(R5_Discard, &dev->flags))) {
2778 				/* We can return any write requests */
2779 				struct bio *wbi, *wbi2;
2780 				pr_debug("Return write for disc %d\n", i);
2781 				if (test_and_clear_bit(R5_Discard, &dev->flags))
2782 					clear_bit(R5_UPTODATE, &dev->flags);
2783 				wbi = dev->written;
2784 				dev->written = NULL;
2785 				while (wbi && wbi->bi_sector <
2786 					dev->sector + STRIPE_SECTORS) {
2787 					wbi2 = r5_next_bio(wbi, dev->sector);
2788 					if (!raid5_dec_bi_active_stripes(wbi)) {
2789 						md_write_end(conf->mddev);
2790 						wbi->bi_next = *return_bi;
2791 						*return_bi = wbi;
2792 					}
2793 					wbi = wbi2;
2794 				}
2795 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2796 						STRIPE_SECTORS,
2797 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2798 						0);
2799 			}
2800 		} else if (test_bit(R5_Discard, &sh->dev[i].flags))
2801 			clear_bit(R5_Discard, &sh->dev[i].flags);
2802 
2803 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2804 		if (atomic_dec_and_test(&conf->pending_full_writes))
2805 			md_wakeup_thread(conf->mddev->thread);
2806 }
2807 
2808 static void handle_stripe_dirtying(struct r5conf *conf,
2809 				   struct stripe_head *sh,
2810 				   struct stripe_head_state *s,
2811 				   int disks)
2812 {
2813 	int rmw = 0, rcw = 0, i;
2814 	sector_t recovery_cp = conf->mddev->recovery_cp;
2815 
2816 	/* RAID6 requires 'rcw' in current implementation.
2817 	 * Otherwise, check whether resync is now happening or should start.
2818 	 * If yes, then the array is dirty (after unclean shutdown or
2819 	 * initial creation), so parity in some stripes might be inconsistent.
2820 	 * In this case, we need to always do reconstruct-write, to ensure
2821 	 * that in case of drive failure or read-error correction, we
2822 	 * generate correct data from the parity.
2823 	 */
2824 	if (conf->max_degraded == 2 ||
2825 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2826 		/* Calculate the real rcw later - for now make it
2827 		 * look like rcw is cheaper
2828 		 */
2829 		rcw = 1; rmw = 2;
2830 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2831 			 conf->max_degraded, (unsigned long long)recovery_cp,
2832 			 (unsigned long long)sh->sector);
2833 	} else for (i = disks; i--; ) {
2834 		/* would I have to read this buffer for read_modify_write */
2835 		struct r5dev *dev = &sh->dev[i];
2836 		if ((dev->towrite || i == sh->pd_idx) &&
2837 		    !test_bit(R5_LOCKED, &dev->flags) &&
2838 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2839 		      test_bit(R5_Wantcompute, &dev->flags))) {
2840 			if (test_bit(R5_Insync, &dev->flags))
2841 				rmw++;
2842 			else
2843 				rmw += 2*disks;  /* cannot read it */
2844 		}
2845 		/* Would I have to read this buffer for reconstruct_write */
2846 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2847 		    !test_bit(R5_LOCKED, &dev->flags) &&
2848 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2849 		    test_bit(R5_Wantcompute, &dev->flags))) {
2850 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2851 			else
2852 				rcw += 2*disks;
2853 		}
2854 	}
2855 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2856 		(unsigned long long)sh->sector, rmw, rcw);
2857 	set_bit(STRIPE_HANDLE, &sh->state);
2858 	if (rmw < rcw && rmw > 0)
2859 		/* prefer read-modify-write, but need to get some data */
2860 		for (i = disks; i--; ) {
2861 			struct r5dev *dev = &sh->dev[i];
2862 			if ((dev->towrite || i == sh->pd_idx) &&
2863 			    !test_bit(R5_LOCKED, &dev->flags) &&
2864 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2865 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2866 			    test_bit(R5_Insync, &dev->flags)) {
2867 				if (
2868 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2869 					pr_debug("Read_old block "
2870 						"%d for r-m-w\n", i);
2871 					set_bit(R5_LOCKED, &dev->flags);
2872 					set_bit(R5_Wantread, &dev->flags);
2873 					s->locked++;
2874 				} else {
2875 					set_bit(STRIPE_DELAYED, &sh->state);
2876 					set_bit(STRIPE_HANDLE, &sh->state);
2877 				}
2878 			}
2879 		}
2880 	if (rcw <= rmw && rcw > 0) {
2881 		/* want reconstruct write, but need to get some data */
2882 		rcw = 0;
2883 		for (i = disks; i--; ) {
2884 			struct r5dev *dev = &sh->dev[i];
2885 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2886 			    i != sh->pd_idx && i != sh->qd_idx &&
2887 			    !test_bit(R5_LOCKED, &dev->flags) &&
2888 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2889 			      test_bit(R5_Wantcompute, &dev->flags))) {
2890 				rcw++;
2891 				if (!test_bit(R5_Insync, &dev->flags))
2892 					continue; /* it's a failed drive */
2893 				if (
2894 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2895 					pr_debug("Read_old block "
2896 						"%d for Reconstruct\n", i);
2897 					set_bit(R5_LOCKED, &dev->flags);
2898 					set_bit(R5_Wantread, &dev->flags);
2899 					s->locked++;
2900 				} else {
2901 					set_bit(STRIPE_DELAYED, &sh->state);
2902 					set_bit(STRIPE_HANDLE, &sh->state);
2903 				}
2904 			}
2905 		}
2906 	}
2907 	/* now if nothing is locked, and if we have enough data,
2908 	 * we can start a write request
2909 	 */
2910 	/* since handle_stripe can be called at any time we need to handle the
2911 	 * case where a compute block operation has been submitted and then a
2912 	 * subsequent call wants to start a write request.  raid_run_ops only
2913 	 * handles the case where compute block and reconstruct are requested
2914 	 * simultaneously.  If this is not the case then new writes need to be
2915 	 * held off until the compute completes.
2916 	 */
2917 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2918 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2919 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2920 		schedule_reconstruction(sh, s, rcw == 0, 0);
2921 }
2922 
2923 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2924 				struct stripe_head_state *s, int disks)
2925 {
2926 	struct r5dev *dev = NULL;
2927 
2928 	set_bit(STRIPE_HANDLE, &sh->state);
2929 
2930 	switch (sh->check_state) {
2931 	case check_state_idle:
2932 		/* start a new check operation if there are no failures */
2933 		if (s->failed == 0) {
2934 			BUG_ON(s->uptodate != disks);
2935 			sh->check_state = check_state_run;
2936 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2937 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2938 			s->uptodate--;
2939 			break;
2940 		}
2941 		dev = &sh->dev[s->failed_num[0]];
2942 		/* fall through */
2943 	case check_state_compute_result:
2944 		sh->check_state = check_state_idle;
2945 		if (!dev)
2946 			dev = &sh->dev[sh->pd_idx];
2947 
2948 		/* check that a write has not made the stripe insync */
2949 		if (test_bit(STRIPE_INSYNC, &sh->state))
2950 			break;
2951 
2952 		/* either failed parity check, or recovery is happening */
2953 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2954 		BUG_ON(s->uptodate != disks);
2955 
2956 		set_bit(R5_LOCKED, &dev->flags);
2957 		s->locked++;
2958 		set_bit(R5_Wantwrite, &dev->flags);
2959 
2960 		clear_bit(STRIPE_DEGRADED, &sh->state);
2961 		set_bit(STRIPE_INSYNC, &sh->state);
2962 		break;
2963 	case check_state_run:
2964 		break; /* we will be called again upon completion */
2965 	case check_state_check_result:
2966 		sh->check_state = check_state_idle;
2967 
2968 		/* if a failure occurred during the check operation, leave
2969 		 * STRIPE_INSYNC not set and let the stripe be handled again
2970 		 */
2971 		if (s->failed)
2972 			break;
2973 
2974 		/* handle a successful check operation, if parity is correct
2975 		 * we are done.  Otherwise update the mismatch count and repair
2976 		 * parity if !MD_RECOVERY_CHECK
2977 		 */
2978 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2979 			/* parity is correct (on disc,
2980 			 * not in buffer any more)
2981 			 */
2982 			set_bit(STRIPE_INSYNC, &sh->state);
2983 		else {
2984 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2985 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2986 				/* don't try to repair!! */
2987 				set_bit(STRIPE_INSYNC, &sh->state);
2988 			else {
2989 				sh->check_state = check_state_compute_run;
2990 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2991 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2992 				set_bit(R5_Wantcompute,
2993 					&sh->dev[sh->pd_idx].flags);
2994 				sh->ops.target = sh->pd_idx;
2995 				sh->ops.target2 = -1;
2996 				s->uptodate++;
2997 			}
2998 		}
2999 		break;
3000 	case check_state_compute_run:
3001 		break;
3002 	default:
3003 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3004 		       __func__, sh->check_state,
3005 		       (unsigned long long) sh->sector);
3006 		BUG();
3007 	}
3008 }
3009 
3010 
3011 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3012 				  struct stripe_head_state *s,
3013 				  int disks)
3014 {
3015 	int pd_idx = sh->pd_idx;
3016 	int qd_idx = sh->qd_idx;
3017 	struct r5dev *dev;
3018 
3019 	set_bit(STRIPE_HANDLE, &sh->state);
3020 
3021 	BUG_ON(s->failed > 2);
3022 
3023 	/* Want to check and possibly repair P and Q.
3024 	 * However there could be one 'failed' device, in which
3025 	 * case we can only check one of them, possibly using the
3026 	 * other to generate missing data
3027 	 */
3028 
3029 	switch (sh->check_state) {
3030 	case check_state_idle:
3031 		/* start a new check operation if there are < 2 failures */
3032 		if (s->failed == s->q_failed) {
3033 			/* The only possible failed device holds Q, so it
3034 			 * makes sense to check P (If anything else were failed,
3035 			 * we would have used P to recreate it).
3036 			 */
3037 			sh->check_state = check_state_run;
3038 		}
3039 		if (!s->q_failed && s->failed < 2) {
3040 			/* Q is not failed, and we didn't use it to generate
3041 			 * anything, so it makes sense to check it
3042 			 */
3043 			if (sh->check_state == check_state_run)
3044 				sh->check_state = check_state_run_pq;
3045 			else
3046 				sh->check_state = check_state_run_q;
3047 		}
3048 
3049 		/* discard potentially stale zero_sum_result */
3050 		sh->ops.zero_sum_result = 0;
3051 
3052 		if (sh->check_state == check_state_run) {
3053 			/* async_xor_zero_sum destroys the contents of P */
3054 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3055 			s->uptodate--;
3056 		}
3057 		if (sh->check_state >= check_state_run &&
3058 		    sh->check_state <= check_state_run_pq) {
3059 			/* async_syndrome_zero_sum preserves P and Q, so
3060 			 * no need to mark them !uptodate here
3061 			 */
3062 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3063 			break;
3064 		}
3065 
3066 		/* we have 2-disk failure */
3067 		BUG_ON(s->failed != 2);
3068 		/* fall through */
3069 	case check_state_compute_result:
3070 		sh->check_state = check_state_idle;
3071 
3072 		/* check that a write has not made the stripe insync */
3073 		if (test_bit(STRIPE_INSYNC, &sh->state))
3074 			break;
3075 
3076 		/* now write out any block on a failed drive,
3077 		 * or P or Q if they were recomputed
3078 		 */
3079 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3080 		if (s->failed == 2) {
3081 			dev = &sh->dev[s->failed_num[1]];
3082 			s->locked++;
3083 			set_bit(R5_LOCKED, &dev->flags);
3084 			set_bit(R5_Wantwrite, &dev->flags);
3085 		}
3086 		if (s->failed >= 1) {
3087 			dev = &sh->dev[s->failed_num[0]];
3088 			s->locked++;
3089 			set_bit(R5_LOCKED, &dev->flags);
3090 			set_bit(R5_Wantwrite, &dev->flags);
3091 		}
3092 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3093 			dev = &sh->dev[pd_idx];
3094 			s->locked++;
3095 			set_bit(R5_LOCKED, &dev->flags);
3096 			set_bit(R5_Wantwrite, &dev->flags);
3097 		}
3098 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3099 			dev = &sh->dev[qd_idx];
3100 			s->locked++;
3101 			set_bit(R5_LOCKED, &dev->flags);
3102 			set_bit(R5_Wantwrite, &dev->flags);
3103 		}
3104 		clear_bit(STRIPE_DEGRADED, &sh->state);
3105 
3106 		set_bit(STRIPE_INSYNC, &sh->state);
3107 		break;
3108 	case check_state_run:
3109 	case check_state_run_q:
3110 	case check_state_run_pq:
3111 		break; /* we will be called again upon completion */
3112 	case check_state_check_result:
3113 		sh->check_state = check_state_idle;
3114 
3115 		/* handle a successful check operation, if parity is correct
3116 		 * we are done.  Otherwise update the mismatch count and repair
3117 		 * parity if !MD_RECOVERY_CHECK
3118 		 */
3119 		if (sh->ops.zero_sum_result == 0) {
3120 			/* both parities are correct */
3121 			if (!s->failed)
3122 				set_bit(STRIPE_INSYNC, &sh->state);
3123 			else {
3124 				/* in contrast to the raid5 case we can validate
3125 				 * parity, but still have a failure to write
3126 				 * back
3127 				 */
3128 				sh->check_state = check_state_compute_result;
3129 				/* Returning at this point means that we may go
3130 				 * off and bring p and/or q uptodate again so
3131 				 * we make sure to check zero_sum_result again
3132 				 * to verify if p or q need writeback
3133 				 */
3134 			}
3135 		} else {
3136 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3137 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3138 				/* don't try to repair!! */
3139 				set_bit(STRIPE_INSYNC, &sh->state);
3140 			else {
3141 				int *target = &sh->ops.target;
3142 
3143 				sh->ops.target = -1;
3144 				sh->ops.target2 = -1;
3145 				sh->check_state = check_state_compute_run;
3146 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3147 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3148 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3149 					set_bit(R5_Wantcompute,
3150 						&sh->dev[pd_idx].flags);
3151 					*target = pd_idx;
3152 					target = &sh->ops.target2;
3153 					s->uptodate++;
3154 				}
3155 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3156 					set_bit(R5_Wantcompute,
3157 						&sh->dev[qd_idx].flags);
3158 					*target = qd_idx;
3159 					s->uptodate++;
3160 				}
3161 			}
3162 		}
3163 		break;
3164 	case check_state_compute_run:
3165 		break;
3166 	default:
3167 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3168 		       __func__, sh->check_state,
3169 		       (unsigned long long) sh->sector);
3170 		BUG();
3171 	}
3172 }
3173 
3174 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3175 {
3176 	int i;
3177 
3178 	/* We have read all the blocks in this stripe and now we need to
3179 	 * copy some of them into a target stripe for expand.
3180 	 */
3181 	struct dma_async_tx_descriptor *tx = NULL;
3182 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3183 	for (i = 0; i < sh->disks; i++)
3184 		if (i != sh->pd_idx && i != sh->qd_idx) {
3185 			int dd_idx, j;
3186 			struct stripe_head *sh2;
3187 			struct async_submit_ctl submit;
3188 
3189 			sector_t bn = compute_blocknr(sh, i, 1);
3190 			sector_t s = raid5_compute_sector(conf, bn, 0,
3191 							  &dd_idx, NULL);
3192 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3193 			if (sh2 == NULL)
3194 				/* so far only the early blocks of this stripe
3195 				 * have been requested.  When later blocks
3196 				 * get requested, we will try again
3197 				 */
3198 				continue;
3199 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3200 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3201 				/* must have already done this block */
3202 				release_stripe(sh2);
3203 				continue;
3204 			}
3205 
3206 			/* place all the copies on one channel */
3207 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3208 			tx = async_memcpy(sh2->dev[dd_idx].page,
3209 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3210 					  &submit);
3211 
3212 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3213 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3214 			for (j = 0; j < conf->raid_disks; j++)
3215 				if (j != sh2->pd_idx &&
3216 				    j != sh2->qd_idx &&
3217 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3218 					break;
3219 			if (j == conf->raid_disks) {
3220 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3221 				set_bit(STRIPE_HANDLE, &sh2->state);
3222 			}
3223 			release_stripe(sh2);
3224 
3225 		}
3226 	/* done submitting copies, wait for them to complete */
3227 	if (tx) {
3228 		async_tx_ack(tx);
3229 		dma_wait_for_async_tx(tx);
3230 	}
3231 }
3232 
3233 /*
3234  * handle_stripe - do things to a stripe.
3235  *
3236  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3237  * state of various bits to see what needs to be done.
3238  * Possible results:
3239  *    return some read requests which now have data
3240  *    return some write requests which are safely on storage
3241  *    schedule a read on some buffers
3242  *    schedule a write of some buffers
3243  *    return confirmation of parity correctness
3244  *
3245  */
3246 
3247 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3248 {
3249 	struct r5conf *conf = sh->raid_conf;
3250 	int disks = sh->disks;
3251 	struct r5dev *dev;
3252 	int i;
3253 	int do_recovery = 0;
3254 
3255 	memset(s, 0, sizeof(*s));
3256 
3257 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3258 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3259 	s->failed_num[0] = -1;
3260 	s->failed_num[1] = -1;
3261 
3262 	/* Now to look around and see what can be done */
3263 	rcu_read_lock();
3264 	for (i=disks; i--; ) {
3265 		struct md_rdev *rdev;
3266 		sector_t first_bad;
3267 		int bad_sectors;
3268 		int is_bad = 0;
3269 
3270 		dev = &sh->dev[i];
3271 
3272 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3273 			 i, dev->flags,
3274 			 dev->toread, dev->towrite, dev->written);
3275 		/* maybe we can reply to a read
3276 		 *
3277 		 * new wantfill requests are only permitted while
3278 		 * ops_complete_biofill is guaranteed to be inactive
3279 		 */
3280 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3281 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3282 			set_bit(R5_Wantfill, &dev->flags);
3283 
3284 		/* now count some things */
3285 		if (test_bit(R5_LOCKED, &dev->flags))
3286 			s->locked++;
3287 		if (test_bit(R5_UPTODATE, &dev->flags))
3288 			s->uptodate++;
3289 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3290 			s->compute++;
3291 			BUG_ON(s->compute > 2);
3292 		}
3293 
3294 		if (test_bit(R5_Wantfill, &dev->flags))
3295 			s->to_fill++;
3296 		else if (dev->toread)
3297 			s->to_read++;
3298 		if (dev->towrite) {
3299 			s->to_write++;
3300 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3301 				s->non_overwrite++;
3302 		}
3303 		if (dev->written)
3304 			s->written++;
3305 		/* Prefer to use the replacement for reads, but only
3306 		 * if it is recovered enough and has no bad blocks.
3307 		 */
3308 		rdev = rcu_dereference(conf->disks[i].replacement);
3309 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3310 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3311 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3312 				 &first_bad, &bad_sectors))
3313 			set_bit(R5_ReadRepl, &dev->flags);
3314 		else {
3315 			if (rdev)
3316 				set_bit(R5_NeedReplace, &dev->flags);
3317 			rdev = rcu_dereference(conf->disks[i].rdev);
3318 			clear_bit(R5_ReadRepl, &dev->flags);
3319 		}
3320 		if (rdev && test_bit(Faulty, &rdev->flags))
3321 			rdev = NULL;
3322 		if (rdev) {
3323 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3324 					     &first_bad, &bad_sectors);
3325 			if (s->blocked_rdev == NULL
3326 			    && (test_bit(Blocked, &rdev->flags)
3327 				|| is_bad < 0)) {
3328 				if (is_bad < 0)
3329 					set_bit(BlockedBadBlocks,
3330 						&rdev->flags);
3331 				s->blocked_rdev = rdev;
3332 				atomic_inc(&rdev->nr_pending);
3333 			}
3334 		}
3335 		clear_bit(R5_Insync, &dev->flags);
3336 		if (!rdev)
3337 			/* Not in-sync */;
3338 		else if (is_bad) {
3339 			/* also not in-sync */
3340 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3341 			    test_bit(R5_UPTODATE, &dev->flags)) {
3342 				/* treat as in-sync, but with a read error
3343 				 * which we can now try to correct
3344 				 */
3345 				set_bit(R5_Insync, &dev->flags);
3346 				set_bit(R5_ReadError, &dev->flags);
3347 			}
3348 		} else if (test_bit(In_sync, &rdev->flags))
3349 			set_bit(R5_Insync, &dev->flags);
3350 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3351 			/* in sync if before recovery_offset */
3352 			set_bit(R5_Insync, &dev->flags);
3353 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3354 			 test_bit(R5_Expanded, &dev->flags))
3355 			/* If we've reshaped into here, we assume it is Insync.
3356 			 * We will shortly update recovery_offset to make
3357 			 * it official.
3358 			 */
3359 			set_bit(R5_Insync, &dev->flags);
3360 
3361 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3362 			/* This flag does not apply to '.replacement'
3363 			 * only to .rdev, so make sure to check that*/
3364 			struct md_rdev *rdev2 = rcu_dereference(
3365 				conf->disks[i].rdev);
3366 			if (rdev2 == rdev)
3367 				clear_bit(R5_Insync, &dev->flags);
3368 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3369 				s->handle_bad_blocks = 1;
3370 				atomic_inc(&rdev2->nr_pending);
3371 			} else
3372 				clear_bit(R5_WriteError, &dev->flags);
3373 		}
3374 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3375 			/* This flag does not apply to '.replacement'
3376 			 * only to .rdev, so make sure to check that*/
3377 			struct md_rdev *rdev2 = rcu_dereference(
3378 				conf->disks[i].rdev);
3379 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3380 				s->handle_bad_blocks = 1;
3381 				atomic_inc(&rdev2->nr_pending);
3382 			} else
3383 				clear_bit(R5_MadeGood, &dev->flags);
3384 		}
3385 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3386 			struct md_rdev *rdev2 = rcu_dereference(
3387 				conf->disks[i].replacement);
3388 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3389 				s->handle_bad_blocks = 1;
3390 				atomic_inc(&rdev2->nr_pending);
3391 			} else
3392 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3393 		}
3394 		if (!test_bit(R5_Insync, &dev->flags)) {
3395 			/* The ReadError flag will just be confusing now */
3396 			clear_bit(R5_ReadError, &dev->flags);
3397 			clear_bit(R5_ReWrite, &dev->flags);
3398 		}
3399 		if (test_bit(R5_ReadError, &dev->flags))
3400 			clear_bit(R5_Insync, &dev->flags);
3401 		if (!test_bit(R5_Insync, &dev->flags)) {
3402 			if (s->failed < 2)
3403 				s->failed_num[s->failed] = i;
3404 			s->failed++;
3405 			if (rdev && !test_bit(Faulty, &rdev->flags))
3406 				do_recovery = 1;
3407 		}
3408 	}
3409 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3410 		/* If there is a failed device being replaced,
3411 		 *     we must be recovering.
3412 		 * else if we are after recovery_cp, we must be syncing
3413 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3414 		 * else we can only be replacing
3415 		 * sync and recovery both need to read all devices, and so
3416 		 * use the same flag.
3417 		 */
3418 		if (do_recovery ||
3419 		    sh->sector >= conf->mddev->recovery_cp ||
3420 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3421 			s->syncing = 1;
3422 		else
3423 			s->replacing = 1;
3424 	}
3425 	rcu_read_unlock();
3426 }
3427 
3428 static void handle_stripe(struct stripe_head *sh)
3429 {
3430 	struct stripe_head_state s;
3431 	struct r5conf *conf = sh->raid_conf;
3432 	int i;
3433 	int prexor;
3434 	int disks = sh->disks;
3435 	struct r5dev *pdev, *qdev;
3436 
3437 	clear_bit(STRIPE_HANDLE, &sh->state);
3438 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3439 		/* already being handled, ensure it gets handled
3440 		 * again when current action finishes */
3441 		set_bit(STRIPE_HANDLE, &sh->state);
3442 		return;
3443 	}
3444 
3445 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3446 		set_bit(STRIPE_SYNCING, &sh->state);
3447 		clear_bit(STRIPE_INSYNC, &sh->state);
3448 	}
3449 	clear_bit(STRIPE_DELAYED, &sh->state);
3450 
3451 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3452 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3453 	       (unsigned long long)sh->sector, sh->state,
3454 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3455 	       sh->check_state, sh->reconstruct_state);
3456 
3457 	analyse_stripe(sh, &s);
3458 
3459 	if (s.handle_bad_blocks) {
3460 		set_bit(STRIPE_HANDLE, &sh->state);
3461 		goto finish;
3462 	}
3463 
3464 	if (unlikely(s.blocked_rdev)) {
3465 		if (s.syncing || s.expanding || s.expanded ||
3466 		    s.replacing || s.to_write || s.written) {
3467 			set_bit(STRIPE_HANDLE, &sh->state);
3468 			goto finish;
3469 		}
3470 		/* There is nothing for the blocked_rdev to block */
3471 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3472 		s.blocked_rdev = NULL;
3473 	}
3474 
3475 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3476 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3477 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3478 	}
3479 
3480 	pr_debug("locked=%d uptodate=%d to_read=%d"
3481 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3482 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3483 	       s.failed_num[0], s.failed_num[1]);
3484 	/* check if the array has lost more than max_degraded devices and,
3485 	 * if so, some requests might need to be failed.
3486 	 */
3487 	if (s.failed > conf->max_degraded) {
3488 		sh->check_state = 0;
3489 		sh->reconstruct_state = 0;
3490 		if (s.to_read+s.to_write+s.written)
3491 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3492 		if (s.syncing + s.replacing)
3493 			handle_failed_sync(conf, sh, &s);
3494 	}
3495 
3496 	/* Now we check to see if any write operations have recently
3497 	 * completed
3498 	 */
3499 	prexor = 0;
3500 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3501 		prexor = 1;
3502 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3503 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3504 		sh->reconstruct_state = reconstruct_state_idle;
3505 
3506 		/* All the 'written' buffers and the parity block are ready to
3507 		 * be written back to disk
3508 		 */
3509 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3510 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3511 		BUG_ON(sh->qd_idx >= 0 &&
3512 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3513 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3514 		for (i = disks; i--; ) {
3515 			struct r5dev *dev = &sh->dev[i];
3516 			if (test_bit(R5_LOCKED, &dev->flags) &&
3517 				(i == sh->pd_idx || i == sh->qd_idx ||
3518 				 dev->written)) {
3519 				pr_debug("Writing block %d\n", i);
3520 				set_bit(R5_Wantwrite, &dev->flags);
3521 				if (prexor)
3522 					continue;
3523 				if (!test_bit(R5_Insync, &dev->flags) ||
3524 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3525 				     s.failed == 0))
3526 					set_bit(STRIPE_INSYNC, &sh->state);
3527 			}
3528 		}
3529 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3530 			s.dec_preread_active = 1;
3531 	}
3532 
3533 	/*
3534 	 * might be able to return some write requests if the parity blocks
3535 	 * are safe, or on a failed drive
3536 	 */
3537 	pdev = &sh->dev[sh->pd_idx];
3538 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3539 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3540 	qdev = &sh->dev[sh->qd_idx];
3541 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3542 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3543 		|| conf->level < 6;
3544 
3545 	if (s.written &&
3546 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3547 			     && !test_bit(R5_LOCKED, &pdev->flags)
3548 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3549 				 test_bit(R5_Discard, &pdev->flags))))) &&
3550 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3551 			     && !test_bit(R5_LOCKED, &qdev->flags)
3552 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3553 				 test_bit(R5_Discard, &qdev->flags))))))
3554 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3555 
3556 	/* Now we might consider reading some blocks, either to check/generate
3557 	 * parity, or to satisfy requests
3558 	 * or to load a block that is being partially written.
3559 	 */
3560 	if (s.to_read || s.non_overwrite
3561 	    || (conf->level == 6 && s.to_write && s.failed)
3562 	    || (s.syncing && (s.uptodate + s.compute < disks))
3563 	    || s.replacing
3564 	    || s.expanding)
3565 		handle_stripe_fill(sh, &s, disks);
3566 
3567 	/* Now to consider new write requests and what else, if anything
3568 	 * should be read.  We do not handle new writes when:
3569 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3570 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3571 	 *    block.
3572 	 */
3573 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3574 		handle_stripe_dirtying(conf, sh, &s, disks);
3575 
3576 	/* maybe we need to check and possibly fix the parity for this stripe
3577 	 * Any reads will already have been scheduled, so we just see if enough
3578 	 * data is available.  The parity check is held off while parity
3579 	 * dependent operations are in flight.
3580 	 */
3581 	if (sh->check_state ||
3582 	    (s.syncing && s.locked == 0 &&
3583 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3584 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3585 		if (conf->level == 6)
3586 			handle_parity_checks6(conf, sh, &s, disks);
3587 		else
3588 			handle_parity_checks5(conf, sh, &s, disks);
3589 	}
3590 
3591 	if (s.replacing && s.locked == 0
3592 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3593 		/* Write out to replacement devices where possible */
3594 		for (i = 0; i < conf->raid_disks; i++)
3595 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3596 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3597 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3598 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3599 				s.locked++;
3600 			}
3601 		set_bit(STRIPE_INSYNC, &sh->state);
3602 	}
3603 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3604 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3605 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3606 		clear_bit(STRIPE_SYNCING, &sh->state);
3607 	}
3608 
3609 	/* If the failed drives are just a ReadError, then we might need
3610 	 * to progress the repair/check process
3611 	 */
3612 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3613 		for (i = 0; i < s.failed; i++) {
3614 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3615 			if (test_bit(R5_ReadError, &dev->flags)
3616 			    && !test_bit(R5_LOCKED, &dev->flags)
3617 			    && test_bit(R5_UPTODATE, &dev->flags)
3618 				) {
3619 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3620 					set_bit(R5_Wantwrite, &dev->flags);
3621 					set_bit(R5_ReWrite, &dev->flags);
3622 					set_bit(R5_LOCKED, &dev->flags);
3623 					s.locked++;
3624 				} else {
3625 					/* let's read it back */
3626 					set_bit(R5_Wantread, &dev->flags);
3627 					set_bit(R5_LOCKED, &dev->flags);
3628 					s.locked++;
3629 				}
3630 			}
3631 		}
3632 
3633 
3634 	/* Finish reconstruct operations initiated by the expansion process */
3635 	if (sh->reconstruct_state == reconstruct_state_result) {
3636 		struct stripe_head *sh_src
3637 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3638 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3639 			/* sh cannot be written until sh_src has been read.
3640 			 * so arrange for sh to be delayed a little
3641 			 */
3642 			set_bit(STRIPE_DELAYED, &sh->state);
3643 			set_bit(STRIPE_HANDLE, &sh->state);
3644 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3645 					      &sh_src->state))
3646 				atomic_inc(&conf->preread_active_stripes);
3647 			release_stripe(sh_src);
3648 			goto finish;
3649 		}
3650 		if (sh_src)
3651 			release_stripe(sh_src);
3652 
3653 		sh->reconstruct_state = reconstruct_state_idle;
3654 		clear_bit(STRIPE_EXPANDING, &sh->state);
3655 		for (i = conf->raid_disks; i--; ) {
3656 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3657 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3658 			s.locked++;
3659 		}
3660 	}
3661 
3662 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3663 	    !sh->reconstruct_state) {
3664 		/* Need to write out all blocks after computing parity */
3665 		sh->disks = conf->raid_disks;
3666 		stripe_set_idx(sh->sector, conf, 0, sh);
3667 		schedule_reconstruction(sh, &s, 1, 1);
3668 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3669 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3670 		atomic_dec(&conf->reshape_stripes);
3671 		wake_up(&conf->wait_for_overlap);
3672 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3673 	}
3674 
3675 	if (s.expanding && s.locked == 0 &&
3676 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3677 		handle_stripe_expansion(conf, sh);
3678 
3679 finish:
3680 	/* wait for this device to become unblocked */
3681 	if (unlikely(s.blocked_rdev)) {
3682 		if (conf->mddev->external)
3683 			md_wait_for_blocked_rdev(s.blocked_rdev,
3684 						 conf->mddev);
3685 		else
3686 			/* Internal metadata will immediately
3687 			 * be written by raid5d, so we don't
3688 			 * need to wait here.
3689 			 */
3690 			rdev_dec_pending(s.blocked_rdev,
3691 					 conf->mddev);
3692 	}
3693 
3694 	if (s.handle_bad_blocks)
3695 		for (i = disks; i--; ) {
3696 			struct md_rdev *rdev;
3697 			struct r5dev *dev = &sh->dev[i];
3698 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3699 				/* We own a safe reference to the rdev */
3700 				rdev = conf->disks[i].rdev;
3701 				if (!rdev_set_badblocks(rdev, sh->sector,
3702 							STRIPE_SECTORS, 0))
3703 					md_error(conf->mddev, rdev);
3704 				rdev_dec_pending(rdev, conf->mddev);
3705 			}
3706 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3707 				rdev = conf->disks[i].rdev;
3708 				rdev_clear_badblocks(rdev, sh->sector,
3709 						     STRIPE_SECTORS, 0);
3710 				rdev_dec_pending(rdev, conf->mddev);
3711 			}
3712 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3713 				rdev = conf->disks[i].replacement;
3714 				if (!rdev)
3715 					/* rdev have been moved down */
3716 					rdev = conf->disks[i].rdev;
3717 				rdev_clear_badblocks(rdev, sh->sector,
3718 						     STRIPE_SECTORS, 0);
3719 				rdev_dec_pending(rdev, conf->mddev);
3720 			}
3721 		}
3722 
3723 	if (s.ops_request)
3724 		raid_run_ops(sh, s.ops_request);
3725 
3726 	ops_run_io(sh, &s);
3727 
3728 	if (s.dec_preread_active) {
3729 		/* We delay this until after ops_run_io so that if make_request
3730 		 * is waiting on a flush, it won't continue until the writes
3731 		 * have actually been submitted.
3732 		 */
3733 		atomic_dec(&conf->preread_active_stripes);
3734 		if (atomic_read(&conf->preread_active_stripes) <
3735 		    IO_THRESHOLD)
3736 			md_wakeup_thread(conf->mddev->thread);
3737 	}
3738 
3739 	return_io(s.return_bi);
3740 
3741 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3742 }
3743 
3744 static void raid5_activate_delayed(struct r5conf *conf)
3745 {
3746 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3747 		while (!list_empty(&conf->delayed_list)) {
3748 			struct list_head *l = conf->delayed_list.next;
3749 			struct stripe_head *sh;
3750 			sh = list_entry(l, struct stripe_head, lru);
3751 			list_del_init(l);
3752 			clear_bit(STRIPE_DELAYED, &sh->state);
3753 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3754 				atomic_inc(&conf->preread_active_stripes);
3755 			list_add_tail(&sh->lru, &conf->hold_list);
3756 		}
3757 	}
3758 }
3759 
3760 static void activate_bit_delay(struct r5conf *conf)
3761 {
3762 	/* device_lock is held */
3763 	struct list_head head;
3764 	list_add(&head, &conf->bitmap_list);
3765 	list_del_init(&conf->bitmap_list);
3766 	while (!list_empty(&head)) {
3767 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3768 		list_del_init(&sh->lru);
3769 		atomic_inc(&sh->count);
3770 		__release_stripe(conf, sh);
3771 	}
3772 }
3773 
3774 int md_raid5_congested(struct mddev *mddev, int bits)
3775 {
3776 	struct r5conf *conf = mddev->private;
3777 
3778 	/* No difference between reads and writes.  Just check
3779 	 * how busy the stripe_cache is
3780 	 */
3781 
3782 	if (conf->inactive_blocked)
3783 		return 1;
3784 	if (conf->quiesce)
3785 		return 1;
3786 	if (list_empty_careful(&conf->inactive_list))
3787 		return 1;
3788 
3789 	return 0;
3790 }
3791 EXPORT_SYMBOL_GPL(md_raid5_congested);
3792 
3793 static int raid5_congested(void *data, int bits)
3794 {
3795 	struct mddev *mddev = data;
3796 
3797 	return mddev_congested(mddev, bits) ||
3798 		md_raid5_congested(mddev, bits);
3799 }
3800 
3801 /* We want read requests to align with chunks where possible,
3802  * but write requests don't need to.
3803  */
3804 static int raid5_mergeable_bvec(struct request_queue *q,
3805 				struct bvec_merge_data *bvm,
3806 				struct bio_vec *biovec)
3807 {
3808 	struct mddev *mddev = q->queuedata;
3809 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3810 	int max;
3811 	unsigned int chunk_sectors = mddev->chunk_sectors;
3812 	unsigned int bio_sectors = bvm->bi_size >> 9;
3813 
3814 	if ((bvm->bi_rw & 1) == WRITE)
3815 		return biovec->bv_len; /* always allow writes to be mergeable */
3816 
3817 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3818 		chunk_sectors = mddev->new_chunk_sectors;
3819 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3820 	if (max < 0) max = 0;
3821 	if (max <= biovec->bv_len && bio_sectors == 0)
3822 		return biovec->bv_len;
3823 	else
3824 		return max;
3825 }
3826 
3827 
3828 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3829 {
3830 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3831 	unsigned int chunk_sectors = mddev->chunk_sectors;
3832 	unsigned int bio_sectors = bio->bi_size >> 9;
3833 
3834 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3835 		chunk_sectors = mddev->new_chunk_sectors;
3836 	return  chunk_sectors >=
3837 		((sector & (chunk_sectors - 1)) + bio_sectors);
3838 }
3839 
3840 /*
3841  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3842  *  later sampled by raid5d.
3843  */
3844 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3845 {
3846 	unsigned long flags;
3847 
3848 	spin_lock_irqsave(&conf->device_lock, flags);
3849 
3850 	bi->bi_next = conf->retry_read_aligned_list;
3851 	conf->retry_read_aligned_list = bi;
3852 
3853 	spin_unlock_irqrestore(&conf->device_lock, flags);
3854 	md_wakeup_thread(conf->mddev->thread);
3855 }
3856 
3857 
3858 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3859 {
3860 	struct bio *bi;
3861 
3862 	bi = conf->retry_read_aligned;
3863 	if (bi) {
3864 		conf->retry_read_aligned = NULL;
3865 		return bi;
3866 	}
3867 	bi = conf->retry_read_aligned_list;
3868 	if(bi) {
3869 		conf->retry_read_aligned_list = bi->bi_next;
3870 		bi->bi_next = NULL;
3871 		/*
3872 		 * this sets the active strip count to 1 and the processed
3873 		 * strip count to zero (upper 8 bits)
3874 		 */
3875 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3876 	}
3877 
3878 	return bi;
3879 }
3880 
3881 
3882 /*
3883  *  The "raid5_align_endio" should check if the read succeeded and if it
3884  *  did, call bio_endio on the original bio (having bio_put the new bio
3885  *  first).
3886  *  If the read failed..
3887  */
3888 static void raid5_align_endio(struct bio *bi, int error)
3889 {
3890 	struct bio* raid_bi  = bi->bi_private;
3891 	struct mddev *mddev;
3892 	struct r5conf *conf;
3893 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3894 	struct md_rdev *rdev;
3895 
3896 	bio_put(bi);
3897 
3898 	rdev = (void*)raid_bi->bi_next;
3899 	raid_bi->bi_next = NULL;
3900 	mddev = rdev->mddev;
3901 	conf = mddev->private;
3902 
3903 	rdev_dec_pending(rdev, conf->mddev);
3904 
3905 	if (!error && uptodate) {
3906 		bio_endio(raid_bi, 0);
3907 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3908 			wake_up(&conf->wait_for_stripe);
3909 		return;
3910 	}
3911 
3912 
3913 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3914 
3915 	add_bio_to_retry(raid_bi, conf);
3916 }
3917 
3918 static int bio_fits_rdev(struct bio *bi)
3919 {
3920 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3921 
3922 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3923 		return 0;
3924 	blk_recount_segments(q, bi);
3925 	if (bi->bi_phys_segments > queue_max_segments(q))
3926 		return 0;
3927 
3928 	if (q->merge_bvec_fn)
3929 		/* it's too hard to apply the merge_bvec_fn at this stage,
3930 		 * just just give up
3931 		 */
3932 		return 0;
3933 
3934 	return 1;
3935 }
3936 
3937 
3938 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3939 {
3940 	struct r5conf *conf = mddev->private;
3941 	int dd_idx;
3942 	struct bio* align_bi;
3943 	struct md_rdev *rdev;
3944 	sector_t end_sector;
3945 
3946 	if (!in_chunk_boundary(mddev, raid_bio)) {
3947 		pr_debug("chunk_aligned_read : non aligned\n");
3948 		return 0;
3949 	}
3950 	/*
3951 	 * use bio_clone_mddev to make a copy of the bio
3952 	 */
3953 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3954 	if (!align_bi)
3955 		return 0;
3956 	/*
3957 	 *   set bi_end_io to a new function, and set bi_private to the
3958 	 *     original bio.
3959 	 */
3960 	align_bi->bi_end_io  = raid5_align_endio;
3961 	align_bi->bi_private = raid_bio;
3962 	/*
3963 	 *	compute position
3964 	 */
3965 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3966 						    0,
3967 						    &dd_idx, NULL);
3968 
3969 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3970 	rcu_read_lock();
3971 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3972 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3973 	    rdev->recovery_offset < end_sector) {
3974 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3975 		if (rdev &&
3976 		    (test_bit(Faulty, &rdev->flags) ||
3977 		    !(test_bit(In_sync, &rdev->flags) ||
3978 		      rdev->recovery_offset >= end_sector)))
3979 			rdev = NULL;
3980 	}
3981 	if (rdev) {
3982 		sector_t first_bad;
3983 		int bad_sectors;
3984 
3985 		atomic_inc(&rdev->nr_pending);
3986 		rcu_read_unlock();
3987 		raid_bio->bi_next = (void*)rdev;
3988 		align_bi->bi_bdev =  rdev->bdev;
3989 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3990 
3991 		if (!bio_fits_rdev(align_bi) ||
3992 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3993 				&first_bad, &bad_sectors)) {
3994 			/* too big in some way, or has a known bad block */
3995 			bio_put(align_bi);
3996 			rdev_dec_pending(rdev, mddev);
3997 			return 0;
3998 		}
3999 
4000 		/* No reshape active, so we can trust rdev->data_offset */
4001 		align_bi->bi_sector += rdev->data_offset;
4002 
4003 		spin_lock_irq(&conf->device_lock);
4004 		wait_event_lock_irq(conf->wait_for_stripe,
4005 				    conf->quiesce == 0,
4006 				    conf->device_lock, /* nothing */);
4007 		atomic_inc(&conf->active_aligned_reads);
4008 		spin_unlock_irq(&conf->device_lock);
4009 
4010 		generic_make_request(align_bi);
4011 		return 1;
4012 	} else {
4013 		rcu_read_unlock();
4014 		bio_put(align_bi);
4015 		return 0;
4016 	}
4017 }
4018 
4019 /* __get_priority_stripe - get the next stripe to process
4020  *
4021  * Full stripe writes are allowed to pass preread active stripes up until
4022  * the bypass_threshold is exceeded.  In general the bypass_count
4023  * increments when the handle_list is handled before the hold_list; however, it
4024  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4025  * stripe with in flight i/o.  The bypass_count will be reset when the
4026  * head of the hold_list has changed, i.e. the head was promoted to the
4027  * handle_list.
4028  */
4029 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4030 {
4031 	struct stripe_head *sh;
4032 
4033 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4034 		  __func__,
4035 		  list_empty(&conf->handle_list) ? "empty" : "busy",
4036 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4037 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4038 
4039 	if (!list_empty(&conf->handle_list)) {
4040 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4041 
4042 		if (list_empty(&conf->hold_list))
4043 			conf->bypass_count = 0;
4044 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4045 			if (conf->hold_list.next == conf->last_hold)
4046 				conf->bypass_count++;
4047 			else {
4048 				conf->last_hold = conf->hold_list.next;
4049 				conf->bypass_count -= conf->bypass_threshold;
4050 				if (conf->bypass_count < 0)
4051 					conf->bypass_count = 0;
4052 			}
4053 		}
4054 	} else if (!list_empty(&conf->hold_list) &&
4055 		   ((conf->bypass_threshold &&
4056 		     conf->bypass_count > conf->bypass_threshold) ||
4057 		    atomic_read(&conf->pending_full_writes) == 0)) {
4058 		sh = list_entry(conf->hold_list.next,
4059 				typeof(*sh), lru);
4060 		conf->bypass_count -= conf->bypass_threshold;
4061 		if (conf->bypass_count < 0)
4062 			conf->bypass_count = 0;
4063 	} else
4064 		return NULL;
4065 
4066 	list_del_init(&sh->lru);
4067 	atomic_inc(&sh->count);
4068 	BUG_ON(atomic_read(&sh->count) != 1);
4069 	return sh;
4070 }
4071 
4072 struct raid5_plug_cb {
4073 	struct blk_plug_cb	cb;
4074 	struct list_head	list;
4075 };
4076 
4077 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4078 {
4079 	struct raid5_plug_cb *cb = container_of(
4080 		blk_cb, struct raid5_plug_cb, cb);
4081 	struct stripe_head *sh;
4082 	struct mddev *mddev = cb->cb.data;
4083 	struct r5conf *conf = mddev->private;
4084 
4085 	if (cb->list.next && !list_empty(&cb->list)) {
4086 		spin_lock_irq(&conf->device_lock);
4087 		while (!list_empty(&cb->list)) {
4088 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4089 			list_del_init(&sh->lru);
4090 			/*
4091 			 * avoid race release_stripe_plug() sees
4092 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4093 			 * is still in our list
4094 			 */
4095 			smp_mb__before_clear_bit();
4096 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4097 			__release_stripe(conf, sh);
4098 		}
4099 		spin_unlock_irq(&conf->device_lock);
4100 	}
4101 	kfree(cb);
4102 }
4103 
4104 static void release_stripe_plug(struct mddev *mddev,
4105 				struct stripe_head *sh)
4106 {
4107 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4108 		raid5_unplug, mddev,
4109 		sizeof(struct raid5_plug_cb));
4110 	struct raid5_plug_cb *cb;
4111 
4112 	if (!blk_cb) {
4113 		release_stripe(sh);
4114 		return;
4115 	}
4116 
4117 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4118 
4119 	if (cb->list.next == NULL)
4120 		INIT_LIST_HEAD(&cb->list);
4121 
4122 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4123 		list_add_tail(&sh->lru, &cb->list);
4124 	else
4125 		release_stripe(sh);
4126 }
4127 
4128 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4129 {
4130 	struct r5conf *conf = mddev->private;
4131 	sector_t logical_sector, last_sector;
4132 	struct stripe_head *sh;
4133 	int remaining;
4134 	int stripe_sectors;
4135 
4136 	if (mddev->reshape_position != MaxSector)
4137 		/* Skip discard while reshape is happening */
4138 		return;
4139 
4140 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4141 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4142 
4143 	bi->bi_next = NULL;
4144 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4145 
4146 	stripe_sectors = conf->chunk_sectors *
4147 		(conf->raid_disks - conf->max_degraded);
4148 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4149 					       stripe_sectors);
4150 	sector_div(last_sector, stripe_sectors);
4151 
4152 	logical_sector *= conf->chunk_sectors;
4153 	last_sector *= conf->chunk_sectors;
4154 
4155 	for (; logical_sector < last_sector;
4156 	     logical_sector += STRIPE_SECTORS) {
4157 		DEFINE_WAIT(w);
4158 		int d;
4159 	again:
4160 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4161 		prepare_to_wait(&conf->wait_for_overlap, &w,
4162 				TASK_UNINTERRUPTIBLE);
4163 		spin_lock_irq(&sh->stripe_lock);
4164 		for (d = 0; d < conf->raid_disks; d++) {
4165 			if (d == sh->pd_idx || d == sh->qd_idx)
4166 				continue;
4167 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4168 				set_bit(R5_Overlap, &sh->dev[d].flags);
4169 				spin_unlock_irq(&sh->stripe_lock);
4170 				release_stripe(sh);
4171 				schedule();
4172 				goto again;
4173 			}
4174 		}
4175 		finish_wait(&conf->wait_for_overlap, &w);
4176 		for (d = 0; d < conf->raid_disks; d++) {
4177 			if (d == sh->pd_idx || d == sh->qd_idx)
4178 				continue;
4179 			sh->dev[d].towrite = bi;
4180 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4181 			raid5_inc_bi_active_stripes(bi);
4182 		}
4183 		spin_unlock_irq(&sh->stripe_lock);
4184 		if (conf->mddev->bitmap) {
4185 			for (d = 0;
4186 			     d < conf->raid_disks - conf->max_degraded;
4187 			     d++)
4188 				bitmap_startwrite(mddev->bitmap,
4189 						  sh->sector,
4190 						  STRIPE_SECTORS,
4191 						  0);
4192 			sh->bm_seq = conf->seq_flush + 1;
4193 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4194 		}
4195 
4196 		set_bit(STRIPE_HANDLE, &sh->state);
4197 		clear_bit(STRIPE_DELAYED, &sh->state);
4198 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4199 			atomic_inc(&conf->preread_active_stripes);
4200 		release_stripe_plug(mddev, sh);
4201 	}
4202 
4203 	remaining = raid5_dec_bi_active_stripes(bi);
4204 	if (remaining == 0) {
4205 		md_write_end(mddev);
4206 		bio_endio(bi, 0);
4207 	}
4208 }
4209 
4210 static void make_request(struct mddev *mddev, struct bio * bi)
4211 {
4212 	struct r5conf *conf = mddev->private;
4213 	int dd_idx;
4214 	sector_t new_sector;
4215 	sector_t logical_sector, last_sector;
4216 	struct stripe_head *sh;
4217 	const int rw = bio_data_dir(bi);
4218 	int remaining;
4219 
4220 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4221 		md_flush_request(mddev, bi);
4222 		return;
4223 	}
4224 
4225 	md_write_start(mddev, bi);
4226 
4227 	if (rw == READ &&
4228 	     mddev->reshape_position == MaxSector &&
4229 	     chunk_aligned_read(mddev,bi))
4230 		return;
4231 
4232 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4233 		make_discard_request(mddev, bi);
4234 		return;
4235 	}
4236 
4237 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4238 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4239 	bi->bi_next = NULL;
4240 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4241 
4242 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4243 		DEFINE_WAIT(w);
4244 		int previous;
4245 
4246 	retry:
4247 		previous = 0;
4248 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4249 		if (unlikely(conf->reshape_progress != MaxSector)) {
4250 			/* spinlock is needed as reshape_progress may be
4251 			 * 64bit on a 32bit platform, and so it might be
4252 			 * possible to see a half-updated value
4253 			 * Of course reshape_progress could change after
4254 			 * the lock is dropped, so once we get a reference
4255 			 * to the stripe that we think it is, we will have
4256 			 * to check again.
4257 			 */
4258 			spin_lock_irq(&conf->device_lock);
4259 			if (mddev->reshape_backwards
4260 			    ? logical_sector < conf->reshape_progress
4261 			    : logical_sector >= conf->reshape_progress) {
4262 				previous = 1;
4263 			} else {
4264 				if (mddev->reshape_backwards
4265 				    ? logical_sector < conf->reshape_safe
4266 				    : logical_sector >= conf->reshape_safe) {
4267 					spin_unlock_irq(&conf->device_lock);
4268 					schedule();
4269 					goto retry;
4270 				}
4271 			}
4272 			spin_unlock_irq(&conf->device_lock);
4273 		}
4274 
4275 		new_sector = raid5_compute_sector(conf, logical_sector,
4276 						  previous,
4277 						  &dd_idx, NULL);
4278 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4279 			(unsigned long long)new_sector,
4280 			(unsigned long long)logical_sector);
4281 
4282 		sh = get_active_stripe(conf, new_sector, previous,
4283 				       (bi->bi_rw&RWA_MASK), 0);
4284 		if (sh) {
4285 			if (unlikely(previous)) {
4286 				/* expansion might have moved on while waiting for a
4287 				 * stripe, so we must do the range check again.
4288 				 * Expansion could still move past after this
4289 				 * test, but as we are holding a reference to
4290 				 * 'sh', we know that if that happens,
4291 				 *  STRIPE_EXPANDING will get set and the expansion
4292 				 * won't proceed until we finish with the stripe.
4293 				 */
4294 				int must_retry = 0;
4295 				spin_lock_irq(&conf->device_lock);
4296 				if (mddev->reshape_backwards
4297 				    ? logical_sector >= conf->reshape_progress
4298 				    : logical_sector < conf->reshape_progress)
4299 					/* mismatch, need to try again */
4300 					must_retry = 1;
4301 				spin_unlock_irq(&conf->device_lock);
4302 				if (must_retry) {
4303 					release_stripe(sh);
4304 					schedule();
4305 					goto retry;
4306 				}
4307 			}
4308 
4309 			if (rw == WRITE &&
4310 			    logical_sector >= mddev->suspend_lo &&
4311 			    logical_sector < mddev->suspend_hi) {
4312 				release_stripe(sh);
4313 				/* As the suspend_* range is controlled by
4314 				 * userspace, we want an interruptible
4315 				 * wait.
4316 				 */
4317 				flush_signals(current);
4318 				prepare_to_wait(&conf->wait_for_overlap,
4319 						&w, TASK_INTERRUPTIBLE);
4320 				if (logical_sector >= mddev->suspend_lo &&
4321 				    logical_sector < mddev->suspend_hi)
4322 					schedule();
4323 				goto retry;
4324 			}
4325 
4326 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4327 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4328 				/* Stripe is busy expanding or
4329 				 * add failed due to overlap.  Flush everything
4330 				 * and wait a while
4331 				 */
4332 				md_wakeup_thread(mddev->thread);
4333 				release_stripe(sh);
4334 				schedule();
4335 				goto retry;
4336 			}
4337 			finish_wait(&conf->wait_for_overlap, &w);
4338 			set_bit(STRIPE_HANDLE, &sh->state);
4339 			clear_bit(STRIPE_DELAYED, &sh->state);
4340 			if ((bi->bi_rw & REQ_SYNC) &&
4341 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4342 				atomic_inc(&conf->preread_active_stripes);
4343 			release_stripe_plug(mddev, sh);
4344 		} else {
4345 			/* cannot get stripe for read-ahead, just give-up */
4346 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4347 			finish_wait(&conf->wait_for_overlap, &w);
4348 			break;
4349 		}
4350 	}
4351 
4352 	remaining = raid5_dec_bi_active_stripes(bi);
4353 	if (remaining == 0) {
4354 
4355 		if ( rw == WRITE )
4356 			md_write_end(mddev);
4357 
4358 		bio_endio(bi, 0);
4359 	}
4360 }
4361 
4362 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4363 
4364 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4365 {
4366 	/* reshaping is quite different to recovery/resync so it is
4367 	 * handled quite separately ... here.
4368 	 *
4369 	 * On each call to sync_request, we gather one chunk worth of
4370 	 * destination stripes and flag them as expanding.
4371 	 * Then we find all the source stripes and request reads.
4372 	 * As the reads complete, handle_stripe will copy the data
4373 	 * into the destination stripe and release that stripe.
4374 	 */
4375 	struct r5conf *conf = mddev->private;
4376 	struct stripe_head *sh;
4377 	sector_t first_sector, last_sector;
4378 	int raid_disks = conf->previous_raid_disks;
4379 	int data_disks = raid_disks - conf->max_degraded;
4380 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4381 	int i;
4382 	int dd_idx;
4383 	sector_t writepos, readpos, safepos;
4384 	sector_t stripe_addr;
4385 	int reshape_sectors;
4386 	struct list_head stripes;
4387 
4388 	if (sector_nr == 0) {
4389 		/* If restarting in the middle, skip the initial sectors */
4390 		if (mddev->reshape_backwards &&
4391 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4392 			sector_nr = raid5_size(mddev, 0, 0)
4393 				- conf->reshape_progress;
4394 		} else if (!mddev->reshape_backwards &&
4395 			   conf->reshape_progress > 0)
4396 			sector_nr = conf->reshape_progress;
4397 		sector_div(sector_nr, new_data_disks);
4398 		if (sector_nr) {
4399 			mddev->curr_resync_completed = sector_nr;
4400 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4401 			*skipped = 1;
4402 			return sector_nr;
4403 		}
4404 	}
4405 
4406 	/* We need to process a full chunk at a time.
4407 	 * If old and new chunk sizes differ, we need to process the
4408 	 * largest of these
4409 	 */
4410 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4411 		reshape_sectors = mddev->new_chunk_sectors;
4412 	else
4413 		reshape_sectors = mddev->chunk_sectors;
4414 
4415 	/* We update the metadata at least every 10 seconds, or when
4416 	 * the data about to be copied would over-write the source of
4417 	 * the data at the front of the range.  i.e. one new_stripe
4418 	 * along from reshape_progress new_maps to after where
4419 	 * reshape_safe old_maps to
4420 	 */
4421 	writepos = conf->reshape_progress;
4422 	sector_div(writepos, new_data_disks);
4423 	readpos = conf->reshape_progress;
4424 	sector_div(readpos, data_disks);
4425 	safepos = conf->reshape_safe;
4426 	sector_div(safepos, data_disks);
4427 	if (mddev->reshape_backwards) {
4428 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4429 		readpos += reshape_sectors;
4430 		safepos += reshape_sectors;
4431 	} else {
4432 		writepos += reshape_sectors;
4433 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4434 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4435 	}
4436 
4437 	/* Having calculated the 'writepos' possibly use it
4438 	 * to set 'stripe_addr' which is where we will write to.
4439 	 */
4440 	if (mddev->reshape_backwards) {
4441 		BUG_ON(conf->reshape_progress == 0);
4442 		stripe_addr = writepos;
4443 		BUG_ON((mddev->dev_sectors &
4444 			~((sector_t)reshape_sectors - 1))
4445 		       - reshape_sectors - stripe_addr
4446 		       != sector_nr);
4447 	} else {
4448 		BUG_ON(writepos != sector_nr + reshape_sectors);
4449 		stripe_addr = sector_nr;
4450 	}
4451 
4452 	/* 'writepos' is the most advanced device address we might write.
4453 	 * 'readpos' is the least advanced device address we might read.
4454 	 * 'safepos' is the least address recorded in the metadata as having
4455 	 *     been reshaped.
4456 	 * If there is a min_offset_diff, these are adjusted either by
4457 	 * increasing the safepos/readpos if diff is negative, or
4458 	 * increasing writepos if diff is positive.
4459 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4460 	 * ensure safety in the face of a crash - that must be done by userspace
4461 	 * making a backup of the data.  So in that case there is no particular
4462 	 * rush to update metadata.
4463 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4464 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4465 	 * we can be safe in the event of a crash.
4466 	 * So we insist on updating metadata if safepos is behind writepos and
4467 	 * readpos is beyond writepos.
4468 	 * In any case, update the metadata every 10 seconds.
4469 	 * Maybe that number should be configurable, but I'm not sure it is
4470 	 * worth it.... maybe it could be a multiple of safemode_delay???
4471 	 */
4472 	if (conf->min_offset_diff < 0) {
4473 		safepos += -conf->min_offset_diff;
4474 		readpos += -conf->min_offset_diff;
4475 	} else
4476 		writepos += conf->min_offset_diff;
4477 
4478 	if ((mddev->reshape_backwards
4479 	     ? (safepos > writepos && readpos < writepos)
4480 	     : (safepos < writepos && readpos > writepos)) ||
4481 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4482 		/* Cannot proceed until we've updated the superblock... */
4483 		wait_event(conf->wait_for_overlap,
4484 			   atomic_read(&conf->reshape_stripes)==0);
4485 		mddev->reshape_position = conf->reshape_progress;
4486 		mddev->curr_resync_completed = sector_nr;
4487 		conf->reshape_checkpoint = jiffies;
4488 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4489 		md_wakeup_thread(mddev->thread);
4490 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4491 			   kthread_should_stop());
4492 		spin_lock_irq(&conf->device_lock);
4493 		conf->reshape_safe = mddev->reshape_position;
4494 		spin_unlock_irq(&conf->device_lock);
4495 		wake_up(&conf->wait_for_overlap);
4496 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4497 	}
4498 
4499 	INIT_LIST_HEAD(&stripes);
4500 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4501 		int j;
4502 		int skipped_disk = 0;
4503 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4504 		set_bit(STRIPE_EXPANDING, &sh->state);
4505 		atomic_inc(&conf->reshape_stripes);
4506 		/* If any of this stripe is beyond the end of the old
4507 		 * array, then we need to zero those blocks
4508 		 */
4509 		for (j=sh->disks; j--;) {
4510 			sector_t s;
4511 			if (j == sh->pd_idx)
4512 				continue;
4513 			if (conf->level == 6 &&
4514 			    j == sh->qd_idx)
4515 				continue;
4516 			s = compute_blocknr(sh, j, 0);
4517 			if (s < raid5_size(mddev, 0, 0)) {
4518 				skipped_disk = 1;
4519 				continue;
4520 			}
4521 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4522 			set_bit(R5_Expanded, &sh->dev[j].flags);
4523 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4524 		}
4525 		if (!skipped_disk) {
4526 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4527 			set_bit(STRIPE_HANDLE, &sh->state);
4528 		}
4529 		list_add(&sh->lru, &stripes);
4530 	}
4531 	spin_lock_irq(&conf->device_lock);
4532 	if (mddev->reshape_backwards)
4533 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4534 	else
4535 		conf->reshape_progress += reshape_sectors * new_data_disks;
4536 	spin_unlock_irq(&conf->device_lock);
4537 	/* Ok, those stripe are ready. We can start scheduling
4538 	 * reads on the source stripes.
4539 	 * The source stripes are determined by mapping the first and last
4540 	 * block on the destination stripes.
4541 	 */
4542 	first_sector =
4543 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4544 				     1, &dd_idx, NULL);
4545 	last_sector =
4546 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4547 					    * new_data_disks - 1),
4548 				     1, &dd_idx, NULL);
4549 	if (last_sector >= mddev->dev_sectors)
4550 		last_sector = mddev->dev_sectors - 1;
4551 	while (first_sector <= last_sector) {
4552 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4553 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4554 		set_bit(STRIPE_HANDLE, &sh->state);
4555 		release_stripe(sh);
4556 		first_sector += STRIPE_SECTORS;
4557 	}
4558 	/* Now that the sources are clearly marked, we can release
4559 	 * the destination stripes
4560 	 */
4561 	while (!list_empty(&stripes)) {
4562 		sh = list_entry(stripes.next, struct stripe_head, lru);
4563 		list_del_init(&sh->lru);
4564 		release_stripe(sh);
4565 	}
4566 	/* If this takes us to the resync_max point where we have to pause,
4567 	 * then we need to write out the superblock.
4568 	 */
4569 	sector_nr += reshape_sectors;
4570 	if ((sector_nr - mddev->curr_resync_completed) * 2
4571 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4572 		/* Cannot proceed until we've updated the superblock... */
4573 		wait_event(conf->wait_for_overlap,
4574 			   atomic_read(&conf->reshape_stripes) == 0);
4575 		mddev->reshape_position = conf->reshape_progress;
4576 		mddev->curr_resync_completed = sector_nr;
4577 		conf->reshape_checkpoint = jiffies;
4578 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4579 		md_wakeup_thread(mddev->thread);
4580 		wait_event(mddev->sb_wait,
4581 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4582 			   || kthread_should_stop());
4583 		spin_lock_irq(&conf->device_lock);
4584 		conf->reshape_safe = mddev->reshape_position;
4585 		spin_unlock_irq(&conf->device_lock);
4586 		wake_up(&conf->wait_for_overlap);
4587 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4588 	}
4589 	return reshape_sectors;
4590 }
4591 
4592 /* FIXME go_faster isn't used */
4593 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4594 {
4595 	struct r5conf *conf = mddev->private;
4596 	struct stripe_head *sh;
4597 	sector_t max_sector = mddev->dev_sectors;
4598 	sector_t sync_blocks;
4599 	int still_degraded = 0;
4600 	int i;
4601 
4602 	if (sector_nr >= max_sector) {
4603 		/* just being told to finish up .. nothing much to do */
4604 
4605 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4606 			end_reshape(conf);
4607 			return 0;
4608 		}
4609 
4610 		if (mddev->curr_resync < max_sector) /* aborted */
4611 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4612 					&sync_blocks, 1);
4613 		else /* completed sync */
4614 			conf->fullsync = 0;
4615 		bitmap_close_sync(mddev->bitmap);
4616 
4617 		return 0;
4618 	}
4619 
4620 	/* Allow raid5_quiesce to complete */
4621 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4622 
4623 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4624 		return reshape_request(mddev, sector_nr, skipped);
4625 
4626 	/* No need to check resync_max as we never do more than one
4627 	 * stripe, and as resync_max will always be on a chunk boundary,
4628 	 * if the check in md_do_sync didn't fire, there is no chance
4629 	 * of overstepping resync_max here
4630 	 */
4631 
4632 	/* if there is too many failed drives and we are trying
4633 	 * to resync, then assert that we are finished, because there is
4634 	 * nothing we can do.
4635 	 */
4636 	if (mddev->degraded >= conf->max_degraded &&
4637 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4638 		sector_t rv = mddev->dev_sectors - sector_nr;
4639 		*skipped = 1;
4640 		return rv;
4641 	}
4642 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4643 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4644 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4645 		/* we can skip this block, and probably more */
4646 		sync_blocks /= STRIPE_SECTORS;
4647 		*skipped = 1;
4648 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4649 	}
4650 
4651 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4652 
4653 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4654 	if (sh == NULL) {
4655 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4656 		/* make sure we don't swamp the stripe cache if someone else
4657 		 * is trying to get access
4658 		 */
4659 		schedule_timeout_uninterruptible(1);
4660 	}
4661 	/* Need to check if array will still be degraded after recovery/resync
4662 	 * We don't need to check the 'failed' flag as when that gets set,
4663 	 * recovery aborts.
4664 	 */
4665 	for (i = 0; i < conf->raid_disks; i++)
4666 		if (conf->disks[i].rdev == NULL)
4667 			still_degraded = 1;
4668 
4669 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4670 
4671 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4672 
4673 	handle_stripe(sh);
4674 	release_stripe(sh);
4675 
4676 	return STRIPE_SECTORS;
4677 }
4678 
4679 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4680 {
4681 	/* We may not be able to submit a whole bio at once as there
4682 	 * may not be enough stripe_heads available.
4683 	 * We cannot pre-allocate enough stripe_heads as we may need
4684 	 * more than exist in the cache (if we allow ever large chunks).
4685 	 * So we do one stripe head at a time and record in
4686 	 * ->bi_hw_segments how many have been done.
4687 	 *
4688 	 * We *know* that this entire raid_bio is in one chunk, so
4689 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4690 	 */
4691 	struct stripe_head *sh;
4692 	int dd_idx;
4693 	sector_t sector, logical_sector, last_sector;
4694 	int scnt = 0;
4695 	int remaining;
4696 	int handled = 0;
4697 
4698 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4699 	sector = raid5_compute_sector(conf, logical_sector,
4700 				      0, &dd_idx, NULL);
4701 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4702 
4703 	for (; logical_sector < last_sector;
4704 	     logical_sector += STRIPE_SECTORS,
4705 		     sector += STRIPE_SECTORS,
4706 		     scnt++) {
4707 
4708 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4709 			/* already done this stripe */
4710 			continue;
4711 
4712 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4713 
4714 		if (!sh) {
4715 			/* failed to get a stripe - must wait */
4716 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4717 			conf->retry_read_aligned = raid_bio;
4718 			return handled;
4719 		}
4720 
4721 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4722 			release_stripe(sh);
4723 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4724 			conf->retry_read_aligned = raid_bio;
4725 			return handled;
4726 		}
4727 
4728 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4729 		handle_stripe(sh);
4730 		release_stripe(sh);
4731 		handled++;
4732 	}
4733 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4734 	if (remaining == 0)
4735 		bio_endio(raid_bio, 0);
4736 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4737 		wake_up(&conf->wait_for_stripe);
4738 	return handled;
4739 }
4740 
4741 #define MAX_STRIPE_BATCH 8
4742 static int handle_active_stripes(struct r5conf *conf)
4743 {
4744 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4745 	int i, batch_size = 0;
4746 
4747 	while (batch_size < MAX_STRIPE_BATCH &&
4748 			(sh = __get_priority_stripe(conf)) != NULL)
4749 		batch[batch_size++] = sh;
4750 
4751 	if (batch_size == 0)
4752 		return batch_size;
4753 	spin_unlock_irq(&conf->device_lock);
4754 
4755 	for (i = 0; i < batch_size; i++)
4756 		handle_stripe(batch[i]);
4757 
4758 	cond_resched();
4759 
4760 	spin_lock_irq(&conf->device_lock);
4761 	for (i = 0; i < batch_size; i++)
4762 		__release_stripe(conf, batch[i]);
4763 	return batch_size;
4764 }
4765 
4766 /*
4767  * This is our raid5 kernel thread.
4768  *
4769  * We scan the hash table for stripes which can be handled now.
4770  * During the scan, completed stripes are saved for us by the interrupt
4771  * handler, so that they will not have to wait for our next wakeup.
4772  */
4773 static void raid5d(struct md_thread *thread)
4774 {
4775 	struct mddev *mddev = thread->mddev;
4776 	struct r5conf *conf = mddev->private;
4777 	int handled;
4778 	struct blk_plug plug;
4779 
4780 	pr_debug("+++ raid5d active\n");
4781 
4782 	md_check_recovery(mddev);
4783 
4784 	blk_start_plug(&plug);
4785 	handled = 0;
4786 	spin_lock_irq(&conf->device_lock);
4787 	while (1) {
4788 		struct bio *bio;
4789 		int batch_size;
4790 
4791 		if (
4792 		    !list_empty(&conf->bitmap_list)) {
4793 			/* Now is a good time to flush some bitmap updates */
4794 			conf->seq_flush++;
4795 			spin_unlock_irq(&conf->device_lock);
4796 			bitmap_unplug(mddev->bitmap);
4797 			spin_lock_irq(&conf->device_lock);
4798 			conf->seq_write = conf->seq_flush;
4799 			activate_bit_delay(conf);
4800 		}
4801 		raid5_activate_delayed(conf);
4802 
4803 		while ((bio = remove_bio_from_retry(conf))) {
4804 			int ok;
4805 			spin_unlock_irq(&conf->device_lock);
4806 			ok = retry_aligned_read(conf, bio);
4807 			spin_lock_irq(&conf->device_lock);
4808 			if (!ok)
4809 				break;
4810 			handled++;
4811 		}
4812 
4813 		batch_size = handle_active_stripes(conf);
4814 		if (!batch_size)
4815 			break;
4816 		handled += batch_size;
4817 
4818 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4819 			spin_unlock_irq(&conf->device_lock);
4820 			md_check_recovery(mddev);
4821 			spin_lock_irq(&conf->device_lock);
4822 		}
4823 	}
4824 	pr_debug("%d stripes handled\n", handled);
4825 
4826 	spin_unlock_irq(&conf->device_lock);
4827 
4828 	async_tx_issue_pending_all();
4829 	blk_finish_plug(&plug);
4830 
4831 	pr_debug("--- raid5d inactive\n");
4832 }
4833 
4834 static ssize_t
4835 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4836 {
4837 	struct r5conf *conf = mddev->private;
4838 	if (conf)
4839 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4840 	else
4841 		return 0;
4842 }
4843 
4844 int
4845 raid5_set_cache_size(struct mddev *mddev, int size)
4846 {
4847 	struct r5conf *conf = mddev->private;
4848 	int err;
4849 
4850 	if (size <= 16 || size > 32768)
4851 		return -EINVAL;
4852 	while (size < conf->max_nr_stripes) {
4853 		if (drop_one_stripe(conf))
4854 			conf->max_nr_stripes--;
4855 		else
4856 			break;
4857 	}
4858 	err = md_allow_write(mddev);
4859 	if (err)
4860 		return err;
4861 	while (size > conf->max_nr_stripes) {
4862 		if (grow_one_stripe(conf))
4863 			conf->max_nr_stripes++;
4864 		else break;
4865 	}
4866 	return 0;
4867 }
4868 EXPORT_SYMBOL(raid5_set_cache_size);
4869 
4870 static ssize_t
4871 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4872 {
4873 	struct r5conf *conf = mddev->private;
4874 	unsigned long new;
4875 	int err;
4876 
4877 	if (len >= PAGE_SIZE)
4878 		return -EINVAL;
4879 	if (!conf)
4880 		return -ENODEV;
4881 
4882 	if (strict_strtoul(page, 10, &new))
4883 		return -EINVAL;
4884 	err = raid5_set_cache_size(mddev, new);
4885 	if (err)
4886 		return err;
4887 	return len;
4888 }
4889 
4890 static struct md_sysfs_entry
4891 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4892 				raid5_show_stripe_cache_size,
4893 				raid5_store_stripe_cache_size);
4894 
4895 static ssize_t
4896 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4897 {
4898 	struct r5conf *conf = mddev->private;
4899 	if (conf)
4900 		return sprintf(page, "%d\n", conf->bypass_threshold);
4901 	else
4902 		return 0;
4903 }
4904 
4905 static ssize_t
4906 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4907 {
4908 	struct r5conf *conf = mddev->private;
4909 	unsigned long new;
4910 	if (len >= PAGE_SIZE)
4911 		return -EINVAL;
4912 	if (!conf)
4913 		return -ENODEV;
4914 
4915 	if (strict_strtoul(page, 10, &new))
4916 		return -EINVAL;
4917 	if (new > conf->max_nr_stripes)
4918 		return -EINVAL;
4919 	conf->bypass_threshold = new;
4920 	return len;
4921 }
4922 
4923 static struct md_sysfs_entry
4924 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4925 					S_IRUGO | S_IWUSR,
4926 					raid5_show_preread_threshold,
4927 					raid5_store_preread_threshold);
4928 
4929 static ssize_t
4930 stripe_cache_active_show(struct mddev *mddev, char *page)
4931 {
4932 	struct r5conf *conf = mddev->private;
4933 	if (conf)
4934 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4935 	else
4936 		return 0;
4937 }
4938 
4939 static struct md_sysfs_entry
4940 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4941 
4942 static struct attribute *raid5_attrs[] =  {
4943 	&raid5_stripecache_size.attr,
4944 	&raid5_stripecache_active.attr,
4945 	&raid5_preread_bypass_threshold.attr,
4946 	NULL,
4947 };
4948 static struct attribute_group raid5_attrs_group = {
4949 	.name = NULL,
4950 	.attrs = raid5_attrs,
4951 };
4952 
4953 static sector_t
4954 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4955 {
4956 	struct r5conf *conf = mddev->private;
4957 
4958 	if (!sectors)
4959 		sectors = mddev->dev_sectors;
4960 	if (!raid_disks)
4961 		/* size is defined by the smallest of previous and new size */
4962 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4963 
4964 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4965 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4966 	return sectors * (raid_disks - conf->max_degraded);
4967 }
4968 
4969 static void raid5_free_percpu(struct r5conf *conf)
4970 {
4971 	struct raid5_percpu *percpu;
4972 	unsigned long cpu;
4973 
4974 	if (!conf->percpu)
4975 		return;
4976 
4977 	get_online_cpus();
4978 	for_each_possible_cpu(cpu) {
4979 		percpu = per_cpu_ptr(conf->percpu, cpu);
4980 		safe_put_page(percpu->spare_page);
4981 		kfree(percpu->scribble);
4982 	}
4983 #ifdef CONFIG_HOTPLUG_CPU
4984 	unregister_cpu_notifier(&conf->cpu_notify);
4985 #endif
4986 	put_online_cpus();
4987 
4988 	free_percpu(conf->percpu);
4989 }
4990 
4991 static void free_conf(struct r5conf *conf)
4992 {
4993 	shrink_stripes(conf);
4994 	raid5_free_percpu(conf);
4995 	kfree(conf->disks);
4996 	kfree(conf->stripe_hashtbl);
4997 	kfree(conf);
4998 }
4999 
5000 #ifdef CONFIG_HOTPLUG_CPU
5001 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5002 			      void *hcpu)
5003 {
5004 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5005 	long cpu = (long)hcpu;
5006 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5007 
5008 	switch (action) {
5009 	case CPU_UP_PREPARE:
5010 	case CPU_UP_PREPARE_FROZEN:
5011 		if (conf->level == 6 && !percpu->spare_page)
5012 			percpu->spare_page = alloc_page(GFP_KERNEL);
5013 		if (!percpu->scribble)
5014 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5015 
5016 		if (!percpu->scribble ||
5017 		    (conf->level == 6 && !percpu->spare_page)) {
5018 			safe_put_page(percpu->spare_page);
5019 			kfree(percpu->scribble);
5020 			pr_err("%s: failed memory allocation for cpu%ld\n",
5021 			       __func__, cpu);
5022 			return notifier_from_errno(-ENOMEM);
5023 		}
5024 		break;
5025 	case CPU_DEAD:
5026 	case CPU_DEAD_FROZEN:
5027 		safe_put_page(percpu->spare_page);
5028 		kfree(percpu->scribble);
5029 		percpu->spare_page = NULL;
5030 		percpu->scribble = NULL;
5031 		break;
5032 	default:
5033 		break;
5034 	}
5035 	return NOTIFY_OK;
5036 }
5037 #endif
5038 
5039 static int raid5_alloc_percpu(struct r5conf *conf)
5040 {
5041 	unsigned long cpu;
5042 	struct page *spare_page;
5043 	struct raid5_percpu __percpu *allcpus;
5044 	void *scribble;
5045 	int err;
5046 
5047 	allcpus = alloc_percpu(struct raid5_percpu);
5048 	if (!allcpus)
5049 		return -ENOMEM;
5050 	conf->percpu = allcpus;
5051 
5052 	get_online_cpus();
5053 	err = 0;
5054 	for_each_present_cpu(cpu) {
5055 		if (conf->level == 6) {
5056 			spare_page = alloc_page(GFP_KERNEL);
5057 			if (!spare_page) {
5058 				err = -ENOMEM;
5059 				break;
5060 			}
5061 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5062 		}
5063 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5064 		if (!scribble) {
5065 			err = -ENOMEM;
5066 			break;
5067 		}
5068 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5069 	}
5070 #ifdef CONFIG_HOTPLUG_CPU
5071 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5072 	conf->cpu_notify.priority = 0;
5073 	if (err == 0)
5074 		err = register_cpu_notifier(&conf->cpu_notify);
5075 #endif
5076 	put_online_cpus();
5077 
5078 	return err;
5079 }
5080 
5081 static struct r5conf *setup_conf(struct mddev *mddev)
5082 {
5083 	struct r5conf *conf;
5084 	int raid_disk, memory, max_disks;
5085 	struct md_rdev *rdev;
5086 	struct disk_info *disk;
5087 	char pers_name[6];
5088 
5089 	if (mddev->new_level != 5
5090 	    && mddev->new_level != 4
5091 	    && mddev->new_level != 6) {
5092 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5093 		       mdname(mddev), mddev->new_level);
5094 		return ERR_PTR(-EIO);
5095 	}
5096 	if ((mddev->new_level == 5
5097 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5098 	    (mddev->new_level == 6
5099 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5100 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5101 		       mdname(mddev), mddev->new_layout);
5102 		return ERR_PTR(-EIO);
5103 	}
5104 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5105 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5106 		       mdname(mddev), mddev->raid_disks);
5107 		return ERR_PTR(-EINVAL);
5108 	}
5109 
5110 	if (!mddev->new_chunk_sectors ||
5111 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5112 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5113 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5114 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5115 		return ERR_PTR(-EINVAL);
5116 	}
5117 
5118 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5119 	if (conf == NULL)
5120 		goto abort;
5121 	spin_lock_init(&conf->device_lock);
5122 	init_waitqueue_head(&conf->wait_for_stripe);
5123 	init_waitqueue_head(&conf->wait_for_overlap);
5124 	INIT_LIST_HEAD(&conf->handle_list);
5125 	INIT_LIST_HEAD(&conf->hold_list);
5126 	INIT_LIST_HEAD(&conf->delayed_list);
5127 	INIT_LIST_HEAD(&conf->bitmap_list);
5128 	INIT_LIST_HEAD(&conf->inactive_list);
5129 	atomic_set(&conf->active_stripes, 0);
5130 	atomic_set(&conf->preread_active_stripes, 0);
5131 	atomic_set(&conf->active_aligned_reads, 0);
5132 	conf->bypass_threshold = BYPASS_THRESHOLD;
5133 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5134 
5135 	conf->raid_disks = mddev->raid_disks;
5136 	if (mddev->reshape_position == MaxSector)
5137 		conf->previous_raid_disks = mddev->raid_disks;
5138 	else
5139 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5140 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5141 	conf->scribble_len = scribble_len(max_disks);
5142 
5143 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5144 			      GFP_KERNEL);
5145 	if (!conf->disks)
5146 		goto abort;
5147 
5148 	conf->mddev = mddev;
5149 
5150 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5151 		goto abort;
5152 
5153 	conf->level = mddev->new_level;
5154 	if (raid5_alloc_percpu(conf) != 0)
5155 		goto abort;
5156 
5157 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5158 
5159 	rdev_for_each(rdev, mddev) {
5160 		raid_disk = rdev->raid_disk;
5161 		if (raid_disk >= max_disks
5162 		    || raid_disk < 0)
5163 			continue;
5164 		disk = conf->disks + raid_disk;
5165 
5166 		if (test_bit(Replacement, &rdev->flags)) {
5167 			if (disk->replacement)
5168 				goto abort;
5169 			disk->replacement = rdev;
5170 		} else {
5171 			if (disk->rdev)
5172 				goto abort;
5173 			disk->rdev = rdev;
5174 		}
5175 
5176 		if (test_bit(In_sync, &rdev->flags)) {
5177 			char b[BDEVNAME_SIZE];
5178 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5179 			       " disk %d\n",
5180 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5181 		} else if (rdev->saved_raid_disk != raid_disk)
5182 			/* Cannot rely on bitmap to complete recovery */
5183 			conf->fullsync = 1;
5184 	}
5185 
5186 	conf->chunk_sectors = mddev->new_chunk_sectors;
5187 	conf->level = mddev->new_level;
5188 	if (conf->level == 6)
5189 		conf->max_degraded = 2;
5190 	else
5191 		conf->max_degraded = 1;
5192 	conf->algorithm = mddev->new_layout;
5193 	conf->max_nr_stripes = NR_STRIPES;
5194 	conf->reshape_progress = mddev->reshape_position;
5195 	if (conf->reshape_progress != MaxSector) {
5196 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5197 		conf->prev_algo = mddev->layout;
5198 	}
5199 
5200 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5201 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5202 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5203 		printk(KERN_ERR
5204 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5205 		       mdname(mddev), memory);
5206 		goto abort;
5207 	} else
5208 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5209 		       mdname(mddev), memory);
5210 
5211 	sprintf(pers_name, "raid%d", mddev->new_level);
5212 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5213 	if (!conf->thread) {
5214 		printk(KERN_ERR
5215 		       "md/raid:%s: couldn't allocate thread.\n",
5216 		       mdname(mddev));
5217 		goto abort;
5218 	}
5219 
5220 	return conf;
5221 
5222  abort:
5223 	if (conf) {
5224 		free_conf(conf);
5225 		return ERR_PTR(-EIO);
5226 	} else
5227 		return ERR_PTR(-ENOMEM);
5228 }
5229 
5230 
5231 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5232 {
5233 	switch (algo) {
5234 	case ALGORITHM_PARITY_0:
5235 		if (raid_disk < max_degraded)
5236 			return 1;
5237 		break;
5238 	case ALGORITHM_PARITY_N:
5239 		if (raid_disk >= raid_disks - max_degraded)
5240 			return 1;
5241 		break;
5242 	case ALGORITHM_PARITY_0_6:
5243 		if (raid_disk == 0 ||
5244 		    raid_disk == raid_disks - 1)
5245 			return 1;
5246 		break;
5247 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5248 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5249 	case ALGORITHM_LEFT_SYMMETRIC_6:
5250 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5251 		if (raid_disk == raid_disks - 1)
5252 			return 1;
5253 	}
5254 	return 0;
5255 }
5256 
5257 static int run(struct mddev *mddev)
5258 {
5259 	struct r5conf *conf;
5260 	int working_disks = 0;
5261 	int dirty_parity_disks = 0;
5262 	struct md_rdev *rdev;
5263 	sector_t reshape_offset = 0;
5264 	int i;
5265 	long long min_offset_diff = 0;
5266 	int first = 1;
5267 
5268 	if (mddev->recovery_cp != MaxSector)
5269 		printk(KERN_NOTICE "md/raid:%s: not clean"
5270 		       " -- starting background reconstruction\n",
5271 		       mdname(mddev));
5272 
5273 	rdev_for_each(rdev, mddev) {
5274 		long long diff;
5275 		if (rdev->raid_disk < 0)
5276 			continue;
5277 		diff = (rdev->new_data_offset - rdev->data_offset);
5278 		if (first) {
5279 			min_offset_diff = diff;
5280 			first = 0;
5281 		} else if (mddev->reshape_backwards &&
5282 			 diff < min_offset_diff)
5283 			min_offset_diff = diff;
5284 		else if (!mddev->reshape_backwards &&
5285 			 diff > min_offset_diff)
5286 			min_offset_diff = diff;
5287 	}
5288 
5289 	if (mddev->reshape_position != MaxSector) {
5290 		/* Check that we can continue the reshape.
5291 		 * Difficulties arise if the stripe we would write to
5292 		 * next is at or after the stripe we would read from next.
5293 		 * For a reshape that changes the number of devices, this
5294 		 * is only possible for a very short time, and mdadm makes
5295 		 * sure that time appears to have past before assembling
5296 		 * the array.  So we fail if that time hasn't passed.
5297 		 * For a reshape that keeps the number of devices the same
5298 		 * mdadm must be monitoring the reshape can keeping the
5299 		 * critical areas read-only and backed up.  It will start
5300 		 * the array in read-only mode, so we check for that.
5301 		 */
5302 		sector_t here_new, here_old;
5303 		int old_disks;
5304 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5305 
5306 		if (mddev->new_level != mddev->level) {
5307 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5308 			       "required - aborting.\n",
5309 			       mdname(mddev));
5310 			return -EINVAL;
5311 		}
5312 		old_disks = mddev->raid_disks - mddev->delta_disks;
5313 		/* reshape_position must be on a new-stripe boundary, and one
5314 		 * further up in new geometry must map after here in old
5315 		 * geometry.
5316 		 */
5317 		here_new = mddev->reshape_position;
5318 		if (sector_div(here_new, mddev->new_chunk_sectors *
5319 			       (mddev->raid_disks - max_degraded))) {
5320 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5321 			       "on a stripe boundary\n", mdname(mddev));
5322 			return -EINVAL;
5323 		}
5324 		reshape_offset = here_new * mddev->new_chunk_sectors;
5325 		/* here_new is the stripe we will write to */
5326 		here_old = mddev->reshape_position;
5327 		sector_div(here_old, mddev->chunk_sectors *
5328 			   (old_disks-max_degraded));
5329 		/* here_old is the first stripe that we might need to read
5330 		 * from */
5331 		if (mddev->delta_disks == 0) {
5332 			if ((here_new * mddev->new_chunk_sectors !=
5333 			     here_old * mddev->chunk_sectors)) {
5334 				printk(KERN_ERR "md/raid:%s: reshape position is"
5335 				       " confused - aborting\n", mdname(mddev));
5336 				return -EINVAL;
5337 			}
5338 			/* We cannot be sure it is safe to start an in-place
5339 			 * reshape.  It is only safe if user-space is monitoring
5340 			 * and taking constant backups.
5341 			 * mdadm always starts a situation like this in
5342 			 * readonly mode so it can take control before
5343 			 * allowing any writes.  So just check for that.
5344 			 */
5345 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5346 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5347 				/* not really in-place - so OK */;
5348 			else if (mddev->ro == 0) {
5349 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5350 				       "must be started in read-only mode "
5351 				       "- aborting\n",
5352 				       mdname(mddev));
5353 				return -EINVAL;
5354 			}
5355 		} else if (mddev->reshape_backwards
5356 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5357 		       here_old * mddev->chunk_sectors)
5358 		    : (here_new * mddev->new_chunk_sectors >=
5359 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5360 			/* Reading from the same stripe as writing to - bad */
5361 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5362 			       "auto-recovery - aborting.\n",
5363 			       mdname(mddev));
5364 			return -EINVAL;
5365 		}
5366 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5367 		       mdname(mddev));
5368 		/* OK, we should be able to continue; */
5369 	} else {
5370 		BUG_ON(mddev->level != mddev->new_level);
5371 		BUG_ON(mddev->layout != mddev->new_layout);
5372 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5373 		BUG_ON(mddev->delta_disks != 0);
5374 	}
5375 
5376 	if (mddev->private == NULL)
5377 		conf = setup_conf(mddev);
5378 	else
5379 		conf = mddev->private;
5380 
5381 	if (IS_ERR(conf))
5382 		return PTR_ERR(conf);
5383 
5384 	conf->min_offset_diff = min_offset_diff;
5385 	mddev->thread = conf->thread;
5386 	conf->thread = NULL;
5387 	mddev->private = conf;
5388 
5389 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5390 	     i++) {
5391 		rdev = conf->disks[i].rdev;
5392 		if (!rdev && conf->disks[i].replacement) {
5393 			/* The replacement is all we have yet */
5394 			rdev = conf->disks[i].replacement;
5395 			conf->disks[i].replacement = NULL;
5396 			clear_bit(Replacement, &rdev->flags);
5397 			conf->disks[i].rdev = rdev;
5398 		}
5399 		if (!rdev)
5400 			continue;
5401 		if (conf->disks[i].replacement &&
5402 		    conf->reshape_progress != MaxSector) {
5403 			/* replacements and reshape simply do not mix. */
5404 			printk(KERN_ERR "md: cannot handle concurrent "
5405 			       "replacement and reshape.\n");
5406 			goto abort;
5407 		}
5408 		if (test_bit(In_sync, &rdev->flags)) {
5409 			working_disks++;
5410 			continue;
5411 		}
5412 		/* This disc is not fully in-sync.  However if it
5413 		 * just stored parity (beyond the recovery_offset),
5414 		 * when we don't need to be concerned about the
5415 		 * array being dirty.
5416 		 * When reshape goes 'backwards', we never have
5417 		 * partially completed devices, so we only need
5418 		 * to worry about reshape going forwards.
5419 		 */
5420 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5421 		if (mddev->major_version == 0 &&
5422 		    mddev->minor_version > 90)
5423 			rdev->recovery_offset = reshape_offset;
5424 
5425 		if (rdev->recovery_offset < reshape_offset) {
5426 			/* We need to check old and new layout */
5427 			if (!only_parity(rdev->raid_disk,
5428 					 conf->algorithm,
5429 					 conf->raid_disks,
5430 					 conf->max_degraded))
5431 				continue;
5432 		}
5433 		if (!only_parity(rdev->raid_disk,
5434 				 conf->prev_algo,
5435 				 conf->previous_raid_disks,
5436 				 conf->max_degraded))
5437 			continue;
5438 		dirty_parity_disks++;
5439 	}
5440 
5441 	/*
5442 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5443 	 */
5444 	mddev->degraded = calc_degraded(conf);
5445 
5446 	if (has_failed(conf)) {
5447 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5448 			" (%d/%d failed)\n",
5449 			mdname(mddev), mddev->degraded, conf->raid_disks);
5450 		goto abort;
5451 	}
5452 
5453 	/* device size must be a multiple of chunk size */
5454 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5455 	mddev->resync_max_sectors = mddev->dev_sectors;
5456 
5457 	if (mddev->degraded > dirty_parity_disks &&
5458 	    mddev->recovery_cp != MaxSector) {
5459 		if (mddev->ok_start_degraded)
5460 			printk(KERN_WARNING
5461 			       "md/raid:%s: starting dirty degraded array"
5462 			       " - data corruption possible.\n",
5463 			       mdname(mddev));
5464 		else {
5465 			printk(KERN_ERR
5466 			       "md/raid:%s: cannot start dirty degraded array.\n",
5467 			       mdname(mddev));
5468 			goto abort;
5469 		}
5470 	}
5471 
5472 	if (mddev->degraded == 0)
5473 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5474 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5475 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5476 		       mddev->new_layout);
5477 	else
5478 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5479 		       " out of %d devices, algorithm %d\n",
5480 		       mdname(mddev), conf->level,
5481 		       mddev->raid_disks - mddev->degraded,
5482 		       mddev->raid_disks, mddev->new_layout);
5483 
5484 	print_raid5_conf(conf);
5485 
5486 	if (conf->reshape_progress != MaxSector) {
5487 		conf->reshape_safe = conf->reshape_progress;
5488 		atomic_set(&conf->reshape_stripes, 0);
5489 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5490 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5491 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5492 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5493 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5494 							"reshape");
5495 	}
5496 
5497 
5498 	/* Ok, everything is just fine now */
5499 	if (mddev->to_remove == &raid5_attrs_group)
5500 		mddev->to_remove = NULL;
5501 	else if (mddev->kobj.sd &&
5502 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5503 		printk(KERN_WARNING
5504 		       "raid5: failed to create sysfs attributes for %s\n",
5505 		       mdname(mddev));
5506 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5507 
5508 	if (mddev->queue) {
5509 		int chunk_size;
5510 		bool discard_supported = true;
5511 		/* read-ahead size must cover two whole stripes, which
5512 		 * is 2 * (datadisks) * chunksize where 'n' is the
5513 		 * number of raid devices
5514 		 */
5515 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5516 		int stripe = data_disks *
5517 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5518 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5519 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5520 
5521 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5522 
5523 		mddev->queue->backing_dev_info.congested_data = mddev;
5524 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5525 
5526 		chunk_size = mddev->chunk_sectors << 9;
5527 		blk_queue_io_min(mddev->queue, chunk_size);
5528 		blk_queue_io_opt(mddev->queue, chunk_size *
5529 				 (conf->raid_disks - conf->max_degraded));
5530 		/*
5531 		 * We can only discard a whole stripe. It doesn't make sense to
5532 		 * discard data disk but write parity disk
5533 		 */
5534 		stripe = stripe * PAGE_SIZE;
5535 		/* Round up to power of 2, as discard handling
5536 		 * currently assumes that */
5537 		while ((stripe-1) & stripe)
5538 			stripe = (stripe | (stripe-1)) + 1;
5539 		mddev->queue->limits.discard_alignment = stripe;
5540 		mddev->queue->limits.discard_granularity = stripe;
5541 		/*
5542 		 * unaligned part of discard request will be ignored, so can't
5543 		 * guarantee discard_zerors_data
5544 		 */
5545 		mddev->queue->limits.discard_zeroes_data = 0;
5546 
5547 		rdev_for_each(rdev, mddev) {
5548 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5549 					  rdev->data_offset << 9);
5550 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5551 					  rdev->new_data_offset << 9);
5552 			/*
5553 			 * discard_zeroes_data is required, otherwise data
5554 			 * could be lost. Consider a scenario: discard a stripe
5555 			 * (the stripe could be inconsistent if
5556 			 * discard_zeroes_data is 0); write one disk of the
5557 			 * stripe (the stripe could be inconsistent again
5558 			 * depending on which disks are used to calculate
5559 			 * parity); the disk is broken; The stripe data of this
5560 			 * disk is lost.
5561 			 */
5562 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5563 			    !bdev_get_queue(rdev->bdev)->
5564 						limits.discard_zeroes_data)
5565 				discard_supported = false;
5566 		}
5567 
5568 		if (discard_supported &&
5569 		   mddev->queue->limits.max_discard_sectors >= stripe &&
5570 		   mddev->queue->limits.discard_granularity >= stripe)
5571 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5572 						mddev->queue);
5573 		else
5574 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5575 						mddev->queue);
5576 	}
5577 
5578 	return 0;
5579 abort:
5580 	md_unregister_thread(&mddev->thread);
5581 	print_raid5_conf(conf);
5582 	free_conf(conf);
5583 	mddev->private = NULL;
5584 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5585 	return -EIO;
5586 }
5587 
5588 static int stop(struct mddev *mddev)
5589 {
5590 	struct r5conf *conf = mddev->private;
5591 
5592 	md_unregister_thread(&mddev->thread);
5593 	if (mddev->queue)
5594 		mddev->queue->backing_dev_info.congested_fn = NULL;
5595 	free_conf(conf);
5596 	mddev->private = NULL;
5597 	mddev->to_remove = &raid5_attrs_group;
5598 	return 0;
5599 }
5600 
5601 static void status(struct seq_file *seq, struct mddev *mddev)
5602 {
5603 	struct r5conf *conf = mddev->private;
5604 	int i;
5605 
5606 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5607 		mddev->chunk_sectors / 2, mddev->layout);
5608 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5609 	for (i = 0; i < conf->raid_disks; i++)
5610 		seq_printf (seq, "%s",
5611 			       conf->disks[i].rdev &&
5612 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5613 	seq_printf (seq, "]");
5614 }
5615 
5616 static void print_raid5_conf (struct r5conf *conf)
5617 {
5618 	int i;
5619 	struct disk_info *tmp;
5620 
5621 	printk(KERN_DEBUG "RAID conf printout:\n");
5622 	if (!conf) {
5623 		printk("(conf==NULL)\n");
5624 		return;
5625 	}
5626 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5627 	       conf->raid_disks,
5628 	       conf->raid_disks - conf->mddev->degraded);
5629 
5630 	for (i = 0; i < conf->raid_disks; i++) {
5631 		char b[BDEVNAME_SIZE];
5632 		tmp = conf->disks + i;
5633 		if (tmp->rdev)
5634 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5635 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5636 			       bdevname(tmp->rdev->bdev, b));
5637 	}
5638 }
5639 
5640 static int raid5_spare_active(struct mddev *mddev)
5641 {
5642 	int i;
5643 	struct r5conf *conf = mddev->private;
5644 	struct disk_info *tmp;
5645 	int count = 0;
5646 	unsigned long flags;
5647 
5648 	for (i = 0; i < conf->raid_disks; i++) {
5649 		tmp = conf->disks + i;
5650 		if (tmp->replacement
5651 		    && tmp->replacement->recovery_offset == MaxSector
5652 		    && !test_bit(Faulty, &tmp->replacement->flags)
5653 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5654 			/* Replacement has just become active. */
5655 			if (!tmp->rdev
5656 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5657 				count++;
5658 			if (tmp->rdev) {
5659 				/* Replaced device not technically faulty,
5660 				 * but we need to be sure it gets removed
5661 				 * and never re-added.
5662 				 */
5663 				set_bit(Faulty, &tmp->rdev->flags);
5664 				sysfs_notify_dirent_safe(
5665 					tmp->rdev->sysfs_state);
5666 			}
5667 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5668 		} else if (tmp->rdev
5669 		    && tmp->rdev->recovery_offset == MaxSector
5670 		    && !test_bit(Faulty, &tmp->rdev->flags)
5671 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5672 			count++;
5673 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5674 		}
5675 	}
5676 	spin_lock_irqsave(&conf->device_lock, flags);
5677 	mddev->degraded = calc_degraded(conf);
5678 	spin_unlock_irqrestore(&conf->device_lock, flags);
5679 	print_raid5_conf(conf);
5680 	return count;
5681 }
5682 
5683 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5684 {
5685 	struct r5conf *conf = mddev->private;
5686 	int err = 0;
5687 	int number = rdev->raid_disk;
5688 	struct md_rdev **rdevp;
5689 	struct disk_info *p = conf->disks + number;
5690 
5691 	print_raid5_conf(conf);
5692 	if (rdev == p->rdev)
5693 		rdevp = &p->rdev;
5694 	else if (rdev == p->replacement)
5695 		rdevp = &p->replacement;
5696 	else
5697 		return 0;
5698 
5699 	if (number >= conf->raid_disks &&
5700 	    conf->reshape_progress == MaxSector)
5701 		clear_bit(In_sync, &rdev->flags);
5702 
5703 	if (test_bit(In_sync, &rdev->flags) ||
5704 	    atomic_read(&rdev->nr_pending)) {
5705 		err = -EBUSY;
5706 		goto abort;
5707 	}
5708 	/* Only remove non-faulty devices if recovery
5709 	 * isn't possible.
5710 	 */
5711 	if (!test_bit(Faulty, &rdev->flags) &&
5712 	    mddev->recovery_disabled != conf->recovery_disabled &&
5713 	    !has_failed(conf) &&
5714 	    (!p->replacement || p->replacement == rdev) &&
5715 	    number < conf->raid_disks) {
5716 		err = -EBUSY;
5717 		goto abort;
5718 	}
5719 	*rdevp = NULL;
5720 	synchronize_rcu();
5721 	if (atomic_read(&rdev->nr_pending)) {
5722 		/* lost the race, try later */
5723 		err = -EBUSY;
5724 		*rdevp = rdev;
5725 	} else if (p->replacement) {
5726 		/* We must have just cleared 'rdev' */
5727 		p->rdev = p->replacement;
5728 		clear_bit(Replacement, &p->replacement->flags);
5729 		smp_mb(); /* Make sure other CPUs may see both as identical
5730 			   * but will never see neither - if they are careful
5731 			   */
5732 		p->replacement = NULL;
5733 		clear_bit(WantReplacement, &rdev->flags);
5734 	} else
5735 		/* We might have just removed the Replacement as faulty-
5736 		 * clear the bit just in case
5737 		 */
5738 		clear_bit(WantReplacement, &rdev->flags);
5739 abort:
5740 
5741 	print_raid5_conf(conf);
5742 	return err;
5743 }
5744 
5745 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5746 {
5747 	struct r5conf *conf = mddev->private;
5748 	int err = -EEXIST;
5749 	int disk;
5750 	struct disk_info *p;
5751 	int first = 0;
5752 	int last = conf->raid_disks - 1;
5753 
5754 	if (mddev->recovery_disabled == conf->recovery_disabled)
5755 		return -EBUSY;
5756 
5757 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5758 		/* no point adding a device */
5759 		return -EINVAL;
5760 
5761 	if (rdev->raid_disk >= 0)
5762 		first = last = rdev->raid_disk;
5763 
5764 	/*
5765 	 * find the disk ... but prefer rdev->saved_raid_disk
5766 	 * if possible.
5767 	 */
5768 	if (rdev->saved_raid_disk >= 0 &&
5769 	    rdev->saved_raid_disk >= first &&
5770 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5771 		first = rdev->saved_raid_disk;
5772 
5773 	for (disk = first; disk <= last; disk++) {
5774 		p = conf->disks + disk;
5775 		if (p->rdev == NULL) {
5776 			clear_bit(In_sync, &rdev->flags);
5777 			rdev->raid_disk = disk;
5778 			err = 0;
5779 			if (rdev->saved_raid_disk != disk)
5780 				conf->fullsync = 1;
5781 			rcu_assign_pointer(p->rdev, rdev);
5782 			goto out;
5783 		}
5784 	}
5785 	for (disk = first; disk <= last; disk++) {
5786 		p = conf->disks + disk;
5787 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5788 		    p->replacement == NULL) {
5789 			clear_bit(In_sync, &rdev->flags);
5790 			set_bit(Replacement, &rdev->flags);
5791 			rdev->raid_disk = disk;
5792 			err = 0;
5793 			conf->fullsync = 1;
5794 			rcu_assign_pointer(p->replacement, rdev);
5795 			break;
5796 		}
5797 	}
5798 out:
5799 	print_raid5_conf(conf);
5800 	return err;
5801 }
5802 
5803 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5804 {
5805 	/* no resync is happening, and there is enough space
5806 	 * on all devices, so we can resize.
5807 	 * We need to make sure resync covers any new space.
5808 	 * If the array is shrinking we should possibly wait until
5809 	 * any io in the removed space completes, but it hardly seems
5810 	 * worth it.
5811 	 */
5812 	sector_t newsize;
5813 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5814 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5815 	if (mddev->external_size &&
5816 	    mddev->array_sectors > newsize)
5817 		return -EINVAL;
5818 	if (mddev->bitmap) {
5819 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5820 		if (ret)
5821 			return ret;
5822 	}
5823 	md_set_array_sectors(mddev, newsize);
5824 	set_capacity(mddev->gendisk, mddev->array_sectors);
5825 	revalidate_disk(mddev->gendisk);
5826 	if (sectors > mddev->dev_sectors &&
5827 	    mddev->recovery_cp > mddev->dev_sectors) {
5828 		mddev->recovery_cp = mddev->dev_sectors;
5829 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5830 	}
5831 	mddev->dev_sectors = sectors;
5832 	mddev->resync_max_sectors = sectors;
5833 	return 0;
5834 }
5835 
5836 static int check_stripe_cache(struct mddev *mddev)
5837 {
5838 	/* Can only proceed if there are plenty of stripe_heads.
5839 	 * We need a minimum of one full stripe,, and for sensible progress
5840 	 * it is best to have about 4 times that.
5841 	 * If we require 4 times, then the default 256 4K stripe_heads will
5842 	 * allow for chunk sizes up to 256K, which is probably OK.
5843 	 * If the chunk size is greater, user-space should request more
5844 	 * stripe_heads first.
5845 	 */
5846 	struct r5conf *conf = mddev->private;
5847 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5848 	    > conf->max_nr_stripes ||
5849 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5850 	    > conf->max_nr_stripes) {
5851 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5852 		       mdname(mddev),
5853 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5854 			/ STRIPE_SIZE)*4);
5855 		return 0;
5856 	}
5857 	return 1;
5858 }
5859 
5860 static int check_reshape(struct mddev *mddev)
5861 {
5862 	struct r5conf *conf = mddev->private;
5863 
5864 	if (mddev->delta_disks == 0 &&
5865 	    mddev->new_layout == mddev->layout &&
5866 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5867 		return 0; /* nothing to do */
5868 	if (has_failed(conf))
5869 		return -EINVAL;
5870 	if (mddev->delta_disks < 0) {
5871 		/* We might be able to shrink, but the devices must
5872 		 * be made bigger first.
5873 		 * For raid6, 4 is the minimum size.
5874 		 * Otherwise 2 is the minimum
5875 		 */
5876 		int min = 2;
5877 		if (mddev->level == 6)
5878 			min = 4;
5879 		if (mddev->raid_disks + mddev->delta_disks < min)
5880 			return -EINVAL;
5881 	}
5882 
5883 	if (!check_stripe_cache(mddev))
5884 		return -ENOSPC;
5885 
5886 	return resize_stripes(conf, (conf->previous_raid_disks
5887 				     + mddev->delta_disks));
5888 }
5889 
5890 static int raid5_start_reshape(struct mddev *mddev)
5891 {
5892 	struct r5conf *conf = mddev->private;
5893 	struct md_rdev *rdev;
5894 	int spares = 0;
5895 	unsigned long flags;
5896 
5897 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5898 		return -EBUSY;
5899 
5900 	if (!check_stripe_cache(mddev))
5901 		return -ENOSPC;
5902 
5903 	if (has_failed(conf))
5904 		return -EINVAL;
5905 
5906 	rdev_for_each(rdev, mddev) {
5907 		if (!test_bit(In_sync, &rdev->flags)
5908 		    && !test_bit(Faulty, &rdev->flags))
5909 			spares++;
5910 	}
5911 
5912 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5913 		/* Not enough devices even to make a degraded array
5914 		 * of that size
5915 		 */
5916 		return -EINVAL;
5917 
5918 	/* Refuse to reduce size of the array.  Any reductions in
5919 	 * array size must be through explicit setting of array_size
5920 	 * attribute.
5921 	 */
5922 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5923 	    < mddev->array_sectors) {
5924 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5925 		       "before number of disks\n", mdname(mddev));
5926 		return -EINVAL;
5927 	}
5928 
5929 	atomic_set(&conf->reshape_stripes, 0);
5930 	spin_lock_irq(&conf->device_lock);
5931 	conf->previous_raid_disks = conf->raid_disks;
5932 	conf->raid_disks += mddev->delta_disks;
5933 	conf->prev_chunk_sectors = conf->chunk_sectors;
5934 	conf->chunk_sectors = mddev->new_chunk_sectors;
5935 	conf->prev_algo = conf->algorithm;
5936 	conf->algorithm = mddev->new_layout;
5937 	conf->generation++;
5938 	/* Code that selects data_offset needs to see the generation update
5939 	 * if reshape_progress has been set - so a memory barrier needed.
5940 	 */
5941 	smp_mb();
5942 	if (mddev->reshape_backwards)
5943 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5944 	else
5945 		conf->reshape_progress = 0;
5946 	conf->reshape_safe = conf->reshape_progress;
5947 	spin_unlock_irq(&conf->device_lock);
5948 
5949 	/* Add some new drives, as many as will fit.
5950 	 * We know there are enough to make the newly sized array work.
5951 	 * Don't add devices if we are reducing the number of
5952 	 * devices in the array.  This is because it is not possible
5953 	 * to correctly record the "partially reconstructed" state of
5954 	 * such devices during the reshape and confusion could result.
5955 	 */
5956 	if (mddev->delta_disks >= 0) {
5957 		rdev_for_each(rdev, mddev)
5958 			if (rdev->raid_disk < 0 &&
5959 			    !test_bit(Faulty, &rdev->flags)) {
5960 				if (raid5_add_disk(mddev, rdev) == 0) {
5961 					if (rdev->raid_disk
5962 					    >= conf->previous_raid_disks)
5963 						set_bit(In_sync, &rdev->flags);
5964 					else
5965 						rdev->recovery_offset = 0;
5966 
5967 					if (sysfs_link_rdev(mddev, rdev))
5968 						/* Failure here is OK */;
5969 				}
5970 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5971 				   && !test_bit(Faulty, &rdev->flags)) {
5972 				/* This is a spare that was manually added */
5973 				set_bit(In_sync, &rdev->flags);
5974 			}
5975 
5976 		/* When a reshape changes the number of devices,
5977 		 * ->degraded is measured against the larger of the
5978 		 * pre and post number of devices.
5979 		 */
5980 		spin_lock_irqsave(&conf->device_lock, flags);
5981 		mddev->degraded = calc_degraded(conf);
5982 		spin_unlock_irqrestore(&conf->device_lock, flags);
5983 	}
5984 	mddev->raid_disks = conf->raid_disks;
5985 	mddev->reshape_position = conf->reshape_progress;
5986 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5987 
5988 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5989 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5990 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5991 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5992 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5993 						"reshape");
5994 	if (!mddev->sync_thread) {
5995 		mddev->recovery = 0;
5996 		spin_lock_irq(&conf->device_lock);
5997 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5998 		rdev_for_each(rdev, mddev)
5999 			rdev->new_data_offset = rdev->data_offset;
6000 		smp_wmb();
6001 		conf->reshape_progress = MaxSector;
6002 		mddev->reshape_position = MaxSector;
6003 		spin_unlock_irq(&conf->device_lock);
6004 		return -EAGAIN;
6005 	}
6006 	conf->reshape_checkpoint = jiffies;
6007 	md_wakeup_thread(mddev->sync_thread);
6008 	md_new_event(mddev);
6009 	return 0;
6010 }
6011 
6012 /* This is called from the reshape thread and should make any
6013  * changes needed in 'conf'
6014  */
6015 static void end_reshape(struct r5conf *conf)
6016 {
6017 
6018 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6019 		struct md_rdev *rdev;
6020 
6021 		spin_lock_irq(&conf->device_lock);
6022 		conf->previous_raid_disks = conf->raid_disks;
6023 		rdev_for_each(rdev, conf->mddev)
6024 			rdev->data_offset = rdev->new_data_offset;
6025 		smp_wmb();
6026 		conf->reshape_progress = MaxSector;
6027 		spin_unlock_irq(&conf->device_lock);
6028 		wake_up(&conf->wait_for_overlap);
6029 
6030 		/* read-ahead size must cover two whole stripes, which is
6031 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6032 		 */
6033 		if (conf->mddev->queue) {
6034 			int data_disks = conf->raid_disks - conf->max_degraded;
6035 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6036 						   / PAGE_SIZE);
6037 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6038 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6039 		}
6040 	}
6041 }
6042 
6043 /* This is called from the raid5d thread with mddev_lock held.
6044  * It makes config changes to the device.
6045  */
6046 static void raid5_finish_reshape(struct mddev *mddev)
6047 {
6048 	struct r5conf *conf = mddev->private;
6049 
6050 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6051 
6052 		if (mddev->delta_disks > 0) {
6053 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6054 			set_capacity(mddev->gendisk, mddev->array_sectors);
6055 			revalidate_disk(mddev->gendisk);
6056 		} else {
6057 			int d;
6058 			spin_lock_irq(&conf->device_lock);
6059 			mddev->degraded = calc_degraded(conf);
6060 			spin_unlock_irq(&conf->device_lock);
6061 			for (d = conf->raid_disks ;
6062 			     d < conf->raid_disks - mddev->delta_disks;
6063 			     d++) {
6064 				struct md_rdev *rdev = conf->disks[d].rdev;
6065 				if (rdev)
6066 					clear_bit(In_sync, &rdev->flags);
6067 				rdev = conf->disks[d].replacement;
6068 				if (rdev)
6069 					clear_bit(In_sync, &rdev->flags);
6070 			}
6071 		}
6072 		mddev->layout = conf->algorithm;
6073 		mddev->chunk_sectors = conf->chunk_sectors;
6074 		mddev->reshape_position = MaxSector;
6075 		mddev->delta_disks = 0;
6076 		mddev->reshape_backwards = 0;
6077 	}
6078 }
6079 
6080 static void raid5_quiesce(struct mddev *mddev, int state)
6081 {
6082 	struct r5conf *conf = mddev->private;
6083 
6084 	switch(state) {
6085 	case 2: /* resume for a suspend */
6086 		wake_up(&conf->wait_for_overlap);
6087 		break;
6088 
6089 	case 1: /* stop all writes */
6090 		spin_lock_irq(&conf->device_lock);
6091 		/* '2' tells resync/reshape to pause so that all
6092 		 * active stripes can drain
6093 		 */
6094 		conf->quiesce = 2;
6095 		wait_event_lock_irq(conf->wait_for_stripe,
6096 				    atomic_read(&conf->active_stripes) == 0 &&
6097 				    atomic_read(&conf->active_aligned_reads) == 0,
6098 				    conf->device_lock, /* nothing */);
6099 		conf->quiesce = 1;
6100 		spin_unlock_irq(&conf->device_lock);
6101 		/* allow reshape to continue */
6102 		wake_up(&conf->wait_for_overlap);
6103 		break;
6104 
6105 	case 0: /* re-enable writes */
6106 		spin_lock_irq(&conf->device_lock);
6107 		conf->quiesce = 0;
6108 		wake_up(&conf->wait_for_stripe);
6109 		wake_up(&conf->wait_for_overlap);
6110 		spin_unlock_irq(&conf->device_lock);
6111 		break;
6112 	}
6113 }
6114 
6115 
6116 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6117 {
6118 	struct r0conf *raid0_conf = mddev->private;
6119 	sector_t sectors;
6120 
6121 	/* for raid0 takeover only one zone is supported */
6122 	if (raid0_conf->nr_strip_zones > 1) {
6123 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6124 		       mdname(mddev));
6125 		return ERR_PTR(-EINVAL);
6126 	}
6127 
6128 	sectors = raid0_conf->strip_zone[0].zone_end;
6129 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6130 	mddev->dev_sectors = sectors;
6131 	mddev->new_level = level;
6132 	mddev->new_layout = ALGORITHM_PARITY_N;
6133 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6134 	mddev->raid_disks += 1;
6135 	mddev->delta_disks = 1;
6136 	/* make sure it will be not marked as dirty */
6137 	mddev->recovery_cp = MaxSector;
6138 
6139 	return setup_conf(mddev);
6140 }
6141 
6142 
6143 static void *raid5_takeover_raid1(struct mddev *mddev)
6144 {
6145 	int chunksect;
6146 
6147 	if (mddev->raid_disks != 2 ||
6148 	    mddev->degraded > 1)
6149 		return ERR_PTR(-EINVAL);
6150 
6151 	/* Should check if there are write-behind devices? */
6152 
6153 	chunksect = 64*2; /* 64K by default */
6154 
6155 	/* The array must be an exact multiple of chunksize */
6156 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6157 		chunksect >>= 1;
6158 
6159 	if ((chunksect<<9) < STRIPE_SIZE)
6160 		/* array size does not allow a suitable chunk size */
6161 		return ERR_PTR(-EINVAL);
6162 
6163 	mddev->new_level = 5;
6164 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6165 	mddev->new_chunk_sectors = chunksect;
6166 
6167 	return setup_conf(mddev);
6168 }
6169 
6170 static void *raid5_takeover_raid6(struct mddev *mddev)
6171 {
6172 	int new_layout;
6173 
6174 	switch (mddev->layout) {
6175 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6176 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6177 		break;
6178 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6179 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6180 		break;
6181 	case ALGORITHM_LEFT_SYMMETRIC_6:
6182 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6183 		break;
6184 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6185 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6186 		break;
6187 	case ALGORITHM_PARITY_0_6:
6188 		new_layout = ALGORITHM_PARITY_0;
6189 		break;
6190 	case ALGORITHM_PARITY_N:
6191 		new_layout = ALGORITHM_PARITY_N;
6192 		break;
6193 	default:
6194 		return ERR_PTR(-EINVAL);
6195 	}
6196 	mddev->new_level = 5;
6197 	mddev->new_layout = new_layout;
6198 	mddev->delta_disks = -1;
6199 	mddev->raid_disks -= 1;
6200 	return setup_conf(mddev);
6201 }
6202 
6203 
6204 static int raid5_check_reshape(struct mddev *mddev)
6205 {
6206 	/* For a 2-drive array, the layout and chunk size can be changed
6207 	 * immediately as not restriping is needed.
6208 	 * For larger arrays we record the new value - after validation
6209 	 * to be used by a reshape pass.
6210 	 */
6211 	struct r5conf *conf = mddev->private;
6212 	int new_chunk = mddev->new_chunk_sectors;
6213 
6214 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6215 		return -EINVAL;
6216 	if (new_chunk > 0) {
6217 		if (!is_power_of_2(new_chunk))
6218 			return -EINVAL;
6219 		if (new_chunk < (PAGE_SIZE>>9))
6220 			return -EINVAL;
6221 		if (mddev->array_sectors & (new_chunk-1))
6222 			/* not factor of array size */
6223 			return -EINVAL;
6224 	}
6225 
6226 	/* They look valid */
6227 
6228 	if (mddev->raid_disks == 2) {
6229 		/* can make the change immediately */
6230 		if (mddev->new_layout >= 0) {
6231 			conf->algorithm = mddev->new_layout;
6232 			mddev->layout = mddev->new_layout;
6233 		}
6234 		if (new_chunk > 0) {
6235 			conf->chunk_sectors = new_chunk ;
6236 			mddev->chunk_sectors = new_chunk;
6237 		}
6238 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6239 		md_wakeup_thread(mddev->thread);
6240 	}
6241 	return check_reshape(mddev);
6242 }
6243 
6244 static int raid6_check_reshape(struct mddev *mddev)
6245 {
6246 	int new_chunk = mddev->new_chunk_sectors;
6247 
6248 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6249 		return -EINVAL;
6250 	if (new_chunk > 0) {
6251 		if (!is_power_of_2(new_chunk))
6252 			return -EINVAL;
6253 		if (new_chunk < (PAGE_SIZE >> 9))
6254 			return -EINVAL;
6255 		if (mddev->array_sectors & (new_chunk-1))
6256 			/* not factor of array size */
6257 			return -EINVAL;
6258 	}
6259 
6260 	/* They look valid */
6261 	return check_reshape(mddev);
6262 }
6263 
6264 static void *raid5_takeover(struct mddev *mddev)
6265 {
6266 	/* raid5 can take over:
6267 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6268 	 *  raid1 - if there are two drives.  We need to know the chunk size
6269 	 *  raid4 - trivial - just use a raid4 layout.
6270 	 *  raid6 - Providing it is a *_6 layout
6271 	 */
6272 	if (mddev->level == 0)
6273 		return raid45_takeover_raid0(mddev, 5);
6274 	if (mddev->level == 1)
6275 		return raid5_takeover_raid1(mddev);
6276 	if (mddev->level == 4) {
6277 		mddev->new_layout = ALGORITHM_PARITY_N;
6278 		mddev->new_level = 5;
6279 		return setup_conf(mddev);
6280 	}
6281 	if (mddev->level == 6)
6282 		return raid5_takeover_raid6(mddev);
6283 
6284 	return ERR_PTR(-EINVAL);
6285 }
6286 
6287 static void *raid4_takeover(struct mddev *mddev)
6288 {
6289 	/* raid4 can take over:
6290 	 *  raid0 - if there is only one strip zone
6291 	 *  raid5 - if layout is right
6292 	 */
6293 	if (mddev->level == 0)
6294 		return raid45_takeover_raid0(mddev, 4);
6295 	if (mddev->level == 5 &&
6296 	    mddev->layout == ALGORITHM_PARITY_N) {
6297 		mddev->new_layout = 0;
6298 		mddev->new_level = 4;
6299 		return setup_conf(mddev);
6300 	}
6301 	return ERR_PTR(-EINVAL);
6302 }
6303 
6304 static struct md_personality raid5_personality;
6305 
6306 static void *raid6_takeover(struct mddev *mddev)
6307 {
6308 	/* Currently can only take over a raid5.  We map the
6309 	 * personality to an equivalent raid6 personality
6310 	 * with the Q block at the end.
6311 	 */
6312 	int new_layout;
6313 
6314 	if (mddev->pers != &raid5_personality)
6315 		return ERR_PTR(-EINVAL);
6316 	if (mddev->degraded > 1)
6317 		return ERR_PTR(-EINVAL);
6318 	if (mddev->raid_disks > 253)
6319 		return ERR_PTR(-EINVAL);
6320 	if (mddev->raid_disks < 3)
6321 		return ERR_PTR(-EINVAL);
6322 
6323 	switch (mddev->layout) {
6324 	case ALGORITHM_LEFT_ASYMMETRIC:
6325 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6326 		break;
6327 	case ALGORITHM_RIGHT_ASYMMETRIC:
6328 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6329 		break;
6330 	case ALGORITHM_LEFT_SYMMETRIC:
6331 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6332 		break;
6333 	case ALGORITHM_RIGHT_SYMMETRIC:
6334 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6335 		break;
6336 	case ALGORITHM_PARITY_0:
6337 		new_layout = ALGORITHM_PARITY_0_6;
6338 		break;
6339 	case ALGORITHM_PARITY_N:
6340 		new_layout = ALGORITHM_PARITY_N;
6341 		break;
6342 	default:
6343 		return ERR_PTR(-EINVAL);
6344 	}
6345 	mddev->new_level = 6;
6346 	mddev->new_layout = new_layout;
6347 	mddev->delta_disks = 1;
6348 	mddev->raid_disks += 1;
6349 	return setup_conf(mddev);
6350 }
6351 
6352 
6353 static struct md_personality raid6_personality =
6354 {
6355 	.name		= "raid6",
6356 	.level		= 6,
6357 	.owner		= THIS_MODULE,
6358 	.make_request	= make_request,
6359 	.run		= run,
6360 	.stop		= stop,
6361 	.status		= status,
6362 	.error_handler	= error,
6363 	.hot_add_disk	= raid5_add_disk,
6364 	.hot_remove_disk= raid5_remove_disk,
6365 	.spare_active	= raid5_spare_active,
6366 	.sync_request	= sync_request,
6367 	.resize		= raid5_resize,
6368 	.size		= raid5_size,
6369 	.check_reshape	= raid6_check_reshape,
6370 	.start_reshape  = raid5_start_reshape,
6371 	.finish_reshape = raid5_finish_reshape,
6372 	.quiesce	= raid5_quiesce,
6373 	.takeover	= raid6_takeover,
6374 };
6375 static struct md_personality raid5_personality =
6376 {
6377 	.name		= "raid5",
6378 	.level		= 5,
6379 	.owner		= THIS_MODULE,
6380 	.make_request	= make_request,
6381 	.run		= run,
6382 	.stop		= stop,
6383 	.status		= status,
6384 	.error_handler	= error,
6385 	.hot_add_disk	= raid5_add_disk,
6386 	.hot_remove_disk= raid5_remove_disk,
6387 	.spare_active	= raid5_spare_active,
6388 	.sync_request	= sync_request,
6389 	.resize		= raid5_resize,
6390 	.size		= raid5_size,
6391 	.check_reshape	= raid5_check_reshape,
6392 	.start_reshape  = raid5_start_reshape,
6393 	.finish_reshape = raid5_finish_reshape,
6394 	.quiesce	= raid5_quiesce,
6395 	.takeover	= raid5_takeover,
6396 };
6397 
6398 static struct md_personality raid4_personality =
6399 {
6400 	.name		= "raid4",
6401 	.level		= 4,
6402 	.owner		= THIS_MODULE,
6403 	.make_request	= make_request,
6404 	.run		= run,
6405 	.stop		= stop,
6406 	.status		= status,
6407 	.error_handler	= error,
6408 	.hot_add_disk	= raid5_add_disk,
6409 	.hot_remove_disk= raid5_remove_disk,
6410 	.spare_active	= raid5_spare_active,
6411 	.sync_request	= sync_request,
6412 	.resize		= raid5_resize,
6413 	.size		= raid5_size,
6414 	.check_reshape	= raid5_check_reshape,
6415 	.start_reshape  = raid5_start_reshape,
6416 	.finish_reshape = raid5_finish_reshape,
6417 	.quiesce	= raid5_quiesce,
6418 	.takeover	= raid4_takeover,
6419 };
6420 
6421 static int __init raid5_init(void)
6422 {
6423 	register_md_personality(&raid6_personality);
6424 	register_md_personality(&raid5_personality);
6425 	register_md_personality(&raid4_personality);
6426 	return 0;
6427 }
6428 
6429 static void raid5_exit(void)
6430 {
6431 	unregister_md_personality(&raid6_personality);
6432 	unregister_md_personality(&raid5_personality);
6433 	unregister_md_personality(&raid4_personality);
6434 }
6435 
6436 module_init(raid5_init);
6437 module_exit(raid5_exit);
6438 MODULE_LICENSE("GPL");
6439 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6440 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6441 MODULE_ALIAS("md-raid5");
6442 MODULE_ALIAS("md-raid4");
6443 MODULE_ALIAS("md-level-5");
6444 MODULE_ALIAS("md-level-4");
6445 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6446 MODULE_ALIAS("md-raid6");
6447 MODULE_ALIAS("md-level-6");
6448 
6449 /* This used to be two separate modules, they were: */
6450 MODULE_ALIAS("raid5");
6451 MODULE_ALIAS("raid6");
6452